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ABSTRACT

DIVIDE AND CONQUER APPROACH TO SCALABLE SUBSTRUCTURE

DISCOVERY: PARTITIONING SCHEMES, ALGORITHMS, OPTIMIZATION

AND PERFORMANCE ANALYSIS USING MAP/REDUCE PARADIGM

SOUMYAVA DAS, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Sharma Chakravarthy

With the proliferation of applications rich in relationships, graphs are becoming

the preferred choice of data model for representing/storing data with relationships.

The notion of “information retrieval” and “information discovery” in graphs has ac-

quired a completely new connotation and are currently being applied to a wide range

of contexts ranging from social networks, chemical compounds, telephone networks

to transactional networks. From the point of view of an end user, one of the most

important aspects on graphs is to discover recurrent patterns following user-defined

parameters. Finding frequent patterns play an important role in mining associations,

correlations and many other interesting aspects among data.

The evolution of web 2.0 has propelled growth of graphs at an unprecedented

rate. These graphs have hundreds of millions of entities and their interactions needing

tens to hundreds of GBs of storage. Data processing for finding frequent patterns on

these graphs generate huge intermediate result sets. Neither these graphs nor the in-

termediate results can be materialized on a single machine. Even if we have access to
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powerful machines to scale vertically, state-of-the art methods for frequent subgraph

mining requires enormous amount of computing resources causing even powerful ma-

chines to crash at times. Therefore, development of techniques that scale horizontally

and effectively with increasing graph sizes is necessary. This dissertation addresses

research in that direction by designing scalable graph mining techniques. Although

scalability has been the main concern while developing approaches and algorithms,

their correctness, elegance, and efficiency on large-scale graphs is maintained.

Until now, graph mining has been addressed using main memory, disk-based as

well as database-oriented approaches to deal with progressively large-sizes of applica-

tions. This dissertation starts with the problem of substructure discovery by dividing

the graph into smaller partitions and then combining the results across partitions ef-

fectively. Two algorithms, based on two partitioning strategies are introduced which

cast a main memory approach (Subdue [1]), along with its nuances into a distributed

framework. Map/Reduce has been used as a distributed paradigm here. The basics of

graph mining such as systematic expansion and computing graph similarity have been

elegantly translated to the Map/Reduce paradigm. The overall focus is to address

scalable mining techniques on partitioned graph using a cluster of (heterogeneous)

commodity machines.

In the process of mapping the mining algorithm to a distributed environment,

some of the nuances of the existing algorithm are propagated to the distributed

paradigm. For example, now intermediate results are generated within each partition

which need to be handled across partitions. A lot of these intermediate results are

duplicates when different graphs grow into multiple copies of the same bigger graph.

Elimination of duplicates is critical not only for correctness but also for reducing the

mining cost (i.e., performance and speedup.) The next part of the dissertation in-

troduces a set of optimizations over the existing iterative algorithm (both in single
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machine and map/reduce environment.) These optimizations aim to reduce duplicate

generation by introducing heuristics based on graph characteristics. Irrespective of

the choice of the heuristics, these optimizations improve response time and storage

cost of graph mining.

The dissertation finally continues to examining different paradigm specific costs

for our partition-based graph mining. Graph partitioning is a widely researched prob-

lem where the motive is to minimize inter partition connectivity. However graph par-

titioning has been predominantly used for query answering purpose in graphs. This

dissertation outlines the limitations of a state of the art partitioning scheme for sub-

structure discovery and introduces two new partitioning strategies for graph mining.

Mining in the presence of partitions incurs computation cost in each partition and

network cost of grouping results across partitions. We analyze the cost of partition-

based graph mining for our partitioning schemes thereby leading to evaluating the

choice of initial partitioning for substructure discovery. Usability of these partition-

ing techniques for three different classes of graph mining problems (non iterative,

fixed cost iterative and variable cost iterative) have been provided to postulate our

observation that one partitioning scheme does not fit all. Finally, the dissertation

elaborates the applicability of our partition-based techniques on a different paradigm

(Spark) to justify the benefit of our algorithm design over any distributed paradigm.

The effectiveness of the techniques proposed in this dissertation are validated

with extensive experimental analysis on 2 real world graphs (Live Journal [2] and

Orkut [3]) and 2 synthetic graphs and their variations(generated using the Subgen [4]

and RMAT [5] artificial graph generators.)
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CHAPTER 1

INTRODUCTION

Data mining has been an active topic of research for quite some time with most

effort being focused on discovering association rules from transactional data. A pop-

ular example is the market-basket analysis where the goal is to discover interesting

and repetitive patterns (or frequently purchased items) in transactional data. How-

ever traditional transactional mining techniques are rendered ineffective in data with

inherent relationships. Such data are typically modeled as graphs. The ability to

mine over graphs is important as graphs are capable of elegantly capturing complex

relationships.

Graphs have become increasingly important in modeling sophisticated struc-

tures and their interactions, with broad applications including chemical informatics,

bio-informatics, computer vision, video indexing, text retrieval and web analysis. A

common thread that binds these applications together is the necessity to discover

repetitive and interesting patterns (referred to as substructure discovery or graph

mining.) Although many approaches for graph mining have been proposed in litera-

ture, advancing the frontier of graph mining needs to concentrate on:

1. Appropriate techniques for substructure discovery on graphs that scale with

increasing graph sizes to any arbitrary graph size

2. Analysis of distributed paradigm for scaling horizontally and developing tech-

niques to port mining algorithms to chosen one and other distributed paradigms

3. Analysis of partitioning schemes for graphs and detailed analysis of components

costs of graph mining for a partitioning scheme over a distributed paradigms

1
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4. Suitable optimizations and establish their correctness to improve response time,

work done targeting all components costs including the storage cost.

5. Where possible, derive generalizations and provide heuristic-based guidelines

(based on broader graph characteristics) for choosing partitioning schemes, best

optimization option, and storage alternatives

This dissertation advances research in the direction of scalable substructure discovery

(also called graph mining) by answering the above challenges.

1.1 Substructure Discovery in Graphs

Frequent patterns are itemsets, subsequences, or substructures that appear in

a data set with no less than a user-specified criteria. For example, a set of items,

such as milk and bread, that appear frequently together in a transaction data set, is a

frequent itemset. Similar to an itemset, a substructure in a graph can refer to different

structural forms, such as subgraphs, subtrees, or sub lattices. If a substructure occurs

frequently in a graph database, it is called a (frequent) structural pattern.

Substructure discovery is the process of frequent pattern mining in graphs (or

a forest). Finding frequent patterns in graphs plays an essential role in mining as-

sociations, correlations, and many other interesting relationships among data. The

frequent subgraphs help in graph indexing, classification, clustering, and other data

mining tasks on graphs as well. Thus, frequent pattern mining has become a funda-

mental data mining task and a focused theme in graph mining research.

Recurrent patterns also separate anomalies from interesting data. For example,

repetitive patterns in a transactional network (banking) can be used to separate fre-

quent transactions from fraudulent ones. Frequent patterns in social networks can be

used to help publishers in selective marketing and advertising thereby increasing rev-

enue. In biological networks and chemical compounds frequent patterns help validate
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the approved diversity of chemicals (or drugs.) In telephone networks, recurrent call-

ing patterns can be used to introduce customized calling plans and also improve user

experience. Figure 1.1 shows an example graph along with the repetitive patterns.

Figure 1.1: An example graph

An Interesting Anecdote: The frequent patterns can also be used to compress a

graph and save storage space. Big graphs can be coarsened to small graphs using these

compression technique and main memory based mining techniques can be applied on

the compressed graph to discover progressively bigger (or even hierarchical) patterns.

Figure 1.2 shows how the frequent pattern in Figure 1.2a can be used to compress the

graph in Figure 1.1 to Figure 1.2c. The compressed graph can be again compressed

hierarchically to Figure 1.2b. Graphs larger than main memory can be compressed

using this technique to be loaded in main memory when conventional main memory

based techniques can be used for mining.

Existing literature considers two kinds of graph databases: transactional and

single graphs. The transactional case assumes a large number of relatively smaller

sized graphs. An example being a database of chemical compounds, where each graph

represents a connection of hundreds on elements. A substructure is called frequent

if it appears in more than τ number of graphs where τ is a user-defined parameter.
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S1

(a) Repetitive pattern

S2S2

(b) Second Level Compres-
sion Using S2

S1

S1

S1

S1

S2S2

(c) Compressed Original Graph Using S1

Figure 1.2: Frequent pattern in graphs aiding in compression

The single graph is a generalization of the transactional approach since a large graph

can also be considered as an agglomeration of smaller independent components. This

dissertation focuses on mining on single graphs. Substructure discovery in a large

single graph is even more complicated as patterns might overlap with each other.

Also, the complexity is exponential in graph size making things even more challenging.

With the advent of Web 2.0 and a worldwide reach of hundreds of millions of

users, graphs are growing at an astonishing pace. For example LiveJournal [2] has

4 Million users and 34.68 Million interactions among them and takes 2.5GB of disk

space. Another social media graph, Orkut [3] has 4.03 Million users and 117 Million

interactions among them using approximately 8GB of disk space. Other big-scale

networks such as Facebook [6] and LinkedIn [7] already have close to billions of users

and consume TBs of disk space. Graph mining on such big graphs face the following

issues:

• The graphs are too large to be loaded into main memory of a single machine

• Operations on graphs generate huge intermediate result set easily overflowing

main memory.
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Even if we have access to powerful machines, literature [8] shows that a state-of-the

art method for frequent subgraph mining crashes after a day consuming 192GB for

an input graph of only 100K nodes and 1M edges. Therefore the development of

techniques that can mine large graphs even with limited computational capability is

very crucial.

1.2 Scalability of Substructure Discovery

Substructure discovery is already a widely researched area. However discovery

of repetitive substructure patterns has become difficult with increasing graph sizes

which renders earlier approaches (from main memory [1,9–12] to disk-based [13–15] to

database-oriented approaches [16,17]) ineffective. Hence there exists a clear need for

developing novel techniques for substructure discovery in big structural datasets. In

order to analyze graphs of increasing sizes and still discover interesting substructures

within a meaningful response time, there is a need for mining using a paradigm that

scales with increasing graph sizes.

An intuitive approach is to adapt the time-tested divide and conquer technique

for graph mining. The idea is to partition the graph into smaller chunks, mine across

partitions and then combine findings across partitions. There have been some effort

at partitioned approaches to substructure discovery [18, 19] but they do not discuss

expansion of substructures across partitions hence compromising accuracy (or get ap-

proximate results.) Preserving accuracy in the presence of partitions entails handling

substructures that cross partition boundaries necessitating exchange of information

across processors. The focus therefore shifts to incorporate correctness into the chosen

distributed paradigm to address graph mining.

Map/Reduce is one distributed paradigm that has been used to scale computa-

tions horizontally to accommodate very large data sizes. This paradigm also handles
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heterogeneous as well as different generation computing devices. However, we have

to work within the specified functionality provided by the paradigm, such as parti-

tion, compute, merge, and synchronize computations using a programming frame-

work introduced by Google [20]. Map/Reduce, with its open source implementation

Hadoop [21] provides a powerful programming framework to process large data sets.

Hadoop separates the underlying complexities from the user by providing a couple

of methods (or functions) to interact with the system. It also automatically handles

scheduling and failure thus allowing us to focus only on using the functions to our

advantage. However, for using Hadoop, mining algorithms have to be cast efficiently

into this paradigm.

Currently, an iterative algorithm is used for substructure discovery that: gener-

ates all substructures of increasing sizes (starting from substructure of size one that

has one edge), eliminates duplicates if necessary, counts the number of identical (or

similar) substructures, applies a metric (e.g. frequency) to rank the substructures.

This process is repeated until a given substructure size is reached or there are no

more substructures to generate. In each iteration, either all substructures or a subset

of substructures (using the rank) is carried forward to constrain the expansion pro-

cess. The steps of iteratively generating bigger substructures (graph expansion) and

counting identical substructures (graph similarity) needs to be remodeled to work cor-

rectly on partitioned graphs. Ideally, each computation in each partition should not

be dependent on other graph partitions, as that beats the purpose of parallelization.

We draw inspiration from Subdue [1], one of the earliest graph mining technique

for designing our mining algorithms on the distributed paradigm. Subdue can handle

graphs with loops, cycles, multiple edges, directed and undirected edges making it one

of the best general purpose substructure discovery techniques. To make graph mining

scalable, in this dissertation, we design mining techniques (inspired from Subdue)
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that works with graph partitions. Expansion of graphs occur in individual partitions

independently achieving parallelism. The expanded substructures across partitions

are then grouped across partitions for counting. Since mining is an iterative process,

partitions may have to be updated for subsequent iterations. We introduce two

partitioning techniques and corresponding Map/Reduce based algorithms for graph

mining. Experiments indicate that instead of using high computation intensive super

computers, graph mining can be done with a cluster of commodity machines and yet

scale to graphs with millions of nodes and hundred of millions of edges.

Note that these partition-based algorithms still generate a huge set of interme-

diate results. Following user-defined pruning parameters a subset of the intermediate

result is pruned after generation needing additional pruning cost. Hence any improve-

ment that reduces generation of the intermediate result will result in improvement of

the mining method. Therefore investigation of optimization techniques for substruc-

ture discovery is crucial.

1.3 Optimizations on Substructure Discovery

The expansion process used in the earlier technique expands a subgraph in all

possible ways by adding an edge (incoming or outgoing if a directed graph) on any of

its vertices. Such an expansion is complete as it guarantees generation of all possible

substructures in every iteration. However, as a byproduct duplicates are generated

when different substructures in the same iteration, expand into multiple copies of the

same (exact) bigger substructure. The number of duplicates, thus generated, typically

depend on graph characteristics.

Following expansion, duplicates impact the computation as well as the stor-

age costs. First, generation of duplicates incurs extra computing cost. Second, the

expanded substructures along with duplicates may need to be persisted before elim-
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inating duplicates requiring additional storage. The duplicates finally need to be

removed to ensure correctness requiring additional pruning cost. In the presence of

partitions, the number of duplicates generated in individual partitions affect the net-

work cost as these duplicates need to be brought together from different partitions

for elimination. If there is a way to reduce (if not completely eliminate) duplicates,

performance can be significantly improved across all components of any graph mining

(storage, I/O, network and computation cost) technique.

In this dissertation we augment the previous expansion strategy by introducing

three heuristics, each capable of reducing the number of duplicates generated during

graph expansion. Our heuristics can be seamlessly integrated into most of the graph

representations used for the iterative algorithm. In addition to establishing the theo-

retical correctness of each constraint, we investigate the composition of heuristics to

achieve greater benefit. For scalability, we validate the benefits of using our heuris-

tics on partition-based graphs. Finally, we present an extensive comparative analysis

of the constraints with respect to the graph characteristics to help choose the best

heuristic for an arbitrary graph.

1.4 Component Cost analysis

For any algorithm, cost analysis is critical for identifying places to improve the

performance. For the Map/Reduce framework used in this dissertation, there are a

number of costs associated with an algorithm. In main-memory based methods, the

mining cost was mainly computed as main-memory access and computing costs. As

disk-based mining came into existence where some part of data was in memory and

the rest in disk, I/O cost based on the buffer sizes and hit ratios had an impact on

mining. The entire mining cost was a cumulative of the main memory cost and the
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disk access cost. With the adaptation of newer paradigms to graph mining, a more

detailed component cost analysis of graph mining is warranted.

Figure 1.3: Map/Reduce paradigm

Figure 1.3 shows the costs that are specific to the Map/Reduce paradigm. A

distributed paradigm comes with a distributed file system (DFS.) The initial parti-

tioning strategy determines how the input file in broken into shards and kept in the

DFS. The computation cost is specific to the mapper which involves writing interme-

diate files to local disk involving disk I/O. Sending intermediate files from mappers

to reducers involve network cost. Finally after any computation cost incurred by

reducers, the outputs are again materialized into the DFS. In case of an iterative task

like graph mining, the output of a reducer is fed as input to a next set of mappers

for subsequent iteration.

The choice of initial partitioning strategy and the underlying costs specific to

the Map/Reduce paradigm bears an effect on graph mining. Hence this dissertation

analyzes the cost of graph mining with different partitioning strategies and analyzes

the role of initial partitioning for partition-based graph mining. A state-of-the-art

graph partitioning technique METIS is initially used for graph mining and based on

our analysis of its limitations, two new partitioning strategies have been developed for
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substructure discovery. The cost analysis helps to evaluate the partitioning strategy

for graph mining by discussing the trade-off between different components of the

algorithms using these partitioning schemes. Since the number of map workers and

reduce workers can be specified by users, the dissertation also investigates the effect

of different numbers of Map/Reduce parameters on the graph mining cost.

Finally, based on the insights gained during the development and analysis of

this algorithm and its evaluation, we try to characterize algorithmic classes for the

Map/Reduce framework. The goal is to understand the performance issues for dif-

ferent classes of algorithm with different requirements. Specifically, we analyze the

following three classes of algorithms: (i) non-iterative algorithms (such as joins),

(ii) iterative algorithms (such as PageRank [22]) with no need for persistent data

across iterations, and (iii) iterative algorithms (such as Substructure Discovery) with

need for persistent data across iterations. The purpose of this comparison is to make

it easier to develop and fine-tune algorithms pertaining to different classes based on

their performance bottlenecks.

1.5 Contributions

The contributions of this dissertation are:

• Scaling graph mining to arbitrary-size graphs with commodity machines and

partitions schemes using the Map/Reduce paradigm

– Two Map/Reduce based algorithms for substructure discovery

– Handling basic graph mining operations like subgraph expansion and sim-

ilarity computation in the Map/Reduce framework

– Extensive experimental analysis on graphs with varying characteristics

showing scalability

• Optimizations over graph mining to improve the overall mining cost
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– Identified several constraint-based heuristics to reduce the number of du-

plicates generated along with their theoretical correctness

– Analysis of two pruning strategies with respect to soundness and complete-

ness using the proposed heuristics

– Comprehensive analysis of the algorithms on single and partitioned graphs

with diverse characteristics using the heuristics and pruning properties

– Back-of-the-envelope analysis of the choice of heuristics to be used for an

arbitrary graph

• Analysis of costs of partition-based graph mining using different partitioning

schemes on the Map/Reduce paradigm

– Analysis of existing partitioning strategies for graph mining and two new

partitioning schemes to overcome their limitations

– A detailed analysis of the costs associated with each component of graph

mining with Map/Reduce with varying user-defined parameters using large

scale real-world graph databases and synthetic datasets

• Back of the envelop comparison of several classes of Map/reduce algorithms

from a performance perspective.

1.6 RoadMap

The rest of the chapters are organized as follows:

• In Chapter 2 we present the partition-based graph mining technique and algo-

rithms using Map/Reduce and then evaluate our approach on large scale graphs

with varying graph characteristics

• Chapter 3, extends our partition-based approach to work with various parti-

tioning schemes and in the process discuss the cost of graph mining on various

partitioning techniques.
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• In Chapter 4 we elaborate on optimizations on graph mining, present the heuris-

tics with associated conditions and discuss the results of experimental evaluation

on the same with respect to graphs with varying characteristics

• Chapter 5 surveys the related work with respect to the motivation of this dis-

sertation while Chapter 6 concludes the dissertation with directions for future

work.



CHAPTER 2

SCALABLE GRAPH MINING

This chapter focuses on the problem of subgraph mining in the context of big

data analytics. Analysis of fraud detection, finding friendships and other character-

istics in social networks require that graph mining be done on very large graphs that

go beyond the capabilities of previous approaches. Our goal is to initially use the

Map/Reduce paradigm for mining interesting and repetitive patterns from very large

graphs. As graph databases with structural information (e.g., FreeBase) is becoming

prevalent, even graph queries can be processed as substructure matching in very large

graph databases. Hence, it is imperative that we map mining algorithms using mas-

sively parallel paradigms to be able to process very large graphs and to obtain best

possible speed-up to keep the response time meaningful. In this chapter, we discuss

our approaches to substructure discovery using the Map/Reduce architecture and its

open source implementation, Hadoop.

2.1 Introduction

Substructure discovery is the process of discovering substructure(s) as a con-

nected subgraph in a graph (or a forest) that best characterizes a concept based on

some criterion. Due to increasing size of graphs, there has been some effort on par-

titioned approach to substructure discovery as in [18, 19], but they do not discuss

expansion of substructures across partitions. In order to analyze large graphs and

discover interesting substructures within a meaningful response time, the input data

needs to be processed using a paradigm that can leverage partitioning and distribu-

13
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tion of data on a large scale. Map/Reduce provides a powerful parallel and scalable

programming framework to process large data sets.

Briefly, in order to detect interesting concepts in a graph (or a forest), an iter-

ative algorithm is used that: generates all substructures of increasing sizes (starting

from substructure of size one that has one edge), counts the number of identical (or

similar) substructures and applies a metric to rank the substructures. This process

is repeated until a given substructure size is reached or there are no more substruc-

tures to generate. Although main memory based data mining algorithms exist, they

typically face two problems with respect to scalability:(i) storing the entire graph

(or its adjacency matrix) in main memory may not be possible and (ii) the com-

putational space requirements of the algorithm may exceed available main memory.

Hence it is important to partition the graph such that the individual partitions do

not encounter these two problems. Mining using these partitions is tricky and needs

effective partition management strategies. Moreover each parallel approach requires

synchronization of computations across partitions and proper key/value pairs need

to be formulated in the Map/Reduce paradigm to accomplish proper synchronization

and lossless computation. The contributions of this work are:

• Two approaches to partition management for graph mining and their analysis

• Corresponding Map/Reduce algorithms

• Formulation of key/value pairs for isomorphism detection and duplicate removal

• Extensive experimental analysis of algorithms using diverse data sets to validate

intuitive conjectures for scalability, I/O usage and response time behavior.

Roadmap: The rest of this chapter is organized as follows: Section 2.2 presents the

problem definition and a brief overview on graph mining. Section 2.3 and Section 2.4

detail our algorithmic approach and problem solving methodologies. Section 2.5 dis-

cusses experiments and their analysis while Section 2.6 concludes the chapter.
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2.2 Preliminaries and Problem Definition

In this paper, we focus on labeled graphs where node and edge labels are not

assumed to be unique. We introduce a few definitions used in the rest of the paper.

Graph: A graph G = (V,E, VL, EL) consists of a set of V vertices and E edges. Each

vertex has a vertex label belonging to the set VL and a set of edge labels in EL. The

graph can be either directed or undirected. Figure 2.1 shows an example of a graph

in relevance to this thesis.

� �
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Figure 2.1: A Graph Example

Graph Isomorphism: Formally, graphs G1 = (V1, E1) and G2 = (V2, E2) are iso-

morphic if (i) |V1| = |V2| and |E1| = |E2|, (ii) there is a bijection (one to one

correspondence) f from V1 to V2, (iii) there is a bijection g from E1 to E2 that maps

each edge (u,v) in E1 to (f(u), f(v)) in E2. We use isomorphism to detect identical

(or exact) substructure patterns.We use isomorphism to detect identical (or exact)

substructure patterns. Figure 2.2 includes a few isomorphic graphs present in Fig-

ure 2.1.

Minimum Description Length (MDL): Minimum description length (MDL) is

an information theoretic metric that has been shown to be domain independent and

highlights the importance of a substructure on how well it can compress an entire

graph. Description length of a graph G is essentially the number of bits required to
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Figure 2.2: Graph Isomorphism Examples

encode the graph. For a substructure S which occurs in graph G, MDL is calculated

using the formula MDL = (DL(S) +DL(G|S))/DL(G) where DL(S) is the descrip-

tion length of the substructure being evaluated, DL(G|S) is the description length of

the graph as compressed by representing each instance of the substructure as a node,

and DL(G) is the description length of the original graph. The substructure that

compresses a graph best (i.e., minimizes DL(S) + DL(G|S)) is considered the best

theory/concept in the graph. Both frequency of the subgraph and its structure has a

bearing on compression. We compute this value by using the number of vertices and

edges instead of bits. MDL is detailed in [1, 16].

Problem Definition: Given a labeled graph as input, the general problem is to find

the substructure(s) that reduces the graph best using the MDL or frequency principle.

The subgraph size can be optionally specified to find the best substructure up to that

size. The goal is to develop algorithms that are amenable to partitioning the graph

to satisfy the number and type of processors. For the current work, we have chosen

the Map/Reduce paradigm.

2.3 Methodology

We shall first discuss the representation of input graph followed by strategies

to manage partitions for parallel processing.
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2.3.1 Input Graph Representation

Both undirected and directed graphs can be used for our approach but we have

considered only directed graphs in this paper as it has relations explicitly represented

using directions . Our input graph is represented as a sequence of unordered edges

(or 1-edge substructure) including its direction. Each edge is completely represented

by a 5 element tuple <edge label, source vertex id, source vertex label,destination

vertex id, destination vertex label>. Table 2.1 shows the 1-edge substructures of

Figure 2.1. The size of an edge is the sum of components in it and is assumed to

be a constant. Our method can be easily extended for undirected graphs. Since

undirected graphs do not have an explicit source-destination relationship, it can be

converted into a directed graph by replacing an edge with two directed edges but

giving rise to loops. Loops can be handled by keeping track of visited nodes/edges

during graph traversals. For graphs where edges can be both directed and undirected,

a sixth element needs to be introduced into the current edge representation indicating

the nature of the edge (directed or undirected). Our representation is general and

can be extended for multiple edges as well by using an edge identifier in the edge

representation to demarcate multiple edges between same two nodes. Following our

input representation1 for a directed edge, a k-edge substructure (a connected graph

of k edges) is represented by a collection of k 1-edge substructures. A graph is stored

as a flat file with a 1-edge substructure in each line and acts as an input to our

algorithm.

1Any other graph representation from which our representation can be inferred can also be used

for our approach
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Table 2.1: 1-edge substructures of Figure 2.1 (top) AND Generated Adjacency List
(bottom)

Edge

(x,1,A,2,B)
(z,1,A,3,A)
(i,1,A,4,C)
(y,2,B,4,C)
(i,3,A,4,C)
(y,5,B,4,C)

Vertex ID Adjacency List

1 [(x,1,A,2,B)(z,1,A,3,A)(i,1,A,4,C)]
2 [(x,1,A,2,B)(y,2,B,4,C)]
3 [(z,1,A,3,A)(i,3,A,4,C)]
4 [(i,1,A,4,C)(y,2,B,4,C)(i,3,A,4,C)(y,5,B,4,C)]
5 [(y,5,B,4,C)]

2.3.2 Partition Management

As we are considering large graphs in this paper we assume that the entire

information needed (adjacency lists of graph etc.) cannot be stored in the memory of

a single machine. We are not considering disk-based alternatives to store the graph

as iteration over disk-based graphs will incur significant I/O in each iteration. Hence

partitioning the graph among multiple processors is our goal where each partition can

be held in the memory of a single processor. Of course, if the number of processors

and their main memory is not sufficient, either disk-based approaches or subdividing

a partition based on memory availability and processing them sequentially can be

used.

Consider a graph with V vertices and E edges. Since we partition the graph

across multiple machines, we need to create a substructure partition consisting ini-

tially of 1-edge substructures. Expansion of a substructure in the substructure par-

tition requires a corresponding adjacency list partition that contains adjacency list

of each vertex present in the substructure partition. An adjacency list of a vertex

id is the list of edges (not necessarily ordered) in which that vertex id appears. The

number of edges in an adjacency list for vertex is the sum of in and out degrees of
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that vertex in the graph. Hence, the size of the adjacency partition will be much

larger than the size of the substructure partition (at least initially) for each partition.

The initial representation of a graph can vary depending on how it is gener-

ated/traversed. We do not make any assumption on the input graph representation.

For example, the input generated by SUBDUE graph is an unordered sequence of

edges (1-edge substructures) that contains all relevant information about the edge

(node labels, edge label and direction.) From this we need to create both our sub-

structure and adjacency partition for our requirement. We also assume that we can

infer the processing and memory requirement of each processor as well as the number

of processors available for computation. We are not assuming homogeneous processors

and hence the size of individual partitions may vary.

For a graph, creation of substructure partitions can be done in many ways. The

adjacency partition depends on the substructure partition. Since these graphs are

large, multiple passes on the initial input representation to generate these partitions

need to be avoided. Although the substructure partitions are disjoint (same edge

is not repeated across multiple partitions), a vertex can still be repeated among

substructure partitions. For example, if the first 3 edges in Table 2.1 are in say,

partition 1 and the rest in partition 2, vertices 1, 2, 3 and 4 are in the first substructure

partition while vertices 2, 3, 4 and 5 are in the second substructure partition leading to

some vertices (here, 2, 3 and 4) to be present across multiple substructure partitions.

The number of times a vertex id is repeated across substructure partition determines

the number of times the adjacency list needs to be replicated for that vertex in the

adjacency partitions. Intuitively, the lesser is the number of repeated vertex ids,

better is the quality of the initial partitioning.

Note that the above discussion is only for initial generation of substructure

and adjacency partitions. After the first iteration, when new edges are added to a
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substructure due to expansion, new vertices are added to the existing substructures

in a substructure partition. The previously generated adjacency partition may not

contain the adjacency list of these new vertices. Continuing from our last example, in

Figure 2.1, when the substructure < i, 1, A, 4, C > is expanded on vertex 4 in partition

1, a new vertex (here vertex id 5) is introduced in the substructure partition. This

substructure cannot be expanded in the next iteration unless the adjacency list of

vertex id 5 is inserted into the current adjacency partition. Hence the adjacency

partition needs to be updated after each iteration to include the needed adjacency

lists from other partitions. This is expensive as, in the worst case, all adjacency

partitions may have to be traversed to update a single adjacency partition incurring

significant i/o and processing.

The above overhead of updating adjacency partitions after each iteration can

be avoided if we can keep the adjacency partition fixed to its initial set of vertices

and substructures needing adjacency list for expansion are brought to the processor

holding the proper adjacency partition. This will require some mechanism to quickly

determine which adjacency partitions are needed to expand a given substructure. This

will reduce the adjacency list update overhead but will incur additional processing

for routing substructures to the processor with the right adjacency partition.

Below we present a technique that works on any partitioning scheme and address

the nuances of the existing algorithm while moving to partitions.

2.3.2.1 Arbitrary Partitioning

As we are interested proposing parallel algorithms that are scalable and exhibit

acceptable speedup we want to analyze our algorithm both for good and random

partitioning schemes as this will provide the range achievable for speedup. We also

know that keeping connected components in each substructure partition with min-



21

imum amount of repeated vertices across other partitions will give good results as

the number of substructures crossing the partition, and hence the number of updates

to the adjacency partitions in the later iterations will be minimized. On the other

hand disconnected components in a substructure partition do not share the above

and require more updates to the adjacency list.

In this approach each substructure partition Ei is paired with a corresponding

adjacency partition ALi. Since a single vertex may be repeated across multiple sub-

structure partitions, the adjacency list of that vertex is also replicated across multiple

adjacency partitions as well. Continuing from our example with substructure parti-

tions, the adjacency list of the repeated vertices (2, 3 and 4) needs to be replicated

across both the adjacency partitions. If Repeat(ALi, ALj) is the set of repeated ver-

tices across ALi and ALj where i 6= j and i, j ≤ p then
p∑

i 6=j

Repeat(ALi, ALj) ≥ 0.

The lesser the value of Repeat(ALi, ALj) the better is the partition.

In one pass of the graph, the edges of a graph are grouped into required num-

ber of non overlapping partitions. Each substructure partition needs a subset of the

adjacency list of the entire graph (or an adjacency partition) which only contains

the adjacency list of all nodes present in that substructure partition. Any parti-

tioning scheme can be used for this purpose. Example of an arbitrary partitioning

is shown in Figure 2.3. Each substructure partition is expanded in parallel us-

ing the corresponding adjacency partition. Alternatives to using adjacency partition

(Schimmy [22]) require shuffling the entire graph structure in each iteration and have

been shown to be inefficient in the literature. Although substructure partitions are

disjoint, adjacency partitions are not.

In every iteration, newer substructure partitions are formed by grouping iso-

morphic substructures across existing substructure partitions. These isomorphic sub-

structures have little interconnection among each other, as they initially belong to
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Figure 2.3: Arbitrary Partitioning

different substructure partitions. Correspondingly, a new substructure partition, even

in the first iteration, has low intra partition connectivity. Hence we do not use a good

quality initial partitioning scheme (like METIS [23]) which focuses on maintaining

high intra partition connectivity and hence needs more computing effort. Needless

to say, duplicate elimination and isomorphism check form the crux of our mining

algorithm and we shall discuss how to handle them in detail in the next section.

Need for partition update during any iteration: Irrespective of how partitions

are made on 1-edge substructures, the adjacency partitions may not be adequate

beyond the first iteration. An expansion of a substructure may add a vertex id whose

adjacency list is not in the current adjacency partition. Expansion by adding an edge

(and hence new vertices) may grow a substructure across partitions. Consider the
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graph in Figure 2.3. The red edges are are one partition while the blue ones are in

another partition. An expansion on the edge (2, 5) on vertex id 2, inserts a new edge

and a new vertex (here 6) which lies in another partition. This substructure cannot

be expanded in the next iteration unless the adjacency list of 6 is incorporated in the

current adjacency partition. This can be shown true for any partition in any iteration

(unless the partitions either contain the entire graph or correspond to disconnected

parts of the graph). This necessitates updating the current partition by adding the

adjacency list of the new vertex.

Moreover, grouping brings similar substructures across multiple substructure

partitions hence creating newer substructure partitions. See in Figure 2.4, the two

isomorphic structures occurring in different partitions are grouped together in a new

partition. The vertices of these isomorphic substructures, if not present in the adja-

cency partition, needs to be added along with their adjacency list. This calls for an

update of the corresponding adjacency partitions in every iteration to ensure inde-

pendent substructure expansion in the subsequent iteration.
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Figure 2.4: Necessity for Update

Considering p adjacency partitions, updating an adjacency partition requires

loading and searching the other partitions for required adjacency lists in some order.

The update stops when adjacency lists of all required vertices have been added using
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one or more adjacency partitions (1 in the best case, p-1 in the worst case and p/2

in the average case.) Updates occur in parallel, making the update process as fast

as the longest update across all the partitions. With graphs of bigger sizes, such an

update phase has a huge bearing on the I/O.

One way to eliminate the overhead, incurred after each iteration, is to avoid

updating adjacency partitions. We still have to expand substructures on all nodes.

An alternative is to keep adjacency partitions fixed and expand a substructure in

multiple substructure partitions using a fixed adjacency partition. This will avoid

the I/O intensive adjacency partition update after each iteration but will require

grouping substructures differently and sending them to appropriate partitions for

expansion. This motivates our second approach to partitioning.

2.3.2.2 Range-Based Partitioning

If we want to keep the adjacency partitions in approach 1 (generated for the

corresponding 1-edge substructure partitions) fixed across iterations, the major chal-

lenge is to direct a substructure to a processor holding the appropriate adjacency

partition. To direct a k-edge substructure to appropriate adjacency partition(s), we

need to quickly determine to which partition(s) the adjacency list of each vertex in

the k-edge substructure belongs. Without an order among vertex ids across the adja-

cency partitions, this operation requires the complete information of all vertices and

their adjacency partitions. This information of all vertices will be large and can not

be stored in the memory of a single processor. This necessitates a partitioning scheme

on global adjacency list, where the operation to direct a k-edge substructure can be

done with information that can easily be accommodated in memory of a processor.

We propose range partitioning scheme on the global adjacency list for creat-

ing adjacency partitions. The range information is used to determine the adjacency
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partition for a single vertex. This partitioning scheme removes the mapping between

a substructure partition and the adjacency partition and requires range information

to direct a substructure to a processor holding the appropriate adjacency partition.

The range adjacency partitions do not have any intersection of vertices among them

(unlike previous approach where adjacency list of vertices are replicated across ad-

jacency partitions.) If AL is the global adjacency list then
p∑

i=1

|ALi| = |AL| where

ALi

⋂
ALj = ∅ where i 6= j and i, j ≤ p. So

p∑
i 6=j

Repeat(ALi, ALj) = 0 making

the range adjacency partitions different from the adjacency partitions in arbitrary

partitioning.

In this approach, adjacency partitions are contiguous range of vertex ids. The

number (and even the size) of partitions can tailored to match memory availability.

Substructure partitions are created to match adjacency partitions (can also be created

arbitrarily.) Range partitioning can be done over a single pass of the graph data input.

In this approach, the adjacency partitions are disjoint (unlike the previous approach)

and hence each vertex id and its adjacency list belongs to only one adjacency partition.

Figure 2.5 shows the range-based adjacency partitions created here. Any substructure

partitions can now be used for this approach.

If the substructure partitions are arbitrary, 1-edge substructures are grouped

in the first iteration based on the adjacency partition needed to expand them. This

results in the same substructure being served by multiple adjacency partitions. Since

adjacency partitions are disjoint on vertex ids, each substructure, though catering to

multiple adjacency partitions, is still expanded on each vertex id exactly once.

In this approach, the adjacency partitions do not change across iterations. The

same adjacency partition is loaded for expansion, in each iteration, thereby avoiding

the costly update phase. The overhead is this approach is incurred in the form
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Figure 2.5: Range-based Partitioning

of routing the same substructure to multiple partitions. Routing substructures to

multiple partitions will affect the shuffle cost.

One interesting feature of the ranged adjacency partitions is that, the vertices

inside an adjacency partition and also across adjacency partitions are within an upper

and a lower bound of vertex ids (the vertices need not be ordered inside a range.)

If highest(ALi) denotes the vertex with highest vertex id in ALi while lowest(ALi)

represents the vertex with lowest vertex id in ALi then lowest(ALi) > highest(ALi−1)

and highest(ALi) < lowest(ALi+1). Hence the highest or the lowest values of vertex

ids in each of the p adjacency partitions across p processors (a total of p values) is

the range information needed to hash a substructure to its appropriate adjacency

partition(s). The range information is also small enough to be kept in memory of

each processor. See that a substructure may be sent for expansion to more than
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1 adjacency partitions as the vertex ids in that substructure may be in multiple

adjacency partitions.

Both the approaches, group expanded substructures based on isomorphism in-

volving the same cost. However the range-based partitioning involves an additional

shuffle cost for routing substructures to adjacency partitions. Since, mappers shuffle

data to all reducers anyway, an increase in shuffle is likely to be significantly less

than the update cost of each adjacency partition. Hence we believe that the range

partitioning system, though non-intuitive, should perform better than the arbitrary

partitioning scheme.

2.4 Partition-Based Substructure Discovery in Graphs

Finding the best substructures that compress the graph entails: generating

substructures of increasing sizes (starting from an edge or 1-edge substructure) in

each iteration and counting isomorphic (identical) substructures. Figure 2.6 shows the

overall flow of how substructure discovery is done using the Map/Reduce paradigm. In

a Map/Reduce based substructure discovery, a mapper uses a substructure partition

and an adjacency partition to expand the substructures. The adjacency partition is

loaded in the memory once every mapper (using the setup method in Map/Reduce).

After expansion, the combiners (which are in mapper reducers) remove intra partition

duplicates. All these expanded substructures barring the intra partition duplicates

are sent across mappers to reducers where inter partition duplicates are removed and

counting of exact similar substructures (or isomorphs) is done. A pruning metric like

beam (or top-k) is used to determine the best substructures in an iteration and are

used as candidates for the subsequent iteration.

However we need to first deal with duplicates that are generated as a byprod-

uct of expansion. Duplicates must be eliminated to avoid wrong count. Below we
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Figure 2.6: Substructure discovery using arbitrary partitioning

define the notions of a canonical instance and a canonical substructure to distinguish

duplicates and isomorphic substructures.

2.4.1 Handling Duplicates

Systematic expansion in graph mining leads to generation of duplicates. Fig-

ure 2.7 shows an example of how duplicates are formed during substructure discovery.

Some duplicates are formed inside a partition while some duplicates are generated

across partitions. Therefore we need a technique to identify duplicates. Note that

duplicates have the same vertex ids and the same connectivity among those vertex

ids. For example in Figure 2.7 a and c are duplicates formed across partitions (a in P1

and c in P2) while b and d are generated in the same partition (here P1.) Duplicates

generated in the same partition need not be shuffled across network to reducer to in-

cur extra network cost and is removed at each mapper (where a partition is handled

by using a combiner).
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Figure 2.7: Duplicates in graph expansion

We employ a lexicographic ordering on edge label. If there are multiple edges

with the same edge label in a substructure, they are ordered on the source vertex

label. If source vertex label is also same, they are further ordered on the destination

vertex label. If edge label, and vertex labels are also identical, then source and

destination vertex ids are used for ordering. Hence, a substructure can be uniquely

represented using the above lexicographic order of 1-edge components. We call this a

canonical k-edge instance. Intuitively, two duplicate k-edge substructures must

have the same ordering of vertex ids and thereby the same canonical k-edge instance.

Figure 2.8 shows an example of duplicates and a canonical instance and shows how

duplicates have the exactly same canonical instance.

Expanding a substructure therefore should maintain this lexicographic ordering.

Expansion in substructure discovery is therefore similar to adding an element in a

sorted list and is linear in the size of the substructure. The canonical representation
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Figure 2.8: Example of canonical instance

of instances are useful for identifying and eliminating duplicate instances. However,

we need to count the frequency of isomorphic (exact) substructures for which vertex

ids cannot be used. Hence, we derive a canonical form of the substructure (without

vertex ids) from the canonical instances.

2.4.2 Handling Isomorphs

Another result of expansion is the generation of isomorphic substructures. Fig-

ure 2.9 shows how multiple substructures grow into isomorphs. These isomorphs have

the have vertex and edge labels but differ in vertex ids. Hence we first investigate

if dropping of the vertex ids from the previous canonical instance representation is

correct for identifying isomorphs.
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Figure 2.9: Isomorphs in substructure discovery



31

Theorem 2.4.1 Dropping vertex id from canonical instance representation identifies

isomorphs correctly

Proof By Contradiction: Assume that dropping the vertex ids from canonical

instance representation identifies isomorphs correctly. We just need to show one case

where it does not work. See in Figure 2.10 there are two different substructures. When

the vertex id was dropped from their canonical representation both bear the same

representation. However these substructures still differ in connectivity. Vertex id 10

in one has an out degree of 2 while the similar vertex id 50 in the other substructure

has 1 in degree and one outgoing edge. Hence we need to incorporate the notion of

connectivity into the representation of isomorphs to demarcate them clearly.

A A C

20 10 30

x y
A A C

40 50 60

x y

(x,A,A,10,20)(y,A,C,10,30) (x,A,A,40,50)(y,A,C,50,60)

(x,A,A)(y,A,C) (x,A,A)(y,A,C)

Figure 2.10: Need for newer representation for Isomorphs

This motivated us to capture the relative positioning of the vertex ids in a

substructure for identifying isomorphs. A canonical k-edge substructure, derived

from canonical k-edge instance honors the relative positions of vertex ids in the canon-

ical instance. Intuitively, two isomorphic substructures shall have the same relative

ordering of vertex ids. Note that, the canonical instance already follows the lexico-

graphic ordering. Therefore, we can easily construct a canonical k-edge substructure,

following relative positions of the unique vertex ids in the order of their appearance
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in the canonical instance. 2. Figure 2.11 shows an example of how canonical substruc-

ture is created from the canonical substructure. See that the isomorphs have different

canonical instances. However the relative positions following the canonical instance

(2, 5, 4) for the canonical instance 1 and (7, 10, 9) for the canonical instance 2 boils

down to (1, 2, 3). Hence isomorphs can be identified using the canonical substructure.

�

�

�

�

�

�

�

�

�

�

�

	




��

�

�


����������
���������� 
������	����
������
����


����������
����������

��������������������

����������������������

��������������������

Figure 2.11: Example of canonical substructure

Below we introduce our two algorithms, one with arbitrary partitioning schemes

and adjacency partitions, updates dynamicAL-SD( dynamic adjacency list substruc-

ture discovery) and the other with range-based static adjacency partitions, staticAL-

SD( static adjacency list substructure discovery.)

2The canonical k-edge substructure can not distinguish pathological substructures with k > 2

where all node and edge labels in a single substructure are identical and hence cannot distinguish

bigger substructures which have a partial substructure with identical labels.



33

2.4.3 Using Arbitrary Partitions (dynamicAL-SD)

For this algorithm, a mapper expands a substructure by one edge in all possible

ways in each iteration while a reducer counts isomorphic substructures and updates

adjacency partitions for use in the next iteration.

Substructure Expansion by Mapper: Each processor (mapper), uses a substruc-

ture partition and the corresponding adjacency partition for expanding a canonical

instance by adding an edge. The substructure partition is read as mapper input (one

canonical instance at a time) while the corresponding adjacency partition is loaded

and kept in memory. Each expanded instance maintains the lexicographic order.

A combiner is then used to remove duplicates within a mapper. Removing

duplicates using a combiner has the same cost as removal in a reducer, but improves

the shuffle cost by not emitting duplicates in the same partition to the reducers.

Reducers still remove duplicates generated independently in different partitions.

Algorithm 1 details our subgraph expansion routine in the mapper. For

the first iteration, the input key is the line number and the input value is the 1-

edge instance. Subsequently, for the kth iterations, the value is the k-edge canonical

instance. Line 3 loads the adjacency partition in memory.

Lines 8 to 17 expands the canonical instance and derives the canonical sub-

structure from it. Creating canonical substructure from instance requires a hash table

to identify relative positions of unique vertices (line 8.) Typically a mapper material-

izes the output to local disk. The combiner loads the mapper outputs, and eliminates

intra partition duplicates at the mapper.

Duplicate Elimination and Frequency Counting by Reducer: The reducer

receives instances across mappers grouped on the canonical substructure represen-

tation. After duplicate removal, the number of elements with the reducer does not

reflect the proper count of discriminative isomorphic canonical instances due to over-
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Algorithm 1 Mapper of dynamicAL-SD Algorithm

1: class Mapper

2: function setup

3: Map = load corresponding adjacency partition

4: end function

5: function map(key, value)

6: vMap = hashtable to hold unique vertex info

7: for each vertex id v in value do

8: vMap.put(v,null)

9: end for

10: for each vertex id v in vMap do

11: aL = get adjacency list of v from Map

12: for each 1-edge substructure e in aL do

13: newValue = if e is not in value expand value by adding e

14: if (u = e.getNewV ertex) not in vMap

15: vMap.put(u,null)

16: update vMap with positions from newValue

17: newKey = generate canonical substructure

18: emit(newKey,newValue) to combiner

19: delete u from vMap

20: end for

21: end for

22: delete vMap

23: end function
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lap (instances may overlap on vertices/edges.) We employ the most restrictive node

(MRN) metric as defined in Section 4 to estimate the count of non overlapping iso-

morphic substructures.

To limit future expansions to high quality substructures, each reducer uses

the metric (frequency or MDL) to store the top-k canonical substructures and all of

their instances. Intuitively, this prunes the unimportant candidates and uses the best

candidates for future expansion. The reducer uses a notion of beam (which can be

specified by user) to store these best instances. We honor ties in the top-k ranked

substructures by storing all the canonical instances (even with different canonical

substructures).

We depict our reducer in Algorithm 2. Line 5 allocates a beam of size k as

a hashmap to hold MDL values and all instances with that MDL value. Line 8 to

line 14 remove duplicates and find instances with top k MDL values. The reducer also

keeps an additional data structure for keeping the new vertices needed by adjacency

partition for future expansion.

Expansion and grouping may introduce vertices not present in partition. This

necessitates updates to the adjacency partition for the next iteration. The update

continues from line 18 to line 24. Since we do not know the location of adjacency lists

for a given vertex, we load all other adjacency partitions, one at a time randomly,

until the current adjacency list is updated. After the update, line 27 emits all the

instances in the beam for next iteration.
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Algorithm 2 Reducer of dynamicAL-SD Algorithm

1: class Reducer

2: function setup()

3: cId = corresponding adj partition id

4: load adjMap //load adj partition cId

5: beamMap = null //map to store best substructures

6: end function

7: function Reducer(key, values)

8: create Set isoSet to store isomorphs

9: for each canonical k-edge instance ks in values do

10: add ks to isoSet //remove duplicates

11: end for

12: c = count(substructures in isoSet)

13: mdl = MDL(c,#vertices and #edges in key)

14: update beamMap with mdl

15: end function

16: function Cleanup()

17: newV = vertices in beamMap not in adjMap

18: for each partition p in hdfs do

19: if p != cId load partition p

20: for each vertex id vId in newV do

21: if p has vId

22: add adjacency list of vId in adjMap

23: remove vId from newV

24: if newV is empty write adjMap back in HDFS

25: end for

26: end for

27: emit (null, each instance in beamMap)

28: end function
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2.4.4 Using Range-based Partitions (staticAL-SD)

We now introduce our static adjacency list substructure discovery algorithm

(staticAL-SD) which follows the range-based partition management strategy as dis-

cussed in Section 2.3.2. A closer look at this partitioning management strategy reveals

two grouping criteria among substructures: instances across different processors must

be routed to use the adjacency partition for expansion and the expanded instances

then need to be grouped (based on their canonical substructure) for ranking purposes.

These two processes are sequential: we can only count after expansion. Hence

each iteration of staticAL-SD requires two chained Map/Reduce jobs. The first

Map/Reduce job aids in expansion of a substructure while the second Map/Reduce

job removes duplicates and finds the top-k substructures with the best rank (using

frequency or MDL.)

Expansion in first Map/Reduce job: Given a single canonical instance, a map-

per uses the range information (from range-based partition management) to route

a canonical instance to use appropriate adjacency partitions. With fixed adjacency

partitions, the range information remains the same across iterations. All canonical

instances needing the same adjacency partition are therefore hashed to the same re-

ducer for expansion. The reducer with that adjacency partition in memory expands

all canonical instances only on vertex ids present in that partition.

Algorithm 3 depicts the first Map/Reduce job for expansion. Each mapper

loads the range information only once (line 3.) Note that an instance can have mul-

tiple vertices in the same adjacency partition(s.) The function in line 8 stores unique

partition ids for vertices in an instance ensuring that an instance is routed only once

to appropriate partitions for expansion. The mapper emits each unique partition id

along with the canonical instance. Expansion in reducer logic is same as the mapper

in dynamicAL-SD.
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Duplicate Removal and Frequency Counting: The expanded canonical sub-

Algorithm 3 First Map/Reduce job for substructure expansion in staticAL-SD

1: class Mapper

2: function setup()

3: R = load range information of adj partitions

4: end function

5: function map(key, value)

6: PIds = Set for unique partition ids for an instance

7: for vertex–id v in value do

8: PIds.addPartitionId(v,R)

9: end for

10: for partition–id p in PIds do

11: emit(p, value)

12: end for

13: end function

14: class Reducer

15: function reduce(key, values)

16: Load partition key from HDFS

17: for each k-edge canonical instance ks in values do

18: expand ks to (k+1)-edge canonical instance

19: emit new key and new value similar to mapper in dynamicAL-SD

20: end for

21: end function

structure from the first Map/Reduce job should be grouped for isomorphism checking.
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In Map/Reduce environment, the reducer output cannot be an input to another re-

ducer forcing us to use an intermediate mapper. Moreover we still need to generate

the canonical substructure from the expanded canonical instance.

Instead of generating canonical substructures in the reducer for expansion, we

do it in this intermediate mapper. Irrespective of where the canonical substructures

are generated they require the same computation time. If canonical substructures

are generated in the reducer of counting phase, they need to be sent from reducer

to intermediate mapper and then again to the reducers of counting phase, incurring

more I/O. Again, we use a combiner with the mapper to remove duplicates in a

partition. The reducer now groups instances by the canonical substructure, removes

duplicates across partitions and counts isomorphic substructures for evaluating MDL.

It is worth mentioning that newer paradigms like Spark [24] with caching technique

will save considerable disk I/O for loading partitions in both the approaches.

Analysis of Approaches: Typically the worst case update in dynamicAL-SD

requires loading every adjacency partitions making it equivalent to loading the entire

graph and hence proportional to the graph size. A worst case update, even at one

reducer in dynamicAL-SD, incurs a worst case update time for the algorithm. Hence

we believe that with graphs of increasing sizes, staticAL-SD, with no update stage,

will be an improvement over dynamicAL-SD.

Connectivity of graphs also has an influence on the two approaches. The

heavy interconnection between partitions in a densely connected graph will also lead

to an increase in shuffle cost. Hence both dynamicAL-SD and staticAL-SD should

perform better on sparse graphs involving lesser shuffle cost.

One prime factor affecting the two approaches is the number of duplicates gen-

erated. Depending on graph connectivity, a line graph (with k edges and k+1 nodes)

generates 2 duplicates, while a completely connected graph with k-edges generate
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k duplicates. With increasing iterations (or increasing k) the number of duplicates

typically increase. Duplicates if generated across partitions, are shuffled to reducers,

increasing shuffle cost.

Another discriminating factor between our algorithms is the I/O cost. For

both the approaches, combiners have to read data from disks of mappers involving

disk I/O. Moreover mappers have to send intermediate results to reducers introducing

network I/O for both approaches. StaticAL-SD because of 2 map/reduce jobs in each

iteration involves additional network I/O over its counterpart. Note that the update

phase in dynamicAL-SD involves both disk I/O and network I/O as the adjacency

partitions are loaded from a distributed file system and not a local file system.

One more factor affecting the I/O is the substructure size. Typically a k-

edge substructure is represented as a sequence of k 1-edges and hence with increasing

iteration, the size of key/value pairs which increase the shuffle cost. The increase in

substructure size, has an effect on the shuffle cost with increasing iterations.

For both the algorithms, beam act as a heuristic to limit best substructures.

Increase in beam will allow storing more substructures thereby increasing the set

of intermediate results across each iteration resulting in increase of both I/O and

processing time.

With increasing number of processors, dynamicAL-SD ends up with a con-

stant update phase, prompting staticAL-SD to outperform it in speedup as well. As

is typical of partitioned approach, graphs of smaller sizes will not benefit from our

approach, where the overhead of managing partitions may dominate the performance

cost.
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2.5 Experimental Analysis

In this section we experimentally evaluate staticAL-SD and dynamicAL-SD. All

experiments are conducted using Java on a Hadoop cluster with 1 front-end server

and 17 worker nodes each having a 3.2 GHz Intel Xeon CPU, 4 GB of RAM and 1.5

TB of local disk. The server has same specification but with 3 TB of local disk. Each

node was running Hadoop version 1.0.3 on ROCKS Cluster 6.3 operating system and

connected by gigabit Ethernet to a commodity switch.

2.5.1 Experimental Setup

We experiment on several real world and synthetic datasets to establish the

effectiveness and scalability of our approach. Table 2.2 shows the datasets that we

use to evaluate our approach. For both the Orkut and LiveJournal datasets, we have

randomly assigned a category to the user nodes from a set of distinct 100 categories

following a Gaussian distribution. Subgen, a synthetic graph generator is also used

which allows embedding small graphs with user defined frequency in a single graph

giving better control in generating graphs of different sizes and characteristics.

Table 2.2: Datasets for experiments

Name Nodes Edges Use

LiveJournal (snap.stanford.edu/data/com-
LiveJournal.html)

3.99M 34.68M scalability

Orkut (snap.stanford.edu/data/com-
Orkut.html)

3.07M 117.18M scalability

Subgen (ailab.wsu.edu/subdue) 800K 1600K correctness
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2.5.2 Correctness and Efficiency

The correctness of both our algorithms are verified by running them on small

synthetic graphs generated by Subgen. Subgen was used to generate small graphs

with predefined embedded substructures from size 20V/40E to 800KV/1600KE and

Subdue [1], staticAL-SD and dynamicAL-SD when run on them discovered the same

number of substructures. For comparison, both the Map/Reduce based algorithms

are run on a single mapper and a reducer. Figure 2.12 shows the performance of

the algorithms on varying graph sizes. For small sized graphs, the performance of

Subdue was better than our Map/Reduce based techniques as Map/Reduce required

an initial setup cost. However from graphs of size 5KV/10KE our algorithms started

performing better than Subdue. Subdue being a main memory algorithm required

dedicated data structures and pointer operations for duplicate elimination. Even

with increasing graph sizes above 20KV/40KE, Subdue failed to complete while our

techniques still ended up completing the process. Note that at the crossover point of

15KV/30KE staticAL-SD started performing better than dynamicAL-SD hinting at

the benefits of using staticAL-SD over its counterpart.

2.5.3 Comparison of Approaches

To compare individual performance of dynamicAL-SD and staticAL-SD algo-

rithms we run 5 iterations of both algorithms with a beam of size 4 on the LiveJournal

and Orkut graphs. The average of 5 runs is taken to avoid cold start issues. A com-

parison between the two approaches in terms of iterations on the liveJournal graph is

shown in Figure 2.13. The update dominates the execution time at smaller iterations.

The update shows a linear growth with increasing number of iterations. The effect

of iterations on staticAL-SD is portrayed in Figure 2.14. See that with increasing

iterations, the differentiating factor between the two algorithms lie in its update cost.



43

0.1

1

10

100

1000

10000

100000

T
im

e
 i

n
 l

o
g

a
ri

th
m

 s
c

a
le

Graph Size

Subdue

staticAL-SD

dynamicAL-SD

Figure 2.12: Comparison of all techniques with varying graph sizes

Removal of the update phase makes staticAL-SD perform better than dynamicAL-

SD. The performance improvement depends on the ratio of the in-memory computa-

tion and the HDFS I/O cost. StaticAL-SD is better in 5,10 and 15 iterations than

dynamicAL-SD by 38.8%, 27.5% and 26.2% respectively.

The comparison of dynamicAL-SD and static AL-SD with respect to speedup

is shown in Figure 2.15. With increasing iterations, the number of partition loaded

for update tends to reduce by a little margin making the speedup vary. If the update

nullifies at any iteration, both staticAL-SD and dynamicAL-SD shall have the same

speedup in that iteration as the amount of computation done by both the approaches

is identical. For any iteration, we observe that staticAL-SD gives a better speedup

than dynamicAL-SD.

Our results in Figure 2.16 indicate that in LiveJournal, staticAL-SD outper-

forms dynamicAL-SD by 38.8%, 46.1% and 52.1% with 2, 4 and 8 reducers respec-

tively while the trend remained same in Orkut with 42.1%, 49.8% and 56.8% im-
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Figure 2.13: Running time of dynamicAL-SD over iterations

provement. The increase in improvement on the same graph on increasing reducers

is attributed to decrease in computations on increasing number of processors, and a

constant partition update time in each reducer. The increase in improvement across

graph sizes is due to more time spent in the update phase. Hence with graphs of

bigger sizes, static AL-SD will show a steady improvement over its counterpart.

2.5.4 Scalability

Our results in Figure 2.17 and Figure 2.18 indicate that staticAL-SD has a

speedup of 39.4% from 2 to 4 reducers in LiveJournal and 34.4% from 4 to 8 reducers

as compared to dynamicAL-SD’s 22.9% and 19.3% respectively. StaticAL-SD on

Orkut also shows the same trend with 42.6% from 2 to 4 reducers and 39.7% speedup

from 4 to 8 reducers as compared to DynamicAL-SD’s 23.7% and 20.2% respectively.

DynamicAL-SD has a lower speedup due to its constant update phase at each reducer.

Note that with doubling number of reducers, the time for mining is not exactly

halved. This is due to two reasons. First, with doubling the number of reducers,
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Figure 2.14: Running time of staticAL-SD over iterations

each reducer emits the instances with local top-k MDL values to find the instances

with global top-k best MDL values. So the amount of data handled by each reducer

is not necessarily halved. Second, as the reducer output records increase, the I/O

cost increases. Typically in a Map/Reduce system the I/O is defined as the sum

of map input records, map output records, reduce input records and reduce output

records. Increasing number of reducers coupled with the notion of beam in each

reducer increase the reducer output in each iteration thereby not generating a linear

speedup.
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2.6 Conclusion

In this dissertation, we have shown how substructure discovery algorithms can

be made to work efficiently using the Map/Reduce paradigm. Correctness and ef-

fectiveness has been the main concern as we develop Map/Reduce based algorithms.

Since partitioning is the key to scalability of graph mining, we proposed an approach

where the shuffle can be effectively used for keeping the adjacency partition fixed. It

still needs to be argues if the choice of initial partitioning plays a role in performance

of the distributed graph mining algorithms. The next chapter of this dissertation

extends this work by introducing a cost model to further analyze the effect of costs

in a distributed graph mining environment.



CHAPTER 3

COMPONENT COST ANALYSIS IN DISTRIBUTED FRAMEWORK

This chapter focuses on deeper understanding of performance of substructure

discovery in a distributed framework by investigating component costs across differ-

ent stages of the earlier algorithms. The division of these costs help evaluate different

partitioning schemes and paves way for further optimizations by choosing one parti-

tioning strategy over another. In a nutshell this chapter evaluates partitioning strate-

gies from a component cost perspective. First, existing widely-accepted partitioning

schemes are evaluated for their advantages and limitations for the chosen framework.

Second, new partitioning schemes are proposed to improve the performance of the

algorithm in several ways. Component cost analysis is performed analytically, and

experimentally validated for different partitioning schemes using diverse synthetic

and real-world graphs. Third, three algorithm classes of interest are analyzed for the

traditional Map/Reduce architecture and compared with respect to component costs

to provide insights into algorithm design. Finally, the portability of our algorithms

to other paradigms such as Spark is discussed to ascertain the

3.1 Introduction

One of the most widely used techniques for scaling is divide and conquer which

translates to partitioning of graphs. This approach is commonly used in the chosen

Map/Reduce distributed framework as well. Although there have been some effort on

partitioned approach to substructure discovery [18,19], they do not discuss expansion

of substructures across partitions leading to approximate results. If one wants to

49
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get the same (and correct) results with and without partitioning, the algorithms be-

come complex due to bookkeeping associated with substructures that cross partition

boundaries and exchanging that information across processors.

In order to achieve scalability for graphs of any size, the paradigm chosen

should be capable of scaling the number of partitions as well as scaling the number of

processors to match the graph size. One of the few paradigms that satisfies the above

criteria is Map/Reduce in any of its variants (traditional, spark, etc,) However, none of

the existing algorithms are designed for a parallel paradigm. Hence casting them into

a parallel paradigm (such as Map/Reduce) correctly requires a re-examination of the

algorithms (along with an appropriate representation) to parallelize them effectively.

Moreover, some of the unique features of the Map/Reduce paradigm, such as the use of

key/value pairs, what can be done during the map phase and what can be done during

the reduce phase, need to be taken into account for developing an algorithm. In this

paper, we propose two Map/Reduce algorithms to efficiently discover substructures

thus facilitating substructure discovery on graphs of any size.

In addition to ensuring scalability, performance of the approach is equally

important. In a partitioned, distributed processing approach, the distribution of

effort incurred for processing a partition is important and most likely depends on

the partition size as well as other graph characteristics. This makes the choice of

partitioning schemes a key ingredient of partitioned substructure discovery. The

criteria used for partitioning graphs need to match with the processing needs to

address performance aspects. Existing widely-used and popular graph partitioning

approach METIS [23] focuses on making connected partitions while minimizing the

number of edges between partitions (termed cut set.) We discuss the suitability of

partitions generated by METIS for substructure discovery leading to new partitioning

schemes to overcome some of its disadvantages. METIS uses a multi-level approach
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and is intended for creating partitions once. As a result, it tries to optimize the

partitioning criterion and hence has a higher partitioning cost as well.

Performance of an algorithm using a framework, such as Map/Reduce, is de-

pendent on a number of component costs. We analyze our substructure discovery

algorithm in terms of component costs including loading and update of persistent

data across iterations. We believe that an analysis of these component costs will pro-

vide insights into potential improvements in addition to evaluating the performance.

Moreover, a linear speedup is desirable in a distributed system to ensure effective

use of parallelism. For a chosen number of machines, the distribution of these costs

contributes to the speedup achieved.

Finally, based on the insights gained during the development and analysis

of this algorithm and its evaluation, we try to characterize algorithmic classes for

the Map/Reduce framework. The goal is to understand the performance issues for

different classes of algorithm with different requirements. Specifically, we analyze the

following classes of algorithms: (i) non-iterative algorithms (such as joins), (ii) it-

erative algorithms (such as PageRank [22]) with no need for persistent data across

iterations, and (iii) iterative algorithms (such as Substructure Discovery) with need

for persistent data across iterations.

The purpose of this comparison is to make it easier to develop and tune algo-

rithms pertaining to different classes based on their performance bottlenecks. The

contributions of this chapter are:

• Development of correctness-preserving Map/Reduce algorithms to substructure

discovery using graph partitions and their analysis

• Analysis of existing partitioning strategies for graph mining and two new par-

titioning schemes to overcome their limitations
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• A detailed analysis of the costs associated with each component of graph mining

with Map/Reduce with varying user-defined parameters using large scale real-

world graph databases and synthetic datasets

• Back of the envelop comparison of several classes of Map/reduce algorithms

from a performance perspective.

This paper extends and improves upon our earlier work [25, 26] by incorporat-

ing partition comparison and analysis and a detailed discussion of component costs

along with their analysis and experimental validation. In addition, different algorithm

classes are compared from a performance perspective.

RoadMap: The rest of the chapter is organized as follows. Section 3.2 intro-

duces the component costs for graph mining. Section 3.3 compares a state-of-the art

partitioning strategy (METIS) with our techniques. Section 3.4 continues onto the

variation of the computation costs along with associated experiments while Section 3.5

and Section 3.6 discusses various classes of graph mining problems from component

cost perspective and portability of those techniques to other paradigms such as Spark.

Finally Section 3.7 concludes this chapter.

3.2 Cost Analysis

In addition to ensuring scalability, performance of the approach is equally im-

portant. In a partitioned, distributed processing approach, the distribution of effort

incurred for processing a partition is important and most likely depends on the par-

tition size as well as other graph characteristics. This makes cost analysis and the

choice of partitioning schemes two key ingredients of partitioned substructure dis-

covery. The criteria used for partitioning graphs need to match with the processing

needs to address performance aspects.
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Performance of an algorithm using a framework, such as Map/Reduce, is de-

pendent on a number of component costs. Costs specific to substructure discovery

for this framework during each iteration are: (i) computation cost for expanding

substructures in a partition (including duplicate generation, identification, and re-

moval) (ii) communication cost of sending substructures from mapper machines to

reducer machines (iii) cost of read/write on local file system (iv) cost of read/write

on distributed file system The read/write cost includes the cost of loading or updat-

ing information needed for substructure expansion. For a traditional Map/Reduce

framework where persistence of data is not possible or allowed across iterations, they

need to be loaded during each iteration. We analyze our substructure discovery algo-

rithm in terms of these costs including loading and update of persistent data across

iterations. We believe that an analysis of these component costs will provide insights

into potential improvements in addition to evaluating the performance. Moreover, a

linear speedup is desirable in a distributed system to ensure effective use of paral-

lelism. For a chosen number of machines, the distribution of these costs contributes

to the speedup achieved. Below we discuss each cost individually and highlight the

factors affecting these costs

3.2.1 Computation Cost

Computation cost includes (i) expansion of substructures in each processor

(ii) counting isomorphs in each reducer. Expansion of a substructure requires ad-

dition of an edge in a lexicographically ordered canonical instance. Adding an edge

requires linear effort with respect to size of substructures. The number of substruc-

tures however depends on choice of beam, grows up to a certain iteration and then

starts decreasing. The second component of computation cost is duplicate removal.

Duplicate removal requires pairwise computation among same sized substructures.
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This incurs quadratic complexity on the number of instances to be checked for du-

plicate elimination. The pairwise computation is done first in each combiner for

removing intra partition duplicates and then again at the reducer for removing inter

partition duplicates.

A part of update cost at the mapper includes an initial loading time for the

partitions (substructure and adjacency.) In Map/Reduce terminology, the loading of

files occur after the workers have been initiated in a separate process called setup.

The first line of the substructure partition contains the connected adjacency partition

description. Hence the adjacency partition is loaded when the computation has begun

thereby including it in the computation cost.

3.2.2 Shuffle Cost

All the expanded substructures need to be sent from mapper to reducer for

comparison incurring I/O cost. If combiners do not remove any duplicates, in the

worst case, the amount of data shuffled across the network is equal to the number of

substructures generated in the mapper and hence dependent on the computation cost.

Typically the mappers write their output to a circular buffer which spills them on the

disk when 80% of the buffer is full. Thereby duplicate removal in a combiner requires

fetching these files from local disk and comparing them for duplicates. These instances

after duplicate removal are sent to the reducers. The shuffle cost is dependent on the

quality of the network between the mappers and the reducers. Our experiments use

a 1GHz Ethernet switch for data transfer across mappers and reducers.

Note that the mapper and reducer processing are not sequential. A mapper,

depending on its workload can finish early thereby allowing a reducer to start before

all the other mappers have finished executing. Therefore it is difficult to accurately
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measure the shuffle time. We estimate shuffle cost by noting the first mapper start

time, the first reducer start time and the final reducer end time.

3.2.3 Update Cost

An adjacency partition needs to be updated in an iteration for correctness and

for use in subsequent iteration. Update of an adjacency partition requires loading

other adjacency partitions from HDFS. Considering p partitions of adjacency lists,

update of a partition requires a worst case loading of all other (p-1) partitions. In the

best case, update is satisfied by loading a single partition. In the average case, half

of the partitions need to be loaded for the update. It is possible to load a partition

completely and then experience zero contribution during update. However we do

not have any apriori information about the partitions and the order of loading the

partitions. Hence we load partitions, based on ascending order of partition ids. In a

small set of experiments on small sized graphs, the order of loading did not matter

as each partition contributed in the update.

Note that this update process occurs in each reducer. The number of reduce

tasks is equal to the number of partitions. Different reducers can have different update

costs. However the mapper of the next stage can not start unless all reducers have

finished processing. Therefore the reducer requiring the worst update cost dictates

the total update cost for an iteration. Note that, at every iteration, newer vertices

are added to a partition but no vertices are deleted to preserve correctness. This

makes the number of partitions loaded to decrease across iterations. However the

total amount of vertices loaded in the worst case for update is equivalent to the entire

adjacency list of the graph. With increasing number of processors or user parameters

the worst case update cost remains same for the same graph size.



56

3.3 Partitioning Strategies

Expansion of a 1-edge substructure to a 2-edge substructure (and beyond),

adds new edges (and hence new vertices) to the substructure partition. Moreover

isomorphic expanded substructures across partitions are grouped together to create

newer partitions which contains vertices across different adjacency partitions. These

new vertices, if not present in the current adjacency partition, needs to be added

along with their adjacency list in the current partition after each iteration. This

is necessary to ensure correctness in the subsequent iteration. Here we look at the

existing partitioning strategy (METIS) for a graph mining usability perspective.

3.3.1 Existing Partitioning Strategies

METIS [23] is one of the earliest graph partitioning schemes that uses multilevel

algorithm. It supports different heuristics in each phase for compressing the graph

to hundreds of vertices, run a main memory partitioning algorithm and un-coarsen

the graph to the bigger size preserving equal sized partitions. Such heuristics include

random matching (for unweighted graphs), heavy edge matching and light weight

matching (for weighted graphs) and heavy clique matching (also for any graph.)

Metis can be also perceived as a version of the arbitrary partitioning scheme

that minimizes edge cuts. However METIS suffers from the following drawbacks as

outlined in Table!3.1.

First, we want a partitioning scheme where we can specify any number of par-

titions. This makes the scheme applicable to any group of machines. METIS with its

k-way heuristic allows such a setting. Second, in a distributed environment we deal

with heterogeneous machines. These machines have different main memory and hard

disk capabilities. This is similar to Amazon EC2 instances where a cluster can be a

combination of machines with different computing power (such a micro, large, small
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Table 3.1: Our Requirement for Partitioning and METIS

Requirement METIS Reasoning

Control over number of parti-
tions

AND Amenable to any number of
partitions

Control over size of partitions NO Usable for any heterogeneous
group of machines

Edge based partitions NO Vertex based partitioning bet-
ter

Adjacency List for each parti-
tion

NO Adjacency Lists are needed for
expansion

Focus on connectivity and labels NO Similarity depends on both
connectivity and label similar-
ity

etc.) METIS focuses on creating equal sized connected partitions and hence is not

suitable for a heterogeneous group of machines. METIS if used in such a scenario

will create different workloads across the machines hampering speedup. Arbitrary

partitioning can easily create heterogeneous partitions and is a better fit for such

applications.

METIS creates vertex based partitions. Expansion with vertex based partitions

occur by adding a vertex in every iteration. Such an expansion scheme is harmful as

addition of a vertex may add multiple edges. This might lose important intermediate

instances. As a result post processing on the METIS output is required to convert

vertex-based partitions to edge based partitions. Definitely METIS will outweigh

arbitrary partitioning only if gains more savings than the post processing costs. Ad-

ditionally, METIS does not create adjacency partitions. This requires an extra pass

over the entire graph to create the adjacency list. With these graphs being big in

size, each pass on a graph takes considerable amount of time.

Finally, METIS focuses only on the connectivity and not on the labels. Sub-

structure discovery deals with isomorphs and duplicates which have the same labels
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as well as connectivity. This makes partitioning strategies considering only one con-

nectivity significantly less powerful.

3.3.2 Cost Analysis (METIS vs. Arbitrary Partitioning)

The main difference between arbitrary partitioning and METIS lies in the qual-

ity of initial partitioning. The computation cost is almost the same as the same

number of expansions are always attempted. However with the initial different con-

figuration of the partitions the work done by each processor will vary slightly. The

shuffle cost depends on the number of substructures to be routed across mappers to

reducers and remains almost the same. The only difference is due to variation in inter

partition duplicates. Therefore the main difference lies in the update stage. If Metis

allows significantly lesser number of updates in every iteration then Metis shall be

considered as a better scheme for substructure discovery.

Figure 3.1 shows the performance of METIS and Arbitrary partitioning on 5,

10 and 20 iterations of the dynamicAL-SD algorithm. We do not staticAL-SD here as

Metis is a variant of arbitrary partitioning and hence update is required. We observe

that using Metis only gives a 2-3% overall improvement over arbitrary partitioning.

This translates to a maximum of 153 sec runtime improvement even in 20 iterations.

Our conjecture for an improvement this small is that the amount of update required

by both approaches is almost the same.

To justify our conjecture experimentally we ran 5 iterations of LiveJournal

graph on 8 partitions and recorded the number of updates required in each iteration.

Table 3.2 shows the number of updates in each iteration. Note that the number

of updates by METIS and arbitrary partitioning are almost the same. Moreover,

there is no guarantee that METIS will always load lesser number of partitions than

arbitrary partitioning. See in iteration 4, arbitrary partitioning ended up loading one
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Figure 3.1: Comparison of partitioning strategies (METIS vs. Arbitrary) using
DynamicAL-SD

less partition during update than METIS. As the amount of time required to run

dynamicAL-SD on both arbitrary partitioning and METIS are almost the same, the

need of the hour is to evaluate the partitioning schemes from a creation standpoint.

Table 3.2: Number of Updates METIS vs. Arbitrary

Iteration METIS Arbitrary

1 6 7
2 6 6
3 5 6
4 5 4
5 3 5

We now investigate the difference between METIS and arbitrary partitioning

from the initial partitioning time perspective. Noe that a multilevel scheme like

METIS makes multiple passes over the graph and thereby take more time in partition-

ing. Moreover, METIS generates vertex based partitions and added post processing
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is needed to convert the vertex based partitions to edge based partitions. This post

processing is equivalent to expanding a vertex to an 1-edge substructure and then

updating the adjacency partitions for correctness. Table 3.3 shows the time takes to

partition the LiveJournal graph into 64 partitions.

Table 3.3: Initial Partitioning Cost (METIS vs. Arbitrary)

Component METIS (gpmetis
using random match
heuristic)

Arbitrary Partitioning

Type of Partitioning vertex based edge based
Passes on graph 1 1
Passes on adjacency
list

10 1

Time for partitioning 235 sec 35 sec
Post processing cost 450 sec 0 sec

Note that METIS requires about 8 times more time in partitioning as it needs

more passes over the graph. Moreover post processing using METIS takes a huge time.

A combination of initial partitioning time along with dynamicAL-SD runtime shows

Arbitrary partitioning taking lesser time. The initial cost of partitioning in METIS

outweighs the savings obtained by using better quality partitions thereby making

arbitrary partitioning a better candidate for substructure discovery than METIS.

3.3.3 Cost Analysis (Arbitrary vs. Ranged Partitioning)

We have already established arbitrary partitioning as a better candidate over

METIS. One way to improve dynamicAL-SD is to eliminate the overhead of updating

adjacency partitions. An alternative is to keep adjacency partitions fixed and expand

a substructure in multiple substructure partitions using a fixed adjacency partition.

This will avoid the I/O intensive adjacency partition update after each iteration
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but will require grouping substructures differently and sending them to appropriate

partitions for expansion. This increases the shuffle cost as the same instance needs to

be routed to multiple partitions for expansion. However this also introduces a trade

off between the update and shuffle cost. Substructure discovery using range-based

partitioning completely eliminates the update cost and will be beneficial if the amount

of shuffle increased is lesser than the update cost. Figure 3.2 highlights the specific

component costs across 20 iteratiuons in the liveJournal graph. As expected the

computation cost grows upto a certain iteration before starting to decrease. However,

the update cost is constant across iterations and consumes around 30% of the total

cost.
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Figure 3.2: Cost breakdown of DynamicAL-SD on 5 iterations using arbitrary parti-
tioning

While using a ranged partitioning scheme, Figure 3.3 shows the total distribu-

tion of costs. Note that the update phase has been completely eliminated with some

additional increase in shuffle time. The computation cost remained almost the same.

Considering shuffle cost only, there has been a 10% increase in shuffle for 5 iterations
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and a respective increase of 12% and 18% across 10 and 20 iterations. However, sacri-

ficing the entire update phase for an increase in shuffle led to an overall improvement

of 35%, 28% and 27% respectively across 5, 10 and 20 iterations. Therefore fur-

ther optimizations and improvements were obtained just by switching to a different

partitioning scheme.
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Figure 3.3: Cost breakdown of StaticAL-SD (range-based partitioning) for 5 iterations

Note that the initial partitioning cost for range-based partitioning is similar

to arbitrary as it needs a single pass over the graph to partition the vertices based

on the ranges. It is also suited for a heterogeneous environment by correlating the

ranges to the capacity of each machine in the cluster and can be still done in one

pass of the graph. To study the effects of the improvements on varying number of

reducers we ran 5 itrations of dynamicAl-SD (which uses arbitrary partitioning) and

staticAL-SD (which uses range-based partitioning) on 5 iterations of the LiveJournal

graph. Figure 3.4 highlights the improvement in speedup and overall run time of the

two algorithms.
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Figure 3.4: Improvements of staticAL-SD over dynamicAL-SD with varying number
of processors

The lack of the constant update cost in each iteration gave staticAL-SD much

better speedup over its counterpart. With increasing number of processors, the com-

putation cost decreased in each machine but the worst case partitioning cost remained

the same. Thereby while increasing number of processors the extent of improvement

of staticAL-SD over dynamicAL-SD kept on increasing.

3.4 Variation of Costs

Here we individually discuss the variation of these three costs based on graph

characteristics and user-defined parameters.

3.4.1 Varying Graph Sizes

Assume p partitions with r processors in the distributed system. Without

adding more machines, as graph sizes increase so does the number of partitions. In
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an ideal scenario, the number of partitions are kept equal to the number of processors

to extract maximum scalability. As p increases, it is often common to have p ≥ r.

In such a scenario, r partitions are processed at a time resulting in dp/re sequential

batches of processing. In dynamicAL − SD, the total update cost is dependent on

the number of batches and hence the cumulative update cost increases as number

of partitions increase unlike staticAL − SD which does not involve updates. As

the update cost is proportional to graph size, improvement between staticAL-SD and

dynamicAL-SD should improve with graph size. In both these methods, with increase

in graph sizes, the computation cost (and hence the shuffle cost) increases. However,

even with increasing graph sizes, the computation and shuffle costs vary based on

choice of user parameters.

3.4.2 Varying User Parameters

As explained in Section 4.3, the expansion is constrained in each iteration by

storing the top-k substructures and associated instances in beam. The choice of

this k or the beam size affects the costs of mining. With a small sized beam,

only very few substructures and associated instances are stored and expanded in

subsequent iterations. As the beam size increases, more substructures are stored,

thereby increasing the computation and shuffle cost. Note that, the update cost has

an upper bound ( equal to the number of partitions) and hence is independent of the

size of the beam. Increasing beam size however attracts some frivolous substructures

and their instances which might not be of use to the end user. Hence a higher beam

increases shuffle and computation cost but not the update cost.

Another factor affecting the costs are the number of iterations (optionally

controlled by user.) Keeping beam constant, the number of intermediate substruc-

tures in graph mining keeps growing till an iteration before starting to decrease. But
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with each iteration, the size of the substructures increase monotonically. Therefore,

the total computation cost (and thereby the shuffle cost) is dependent on the size of

the substructure and the number of instances in a particular iteration.

3.4.3 Varying Number of Processors

Without altering a graph size, an increase in number of processors will be

beneficial for mining. To achieve the best parallelism, the number of partitions (p)

are kept equal to the number of processors (r.) Therefore increase in r, leads to smaller

sized partitions and the computation cost in each processor is reduced. This reduction

in computation contributes to the amount of speedup achieved. Note that the update

cost still involves loading other partitions and in the worst case, the entire graph

thereby incurring a fixed worst case update cost in each iteration. With increasing

processors, dynamicAL − SD ends up with a constant update phase, prompting

staticAL − SD to outperform it in speedup as well. As is typical of partitioned

approaches, the overhead of managing partitions may dominate if the partition sizes

are small.
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Note that our algorithms are guaranteed to work even on smaller number of

machines. With limited capacity of each processor, each processor can work on a

smaller partition. Hence there might be a case when the number of partitions are more

than the number of partitions. Figure 3.5 shows how the same number of processors

(here 2) can handle multiple partitions of the same graph. Keeping the number of

processors fixed, as the number of partitions increase the cumulative computation and

shuffle cost remained the same. However the sequential update cost on each of the

partitions increased the total update cost. See here that there was a minor increase of

10% in computation and shuffle cost by varying the number of partitions as opposed

to a 46% increase (almost doubling) of the update cost. Ranged partitioning with no

updates will be a winner here too. Both our algorithms perform best when the number

of partitions are equal to or lesser than the number of processors. However, both are

correct if we have to deal with bigger graphs with limited number of processors making

our algorithms correct and scalable to clusters of any size.

3.4.4 Varying Graph Connectivity

Connectivity of graphs also influences performance of our algorithms. We cat-

egorize graphs as dense to sparse, where the number of vertices are fixed but the

number of edges vary in the spectrum ranging from completely connected graph to

a very sparsely connected line graph. With dense graphs, where each vertex is con-

nected to more vertices on the average, the computation cost increases as there are

more scopes of expansion. With update cost dependent on the vertices in the graph,

typically a dense graph shall offer a better speedup than a sparsely connected graph.

Figures 3.6 and 3.7 shows the effect of varying graph connectivity on graphs with dif-

ferent sparsity. These graphs were generated using the subgen graph generator where

the dense graph with n nodes has n(n-1) edges while the sparsest graph has only
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(n-1) edges. We generated synthetic graphs in this spectrum to test our algorithms

on varying levels of connectivity.
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Figure 3.6: Comparison of staticAL-SD and DynamicAL-SD using 2 processors on
synthetic graphs of varying connectivity spectrum

With graphs of increasing connectivity, staticAL-SD due to lack of update re-

mained a better performer. Obviously on small graphs the extent of improvement

both inn terms of overall time and speedup are less. However moving to larger graphs,

better speedup and higher improvement is registered which indicates the effectiveness

of our algorithms to scale to graphs of bigger sizes.

3.4.4.1 Effect of partitioning on duplicates

Duplicates are generated when multiple substructures expand to the same sub-

structure. Figure 3.8a shows how duplicates are generated by expanding on the same

vertex id while Figure 3.8b shows how the same substructure is generated by expand-

ing on two different vertices (here 5 and 2.) Following range-based partitioning
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scheme, all expansions on the same vertex use the same adjacency partition hence all

these duplicates are guaranteed to be caught in the same partition in staticAL−SD.

However in dynamicAL − SD, there is no guarantee on number of intra partition

duplicates to be eliminated. The frequent substructures and instances irrespective of

our partitioning scheme needs to be shuffled from mappers to reducers. Therefore

the shuffle cost for dynamicAL− SD and staticAL− SD depends on the number of

duplicates. There has been effort to eliminate duplicates using heuristics which shall

be discussed in the next chapter.

3.5 Classes of Graph Mining and their Costs

Based on our related work on Substructure discovery, mining in graphs can

be broadly divided into two categories/classes: non iterative and iterative. Here we

discuss the applicability of our costs to these classes of graph mining problems and

thereby inspect choice of partitioning for different classes of mining problems.
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Figure 3.8: Example of duplicates resulting from expansion

3.5.1 Non-Iterative Graph Mining

on iterative can be conceptualized as joins where the graph is joined with itself

or with a smaller subset to find worthwhile information. If a graph is joined with

itself, based on the joining attribute, parts of graphs need to be shuffled from map-

pers to reducers. This is often known as reduce side join. If the joining criteria is

known apriori, the graph can be partitioned on the joining criteria. Each mapper

can join each partition with itself thereby not needing the reducer and saving the

shuffle cost. Being a non iterative approach, the cost of partitioning using the non

iterative approach requires at least one pass of the graph. The shuffle cost in a non

iterative scenario is equal to the graph size and is same as the lower bound of parti-

tioning. Therefore partitioning should not make much of a difference for non iterative

approaches. The computation cost both with and without partitioning remains same

as the total joining cost.
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3.5.2 Iterative Graph Mining

Iterative graph mining requires the same graph information or updated graph

information in each iteration for processing. The iterative graph mining can be sub-

divided again into two categories:

1. Fixed computation cost: These are application where in each iteration, the

same computation cost is incurred. One example is PageRank where in each

iteration, each vertex exchanges information only with its neighbors. Hence the

computation cost and the shuffle cost remains fixed across iterations. Neces-

sarily to get the neighborhood information, the adjacency list can be shuffled

either across the network increasing the shuffling cost. Another solution is to

partition the graph once and reuse the partitions in every iteration for compu-

tations. Lin [22] used range-based partitioning following this approach bene-

ficially to save computations on graphs. However as the computations remain

same across iterations, there was no need to update partitions. It is worth not-

ing that the savings come from the trade-off between shuffle and loading costs.

As the partitions do not chance across iterations, they can be cached and Spark

can be used to improve the cost even further.

2. Variable computation cost: Our substructure discovery falls in this category

where the amount of computation in each iteration is dependent on choice of

user parameters. Both arbitrary partitioning and range-based partitioning can

be used correctly for this purpose. The trade-off between shuffle and update cost

once again makes one partitioning scheme better than the other. staticAL−SD

with fixed partitions eliminates the update cost completely by trading a slight

increase in shuffle cost making it better then dynamicAL−SD using arbitrary

partitioning scheme or METIS. Moreover staticAL− SD with fixed adjacency
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partitions becomes a better candidate of porting to newer paradigms like Spark

making it better than its counterpart.

3.6 Portability to Other Distributed Paradigm

We have used Map/Reduce as the choice of our distributed paradigms but our

algorithms can be ported effectively on other paradigms such as Spark [27]. These

distributed systems use a distributed file system to store the graph partitions and

hence the three costs discussed here with respect to Map/Reduce remains the same

in Spark. However Spark brings caching where the same partition can be cached and

reused in every iteration. Using dynamicAL−SD in Spark, the adjacency partitions

keep changing in every iteration making caching useless. However in staticAL −

SD the adjacency partitions once created do not change across iterations making it

an ideal candidate for caching. This helps in reducing one load operation in every

iteration thereby improving the overall run time. Thus among our two approaches

staticAL− SD is a better fit for the Spark paradigm.

3.7 Conclusion

The cost analysis introduced here indicated the level of improvements that can

be achieved by tradeoff between various costs. As range-based partitioning elimi-

nates the update cost, further optimizations can be done by investigating techniques

of reducing the computation cost. The next chapter optimized substructure discov-

ery even further by introducing heuristics to reduce the computation cost and the

accompanying shuffle costs.



72

Table 3.4: Choice of partitioning for classes of graph mining problems

Problem Category Our Analysis

Joins Non iterative Partitioning strategy based on join criteria should
work best while joining two large tables. While
joining a smaller graph with a larger graph (broad-
cast join), arbitrary partitioning on the larger
graph is useful.

Page Rank Iterative
Fixed cost

Arbitrary partitioning can be used as no updates
are required. However better response is noted by
removing shuffle cost of graph with a single load-
ing of range-based graph partitions at the reducer.
Since these partitions do not change, the algorithm
can be extended easily to Spark

DynamicAL-
SD

Iterative vari-
able cost

Arbitrary partitioning is used. Updates make it
unsuitable for spark as the adjacency partitions
cannot be cached in every iteration.

StaticAL-SD Iterative vari-
able cost

Range-based partitioning is better suited as it
avoids update. As partitions are not updated in
every iteration, they can be cached easily and
ported to Spark for even further improvements



CHAPTER 4

OPTIMIZATIONS OVER GRAPH MINING

At the core of graph mining lies independent expansion where a substructure

(also referred to as a subgraph) independently grows into a number of larger sub-

structures in each iteration. Such an independent expansion, invariably, leads to the

generation of duplicates. In the presence of graph partitions, duplicates are gener-

ated both within and across partitions. Eliminating these duplicates (for correctness)

not only incurs generation and storage cost but also additional computation for its

elimination. Our primary aim is to design techniques to reduce generating dupli-

cate substructures as we show that they cannot be eliminated. This paper introduces

three constraint-based optimization techniques, each significantly improving the over-

all mining cost by reducing the number of duplicates generated. These alternatives

provide flexibility to choose the right technique based on graph properties. We es-

tablish theoretical correctness of each technique as well as its analysis with respect to

graph characteristics such as degree, number of unique labels, and label distribution.

We also investigate the applicability of their combination for improvements in dupli-

cate reduction. Finally, we discuss the effects of the constraints with respect to the

partitioning schemes used in graph mining. Our experiments demonstrate benefits of

these constraints in terms of storage, computation, and communication cost (specific

to partitioned approaches) across graphs with varied characteristics.

73
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4.1 Introduction

Substructure discovery is the process of discovering substructure(s) (a con-

nected subgraph) in a graph (or a forest) that best characterizes a concept embedded

in that graph based on some criterion (frequency, compressibility etc.). Many ap-

proaches for substructure discovery have been proposed in the literature. Main mem-

ory based [1,9–12], disk-based [13–15] and database-oriented approaches [16,17]) ad-

dress substructure discovery on a single machine. With graphs that overwhelm main

memory, partition-based approaches to substructure discovery [25,26] have also been

proposed.

All of the above-mentioned approaches use an iterative algorithm that: gen-

erates all substructures of increasing sizes (starting from substructure of size one that

has one edge), counts the number of distinct identical (or similar) substructures and

applies a metric (e.g. frequency, Minimum Description Length [1], minimum sup-

port [10] etc.) to rank them. In each iteration, either all expanded substructures or a

subset (using the rank) are carried forward to limit the search space. This process is

repeated until a given substructure size is reached or there are no more substructures

to generate. This way of expansion grows each node in a substructure in all possible

ways in each iteration by adding an edge generating many substructures of the next

size. This technique is referred to as independent expansion where a substructure is

expanded unaware of other expansions in the same iteration. Non-independent expan-

sion makes the process sequential, affecting performance and making it not suitable

for large graphs and partition-based approaches.

The unconstrained independent expansion is complete as it guarantees gen-

eration of all possible substructures in every iteration. However, as a byproduct of

independent unconstrained expansion, duplicates are generated when different sub-

structures, in the same iteration, expand into multiple copies of the same (exact)
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bigger substructure. The number of duplicates, thus generated, depends on graph

characteristics. Following expansion, these duplicates need to be removed to ensure

correctness, incurring additional computation cost.

The challenge, therefore, is to augment the unconstrained independent ex-

pansion strategy using heuristics which limit the generation of duplicates. Needless

to say, these heuristics should be correct (i.e., sound and complete), and generate

the same results as an unconstrained expansion. Moreover, heuristics cannot use the

knowledge of any other substructure and their expansion details and should retain

their independent nature1. Hence, reduction of duplicates with low overhead seems

more pragmatic than their elimination. If we are able to identify information that

characterizes a substructure locally, use that to define a constraint that is sound

and complete, and is computationally inexpensive to apply, that would satisfy our

requirements.

Correct expansion generates a huge set of intermediate substructures. The

number of intermediate results grow exponentially to a certain substructure size before

starting to decrease. Users, on the other hand, are interested in mining patterns

following some user-defined parameters. Hence some pruning properties (based on

user-defined parameters) are typically applied that limit the search space and use

the best substructures for further expansion. Therefore, completeness needs to be

guaranteed even in presence of these pruning properties.

In this chapter, we augment the independent expansion strategy by introduc-

ing three heuristics, each reducing the number of duplicates generated during graph

expansion. Our heuristics can be seamlessly integrated into most of the graph repre-

sentations used for the iterative algorithm. In addition to the theoretical correctness of

1Keeping additional information for checking whether an exact match has already been generated

is what we are trying to avoid in the first place.
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each constraint, we show that they cannot be combined for additional improvement.

For scalability, we validate the benefits of using our heuristics on partition-based

graphs. Finally, we present an extensive comparative analysis of the constraints with

respect to the graph characteristics to help choose the best heuristic for an arbitrary

graph.

Contributions: The contributions of this chapter are:

• Identified several constraint-based heuristics to reduce the number of duplicates

generated along with their theoretical correctness

• Analysis of two pruning strategies with respect to soundness and completeness

using the proposed heuristics

• Comprehensive analysis of the algorithms on single and partitioned graphs with

diverse characteristics using the heuristics and pruning properties

• Back-of-the-envelope analysis of the choice of heuristics to be used for an arbi-

trary graph

RoadMap: The rest of the chapter is organized as follows. Section 4.2 presents some

definitions and concepts needed for the work along with the problem statement. Sec-

tion 4.3 introduces our heuristic based approaches along with theoretical correctness

in Section 4.4. Section 4.5 shows our experiments while Section 4.6 concludes the

chapter.

4.2 Preliminaries

Here we briefly describe the basics of graph representation, duplicates, exact

substructures, ranking metrics and pruning heuristics.
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4.2.1 Graph Representation

Definition An input graph is represented as G = (V,E) where V is a set of vertex

ids and E is a set of edges. For each vertex id vi ε V , the vertex label is vli. A directed

edge connects a source vertex vi with destination vertex vj where 1 ≤ i, j ≤ |V | and

has an edge label eij. Formally, every edge in E connecting source vi and a destination

vertex vj is represented as 5-element tuple < eij, vi, vli, vj, vlj >.

For undirected graphs the smaller vertex id can be used as the source. Support for

multiple edges, between a pair of vertices, can be provided by adding a unique edge

identifier. A k-edge subgraph is represented as a set of k edges.

Definition Graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if (i) |V1| =

|V2| and |E1| = |E2|, (ii) there is a bijection (one to one correspondence) f from V1

to V2, (iii) there is a bijection g from E1 to E2 that maps each edge (euv, u, vlu, v, vlv)

in E1 to (f(euv), f(u), f(vlu), f(v), f(vlv)) in E2.

We use isomorphism to detect identical (or exact) substructure patterns. Figure 4.1b

shows 4 isomorphic subgraphs present in the example graph in Figure 4.1a.
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Figure 4.1: An example graph
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Definition Isomorphic graphs G1 = (V1, E1) and G2 = (V2, E2) are duplicates if

V1 = V2 and E1 = E2 and f and g are identity functions.

Duplicates are formed when multiple subgraphs expand to the same subgraph. Fig-

ure 4.1c shows how duplicates are formed during expansion.

Canonical Instance (CI): A k-edge substructure is represented as an ordered se-

quence of k edges arranged in the smallest lexicographic order. Such a representation

is called a canonical instance. While establishing the order, edge labels are given

the first preference. In case of ties, the source vertex label, destination vertex label,

source vertex id and destination vertex ids are considered, in that sequence. For ex-

ample the CI of the top most isomorphic substructure in Figure 4.1b is captured as

<x,1,A,4,C; y,2,B,4,C> as x comes before y in dictionary order. Note in Figure 4.1b,

the isomorphic subgraphs have the same labels but different vertex ids while dupli-

cates as in Figure 4.1c are exactly same in both.
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Figure 4.2: Canonical instance and connectivity

Canonical instance representations of two substructures which are duplicates

will match exactly. However, one cannot merely remove vertex ids from this repre-

sentation to check for isomorphism. Consider the example in Figure 4.2a with its CI <

x, 10, A, 20, A; y, 10, A, 30, C > while Figure 4.2b has a CI< x, 40, A, 50, A; y, 50, A, 60, C >.

If we drop the vertex ids, both these instances have the same ordering of labels

< x,A,A; y, A,C >. However the instances differ in connectivity. Hence, a CI needs
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to be converted into a canonical substructure (CS) that preserves connectivity cor-

rectly while checking for exact matches.

Canonical Substructure (CS): A canonical substructure is derived from the

canonical instance by replacing each vertex id with their relative positions in the

instance starting from one. For our previous example in Figure 4.2, CS for <

x, 10, A, 20, A; y, 10, A, 30, C > is derived as < x, 1, A, 2, A; y, 1, A, 3, C > where ver-

tex id 10 is the first vertex id followed by vertex ids 20 and 30. Similarly CS for

< x, 40, A, 50, A; y, 50, A, 60, C > is derived as < x, 1, A, 2, A; y, 2, A, 3, C >. The in-

clusion of these relative positions is critical for differentiating the connectivity of the

instances.

4.2.2 Ranking and Pruning Alternatives

Typically, each substructure occurs in the graph multiple times. Therefore, the

importance of a substructure with respect to the graph can be measured using metrics

based on the number of occurrences. This measure is typically used to rank substruc-

tures. Oner of the commonly used ranking metrics for graph mining are: Minimum

Description Length (MDL) and frequency to rank the substructures. Minimum de-

scription length (MDL) is an information theoretic metric that has been shown to be

domain independent and highlights the importance of substructure on how well it can

compress the entire graph. Both the structure of the subgraph and the number of its

instances have a bearing on compression. Frequency, on the other hand, determines

the importance of a canonical substructure solely by the number of occurrences of its

instances. Note that, counting the number of instances is common to both of these

metrics. However, instances of a substructure may overlap on vertices (and/or edges)

influencing the count of substructures.

Definition Graphs G1 = (V1, E1) and G2 = (V2, E2) are overlapping if V1
⋂
V2 6= ∅.
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Edge overlap requires vertex overlap. There are two distinct ways of frequency com-

putation: with and without overlap.

Overlap-independent Frequency: Here overlapped instances of substructures

are considered as independent occurrences and counted as such. For example in Fig-

ure 4.1b, the frequency is computed as four although vertex ids 1 and 4 overlap in the

top two substructures and vertex ids 3 and 4 overlap in the bottom two substructures.

In the above, the frequency count is not a true representation of frequency as

compared to disjoint substructures with the same vertex and edge labels. Hence, this

is not a frequency that is typically used.

Overlap-cognizant Frequency: Here overlapped substructures are not counted

independently. It has been shown [28] that MRN (Most Restrictive Node) based

counting can be used for counting frequency of overlapped substructures. Also, this

supports some interesting properties. Hence, overlap-cognizant frequency is computed

using the maximal number of non-overlapping instances for a canonical substructure.

MRN [8] is defined below.

Definition Let F = {f1,...,fk} be the set of k isomorphisms of a subgraph S(Vs, Es) in

a graph G(V,E). Also let F (v) = f1(v), ...., fk(v) be the set that contains the distinct

nodes in G whose functions f1, ..., fk map a node v ∈ Vs. The overlap-cognizant

frequency is calculated as MRN = min{t|t = |F (v)| for all v ∈ Vs}.

For the example in Figure 4.1b, we have F(A) = 1,3, F(C) = 4 and F(B) = 2,5.

Therefore, the MRN is min(2,1,2)=1.

For frequency, the above-mentioned ranking metrics are used to order all

substructures in an iteration. All substructures generated in iteration i can be carried

on to iteration i+ 1. However, this is typically not the case as the search space grows

exponentially. Some properties (e.g., anti-monotone) will allow us to limit the search

space without sacrificing correctness.
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Definition A function f defined on a subset is called anti-monotone if for all sets X

and Y such that X ⊆ Y , one has f(Y ) ≤ f(X)

The frequency of substructures captured by Overlap-cognizant frequency (or MRN)

is the function (f) here that follows the anti-monotone property [8].

4.2.3 Limiting the Search Space

Following ranking, limiting the search space can be done by carrying forward

the substructures using two criterion widely used in the literature on mining: (i) In

an iteration, keep the substructures with the top-k ranks for expansion or (ii) keep all

substructures that has a rank greater than or equal to an user specified threshold(τ).

The major difference between the two pruning properties lies in the substruc-

tures preserved in an iteration. To ensure correctness, a pruning criteria should always

abide by the apriori property [28], that is, if a subgraph is preserved in an iteration,

all of its subgraphs must be frequent and preserved in the previous iteration. For a

graph in an iteration, top− k does not retain all subgraphs in the previous iteration

unlike the threshold-based pruning property.

Table 4.1: Effect of a combination of Ranking and Pruning technique on apriori
property

Ranking Pruning Anti-monotone Completeness
Metric Technique Property

MDL top-k no no
MDL Threshold no no
MRN top-k no no
MRN Threshold yes yes

A combination of ranking and pruning must preserve completeness during

exhaustive expansion of substructures in an iteration. Literature [28, 29] shows the



82

following for a combination of ranking and pruning along with exhaustive expansion

as expressed in Table 4.1. Therefore, we focus on a combination of MRN ranking

metric and threshold-based pruning technique for our approach.

4.3 Heuristics for Constrained Expansion

Independent substructure expansion in each iteration of graph mining generates

duplicates. As an instance expands only from connected edges, a line graph can be

generated in 2 ways (one from each vertex missing an edge at the end) while a

completely connected graph of k-edges can be generated in k ways (from k (k-1)-edge

instances each missing an edge out of k edges). Only one copy of each instance needs to

be preserved.For each substructure of size k being expanded, the number of duplicates

vary from 1 to k-1. Duplicate identification using the canonical representation requires

either sorting or pairwise comparisons - both of which are expensive for large numbers.

This, when done without any additional information generates duplicates even on a

single machine or without partitioning the data. When a distributed approach (by

partitioning the data set) is used, where different substructures expand in different

machines (or at different times) generation of duplicates cannot be avoided. Following

this expansion a connected substructure grows in each iteration by adding an edge.

To maintain completeness, unconstrained expansion needs to be used which generates

a large number of duplicates. The number of duplicates vary from 1 (a line graph)

to k-1 (a completely connected k-edge substructure). Identification of duplicates and

removal of all except one makes sure the same substructure is not expanded more

than once in the next iteration.

Following independent expansion, duplicates impact the computation and stor-

age costs. First, generation of all duplicates incurs extra computing cost. Second, the

expanded substructures (including duplicates) may need to be persisted before elimi-
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nating all but one instance of the duplicate. In the presence of partitions, the number

of duplicates generated in individual partitions affect the network cost as these du-

plicates need to be brought together for elimination. If there is a way of reducing

the number of duplicates, performance can be significantly improved across all com-

ponents of the algorithm (storage, I/O, network and/or shuffling, and computation

cost.)

Hence, identification of heuristics which can be applied locally to each instance

to reduce duplicates and exhibit completeness globally is needed. For any substructure

representation, the local information available are: vertex ids, vertex labels, and edge

labels.

We explore each available information as candidates for designing heuristics

for constrained expansion strategies to aid in duplicate reduction. The goal is to

avoid generating as many substructures/instances as possible that need to be pruned

later (we shall use substructure and instance interchangeably where the interpretation

is clear from the context.) However, the mechanisms used to prevent unnecessary

expansion should satisfy the following properties:

• Soundness: It should not eliminate any substructure that is not a duplicate.

• Completeness: It should generate all substructures that should be generated.

• Low overhead: The cost of applying the heuristic should be significantly less

than the cost of generating and removing duplicates.

Below, we present three heuristics, along with associated conditions to reduce the

number of duplicates generated. We shall establish the soundness and completeness of

each of our heuristics. We postulate that with independent expansion approaches, it is

not possible to completely eliminate the generation of all duplicates using heuristic(s)

without incurring cost that is proportional to duplicate detection. We shall also show

that our heuristics reduce but not eliminate all duplicates.
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4.3.1 Identification of Heuristics

As defined earlier, an edge consists of five elements: edge label, vertex labels

and vertex ids. Each vertex has a unique id while labels (both vertex and edge) are

not necessarily unique. Note that for the same substructures to occur multiple times

in a graph, it is mandatory for edge and vertex labels to repeat. We introduce a

heuristic based on each of these edge components. We prove correctness (soundness

and completeness) for each heuristic and analyze their effectiveness. Further, we ana-

lyze if a combination of them can be combined to reduce duplicates further. We shall

use the illustrative example graph in Figure 4.3 to provide an intuitive understanding

of the heuristics. Before analyzing the correctness for heuristics we first discuss the

correctness of the unconstrained expansion.
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Figure 4.3: Example graph for explaining optimization using heuristics

Correctness of Unconstrained Expansion: The unconstrained expansion is

both complete and sound. It is complete as every node in a substructure is ex-

panded in every possible way in each iteration. That is all possible expansions are

generated without fail. It is sound as each expansion is correct with respect to the

given graph. No incorrect expansion takes place. The downside of the above un-

constrained expansion is that the same (or duplicate) substructure is generated by
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multiple substructures due to independent unconstrained expansion on each node in

every substructure.

As our heuristic-based expansion prevents some substructures from being gen-

erated, completeness needs to be established to show that a substructure eliminated

during one substructure expansion is indeed generated by another substructure in

the same iteration using the same heuristic. Soundness is not an issue as all possible

expansions are still attempted. Hence, we need to establish only the completeness for

each of the expansion technique using a heuristic.

4.3.1.1 Heuristic Based On Vertex Id

We have information on the vertex ids in the substructure to be expanded, the

vertex id on which it is expanded (by adding an edge) and the vertex id in the added

edge. We formulate a heuristic based on these vertex ids.

Definition The minV id of a substructure containing the set of k vertex ids as V =

{v1, v2, ..., vk} is defined as min(V ).

Basically, minVid of a substructure is the smallest vertex id present in that sub-

structure. For example in Figure 4.4, the minV id of <x,10,B,20,C> is 10 while the

minV id of the subgraph in Figure 4.3 is 5.

minVid heuristic: Expand a substructure by adding an edge on any of its vertices

if the added vertex id is greater than or equal to its minVid. The intuition here is to

restrict expansions using minV id2.

Figure 4.4 shows a subset of 1-edge substructures from Figure 4.3. In Fig-

ure 4.4a, <x,10,B,20,C> is expanded on vertex 20 without using any constraint in all

possible ways. In Figure 4.4b the same substructure is expanded using the minV id

2A similar constraint can be formulated with the maximum vertex id (maxVid). Expansion will

occur if the added vertex is ≤ the maxV id of a substructure
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(c) Completeness example

Figure 4.4: Expansion with vertex id based constraint

heuristic when <x,10,B,20,C> (with a minV id of 10) is not expanded by adding

vertex 5 but expanded by adding the vertex id 50. The substructure eliminated by

the constraint is a valid substructure and must be generated by some other substruc-

ture in the same iteration. In the same iteration, Figure 4.4c shows another 1-edge

substructure <y,20,C,5,A> generating the substructure which was eliminated by con-

strained expansion in Figure 4.4b by applying the same condition. This substructure

has a minV id of 5 and is expanded by adding vertex id 10 which is greater than the

current minV id. We theoretically establish the completeness of minV id constraint in

Section 4.4. Detailed analysis of costs of overhead using minV id is in Section 4.3.2.
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4.3.1.2 Heuristics using Vertex Label

Analogous to the vertex ids, we have vertex label information present in the

substructure to be expanded and the vertex label of the added vertex. We formulate

a heuristic based on the vertex label information.

Definition The minV L of a substructure containing the set of k vertex labels as VL

= {vl1, vl2, ..., vlk} is defined as min(V L). Note that labels, unlike vertex ids, are not

unique. Hence vli = vlj for some i 6= j

Basically, minVL of a substructure is the smallest vertex label present in that sub-

structure. For example in Figure 4.4, the minV L of <x,10,B,20,C> is B while the

minV L of the subgraph in Figure 4.3 is A.

minVL Heuristic: Expand a substructure with minVL by adding an edge only if

the added vertex label is greater than or equal to the minVL

The intuition here (similar to the one with minVid) is to restrict expansions

using a constraint: expand a substructure on any of its vertices only if the added

vertex label associated with the added edge is greater than or equal to the minVL

of the substructure. A similar heuristic can be established with the maximum vertex

label (maxVL.) Expansion will occur if the added vertex has a label smaller than the

maxV L of a substructure.

Figure 4.5 shows a subset of 1-edge substructure from Figure 4.3. In Fig-

ure 4.5a < x, 10, B, 20, C > is expanded by adding vertex with vertex label D but

not by adding the vertex label A. Figure 4.5b shows how the substructure which

missed generation in Figure 4.5a is now generated in the same iteration from a differ-

ent substructure in the same iteration. In section 4.4 we theoretically establish the

completeness of the minV L constraint during substructure expansion. Section 4.3.2

contains detailed discussion on the overhead while using minV L heuristic. We can
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(b) Completeness example with minVL

Figure 4.5: Expansion with vertex label based constraint

formulate similar heuristics (minEL and maxEL) based on the edge label informa-

tion.

4.3.1.3 Heuristics using Edge Label

We have the information on the edge label present in the substructure to be

expanded and the edge label of the added edge. We can formulate a similar heuristic

based on the edge label information. We exclude the details here for lack of space.

Definition The minEL of a substructure containing the set of k edge labels as EL

= {el1, el2, ..., elk} is defined as minEL = min(EL). Note that labels, unlike vertex

ids are not unique hence eli = elj for some i 6= j

Basically, minEL of a substructure is the smallest edge label present in that substruc-

ture. For example in Figure 4.4, the minEL of <x,10,B,20,C> is x while the minV L

of the subgraph in Figure 4.3 is w.

minEL Heuristic: Expand a substructure with minEL by adding an edge only if

the added edge label added is greater than or equal to the minEL
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The intuition here (similar to the one with minVL) is to restrict expansions

using a constraint: expand a substructure on any of its vertices only if the added

edge label is greater than or equal to the minEL of the substructure 3. Proof of

completeness of minEL heuristic will be similar to the other two heuristics.
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(a) Using minEL constraint
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(b) Completeness example with minEL

Figure 4.6: Expansion with edge label based constraint

In Figure 4.6a < x, 10, B, 20, C > is expanded by adding edge with vertex

label y but not by adding the edge label w. Figure 4.6b shows how the substructure

which missed generation in Figure 4.6a is now generated in the same iteration from a

different base substructure. Below we theoretically establish the completeness of the

minEL constraint in absence of any pruning properties.

4.3.2 Analysis of Proposed Heuristics

We have 3 heuristics each with max and min variants (making a total of 6.) All

of them have been shown to be correct and hence any one of them can be chosen for

a given graph. This entails an analysis of these heuristics in terms of their cost and

3A similar constraint can be designed with the maximum edge label (maxEL)
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their ability to reduce the number of duplicates based on graph characteristics. Also,

whether we use the min or max version, the additional information stored and used

for each substructure need not be recomputed after each expansion. It is determined

once in the first iteration.

4.3.2.1 Comparison Cost and Storage Overhead

Typically, a k-edge substructure has k edge labels and k+1 vertex ids and

vertex labels. Therefore, the edge label heuristics require one less comparison per

substructure in each iteration than their counterparts. With the substructure being

represented in their canonical form, the first edge label of the first edge in the canonical

representation is always the minEL. This makes the minEL heuristic the one with

the least overhead.

However, the other heuristics need an overhead for storing the min (or max)

values. For minV id (and maxV id) the storage overhead for a substructure is an

integer, while minV L (and maxV L) and maxEL it is a label (which is a string)

whose size is application dependent. String comparison is in general more expensive

than integer comparison and also depends on the length of the string which may

vary across graphs. Hence, minV id is the least cost heuristic where as minEL has

the least storage overhead. Since each heuristic is complete in an iteration, different

heuristics can be used in different iterations depending on graph characteristics with

appropriate costs.

4.3.2.2 Effect of Degree Distribution

In each iteration, each substructure is expanded on all nodes in all possible

ways. Hence, the higher the degree of vertices in the subgraph, the more expansions

it takes part in. The numbering of vertices also plays a role in the application of the
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proposed heuristics. Vertex degree distribution can be analyzed in two ways: (i) using

the average degree of the graph and (ii) the edge density distribution

Average degree holistically captures the ratio between edges and vertices in a

graph. However it fails to capture the variation of edge connectivity with vertex ids.

Edge density distribution, on the other hand, depicts the connectivity for each vertex

in the graph. For graphs with same edge density distribution, irrespective of average

degree, the heuristics should behave similarly.

For an edge density distribution where smaller vertex ids have much higher

connectivity than larger vertex ids, most substructures shall have small vertex ids as

minV id. Hence, using minV id as a choice of heuristics ends up with more expansions.

For this case, use of maxV id is a better choice over minV id. For an edge distribution

opposite to the above, minV id is preferred over maxV id. The degree distribution

does not affect labels, hence the performance of label based heuristics should not vary

for graphs with different degree distributions.

4.3.2.3 Effect of Label Distribution

For a given degree distribution, label distribution (uniform or skewed) does not

effect the performance of id-based heuristics. Furthermore, if the frequency of labels

are uniformly distributed over the graph, even the label-based heuristics (either max

or min variant) are likely to give similar (if not identical) performances.

However, in case of a non-uniform label distribution in a graph, if lexicograph-

ically smaller vertex labels are disproportionately more in number than the lexi-

cographically larger labels, most substructures shall have smaller minV L thereby

reducing the applicability of the minV L heuristic and will not eliminate as many

duplicates. In this situation, maxV L will perform better. The opposite is true if the

label distributions are reversed.
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This analysis (as well as the experimental results shown in Section 4.5.3) clearly

indicates that the label distribution can play a significant role on the choice of heuris-

tics for maximizing the performance of the heuristics for a given graph. It is also

possible that the label distribution can vary over multiple ranges of values. Hence,

some form of histogram analysis of labels will help in determining the choice of heuris-

tic to match the graph characteristic. This observation and label analysis can also

be beneficially used for choosing the appropriate heuristic for each (or a consecutive

number) of iterations to maximize the performance of the algorithm.

4.3.2.4 Effect of Cycles, Loops, and Multiple Edges

When a substructure expands to a cycle or a loop, addition of an edge connects

to an existing vertex of that substructure. Therefore, the added vertex and the

added vertex label is always greater than or equal to the minV id or minV L of the

substructure (or lesser than or equal to the maxV id or maxV L of the substructure.)

Therefore these 4 heuristics will not reduce duplicates when the expansion results in

a new cycle or loop in the expanded substructure. However minEL or maxEL does

not have this limitation and will eliminate duplicates as the added edge label is not

a part of the substructure being expanded.

Graphs with multiple edges between two nodes need an additional edge id to

discriminate edges between a pair of nodes. Our model can be extended to handle

multiple edges by using edge id-based heuristics. This is similar to the use of vertex

ids. Since edge ids are also unique, the heuristics designed with edge ids will perform

similar to the vertex id heuristic.

We would like to point out that the heuristics will perform as expected even

in the presence of cycles, loops, and multiple edges as only a small percentage of

substructures are affected by this. The correctness is not an issue and the heuristics
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can be used with slightly reduced performance if the graph characteristics are not

known.

4.3.2.5 Effect of Partitions

A commonly used approach to achieve scalability and speedup of graph mining

is to develop mining algorithms on partitioned graphs. There are a number of graph

partitioning schemes proposed in the literature [23, 30]. In addition to correctness,

we would like to see that individual partition performances are not skewed resulting

in reduced overall speedup.

Some of the earlier discussion on graph characteristics are individually applica-

ble not only to each partition, but across partitions as well. For example, if a graph is,

say, ordered monotonically on vertex ids (e.g., using a breadth-first order) and then

partitioned using ranges of vertex id, there will be partitions with contiguous small

value for vertex ids and also partitions that have contiguous larger vertex ids. With

the use of minV id heuristic, the partitions with smaller vertex ids will allow more

expansions (i.e., will not eliminate as many duplicates) than the ones with larger

vertex ids. This can introduce a skew (assuming all other things being equal) in

the computation cost for an iteration across partitions. Use of maxV id introduces

a similar skew that is complementary to the above. Non-uniform computation costs

across partitions (irrespective of how it happens) is not congenial for parallelism and

scalability. For these scenarios, label-based heuristics which are independent of the

vertex ids across partitions will be a better choice.

Similarly, if the labels are ordered monotonically and the graph is partitioned

based on ranges of labels, skew will be introduced while using the label based heuris-

tics. Vertex id-based heuristics will then be preferred over label-based heuristics.
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In presence of a skew, some partitions generate more duplicates than oth-

ers. However, these duplicates inside a partition are removed by combiner (in a

map/reduce framework.) The shuffling cost only depends on the unique number of

inter partition duplicates which is insignificant compared to the processing cost in

each partition.

Skewness in computation can be overcome in different ways based on infor-

mation collected during partitioning. For example, the size of the partition can be

determined to mitigate skewness in computation. As each substructure is expanded

only once in a partition, number of total duplicates generated is independent of the

size of the partitions for a chosen heuristic. Also for an arbitrary partitioning scheme,

using the random assumption of labels, the performance of a heuristic will follow a

similar trend in each partition as the performance of the same heuristic on an the

graph.As a substructure can be grown into from different partitions, use of different

heuristics across partitions in the same iteration will not guarantee completeness.

4.3.2.6 Summary

Based on the above analysis, it would be useful to identify, if possible, a heuristic

that is good in the absence of graph characteristics and also match a heuristic when

some of the graph characteristics are known. Although minEL achieves the lowest

storage cost and handles cycles and loops effectively, it is dependent on the label

distribution of the graph and also the partitioning scheme (specific to partitioned

graphs.) However, while creating the initial adjacency list for the graph4, the degree

distribution and label distribution can be obtained and the proper heuristic can be

chosen appropriately. For an arbitrary graph Table 4.2 summarizes the choice of

heuristics (ranked in increasing order of preference) for graph characteristic discussed

4whether partitioned or not, adjacency list is used for expansion of a subgraph in each iteration.
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earlier. Same preference of two heuristics indicate a tie for that graph characteristic.

Table 4.2: Ranked choice of heuristics based on graph characteristics

Ranking of Heuristics
Graph min max min max min max
Characteristic Vid Vid VL VL EL EL

Uniform (edge/vertex) label distri-
bution

3 3 2 2 1 1

Unknown degree 3 3 2 2 1 1
Distribution
All vertex and edge labels same 1 1 - - - -
Higher percentage of smaller 3 3 4 1 2 2
vertex labels
Higher percentage of smaller 3 3 2 2 4 1
edge labels
Higher percentage of larger 3 3 1 4 2 2
vertex labels
Higher percentage of larger 3 3 2 2 1 4
edge labels

Overall 3 3 2 2 1 1

An absence of rank indicates no improvement using a heuristic. Note that, there is no

column in Table 4.2 which always gives the best rank. From this analysis, it is evident

that there is not a single heuristic among the 6 heuristics proposed which achieves

the best performance improvement for any arbitrary graph. The last row captures

the ranking of a heuristic for an arbitrary graph. Edge label based heuristics (min

or max depending on edge label distribution) are mostly the winner in all cases.

Only when smaller vertex labels are disproportionately present in high frequency,

vertex label based heuristics are chosen. Id based heuristics are only chosen when

label-based heuristics fail (as in the case of all labels being same in the graph.) Since

label based heuristics are independent of degree distributions, a combination of graph

characteristics will be dependent on the label distributions in the graph.
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4.3.3 Combining Heuristics

An interesting issue would be to see whether a combination of more than one

heuristics (e.g., minV id and/or minV L) improves the number of duplicates elimi-

nated and still preserves completeness. This would be a trade-off between overhead

and savings in terms of duplicates reduced. The proposed heuristics, when applied

individually, decide whether to expand a substructure or not (yes or no.) Consider-

ing two heuristics h1 and h2, the decisions made by them while expanding the same

substructure using the same edge are shown in Table 4.3.

Table 4.3: Possible Outcomes of two heuristics on a subgraph for the same edge
expansion

Case Expand using
h1

Expand using
h2

1 yes yes
2 no no
3 yes no
4 no yes

When both heuristics give the same decision, the choice is clear (as in cases 1

and 2.) As the heuristics use different, independent components of the graph (vertex

id, vertex label, and edge label), there is no guarantee that their decisions will be the

same. For example in Figure 4.7 minV L and minV id used on the same substructure

for expansion gives two different decisions for expansion. Hence, one has to combine

these decisions using an operator such as Boolean “and” or “or”. Using the “or”

operator (i.e., allowing the expansion if one of the heuristic indicates yes) is worse as

more duplicates are likely to be generated. Use of “and” operator does not satisfy

the completeness property making it useless.
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Figure 4.7: Different decisions by multiple constraints (minV id and minV L) on same
substructure

Based on the above, we can conclude that combining more than once heuris-

tic for duplicate reduction is not beneficial. Hence one needs to wisely choose only

one heuristic to apply. However, this does not imply that the same heuristic need

to be used in each iteration. AS each heuristic is complete with respect to an itera-

tion, heuristic can be changes across iterations. This will be beneficial if the graph

characteristics of the subgraphs generated can be inferred during the expansion in an

iteration.

4.4 Theoretical Proofs

In this section, we formally establish the completeness of the proposed heuris-

tics.

4.4.1 Completeness using vertex id based constraints

Theorem 4.4.1 minV id heuristic satisfies completeness in each iteration

Proof. We shall prove this theorem using induction on the size of the substructure.

Base Case: Consider the base case with the smallest graphs (or 1-edge substruc-

tures.) Consider 2 different substructures with vertex ids < vi, vj > and < vj, vk >

which can be independently expanded. Following unconstrained expansion, for any

combination of vi,vj and vk, both the substructures expand to < (vi, vj)(vj, vk) > in
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the first iteration. This unconstrained expansion results in generating one duplicate

as the same 2-edge substructure is generated by both 1-edge substructures. Without

loss of generality, given three unique values (verted ids), Table 4.4 shows all possible

relationships for the values of vertex ids. There are only 6 cases as shown in the

combination column. We need to establish that for each of these 6 possible cases,

at least one correct 2-edge substructure is generated when the minV id constraint is

applied.

Table 4.4 shows how expansion happens for any combination of vi,vj and vk

in the last two columns of the table. For example in case 1, vi is the minV id of

< vi, vj > and expansion goes through as vk > vi in column 3. But the minV id of

< vj, vk > is vj and is not expanded by adding vi as vi < vj as shown in the column 4

of the table. Any expansion in case of 1-edge substructures, has to follow one of these

6 cases, and at least a 2-edge substructure is generated in each case guaranteeing

correctness. Note that for cases 3 and 4, duplicates are still generated. Note also that

the generation of a duplicate is not done using this constraint in 4 out of 6 possible

cases. This also supports our earlier statement that total elimination of duplicates is

not possible using independent expansion and heuristics based on local substructure

information. Although we have discussed this for two 1-edge substructures, the 1-edge

substructures of any arbitrary connected graph can be broken down into a number of

pairs of 1-edge substructures and the same logic can be applied for each pair.

Induction Case: Now consider a n-edge substructure S to be expanded to (n+1)-

edge substructures. Let the set of vertex ids for S is be V = {v1, v2, ..., vn+1}. Let the

minV id of this substructure be m=min(V ). When this substructure is expanded, a

vertex id v is added to this substructure to form S ′. The vertex id set of S ′ is V ′ and

can be defined as V ′ = {v1, v2, ..., vn+1, v}. Addition of v can result in 2 cases.

Case 1: v ≥ m. The expansion takes place as it is allowed by the constraint. As this
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Table 4.4: Completeness of base case using minVid

Case Combination < vi, vj > < vj, vk >
expands to expands to
<(vi, vj)(vj, vk)> <(vi, vj)(vj, vk)>

1 vi < vj < vk yes no
2 vi < vk < vj yes no
3 vj < vi < vk yes yes
4 vj < vk < vi yes yes
5 vk < vi < vj no yes
6 vk < vj < vi no yes

expansion takes place we do not have to show anything else.

Case 2: v < m. Here S is not expanded to S ′. Note that, since m is the minV id of

the substructure, vj ≥ v for any vj ∈ V. Here we have to show that this substructure

will be generated in this iteration by another substructure in the presence of the

constraint. For this, there has to be a n-edge substructure S1 that contains the edge

< vj, v > where 1 ≤ j ≤ n and is missing an edge < vj1, vj2 > that is in S where

1 ≤ j1, j2 ≤ n + 1. Such a substructure has to exist due to completeness during

the previous iteration. Also, the minV id of that S1 is v as v is smaller than all

other vertex ids. Note that S1 is expanded to S’ by adding the edge < vj1, vj2 >, as

either vj1 > v or vj2 > v. So S ′ is not generated from S but from S1 proving the

completeness of minV id constraint for the general case.

Figure 4.8 illustrates representation of case 2 diagramatically. When vertex

id v was added to S to create S ′ where v < minV id (here m), expansion did not

happen. However another connected substructure S1 (this substructure has to exist

as completeness is true for the previous iteration) with a minV id of v generated this

missing substructure by adding vertex vk where vk ≥ v thus asserting correctness.
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Figure 4.8: Illustration of completeness using minVid for the induction step

4.4.2 Completeness using vertex label based constraints

Theorem 4.4.2 minVL heuristic is complete in each iteration with respect to sub-

structure generation

Proof. We shall prove this using induction which is very similar to the previous one.

We denote the vertex label of a vertex id vi as vli. Consider the base case, when two

substructures < vi, vj > and < vj, vk > expand to < (vi, vj)(vj, vk) >. Without loss

of generality, given three label values, Table 4.5 shows all possible relationships for

them. There are 13 cases (6 cases numbered 1 to 6 where all label are different, 6

cases from 7 to 12 where two of them are equal and 1 last case where all three labels

are the same.) We need to establish that in each of these 13 possible cases, at least

one correct 2-edge substructure is generated on application of the minV L constraint.

Table 4.5 shows how expansion happens for any combination of vli, vlj and

vlk in the last two columns of the table. Note that in some cases duplicates are

still generated. This also supports our earlier statement that total elimination of

duplicates is not possible using independent expansion with heuristics.

Now consider a n-edge substructure S to be expanded to a (n+1)-edge substruc-

ture S’. The set of vertex ids for S is defined as V = {v1, v2, ..., vn+1}. The set of vertex

labels is defined as VL = {vl1, vl2, ..., vln+1}. Let the minV L of this substructure be

m=min(VL). When this substructure is expanded, a new vertex v with vertex label
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Table 4.5: Completeness of base case using minVL

Case Combination < vi, vj > < vj, vk >
expands to expands to
<(vi, vj)(vj, vk)> <(vi, vj)(vj, vk)>

1 vli < vlj < vlk yes no
2 vli < vlk < vlj yes no
3 vlj < vlk < vli yes yes
4 vlj < vli < vlk yes yes
5 vlk < vli < vlj no yes
6 vlk < vlj < vli no yes
7 vli = vlj and vli < vlk yes yes
8 vli = vlj and vlk < vli no yes
9 vli = vlk and vlk < vlj yes yes
10 vli = vlk and vlj < vlk yes yes
11 vlj = vlk and vlj < vli yes yes
12 vlj = vlk and vli < vlj yes no
13 vli = vlj = vlk yes yes

vlv is added to the substructure to form S’. Addition of v and hence vlv can result in

2 cases.

Case 1: vlv ≥ m. The equality condition can happen as vertex labels are not unique.

The expansion takes place following the constraint. We do not have to show anything

as there is no elimination.

Case 2: vlv < m. Here S is not expanded to S ′. Note that vli ≥ vlv for any vli

in V L. Here we have to show that the substructure will be generated in the same

iteration from another substructure in the presence of the minV L constraint. Such a

substructure S1 has to exist due to completeness during the previous iteration. This

substructure S1 has the following properties: (i) It contains the edge < vj, v > and (ii)

It is still connected but missing an edge < vj1, vj2 > from S where 1 ≤ j, j1, j2 ≤ n+1.

The minV L of S1 is vlv. Hence S1 is expanded to S in the same iteration as either

vlj1 > vlv or vlj2 > vlv. So S ′ is not generated from S but from S1 proving the

completeness of the minV L constraint for the general case.
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4.4.3 Completeness using edge label based constraints

Theorem 4.4.3 minEL heuristic is complete in each iteration with respect to sub-

structure generation

Proof. This can be proved using induction on the size of substructures. Consider

the base case, with the smallest graphs (1-edge substructure) where two edges ei and

ej expand to form 2-edge substructure < ei, ej >. Let the edge label of an edge ei

be denoted as eli. Table 4.6 shows all the possible 3 combinations of edge labels and

how expansion happens for any of those combinations.

Table 4.6: Completeness of base case using minEL heuristic

Case Combination ei expands to ej expands to
< ei, ej > < ei, ej >

1 eli < elj yes no
2 elj < eli no yes
3 eli = elj yes yes

Now consider a n-edge substructure S to be expanded to a (n+1)-edge sub-

structure S’. The set of edges for S is defined as E = {e1, e2, ..., en}. The set of edge

labels is defined as EL = {el1, el2, ..., eln}. Let the minEL of this substructure be

m=min(EL). When this substructure is expanded, a new edge e with edge label ele

is added to the substructure to form S’. Addition of e and hence ele can result in 2

cases.

Case 1: ele ≥ m. The equality condition can happen as vertex labels are not unique.

The expansion takes place following the constraint. We do not have to show anything

as there is no elimination.

Case 2: ele < m. Here S is not expanded to S ′. Note that eli ≥ ele for any eli

in V L. Here we have to show that the substructure will be generated in the same
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iteration from another substructure in the presence of the minEL constraint. Such a

substructure S1 has to exist due to completeness during the previous iteration. This

substructure S1 has the following properties: (i) It contains the edge < ej, e > and (ii)

It is still connected but missing an edge < ej1, ej2 > from S where 1 ≤ j, j1, j2 ≤ n.

The minEL of S1 is ele. Hence S1 is expanded to S in the same iteration as either

elj1 > ele or elj2 > elv. So S ′ is not generated from S but from S1 proving the

completeness of the minV L constraint for the general case.

Following a pruning technique, we need to show that the substructure kept in an

iteration i and expanding using our heuristics are bound to generate all substructures

abiding by the same pruning technique in iteration i+1. With MRN metric following

the anti-monotone property and user defined threshold (τ) abiding by the apriori

property (as in Section 4.2.3), and each heuristic being complete, a combination of

them is correct and complete.

In Section 4.2.3, we observe that MRN ranking metric with minSup pruning

guarantees correctness for exhaustive expansions. We hypothesize that our proposed

heuristics exhibit completeness under those same conditions.

We have two observations in this regard:

• Heuristics proposed in this paper are not complete in each iteration with respect

to substructure generation if top-k is used for pruning (top-k based on MRN)

• Proposed heuristics are complete in each iteration with respect to substructure

generation if minSup property is used for pruning

We theoretically establish these two conjectures using one of our heuristics (minV id.)

Theorem 4.4.4 minV id heuristic is not complete in each iteration with respect to

substructure generation using top− k pruning property

Proof by Contraction: Assume that top-k heuristic is complete for an iteration

n. We just need to show a counter example that does not guarantee completeness
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for a value of n and k. Without loss of generality, let us assume n=1 and k=1.

Consider the graph in Figure 4.9. Table 4.7 shows the top-1 1-edge substructure

with all their instances ranked using MRN. Since k=1, the substructure A-B and

all its instances are considered as the only candidates for expansion. When these

instances are expanded using minV id constraint, as seen in Figure 4.9b none of them

are expanded as in all the cases, the added vertex ids are less than the minV id of the

instance. Since none of the candidates were expanded, the top-1 2-edge substructures

(which should have been discovered using unconstrained expansion) are now never

discovered. Therefore, keeping only the top-1 substructures in an iteration failed

to generate the top-1 substructures in the next iteration. Hence, top-k heuristic is

incorrect.
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(a) Example graph
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11 10
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11 10 99 < minVid

� �

14 13

� � �

14 13 1212 < minVid

(b) Unsuccessful expansion with top-1 instances

Figure 4.9: Correctness not preserved in presence of top-k property

Theorem 4.4.5 minV id heuristic satisfies completeness in each iteration usingMRN

ranking and minSup pruning property

Proof: Assume we have a minSup of τ . We need to show that, in an iteration, say

k, if a k-edge substructure has a MRN frequency of at least τ , all of its subsets with



105

Table 4.7: Substructures and instances ranked based on overlap-cognizant frequency

Substructure Instances MRN
Freq.

Rank

A-B [4− 3, 8− 7, 11− 10, 14− 13] 4 1
B-C [3− 2, 7− 6, 10− 9] 3 2
C-D [2− 1, 6− 5] 2 3
B-D [13− 12] 1 4
D-E [1− 0, 5− 0, 12− 0] 1 4
C-E [9− 0] 1 4

a MRN frequency of at least τ have been persisted in the previous iteration using the

minSup pruning property. We prove this using induction.

Base Case : Assume there is a 2 edge substructure a − b − c with a MRN

frequency≥ τ . Let the instances of this substructure be represented by F = {f1, ..., fj}

where j ≥ τ . Each fi for iε(1, j) has two subgraphs (a− b)i and (b− c)i. Since MRN

is overlap cognizant, if MRN(a− b− c) ≥ τ , MRN(a− b) ≥ τ and MRN(b− c) ≥ τ

and they must have been discovered in the first iteration with minSup = τ

Induction case: Similarly, if a n-edge substructure has τ non-overlapping

occurrences, then all of its (n-1)-edge subsets are non overlapping too and have a

frequency greater than or equal to τ . With the completeness assumption, all these

subsets have been discovered in the previous iteration using minSup = τ thus proving

correctness. To explain with an example, see in Figure 4.9, if τ = 3, both the

substructures in the top two rows of Table 4.7 are kept in the first iteration. Even

though following minV id constraint, the A−B had unsuccessful expansions, B −C

expanded correctly thereby generating 3 independent copies of A−B − C.



106

4.5 Experimental Analysis

In this section we experimentally establish the significance of our heuristic-

based expansion techniques. Following our discussion in Section 4.3.2, our experi-

ments portray the performance of using our heuristics on graphs with varying degree

distributions, label distributions and also on partitioned graphs.

Following our discussion in Section 4.3.2, our experiments shall validate the

following:

• Range of duplicate reduction percentages using our heuristics on graphs with

varying degree and edge density distribution

• Comparison of the three heuristics on graphs with varying label distributions

leading to the choice of heuristic for an arbitrary graph or a graph with known

characteristics

• Validating scalability of using the heuristics on large graphs using an existing

partitioning strategy and its effect on speedup.

4.5.1 Experimental Setup

As the number of duplicates depend on graph characteristics, we validate our

approach using graphs where we have control over the graph characteristics: degree

and label distribution. For this, we have used two graph generators: Subgen [4]

and RMAT [5] to generate graphs to meet our size and other requirements. We

also use real-life LiveJournal graph for the effect of heuristics. All our experiments

are conducted on a single machine with 6GB of RAM and using a Core i5 1.70GhZ

processor. To show the effects of our heuristics on partitioned approaches we use

a Hadoop cluster with 4 nodes. Each node has a 3.2 GHz Intel Xeon CPU, 4 GB

of RAM and 1.5 TB of local disk. Each node was running Hadoop version 1.0.3 on
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ROCKS Cluster operating system and connected by gigabit Ethernet to a commodity

switch.

Subgen Graph Generator: Subgen allows generation of directed graphs with

user-defined number of vertices and edges. The vertices and edges are labeled uni-

formly at random. For analyzing the performance of heuristics on graphs of varying

average degrees, we generated two graphs both with 100, 000 vertices but 200, 000

and 400, 000edges.

RMAT Graph Generator: RMAT mimics social network graphs using recursive

matrix model by specifying vertices and edges. A square matrix of vertices is divided

into 4 quadrants recursively where we specify the probability of an edge appearing in

each quadrant. We specified the probabilities in the 4 quadrants as 0.57, 0.19, 0.19

and 0.05 to generate a graph with 100, 000 vertices and 200, 000 edges. It has the

same average degree as the same-sized Subgen graph but the average edge density of

this graph is 150.93 as compared to 8.03 for Subgen.

Real World Graph: We use the LiveJournal graph [2] to examine the performance

of the heuristics on a real world graph. This graph has 4.03M nodes and 34.68M

edges. We insert 100 unique vertex labels and 200 unique edge labels into this graph

following an uniform distribution. We use a range partition-based approach [26] on

this graph along with heuristics to observe the performance of heuristics on partitioned

graphs.

4.5.2 Effect of Degree Distribution

For each of our experiments we use the notion of substructures generated

which is the cumulative of the actual expanded substructures along with the dupli-

cates. As our expansion is complete, the improvement is attributed to reduction of

duplicates. Because of the different degree distributions of the graphs, Subgen graph
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was run with a τ of 5 while the RMAT graph was executed with a τ of 15. For

the Subgen and RMAT graphs, Figure 4.10a shows the percentage improvement of

duplicates generated using our heuristics over the unconstrained approach.
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(a) Reduction in Duplicates generated using heuristics
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(b) Improvement in time using heuristics

Figure 4.10: Improvement of performance using proposed heuristics

The number of substructures generated shows an improvement for all heuris-

tics for two different degree distributions. With increasing average degree across

Subgen100KV 200KE and Subgen100KV 400KE, the improvement for all three heuris-

tics remain similar. However between same-sized Subgen and RMAT graphs, minV id

attributed to only 10.5% improvement in RMAT as opposed to 26.1% improvement

in Subgen graphs.

Subgen has uniform edge density distribution unlike RMAT which has a non-

uniform distribution based on the probabilities used during graph generation (as
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explained in Section 4.5.1). The highest probability in the first quadrant allowed

smaller vertex ids to have much higher connectivity than larger vertex ids. The

dramatic increase in the number of substructures generated is also due to the in-

crease in higher connectivity. These contrasting degree distributions (as discussed in

Section 4.3.2), resulted in the variation in performance of minV id constraint across

Subgen and RMAT graphs. As expected, the performance of label-based heuristics

remain unaffected.

The trend of improvement in substructures generated for both graphs is

equally reflected in the savings in time as in Figure 4.10b. Improvements of time

are from three major causes: 1. Preventing generation of some duplicates 2. Lesser

computation cost in generating canonical substructures for the total substructures

generated 3. Less duplicates to be pruned.

4.5.3 Effect of Label Distribution

To compare performance of heuristics with varying label distributions we can

pick any graph and control the label distributions in it. we took the Subgen100KV 200KE

graph and embedded 10 vertex labels and 20 edge labels randomly following uniform,

Gaussian and Poisson distribution. Figure 4.11 shows the average performance of the

heuristics over 10 runs of random label generation for each distribution for 5 itera-

tions. For each of these distributions, our heuristics always show an improvement

over the unconstrained expansion technique. This helps us experimentally establish

our earlier conjecture that our heuristics always provide an improvement on graphs

with any degree distribution and label distribution.

In an effort to critically analyze the effect of the heuristics with respect to

the graph label distribution, we established more discipline on the Subgen graph by

controlling the edge and vertex label distribution. After ordering the edge labels in
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Figure 4.11: Comparison of heuristics with different label distributions

canonical sequence, we divide the edge labels into 10 groups denoted as EGi where

1 ≤ i ≤ 10. we made a group to cover 50% of the graph edges while the rest of the

edges are evenly distributed among the other groups thereby creating an edge label

distribution. An example edge label distribution, ED5, with EG5 group being the

most frequent is shown in Figure 4.12. We create 10 such distributions denoted EDi

where 1 ≤ i ≤ 10. We create similar distributions for vertex labels denoted V Di.

Figure 4.13 shows the relative comparisons of minEL and maxEL for 10

different edge label distributions for 5 iterations of our algorithm. While moving
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Figure 4.12: Edge label distribution ED5 for EG5 label group

from ED1 to the other end of the spectrum we see an improvement in using minEL

constraint. ED1 has smaller edge labels disproportionately more in number than
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lexicographically larger edge labels. This allows minEL more expansions giving worse

performance than maxEL. As discussed in Section 4.3.2 as we move to the other

end, the distributions are reversed with minEL being the better performer. Vertex

labels show a similar performance with min and max versions of vertex label based

heuristics. As the max versions mirror the min versions of the heuristics, we show

performance of heuristics on the min version of the heuristic.
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Figure 4.13: Comparison of min and max versions of heuristics on Sub-
gen100KV200KE with varying edge label distributions

To compare relative performance of heuristics, we run 5 iterations of our

algorithm with each heuristic on each of the 10 different edge label distributions.

Although minEL has more advantages in handling cycles and loops and the least

overhead across all heuristics, see in Figure 4.14 that minEL performs not as good

as the other heuristics for ED1 and ED2. As the distribution varies, the larger

edge labels become more frequent and minEL starts having a better performance.

For example, in ED10 the largest decrease in the number of duplicates is noted.

As minV id and minV L do not consider edge labels, the number of substructures

generated for them do not vary with varying distributions.

Figure 4.15 shows the performance of the heuristics on vertex label distribu-

tions. The performance of heuristics with varying vertex label distributions show a
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Figure 4.14: Comparison of heuristics with different edge label distributions

similar trend to the performance with edge label distributions. With lexicographi-

cally smaller vertex labels being more in number, the number of comparisons using

minV L decreases from V D1 to V D10. The minEl and minV id heuristics remain

unaffected by the change in vertex label distributions.
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Figure 4.15: Comparison of heuristics with respect to vertex label distribution
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4.5.4 Effect of Partitions

Even for a graph with 100, 000 vertices and 800, 000 edges, the first iteration

of the mining algorithm fails on our existing main memory machine. This calls for

the usage of partition-based approaches for larger graphs. To show the benefits in a

larger graph, we modified a partition-based existing graph mining algorithm in [26]

by incorporating the heuristics.
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(a) Duplicate Reduction in RMAT graph
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(b) duplicate reduction in LiveJournal Graph

Figure 4.16: Comparison of heuristics for two iterations in social network graphs

To verify the effect of our heuristics on large graphs, we use the liveJournal

graph and divide it into 64 partitions and the τ was set to 350. This graph has 170

times more edges than the main memory 100KV200KE graph. We compare the
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performance on this graph only with the RMAT graph as they both mimic social

networks and have non-uniform degree distribution. The goal is to verify the per-

formance of our heuristics over the entire spectrum of graph sizes – small to very

large.

The improvements for 2 iterations on RMAT graph are shown in Figure 4.16a

followed by the cumulative improvement on the iterations. The improvements across

all partitions for first two iterations of liveJournal graph, shown in Figure 4.16b,

exhibits a similar trend as the smallerRMAT graph. This establishes the fact that our

heuristics can effectively be used in a partitioned graph yielding similar performance

benefits.
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Figure 4.17: Speedup in liveJournal graph

With partitions of graphs, in Figure 4.17, close to linear speedup is obtained

while using label based heuristic (45% for minEL and 44% for minV L) as opposed

to a much lesser speedup for vertex id based heuristic (30%). The reason can be

attributed to the partitioning technique used in the partitioned graph mining ap-

proach [26]. The speedup for the unconstrained case remains at 43% with all parti-

tions having approximately similar workload.
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The partitioning technique in [26] orders graph adjacency list monotonically

on vertex ids and then partitions them using ranges of vertex ids. As discussed in

Section 4.3.2, this introduces a skew in computation across partitions thereby not

producing a close to linear speedup. Other heuristics, unaffected by such a vertex id

based partitioning, achieve a close to linear speedup. .tex

4.6 Conclusion

Scalability has been the major concern in graph mining and has been, typically,

addressed and overcome by using different approaches and architecture to the same

algorithm. Use of partitioning schemes and Map/Reduce have already helped us in

achieving scalability [25, 26]. However, it is equally important and useful to iden-

tify intrinsic opportunities in each algorithm/approach for significant performance

improvements. This enhances the performance of the algorithm universally for all

approaches – with or without partitions.

This chapter in this dissertation takes such an approach in identifying the

effect of duplicates on the performance of graph mining algorithms. Based on that

observation, it proposes a number of heuristics to reduce the number of duplicates

generated to significantly improve the performance of these algorithms. Further, we

establish its correctness as well as its performance analysis for a number of graph

characteristics. Based on these analysis, we show that it is possible to choose the

best heuristic whether we have additional information about the graphs or not. Of

course, with more information further fine-tuning is possible.

As future work, we plan on investigating the possibility to further improve the

performance by changing heuristics at run time based on small amounts of information

gathered during each iteration. Also, these algorithms and heuristics need to be

analyzed for other paradigms such as Spark [24] and Pregel [31].
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CHAPTER 5

RELATED WORK

This Chapter presents a survey of the work related to the dissertation topics.

5.1 Graph Mining

Systematic substructure generation is central to graph mining. Given a graph

(also called a substructure if part of a larger graph), one problem is to find all oc-

currences of that exact (or even similar) substructure in a larger graph and/or count

them. This can be used to find identical or even similar patterns in a large graph to

a known pattern. Another problem is to find the best substructure that transforms

a given graph (or a forest) to satisfy a metric. For example, finding a substructure

that minimizes the minimum description length (MDL) or occurs above a certain

frequency is important as that substructure demonstrates some interesting property

of that graph (e.g., interesting concept in a graph). For both of these problems, it is

important to generate substructures of increasing sizes and analyze them in various

ways. Hence we focus first on the problem of substructure generation and its anal-

ysis using the Map/Reduce paradigm. Research on graph mining in the context of

substructure discovery and analysis over the years can be broadly classified as follows.

5.1.1 Main Memory Approaches

Earlier approaches and algorithms for graph mining were developed by AI re-

searchers whose goal was identifying important concepts in a structured data set.

These algorithms loaded a complete representation of the graph (either in the form

117



118

of an adjacency list or a matrix) into memory for efficiency reasons. Subdue [1]

was the first main memory algorithm where substructures were generated iteratively

and evaluated using the MDL metric. The substructure discovery algorithm used by

SUBDUE is a computationally-constrained beam search. The algorithm begins with

the substructure of size one (corresponding to an edge). Each iteration through the

algorithm selects the best (or all) substructures and expands the instances of these

substructures by one neighboring edge in all possible ways. The algorithm retains the

best substructures in a list, which is returned when either all possible substructures

have been considered or the total amount of computation exceeds a given limit. The

evaluation of each substructure is guided by the minimum description length principle

and background knowledge rules provided by the user.

The other notable contemporary work on graph mining include either apriori-

based approach like AGM [32] and FSG [10] or pattern-growth as in gSpan [11],

FFSM [33] and GASTON [34]. These algorithms, however, have some inherent limi-

tations: handling large patterns, huge candidate set generation and multiple scans of

the database.

In an Apriori-based approach search for repetitive substructures starts with

graphs of small sizes and proceeds in a bottom-up approach. At each iteration existing

substructures are expanded by joining two similar but slightly different substructures

(For e.g., a 3-edge substructure is discovered by joining two 2-edge substructures

which differ by 1 edge)). Apriori Graph Mining (AGM) took advantage of apriori

property introduced in [32]. Frequent substructure Discovery (FSG) [10], also an

apriori-based approach, aimed at discovering substructure(s) that occurred frequently

over the set of given graphs (graph database). FSG used the concept of canonical

labeling for graphs and worked with the fact that two exactly similar graphs should

have the same canonical labeling. A straightforward way of determining a canonical
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label is to use a flattened representation of the adjacency matrix of a graph. By

concatenating rows or columns of an adjacency matrix one after another we can

construct a list of integers. By regarding this list of integers as a string, we can

obtain total order of graphs by lexicographic ordering. To compute a canonical label

of a graph, we have to try all the permutations of its vertices to see which order of

vertices gives the minimum adjacency matrix. To narrow down the search space, they

first partition the vertices by their degrees and labels, which is a well-known technique

called vertex invariant. Then, they try all the possible permutations of vertices inside

each partition. These algorithms however have some inherent limitations: handling

large patterns, huge candidate set generation and multiple scans of the database.

In the Pattern-growth approach (as in gSpan [11]) a frequent pattern is ex-

panded directly by adding a node or edge in all possible combinations. A potential

problem with such an approach is that the same structure will be discovered multiple

times. A canonical DFS lexicographic order was used which assigned a DFS code to

each graph. Based on the codes, a hierarchical tree was constructed and a pre-order

traversal of the tree gave all the frequent substructures with the required support.

DFS solved the problem of duplicate generation by expanding only on the vertices in

rightmost path (the path from root to the rightmost node of the hierarchical tree).

Though DFS is better than Apriori, the major problem of DFS was generating many

DFS trees for the same graph as different start nodes will result in different trees for

the same graph. Several other methods like FFSM [33] and GASTON [34] followed

similar expansion strategies like gSpan and had similar disadvantages.

5.1.2 Disk-Based Approaches

As larger applications with structural information became common place, disk-

based graph mining techniques [13–15] were developed to overcome the problem of
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storing the entire data set in main memory. A section of data was kept in memory

and the rest was on the disk. Since random accesses to disk-based graphs were

difficult, a natural choice was to index the graph databases. Designing effective and

efficient index structures therefore is one of the most invaluable exercises in database

research. As a big graph can be indexed by the frequent substructures present in it,

as in gIndex [35] and GBLENDER [36], mining frequent patterns for large graphs

became possible.

5.1.3 Database-oriented Approaches

Disk-based algorithms solve the problem of keeping portions of the graph in

memory for processing. However, these algorithms need to marshal data between

external storage and main memory buffer and this has to be coded into the algo-

rithm. The performance of disk-based approaches can be very sensitive to optimal

transfer of data between disk and memory, as well as buffer size, buffer management

(or replacement policies), and hit ratios. An alternative approach is to make use of

efficient buffer management and query optimization – already mature in the context

of a Database Management System (DBMS) – by mapping these graph mining algo-

rithms to SQL [16,17] and storing data in a DBMS. Many a times, the data is already

in a DBMS as enterprises use DBMS for storing their corporate data.

Although scalability was achieved to graphs with over a million each of nodes

and edges, use of joins for substructure expansion generated duplicate substructures,

the removal of which required sorting columns (in row based DBMSs) making it ex-

pensive. Therefore duplicate elimination is an important task for these algorithms.

As this required sorting columns (whereas DBMSs are efficient in sorting rows), sev-

eral joins had to be used for sorting columns making it expensive. As operations

in DBMSs were limited by the number of columns in a relation, there was an up-
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per bound on largest substructure that can be represented using database-oriented

approaches.

5.1.4 Recent Trends in Graph Mining

Some of the graph mining [37–40] algorithms have been shown to be effective in

a cloud architecture. Frequent substructure enumeration [38] improves upon the best

known algorithm for substructure enumeration but focuses mostly on improving the

communication cost by exploiting the techniques of Ullman and Arafati [41]. There

also have been efforts on pattern finding in large graphs using Map/Reduce [39].

However this pattern finding algorithm [39] requires a pattern to be given to search

for all instances of that pattern in the graph. In contrast we are looking for a pattern

that possesses certain properties (e.g. best compressibility) and the pattern is not

known apriori. Approaches to partitioning big graphs for distributed processing is

also an area of active research [42]. Our perspective on the proposed problem is

novel and is quite different from the work in the literature. Most of the work in

the literature is looking at specific subproblems (e.g. analyzing structural property,

page rank, diameter, connected components etc. of graphs) whereas our intent is to

develop scalable mining of substructures to count or apply any metric that is suitable

for evaluating the substructures [25,26].

5.2 Optimizations For Mining

Recently, there have been several work in the area of scalable mining. Frequent

subgraph mining has been done using map/reduce or MPI [43–46]. All of these algo-

rithms work on a database of graphs and are interested in finding a single occurrence

of a pattern in each graph. Subgraph mining has also been tackled as join-based

approach in a distributed framework along with some theoretical analysis in [37–40].
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Substructure discovery in a large single graph using map/reduce has also received

attention in [25,26]. Recently, Grami [8] proposes an approach that finds a subset of

interesting subgraphs by modeling frequency evaluation as a constraint satisfaction

problem.

In all these existing mining techniques, subgraphs are expanded in an uncon-

strained manner by adding all possible nodes/edges. Though expansion is constrained

in querying for known nodes/edges, presence of an unknown node/edge requires all

possible expansions. The unconstrained expansion technique used above generates

large number of duplicates during expansion requiring additional storage and compu-

tation to eliminate them.

Our approach is different from these existing techniques in terms of the expan-

sion technique. Even in the absence of any apriori information or graph character-

istics, our heuristics significantly reduce duplicates during substructure expansion.

Our approach offers benefits at several stages of the mining algorithm over existing

techniques. First, we reduce the number of duplicates generated at expansion time

thereby reducing the amount of intermediate results. Second, we save duplicate re-

moval cost which can be of quadratic complexity in the worst case. Third, storage cost

of intermediate results is reduced due to non-generation of duplicates. Finally, our

approach works for both partitioned and non-partitioned mining without any modifi-

cation. We have also established correctness and soundness of these heuristics along

with experimental validation of performance improvements. We also believe that the

proposed duplicate reduction strategy can be easily adapted in graph querying in

addition to mining.
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5.3 Graph Partitioning for Mining

Graph partitioning has been predominantly used in the process of query an-

swering on graphs. The goal is to divide the graph vertices (and their associated

adjacency list) into roughly equal sized partitions. The edges connecting partitions

form the edge cut and the aim is to minimize the total number of edge cuts for the

best partitioning scheme. METIS [23] was one of the earliest and still the best in mar-

ket graph partitioning scheme. It coarsens the graph in stages to hundreds of vertices

and edges, runs a main memory recursive bisection or k-way partitioning technique

and projects it back to the original size. Although METIS provides high quality par-

titions, it consumes a fair amount of time in the coarsening and un-coarsening phases

of the graph. METIS however is not suited for temporal graphs which allows addition

and deletion of vertices and edges with time.

As an improvement over METIS, Sedge [42] analyzed graph partitioning from

a query workload perspective. The initial partitions provided by METIS may not

be a good fit if most of the queries in the workload of queries cross partitions or hit

the edge cuts. Sedge solves this problem by repartitioning the graph to introduce

complementary partitions. The goal is to keep frequently answered results inside a

partition to facilitate faster query answering for the next queries. The underlying as-

sumption is that multiple users typically end up asking popular or similar queries and

keeping their results inside one partition achieves least number of partition loading.

However from a graph mining perspective, the user/system has no apriori knowledge

of the patterns in the graph. This calls for an investigation of applicability of these

partitioning techniques for a graph mining perspective.

Recently, graph mining using partitions has also received some attention. Fre-

quent subgraph mining has been done using Map/Reduce or MPI in [43–46]. But

all of these approaches focus on mining patterns on graph databases (a large number
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of small graphs) where multiple appearances of a pattern in a single graph are not

evaluated. Partitioninng a graph database is very different and much easier than

partitioning a very large graph. Our technique focuses on a large single graph (al-

though applicable to a forest), considers multiple occurrences and can also be used

for a database of graphs making this approach a general purpose one.

Partitioned approaches have also been used to find all occurrences of a given

substructure (query) in a large graph (or in a database of graphs.) Map/Reduce has

also been rigorously used to query [47–49] graphs. All of these techniques start with

a given query while our substructure discovery starts with no a priori information

making substructure discovery on partitions different from other Map/Reduce based

efforts on graphs. Additionally we analyze component costs and choice for partitioning

making our work different from others.

Although other paradigms (like Giraph [50]) have been used extensively for

graph mining, the Pregel architecture is not suited for applications where substructure

structure is passed from one iteration to the next. Our goal in this paper is to explore

alternative approaches to substructure generation, exact match of substructures, and

counting using the Map/Reduce paradigm. As this forms the basis for many other

problems (e.g., frequency counting, graph query processing), we believe that this

problem needs to be explored first to understand its nuances for developing a scalable

algorithm using the Map/Reduceparadigm.

To summarize, although there is a body of work on graph mining and substruc-

ture discovery using different approaches and architectures, the problems addressed in

this thesis focus on all aspects of a specifica problem which has not been addressed in

the literature. Our approach is holistic in that we have developed new algorithms for

a chosen framework, analyzed their scalability using paertitioned schemes, proposed
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new partitioned schemes, we have also analyzed component cost for the framework

and proposed optimizations to improve overall performance.



CHAPTER 6

CONCLUSION

6.1 Summary of Contributions

This dissertation takes a holistic approach to scalable substructure discovery

by proposing divide and conquer strategy over graph partitions. Specifically, a set of

related problems were identified and addressed as a part of this research.

Partitioned Substructure Discovery: First, this dissertation introduced generic

Map/Reduce based algorithms for horizontal scalability of substructure discovery

that can work with any partitioning strategy. The basic components of graph mining

- subgraph expansion, duplicate removal and counting of isomorphic substructures

were incorporated into the algorithms for the Map/Reduce paradigm by carefully

orchestrating new representations. Experiments validated the advantage of using

Map/Reduce based substructure discovery to scale to large graphs over traditional

methods.

Analysis of Partitioning Schemes: The dissertation then continued on to eval-

uating the suitability of existing partitioning strategy for substructure discovery. A

state-of-the-art graph partitioning technique (METIS) was analyzed from a graph

mining perspective and its limitations were addressed by introducing two new parti-

tioning schemes (arbitrary and range-based.)

Component Cost Analysis in Distributed Framework: In an effort to analyze

the partitioning strategies and associated algorithms from a performance standpoint,

the dissertation analyzed the component cost analysis of substructure discovery in a

distributed framework. The cost analysis identified places for improvements in using
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the range-based partitioning strategy over its counterpart. Theoretical justification

along with experimental evaluation of the improvements were verified by varying a

number of user parameters. The cost analysis also pointed out the portability of our

algorithms to a different paradigm such as Spark to reap similar benefits.

Optimizations for Mining: Use of partitioning schemes and Map/Reduce have

already helped us in achieving scalability. Further, as part of the holistic approach,

we have looked at intrinsic opportunities in each algorithm/approach to improve per-

formance significantly. This resulted in enhancing the performance of the algorithms

universally for all approaches - with or without partitions. Effect of duplicates on the

performance of graph mining algorithms was one such opportunity. Based on that

observation, we proposed a number of heuristics to reduce the number of duplicates

generated to significantly improve the performance of these algorithms. Theoretical

correctness was again established along with performance analysis. Effects of graph

characteristics have been studied extensively to infer the use of heuristics based on

graph characteristics. Based on these analyses, this dissertation infers ways to choose

the best heuristic when we have additional information about the graphs.

In summary, this dissertation takes a holistic approach to scaling substructure

discovery using a distributed paradigm. It specifically developed a generic partition-

based technique for substructure discovery, identified better partitioning strategies,

provided detailed component cost analysis along with optimizations for improving

substructure discovery on partitions. Detailed evaluation over synthetic data sets

and real world graphs were performed to validate the effectiveness of the techniques

presented and to corroborate theoretical analysis.
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6.2 Future Work

Partitioned graph mining is a promising research field and offers several excit-

ing future directions. We present some of the future work that builds on the work

presented in this dissertation.

(i) Partitioned Graph Querying: When a graph (also referred to as knowledge

base) is accessed by multiple users, at any instance the system has to deal

with a batch or workload of queries. Although query processing for a single

query on a partitioned graph is well known, solving a batch of queries on a

partitioned graph faces several challenges. First, answering a query will require

either loading multiple partitions or route intermediate search results across

partitions incurring shuffle and loading cost. This calls for further investigation

on partitioning techniques for query answering. Our initial analysis [51] used

heuristics gleaned from the graph to reduce number of partition loads. This

enables us to focus more attention to using a distributed paradigm (Map/Reduce

or Spark) for query answering. Moreover, answering one query at a time may

not be appropriate as users expect a quick query answering time. One solution

is to use query characteristics to group queries for simultaneous answering on

partitions. We believe that an ideal distributed query answering system should

use a partitioning scheme that uses heuristics garnered from both the graph as

well as the queries.

(ii) Mining based on Similar Substructures: This dissertation has focused

on techniques to identify interesting patterns in a large graph. In the process

of comparing patterns the notion of isomorphism (or exact match) was used.

As of today most of the graphs are created by crowd sourcing (or user adding

data to increase the knowledge base), there are chances that some informa-

tion might be lost in process. As a result approximate mining is necessary to



129

group patterns which are similar to each other bounded by a threshold. This

is similar to the edit distance principle in graphs. This calls for investigation

of techniques for graph similarity - both structural and semantic. There are

a few measures for approximate query answering in graphs like percentage of

missing neighborhood [52] and AGraMi [53] where users can specify similarity

such as missing labels, missing edges etc. Definitely approximate mining shall

increase the computation costs as more alternatives need to be compared and

graph comparison in itself is a computationally expensive task. The challenge

is to explore the limitations of the current partitioning strategies in the light of

approximate mining. A strategy for that shall be to use graph characteristics

which we already extract for our catalog generator [54] and see if a combination

of these characteristics can be further used for partitioning.

The ultimate goal in the long run shall be to develop a suite of graph algorithms

that are theoretically correct (work on any partitioning schemes) and optimize them

further to improve scalability. With the size of data increasing everyday, this disser-

tation is a step in the direction of scaling graph algorithms (especially substructure

discovery) in the context of big data analytics.
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