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and manage. According to the vice president of Mellon Bank’s advanced technology group,

“Data mining is the carrot that justifies the expensive stick of building a data warehouse”.
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Data mining on large data warehouses is becoming increasingly important. In support
of this trend, we consider a spectrum of architectural alternatives for integrating mining
with database systems. These alternatives include loose-coupling through a SQL cursor
interface; encapsulation of the mining algorithm in a stored procedure; caching the data to
a file system on-the-fly and mining; tight-coupling using primarily user-defined functions;
and SQL implementations for processing in the DBMS. First, we comprehensively study
the option of expressing the association rule mining algorithm in the form of SQL queries.
We counsider four options in SQL-92 and six options in SQL enhanced with object-relational
extensions (SQL-OR). Our evaluation of the different architectural alternatives shows that
from a performance perspective, the Cache-Mine option is superior, although the SQL-
OR option comes a close second. Both the Cache-Mine and the SQL-OR approaches

incur a higher storage penalty than the loose-coupling approach which performance-wise
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is a factor of 3 to 4 worse than Cache-Mine. We also compare these alternatives on the
basis of qualitative factors like automatic parallelization, development ease, portability and
interoperability.

We further analyze the SQL-92 approaches with the twin goals of studying how best
can a DBMS without any object-relational extensions execute these queries and to identify
ways of incorporating the semantics of mining into cost-based query optimizers. We develop
cost formulae for the mining queries based on the input data parameters and relational
operator costs. We also identify certain optimizations which improve the performance.
Next, we study generalized association rule and sequential pattern mining and develop
SQL formulations for them there by demonstrating that more complex mining operations
can be handled in the SQL frame work.

We develop an incremental association rule mining algorithm which does not need
to examine the old data if the frequent itemsets do not change. Even otherwise, access
to the old database can be limited to just one scan. We categorize the various kinds of
constraints on the items that are useful in the context of interactive mining to facilitate goal-
oriented mining. We show how the incremental mining technique can be adapted to handle
constraints and certain kinds of constraint relaxation. We also show the applicability of
the incremental algorithm to other classes of data mining and decision support problems.
Finally, we identify certain primitive operators that are useful for a large class of data
mining and decision support applications. Supporting them natively in the DBMS could

enable these applications to run faster.
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CHAPTER 1
INTRODUCTION

The rapid growth in data warehousing technology combined with the significant drop
in storage prices has made it possible to collect large volumes of data about customer
transactions in retail stores, mail order companies, banks, stock markets, telecommunica-
tion companies and so on. For example, AT&T call records are about 1 giga byte per
hour [73] and super market chains like WalMart collect tera bytes of data. In order to
transform this huge amounts of data into business competitiveness and profits, it is ex-
tremely important to be able to mine nuggets of useful and understandable information
from these data warehouses. In this chapter, we introduce data warehousing and data min-
ing technologies in Sections 1.1 and 1.2 respectively and in Section 1.3, we motivate the
need for coupling the two which is the focus of this dissertation. In Section 1.4, we discuss
and list the specific problems addressed in this dissertation and in Section 1.5, we outline

the dissertation organization.

1.1 Data Warehousing

A data warehouse is simply a single, complete and consistent store of data obtained
from a variety of sources and made available to end users in a way they can understand
and use. Achieving completeness and consistency of data in today’s information systems
environment is far from simple. The first problem is to discover how completeness and

consistency can be defined. In the business context, this entails understanding the business



strategies and the data required to support and track their achievement. This process—
called enterprise modeling—requires substantial involvement of business users and is tra-
ditionally a long-term process. A data warehouse consists of several components and tools

which are depicted in Figure 1.1 [34].

Monitoring & _
Enterprise ] Administration tools Business
i Information
Modeling — @ Metadata _
Repository Guide
External Sources Data Warehouse

Extract
Transform
Load Reporting

Refresh

== s

DataMarts

O

Operational Systems

Data Sources Business Information
Interface

Figure 1.1. Data warehousing architecture

Knowing what data are required is just the first step. These data exist today in
various sources on different platforms, and must be copied from these sources for use in the
warehouse. They must be combined according to the enterprise model, even though it was
not originally designed to support such integration. They must be cleansed of structural and
content errors. This step—typically known as data warehouse population—requires tools
for extracting data from multiple operational databases and external sources, for cleaning,
transforming and integrating these data; and for loading data into the data warehouse.
In addition to the main warehouse, there may be several departmental data marts. It
also requires tools for periodically refreshing the warehouse to maintain consistency and to

purge data from the warehouse, perhaps onto slower archival storage.



In order to understand and profitably use the data in a business context, they must
be transformed into information. The warehouse data are stored and managed by one or
more warehouse servers, which present multidimensional views of the data to a variety of
front end tools: query tools, report writers, analysis tools and data mining tools. There is
also a repository which stores metadata derived using the enterprise model, and tools for
monitoring and administering the warehousing system.

The warehouse may be distributed for load balancing, scalability and higher availabil-
ity. In such a distributed architecture, the metadata repository is usually replicated with
each fragment of the warehouse, and the entire warehouse is administered centrally. An
alternative architecture is a federation of data warehouses or data marts, each with its own

repository and decentralized administration.

1.2 Data Mining

Data mining, also referred to as knowledge discovery in databases, is the process of
extracting implicit, understandable, previously unknown and potentially useful information
from data. In other words, data mining is the act of drilling through huge volumes of data in
order to discover relationships, or to answer specific questions that are too broad in nature
for traditional query tools. Data mining is also projected as the next step beyond online
analytical processing (OLAP) for querying data warehouses. Rather than seek out known
relationships, it sifts through data for unknown relationships. For instance, consider the
transaction data in a mail-order company stored in the following relations: sales(customer,
widget, state, year), booster(customer, widget, driver), catalog(widget, manufacturer). The
sale information is stored in the sales table and the catalog table stores the widgets of

different manufacturers. The booster table stores the driver that influences the particular



sale. In this database, OLAP finds answers to queries of the form “How many widgets were
sold in the first quarter of 1998 in California vs. Florida?” However, data mining attempts
to answer queries like “What are the drivers that caused people to buy these widgets from
our catalog?”’ Fundamentally, data mining is statistical analysis and has been in practice for
a long time. But, until recently, statistical analysis was a time-consuming, manual process
which limited the amount of data that could be analyzed and the accuracy depended heavily
on the personnel involved in the analysis. Today, with the advent of various sophisticated
technologies, tools exist that automate the process, making data mining a practical solution
for a wide range of companies. For example, Fingerhut’s (a direct-mail catalog company)
statistical analysis was limited to taking samples of 10 to 20 percent of its customers. With
data mining, it can examine 300 specific characteristics of each of the 10 to 12 million
customers in a much more focused way [15].

The initial efforts on data mining research were to cull together techniques from ma-
chine learning and statistics [24, 28, 29, 37, 39, 40, 60, 65, 81, 90, 95, 102, 103, 104] to define
new mining operations and develop algorithms for them [5, 7, 19, 77]. In the remainder of

this section, we briefly introduce the various data mining problems.

1.2.1 Association Rule

Association rule which captures co-occurrence of items or events was introduced in
the context of market basket data [7]. An example of such a rule might be that 60% of
transactions containing beer also contain diapers and 2% of transactions contain both these
items. Here 60% is the confidence and 2% is the support of the rule beer —> diaper.

Association rule mining is stated formally as follows [13]. Let Z = {i1,42,...,%n} be

a set of literals, called items. Let D be a set of transactions, where each transaction 7 is



a set of items such that 7' C Z. Each transaction has a unique identifier, called its tid.
An association rule is an implication of the form X = Y, where X C Z, Y C Z, and
XNY = 0. The rule X = Y holds in the transaction set D with confidence c if ¢% of
transactions in D that contain X also contain Y. The rule X = Y has support s in the
transaction set D if s% of transactions in D contain X UY. Given a set of transactions D,
the problem of mining association rules is to generate all association rules that have support
and confidence greater than the user-specified minimum support and minimum confidence.

The association rule mining problem has attracted tremendous attention from data
mining researchers and several algorithms have been proposed for it [13, 26, 66, 111, 131].
Researchers have also proposed several variants of the basic association rule mining to
handle taxonomies over items [63, 118], numeric attributes [76, 92, 119] and constraints on

items appearing in rules [97, 121].

1.2.2 Sequential Patterns

Sequential pattern mining was first introduced in Agrawal and Srikant [14] and further
generalized in Srikant and Agrawal [120]. Given a set of data-sequences each of which is a list
of transactions ordered by the transaction time, the problem of mining sequential patterns is
to discover all sequences with a user-specified minimum support. Each transaction contains
a set of items. A sequential pattern is an ordered list (sequence) of itemsets. The itemsets
that are contained in the sequence are called elements of the sequence. For example,
((computer,modem)(printer)) is a sequence with two elements; (computer, modem) and
(printer). The support of a sequential pattern is the percentage of data-sequences that
contain the sequence. A sequential pattern can be further qualified by specifying maximum

and/or minimum time gaps between adjacent elements and a sliding time window within



which items are considered part of the same sequence element. These time constraints are
specified by three parameters, maz-gap, min-gap and window-size. We refer the reader to

Srikant and Agrawal [120] for a formal definition of the problem.

1.2.3 Classification

Classification is a well-studied problem [91, 129]. However, only recently has there been
focus on algorithms that can handle large datasets [17, 53, 85, 106, 114]. Classification is
the process of generating a description or a model for each class of a given dataset, called
the training set. Each record of the training set consists of several attributes which could
be continuous (coming from an ordered domain), or categorical (coming from an unordered
domain). One of the attributes, called the classifying attribute, indicates the class to which
each record belongs. Once a model is built from the given examples, it can be used to
determine the class of future unclassified records.

Several classification models based on neural networks, statistical models like lin-
ear/quadratic discriminants, decision trees and genetic models have been proposed over the
years. Decision trees are particularly suited for data mining since they can be constructed
relatively fast compared to other methods and they are simple and easy to understand.
Moreover, trees can be easily converted into SQL statements that can be used to access
databases efficiently [5].

A decision tree is a class discriminator that recursively partitions the training set
until each partition consists entirely or dominantly of examples from one class. Each non-
leaf node of the tree contains a split point which is a test on one or more attributes and
determines how the data is partitioned. Figure 1.2 shows a sample decision-tree classifier

and the training set from which it is derived. Each record represents a credit card applicant



and we are interested in building a model that categorizes the applicants into high and low

risk classes.

Age<25

Age | Salary | Married | Risk
21 | 30,000 No High
18 | 28,000 Yes High
30 | 50,000 Yes Low High
35 | 20,000 Yes High
23 | 60,000 No High
47 | 80,000 Yes Low

Salary < 25,000
No

High

High Low

Figure 1.2. Credit card classification example

1.2.4 Clustering

The fundamental clustering problem is that of grouping together (clustering) similar
data items and is useful for discovering interesting distributions and patterns in the under-
lying data. Clustering has been formulated in various ways in the machine learning [48],
pattern recognition [51], optimization [112] and statistics literature [20]. The problem of
clustering can be defined as follows: given n data points in a d-dimensional metric space,
partition the data points into & clusters such that the data points within a cluster are more
similar to each other than data points in different clusters. The classic K-Means clustering
algorithm starts with estimated initial values for the k cluster centroids. Each of the data
points is assigned to the cluster with the nearest centroid. After the assignment the cen-
troids are refined to the mean of the data points in that cluster. This process is repeated
several times until an acceptable convergence is reached. There are several research efforts

reported in the data mining literature for clustering large databases [23, 42, 57, 132].



Research on time series analysis [10, 43, 75], similarity search [3, 8, 21, 72, 115],
high dimensional data analysis [4, 22, 79], and text data management [30, 31] can also be

classified under the broad category of data mining.

1.3 Mining Databases

The initial research efforts on data mining were aimed at defining new mining problems
and a majority of the algorithms for them were developed for data stored in file systems.
Each had its own specialized data structures, buffer management strategies and so on [8, 13,
14, 22, 49, 50, 62, 63, 74, 84, 85, 86, 111, 115, 119, 121]. In cases where the data are stored in
a DBMS, data access was provided through an ODBC or SQL cursor interface [2, 64, 68, 71].
Data mining tools are being used in several application domains [16, 18, 27, 38, 41, 46, 52,
70, 82, 96, 101, 108, 130]. Coupling the data mining tools with a growing base of accessible
enterprise data—often in the form of a data warehouse—provides business institutions at
its disposal a tool with immense implications. According to the vice president of Mellon
Bank’s advanced technology group, “Data mining is the carrot that justifies the expensive
stick of building a data warehouse.”

The majority of the warehouse stores—systems used for storing warehouse data—are
relational databases or their variants. The advantages of using database systems are numer-
ous: SQL was invented for direct query of data, most client/server connectivity is supplied
by relational vendors, most replication systems have been designed with relational sources
and targets and most of the relational vendors are delivering parallel database solutions.
There are important alternatives in this segment, however. The OLAP multidimensional en-
gines offer unique performance characteristics across their problem domain. We might also

see traditional file stores providing significantly better performance for some data mining



operations. Differentiators for the relational engines will be overall scalability, availability
across a broad spectrum of hardware platforms, “affinity” with legacy data platforms and
stores, availability of extensions for image, text and so on to support the next generation
of applications, and availability of supporting tools.

The investment in building and managing a data warehouse is enormous. With the
advent of business intelligence and decision support systems, it is imperative that the
data warehouse support multiple applications. Figure 1.3 illustrates how a data warehouse
will typically be used in a business organization. The spectrum of applications include
basic querying and reporting tools, OLAP tools, multidimensional analysis tools and data
mining tools. There are several excellent and popular query/report writers. There are also
tools that support multidimensional analysis directly on relational data stores without the
separate OLAP engine. Note that these tools are like tools in a tool box; that is, they can
be used in combination to produce the desired result. There is no single class of tools that
satisfies the broad range of decision support and business intelligence system requirements.
Therefore, it is crucial that the data mining tools integrate with relational data warehouses

much like the query/report and OLAP tools.

1.4 Goal

The goal of this dissertation is to explore the various issues of database/data ware-
house integration of mining operations. We first study the various architectural alternatives
for coupling data mining with relational database systems, primarily from a performance
perspective. We develop various SQL formulations for association rules [7], a representative
mining problem, and analyze how competitive can the SQL implementation be compared

to other specialized implementations of association rule mining. We further focus on the
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Figure 1.3. Typical data warehouse usage

analysis of various execution plans chosen by relational database systems for executing some
of the SQL-based mining queries. We expect that this study will reveal the domain-specific
semantic information of the mining algorithms that need to be integrated into next gen-
eration query optimizers to handle mining computations efficiently. We also develop SQL
formulations for a few other mining operations, namely, generalized association rules [118]
and sequential patterns [14, 120]. We also propose a few primitive database operators that
are useful for mining and other decision support applications. These operators, if natively
supported in a database system, could potentially speed up the execution of mining queries.

Data warehouses on which the mining tools operate typically are populated incremen-
tally. In order to improve the reliability and usefulness of the discovered information, large
volumes of data need to be collected and analyzed over a period of time. A naive approach
to update the mined information, when new data are added or part of the current data
are deleted, is to recompute them from scratch. However, it would be ideal to develop an

incremental algorithm so that the computation effort spent on the original data can be
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effectively utilized. We develop an incremental algorithm and its SQL formulations for up-
dating the association rules, based on the negative border concept. It is based on the closure
property of frequent itemsets, that is, all subsets of a frequent itemset are also frequent.
We show that the incremental mining algorithm can be generalized to handle various kinds
of constraints. We categorize the constraints based on their usage in the mining process
and develop a general framework to process them. We further show that the incremental
technique is applicable to other classes of mining and decision support problems such as
sequential patterns, correlation rules, query flocks and so on.

We summarize and list the goals of this dissertation below:

e Survey the various data mining problems and algorithms,

e Study the different database integration alternatives for data mining,

e Develop and implement SQL formulations of mining algorithms,

e Analyze the performance profile of current DBMSs to execute the above SQL queries,

e Explore the enhancements to current cost-based optimizers to incorporate the domain-

specific semantics of mining,

e Develop an incremental association rule mining algorithm and its SQL formulations,

e Generalize the incremental algorithm for mining constrained associations and show

its applicability to other data mining and decision support problems, and

e Explore primitive operators for mining in databases.

This work has a significant impact on the state-of-the-art in data mining system archi-

tectures and comes at the appropriate time when the data mining community is looking for
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answers to “How to mine data warehouses?” Given the amount of data involved in mining,
its potential impact on various business sectors and the fact that OLAP is finding its way
into commercial database systems (for example, the cube operator), it is only a matter of
time before mining becomes an integral part of database systems. We believe that this work
is a small but strong step in the right direction. This will also have a significant impact on

query optimization and parallel query processing techniques.

1.5 Thesis Organization

The rest of this dissertation is organized as follows: We discuss the various architectural
alternatives for integrating mining with database systems/data warehouses in Chapter 2.
The various SQL formulations of association rules, their performance profiles and optimiza-
tions for improving the performance are detailed in Chapter 3. In Chapter 4, we present
the use of object-relational extensions to SQL for improving the performance of SQL-based
association rule mining and the performance comparison of the various architectural al-
ternatives. SQL-based mining of generalized association rules and sequential patterns are
described in Chapters 5 and 6 respectively. Chapter 7 presents the incremental associa-
tion rule mining algorithm, performance comparison, SQL formulation and generalizations
for mining constrained associations. We conclude in Chapter 8 with a discussion of the

proposed database operators and avenues for further research.



CHAPTER 2
FROM FILE MINING TO DATABASE MINING

The “first-generation” KDD systems offer isolated discovery features using tree induc-
ers, neural nets and rule discovery algorithms. Such systems cannot be embedded into a
large application and typically offer just one knowledge discovery feature. The current state
of data mining systems is very much similar to the days in which database applications were
written in COBOL with just read and write commands as the interface to data stored in
large files. The advent of relational database systems which offered SQL for ad hoc queries
and various relational APIs (application programming interfaces) for application program-
ming made database applications much easier to develop and manage. Data mining has to
undergo a similar transition from the current “file mining” to data warehouse mining and
a richer set of APIs for developing business intelligence and decision support applications.

In the remainder of this chapter, we survey some of the prior research related to the
database integration of mining in Section 2.1. The various architectural alternatives are

discussed in Section 2.2.

2.1 Related Work

Researchers have started to focus on various issues related to integrating mining with
databases [6, 67, 68]. The research on database integration of mining can be broadly clas-

sified into two categories; one which proposes new mining operators and the other which

13
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leverages the query processing capabilities of current relational DBMSs. In the former cate-
gory, there have been language proposals to extend SQL with specialized mining operators.
A few examples are (i) the query language DMQL proposed by Han et al. [64] which ex-
tends SQL with a collection of operators for mining characteristic rules, discriminant rules,
classification rules, association rules and so on, (ii) The M-SQL language of Imielinski and
Virmani [69] which extends SQL with a special unified operator Mine to generate and
query a whole set of propositional rules, and (iii) the mine rule operator proposed by Meo
et al. [89] for a generalized version of the association rule discovery problem. However, they
do not address the processing techniques for these operators inside a database engine and
the interaction of the standard relational operators and the proposed extensions. It is also
important to break these operators to a finer level of granularity in order to identify com-
monalities between them and derive a set of primitive operators that should be supported
natively in a database engine.

In the second category, researchers have addressed the issue of exploiting the capa-
bilities of conventional relational systems and their object-relational extensions to execute
mining operations. This entails transforming the mining operations into database queries
and in some cases developing newer techniques that are more appropriate in the database
context. The proposal of Agrawal and Shim [12] for tightly coupling a mining algorithm
with a relational database system makes use of user-defined functions (UDFs) in SQL
statements to selectively push parts of the application that perform computations on data
records into the database system. The objective was to avoid one-at-a-time record retrieval
from the database to the application address space, saving both the copying and process
context switching costs. In the KESO project [116], the focus is on developing a data

mining system which interacts with standard DBMSs. The interaction with the database
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is restricted to two-way table queries, a special kind of aggregate query. Two-way tables,
which are used in the mining process, have sets of source and target attributes and an
associated count. Association rule mining was formulated as SQL queries in the SETM
algorithm [66]. However, it does not use the subset property—all subsets of a frequent
itemset are frequent—for candidate generation. As a result, SETM counts a large number
of candidate itemsets in the support counting phase and hence is not efficient [9]. Query
flocks generalizes boolean association rules to mine associations across relational tables. A
query flock is a parameterized query with a filter condition to eliminate the values of param-
eters that are “uninteresting”. Tsur et al. [128] present the use of query flocks for mining
and emphasizes the need for incorporating the a-priori technique into new generation query

optimizers to handle mining queries efficiently.

2.2  Architectural Alternatives

The various architectural alternatives for integrating mining with relational systems,
proposed in [109], can be categorized as shown in Figure 2.1. It shows a taxonomy of
various alternatives from loose-coupling to an integrated approach. In the remainder of

this section, we describe each of the alternatives.

2.2.1 Loose-Coupling

This is an example of integrating mining applications into the client in a client/server
architecture or into the application server in a multi-tier architecture. The mining kernel
can be considered as the application server. In this approach, data are read tuple by tuple
from the DBMS to the mining kernel using a cursor interface. The intermediate and the
final results are stored back into the DBMS. The data are never copied on to a file system.

Instead, the DBMS is used as a file system. This is the approach followed by most existing
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Figure 2.1. Taxonomy of architectural alternatives

mining systems. A potential problem with this approach is the high context switch costs

between the DBMS and the mining kernel processes since they run in different address

spaces. In spite of the block-read optimization present in many systems (for example,

Oracle [98], DB2 [32]) where a block of tuples is read at a time instead of reading a single

tuple at a time, the performance could suffer. This architecture is outlined in Figure 2.2

GUI
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Mining Language

2.2.2 Cache-Mine

Mining
Request

Mining
Kernel

Data

Results

DBMS

Figure 2.2. Loose-coupling architecture

This is a special case of the loose-coupling approach where the mining algorithm reads

data from the DBMS only once and caches the relevant data in flat files on local disk for

future references. The data could be transformed and cached in a format that enables more

efficient access in the future. The mined results, first generated as flat files, are imported
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into the DBMS. This method has all the advantages of the stored procedure approach
(described below) plus it promises to have better performance. The disadvantage is that it

requires additional disk space for caching. This architecture is outlined in Figure 2.3.
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Figure 2.3. Cache-mine architecture

2.2.3  Stored-Procedure

This architecture is representative of the case where the mining logic is embedded as
applications on the database server. In this approach, shown in Figure 2.4, the mining
algorithm is encapsulated as a stored procedure [32] that is executed in the same address
space as the DBMS. The main advantage of this as well as the loose-coupling and cache-
mine approach is greater programming flexibility. Also, any existing file system code can

be easily transformed to work on data stored in the DBMS.

GUI Stored-procedure DBMS
or Invocation
Mining Language [ Stored-prggedures }
for mining

Figure 2.4. Stored-procedure architecture

2.2.4 User-Defined Function

This approach is another variant of embedding mining as an application on the database

server if the user-defined functions are run in the unfenced mode (same address space as



18

the server) [32]. In this case, the entire mining algorithm is encapsulated as a collection of
user-defined functions (UDF's) [32] that are appropriately placed in SQL data scan queries.
The architecture is represented in Figure 2.5. Most of the processing happens in the UDF
and the DBMS is used simply to provide tuples to these UDFs. Little use is made of the
query processing capabilities of the DBMS. The UDF's can be run in either fenced (different
address space) or unfenced (same address space) mode. The main attraction of this method
is performance since when run in the unfenced mode individual tuples never have to cross
the DBMS boundary. Otherwise, the processing happens in almost the same manner as
in the stored procedure case. The main disadvantage is the development cost [12] since
the entire mining algorithm has to be written as UDFs involving significant code rewrites.
Further, these are “heavy-weight” UDFs which involve significant processing and memory

management.

SQL queries DBMS
Gl (containing UDFs)

or
Mining Language UD.FS
for mining

Figure 2.5. UDF-based mining architecture

In order to provide a query interface or application programming interface to the
discovered rules, they can be passed through a post-processing step. The rule discovery

itself could be done by any of the above alternatives.

2.2.5 SQL-Based Approach

This is the integration architecture explored in this dissertation. In this approach, the

mining algorithm is formulated as SQL queries which are executed by the DBMS query
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processor. We develop several SQL formulations for a few representative mining operations
in order to better understand the performance profile of current database query processors
in executing these queries. We believe that it will enable us to identify what portions of
these mining operations can be pushed down to the query processing engine of a DBMS.
There are also several potential advantages of a SQL implementation. One can prof-
itably make use of the database indexing and query processing capabilities thereby leverag-
ing on more than two decades of development effort spent in making these systems robust,
portable, scalable, and highly concurrent. Rather than devising specialized paralleliza-
tions, one can potentially exploit the underlying SQL parallelization, particularly in an
SMP environment. The current approach to parallelizing mining algorithms is to develop
specialized parallelizations for each of the algorithms [11, 61, 113, 114]. The DBMS sup-
port for check-pointing and space management can be especially valuable for long-running
mining algorithms on huge volumes of data. The development of new algorithms could be
significantly faster if expressed declaratively using a few SQL operations. This approach is
also extremely portable across DBMS’s since porting becomes trivial if the SQL approaches

use only the standard SQL features.

Extended
s~ |frepoeessor)  SQL92 | (Object) Reltiond
GUI ——| Optimizer | SQL-3/SQL-4 DBMS
Domain semantics
of mining

Figure 2.6. SQL architecture for mining in a DBMS

The architecture we have in mind is schematically shown in Figure 2.6. We visualize
that the desired mining operation will be expressed in some extension of SQL or a graphical

language. A preprocessor will generate appropriate SQL translation for this operation.
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This preprocessor will be able to select the right translation taking into account input
data distributions. We consider SQL translations that can be executed on a SQL-92 [88]
relational engine, as well as translations that require some of the newer object-relational
capabilities being designed for SQL [78]. Specifically, we assume availability of blobs, user-
defined functions, and table functions [80] in the Object-Relational engine. We do not
require any mining specific extension in the underlying execution engine; identification of
such extensions is one of the goals of this study.

We do quantitative and qualitative comparisons of some of the architectural alter-
natives listed here. Our primary focus is on the performance of various architectural al-
ternatives and the identification of possible enhancements to the query optimizer and the
query processing engine. The issues of the language constructs required to extend SQL
with mining features, and the details of the preprocessing step shown in Figure 2.6 are
secondary.

It might also be possible to integrate mining with databases using the newer extension

technologies like database extenders, data cartridges or data blades.

2.2.6 Integrated Approach

This is the tightest form of integration where the mining operations are an integral
part of the database query engine. In this approach there is no clear boundary between
simple querying, OLAP and mining; that is querying and mining are treated to be similar
operations. The user’s goal is to get information from the data store. He/she should not
have to make the distinction as to whether it is the result of querying/OLAP /mining.
This entails unbundling the bulky mining operations and identifying common operator

primitives with which the mining operations can be composed. We cannot expect to have
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a specialized operator for every mining task. It also needs a language in which the required
operations can be specified. In order to realize this goal, it requires tremendous amount
of research in various aspects like designing language extensions, better query processing
and optimization strategies. However, we envision that the query processing engine will
eventually be extended with primitive mining operators. When that is accomplished, a

mining system architecture will resemble the one shown in Figure 2.7.

(Object) Relational
Extended SQL SQL-92 DBMS
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GUI SQL-3/SQL-4
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T
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Figure 2.7. Architecture for mining in next-generation DBMSs

2.3  Summary

The first two approaches in the architecture taxonomy in Figure 2.1, namely, mining in
the application server or database server, facilitates the move from file mining to database
mining rather easily. However, as explained in the loose-coupling, cache-mine, stored-
procedure and user-defined function approaches, they do not utilize the query processing
functionality provided by the DBMS.

In this dissertation we pursue the third approach in Figure 2.1, which uses SQL and
its extensions to implement the mining algorithms. This acts as a pre-cursor to determine
the extensions to current query processors and optimizers in order to move towards the last

approach which is the truly integrated approach.

Note The architectural alternatives in Section 2.2 were developed primarily by

researchers from IBM Almaden Research Center and the author was a contributor.



CHAPTER 3
ASSOCIATION RULES

In this chapter, we discuss the various SQL-92 (SQL with no object-relational ex-
tensions) formulations of association rule mining. We start with a review of the apriori
algorithm for association rule mining in Section 3.1. A few other algorithms for mining
association rules are briefly outlined in Section 3.2. The input-output data formats are de-
scribed in Section 3.3 and in Section 3.4, we introduce SQL-based association rule mining.
The various SQL-92 formulations are presented in Section 3.5. We present experimental
results showing the performance of these formulations on some real-life datasets in Sec-
tion 3.6. In Section 3.7, we develop cost formulae for the cost of executing the above SQL
queries on a query processor, based on the input data parameters and relational operator
costs. A few performance optimizations to the basic SQL-92 approaches and the corre-
sponding performance gains are presented in Section 3.8. Section 3.9 quantifies the overall
performance improvements of the optimizations with experiments on synthetic datasets.

The association rule mining problem outlined in Section 1.2.1 can be decomposed into

two subproblems [7].

e Find all combinations of items whose support is greater than minimum support. Call

those combinations frequent itemsets.

e Use the frequent itemsets to generate the desired rules. The idea is that if, say, ABCD

and AB are frequent itemsets, then we can determine if the rule AB—CD holds by

22
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computing the ratio r = support(ABCD)/support(AB). The rule holds only if r >
minimum confidence. Note that the rule will have minimum support because ABC D

is frequent.

3.1 Apriori Algorithm

We use the Apriori algorithm [9] as the basis for our presentation. There are recent
proposals aimed at improving the performance of the Apriori algorithm by reducing the
number of data passes [26, 127]. They all have the same basic data-flow structure as the
Apriori algorithm. Our goal is to understand how best to integrate this basic structure

within a database system.

F, = {frequent 1-itemsets}
for (k=2;F_1 #0;k++) do
Cy, = apriori-gen(Fj_1); // generate new candidates
forall transactions ¢t € D do
Cy = subset(Cg,t); // find all candidates contained in ¢
forall candidates ¢ € C} do
c.count+-+;
done
done
Fy, = {c € Ck|c.count > minsup}
done

Answer = |y, Fi;

Figure 3.1. Apriori algorithm
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The basic Apriori algorithm shown in Figure 3.1 makes multiple passes over the data.
In the k' pass it finds all itemsets with &k items having the minimum support, called the
frequent k-itemsets. Fach pass consists of two phases. Let Fj, represent the set of frequent
k-itemsets, and Cj the set of candidate k-itemsets (potentially frequent itemsets). First is
the candidate generation phase where the set of all frequent (k—1)-itemsets, Fy_1, found
in pass (k—1), is used to generate the candidate itemsets C;. The candidate generation
procedure ensures that Cy, is a superset of the set of all frequent k-itemsets. The algorithm
builds a specialized hash-tree data structure in memory out of C%. Then is the support
counting phase where the transaction database is scanned. For each transaction, the
algorithm determines which of the candidates in Cj are contained in the transaction using
the hash-tree data structure and increments their support count. At the end of the pass, C,
is examined to determine which of the candidates are frequent, yielding Fj. The algorithm

terminates when Cj; becomes empty.

3.2 Other Algorithms

There are several other file based algorithms for mining association rules. However
many of them follow the basic apriori framework and tries to improve on the computation
and I/O requirements.

The partition algorithm [111] reduces the I/O requirements to just two passes over the
entire dataset. The reason the database needs to be scanned multiple times is because the
number of possible itemsets to be tested for support is exponentially large if it must be done
in a single scan of the database. The partition algorithm generates a set of all potentially
frequent itemsets in one scan of the database. This set is a superset of all frequent itemsets.

In the second scan, the actual support of these itemsets in the whole database is computed.



25

The algorithm executes in two phases. In the first phase, it divides the database into a
number of non-overlapping partitions. The frequent itemsets in each of these partitions
are computed separately which will involve multiple passes over the data. However, the
partition sizes are chosen such that an entire partition fits in main memory so that it is
read only once in each phase. At the end of the first phase, the frequent itemsets from all
the partitions are merged together to generate the set of all potentially frequent itemsets.
This set is a superset of all the frequent itemsets since all itemsets that are frequent in
the whole database have to be frequent at least in one partition. In the second phase, the
actual support of these itemsets are counted and the frequent itemsets are identified.

Toivonen proposes a sampling based algorithm [127]. The idea there is to pick a
random sample, use it to determine all association rules that probably hold in the whole
database, and then to verify the results with the rest of the database. The algorithm thus
produces exact association rules in one full pass over the database. In those rare cases where
the sampling method does not produce all association rules, the missing rules can be found
in a second pass. A superset of the frequent itemsets can be determined efficiently from a
random sample by applying any level-wise algorithm on the sample in main memory, and
by using a lowered support threshold. In cases where approximate results are sufficient, the
sampling approach can significantly reduce the computational and I/O requirements since
it works on a much smaller dataset.

A different way of counting support is proposed in Savasere et al. [111] and Zaki
et al. [131]. Associated with each item is a tidlist which consists of all the transaction
identifiers that contain that item. The support for an itemset can be obtained by counting

the number of transactions that contain all the items in the itemset. If the tidlists are
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kept sorted, this operation can be done by performing a merge-scan of the tidlists of all the

items in the itemset.

3.3  Input-Output Formats

Input format The transaction table T normally has two column attributes: transac-
tion identifier (#id) and item identifier (item). For a given tid, typically there are multiple
rows in the transaction table corresponding to different items that belong to the same trans-
action. The number of items per transaction is variable and unknown during table creation
time. Thus, alternative schemas may not be convenient. In particular, assuming that all
items in a transaction appear as different columns of a single tuple [105] is not practical,
because often the number of items per transaction can be more than the maximum number
of columns that the database supports. For instance, for one of the real-life datasets we
experimented with, the maximum number of items per transaction is 872 and for another
it is 700. In contrast, the corresponding average number of items per transaction is only
9.6 and 4.4 respectively. Even if the database supports so many columns for a table, there

will be lot of space wastage in that scheme.

Output format The output is a collection of rules of varying length. The maximum
length of these rules is much smaller than the total number of items and is rarely more
than a dozen. Therefore, a rule is represented as a tuple in a fixed-width table where the
extra column values are set to NULL to accommodate rules involving smaller itemsets. The
schema of a rule is (items, ... ,itemy, len, rulem, confidence, support) where k is the size of
the largest frequent itemset. The len attribute gives the length of the rule (number of items
in the rule) and the rulem attribute gives the position of the — in the rule. For instance,

if k = 5, the rule AB—CD which has 90% confidence and 30% support is represented by
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the tuple (A, B, C, D, NULL, 4, 2, 0.9,0.3). The frequent itemsets are represented the

same way as rules but do not have the rulem and confidence attributes.

3.4 Associations in SQL

In Section 3.4.1 we present the candidate generation process in SQL. In Section 3.4.2
we present the support counting process and in Section 3.4.3 we present the rule generation

process.

3.4.1 Candidate Generation in SQL

Recall that the apriori algorithm for finding frequent itemsets proceeds in a level-wise
manner. In each pass k of the algorithm we first need to generate a set of candidate itemsets
Cy, from frequent itemsets Fj_1 of the previous pass.

Given Fj_1, the set of all frequent (k — 1)-itemsets, the Apriori candidate generation
procedure [9] returns a superset of the set of all frequent k-itemsets. We assume that the
items in an itemset are lexicographically ordered. Since, all subsets of a frequent itemset
are also frequent, we can generate C} from Fj_; as follows.

First, in the join step, we generate a superset of the candidate itemsets C}, by joining

Fy, 1 with itself as shown below.

insert into C}, select Iy.itemy, ..., I1.itemy_1, Io.itemy
from Fk—l I1,Fk_1 I2

where I .itemy = Iy.item and

I.itemy_o = Ir.itemy_o and

I atemy 1 < Ir.itemy 1
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For example, let F3 be {{1 2 3}, {1 24}, {13 4}, {1 3 5}, {2 3 4}}. After the join step, Cy
will be {{1 2 3 4}, {1 3 4 5}}.

Next, in the prune step, all itemsets ¢ € C, where some (k — 1)-subset of ¢ is not
in Fj_1, are deleted. Continuing with the example above, the prune step will delete the
itemset {1 3 4 5} because the subset {1 4 5} is not in F3. We will then be left with only
{1 23 4} in C4;. We can perform the prune step in the same SQL statement as the join
step above by writing it as a k-way join as shown in Figure 3.2. A k-way join is used
since for any k-itemset there are k subsets of length (k — 1) for which we need to check in
F},_1 for membership. The join predicates on I; and I, remain the same. After the join
between I; and I, we get a k-itemset consisting of (Iy.itemy, ..., I .itemy_1, Is.itemy_1)
as shown above. For this itemset, two of its (k — 1)-length subsets are already known to be
frequent since it was generated from two itemsets in Fj, 1. We check the remaining k — 2
subsets using additional joins. The predicates for these joins are enumerated by skipping
one item at a time from the k-itemset as follows. We first skip item; and check if the
subset (Iy.itemg, ..., I .itemy_1, Is.itemy_1) belongs to Fj_1 as shown by the join with I3
in Figure 3.2. In general, for a join with I, (3 < r < k), we skip item r — 2 which gives us

join predicates of the form

I.itemq = I,.item]1 and

I .4tem,_3 = I,.item,_3 and

Ii.atem,_1 = I,.item,_9 and

Il.itemy,_1 = I,.itemy,_o and

Ig.itemk_1 = I,.z'temk_l.
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Figure 3.3 gives an example for k£ = 4.

We construct a primary index on (items,...,itemg_1) of Fj_; to efficiently process
these k-way joins using index probes. Note that sometimes it may not be necessary to ma-
terialize Cy before the counting phase. Instead, the candidate generation can be pipelined

with the subsequent SQL queries used for support counting.
(Skip item_k-2)
I11.iteml = Ik iteml

1l.item k-1= Ikltem k-2

12.item_k-1 = Ik.item k-1 >

7N

(Skip item1) -7 F k1 Ik

-

11.item2 I3 iteml i

ILitem k-1= I3.item_k-2
12.item_k-1 = 13.item k-1

I1l.iteml ; 12.iteml F | k 113
I1.item_k-2 = 12.item k-2
I1.item k-1 < 12item k-1 N

N

Fk1 11 F k1 12

Figure 3.2. Candidate generation for any k

(Skip item2)
I1l.iteml = l14.iteml

11.item3 = |4.item2 ><
12.item3 = |4.item3 \

11.item2 = |3.item1

11.item3 = 13.item2 > <
12.item3 = 13.item3 \
F3

I1liteml = I2.item1 13

I1l.item2 = |2.item2
11.item3 < |12.item3 N

T

F3 11 F3 12

Figure 3.3. Candidate generation for k = 4
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3.4.2 Counting Support to Find Frequent Itemsets

This is the most time-consuming part of the association rule mining algorithm. We

use the candidate itemsets C) and the data table T to count the support of the itemsets in

Cy. We consider two different categories of SQL implementations.

(A)

The first one is based purely on SQL-92. We discuss four approaches in this category

in Section 3.5.

The second utilizes the new SQL object-relational extensions like UDFs, BLOBs
(binary large objects), table functions and so on. Table functions [80] are virtual
tables associated with a user defined function which generate tuples on the fly. Like
normal physical tables they have pre-defined schemas. The function associated with
a table function can be implemented as any other UDF. Thus, table functions can be

viewed as UDFs that return a collection of tuples instead of scalar values.

We discuss six approaches in this category in Chapter 4. Note that, UDFs in this
approach are not heavy weight and do not require extensive memory allocations and

coding unlike in a purely UDF-based implementation [12].

3.4.3 Rule Generation

In the second phase of the association rule mining algorithm, we use the frequent

itemsets to generate rules with the user specified minimum confidence, minconf. For every

frequent itemset [, we first find all non-empty proper subsets of . Then, for each of those

subsets m, we find the confidence of the rule m— (I —m) and output the rule if it is at least

minconf.

In the support counting phase, the frequent itemsets of size k are stored in table Fy.

Before the rule generation phase, we merge all the frequent itemsets into a single table F'.
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The schema of F' consists of k + 2 attributes (itema, ... ,itemy, support, len), where k is
the size of the largest frequent itemset and len is the length of the itemset as discussed
earlier in Section 3.3.

We use the table function GenRules to generate all possible rules from a frequent item-
set. The input argument to the function is a frequent itemset. For each itemset, it outputs
tuples corresponding to rules with all non-empty proper subsets of the itemset in the con-
sequent. The table function outputs tuples with k& + 3 attributes, T _item,..., T _itemy,
T _support,T len,T_rulem. The output is joined with F' to find the support of the an-
tecedent and the confidence of the rule is calculated by taking the ratio of the support
values. The predicates in the where clause match the antecedent of the rule with the fre-
quent itemset corresponding to the antecedent. While checking for this match, we need to
check only up to itemy where k < T _rulem. The or part (¢;.T_rulem < k) in the predicate
accomplishes this. Figure 3.4 illustrates the rule generation query.

We can also do rule generation without using table functions and base it purely on
SQL-92. The rules are generated in a level-wise manner where in each level k£ we generate
rules with consequents of size k. Further, we make use of the property that for any frequent
itemset, if a rule with consequent ¢ holds, then, so do rules with consequents that are subsets
of ¢ as suggested in Agrawal et al. [9]. We can use this property to generate rules in level
k using rules with (k — 1) long consequents found in the previous level, much like the way
we did candidate generation in Section 3.4.1.

The fraction of the total running time spent in rule generation is very small. Therefore,

we do not focus much on rule generation algorithms.
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insert into R select T itemy, ...T itemy,
t1.support, T len, T_rulem, t;.support/ fo.support
from F f,, table(GenRules(f.itemy,. .., f1.itemy, fi.len, f1.support)) as t1, F fo

where (t1.T_item; = fo.item or t1.T rulem < 1) and

(t1.T_itemy, = fo.itemy, or t1.T rulem < k) and
t1.T_rulem = fs.len and
t1. T _support/ fa.support > :minconf

iteml,...itemk, len, rulem,
confidence, support

conf = :minconf

(i
=]

T

Table function F
GenRules

?

| =

Figure 3.4. Rule generation

3.5  Support Counting Using SQL-92

We present four approaches in this category.

3.5.1 K-way Join

In each pass k, we join the candidate itemsets C} with &k transaction tables T and
follow it up with a group by on the itemsets as shown in Figure 3.5.
Figure 3.5 also shows a tree diagram of the query. These tree diagrams are not to be

confused with the plan trees which could look quite different.
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insert into Fj, select item, .. .itemy, count(*)
from Ck, Ttl, ...Ttk
where t1.item = Cy.item and

ty.item = Cy.itemy and

tl.tid = tg.tid and

tr_1-tid = tg.tid
group by items,items ...itemy

having ~ count(*) > :minsup

having
count(*) > :minsup

!

Group by
item1,...., itemk

Ck.iteml = tl.item /
Ck.itemk = tk.item ><\
/ Ck
titid = tktid | ><|
I

th
titid=t2tid [ ><|

T t1 T t2
Figure 3.5. Support counting by K-way join

This SQL computation, when merged with the candidate generation step, is similar to
the one proposed in Tsur et al. [128] as a possible mechanism to implement query flocks.
In Section 3.7, we discuss the different execution plans for this query and the related

performance issues.

3.5.2 Three-way Join

The above approach requires (k + 1)-way joins in the kth pass. We can reduce the

cardinality of joins to 3 using the following approach which bears some resemblance to
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the AprioriTid algorithm in Agrawal et al. [9]. Each candidate itemset Cj, in addition
to attributes (items,...,itemy) has three new attributes (oid,id;,idy). oid is a unique
identifier associated with each itemset and id; and idy are oids of the two itemsets in Fj,_
from which the itemset in Cy was generated (as discussed in Section 3.4.1). In addition,
in the k™ pass we generate a new copy of the data table T; with attributes (tid, oid) that
keeps for each tid the oid of each itemset in Cj that it supported. For support counting,

we first generate T} from Ty_; and Cj and then do a group-by on T} to find Fj as follows.

insert into T}, select #1.tid, oid
from Cr,Th—1 t1,T—1 12

where t1.0id = C}.idy and t9.0id = C}.ido and t1.tid = t9.tid

insert into F}, select oid, itemq, ...itemy, cnt
from Cj,
(select oid as cid, count(*) as cnt from T}
group by oid having count(*) > :minsup) as temp

where Cj.0id = cid

3.5.3  Two Group-by

Another way to avoid multi-way joins is to first join 7' and C}, based on whether the
“item” of a (tid, item) pair of 7' is equal to any of the k items of Cj, then do a group by on
(itemyq, ..., itemy, tid) filtering tuples with count equal to k. This gives all (itemset, tid)
pairs such that the tid supports the itemset. Finally, as in the previous approaches, do a

group-by on the itemset (items, ..., itemy) filtering tuples that meet the support condition.

insert into Fj, select itemy, ... itemy, count(*)



35

from (select itemy, ... itemy, count(*)
from T, Cg

where item = Cj.item or

item = Cy.itemy
group by itemq, ..., itemy, tid
having count(*) = k) as temp
group by itemq,...,itemy

having  count(*) > :minsup

3.5.4 Subquery-Based

This approach makes use of common prefixes between the itemsets in C to reduce the
amount of work done during support counting. We break up the support counting phase
into a cascade of k subqueries. The [-th subquery @; finds all tids that match the distinct
itemsets formed by the first [ columns of Cy, (call it d;). The output of Q; is joined with T’
and dj1 (the distinct itemsets formed by the first [ + 1 columns of Cy) to get Q1. The
final output is obtained by doing a group-by on the k items to count support as above. The

queries and the tree diagram for subquery @); are given in Figure 3.6.

3.6 Performance Comparison

In this section we compare the performance of the four SQL-92 approaches. All of
our experiments were performed on Version 5 of IBM DB2 Universal Server installed on a
RS/6000 Model 140 with a 200 MHz CPU, 256 MB main memory and a 9 GB disc with a
measured transfer rate of 8 MB/s. These experimental results are also reported in Sarawagi

et al. [109].



insert into Fj, select item, ..., itemy, count(*)
from (Subquery Q) t
group by itemy itemsy .. .itemy

having count(*) > :minsup

Subquery @; (for any [ between 1 and k):
select itemy, ... itemy, tid
from T ¢;, (Subquery Q; 1) as r;_1,
(select distinct itemn; . .. item; from Cy) as d;
where 7;_1.item; = dj.item; and ... and
r;_1.1temy_1 = dj.item;_1and
ri_1.tid = t;.tid and

t.atem = dj.itemy

Subquery (p: No subquery Q.

Subquery Q_|

!

iteml,...,iteml, tid

tl.item = dl.iteml | ><__|

rl-liteml =dliteml T
rI-Litem J-1=dl.item -1 | ><] T

r_I-/ N

Subquery Q_1-1 select dis_tinctI

Tree diagram for Subquery Q;

Figure 3.6. Support counting using subqueries

36
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Table 3.1. Description of different real-life datasets

Datasets # Records | # Transactions # Items Avg.#items
in millions in millions in thousands

Dataset-A 2.5 0.57 85 4.4

Dataset-B 7.5 2.5 15.8 2.62

Dataset-C 6.6 0.21 15.8 31

Dataset-D 14 1.44 480 9.62

We selected a collection of four real-life datasets obtained from various mail-order
companies and retail stores for the experiments. These datasets have differing values of
parameters like the total number of (tid,item) pairs, the number of transactions (tids), the
number of items and the average number of items per transaction. Table 3.1 summarizes
these parameters.

In this dissertation, we report the performance with only Dataset-A. The overall
observation was that mining implementations in pure SQL-92 are too slow to be practical.
For these experiments we built a composite index (item; ... itemy) on Cy, k different indices
on each of the k items of C and a (tid,item) and a (item,tid) index on the data table.
The goal was to let the optimizer choose the best plan possible. We do not include the
index building cost in the total time.

In Figure 3.7 we show the total time taken by the four approaches: KwayJoin, 3wayJoin,
Subquery and 2GroupBy. For comparison, we also show the time taken by the Loose-coupling
approach because this is the approach currently used by existing systems. The graph shows
the total time split into candidate generation time (Cgen) and the time for each pass. The
candidate generation time and the time for the first pass are much smaller compared to the

total time. From these set of experiments we can make the following observations.
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Figure 3.7. Comparison of different SQL-92 approaches

e The best approach in the SQL-92 category is the Subquery approach. An important
reason for its performing better than the other approaches is exploitation of common
prefixes between candidate itemsets. None of the other three approaches uses this
optimization. Although the Subquery approach is comparable to the Loose-coupling
approach in some cases, for other cases it did not complete even after taking ten times

more time than the Loose-coupling approach.

e The 2GroupBy approach is significantly worse than the other three approaches because
it involves an index-ORing operation on k indices for each pass k of the algorithm.
In addition, the inner group-by requires sorting a large intermediate relation. The
outer group-by is comparatively faster because the sorted result is of size at most Cj
which is much smaller than the result size of the inner group-by. The DBMS does
aggregation during sorting therefore the size of the result is an important factor in

the total cost.
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e The 3wayJoin approach is comparable to the KwayJoin approach for this dataset
because the number of passes is at most three. As shown in Agrawal et al. [9] there
might be other datasets especially ones where there is significant reduction in the size
of Ty, as k increases where 3wayJoin might perform better than KwayJoin. However,
one disadvantage of the 3wayJoin approach is that it requires space to store and log

the temporary relations 7}, generated in each pass.

3.7 Cost Analysis

In this section, we analyze the cost of the KwayJoin and Subquery approaches which
represent the better ones among the SQL-92 approaches. A relational query engine can
execute the KwayJoin query in several different ways and the performance depends on the
execution plan chosen. We experimented with a number of alternative execution plans
for this query. We could force the query processor to choose different plans by creating
different indices on 7" and Cj, and in some cases by disabling certain join methods in our
experiments using Postgres. We will elaborate more on this in Section 3.9.

We present two different execution plans—one with Cj, as the outermost relation in
Section 3.7.1 and another with C} as the innermost relation in Section 3.7.2—and the cost
analysis for them. The effect of subquery optimization on the cost estimates is outlined in
Section 3.7.3.

A schematic diagram of the two different execution plans are given in Figures 3.8 and
3.9. In the cost analysis, we use the mining-specific data parameters and knowledge about
association rule mining (Apriori algorithm [9] in this case) to estimate the cost of joins and
the size of join results. Even though current relational optimizers do not use this mining-

specific semantic information, the analysis provides a basis for developing “mining-aware”
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having
count(*) > :minsup

Ck.item1 = tl.item /
Ck.itemk = tk.item ><]\

t k-1tid = tk.tid / Cck
t_k-litem < tk.item >

tLtid = t2.tid — T tk
tl.item<t2-iy><\
T t1 T t2

Figure 3.8. K-way join plan with C} as inner relation

having
count(*) > :minsup

!

Group by
iteml,....itemk

Ck.itemk = tk.item /
tktid = tik-l.tid/><

itemz = 120 — T
Ck.item2 = t2.item
t2tid  =tltid ><\

T t2

Ckitem1 = tLitem [ ><_]

Sk Tu
Figure 3.9. K-way join plan with Cj as outer relation

optimizers. The cost formulae are presented in terms of operator costs in order to make

them general; for instance join(p, q,r) denotes the cost of joining two relations of size p

and g to get a result of size r. The actual cost which is based on the join method used

and the system parameters can be derived by substituting the appropriate values in the

given formulae. The data parameters and operators used in the analysis are summarized

in Table 3.2.

3.7.1 KWayJoin Plan with C)_as Outer Relation

Start with Cj as the outermost relation and perform a series of joins with the k copies
of T. The final join result is grouped on the k items to find the support counts. The

choice of join methods for each of the intermediate joins depends on factors such as the
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Table 3.2. Notations used in cost analysis

R number of records in the input transaction table

T number of transactions

N average number of items per transaction = %

P number of frequent items

S(C) sum of support of each itemset in set C'

Sk average support of a frequent k-itemset = SI(I*ik\)

Ry number of records out of R involving frequent items = S(F})

Ny average number of frequent items per transaction = %ﬁ

Cy number of candidate k-itemsets

C(n, k) number of combinations of size k possible out of a set of size n: = ﬁlk),
17 cost of generating a k item combination using table function Comb-k
group(n,m) | cost of grouping n records out of which m are distinct

join(p,q,r) | cost of joining two relations of size p and g to get a result of size r
blob(n) cost of passing a BLOB of size n integers as an argument

availability of indices, the size of intermediate results, and the amount of available memory.
For instance, the efficient execution of nested loops joins require an index (item, tid) on
T. If the intermediate join result is large, it could be advantageous to materialize it and
perform sort-merge join.

For each candidate itemset in C}, the join with T produces as many records as the
support of its first item. Therefore, the size of the join result can be estimated to be the
product of the number of k-candidates and the average support of a frequent item and
hence the cost of this join is given by join(Ck, R, Cj * s1). Similarly, the relation obtained
after joining C} with [ copies of T contain as many records as the sum of the support
counts of the [-item prefixes of the candidate k-itemsets. Hence the cost of the I** join
is join(Cy * s;—1, R, C * s;) where so = 1. Note that values of the s;’s can be computed
from statistics collected in the previous passes. Cost of the last join (with T}%) cannot be

estimated using the above formula since the k-item prefix of a k-candidate is not frequent
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and we do not know the value of s;. However, the last join produces S(Cy) records—
there will be as many records for each candidate as its support—and therefore, the cost is
join(Cy * sg_1, R, S(Ck)). S(C) can be estimated by adding the support estimates of all
the itemsets in Cj. A good estimate for the support of a candidate itemset is the minimum
of the support counts of all its subsets. The overall cost of this plan expressed in terms of

operator costs is

k—1
{Zjoin(Ck * 8, 1, R, Cf x 81)} + join(Cy * s,_1, R, S(C)) + group(S(Ck), Ck)
=1

3.7.2 KWayJoin Plan with Ci as Inner Relation

In this plan, we join the k copies of T and the resulting k-item combinations are joined
with C} to filter out non-candidate item combinations. The final join result is grouped on
the k-items.

The result of joining [ copies of T' is the set of all possible l-item combinations of
transactions and there are C'(N,1) * T such combinations. We know that the items in the
candidate itemset are lexicographically ordered and hence we can add extra join predicates
as shown in Figure 3.8 to limit the join result to /-item combinations (without these extra
predicates the join will result in l-item permutations). When CY}, is the outermost relation
these predicates are not required. A mining-aware optimizer should be able to rewrite the

I join produces (I + 1)-item combinations and therefore, its cost

query appropriately. The
is join(C(N,l) « T, R, C(N,l + 1) * T'). The last join produces S(Cf) records as in the

previous case and hence its cost is join(C(N, k) * T, C, S(Ck)). The overall cost of this
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plan is
k—1
{Zjoin(C(N,l)*T, R, C(N,l+1)*T)}+join(C (N, k)*T, Cx, S(Ck)) +group(S(Ck), Ck)
=1

Note that in the above expression C(N,1) * T = R.

3.7.3  Effect of Subquery Optimization

The subquery optimization makes use of common prefixes among candidate itemsets.
Unfolding all the subqueries will result in a query tree which structurally resembles the
KwayJoin plan tree shown in Figure 3.9. Subquery @Q); produces dfc * 5; records where df;

denotes the number of distinct j item prefixes of itemsets in Cj. In contrast, the I*»

join in
the KwayJoin plan results in Typically dﬁc is much smaller compared to Cy which explains
why the Subquery approach performs better than the KwayJoin approach. Cy * s; records.

The output of subquery @ contains S(Cj) records. The total cost of this approach can be

estimated to be

k
{Z trijoin(R, s;—1 * dgc_la dgca Sp* dgc)} + group(S(Ck), Ck)
=1

where trijoin(p, g, 7, s) denotes the cost of joining three relations of size p, ¢, respectively
producing a result of size s. The value of s; which is the average support of a frequent
k-itemset can be estimated as mentioned in section 3.7.1.

The experimental results presented in Section 3.6 and in Sarawagi et al. [110] shows
that the subquery optimization gave much better performance than the basic KwayJoin
approach (an order of magnitude better in some cases). We observed the same trend in our

additional experiments using synthetic datasets. We used synthetic datasets for some of the
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experiments because the real-life datasets were not available outside IBM. The synthetic
datasets used in our experiments are detailed below. The main reason for the subquery
approach performing better is that the number of distinct [-item prefixes is much less
compared to the total number of candidate itemsets which results in joins between smaller
tables. The number of candidate itemsets and the corresponding distinct item prefixes for
various passes in one of our experiments is given in Figure 3.10. These numbers are for the
dataset T10.14.D100K and 0.33% support. Note that dﬁ is not shown since it is the same as
C. In pass 3, C3 contains 2453 itemsets where as d} has only 295 1-item prefixes (almost
a factor of 10 less than C3). This results in correspondingly smaller intermediate tables as
shown in the analysis above, which is the key to the performance gain.

2500

2000 ——

1500 -

1000 -

500 +— [

Figure 3.10. Number of candidate itemsets vs distinct item prefixes

Experimental datasets We used synthetic data generated according to the procedure

explained in Agrawal and Srikant [13] for some of the experiments. The results reported
here are for the datasets T5.12.D100K and T10.I4.D100K. The first dataset consists of 100

thousand transactions, each containing an average of 5 items. The average size of the
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Table 3.3. Description of synthetic datasets

Datasets # Records | # Transactions | # Items | Avg.#items
T5.12.D100K 546651 100000 1000 5
T10.I14.D100K | 1154995 100000 1000 10

maximal potentially frequent itemsets (denoted as I) is 2. The transaction table corre-
sponding to this dataset had approximately 550 thousand records. The second dataset
has 100 thousand transactions, each containing an average of 10 items (total of about 1.1
million records) and the average size of maximal potentially frequent itemsets is 4. The
different parameters of the two datasets are summarized in Table 3.3.

The experiments reported in the rest of this chapter were performed on PostgreSQL
Version 6.3 [100], a public domain DBMS, installed on a 8 processor Sun Ultra Enterprise
4000/5000 with 248 MHz CPUs and 256 MB main memory per processor, running Solaris
2.6. Note that PostgreSQL is not parallelized. It supports nested loops, hash-based and
sort-merge join methods and provides finer control of the optimizer to disable any of the
join methods. We have found it to be a useful platform for studying the performance of

different join methods and execution plans.

3.8 Performance Optimizations

The cost analysis presented above provides some insight into the different components
of the execution time in the different passes and what can be optimized to achieve better
performance. In this section, we present three optimizations to the KwayJoin approach
(other than the subquery optimization) and discuss how they impact the cost. Based on

these optimizations, we develop the Set-oriented Apriori approach in Section 3.8.4.
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3.8.1 Pruning Non-Frequent Ttems

The size of the transaction table is a major factor in the cost of joins involving T
It can be reduced by pruning the non-frequent items from the transactions after the first
pass. We store the transaction data as (tid, item) tuples in a relational table and hence
this pruning means simply dropping the tuples corresponding to non-frequent items. This

can be achieved by joining T with the frequent items table F; as follows.

insert into Ty select t.tid, t.item
from Tt, Fi f

where t.item = f.item

We insert the pruned transactions into table Ty which has the same schema as that of T'.
In the subsequent passes, joins with 7" can be replaced with corresponding joins with T’.
This could result in improved performance especially for higher support values where the
frequent item selectivity is low, since we join smaller tables. For some of the synthetic
datasets we used in our experiments, this pruning reduced the size of the transaction table
to about half its original size. This could be even more useful for real-life datasets which
typically contains lots of non-frequent items. For example, some of the real-life datasets
used for the experiments reported in Sarawagi et al. [109] contained of the order of 100
thousand items out of which only a few hundreds were frequent. Figure 3.11 shows the
reduction in transaction table size due to this optimization for our experimental datasets.
The initial size (R) and the size after pruning (Ry) for different support values are shown.
With this optimization, in the cost formulae of section 3.7, R can be replaced with

R;—the number of records in T involving frequent items and N with N;—the average
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Figure 3.11. Reduction in transaction table size by non-frequent item pruning

number of frequent items per transaction. Note that with the subquery optimization we

could achieve significant performance improvements by reducing the relation sizes of joins.

3.8.2 Eliminating Candidate Generation in Second Pass

This optimization aims at reducing the cost of the second pass which is a significant
portion of the total cost in some cases. In the second pass, Cs is almost a cartesian product
of the two Fs used to generate it and hence materializing it and joining with the T”s (or
Ty’s) could be expensive. In order to circumvent the problem of counting the large Cs,
most mining algorithms use special techniques in the second pass. A few examples are
two-dimensional arrays in IBM’s Quest data mining system [2] and hash filters proposed in
Park et al. [99] to limit the size of Cy. The generation of Cy can be completely eliminated

by formulating the join query to find F; as

insert into Fy select p.item, g.item, count(*)
from Tf P, Tf q
where p-tid = q.tid and p.item < g.item

group by p.item, q.item
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having  count(*) > :minsup

The cost of second pass with this optimization is

jOin(Rf7 Rf7 C(Nf7 2)) + group(C(Nf, 2)7 C(Fla 2))

Even though the grouping cost remains the same, there is a big reduction from the basic
KwayJoin approach in the join costs. Figure 3.12 compares the running time of the sec-
ond pass with this optimization to the basic KwayJoin approach for the two experimental
datasets. For the KwayJoin approach, the best execution plan was the one which generates
all 2-item combinations, joins them with the candidate set and groups the join result. We

can see that this optimization has a significant impact on the running time.

3.8.3  Reusing the Item Combinations from Previous Pass

The SQL formulations of association rule mining is based on generating item combi-
nations in various ways and similar work is performed in all the different passes. Therefore,
reusing the item combinations will improve the performance especially in the higher passes.
We will explain more about this optimization and the corresponding cost reduction in the

next section.

3.8.4 Set-Oriented Apriori

In this section, we develop a set-oriented version of the apriori algorithm combining
all the performance optimizations outlined above, which we call Set-oriented Apriori. We
store the item combinations generated in each pass and use them in the subsequent passes
instead of generating them in every pass from the transaction tables. In the k** pass of

the support counting phase, we generate a table T} which contains all k-item combinations
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Figure 3.12. Benefit of second pass optimization

that are candidates. T}, has the schema (tid, item, ... ,itemy). We join T}, Ty and C}, as
shown below to generate Ty. A tree diagram of the query is also given in Figure 3.13. The
frequent itemsets F} is obtained by grouping the tuples of T} on the k items and applying
the minimum support filtering.

We can further prune T} by filtering out item combinations that turned out to be

non-frequent. However, this is not essential since we join it with the candidate set Cg11 in



insert into T}

select p-tid, p.itemq, ...p.itemyg_1, q.item
from Ck, Tx—1 P, Tf q
where p-item, = Cy.item, and

p-itemy_1 = Cy.itemy_, and
q.item = Cy.itemy, and
p-tid = q.tid
Tk

p.iteml1 = Ck.iteml1 T

p.item_k-1 = Ck.item_k-1

g.item = Ck-ite'nk/ \
Ck

p.tid = g.tid

p.item_k-1 < g.item N

T

T k-1p T1 g

Figure 3.13. Generation of T}
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the next pass to generate Tj41. The only advantage of pruning T} is that we will have a

smaller table to join in the next pass; but at the additional cost of joining T} with F.

We use the optimization discussed above for the second pass and hence do not mate-

rialize and store the 2-item combinations 75. Therefore, we generate T3 directly by joining

Tf with C3 as

insert into T3 select p.tid, p.item, q.item, r.item

from Tf P, Tf q, Tf r, Ck

where p-item = Cs.item and q.item = Cs.items and r.item = Cs.items and

p-tid = q.tid and q.tid = r.tid
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We can also use the Subquery approach to generate 73 if that is estimated to be less
expensive. T3 will contain exactly the same tuples produced by subquery Q3.

The Set-oriented Apriori algorithm bears some resemblance with the three-way join
approach in Section 3.5.2 and the AprioriTid algorithm in Agrawal and Srikant [13]. In the
three-way join approach, the temporary table T} stores for each transaction, the identifiers
of the candidates it supported. T} is generated by joining two copies of Tj_1 with Cf. The
generation of Fj requires a further join of T with Cy. AprioriTid makes use of special

data structures which are difficult to maintain in the SQL formulation.

Cost Comparison

In Section 3.7.3, we saw that the cost of the k** pass with the subquery optimization

is

k

> trijoin(R, s;-1 *dy ", di, s * d},)} + group(S(Cy), Ck)

I=1
As a result of the materialization and reuse of item combinations, Set-oriented Apriori re-
quires only a single 3-way join in the k' pass !. The cost of the k™ pass in Set-oriented
Apriori is

trijoin(Ry, Ty 1, Ck, S(Ck)) + group(S(Ck), Ck)

where T;_1 and Cj denote the cardinality of the corresponding tables. The grouping cost
is the same as that of the subquery approach. The table Tj_; contains exactly the same
tuples as that of subquery (Q;_1 and hence has a size of s;_1 % dfc_l. Also, dﬁ is the same

as Cj. Therefore, the k™ pass cost of Set-oriented Apriori is the same as the £ term in

!Note that this may be executed as two 2-way joins since 3-way joins are not generally supported in
current relational systems.
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the join cost summation of the subquery approach. This results in significant performance
improvements especially in the higher passes.

Figure 3.14 compares the running times of the subquery and Set-oriented Apriori ap-
proaches for the dataset T10.14.D100K for 0.33% support. We show only the times for

passes 3 and higher since both the approaches are the same in the first two passes.

\ O Set-Apriori B Subquery \

6000

5000

4000 |

3000 ——

Time in seconds

2000 ———

1000 -

Pass 3 Pass 4 Pass 5 Pass 6 Pass 7

Figure 3.14. Benefit of reusing item combinations

Space Overhead

The Set-oriented Apriori approach requires additional space in order to store the item
combinations generated. The size of the table T}, is the same as S(Cy), which is the total
support of all the k-item candidates. Assuming that the tid and item attributes are integers,
each tuple in T} consists of k + 1 integer attributes. Figure 3.15 shows the space required
to store T} in terms of number of integers, for the dataset T10.14.D100K for two different
support values. The space needed for the input data table T' is also shown for comparison.
T5 is not shown in the graph since we do not materialize and store it in the Set-oriented
Apriori approach. Note that once T} is materialized Tj_1 can be deleted unless it needs to

be retained for some other purposes.
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Figure 3.15. Space requirements of the set-oriented apriori approach

In the earlier passes, if the number of item combinations is too large and we do not
want to store them, the Subquery approach can be used instead. However, the Subquery
approach will also generate large intermediate tables except in cases where the output of an
intermediate join is pipelined to the subsequent operation. The transition to Set-oriented
Apriori can be made in any pass by materializing the item combinations. An advantage of
the Set-oriented Apriori is that it requires only simple joins and hence it is easier for the
optimizer to handle them. With multiple levels of nested subqueries, optimization becomes

much harder.

3.9 Performance Experiments with Set-Oriented Apriori

In this section, we compare the total running time of the Subquery and Set-oriented
Apriori approaches.

We studied the performance of the Subquery approach (the best SQL-92 approach in
Section 3.6) and the Set-oriented Apriori for a wide range of data parameters and support
values. We report the results on two of the datasets—T5.12.D100K and T10.14.D100K—

which are described in Section 3.7.3.
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T10.14.D100K: Total time
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Figure 3.16. Comparison of Subquery and Set-oriented Apriori approaches

In Figure 3.16, we show the relative performance of Subquery and Set-oriented Apriori
approaches for the two datasets. The chart shows the total time taken for each of the
different passes. Set-oriented Apriori performs better than Subquery for all the support
values. The first two passes of both the approaches are similar and they take approximately
equal amount of time. The difference between Set-oriented Apriori and Subquery widens for

higher numbered passes as explained in Section 3.8.4. For T5.12.D100K, F, was empty
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for support values higher than 0.3% and therefore we chose lower support values to study
the relative performance in higher numbered passes.

In some cases, the optimizer did not choose the best plan. For example, for joins
with T (T for Set-oriented Apriori), the optimizer chose nested loops plan using (item, tid)
index on T in many cases where the corresponding sort-merge plan was faster; an order
of magnitude faster in some cases. We were able to experiment with different plans by
disabling certain join methods (disabling nested loops join for the above case). We also
broke down the multi-way joins in some cases into simpler two-way joins to study the
performance implications. The reported times correspond to the best join order and join
methods.

Figure 3.17 shows the CPU time and I/O time taken for the dataset T10.14.D100K.
The two approaches show the same relative trend as the total time. However, it should be
noted that the I/O time is less than one third of the CPU time. This shows that there
is a need to revisit the traditional optimization and parallelization strategies designed to
optimize for I/O time, in order to handle the newer decision support and mining queries

efficiently.

3.9.1 Scale-up Experiment

We experimented with several synthetic datasets to study the scale-up behavior of Set-
oriented Apriori with respect to increasing number of transactions and increasing transaction
size. Figure 3.18 shows how Set-oriented Apriori scales up as the number of transactions is
increased from 10,000 to 1 million. We used the datasets T5.12 and T10.14 for the average
sizes of transactions and itemsets respectively. The minimum support level was kept at 1%.

The first graph shows the absolute execution times and the second one shows the times
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Figure 3.17. Comparison of CPU and I/O times

normalized with respect to the times for the 10,000 transaction datasets. It can be seen
that the execution times scale quite linearly and both the datasets exhibit similar scale-up
behavior.

The scale-up with increasing transaction size is shown in Figure 3.19. In these exper-
iments we kept the physical size of the database roughly constant by keeping the product
of the average transaction size and the number of transactions constant. The number of

transactions ranged from 200,000 for the database with an average transaction size of 5 to
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20,000 for the database with an average transaction size of 50. We fixed the minimum sup-
port level in terms of the number of transactions, since fixing it as a percentage would have
led to large increases in the number of frequent itemsets as the transaction size increased.
The numbers in the legend (for example, 1000) refer to this minimum support. The execu-
tion times increase with the transaction size, but only gradually. The main reason for this
increase was that the number of item combinations present in a transaction increases with

the transaction size.
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Figure 3.19. Transaction size scale-up

There has been increasing interest in developing scalable data mining techniques [23,
33, 117]. For the scalability of the SQL approaches, we leverage the development effort

spent in making the relational query processors scalable.

3.10 Summary

In this chapter, we presented four SQL-92 formulations for association rule mining. We
analyzed the best approach and developed cost formulae for the different execution plans
of the corresponding SQL queries based on the input data parameters and the relational
operator costs. This cost analysis provides a basis for incorporating the semantics of mining
algorithms into future query optimizers.

While doing the experiments, it was difficult to force the optimizer to choose certain
execution plans and join methods since commercial DBMSs do not provide that level of
control. Postgres was relatively better in that respect, since we could control the choice
of join methods. However, the Postgres optimizer did not optimize long queries, especially

the ones involving nested subqueries, well.
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Note A part of the work described in this chapter was primarily done by researchers
from IBM Almaden Research Center. Specifically, the SQL-based candidate generation in
Section 3.4.1 and the support counting approaches in Section 3.5 were developed by them.

They are included in this dissertation for completeness.



CHAPTER 4
SUPPORT COUNTING USING SQL WITH OBJECT-RELATIONAL EXTENSIONS

In this chapter, we study alternative approaches that make use of additional object-
relational features in SQL. For each approach, we also outline a cost-based analysis of the
execution time to enable one to choose between these different approaches. We present six
different approaches, optimizations and their cost estimates in Sections 4.1, 4.2 and 4.3.
Experimental results comparing the performance of these approaches are presented in Sec-
tion 4.4. In Section 4.5, we propose a hybrid approach which combines the best of all
approaches. The performance of different architectural alternatives described in Chapter 2
is compared in Section 4.6. In Section 4.7, we summarize qualitative comparisons of these
architectures. The applicability of the SQL-based approach to other association rule mining

algorithms are briefly discussed in Section 4.8.

4.1 GatherJoin

This approach (see Figure 4.1) is based on the use of table functions described in sec-
tion 3.4.2. It generates all possible k-item combinations of items contained in a transaction,
joins them with the candidate table C}, and counts the support of the itemsets by grouping
the join result. It uses two table functions Gather and Comb-K. The data table T is scanned
in the (tid, item) order and passed to the table function Gather. This table function col-
lects all the items of a transaction (in other words, items of all tuples of T with the same

tid) in memory and outputs a record for each transaction. Each such record consists of two

60
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attributes, the tid and item-list which is a collection of all its items in a VARCHAR or a
BLOB. The output of Gather is passed to another table function Comb-K which returns all
k-item combinations formed out of the items of a transaction. A record output by Comb-K
has k attributes T'_itm, ..., T _itmy, which can be directly used to probe into the Cj table.
An index is constructed on all the items of Ci to make the probe efficient. Figure 4.1
presents SQL queries for this approach.

This approach is analogous to the KwayJoin approach where we have replaced the
k-way self join of T with table functions Gather and Comb-K. These table functions are
easy to code and do not require a large amount of memory. Also, it is possible to merge
them together as a single table function GatherComb-K, which is what we did in our imple-
mentation. The Gather function is not required when the data is already in a horizontal

format where each tid is followed by a collection of all its items.

4.1.1 Special Pass 2 Optimization

Note that for k = 2, the 2-candidate set Cs is simply a join of F; with itself. Therefore,
we can specially optimize the pass 2 by replacing the join with Cy by a join with Fy before
the table function (see Figure 4.2). That way, the table function gets only frequent items
and generates significantly fewer 2-item combinations. This optimization can be useful for

other passes too but unlike for pass 2 we still have to do the join with Cy.

4.1.2 Variations of GatherJoin Approach

GatherCount

One variation of the GatherJoin approach for pass two is the GatherCount approach
where we push the group-by inside the table function instead of doing it outside. The

candidate 2-itemsets (C2) are represented as a two dimensional array inside the modified
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insert into Fj, select itemy, ... ,itemy, count(¥)

from Ck, (select to. T tmy, ..., t2.T itmy from T,
table (Gather(T.tid, T.item)) as t1,
table (Comb-K(#;.tid, t;.item-list)) as t3)

where to. T itm; = Cy.item; and

to. T Zitmy, = Ch.itemy,
group by Cy.itemy, ..., Cg.itemy
having  count(*) > :minsup
having
count(*) > :minsup

Group by

. . )
t2.T_itml = Ck.iteml1
2T itmk = Ck.irem/lt<2><\

Table function Ck
Comb-K

Table function
Gather

Order by
tid, item
A

T
Figure 4.1. Support counting by GatherJoin

table function Gather-Cnt for doing the support counting. Instead of outputting the 2-item
combinations of a transaction, it directly uses it to update support counts in the memory
and output only the frequent 2-itemsets, Fo and their support after the last transaction.
Thus, the table function Gather-Cnt is an extension of the GatherComb-2 table function
used in GatherJoin.

The absence of the outer grouping makes this option rather attractive. The UDF code
is also small since it only needs to maintain a 2D array. We could apply the same trick for

subsequent passes but the coding becomes considerably more complicated because of the
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insert into Fy select tto. T itmy, tto. T itmg, count(*)

from (select * from T', Fy where T.item = F}.itemy) as tti,
table (GatherComb-2(tid,item)) as tts)

group by tto. T 4tmy, tts. T itmeo

having  count(*) > :minsup

having
count(*) > :minsup

Group by
t2.T_itmd, tt2.T_itm2

oz

Table function
GatherComb-K

0
T.item = Flitem1 [ ><_|
/ \

Figure 4.2. Support Counting by GatherJoin in the second pass

need to maintain hash-tables to index the C}’s. The disadvantage of this approach is that
it can require a large amount of memory to store Cs. If enough memory is not available,
C5 needs to be partitioned and the process has to be repeated for each partition. Another
serious problem with this approach is that it cannot be automatically parallelized unlike

the other approaches.

GatherPrune

A potential problem with the GatherJoin approach is the high cost of joining the
large number of item combinations with Ci. We can push the join with C} inside the table
function and thus reduce the number of such combinations. C} is converted to a BLOB
and passed as an argument to the table function.

The cost of passing the BLOB for every tuple of T could be high. In general, we can

reduce the parameter passing cost by using a smaller Blob that only approximates the real
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Ck. The trade-off is increased cost for other parts notably grouping because not as many

combinations are filtered.
Horizontal

Another variation of GatherJoin is the Horizontal approach that first uses the
Gather function to transform the data to the horizontal format but is otherwise similar
to the GatherJoin approach.

Rajamani et al. [105] propose finding associations using an approach quite similar to
this Horizontal approach. They assume (rather unrealistically) that the data is already in
a horizontal format. However, they do not use the frequent item-set filtering optimization
we outlined for pass 2. Without this optimization, the time for pass 2 for most real-life
datasets blows up even for relatively high support values. Also, at the time of candidate
generation, rather than doing self-join on Fj_1, they join Fj_; with Fi, thereby generating
considerably more combinations than needed. Thus, the approach in Rajamani et al. [105]

is likely to perform worse than Horizontal.

4.1.3 Cost Analysis of GatherJoin and its Variants

The choice of the best approach depends on a number of data characteristics like the
number of items, total number of transactions, average length of a transaction and so on.
We express the costs of different approaches in each pass in terms of parameters that are
known or can be estimated after the candidate generation step of each pass. We include
only the terms that were found to be the dominant part of the total cost in practice. We
use the notations of Table 3.2 in the cost analysis.

The cost of GatherJoin includes the cost of generating k-item combinations, joining

with Cy and grouping to count the support. The number of k-item combinations generated,
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Ty is C(N,k) = T. Join with Cy, filters out the non-candidate item combinations. The size
of the join result is the sum of the support of all the candidates denoted by S(Ck). The
actual value of the support of a candidate itemset will be known only after the support
counting phase. However, we get a good estimate by approximating it to the minimum of

the support of all its (k — 1)-subsets in Fj_1. The total cost of the GatherJoin approach is
Ty, * tg, + join(Ty, Ck, S(Ck)) + group(S(Cy), Cx), where T, = C(N,k) T

The above cost formula needs to be modified to reflect the special optimization of
joining with Fy to consider only frequent items. We need a new term join(R, F1, Ry) and
need to change the formula for T}, to include only frequent items Ny instead of N.

For the second pass, we do not need the outer join with Cj. The total cost of
GatherJoin in the second pass is

2
sz*T

join(R, Fi, Ry) + Ty  to + group(Ts, Cs), where Th = C(Ny,2) * T 5

Cost of GatherCount in the second pass is similar to that for basic GatherJoin except
for the final grouping cost. In this formula, “group_int” denotes the cost of doing the

support counting inside the table function.
join(R, Fi, Ry) + group_int(Ty, Cy) + Fy x to
For GatherPrune the cost equation is

R x blob(k x Cy) + S(Cy) * t + group(S(Cy), Ck).
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We use blob(k * Cy,) for the BLOB passing cost since each itemset in Cy, contains k items.
The cost estimate of Horizontal is similar to that of GatherJoin except that here

the data is materialized in the horizontal format before generating the item combinations.
4.2 Vertical

In this approach, we first transform the data table into a vertical format by creating for
each item a BLOB containing all tids that contain that item (Tid-list creation phase) and
then count the support of itemsets by merging together these tid-lists (support counting
phase). This approach is related to the approaches discussed in Savasere et al. [111] and
Zaki et al. [131].

For creating the Tid-lists we use a table function Gather. This is the same as the
Gather function in GatherJoin except that here we create the tid-list for each frequent
item. The data table T is scanned in the (item, tid) order and passed to the function
Gather. The function collects the tids of all tuples of T' with the same item in memory and
outputs a (item, tid-list) tuple for items that meet the minimum support criterion. The tid-
lists are represented as BLOBs and stored in a new TidTable with attributes (item, tid-list).

The SQL query which does the transformation to vertical format is given in Figure 4.3.

tt2.item, tt2.tid-list

tt2
. . Tableﬁunction
(select * from T order by item, tid) as ttq, Gather

insert into TidTable select item, tid-list from

Order by
item, tid

table(Gather(item,tid,:minsup)) as tto
-

Figure 4.3. Tid-list creation

In the support counting phase, conceptually for each itemset in C we want to collect

the tid-lists of all k items and use a UDF to count the number of #ids in the intersection
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of these k lists. The tids are in the same sorted order in all the tid-lists and therefore the
intersection can be done easily and efficiently by a single pass of the k lists. This conceptual
step can be improved further by decomposing the intersect operation so that we can share
these operations across itemsets having common prefixes as follows:

We first select distinct (itemq, items) pairs from Cy. For each distinct pair we first per-
form the intersect operation to get a new result-tidlist, then find distinct triples (item, items,
items) from Cj with the same first two items, intersect result-tidlist with tid-list for itemsg
for each triple and continue with item4 and so on until all k tid-lists per itemset are inter-
sected.

The above sequence of operations can be written as a single SQL query for any k as
shown in Figure 4.4. The final intersect operation can be merged with the count operation
to return a count instead of the tid-list. We do not include this optimization in the query

of Figure 4.4 for simplicity.

4.2.1 Special Pass 2 Optimization

For pass 2 we need not generate C2 and join the TidTables with C5. Instead, we

perform a self-join on the TidTable using predicate t;.item < tq9.item.

insert into Fj, select ty.item, ty.item, cnt

from (select itemy,itemgy, CountIntersect(;.tid-list, ¢o.tid-list) as cnt
from TidTable 1, TidTable ¢y
where tj.item < t2.item) as t

where cnt > :minsup
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insert into Fj, select items, ... ,itemy, count(tid-list) as cnt

from (Subquery Q) t where cnt > :minsup

Subquery @; (for any [ between 2 and k)
select itemy, . .. itemy, Intersect(r;_;.tid-list,#;.tid-list) as tid-list
from TidTable t;, (Subquery Q;_1) as r;_1,
(select distinct itemn ... item; from Cy) as d;
where r;_1.itemq = dj.itemq and ... and
r_1.itemy_1 = dj.item;_1and

t.atem = dj.itemy

Subquery @1: (select * from TidTable)

iteml,...,iteml, tid-list
| ticHlist
Intersect

(UDF)
r_|-1tid-list, tl.tid-list

tl.item = dl.iteml N
r_l-liteml =dl.iteml / \

r_l-litem_I-1=dl.item |-1 N TidTabletl

r_I-/ N

Subquery Q -1 select distinct
iteml,....iteml

Ck

Tree diagram for Subquery Q;

Figure 4.4. Support counting using UDF
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4.2.2 Cost Analysis

The cost of the Vertical approach during support counting phase is dominated by
the cost of invoking the UDFs and intersecting the tid-lists. The UDF is first called for
each distinct item pair in C}, then for each distinct item triple with the same first two
items and so on. Let df be the number of distinct j item tuples in Ci. Then the total
number of times the UDF is invoked is Z;"::Q d;?. In each invocation two BLOBs of tid-list
are passed as arguments. The UDF intersects the tid-lists by a merge pass and hence the
cost is proportional to 2 * average length of a tid-list. The average length of a tid-list can be
approximated to %ﬁ. Note that with each intersect the tid-list keeps shrinking. However,
we ignore such effects for simplicity.

In addition to the intersect cost it includes the cost of joins in the query also. The

join cost of subquery (); can be recursively defined as

C(Q) = trijoin(F1, Q_1, Ck, df) + C(Qi—1)

where tri-join(p, q,, s) denotes the cost of joining three relations of size p, g, r respectively
producing a result of size s. The exact cost of the 3-way join will depend on the join order.
The cost of subquery ; is the cost of scanning the TidTable which has F} tuples. The
result size of the subquery @ is df and the result size of @1 is Fy. The total cost of the

Vertical approach is

- R 2R
C(Qx) + (]z::2 df) * {2 * Blob(?{) + Intersect(?lf)}



70

In the formula above Intersect(n) denotes the cost of intersecting two tid-lists with
a combined size of n. The total cost is dominated by the intersect cost and join costs
account for only a small fraction. Therefore, we can safely ignore the join costs in the
above formulae.

The total cost of the second pass is

F)? 2
join(Fy, F, %) + Co * {2 % Blob(%) + Intersect(%)}
1 1

4.3 SQL-Bodied Functions

This approach is based on SQL-bodied functions commonly known as SQL/PSM [87].
SQL/PSMs extend SQL with additional control structures. We make use of one such
construct for do .. end.

We use the for construct to scan the transaction table T in the (tid, item) order. Then,
for each tuple (tid, item) of T, we update those tuples of C} that contain one matching
item. Cj is extended with 3 extra attributes (prevTid, match, supp). The prevTid attribute
keeps the tid of the previous tuple of T that matched that itemset. The match attribute
contains the number of items of prevTid matched so far and supp holds the current support

of that itemset. On each column of Cj an index is built to do a searched update.

for this as select * from T do
update Cy set prevTid = tid,
match = case when tid = prevTid then match+1 else 1 end,
supp = case when match = k-1 and tid = prevTid then supp+1
else supp

end
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where item = item; or

item = itemy
end for
insert into Fj select itemy, ..., itemy, supp

from C} where supp > :minsupp

The cost of this approach can be mainly attributed to the cost of updates to the
candidate table Cj. For each tuple of the data table T', for all the candidate itemsets in Cj
which contains that item, three updates are performed (the attributes prevTid, match, supp
of the itemset are updated). If Nj is the average number of k-item candidates containing
any given item, the total number of updates is 3 * R * Nj. The cost due to updates for this
approach is U(3 * R * Ny) where U(n) is the cost of n updates. If the updates are logged

this cost includes the logging cost also.

4.4 Performance Comparison

We studied the performance of six approaches in this category: GatherJoin and its
variants GatherPrune, Horizontal and GatherCountVertical and SBF. We used the four
datasets summarized in Table 3.1. In Figure 4.5 we show the performance of only the four
approaches: GatherJoin, GatherCount, GatherPrune and Vertical. For the other
two approaches the running times were comparatively so large that we had to abort the
runs in many cases. The main reason why the Horizontal approach was significantly
worse than the GatherJoin approach was the time to transform the data to the horizontal
format. For instance, for Dataset-C it was 3.5 hours which is almost 20 times more than

the time taken by Vertical for 2% support. For Dataset-B the process was aborted



after running for 5 hours. After the transformation, compared to GatherJoin the time
taken by Horizontal was also significantly worse when run without the frequent itemset
filtering optimization but with the optimization the performance was comparable. The SBF
approach had significantly worse performance because of the expensive indexing ORing of
the k join predicates. Another problem with this approach is the large number of updates

to the Cy table. In DB2, all of these updates are logged resulting in severe performance

degradation.
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Figure 4.5. Comparison of four SQL-OR approaches: Vertical, GatherPrune, GatherJoin
and GatherCount
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Figure 4.5 shows the total running time of the different approaches. The time taken
is broken down by each pass and an initial “prep” stage where any one-time data transfor-
mation cost is included. We can make several observations from the experimental results.
First, let us concentrate on the overall comparison between the different approaches. Then
we will compare the approaches based on how they perform in each pass of the algorithm.

Overall, the Vertical approach has the best performance and is sometimes more than
an order of magnitude better than the other three approaches.

The majority of the time of the Vertical approach is spent in transforming the
data to the Vertical format in most cases (shown as “prep” in figure 4.5). The vertical
representation is like an index on the item attribute. If we think of this time as a one-
time activity like index building then performance looks even better. Note that the time
to transform the data to the Vertical format was much smaller than the time for the
horizontal format although both formats write almost the same amount of data. The main
reason was the difference in the number of records written. The number of frequent items
is often two to three orders of magnitude smaller than the number of transactions.

Between GatherJoin and GatherPrune, neither strictly dominates the other. The
special optimization in GatherJoin of pruning based on F} had a big impact on perfor-
mance. With this optimization, for Dataset-B with support 0.1%, the running time for
pass 2 alone was reduced from 5.2 hours to 10 minutes.

When we compare these different approaches based on time spent in each pass we
observe that no single approach is “the best” for all different passes of the different datasets
especially for the second pass.

For pass three onwards, Vertical is often two or more orders of magnitude better than

the other approaches. Even in cases like Dataset-B, support 0.01% where it spends three
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hours in the second pass, the total time for next two passes is only 14 seconds whereas it is
more than an hour for the other two approaches. For subsequent passes the performance
degrades dramatically for GatherJoin, because the table function Gather-Comb-K generates
a large number of combinations. For instance, for pass 3 of Dataset-C even for support
value of 2% pass 3 did not complete after 5.2 hours whereas for Vertical pass 3 finished
in 0.2 seconds. GatherPrune is better than GatherJoin for the third and later passes. For
pass 2 GatherPrune is worse because the overhead of passing a large object as an argument
dominates cost.

The Vertical approach sometimes ended up spending too much time in the second
pass. In some of these cases the GatherJoin approach was better in the second pass
(for instance for low support values of Dataset-B) whereas in other cases (for instance,
Dataset-C support 0.25%) GatherCount was the only good option. For this case both the
GatherPrune and GatherJoin did not complete after more than six hours even for pass 2.
Further, they caused a storage overflow error because of the large size of the intermediate
results to be sorted. We had to divide the dataset into four equal parts and run the second

pass independently on each partition to avoid this problem.
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Figure 4.6. Effect of increasing transaction length (average number of items per transaction)
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Two factors that affect the choice amongst the Vertical, GatherJoin and GatherCount
approaches in different passes and pass 2 in particular are: number of frequent items (F})
and the average number of frequent items per transaction (Ny). From the graphs in Fig-
ure 4.5 we notice that as the value of the support is decreased for each dataset causing
the size of F} to increase, the performance of pass 2 of the Vertical approach degrades
rapidly. This trend is also clear from our cost formulae. The cost of the Vertical approach
increases quadratically with F;. GatherJoin depends more critically on the number of fre-
quent items per transaction. For Dataset-B even when the size of F; increases by a factor
of 10, the value of N; remains close to 2, therefore the time taken by GatherJoin does not
increase as much. However, for Dataset-C the size of N; increases from 3.2 to 10 as the
support is decreased from 2.0% to 0.25% causing GatherJoin to deteriorate rapidly. From
the cost formula for GatherJoin we notice that the total time for pass 2 increases almost
quadratically with Ny.

We validate this observation further by running experiments on synthetic datasets
for varying values of the number of frequent items per transaction. We used the synthetic
dataset generator described in Agrawal et al. [9] for this purpose. We varied the transaction
length, the number of transactions and the support values while keeping the total number
of records and the number of frequent items fixed. In Figure 4.6 we show the total time
spent in pass 2 of the Vertical and GatherJoin approaches. As the number of items per
transaction (transaction length) increases, the cost of Vertical remains almost unchanged

whereas the cost of GatherJoin increases.
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4.5 Final Hybrid Approach

The previous performance section helps us draw the following conclusion: Overall, the
Vertical approach is the best option especially for higher passes. When the size of the
candidate itemsets is too large, the performance of the Vertical approach could suffer.
In such cases, GatherJoin is a good option as long as the number of frequent items per
transaction (Ny) is not too large. When that happens GatherCount may be the only
good option even though it may not easily parallelizable. These qualitative differences are
captured by the cost formulae we presented earlier and are used by our final hybrid scheme.

The hybrid scheme chooses the best of the three approaches GatherJoin, GatherCount
and Vertical for each pass based on the cost estimation outlined in the previous sections.
The parameter values used for the estimation are all available at the end of the previous
pass. In Section 4.6 we plot the final running time for the different datasets based on this

hybrid approach.

4.6 Architecture Comparisons

In this section our goal is to compare five architectural alternatives: Loose-coupling,
Stored-procedure, Cache-Mine, UDF, and the best SQL implementation.

For Loose-coupling, we use the implementation of the Apriori algorithm [9] for find-
ing association rules provided with the IBM data mining product, Intelligent Miner [71].
For Stored-procedure, we extracted the Apriori implementation in Intelligent Miner and
created a stored procedure out of it. The stored procedure is run in the unfenced mode
in the database address space. For Cache-Mine, we used an option provided in Intelligent

Miner that causes the input data to be cached as a binary file after the first scan of the data
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from the DBMS. The data is copied in the horizontal format where each tid is followed by
an encoding of all its frequent items.

For the UDF-architecture, we use the UDF implementation of the Apriori algorithm
described in Agrawal and Shim [12]. In this implementation, first a UDF is used to initialize
state and allocate memory for candidate itemsets. Next, for each pass a collection of UDF's
are used for generating candidates, counting support, and checking for termination. These
UDFs access the initially allocated memory, address of which is passed around in BLOBs.
Candidate generation creates the in-memory hash-trees of candidates. This happens en-
tirely in the UDF without any involvement of the DBMS. During support counting, the
data table is scanned sequentially and for each tuple a UDF is used for updating the counts

on the memory resident hash-tree.

4.6.1 Timing Comparison

In Figure 4.7, we show the performance of the four architectural alternatives: Cache-Mine,
Stored-procedure, UDF and our best SQL implementation for the datasets in Table 3.1.
We do not show the times for the Loose-coupling option because its performance was very
close to the Stored-procedure option. For each dataset three different support values are
used. The total time is broken down by the time spent in each pass.

We can make the following observations.

e Cache-Mine has the best or close to the best performance in all cases. 80-90% of its
total time is spent in the first pass where data is accessed from the DBMS and cached
in the file system. Compared to the SQL approach this approach is a factor of 0.8 to

2 times faster.
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Figure 4.7. Comparison of four architectures

e The Stored-procedure approach is the worst. The difference between Cache-Mine

and Stored-procedure is directly related to

the number of passes. For instance,

for Dataset-A the number of passes increases from two to three when decreasing

support from 0.5% to 0.35% causing the time taken to increase from two to three

times. The time spent in each pass for Stored-procedure is the same except when

the algorithm makes multiple passes over the data since all candidates could not

fit in memory together. This happens for the lowest support values of Dataset-B,
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Dataset-C and Dataset-D. Time taken by Stored-procedure can be expressed

approximately as number of passes times time taken by Cache-Mine.

e UDF is similar to Stored-procedure. The only difference is that the time per pass

decreases by 30-50% for UDF because of closer coupling with the database.

e The SQL approach comes second in performance after the Cache-Mine approach for
low support values and is even somewhat better for high support values. The cost
of converting the data to the vertical format for SQL is typically lower than the cost
of transforming data to binary format outside the DBMS for Cache-Mine. However,
after the initial transformation subsequent passes take negligible time for Cache-Mine.
For the second pass SQL takes significantly more time than Cache-Mine particularly
when we decrease support. For subsequent passes even the SQL approach does not
spend too much time. Therefore, the difference between Cache-Mine and SQL is not
very sensitive to the number of passes because both approaches spend negligible time

in higher passes.

The SQL approach is 1.8 to 3 times better than Stored-procedure or Loose-coupling
approach. As we decreased the support value so that the number of passes over the
dataset increases, the gap widens. Note that we could have implemented a Stored-
procedure using the same hybrid algorithm that we used for SQL instead of using the
IM algorithm. Then, we expect the performance of Stored-procedure to improve
because the number of passes to the data will decrease. However, we will pay the
storage penalty of making additional copy of the data as we did in the Cache-Mine

approach. The performance of Stored-procedure cannot be better than Cache-Mine
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because as we have observed the most of the time of Cache-Mine is spent in the first

pass which cannot be changed for Stored-procedure.

4.6.2 Scale-up experiment

Our experiments with the four real-life datasets above has shown the scaling property
of the different approaches with decreasing support value and increasing number of frequent
itemsets. We experiment with synthetic datasets to study other forms of scaling: increasing
number of transactions and increasing average length of transactions. In Figure 4.8 we show
how Stored-procedure, Cache-Mine and SQL scale with increasing number of transactions.
UDF and Loose-coupling have similar scale-up behavior as Stored-procedure, therefore
we do not show these approaches in the figure. We used a dataset with 10 average number of
items per transaction, 100 thousand total items and a default pattern length (defined in [9])
of 4. Thus, the size of the dataset is 10 times the number of transactions. As the number of
transactions is increased from 10K to 3000K the time taken increases proportionately. The
largest frequent itemset was 5 long. This explains the five fold difference in performance
between the Stored-procedure and the Cache-Mine approach. Figure 4.9 shows the scaling
when the transaction length changes from 3 to 50 while keeping the number of transactions

fixed at 100K. All three approaches scale linearly with increasing transaction length.
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4.6.3 Impact of longer names

In these experiments we assumed that the tids and item-ids are all integers. Often in
practice these are character strings longer than four characters. Longer strings need more
storage and cost more during comparisons. This could hurt all four of the alternatives.
For the Stored-procedure, UDF and Cache-Mine approach the time taken to transfer data
will increase. The Intelligent Miner code [71] maps all character fields to integers using an
in-memory hash-table. Therefore, beyond the increase in the data transfer and mapping
costs (which accounts for the bulk of the time), we do not expect the processing time of
these three alternatives to increase. For the SQL approach we cannot assume an in-memory
hash-table for doing the mapping therefore we use an alternative approach based on table
functions.

For SQL approach we discuss the hybrid approach. The two (already expensive) steps
that could suffer because of longer names are (1) final group-bys during pass 2 or higher
when the GatherJoin approach is chosen and (2) tid-list operations when the Vertical
approach is chosen. For efficient performance, the first step requires a mapping of item-ids

and the second one requires us to map tids. We use a table function to map the tids to
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unique integers efficiently in one pass and without making extra copies. The input to the
table function is the data table in the ¢id order. The table function remembers the previous
tid and the maintains a counter. Every time the #id changes, the counter is incremented.
This counter value is the mapping assigned to each tid. We need to do the tid mapping only
once before creating the TidTable in the Vertical approach and therefore we can pipeline
these two steps. The item mapping is done slightly differently. After the first pass, we add
a column to F) containing a unique integer for each item. We do the same for the TidTable.
The GatherJoin approach already joins the data table T' with F; before passing to table
function Gather. Therefore, we can pass to Gather the integer mappings of each item from
Fy instead of its original character representation. After these two transformations, the tid
and item fields are integers for all the remaining queries including candidate generation and
rule generation. By mapping the fields this way, we expect longer names to have similar

performance impact on all of our architectural options.

4.6.4 Space Overhead of Different Approaches

In Figure 4.10 we summarize the space required for different datasets for three options:
Stored-procedure, Cache-Mine and SQL. For these experiments we assume that the tids
and items are integers. The first part refers to the space used in caching data and the
second part refers to any temporary space used by the DBMS for sorting or alternately
for constructing indices to be used during sorting. The size of the data is the same as the
space utilization of the Stored-procedure approach. The space requirements for UDF is
the same as that for Stored-procedurewhich requires less space than the Cache-Mine and
SQL approaches. The Cache-Mine and SQL approaches have comparable storage overheads.

For Stored-procedure and UDF we do not need any extra storage for caching. However,
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all three options Cache-Mine, Stored-procedure and UDF require data in each pass to be
grouped on the #id. In a relational DBMS we cannot assume any order on the physical
layout of a table, unlike in a file system. Therefore, we need either an index on the data
table or need to sort the table every time to ensure a particular order. Let R denote the
total number of (tid,item) pairs in the data table. Either option has a space overhead of
2 X R integers. The Cache-Mine approach caches the data in an alternative binary format
where each tid is followed by all the items it contains. Thus, the size of the cached data
in Cache-Mine is at most: R 4 T integers where T' is the number of transactions. For SQL
we use the hybrid Vertical option. This requires creation of an initial TidTable of size at
most I + R where I is the number of items. Note that this is slightly less than the cache
required by the Cache-Mine approach. The SQL approach needs to sort data in pass 1 in
all cases and pass 2 in some cases where we used the GatherJoin approach instead of the
Vertical approach. This explains the large space requirement for Dataset-B. However, in
practice when the item-ids or tids are character strings instead of integers, the extra space
needed by Cache-Mine and SQL is a much smaller fraction of the total data size because
before caching we always convert item-ids to their compact integer representation and store

in binary format.

4.7 Summary of Comparison Between Different Architectures

In Table 4.1 we present a summary of the pros and cons of the different architectures
by ranking them on a scale of 1 (good) to 4 (bad) on each of the following yardsticks: (a)
performance (execution time); (b) storage overhead; (c) scope for automatic parallelization;

(d) development and maintenance ease; (e) portability (f) inter-operability.
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Figure 4.10. Comparison of different architectures on space requirements.

Table 4.1. Pros and cons of different architectural options ranked on a scale of 1(good) to
4(bad)

Metric Stored-proc. | UDF | Cache-Mine | SQL
Performance 4 3 1 2

Storage overhead 1 1 2 2-3
Automatic Parallelism 2 2 2 1(?)
Development and maintenance ease 2 3 2 1-2
Portability 1 3 1 2

Inter-operability 2 2 2 1(?)

In terms of performance, the Cache-Mine approach is the best option followed by the
SQL approach. The SQL approach was within a factor of 0.8 to 2 of the Cache-Mine ap-
proach for all of our experiments. The UDF approach is better than the Stored-procedure
approach in performance by 30 to 50% but it looses on the metrics of development and
maintenance costs and portability. In terms of space requirements, the Cache-Mine and
the SQL approach loose to the UDF or the Stored-procedure approach. Between the
Stored-procedure and the Cache-Mine implementation, the performance difference is ex-

actly a function of the number of passes made on the data; that is, if we make four passes
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of the data the Stored-procedure approach is four times slower than Cache-Mine. There-
fore, if one is not willing to pay the penalty of extra storage the best strategy for improving
performance is to reduce the number of passes to the data even if it comes at the cost
of extra processing. Some of the recent proposals [26, 127] that attempt to minimize the
number of data passes to 2 or 3 might be useful in that regard.

The SQL approach is not the winner in terms of performance and space requirements
but it is competitive. The benefit of the SQL approach could arise from other secondary
advantages.

The SQL implementation has the potential for automatic parallelization. Paralleliza-
tion could come for free because bulk of our processing is expressed in terms of standard
SQL queries. As long as the database supports efficient parallelization of these queries the
mining code can be easily parallelized. The problem case is where the UDFs use scratch
pads. The only such function in our queries is the Gather table function. This function
essentially implements a user defined aggregate, and would have been easy to parallelize if
the DBMS provided support for user defined aggregates or allowed explicit control from the
application about how to partition the data amongst different parallel instances of the func-
tion. For MPPs, one could rely on the DBMS to come up with a data partitioning strategy.
However, it might be possible to better tune performance if the application could provide
hints about the best partitioning [11] to use. Further experiments are required to assess how
the performance of these automatic parallelizations would compare with algorithm-specific
parallelizations [11].

The development time and code size using SQL could be shorter if one can get efficient
implementations out of expressing the mining algorithms declaratively using a few SQL

statements. Thus, one can avoid writing and debugging code for memory management,
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indexing and space management all of which are already provided in a database system.
However, there are some detractors to easy development using the SQL alternative. First,
any attached UDF code will be harder to debug than stand-alone C++ codes due to lack
of debugging tools. Second, stand-alone code can be debugged and tested faster when run
against flat file data. Running against flat files is typically a factor of five to ten faster
compared to running against data stored in DBMS tables. Finally, some mining algorithms
(for instance, neural-net based) might be too awkward to express in SQL.

The ease of porting of the SQL alternative depends on the kind of SQL used. Within the
same DBMS, porting from one OS platform to another requires porting only the small UDF
code and hence is easy. In contrast the Stored-procedure and Cache-Mine alternatives
require porting larger lines of code. Porting from one DBMS to another could get hard for
SQL approach, if non-standard DBMS-specific features are used. Unfortunately, we found
SQL-92 implementations (which would have been quite portable) to be unacceptable from
the performance viewpoint. Our preferred SQL implementation relies on the availability
of DB2’s table functions. Table functions, for example, in Oracle 8 do not have the same
interface and semantics as DB2. Also, if different features have different performance
characteristics on different database systems, considerable tuning would be required. In
contrast, the Stored-procedure and Cache-Mine approach are not tied thus to any DBMS
specific features. The UDF implementation has the worst of both worlds; it is large and is
tied to a DBMS.

The biggest attraction of the SQL implementation is inter-operability and usage flex-
ibility. The ad hoc querying support provided by the DBMS enables flexible usage and

exposes potential for pipelining the input and output operators of the mining process with
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other operators in the DBMS. However, to exploit this feature one either needs to imple-
ment the mining operators inside the DBMS or use table functions in novel ways. The first
alternative would require major rework in existing database systems. The second alter-
native requires table functions that can execute SQL statements (a facility not currently
available in DB2 UDB). Furthermore, some mining operators generate multiple different
kinds of output (for instance, model tree and statistics for decision trees). In such cases,
pipelining of mining operators becomes harder to fit in existing relational models. Note
that the SQL approach presented here is based on embedded SQL and cannot provide oper-
ator pipelining and inter-operability. Queries on the mined result is possible with all four

alternatives as long as the mined results are stored back in the DBMS.

4.8 Other Associations Algorithms

There are recent proposals [26, 127] that attempt to minimize the number of data
passes in the Apriori algorithm to two or three. Currently, the Stored-procedure approach
makes as many passes as the length of the largest itemset and in each pass, most of the
time is spent in reading the data from the DBMS. Therefore, by using these alternative
algorithms it is possible to reduce the time spent by Stored-procedure by as many times
as the number of passes. However, the Cache-Mine approach is almost a lower bound on the
best performance possible for doing associations outside the DBMS because it spends most
of its time in the first pass which is the minimum amount of work any mining algorithm
that works outside the DBMS has to spend; read all of the data at least once. Since our SQL
approach is competitive with the one-pass Cache-Mine approach, we expect our conclusions
to hold for other algorithms that spend 1.5 to 3 times the time spent by Cache-Mine.

These alternative algorithms are not likely to help improve the performance of our SQL
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implementation because they are aimed at reducing the number of passes over the data.
We have seen that with our SQL implementations hardly any time is spent on passes beyond
2 because of the Vertical approach. The time spent in pass 2 is not reduced because they

all require counting support of all of C5 on the entire data anyway.

4.9 Summary

In this chapter, we developed and experimented with a set of approaches that made
use of the new object-relational extensions like UDFs, BLOBs and table functions. These
approaches performed much better than the SQL-92 approaches in Chapter 3. We developed
a hybrid scheme which picks the best approach for each pass based on the cost estimates. We

also compare the various architectural alternatives both qualitatively and quantitatively.

Note A part of the work described in this chapter was primarily done by researchers
from IBM Almaden Research Center. The author’s primary contributions were the opti-
mizations to the approaches, in Sections 4.1.1 and 4.2.1, the hybrid approach in Section 4.5
and the cost analysis of the various support counting approaches. The author has also

contributed to the performance experiments which led to the various comparisons.



CHAPTER 5
GENERALIZED ASSOCIATION RULES

In most real-life applications the set of items that appear in transactions can be cat-
egorized according to a taxonomy (is-a hierarchy) on the items. The taxonomy shown in
Figure 5.1 says that Pepsi is-a soft drink is-a beverage and so on. In general, a taxonomy
can be represented as a directed acyclic graph (DAG). Given a set of transactions T each of
which is a set of items, and a taxonomy Taz, the problem of mining generalized association
rules is to discover all rules of the form X — Y, with the user-specified minimum support
and minimum confidence. X and Y can be sets of items at any level of the taxonomy, such
that no item in Y is an ancestor of any item in X [118]. For example, there might be a
rule which says that “50% of transactions that contain Soft drinks also contain Snacks; 5%

of all transactions contain both these items.”

Beverages Snacks

/ N\ / N\

Soft drinks ~ Alcoholicdrinks  Pretzels  Chocolate bar

/NN

Pepsi Coke Beer

Figure 5.1. Example of a taxonomy

In this chapter, we present several SQL formulations of generalized association rule
mining [126]. In Section 5.1, we describe the input-output formats and in Section 5.2,

we briefly outline the Cumulate algorithm for generalized association rule mining [118].
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Table 5.1. An example of the taxonomy table

Parent Child
Beverages Soft drinks
Beverages Alcoholic drinks
Soft drinks Pepsi

Soft drinks Coke

Alcoholic drinks | Beer

Snacks Pretzels

Snacks Chocolate bar

We present SQL formulations of ancestor pre-computation and candidate generation in
Sections 5.3 and 5.4 respectively. Several approaches for support counting based on SQL-
92 and SQL-OR are presented in Sections 5.6 and 5.7. In Section 5.8, we discuss some

experimental results.

5.1 Input-Output Formats

Input format The transaction table T has the same schema, (tid, item) as in the
case of boolean association rules. While transactions normally contain only items that are
leaves in the taxonomy, it is not a requirement. The taxonomy table Taz has two column
attributes, parent and child. Each record in Taz corresponds to an edge in the taxonomy
DAG. The taxonomy shown in Figure 5.1 is represented by Table 5.1. The number of
children for the interior nodes and the depth of the DAG are unknown at table creation

time and therefore alternative schemas may not be convenient.

Output format The output is a collection of all rules that satisfy the user-specified
minimum support and minimum confidence. The schema of the rules is the same as in the

boolean associations case 3.3.
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5.2 Cumulate Algorithm

Srikant and Agrawal [118] present several algorithms: Basic, Cumulate, Stratify and
EstMerge. We picked Cumulate for our SQL-formulations since it has the best performance.
Stratify and EstMerge are sometimes marginally better but they are far too complicated
to merit the additional development cost. Cumulate has the same basic structure as the
Apriori algorithm [9] for boolean associations. It makes multiple passes over the data where
in the k" pass it finds frequent itemsets of size k. Each pass consists of two phases: In the
candidate generation phase, the frequent (k — 1)-itemsets, F_1, found in the previous pass
is used as the seed set to generate candidate k-itemsets (Cy) that are potentially frequent.
In the support counting phase for each itemset ¢ € C}, the number of extended transactions
(transactions augmented with all the ancestors of its items) that contains ¢ is counted. At
the end of the pass, the frequent candidates are identified yielding F;. The algorithm
terminates when Fj, or Ck41 becomes empty.

The above basic structure is augmented with a few optimizations. The important ones
are pruning itemsets containing an item and its ancestor and pre-computing the ancestors
for each item. We extend the SQL-based boolean association rule framework in Chapters 3

and 4 with these optimizations.

5.3  Pre-Computing Ancestors

In this section, we explain how to compute the set of ancestors of each item using SQL.
We call £ an ancestor of z if there is a directed path from Z to z in Tax. The Ancestor
table is primarily used for (i) pruning candidates containing an item and its ancestor and

(77) extending the transactions by adding all the ancestors of its items. The ancestor
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computation can be expressed in SQL using a recursive query as shown in Figure 5.2. The

result of the query is stored in table Ancestor having the schema (ancestor, descendant).

insert into Ancestor
with R-Tax (ancestor, descendant) as
(select parent, child from Tax
union all
select p.ancestor, c.child from R-Tax p, Tax c
where p.descendant = c.parent)

select ancestor, descendant from R-Tax

ancestor, descendant

Tax

Figure 5.2. Pre-computing ancestors

5.4 Candidate Generation

In the candidate generation phase, we use the frequent itemsets Fj_; found in the
(k — 1) pass to generate a set of candidate itemsets Cj that contains all k itemsets such
that all k£ of its (k — 1)-length subsets are in Fj_;. Section 3.4.1 shows how to express this
operation as a k-way join between the frequent (k — 1)-itemsets (Fix_1’s). We can use the
same formulation except that we need to prune from Cj itemsets containing an item and

its ancestor. Srikant and Agrawal [118] prove that this pruning needs to be done only in
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the second pass (for C2). In the SQL formulation as shown in Figure 5.3, we prune all

(ancestor, descendant) pairs from Cy which is generated by joining F) with itself.

insert into Co
(select I1.itemq, I.itemy from Fi1h, F1 1
where I;.itemy < Is.itemq)
except
(select ancestor, descendant from Ancestor union
select descendant, ancestor from Ancestor)

Cc2

EXCEPT

T T

|1.item1<|2.item1N ancesior. YNION  ecendant

/ \d@cenday &nc&stor

F1l11 F112 Ancestor Ancestor

Figure 5.3. Generation of Cs

5.5 Support Counting to Find Frequent Itemsets

We use the candidate itemsets C}, the data table T and the ancestor table Ancestor
to count the support of the itemsets in Cy. We consider two categories of SQL imple-
mentations based on SQL-92 and SQL-OR in Sections 5.6 and 5.7 respectively. All the
SQL approaches developed for boolean associations in Chapters 3 and 4 can be extended
to handle taxonomies. However, we present the extensions to only a few representative
approaches. In particular, we consider the KwayJoin approach from SQL-92 and Vertical

and GatherJoin from SQL-OR.
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5.6 Support Counting Using SQL-92

5.6.1 K-way Join

In each pass k, we join the candidate itemsets C with k copies of an extended trans-
action table T* (defined below), and follow it up with a group by on the itemsets.

The extended transaction table 7™ is obtained by augmenting T' to include tid, item
entries for all ancestors of items appearing in 7. This can be formulated as a SQL query

as shown in Figure 5.4.

Query to generate T*
select item, tid from T union
select distinct A.ancestor as item, T.tid
from T, Ancestor A

where A.descendant = T.item)
T*

!

UNION

T.tid, A.ancestor as itaV \
T.item = A.descendant N T
/ \

T Ancestor A

Figure 5.4. Transaction extension subquery

The select distinct clause is used to eliminate duplicate records due to extension of
items with a common ancestor. Note that for this approach we do not materialize T*.
Instead we use the SQL support for common subexpressions (with construct) to pipeline
the generation of T with the join operations. The final SQL query and the corresponding

tree diagram are shown in Figure 5.5.



insert into Fj,

with T*(tid, item) as (Query for 7™ defined above)
select itemy, . ..itemy, count(¥)

from Cy, T* t1, ... T* 1y

where  ti.item = Cj.item and

ti.item = Cj.item;, and

t1.tid = ¢9.tid and

tp_1.tid = t.tid
group by itemy,items .. .itemy
having count(*) > :minsup

having
count(*) > :minsup

!

Group by
item1,....,itemk

Ck.item1 = tl.item /
Ck.itemk = tk.item >

tLtid = thti
—

T T tk
tltid = t2tid N

™ t1 ™ t2

Figure 5.5. Support counting by K-way join
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The 3wayJoin and 2GroupBy approaches for boolean associations can be extended to

handle taxonomies, in a similar way by replacing 7' with T* in the corresponding queries.

5.6.2  Subquery Optimization

The basic KwayJoin approach can be optimized to make use of common prefixes be-
tween the itemsets in C}, by splitting the support counting phase into a cascade of k sub-
queries. The subqueries in this case are exactly similar to those for boolean associations

presented in 3.5.4 except for the use of T instead of 7T'.

5.7 Support Counting Using SQL-OR

In this section we present three approaches that make use of the object-relational
features of SQL. We also present a cost-based analysis of the execution time of the various

approaches.

5.7.1 GatherJoin

The GatherJoin approach, which is based on the use of table functions [80], generates
all possible k-item combinations of extended transactions, joins them with the candidate
table C} and counts the support by grouping the join result. The extended transactions
T* (defined in Section 5.6.1) are passed to the table function GatherComb-K in the (tid,
item) order. A record output by the table function is a k-item combination supported by
a transaction and has k attributes T_itmq,...,T itmy. SQL queries for this approach is
presented in Figure 5.6.

The special optimization for pass 2 and the variations of the GatherJoin approach,
namely GatherCount, GatherPrune and Horizontal (refer Section 4.1) are also applicable

here.
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insert into Fj, select itemy, ... ,itemy, count(*)
from C},
(select to. T itmy, ..., ta. T dtmy from T™ 4,

table (GatherComb-K(¢;.tid, ¢;.item)) as t9)

where t5. T _itm1 = C}.itemy and

to. T itmy, = Cy.itemy,
group by Cy.item,. .., Cy.itemy
having count(*) > :minsup
having

count(™*) = :minsup

Group by

T_itml = Ck.iteml1 q\

T itmk = Ck.itern%><\

Table function Ck
GatherComb-K

A
Order by
tid, item

?

T

Figure 5.6. Support counting by GatherJoin

5.7.2  GatherExtend

This is a variation of the GatherJoin approach where we push the transaction exten-
sion inside the table function. For each item, we create an ancestor-list (stored as a BLOB)
which contains a list of ancestors of that item. This can be accomplished using similar SQL
queries as in the tid-list creation phase of the Vertical approach for boolean associations
(refer Section 4.2). The (item, ancestor-list) pairs are stored in a new AncListTable. Note

that ancestor-list needs to be created only for items that appear in the input transactions.
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In the support counting phase, we join the transaction table T with the AncListTable and
the resulting (tid, item, ancestor-list) tuples are passed to a table function GExtendComb-K
in tid order. The table function collects all the items and the corresponding ancestor-lists
of the same transaction, extends it and outputs k-item combinations of the extended trans-
action. Figure 5.7 illustrates the SQL queries for this approach. This approach was not
implemented because it might not perform better than the Vertical approach explained
next.

This approach can be combined with the GatherPrune approach (refer Section 4.1
to prune out item combinations that are not candidates. In that case, we can also delete
from the extended transactions items that are not present in any of the candidates, before

generating the item combinations.

5.7.3  Cost Analysis

In the cost analysis we use the notations of Table 5.2 in addition to the notations

introduced for boolean associations in Table 3.2.

Table 5.2. Additional notations used for cost analysis

D number of records in the input taxonomy table

d average depth of the taxonomy

l number of leaf nodes in the taxonomy

A number of records in the Ancestor table = [ x d

N* average number of items in an extended transaction = N * d
R* total number of records after transaction extension = R * d

ek cost of generating a k-item combination using GExtendComb-K
order(n) | cost of sorting n records

The cost of GatherJoin includes the cost of extending the transactions by joining the
transaction table with the ancestor table, generating k-item combinations, joining them

with C; and grouping the join result to count the support. Note that the transaction



insert into Fj, select itemy, ..., itemy, count(*)
from Ck, (select to.T itmy, ..., to. T itmy
from  (select tid, item, ancestor-list
from T, AncListTable A
where T.item = A.item) as ¢,
table (GExtendComb-K( #;.tid, ¢;.item, ¢;.ancestor-list)) as ¢2)

where t5. 7 _itm; = Cj.itemq and

to. T_itmy, = C.itemy,
group by Cg.itemq, ..., Ck.itemy

having count(*) > :minsup

having
count(*) > :minsup

Group by
itemi,....,itemk
T_itm1 = Ck.item1 ﬂ\
T itmk = Ck.itemyD j\

Table function Ck
GExtendComb-K

T.tid, T.item, A.ancestor-list ﬁ

T.item = A.item N
/ \

AncListTable A

Figure 5.7. Support counting by GatherExtend
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extension cost can be ignored if T* is materialized because in that case, it will be a one-
time cost. The result size of the join which extends the transactions is R* and the number
of k-item combinations generated, Ty is C(N*,k) « T. Therefore, the total cost of the

GatherJoin approach is

join(R, A, R*) + order(R*) + T} * sy + join(T%, Ck, S(Ck)) + group(S(Cy), Ck)

In GatherExtend, transaction extension is done inside the table function. The cost of
passing the ancestor-list as a BLOB is blob(d) since the average length of the ancestor-list

is the same as the depth of the taxonomy. The cost of GatherExtend is

join(R,1, R) + R * blob(d) + T}, * ex + join(T}, Cr, S(Cyk)) + group(S(Ck), Ck)

5.7.4 Vertical

In this approach, the transactions are first converted into a vertical format by creating
for each item a BLOB (tid-list) containing all tids that contain that item. The support for
each itemset is counted by merging the tid-lists of all its items. The tid-list of leaf node items
can be created using a table function in the same way as in the boolean associations case.
We present two approaches for creating the tid-list of the interior nodes in the taxonomy
DAG.

The first approach is based on doing the union of the descendant’s tid-lists of an
interior node. In the first phase, we create an initial TidTable containing the tid-lists of
the leaf nodes. The TidTable is joined with the ancestor table and the join result is passed

in the order of the ancestor attribute to the table function TUnion. For every node z, the
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insert into TidTable select ¢5.item, to.tid-list
from (select A.ancestor, T.tid-list
from TidTable T, Ancestor A
where T.item = A.descendant
order by ancestor) as t1,

table(TUnion(¢;.ancestor, ¢1.tid-list)) as to

tl.item, tl.tid-list

Table function
TUnion

Order by
ancestor

A.ancestor, T.tid-list
T.item = A.descendant N

TidTable T Ancestor A

Figure 5.8. Interior nodes’ tid-list generation by union

table function collects the tid-lists of all the leaf nodes reachable from z, union them and
outputs the tid-list for z. The SQL query for this is illustrated in Figure 5.8. This approach
can be further optimized to do the tid-list union of only the children of each interior node.
However, in the first phase tid-lists have to be created and materialized for every leaf node
item irrespective of its support. This is very expensive especially when the number of items
is large.

The second approach is to pass T (defined in Section 5.6.1) to the Gather table
function, as shown in Figure 5.9. The table function outputs tid-lists for all the items in
the taxonomy.

The support counting queries are exactly the same as for boolean associations ex-

plained in Section 4.2. The cost formula is also the same as in boolean associations except
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insert into TidTable select t5.item, to.tid-list
from T* t,, table(Gather(¢;.item, t1.tid, :minsup)) as t2
t2.item, t2.tid-list

Table function
Gather

Order by
item, tid
T*
Figure 5.9. Interior nodes’ tid-list generation from 1™
C 11 s . . R} .
that the average length of a tid-list in this case is Tf’ where R} is the sum of support

counts of all the frequent items.

5.8 Performance Results

In this section, we report the results of some of our performance experiments on real-
life datasets. We present only one set of results since our emphasis here is on showing that
the boolean association rule framework can be easily extended to handle more complex
mining computations like generalized association rules.

The experiments reported here were performed on Version 5 of IBM DB2 Universal
Server installed on a RS/600 Model 140 with a 200MHz CPU, 256 MB main memory and a
9 GB disk with a measured transfer rate of 8 MB/sec. Figure 5.10 shows the performance of
three approaches: Vertical, GatherJoin (shown as Gcj) and Stored-procedure (shown as
Sproc). The chart shows the preprocessing time and the time taken for the different passes.
For Vertical the preprocessing time includes ancestor pre-computation and tid-list cre-
ation times, where as for GatherJoin it is just the time for ancestor pre-computation. In the

stored procedure approach, the mining algorithm is encapsulated as a stored procedure [32]
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Performance comparison

OPrep @Pass 1 OPass 2 OPass 3 MPass 4 OPass 5 @Pass 6

12000 —
10500 -
9000 —
7500
6000 —
4500 —
3000 -

i B B

AN ; O AN ;
Q}“\\db 00\% Qko {\\o'b 00\ O
NEA

Time in sec

Support -->

Mail order data:

Total number of records = 2.5 million

Number of transactions = 568000

Number of items (leaf nodes in taxonomy DAG) = 85161
Total number of items (including interior nodes) = 228428
Max. depth of the taxonomy = 7

Avg. number of children per node = 1.6

Max. number of parents = 3

Figure 5.10. Comparison of different SQL approaches

which runs in the same address space as the DBMS. For the Stored-procedure experi-
ment, we used the generalized association rule implementation provided with the IBM data
mining product, Intelligent Miner [71]. For all the support values, the Vertical approach
performs equally well as the Stored-procedure approach. In some of the experiments
on other datasets, the Vertical approach performed better than the Stored-procedure
approach. The GatherJoin approach is worse mainly due to the large number of item com-
binations generated. In the GatherJoin approach, the extended transactions are passed

to the GatherComb table function and hence the effective number of items per transaction
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gets multiplied by the average depth of the taxonomy. In the GatherJoin approach, we
show the performance numbers for only the second pass. Note that just the time for second
pass is an order of magnitude more than the total time for all the passes of Vertical. For
0.5% support, second pass of GatherJoin took over 20,000 seconds while the total time for
Vertical was only about 3000 seconds. We did not do extensive experimentation here
because, based on the SQL formulations and the analysis, we expect similar performance

observations as in the case of boolean association rules.

5.9 Summary

In this chapter, we presented various SQL formulations for mining generalized associa-
tion rules. It shows that the boolean association rule framework can be easily extended for
generalized association rules. The major additions were to “extend” the input transaction
table (transform 7' to T™*) and to pre-compute the ancestors.

We have presented here the extensions only for a few representative SQL approaches
for boolean association rules in Chapters 3 and 4. The other approaches can be extended
in a similar manner. We expect the performance trends from boolean association rules
to hold for all these approaches for generalized associations also. There could be better
ways of handling the taxonomy like the EstMerge and Stratify algorithms presented in
Srikant and Agrawal [118]. However, with the currently available SQL operators they will
be too awkward to program. One possibility is to push some of those optimizations inside

user-defined functions and it remains to be seen how they will influence the performance.



CHAPTER 6
SEQUENTIAL PATTERNS

Sequential pattern mining utilizes the time associated with the transaction data to
find frequently occurring patterns. A sequential pattern is an ordered list (sequence) of
itemsets (refer Section 1.2.2 for a brief description of sequential patterns). Given a set of
data-sequences each of which is a list of transactions ordered by the transaction time, the
problem of mining sequential patterns is to discover all such patterns with a user-specified
minimum support.

We present several SQL formulations of sequential pattern mining in this chapter. In
Section 6.1, we describe the input-output formats and in Section 6.2, we briefly outline
the GSP algorithm for sequential pattern mining [120]. SQL-based sequential pattern
candidate generation is presented in Section 6.3. In Sections 6.5 and 6.6, we present several
SQL formulations for support counting based on SQL-92 and SQL-OR. In Section 6.7, we
briefly mention how to handle taxonomies over items. We concentrate on showing that
sequential pattern mining can also be handled within the same SQL-based framework. We

expect the performance trends from association rule mining to hold here also.

6.1 Input-Output Formats

6.1.1 Input Format

The input table D of data-sequences has three column attributes: sequence identifier

(sid), transaction time (#ime) and item identifier (item). Every data-sequence typically
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contains several transactions each of which is a set of items. The data-sequence table
contains multiple rows corresponding to different items that belong to transactions in the
data-sequence. The taxonomy on the items is represented in the same way as for the

generalized association rules.

6.1.2  Output Format

The output is a collection of frequent sequences. A sequence which is represented as a
tuple in a fixed-width table consists of an ordered list of elements where each element is a set
of items. The schema of the frequent sequences table is (item1,enos, ..., itemy, enog,len).
The len attribute gives the length of the sequence, that is, the total number of items in
all the elements of the sequence. The eno attributes stores the element number of the
corresponding items. For sequences of smaller length, the extra column values are set to
NULL. For example, if k = 4, the sequence ((computer, modem)(printer)) is represented

by the tuple (computer, 1, modem, 1, printer, 2, NULL, NULL, 3).

6.2 GSP Algorithm

We use the GSP algorithm of Srikant and Agrawal [120] as the basis for our SQL
formulations. The basic structure of the GSP algorithm is similar to that of the apriori
algorithm for association rule mining [9], although the specific details are quite different.
Therefore, the SQL-based association rule framework can be used for sequential patterns
also. The algorithm makes multiple passes over the data-sequences where in the k' pass
it finds frequent sequences of length k. Each pass consists of two phases: the candidate
generation phase and the support counting phase. In the candidate generation phase, the
frequent (kK — 1)-length sequences, Fy_1, found in the previous pass is used as the seed set

to generate candidate k-length sequences (Cy) that are potentially frequent. The candidate
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generation procedure ensures that Cjy is a superset of F. The counting phase makes a
pass over the input data-sequences to find the support for each candidate sequence. In the
support counting phase for each candidate sequence s € Cy, the number of distinct data-
sequences that contains s is counted. Two techniques to perform this operation efficiently
are explained in Srikant and Agrawal [120]: one which uses a hash-tree data structure and
another based on transforming the data-sequences into an alternate representation. The
algorithm terminates when the set of candidate sequences C, or the frequent sequences Fj

becomes empty.

6.3 Candidate Generation

In each pass k, the candidate k-sequences C}, are generated from the frequent (k — 1)
sequences Fj_1.  The schema of C}, is the same as that of frequent sequences explained
above in Section 6.1, except that we do not require the len attribute since all the tuples in
C} have the same length k.

Candidates are generated in two steps. The join step generates a superset of C by
joining F},_, with itself. A sequence s; joins with sg if the subsequence obtained by dropping
the first item of s; is the same as the one obtained by dropping the last item of s,. This

can be expressed in SQL as follows.

insert into C}, select Iy.itemy, I1.enoy, ..., Iy.itemg_1, I1.enog_1, Is.itemyg_1,
Ii.enop_1 + Is.enop_1 — Is.enop_o
from kal Ilngfl IQ

where I.3temo = I5.itemy and

Il.itemk_l = Ig.ite’m,k_z and



108

I1.enog — I1.enoy = Is.enoy — Iz.eno; and

Il.enok_l — Il.e'nok_g = Ig.e'rwk_g - Ig.enok_g

In the above query, subsequence matching is expressed as join predicates on the attributes
of Fj,_1. Note the special join predicates on the eno fields that ensure that not only do
the joined sequences contain the same set of items but that these items are grouped in the
same manner into elements. The result of the join is the sequence obtained by extending
s1 with the last item of s3. The added item becomes a separate element if it was a separate
element in sy, and part of the last element of s; otherwise. In our representation of the
candidate sequence, enog_1 and enoj_o determine if the added item is a separate element.

For example, let F3 be {((1,2) (3)), ((1,2) (4)), ((1) (3,4)), ((1,3) (5)), {(2) (3,4)),
((2) (3) (5))}- In the join step, the sequence ((1,2) (3)) joins with ((2) (3,4)) to generate
((1,2) (3,4)) and with ((2) (3) (5)) to generate ((1,2) (3) (5)). There are no other join
compatible sequences in Fj.

In the prune step, all candidate sequences that have a non-frequent contiguous (k —1)-
subsequence are deleted. In the above example, the sequence ((1,2) (3) (5)) will be deleted
since its contiguous subsequence ((1) (3) (5)) is not frequent.

We perform both the join and prune steps in the same SQL statement by writing
the above query as a k-way join as shown in Figure 6.1. For any k-sequence there are at
most k contiguous subsequences of length (k — 1) for which Fj_; needs to be checked for
membership. Note that all (k — 1)-subsequences may not be contiguous because of the maz-
gap constraint between consecutive elements. The join predicates on I; and I, remain the

same. The join of I; and I generates a k-sequence (Iy.items, ..., I1.itemy_1, Is.itemy_1)
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where two of its (k— 1)-subsequences are known to be frequent; it is generated from two such
(k — 1)-subsequences. Membership checks for the other (k — 2) subsequences are performed
using additional joins. The join predicates for these joins are enumerated by dropping one
item at a time from the generated k-sequence. We first drop itemo and if it results in a
contiguous subsequence, we check for its membership in Fj,_1 by the join with I3. For the
join with I, we drop item,_1.

The OR clause in the join predicate is to avoid checking for non-contiguous subse-
quences that are formed when eno,; — eno,—1 = 2 When there is no max-gap constraint,
the join predicates will not contain the OR part.

While joining F; with itself to get Co, we need to generate sequences where both the
items appear as a single element as well as two separate elements. Also note that the prune

step will not delete any candidate sequences. The generation of C5 is expressed in SQL as

insert into Cy (select I.itemq, 1, Is.itemq, 2
from F, I,,F; Iy) union

(select Ih.itemq, 1, Iy.itemq, 1

from FL,F I

where I .itemy < Iy.itemy)

For instance, if F} contains {(1), (2)}, Ce will have {((1) (1)), ((1) (2)), {(2) (1)), ((2) (2)),
((1,2))}.

6.4 Support Counting to Find Frequent Sequences

In each pass k, we use the candidate table C), and the input data-sequences table D
to count the support. We consider SQL implementations based on SQL-92 and SQL-OR

in Sections 6.5 and 6.6 respectively.
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(Drop item_k-1)

I1.iteml = Ik.item1 AND
I1item k-2 = Ik.item_k-2 AND
12.item_k-1 Ik.item_k-1 AND

11.eno2 - I1.enol lk.eno2 - Ik.enol AND

11.eno_k-1+12.eno_k-1-12.eno_k-2-11.eno k-2 =
Ik.eno_k-1 - Ik.eno_k-2 OR N

11.eno_k-1+12.eno_k-1-12.eno_k-2-11l.eno k-2=2
(Drop item2)
I1.iteml =13.iteml AND .

I1.item3 = 13.item2 AND F k-1 1k
12.item k-1 = 13item k-1 AND /
11.eno3 - I1.enol 13.en02 - 13.enol AND

11.eno4 - |1.eno3 13.en03 - 13.eno2 AND

12.eno_k-1-12.eno_k-2 = I‘3.eno_k-1 - 13.eno_k-2 OR
I1.eno3 - 11.enol =2

I Litem2 = I2.iteml AND F k-1 13
I Litem_k-1 = 12.item_k-2 AND >
11.eno3 - 11.eno2 = 12.eno2 - 12.enol AND
I1.eno_k-1-11.eno k-2 =12.eno k-2 - 12.eno_k-3
F k1 I1 F k-1 12

Figure 6.1. Candidate generation for any &

(Drop item3)
11.iteml = l4.item1 AND
11.item2 = l4.item2 AND
12.item3 = l4.item3 AND

11.eno2 - 11.enol = 14.en0o2 - 14.enol AND
11.eno3 + 12.en03 - 12.eno2 - |1.eno2 =

14.eno3 - 14.en02 OR N

11.eno3 + 12.eno3 - 12.eno2 - I1.eno2 =2
(Drop item?2) \

I1l.iteml =13.item1 AND F3 14
11.item3 = |3.item2 AND
12.item3 = |3.item3 AND

11.eno3 - 11.enol = 13.eno2 - 13.enol AND E j
12.eno3 - 12.eno2 = 13.eno3 - 13.eno2 OR \
F3 13

I11.eno3 - 11l.enol =2

11.item2 =12.item1l AND
11.item3 =|2.item2 AND ><
11.eno3 - 11.eno2 = 12.eno2 - IZy \
F3 11 F3 12

Figure 6.2. Candidate generation for k = 4
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6.5 Support Counting Using SQI-92

6.5.1 K-way Join

In the k** pass, we join the candidate table C) with k copies of the data-sequence
table D and group the join result on the candidate sequences as shown in Figure 6.3. This
approach is very similar to the KwayJoin approach for association rules (refer Section 3.5.1)

except for the following two key differences.
1. We use select distinct to ensure that only distinct data-sequences are counted.

2. Second, we have additional predicates between sequence numbers that are denoted
as PRED(k) in the query for brevity. The predicates PRED(k) is a conjunct (and) of

terms p;;j(k) corresponding to each pair of items from Cy. p;;(k) is expressed as

(Cr.enoj = Cy.eno; and abs(d;.time — d;.time) < window-size) or
(Cr.enoj = Cy.eno; + 1 and dj.time — d;.time < max-gap and
d;.time — d;.time > min-gap) or

(C-enoj > Ci.eno; + 1)

Intuitively, these predicates check (a) if two items of a candidate sequence belong
to the same element, then the difference of their corresponding transaction times is
at most window-size and (b) if two items belong to adjacent elements, then their

transaction times are at most maz-gap and at least min-gap apart.

We compute the frequent 1-sequences by grouping the data-sequences table on the
item attribute, counting the number of distinct sequences in which the item is present and

filtering the non-frequent items. The SQL query for this computation is given below.
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insert into F; (select item, 1, count(*)

from (select distinct sid, item
from D) ast

group by item

having count(*) > :minsup

6.5.2  Subquery Optimization

The subquery optimization for association rules can be applied for sequential patterns
also by splitting the support counting query in pass k into a cascade of k subqueries. The
predicates p;; can be applied either on the output of subquery @} or sprinkled across
the different subqueries (shown as SubQ-PRED(!) in Figure 6.4). The predicates SubQ-
PRED(!) is a conjunct of terms p;;(l) corresponding to each pair of items from d;, the

distinct I-item prefixes of Cy. p;;(I) is expressed as

(d;.eno; = dj.eno; and abs(time; — time;) < window-size) or
(di.enoj = dj.eno; + 1 and time; — time; < max-gap and
time; — time; > min-gap) or

(di-enoj > dj.eno; + 1)

6.6  Support Counting Using SQL-OR

6.6.1 Vertical

This approach is similar to the Vertical approach for association rules (refer Sec-
tion 4.2), where we convert the transaction table into a vertical format. For each item, we
create a BLOB (s-list) containing all (sid, time) pairs corresponding to that item. We use

a table function Gather for creating the s-lists. The sequence table D is scanned in the



insert into Fy,

select itemq, enoq,...,itemy, enoy, count(¥*)

from (select distinct dy.sid, item1, enos,...,itemy, enog
from Ck, D dl,. .. ,D dk

where dj.item = C.item; and

di.item = Cy.itemy, and

dy.sid = ds.sid and

dy.sid = dj.sid and
PRED(k)
)ast
group by item1, enoq,...,itemy, enog
having count(*) > :minsup

having
count(*) > :minsup

Group by
PRED(k) /
Ck.iteml = dl.item D ﬂ
Ck.itemk = dklty \
Ck

dL§d=d%ii£;>§gl\\\\

— D dk
disid=d2.sid [ ><]

T

D di D d2

Figure 6.3. Support counting by K-way join
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insert into Fj

select itemy, enoy, ... ,itemy, enog, count(*)

from (select distinct sid, itemy,enoq, ...,
itemy, enog from (Subquery Q) )

group by itemq, enoq, ..., itemg, enog

having count(*) > :minsup
Subquery @; (for any [ between 1 and k):

select itemq, enoy, timen, . .. itemy, enoy, t;.time, sid
from D t;, (Subquery Q;_1) as r;_1,
(select distinct itemq, enoy, ...

itemy, eno; from Cy) as d;
where 7;_1.item1 = dj.itemq and ... and

ri_1.item;_1 = dj.item;_1and

r1_1.8%d = t;.81d and

t;.item = dj.item; and SubQ-PRED(!)

Subquery @o: No subquery Q.

Subquery Q |

¢

item 1,eno 1,time 1,...item |, eno I, tl.time, sid

T r I-1sid = tl.sid
SUbQPRED() || {Titem= dlitem

r I-liteml =dl.iteml
(I-Litem J-1 = dlitem -1 | ><] D

r_I-/ N

Subquery Q I-1 ~ select digtinct
item_1,eno 1,...item |, eno |

Ck

Figure 6.4. Subquery optimization for KwayJoin approach
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(item, sid, time) order and passed to the function Gather, which collects the (sid, time)
attribute values of all tuples of D with the same item in memory. For items that meet
the minimum support criterion, the function outputs a (item, s-list) pair. The s-lists are
maintained sorted using sid as the major key and time as the minor key, and is stored in a
new SlistTable with the schema (item, s-list).

In the support counting phase, we collect the s-lists of all the items of a candidate
and intersect them to determine the data-sequences containing that sequence. For each
candidate sequence in Cj, we select from the SlistTable the s-lists corresponding to the
k items in the sequence and pass them to a UDF CountIntersect-K along with the eno
attributes of the candidate, as shown in Figure 6.5. The UDF intersects the s-lists and does
the support counting. Eventhough this approach is the same as the one for associations,
the CountIntersect-K function is quite different.

The UDF first finds the data-sequence containing all the items and marks the bound-
aries of it in each of the s-lists. Note that the s-lists are maintained sorted on (sid, time).
The UDF also groups the s-lists according to the elements of the candidate sequence us-
ing the values of the eno parameters. For determining whether the candidate is contained
in the data-sequence, we use an algorithm similar to the one described in Srikant and
Agrawal [120]. The details of this procedure are different due to the vertical representation
of data-sequences. If the candidate is contained in the data-sequence the support count is
incremented and the same steps are repeated for the subsequent data-sequences.

The intersect operation can be decomposed to share it across sequences having common
prefixes similar to the subquery optimization in the KwayJoin approach. In this approach
we need to use two UDFs, Intersect and Count. The former intersects the s-lists to filter

out the data-sequences that does not contain all the items of the candidate. A new s-list
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insert into F},

select t.itemy, t.enoq,...,t.itemy, t.enog, cnt
from (select item1, enos,...,itemy, enog,
CountIntersect-K(Cy.enox, ..., Cx.enog, dy.s-list,. .. dg.s-list,

window-size,min-gap,max-gap) as cnt
from  Cy, SlistTable d,. .. ,SlistTable dy,

where d;.item = Cj.item and

dy.item = Cy.itemy,) as t

where cnt > :minsup
iteml,...,itemk, enol,...,enok, cnt

cnt > :minsup

cnt
Countlntersect-K (UDF)

T dl.slist,...,dk.slist
Ck.iteml = d1l.item N
Ck.itemk Zw \\

Ck SlistTable di,..., SlistTable dk
Figure 6.5. Support counting by Vertical

corresponding to the intersection is created and is passed to Count which counts the number
of data-sequences containing the candidate. In the later passes of the GSP algorithm, this
approach might be better since several candidates may share common prefixes and also
the length of the intersected s-list is likely to be small. However, in the approach using
CountIntersect-K, the intersected s-list is not materialized since the UDF interleaves the

intersection and counting. Therefore, it is suitable for the earlier passes.
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6.6.2 GatherJoin

The GatherJoin approach for association rules (refer Section 4.1) can be extended
to mine sequential patterns also. In this approach, we first Gather all the (tid,item) pairs
corresponding to fixed values of sid. We then generate all possible k-sequences using a
table function, join them with C; and group the join result to count the support of the
candidate sequences. The time constraints are checked on the table function output using
join predicates PRED(k) as in the KwayJoin approach. The number of tuples generated
by the table function can be reduced by applying the max-gap, min-gap and window-size
constraints inside the table function. However, PRED(k) is still required to check if the
sequences in Cj are contained in the generated k-sequences. The items in a candidate
sequence are not lexicographically ordered. Therefore, a data-sequence containing n items
can potentially support n* k-sequences. For real-life datasets, the value of n is large and
hence this approach will generate too many sequences, thereby making it less attractive
in terms of performance. However, an approach similar to GatherCount will be feasible
where we keep the candidate sequences inside the table function and generate only sequences
present in the candidate set. The GatherJoin approach was not implemented for sequential

patterns.

6.7 Taxonomies

The approaches to handle taxonomies for association rules (refer Chapter 5) are ap-
plicable for sequential patterns also. The basic idea is to replace each data-sequence d with
an “extended-sequence” d'. Each transaction of d is extended with all the ancestors of its
items to get d’. In order to optimize the performance, we pre-compute the ancestors and

prune candidates with an element that contains both an item and its ancestor.
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6.8  Summary

In this chapter, we presented various SQL formulations for mining sequential patterns.
We extended a few representative association rule mining approaches in order to show that
sequential pattern mining can also be handled with in the SQL framework. The major
changes were in the join predicates for candidate generation and support counting.

We did not do extensive experimentation for the sequential pattern mining approaches.
Among the SQL-based approaches, the Vertical approach performed the best in our exper-
iments. The SQL queries for the higher numbered passes becomes too long since there are
several join predicates and as a result the optimizer does not generate optimal execution
plans. Further, in the Vertical approach, the user-defined functions for support counting are
much more complex than their association rule counterparts. We also did not implement

the extensions to handle taxonomies in this case.



CHAPTER 7
INCREMENTAL MINING

Data mining discovers information within data warehouses and finds answers to ques-
tions about your data that you haven’t thought to ask. The rules discovered from a database
only reflect the current state of the database. In order to make the discovered rules reliable
and useful, large volumes of data need to be collected and analyzed over a period of time.
This entails the development of techniques to handle large volumes of data, and to main-
tain rules over a significantly long period of time. Therefore, efficient algorithms to update,
maintain and manage the discovered rules are central to the database mining technology.

Association rule mining is an important data mining problem which finds applications
in various business domains. Association rules are discovered from a transaction database
and updates to it could potentially invalidate existing rules or introduce new rules. The
problem of updating the rules can be reduced to finding the new set of frequent itemsets.
Since rule generation is computationally inexpensive, it is not critical to develop incremental
rule generation algorithms. A simple solution to the update problem is to re-compute the
frequent itemsets from the updated database. This is clearly inefficient because all the
computations done initially for finding the old frequent itemsets are wasted. An algorithm,
FUP (Fast Update), for updating the frequent itemsets has been developed for the addition

of new transactions to the database [36]. It is based on the Apriori algorithm and needs
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O(n) passes over the database where 7 is the size of the maximal frequent itemset. Another
incremental algorithm is presented in Feldman et al. [47].

In this chapter, we present an algorithm to find the new frequent itemsets with min-
imal re-computation when new transactions are added to or deleted from the transaction
database [123]. Deletion is important in cases where we want to analyze the data in a

sliding time window. The important characteristics of our algorithm are the following.

e Along with the frequent itemsets, we also maintain the negative border [127])' . The
algorithm uses negative borders to decide when to scan the whole database and it
can be used in conjunction with any level-wise algorithm like Apriori [13] or Parti-

tion [111].

e We first compute the frequent itemsets of the increment database. The algorithm
requires a full scan of the whole database only if the negative border of the frequent
itemsets expands, that is, if an itemset outside the negative border gets added to the
frequent itemsets or its negative border. Even in such cases, it requires only one I/O

pass over the whole data set.

Constrained association mining is another useful technique for goal-oriented mining.
We generalize the incremental mining algorithm to handle cases with contstraints on the
items and certain kinds of constraint relaxation.

In Section 7.1, we present the incremental algorithm to update the frequent itemsets.
Experimental results quantifying the performance advantages of the incremental algorithm
are presented in Section 7.2 and in Section 7.3, we compare it with FUP. In Section 7.4,

we explore the database integration alternatives of incremental mining and in Section 7.4.2

!Note that the negative border can be maintained while computing the frequent itemsets without any
additional computation overhead.
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we present the performance results of the SQL-based incremental algorithm [124]. In Sec-
tion 7.5, we introduce constrained associations and generalize the incremental approach to
handle constraints. The incremental algorithm is applicable to a larger class of data mining

and decision support problems. Some of them are briefly outlined in Section 7.6.

7.1 Incremental Updating of Frequent Itemsets

In this section, we develop an efficient algorithm for updating the frequent itemsets
when the database is updated. In the context of basket data, database update effectively
means addition of new transactions to the database or deletion of existing transactions. In
Section 7.1.1, we describe how to compute the negative border of a set F' of frequent item-
sets. In Section 7.1.2, we present and prove some lemmas and theorems before describing
the algorithm to handle the addition of transactions. Handling the deletion of transactions

is outlined in Section 7.1.3.

7.1.1 Computing NBd(F) from F

The negative border (NBA(F)) of a set of frequent itemsets F' can be computed by
repeating the join and prune steps of the apriori-gen function in the apriori algorithm [13].
This computation can be done using only the set of frequent itemsets F' and the database

need not be scanned.

Definition 1 The negative border NBd(F), of a collection of itemsets F is defined as fol-
lows: Given a collection F C P(R) of sets, closed with respect to the set inclusion relation,

the negative border NBd(F) of F consists of the minimal itemsets X C R not in F [83].

The apriori-gen function (described in Figure 7.1) takes as argument Fj_1, the set of

all frequent (k — 1)-itemsets. It returns the set of k-itemsets that are potentially frequent.
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function apriori-gen(Fj,_1)
for each p and q € Fy,_; do

if pitemy = q.itemq,...,p.itemy_o = q.itemy_» and p.itemy_1 < q.itemyp_1

then insert p.itemq, p.items, ..., p.itemy_1,q.itemp_1 into C},
for each ¢ € Cy,

delete ¢ from Cj, if some (k — 1)-subset of ¢ is not in Fj,_;

Figure 7.1. A high-level description of the apriori-gen function

The negative border consists of all itemsets that were candidates which did not have
the minimum support in the level-wise method. That is, NBd(Fy) = Cy — Fy where Cy is
the set of candidate k-itemsets, Fj, is the set of frequent k-itemsets and N Bd(F}) is the set
of k-itemsets in N'Bd(F). Therefore, F,U N Bd(F) = Cy. The negativeborder-gen function

to compute N'Bd(F) is explained in Figure 7.2.

function negativeborder-gen(F')
Split F into Fi, Fs,..., F, where n is the size of the largest itemset in F’
forall k =1,2,....,n do
compute Ci41 using apriori-gen(Fy,)

FUNBA(F) = U=y, ny1 Ck UL where I is the set of 1-itemsets.

Figure 7.2. A high-level description of the negativeborder-gen function

Lemma 1 All 1-itemsets should be present in FU NBd(F).
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Proof: The lemma follows directly from the definition of negative border since any 1-

itemset not in F' is a minimal itemset not in F'. O

7.1.2 Addition of New Transactions

When new transactions are added to the database, an old frequent itemset could
potentially become infrequent in the updated database. Similarly, an old infrequent itemset
could potentially become frequent in the new database.

In order to solve the update problem efficiently, we maintain the frequent itemset
and the negative border along with their support count in the database. That is, for
every s € F UNBd(F), we maintain s.count. In the rest of this section, DB denotes the
original database, db denotes the transactions that are newly added and DB+ denotes the
updated database. Also FPB F%® and FPB+ denotes the frequent itemset and N Bd(FPB),
NBd(F%®) and N'Bd(FPB+) denotes the negative border of the original database, increment

database and the updated database respectively.
Lemma 2 Let s be any itemset such that s ¢ FPB. Then s € FPBT only if s € F®,

Proof: Assume that there exists an itemset s such that s € FPB+ s ¢ FPB and s ¢ F®,
Let tpp(s) and tg(s) be the number of transactions in DB and db respectively containing

the itemset s. Also let tpp and tg be the total number of transactions in DB and db

respectively. Since s € FPB and s ¢ F®,

t 14
p5(3) < minSupport and a(s)
tpB db

< minSupport.

From these two equations, it can be shown that
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tpp(s) + tap(s)

< minSupport
tpB + tay

Therefore, s ¢ FPB+ which is a contradiction. O

Lemma 3 Let s be an itemset such that s € NBd(F). Then all possible subsets of s must

be present in F'.

Proof: For a contradiction, let ¢ be an itemset such that ¢t C s and ¢t ¢ F'. By the definition
of negative border, N'Bd(F') consists of the minimal itemsets not in F'. Since t € F, s is not
a minimal itemset not in F. Therefore s cannot be in N'Bd(F), which is a contradiction.

O

Theorem 1 Let s be an itemset such that s ¢ FPB U NBd(FPB) and s € FPBY. Then
there exists an itemset t such that t C s, t € NBd(FPP) and t € FPBY. That is, some

subset of s has moved from N'Bd(FPB) to FPB+,

Proof: Since s € FPB+ all possible subsets of s should be in FPB+, But all the subsets
of s cannot be in FPB because if that was the case, then s should be present in at least
NBA(FPB) if not in FPB itself. By our assumption, s ¢ FPB U NBd(FPPB). Therefore,
there exists an itemset ¢ such that ¢ C s and t ¢ FPB. Now we have two cases.

Case i : t € NBd(FPB).

In this case, t € FPB+ since s € FPB+ and t C 5. Therefore, we have found a subset of s
which has moved from NBd(FPB) to FPB+.

Case ii : t ¢ NBd(FPP).

That is, t € FPB U NBd(FP?). But, we know that ¢t € FPB+ gince s € FPBt and t C s.
Therefore, t ¢ FPB U NBd(FPP) and t € FPB+ and hence we can apply the theorem

recursively on ¢t. Note that the size of ¢ is less than the size of s since t C s.
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When this is applied recursively, there are two possibilities. First is, for some subset of
t, case i holds true in which case, there is a subset of ¢ which has moved from N'Bd(FPB) to
FDPB+ and hence the theorem is proved. Otherwise, ¢ will finally become a 1-itemset. By
Lemma 1, we know that all 1-itemsets are present in FP8 U NBd(FPB). Since t ¢ FP5,
t € NBd(FPB) which contradicts the assumption for case 7. That is, case 44 is not possible
if t is a 1-itemset. O

By Theorem 1, if none of the itemsets move from the negative border to the frequent
itemset, we do not need to scan the whole database. Even in cases where some itemsets
move from the negative border to the frequent itemset, a complete database scan is required
only if the negative border expands because, for all the itemsets in the negative border, we
can derive the updated support count without a database scan.

We maintain the support count for all itemsets in the frequent itemset and the negative
border. First, we compute the frequent itemset in db using a level-wise algorithm like Apriori
or Partition. Simultaneously we count the support for all itemsets in FPB U N Bd(FPB)
in db. If an itemset t € FPB does not have minimum support in DB U db, then ¢ is
removed from FPB. This can be easily checked since we know the support count for ¢ in
DB and db. The change in FPB could potentially change N'Bd(FP?) also. Therefore, we
have to recompute the negative border using the negativeborder-gen function explained in
subsection 7.1.1.

On the other hand there could be some new itemsets which become frequent in the
updated database. Let s be an itemset which gets added to the frequent itemset of the
updated database. By Lemma 2, we know that s has to be in F%. We also know by
Theorem 1 that some subset of s must move from N'Bd(FP?) to FPB+. For each itemset

s € F%® we check if s gets the minimum support to move from NBA(FPB) to FPB+. If
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function Update-Frequent-Ttemset(FPE, NBd(FPB), db)
//DB and db denote the number of transactions in the original database and the
increment database respectively.
Compute F
for each itemset s € FPB U NBd(FPB) do
tap(s) = number of transactions in db containing s
FDB+ —
for each itemset s € FPB do
if (tpp(s) + tap(s)) > minsup x (DB + db) then FPB+ = FPB+ s
for each itemset s € F% do

if s & FPB and s € NBd(FP®) and (tpg(s) + tq(s)) > minsup x (DB + db)

then FPB+ = FPB+ 5
if FPB £ FPB+ then
NBd(FPB+) = negativeborder-gen(FPB)
else NBd(FPB+) = NBd(FPB)
if FDB U N'Bd(FPB) # FPB+ U N'BA(FPB+) then
S — FDB+
repeat
compute S = S UNBA(S)
until S does not grow
FDPB+ = {3 € S|support(z) > minsup}
//support(z) is the support count of z in DB U db
NBA(FPB+) = negativeborder-gen(FPB+)

Figure 7.3. A high-level description of the Update-Frequent-Itemset function
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none of the itemsets in N'Bd(FPP) gets the minimum support, no new itemsets will be
added to FPB*, If some itemsets in N'Bd(FP?) gets the minimum support move them to
FDPB+ and recompute the negative border. If FPB+ U NBd(FPB+) £ FPB U NBA(FPB),
we have to find the negative border closure of FP5* and scan the entire database(DB)
once to find the updated frequent itemset and negative border. The negative border closure
of F is found by repeatedly finding F = F UNBd(F) until F does not grow.

During the database scan, all the itemsets which are in the negative border closure
that were not originally in FUN Bd(F) are used as the candidate itemsets and their support
count is computed. The candidate set can further be pruned by applying an optimization
while finding the negative border closure. It can be observed that an itemset which is not
frequent in the increment database (db) cannot get added to the updated set of frequent
itemsets. Therefore, such itemsets can be pruned at each step of the negative border closure
computation to get the pruned negative border closure. However, the support count of these
pruned itemsets should also be found since they may potentially be in the updated negative

border.

7.1.3 Deletion of Existing Transactions

Similar to the case where new transactions are added to the database, the frequent
itemset and its negative border could potentially change when some existing transactions
are deleted from the database. As in the former case, we maintain the frequent itemset and
the negative border along with their support count in the database. Let DB— denote the
updated database and FPB~ and NBd(FPB~) denote its frequent itemset and negative

border respectively.
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Lemma 4 Let s be an itemset such that s € FPB. Then s ¢ FPB~ only if s € F®. That

is a frequent itemset s will become infrequent only if s € F®,

This lemma can be proved in the same way as lemma 2.
The algorithm to compute the frequent itemset and the negative border of DB— is
similar to the one in the case where new transactions are added to the database and can

be derived easily.

7.2 Experimental Results

We conducted a set of experiments to compare the performance of our incremental
algorithm. These experiments were performed on a Sun SPAR station 4 running SunOS
5.5. In this section, we report on the results of some of those experiments.

The experiments were performed on synthetic data generated using the same tech-
nique as in Agrawal and Srikant 13 . The dataset used for the baseline experiment was
T1 .I14.D1 ( ean size of a transaction = 1 , ean size of maximal potentially large
itemsets = 4, Number of transactions =1 thousand). The increment database is created
as follows: We generate 1  thousand transactions, of which (1 — d) thousand is used for
the initial computation and d thousand is used as the increment, where d is the fractional
size (in percentage) of the increment.

We compare the execution time of the incremental algorithm with respect to running
Apriori on the whole data set. Figure 7.4 shows the speed up of the incremental algorithm
over Apriori for di erent minimum support thresholds. We report the results for increment
sizesof 1 ,2 ,5 and 1 (shown in the legend). From the graph, it can be seen that
the incremental algorithm achieves speed up of about 3 to 2 . The algorithm shows better

speed up for medium support threshold than low and high support thresholds. At high
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Figure 7.4. Speed-up of the incremental algorithm

support thresholds, the number of frequent itemsets and the number of passes in the level-
wise algorithm are less and hence it is less costly to run Apriori on the whole database. At
low support thresholds, the probability of the negative border expanding is higher and as a
result the incremental algorithm may have to scan the whole database. Also, the speed up
is higher for smaller increment sizes since the incremental algorithm needs to process less

data.

7.3 omparison with FUP

The framework of FUP 36 is similar to that of Apriori and contains a number of
iterations. Each iteration is associated with a complete scan of the whole database and
in iteration k all the frequent k-itemsets are found. The candidate sets for iteration &k + 1
are generated based on the frequent itemsets found in iteration k. FUP uses the following

steps to compute the frequent itemsets.

1. At each iteration k, the support of the frequent k-itemsets ( ) is updated against
the increment database db to filter out the itemsets that are no longer frequent in the

updated database.
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2. The set of candidate sets C} is generated by applying the apriori-gen function on
PBT (frequent (k-1)-itemsets in the updated database). The itemsets in  are
pruned from Cj because they have already been handled in the above step. C} is

further pruned by removing the itemsets that do not have minimum support in db

since they cannot be frequent in the updated database.

3. Scan the whole database to count the support of all the itemsets in C}, and the ones

which have the minimum support are identified as the new frequent k-itemsets.

The speed up of FUP over Apriori can be mainly attributed to the reduction in the
number of candidate itemsets thereby reducing the computation. However there is no
reduction in the I O requirements because, like apriori FUP may also require (n) passes
over the database where n is the size of the maximal frequent itemset.

The steps involved in our incremental algorithm can be summarized as follows.

1. ompute the frequent itemsets of the increment database ( %) using any level-wise
algorithm like Apriori or Partition. Simultaneously, count the support in db of all

the frequent itemsets and the negative border.

2. Using the above support counts and the negativeborder-gen function, determine if

the negative border has expanded.

3. In case of a negative border expansion, find the negative border closure and scan the
whole database once to count the support of the newly added itemsets. The ones

with minimum support are added to the set of frequent itemsets.

The notable feature here is that the whole database is scanned only if required (and

that too only once), thereby reducing the I O requirements drastically. omputing the
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negative border closure may increase the size of the candidate set. However, a ma ority of
those itemsets would have been present in the original negative border or frequent itemset.
Only those itemsets which were not covered by the negative border need to be checked
against the whole database. As a result, the size of the candidate set in the final scan could

potentially be much smaller as compared to FUP.

7.4 Database Integration of Incremental ining

In this section, we discuss the various database integration architectures for incremen-
tal mining based on the alternatives presented in hapter 2. In Section 7.4.1, we present
two S L-based approaches for incremental frequent itemset computation. The applicability

of the other architectural alternatives are discussed in Section 7.4.4.

7.4.1 S L Formulations of Incremental ining

Two categories of S L formulations for frequent itemset mining based on S L- 2 and

S L-OR are presented in hapters 3 and 4 respectively. A cost-based analysis of the S L-

2 approaches and the related performance optimizations are discussed in Thomas and

hakravarthy 125. We discuss here how these techniques can be adapted for incremental

mining. Efficient S L formulation of the incremental algorithm entails counting support
of multiple-sized candidates together in the same pass.

The input transaction data is stored in a relational table ~ with the schema (tid, item).

The increment transaction table also has the same schema. The frequent itemsets and
negative border of size k are stored in tables with the schema (it mq,...,it my,count).
We discuss the extensions to and two representative approaches from

the S L- 2 and S L-OR categories. We also outline the S L-based candidate closure

computation to compute negative border closure.
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Subquery Approach

In this approach, support counting is done by a set of k nested subqueries where k is
the size of the largest itemset. We present here the extensions to the subquery approach in
Section 3.5.4 to count candidates of di erent sizes. Subquery  finds all tids that support
the distinct candidate -itemsets (d ). d comprises of the distinct -item prefixes of all
candidate itemsets. However, it is sufficient to use C', the candidate -itemsets instead of
d since all -item prefixes of candidate itemsets with more than items will be present
in C. The output of is grouped on the items to find the support of the candidate
-itemsets.  is also oined with ~ ( while counting the support in the whole database)
and C ;1 toget 1. The S L queries and the corresponding tree diagrams for the above
computations are given in Figure 7.5. B stores the support counts of all frequent and
negative border itemsets in

The output of subquery needs to be materialized since it is used for counting the
support of -itemsets and for generating ;. If the query processor is augmented to
support multiple streams where the output of an operator can be piped into more than one
subsequent operators, the materialization of s can be avoided. In the basic association
rule mining, we do not have to count itemsets of di erent sizes in the same pass since C ;
becomes available only after the frequent -itemsets are computed.

Tables B and B store the frequent and negative border -itemsets and their support
count in  and respectively. Support counts of itemsets in the whole database can be
computed by oining B and B and adding the corresponding support counts. We add
another attribute to B to keep track of promoted borders (itemsets that moved from the

negative border to the frequent set).
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Figure 7.5. Support counting using subqueries
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omputing andidate losure

In the apriori algorithm candidate itemsets are generated in two steps: the oin step
and the prune step. In the oin step, two sets of (k — 1)-itemsets called generators and
ertenders are oined to get k-itemsets. An itemset s; in generators oins with s in extenders
if the first (k—2) items of s; and s are the same and the last item of s; is lexicographically
smaller than the last item of s . The oin results in an itemset that is s; extended with the
last item of s . The result of the oin step is sub ected to subset pruning which filters out
all itemsets with a non frequent (k — 1)-subset. This can be accomplished by subsequent

oins with (k —2) copies of a set of itemsets termed lters. While generating Cy, from Fj_4
in the basic apriori algorithm, Fj,_1 acts as generators, extenders and filters.

In the incremental algorithm, we compute the candidate closure to avoid multiple
passes while counting the support of the new candidates. It can be seen that all the
new candidates will be supersets of promoted borders. Therefore, it is sufficient to use the
itemsets that are promoted borders as generators. In order to generate Cj, the candidates of
size k, we use Bj_1UCE_1 as generators and Bjy_1UC;_1UF)_1 as extenders and filters.

By._1 and Fj_; denote promoted borders and frequent itemsets of size (k — 1) respectively.
The candidate generation process starts with C as the empty set and terminates when Cj
becomes empty. It is straight-forward to derive S L queries for this process and we do not

present them here (refer Section 3.4.1).

_ertical
In the approach, for every transaction that supports an itemset we generate
(itemset, tid) tuples resulting in large intermediate tables. The approach avoids

this by collecting all tids that support an itemset into a BLOB (binary large ob ect) and
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generates (itemset, tid-list) tuples. Initially, tid-lists for individual items are created using a
table function. The tid-list for an itemset is obtained by intersecting the tid-lists of its items
using a user-defined function (UDF). The S L queries for support counting are similar in
structure to that of the approach except for the use of UDFs to intersect the
tid-lists. We refer the reader to Section 4.2 for the details.

The increment transaction table  is transformed into the vertical format by creating
the delta tid-lists of the items. The delta tid-lists are used to count the support of the
candidate itemsets in which are later merged with the original tid-lists. This can be
accomplished by oining the original tid-list table with the delta tid-list table and merging
the tid-lists with a UDF. If the incremental algorithm requires a pass over the complete

data, the merged tid-lists are used for support counting.

7.4.2 Performance Results

In this section, we report the results of some of our performance experiments to quan-
tify the advantages of the incremental mining algorithm. Note that incremental mining can
be considered as a special case of relaxing the frequency constraint. These experiments were
performed on ersion 5 of IB DB2 Universal Server installed on a Sun Ultra 5 odel 27
with a 26 Hz UltraSPAR -IIi PU, 128 B main memory and a 4 B disk. We report
the results of the S L formulations of the incremental algorithm based on the Subquery
and ertical approaches.

The experiments were performed on synthetic data generated using the technique in
Agrawal and Srikant 13 . The dataset used for the experiment was T1 .I4.D1 ( ean
size of a transaction =1 , ean size of maximal potentially large itemsets = 4, Number of

transactions = 1 thousand). The increment database is created as follows: We generate
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— d) thousand is used for the initial computation

1  thousand transactions, of which (1
and d thousand is used as the increment, where d is the fractional size (in percentage) of
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Figure 7.6. Speed up of the incremental algorithm based on the Subquery approach
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Figure 7.7. Speed up of the incremental algorithm based on the ertical approach

We compare the execution time of the incremental algorithm with respect to mining

the whole dataset. Figures 7.6 and 7.7 shows the corresponding speed-ups of the incremen-
ertical approaches for di erent minimum

tal algorithm based on the Subquery and the
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support thresholds. We report the results for increment sizes of 1 ,5 and 1 (shown

in the legend). We can make the following observations from the graphs.

The incremental algorithm based on the Subquery approach achieves a speed-up of
about 3 to 2 as compared to mining the whole dataset. However, the maximum
speed-up of the ertical approach is only about 4. For support counting the ertical
approach uses a user-defined function (UDF) to intersect the tid-lists. The incremen-
tal algorithm should also invoke the UDF at least the same number of times since the
support of all the itemsets in the frequent set and the negative border needs to be
found in the increment database. In cases where the support of new candidates needs
to be counted the number of invocations will be even more as compared to mining
the whole dataset. The time taken by the ertical approach in the support counting
phase is directly proportional to the number of times the UDF is called. However, the
incremental algorithm saves in the tid-list creation phase since the size of the incre-
ment dataset is only a fraction of the whole dataset. This explains why the speed-up
of the ertical approach is low. In contrast the Subquery approach achieves higher

speed-up since the time taken is proportional to the size of the dataset.

It is possible to achieve better speed-up for the ertical approach by allocating a
smaller BLOB (binary large ob ect) for computations involving the increment dataset.
Note that the tid-lists for the items are stored as BLOBs. In our experiments, we used
the same BLOB size for the increment dataset and the initial dataset in order to use
the same user-defined function for support counting and the same table function for

tid-list creation (refer Section 4.2 for a detailed description of the ertical approach).
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The speed-up reduces as the minimum support threshold is lowered. At lower support
values the chances of the negative border expanding is higher and as a result the
incremental algorithm may have to compute the candidate closure and count the

support of the new candidates in the whole dataset.

The speed-up is higher for smaller increment sizes since the incremental algorithm

needs to process less data.

With respect to the absolute execution time, the Subquery and the ertical ap-
proaches followed the same trend as explained in hapter 4. The ertical approach

was about 3 to 6 times faster than the Subquery approach.

7.4.3 New- andidate Optimization

In the basic incremental algorithm, we find the frequent itemsets in the increment
database db along with counting the support of all the itemsets in the frequent set and
the negative border. However, the frequent itemsets in db is used only to prune the non
frequent itemsets in db while computing the candidate closure. In the candidate closure
computation we assume that the new candidate k-itemsets are frequent while generating
the (k + 1)-itemsets. At this step the new candidate k-itemsets that are infrequent in db
are known to be infrequent in the whole dataset as well and can be pruned. This is because
the new candidate k-itemsets were infrequent in the old dataset (they were not even in the
negative border). Therefore, they need to be frequent at least in db to have a chance of
being frequent in the whole dataset.

With the new-candidate optimization, we count the support of an itemset in db only
if it is required. In the first phase, while counting the support in db of the itemsets in the

frequent set and the negative border, we do not find all the frequent itemsets in db. During
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the candidate closure computation, we count the support in db of ust the new-candidates

for the pruning explained above. This results in better speed-up as compared to the basic

incremental algorithm.
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Figure 7.8. Speed up of the incremental algorithm based on the Subquery approach with

the new-candidate optimization
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Figure 7. . Speed up of the incremental algorithm based on the ertical approach with the
new-candidate optimization
Figures 7.8 and 7. show the speed-up of the Subquery and ertical approaches with

the new-candidate optimization. We can observe that this optimization achieves speed-

ups that are up to 25 better. The improvement is more at smaller increment sizes.
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The reason is that, when the increment is smaller we have to use proportionately smaller
minimum support values while finding the frequent itemsets in db. This could result in

counting too many spurious candidates.

7.4.4 Other Approaches

In the approach, the transaction data is read tuple by tuple from the
DB S to the mining kernel using a cursor interface. This architecture can be extended
to handle incremental mining ust by implementing the incremental algorithm outlined in
Section 7.1 in the mining kernel. The DB S interface does not require any change. In
cases where the support of new itemsets need to be counted, limiting the data access to
ust one scan of the whole database entails counting candidate itemsets of multiple sizes
in the same pass. This can be accomplished by passing the transactions through all the
candidates of di erent sizes and updating their support counts.

The approach where the mining algorithm is encapsulated as a
stored procedure that runs in the same address space as the DB S and the
approach where the data is cached outside the DB S, can also be extended for incremen-
tal mining. However, the approach might not give better performance than
the others since the incremental algorithm requires at most one scan of the entire data.
Extending the approach for incremental mining is straight-forward and will involve

writing UDFs for the di erent steps of the incremental algorithm.

7.5 onstrained Associations

In this section, we introduce associations with di erent kinds of constraints on the
itemsets or constraints that characterize the dataset from which the associations are de-

rived. Let = 141,%,...,4 be a set of literals, called items that are attribute values
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of a set of relational tables. A constrained association is defined as a set of itemsets
XX C(X) , where C denotes one or more boolean constraints. Note that we do
not concentrate on generating the association rules in the traditional sense 7. However,

the associations between attribute values that we generate can be used for rule generation.

7.5.1 ategories of onstraints

We divide the constraints into four di erent categories that are outlined below We
illustrate each of them with sample mining computations. The data model used in our
examples is that of a point-of-sale (POS) model for a retail chain. When a customer buys
a product or series of products at a register, that information is stored in a transactional
system, which is likely to hold other information such as who made the purchase and what
types of promotions were involved. The data is stored in three relational tables sales,

products_sold and product with respective schemas as shown in Figure 7.1 .

SALES PRODUCTS SOLD PRODUCT
Transaction_id Transaction_id Product_id
Customer_id Product_id Type
Tota price Price Name
No. of products Promotion_id Description

Figure 7.1 . Point of sales data model

Frequency onstraint

This is the same as the minimum support threshold in the support-confidence frame-
work for association rule mining 13 . An itemset X is said to be frequent if it appears in

at least s transactions, where s is the minimum support. In the point-of-sales data model a
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transaction correspond to a customer transaction. Note that in other domains, the notion
of a transaction and an itemset appearing in a transaction could be di erent. Frequent
itemsets, the ones which satisfy the frequency constraint are defined as X X) S
where X)) is the frequency of X.
ost of the algorithms for frequent itemset discovery utilizes the downward closure

property of itemsets with respect to the frequency constraint that is, if an itemset is
frequent, then so are all its subsets. Downward closure is a pruning property. Level-wise
algorithms 7 find all itemsets with a given property among itemsets of size k k-itemsets)
and use this knowledge to explore k + 1)-itemsets. They start with the assumption that
all k + 1)-itemsets are potentially frequent frequency is ust an example for a downward
closed property). As the k-itemsets are examined, they prune out some k + 1)-itemsets
that cannot be frequent. In e ect, for pruning, they use the contrapositive of the frequent
itemset definition if any subset of a & + 1)-itemset is not frequent, then neither can the
k + 1)-itemset . After the pruning, they go through the remaining list, checking each
k + 1)-itemset for its frequency. The downward closure property is similar to the anti-
monotonicity property defined in Ng et al. 7.

In the context of the point-of-sale data model, the frequency constraint can be used

to discover products bought together frequently.

Item onstraint

In order to discover goal-oriented associations, it is often required to impose constraints
on the itemsets. For instance, find only the itemsets containing at least one item from a
user-defined subset of items. Let B be a boolean expression over the set of items . The

problem is to find itemsets that satisfy the constraint B. Typically the item constraint will
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be associated with a frequency constraint also, where we want to find frequent itemsets
that satisfy B. Three di erent algorithms for mining associations with item constraints are
presented in Srikant et al. 121 .

The item constraints enables us to pose mining queries such as What are the products
whose sales are a ected by the sale of, say, barbecue sauce = and What products are
bought together with sodas and snacks . The 1-variable constraints in Ng et al. 7 are

a special case of item constraints.

Aggregation onstraint

These are constraints involving aggregate functions on the items that form the item-
set. For instance, in the POS example an aggregation constraint could be of the form
min products_so d.pric )  p. Here we consider a product as an item. The aggregate func-
tion could be min, maz, sum, count, avg or any other user-defined aggregate function. An
aggregation constraint of the form min products_so d.pric )  p can be used to find ex-
pensive products that are bought together . Similarly ma products_so d.pric ) can
be used to find inexpensive products that are bought together . These aggregate functions
can be combined in various ways to express a whole range of useful mining computations.
For example, the constraint min products_so d.pric ) p) a products_so d.pric )

) targets the mining process to inexpensive products that are bought together with the

expensive ones.

External onstraint

External constraints filter the data used in the mining process. These are constraints
on attributes which do not appear in the final result which we call external attributes).

For example, if we want to find products bought during big purchases where the total
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sale price of the transaction is larger than some amount we can impose a constraint of the
form sa s.tota pric . These constraints are useful to target the mining process to

ust the relevant data there by speeding up the process.

7.5.2 onstrained Association ining

F_k+1

!

>
Constraints DQ/ AN

Post-counting
constraint check

) >J
Frequency constrai L PN
Support Counting
C k+1
Constraints RN RN Constraints
7 > > <
Candidate generation Data Filtering
F k Input data tables

Figure 7.11. Framework for constrained association mining

Figure 7.11 shows the general framework for the £ level in a level-wise approach for
mining associations with constraints. Note that we could also use S L-based approaches for
implementing the various operations in the di erent phases. The di erent constraints are
applied at di erent steps in the mining process. For example, the item constraints and the
aggregation constraints that satisfy the closure property can be used in the candidate gen-
eration phase for pruning unwanted candidates. Three di erent algorithms for generating
candidate itemsets in the presence of item constraints are presented in Srikant et al. 121
and we could use them here. The aggregation constraints can be applied on the result of
the candidate generation process with item constraints. The external constraints and some
of the aggregation and item constraints can be applied at the data filtering stage to reduce

the size of the input data to the support counting phase see Figure 7.12 for a specific
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example). The frequency constraint is applied during support counting to filter out the
non-frequent itemsets. Finally, any unprocessed constraints are checked as a post-counting
operation. The frequent itemsets before the post-counting constraint check are used for the
next level candidate generation since these constraints do not possess the closure property.

In the basic frequent itemset mining, only the frequency constraint is present and the

candidate generation step uses only the subset pruning strategy 13 .

a e: We illustrate the application of the various constraints here with a spe-
cific example using the point-of-sales data model in Section 7.5. The example shown in
Figure 7.12 finds product combinations containing barbecue sauce where all the prod-
ucts cost less than 5 and the average price is more than 25 some notion of similar priced
products). The combinations should appear in at least 1  sales transactions with the total
price of the transaction greater than 5 . This gives an idea of what other moderately
priced products people buy with barbecue sauce in big purchases perhaps for parties). It

could help the shop owner to decide on various promotions.
F k+1

contains(barbecue sauce)

>d
avg(product.price) >=£ ></] AN

(Constraints that does not satisfy Post-counting
the closure property) constraint check

>d
Support >= 100
/ \

(frequency constraint) |

Support Counting

(Aggregation and item constraints C_k+1
that setisfy the closure property)

Products_sold.price <=50
Price <=50 }><]\ % Sales.total price >=500
> >< [

Candidate generation Data Filtering (External constraints and
aggregation constraints useful for
data filtering)

F k Sdles
Products_sold Products_sold
- Product

Figure 7.12. Point-of-sales example for constrained association mining
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In the above example, the constraint on the total price of the transaction is an external
constraint and is applied in the data filtering stage. Since the maximum price of a product
in the desired combination is 5 , we can also filter out records that does not satisfy this
condition in the data filtering stage. ma  ric ) 5 is an aggregation constraint which
satisfies the closure property and can be applied in the candidate generation phase. The
constraint to include barbecue sauce in the combination and the constraint on the average

price are checked in the post-counting phase since they do not satisfy the closure property.

7.5.3 Incremental onstrained Association ining

The negative border based incremental mining algorithm is applicable for mining as-
sociations with constraints that are closed with respect to the set inclusion property, that
is, if an itemset satisfies the constraint then so do all its subsets. For incremental mining
of constrained associations also we need to materialize and store all the itemsets in the
negative border and their support counts. The reason why this is enough is that when new
transaction data is added, only the support count of the itemsets could change. We assume
that there is a frequency constraint, which is typically the case in association mining. The
definition of the negative border also remains the same, which is the set of minimal itemsets
that did not satisfy the frequency constraint. We list the various steps of the incremental
algorithm which is very similar to the case with ust the frequency constraint except for a

few di erences.

1. Find the frequent itemsets in the increment database db. Simultaneously count the
support of all itemsets X € Fr u ntS tsU ati Bord r in db. or this we use
the framewor outlined in ection . .2. The di erent constraints that are present

can be handled at the various steps in the mining process as shown in igure .11.
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2. Update the support count of all itemsets in Fr wu ntS tsU att Bord r to in-

clude their support in db.

3. Find the itemsets in NegativeBorder that became frequent by the addition of db call

them Promoted-NegativeBorder, b).

4. Find the candidate closure with b as the seed. During this computation, we use

the candidate generation procedure with constraints as described in Section 7.5.2.

5. If there are no new itemsets in the candidate closure, skip this step. Otherwise, count
the support of all new itemsets in the candidate closure against the whole dataset.
The dataset is sub ected to the data ltering step before the support counting as shown

i igure .11.

7.5.4 onstraint Relaxation

The negative border idea can be used to handle some cases of constraint relaxation
also, especially relaxations to the external constraints and the frequency constraint. For
instance, in the example in Section 7.5.2, if we relax the constraint on the sales transaction
to sa s. ota _pric 3 , it can be cast as an incremental mining problem. In this case,
the increment dataset would be the transactions with Total_price between 3  and 5
Note that, for this to work the relaxed constraint should subsume the initial constraint.
Relaxations to the frequency constraint involves two cases. In cases where the frequency
threshold is increased, it is straight-forward to find the new frequent itemsets by ust filtering
the itemsets with the new threshold. On the other hand, if the frequency threshold is
lowered we need to use an approach similar to the incremental mining algorithm where we
compute the promoted negative borders and candidate closure to determine if the support

of any new itemset needs to be found.
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7.6 Applicability Beyond Association ining

The incremental algorithm we have proposed makes use of the closure property of
frequent itemsets. In this section, we discuss how the incremental approach can be gen-
eralized to other data mining and decision support problems. In Section 7.6.1, we discuss
the applicability of the incremental algorithm to mine closed sets. eneralizations to in-
cremental evaluation of query ocks and certain kinds of materialized views are described

in Sections 7.6.2 and 7.6.3 respectively.

7.6.1 ining losed Sets

All the efficient algorithms for mining association rules exploits the closure property
of frequent itemsets. inimum support which characterizes frequent itemsets is downward
closed: if an itemset has minimum support then all its subsets also have minimum support.
The idea of negative border can be used for all incremental mining problems that possess
closure properties. If the closure property is incrementally updatable for instance support)
also, it is possible to limit the database access to at most one scan of the whole database
as shown in the incremental frequent itemset mining example. A property is incrementally
updatable if it is possible to derive the value of it from the corresponding values of di erent
partitions of the input data. A few examples are and so on. We

list below a few other data mining problems that have closure properties.

1. Sequential patterns: In sequential pattern mining, the frequent patterns are closed
with respect to minimum support, much like the frequent itemsets. The support is

incrementally updatable.

2. orrelation rules: orrelation rules 25 are upward closed with respect to correlation

that is, if a set of items S is correlated, so is every superset of S. A set of items is
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said to be correlated if any of its subsets are dependent. For efficient evaluation
of correlation rules, a notion of support is introduced in Brin et al. 25, which is

downward closed. However, these properties are not incrementally updatable.

3. omsequent part of association rules: For any frequent itemset, if a rule with conse-
quent ¢ holds that is, it has minimum confidence) then so do rules with consequents
that are subsets of ¢ that is, such rules are downward closed. Note that the

confidence is not incrementally updatable.

4. aximal frequent itemsets: Random walk algorithms 58 which works by generating
a series of random walks along the itemset lattice exploits the downward closure
property of maximal frequent itemsets. Support which characterizes frequent itemsets

in this case is also incrementally updatable.

7.6.2 uery Flocks

The boolean association rules was first defined in the context of market basket data

and it has been generalized to mine associations across relational tables expressed as query
ocks 128 . A query ock is a parameterized query with a filter condition to eliminate the
values of parameters that are uninteresting . For example, let us assume that we want
to evaluate the mining query What are the interesting drivers that caused customers to
buy the widgets from a catalog . A driver is deemed interesting if it has caused at
least 1 customers to buy the widget. Let the data be stored in a set of relational tables,
namely, catalog widget, manufacturer), sale customer, widget), driver customer, widget,
driver). The above query can be written as a query ock in Datalog as shown below. The

filter condition prunes out values which do not have minimum support. In Section 7.6.2,
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we discuss how the negative border idea can be used for efficient incremental evaluation of

query ocks.

UER :

FILTER:

Incremental Evaluation of uery Flocks

Applying the apriori technique for evaluating the above query ock will result in the

following safe subqueries 128 .

The query ocks corresponding to the safe subqueries form a lattice with query containment

as the partial order and the original query ock as the top element. That is, if 1 and

are elements of the lattice, 1 the result of is contained in the result of 1.
During the execution of the subqueries of the query ock, all records with parameter

values which satisfy the filter condition are propagated to the next higher subquery in the
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lattice for further evaluation. For example, after 1 is evaluated all the records corre-
sponding to widgets that are bought by at least 1 customers will be piped to which is
immediately above 1 in the subquery lattice. The parameter value combinations in this
case are analogous to itemsets in boolean association rule mining.

The negative border in this apriori-based query ock evaluation is the set of parameter
value combinations that does not pass the filter condition test. These combinations if
materialized and stored along with their support counts can be e ectively used to update
the result of the query ock when the base tables over which it is defined are updated.
We first check if any of the records in the negative border pass the filter condition as a
result of changes to the base tables. This can be done starting at the bottom element
of the lattice and proceeding upwards, propagating the deltas corresponding to the new
combinations. If none of the records in the negative border passes the filter condition, we
do not have to evaluate the subqueries for the lattice elements above. The base tables
may have to be looked up for example, to be oined with the deltas) depending upon the
subquery representing the lattice element. It is also possible to evaluate the filter condition
for all the lattice elements negative borders together. However, this might involve more

computations than propagating the deltas through the lattice.

7.6.3 iew _ aintenance

Incremental mining can also be seen as materialized view maintenance. In boolean
association rules, the frequent itemsets and the negative border are in fact aggregate views
over the transaction table. In query ocks each element in the subquery lattice can be
considered as a view defined on the base tables. Therefore, view maintenance techniques

similar to the ones in  umick et al. 4 can be used for incremental mining. On the other
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hand, the negative border based change propagation can also be applied for the maintenance
of views involving monotone aggregate functions that satisfy the apriori subset property.
For example if the view definition has a filter condition such as the S L having clause,
it could be beneficial to also store the records which does not pass the filter condition test
same as the negative border). When the base tables are updated, these records will be
useful to maintain the view rather than re-materializing it.

An itemset can also be treated as a point in the data cube 55 defined by the items as
dimensions and support as the measure. The data cube points can be arranged as a lattice
according to the partial order on the itemsets. In that case, the data cube maintenance
algorithms similar to that of Roussopoulos et al. 1 7 are also applicable here. However,

this approach might not be viable in cases consisting of large number of items.

7.7 _Summary

In this chapter, we developed an incremental algorithm for mining frequent itemsets.
We developed S L formulations for the incremental approach based on a few representative
approaches from hapters 3 and 4. We also show how the incremental algorithm can
be generalized to handle certain kinds of constraints and constraint relaxations and its

applicability to other mining problems.



HAPTER 8
ON LUSIONS

We analyzed various architectural alternatives for integrating mining with a relational
database system. We studied various mining algorithms with the twin goals of finding
the trade-o s between the architectural options and the extensions needed in a DB S to
efficiently support mining. First, we experimented with di erent ways of implementing the
association rule mining algorithm in S L to find if it is at all possible to get competitive
performance out of S L implementations.

We considered two categories of S L implementations. We experimented with four
di erent implementations based purely on S L- 2. We picked the best S L- 2 implemen-
tation for further analysis. We developed cost formulae for di erent execution plans based
on the input data parameters and the relational operator costs. This cost analysis provides
a basis for incorporating the semantics of mining algorithms into future query optimizers.
We next experimented with a collection of approaches that made use of the new ob ect-
relational extensions like UDFs, BLOBs, and table functions. With this extended S L we
got significant performance improvements over the S L- 2 based implementations.

We compared the S L implementation with di erent architectural alternatives. We
observed that based ust on performance the approach is the winner. A close

second is the S L-OR approach that was sometimes slightly better than and
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was never worse than a factor of two on the real-life datasets. Both these approaches re-
quire additional space for caching, however. The approach does not
require any extra space except possibly for initially sorting the data in the DB S) and
can perhaps be made to be within a factor of two to three of with the re-
cent algorithms 26, 127. The approach is about a factor of two faster than the

approach but is significantly harder to code. The S L approach o ers
some secondary advantages like easier development and maintenance and potential for au-
tomatic parallelization. However, it might not be as portable as the approach
across di erent database management systems.

Next, we wanted to find out if it is possible to handle other more complex mining tasks
within the same S L framework. We studied generalized association rules and sequential
patterns with the goal of showing that the association rule framework can be extended easily
for these mining problems as well. We developed several S L formulations for generalized
association rule and sequential pattern mining some of them by extending the association
rule approaches. The ma or addition for generalized association rule was to extend the
input transaction table transform to ). For sequential patterns, the oin predicates
for candidate generation and support counting were significantly di erent. We conducted
some experiments on real-life datasets and found that the performance observations hold
here also.

In order to handle the volume of data stored in present day data warehouses, which
keeps streaming in, it is important to develop incremental mining algorithms. We developed
an incremental association rule mining algorithm which does not need to examine the old
data if the frequent itemsets do not change. Even in cases where new frequent itemsets are

added, access to the old database can be limited to ust one scan.
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In the context of goal-oriented mining, we often have to mine associations with various
kinds of constraints. We identify and categorize the di erent constraints and show how they
can be processed in the relational framework. The incremental approach can also be used
to handle certain kinds of constraint relaxation. We develop a general framework for the
incremental approach to mine associations with constraints having the downward closure
property.

The concept of negative border which is the key to the incremental algorithm has
other applications also. It can be used for mining association rules with varying support
and confidence values. For instance, the negative border can be used to determine the
updated frequent itemsets if the support is changed. If the support is increased it is trivial
to update the frequent itemsets. However, if the support is lowered the itemsets in the
promoted negative border can be used to determine if the support of any new itemset
needs to be counted in a similar manner to incremental mining. This could be quite useful
in cases where determining the correct support value is difficult. Initially the frequent
itemsets for an approximate support can be computed which is further refined based on
user feedback.

We further show the applicability of the incremental algorithm to certain classes of
data mining and decision support problems.

In Section 8.1, we identify certain extensions to the current database management sys-
tems that are useful for mining. We enumerate the specific contributions of this dissertation

in Section 8.2 and in Section 8.3, we list possibilities for further research.
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8.1 Proposed Extensions

One of the goals of our work has been to unbundle complex mining operations like
associations and classifications into smaller primitives that can be supported efficiently by
a general purpose DB S and be useful for a large class of mining algorithms. Our exercise
with some of the mining operations has helped us identify a few such primitives that we

believe could be generally useful in a number of other decision support applications.

8.1.1 Richer e Operations:

We expect a richer collection of set operations to be useful for mining. For the mining
problems addressed in this dissertation, we used three di erent versions of the basics se
operation. For candidate generation we needed to find all £ —1 subsets of a set of k elements
for doing the pruning. We enumerated the subsets explicitly in the query predicate because
the size of the set and the subsets was zed and known in advance. For support counting,
we used the omb- table function which generated all k£ subsets of a variable length set.
For rule generation, we used the enSubset table function to generate all subsets of a
variable length set. The subset operation would also be useful in building decision trees on
categorical attributes 85 .

Another important set operation was the  erse operation used in the
approach. ost systems already have internal implementations of this operation for doing
AND and OR operations on RID record identifier lists obtained during multiple index
scans 3. In current OLAP and data warehousing systems this operation is rampant in
the popular bit-mapped indices. Our approach is curiously similar to this bit-
mapped approach with one important di erence. Instead of performing ANDs on RIDs, we

perform the ANDs on another attribute, the transaction identifier.
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We also used the set di erence operation for pruning itemsets containing an item and

its ancestor, in generalized association rules.

8.1.2 Enhanced Aggregation

Another common operation that we used is the a er operation that can transform
two attributes in a data table to a form where for distinct values of one of the attributes
called the grouping attribute we collect together in a set all values of the other attribute.
We can think of as a glorified aggregate function. Its reverse operation s a er is
a special case of the subset operation where the subset size is 1.
We used this operation in four of our S L approaches: , ,
and . To implement the table function in our queries we
required data to appear in a particular order as inputs to the table function. This would be
trivial to express in S L if clauses were allowed in inner subqueries. In the absence
of such a feature, we relied on our knowledge of DB2 s internals to force such an order in
our experiments. The function can also be treated as an aggregate function that
simply concatenates its arguments. Systems that have support for user-defined aggregate
functions 122 can easily support such a functionality.

There are several other decision support applications where could be extremely
useful. For instance, suppose we are trying to classify customers of a credit card company
and the data, in addition to static customer attributes like age and salary, consists of
detailed transaction data about each purchase activity of a customer. In this case, we
would like to gather all activities of a customer as one time series and extract features
from these time series for classification. In OLAP applications too, data often needs to be

converted back and forth from a format where di erent measures are gathered together as
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di erent attributes of the same row to a format where di erent measures are scattered as

di erent rows.

8.1.3 ultiple Streams

In current relational DB Ss, there is only a single stream of control along which data

ows. Support for multiple streams, where the output of an operation can be piped to

more than one subsequent operations will be useful for a large class of mining and decision

support operations. In the S L formulation of incremental mining, we show how it will be

useful for counting the support of multiple-sized candidates in one pass. This idea can be

used for association rule mining also to reduce the number of passes utilizing some of the
newer algorithms 26, 127 .

In classification, we have to compute the class distribution corresponding to di er-
ent split points and attribute value combinations. This will require multiple scans using
standard S L. The npiv t operator proposed in raefe et al. 54 attempts to circumvent
the problem of multiple scans. However, support for multiple streams will make it much
simpler for doing it in one scan of the database. In the OLAP world also this will be useful

for computing the datacube 56 and simultaneous multidimensional aggregates 1, 133 .

8.1.4 Sampling

Sampling is a useful technique for scaling up algorithms that handle large volumes of
data. The use of sampling for query size estimation, histogram construction, computing
quantiles and so on has been addressed in several research papers 35, 5

Sampling can be used to get quick and good approximate answers to the mining and
decision support queries. The algorithms can be first run on a sample to give the user

approximate answers based on which he she can decide whether to run it on the whole
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dataset and also to fine tune input parameters. There are several mining algorithms which
use sampling 44, 127 .

8.2 ontributions !

In this dissertation, we have addressed the following problems.

1. Analyze the di erent database integration alternatives for data mining.

2. Develop and implement various S L-based approaches for association rule mining.

3. Study the performance profile of current DB Ss to execute the above S L queries.

4. ompare the di erent database integration architectures quantitatively and qualita-

tively.

5. Develop cost formulae for the S L approaches based on input data parameters and
relational operator costs. These provide some insights into enhancing current cost-

based optimizers to incorporate the domain-specific semantics of mining algorithms.

6. Extend the association rule framework for mining generalized association rules and

sequential patterns.

7. Develop an incremental association rule mining algorithm.

8. S L formulations of the incremental algorithm and its generalization to handle con-

straints.

eneralize the incremental algorithm for constrained association mining and demon-

strate its applicability to a larger class of data mining and decision support problems.
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1 . Explore primitive operators to support mining and decision support in databases.

8.3 Future Work

The work presented in this dissertation points to several directions for future research.
A natural next step is to experiment with other kinds of mining operations such as classi-
fication and clustering 45 , to verify if our conclusions hold for these other cases too. It is
also important to derive a set of primitive operators with which the di erent mining and
decision support operations can be composed. The operators we have identified provide
some headway in that direction. Another useful direction is to explore what kind of a sup-
port is needed for answering short, interactive, ad h ¢ queries involving a mix of mining and
relational operations. The success of S L as the most popular data management language
can be mainly attributed to its ad h ¢ query support. In the mining context, what is an
ad h ¢ mining query Is it ust mining computations expressed with some constraints on
the result How much support can we leverage from existing relational engines for min-
ing What data model and language extensions are needed Does the execution of these
operators involve selective materialization and incremental evaluation techniques Some of
these questions are orthogonal to whether the bulky mining operations are implemented
using S L or not. Nevertheless, these are important in providing the analysts with a well
integrated platform where mining and relational operations can be inter-mixed in useful

and exible ways.

8.4  losing

In the coming years, database data warehouse systems will be called upon to deliver
return-on-investment in the form of nuggets of knowledge or better insights about the huge

volumes of data they store and manage. In order to efficiently support the multiplicity of
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data mining and decision support operations on the same data, tighter integration of these
operations with database systems will be required.

This dissertation presents strategies aimed at tighter database integration of mining
and identifies optimizations and primitive operators to make database systems a better

platform for mining and decision support.



REFEREN ES

S. Agarwal, R. Agrawal, P. . Deshpande, A. upta, .F. Naughton, R. Ramakr-
ishnan, and S. Sarawagi. On the computation of multidimensional aggregates. In

rc. fthe 22nd ntl nference n ery Large atabases, pages 5 6 521, umbai
Bombay , India, September 1 6.

R. Agrawal, A. Arning, T. Bollinger, . ehta, . Shafer, and R. Srikant. The uest
data mining system. In 7 ¢. fthe 2nd ntl nference n n wledge isc very in
atabases and ata  ining, Portland, Oregon, August 1 6.

R. Agrawal, . Faloutsos, and A. Swami. Efficient similarity search in sequence
databases. In rc. fthe wurth ntl nference n undati ns [ ata rgani-
ati n and Alg rithms, hicago, October 1 3. Also in Lecture Notes in omputer
Science 73 , Springer erlag, 1 3,6 84.

R. Agrawal, . ehrke, D. wunopulos, and P. Raghavan. Automatic subspace clus-
tering of high dimensional data for data mining applications. In r c¢. fthe A
nference n  anagement f ata, Seattle, Washington, une 1 8.

R. Agrawal, S. hosh, T. Imielinski, B. Iyer, and A. Swami. An interval classifier
for database mining applications. In r¢. fthe L nference, pages 56 573,
ancouver, British olumbia, anada, August 1 2.

R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance per-
spective. Transacti ns n n wledge and ata ngineering, 5 6 : 14 25,
December 1 3.

R. Agrawal, T. Imielinski, and A. Swami. ining association rules between sets of
items in large databases. In r c¢. fthe A nference n  anagement
f ata, pages 2 7 216, Washington, D. ., ay 1 3.

R. Agrawal, . I. Lin, H. S. Sawhney, and . Shim. Fast similarity search in the
presence of noise, scaling, and translation in time-series databases. In 7 c¢. f the
21st ntl nference n ery Large atabases, pages 4 5 1, wurich, Switzerland,
September 1 5.

R. Agrawal, H. annila, R. Srikant, H. Toivonen, and A. I. erkamo. Fast discovery
of association rules. In U. . Fayyad, . P. Shapiro, P. Smyth, and R. Uthurusamy,
editors, Advances in n wledge isc very and ata ining, chapter 12, pages 3 7
328. AAAT IT Press, 1 6.

162



1

11

12

13

14

15

16

17

18

21

22

23

24

163

R. Agrawal, . Psaila, E. L. Wimmers, and . at. uerying shapes of histories.
In rc. fthe 21st ntl nference n ery Large atabases, urich, Switzerland,
September 1 5.

R. Agrawal and . Shafer. Parallel mining of association rules. Transacti ns
n n wledge and ata ngineering, 8 6 , December 1 6.

R. Agrawal and . Shim. Developing tightly-coupled data mining applications on
a relational database system. In 7 c. fthe 2nd ntl nference n n wledge
isc very in atabases and ata ining, Portland, Oregon, August 1 6.

R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In r c¢. f
the 2 th ntl nference n ery Large atabases, Santiago, hile, September 1 4.

R. Agrawal and R. Srikant.  ining sequential patterns. In r c¢. f the 11th ntl
nference n  ata ngineering, Taipei, Taiwan, arch 1 5.

S. Alexander. Users find tangible rewards digging into data mines. Enterprise om-
puting, uly1 7. http: www.infoworld.com cgi-bin displayArchive.pl 7 27 e 1-
27.61.htm.

. Ali, S. anganaris, and R. Srikant. Partial classification using association rules.
In rec. fthe8rd ntl nference n n wledge isc veryin atabases and ata
ining, Newport Beach, alifornia, August 1 7.

. Alsabti, S. Ranka, and . Singh. LOUDS: A decision tree classifier for large
datasets. In rc. f the 4th ntl nference n n wledge isc very and ata
ining, New ork, August 1 8.

. Apte and S. . Hong. Predicting equity returns from securities data with minimal
rule generation. In -4 AAA rsh p n n wledge 1isc veryin atabases,
pages 4 7 418, Seattle, Washington, uly 1 4.

. Apte and S. Weiss. Data mining with decision trees and decision rules.
urnal, pecial ssue n ata ining, 1 7.

. Banfield and A. Raftery. odel-based gaussian and non-gaussian clustering. ¢ -
metrics, 4 :15 34,1 3.

S. Berchtold, . Bohm, B. Braunmuller, D. A. eim, and H. riegel. Fast parallel
similarity search in multimedia databases. In r ¢. fthe A nference
n anagement f ata, ayl T.

S. Berchtold, D. A. eim, and H. riegel. The -Tree: An index structure for high-
dimensional data. In r c. fthe 22nd ntl nference n ery Large atabases,
Bombay, India, September 1 6.

P. Bradley, U. Fayyad, and . Reina. Scaling clustering algorithms to large databases.
In rec. fthe 4th ntl nference n n wledge isc very and ata ining, New
ork, August 1 8.

L. Breiman, . H. Friedman, R. A. Olshen, and . . Stone. lassi cati n and
egressi n Trees. Wadsworth, Belmont, 1 84.



25

26

27

28

31

32

33

34

35

36

37

38

164

S. Brin, R. otwani, and . Silverstein. Beyond market baskets: eneralizing associ-
ation rules to correlations. In r ¢. fthe A nference n  anagement
f ata, ayl T.

S. Brin, R. otwani, . D. Ullman, and S. Tsur. Dynamic itemset counting and
implication rules for market basket data. In r c. fthe A nference
n anagement f ata, ay 1l 7.

Business Week. atabase mar eting, September 1 4.

atlett. egainducti n  achine Learning n ery Large atabases. PhD thesis,
University of Sydney, 1 1.

atlett. Overpruning large decision trees. In 12th ntl int  nference n A ,
August 1 1.

S. hakrabarti, B. Dom, R. Agrawal, and P. Raghavan. Using taxonomy, discrimi-
nants, and signatures for navigating in text databases. In r c¢. fthe L n-
ference, Athens, reece, August 1 7.

S. hakrabarti, B. Dom, and P. Indyk. Enhanced hypertext categorization using
hyperlinks. In rec. fthe A nference n  anagement f ata,
Seattle, Washington, une 1 8.

D. hamberlin. sing the ew 2 s bect- elati nal atabase ystem.
organ aufmann, 1 6.

S. haudhuri. Data mining and database systems: Where is the intersection
ata ngineering ulletin, 21 1 :4 8, arch1 8.

S. haudhuri and U. Dayal. An overview of data warehousing and olap technology.

A ec rd, 26 1 :65 74, arch1 7.
S. haudhuri, R. otwani, and . Narasayya. Random sampling for histogram
construction: How much is enough In rec. fthe A nference n

anagement f ata, Seattle, Washington, une 1 8.

D. heung, .Han, .Ng,and . . Wong. aintenance of discovered association
rules in large databases: An incremental updating technique. In rc¢. f 1 nt |
nference n  ata ngineering, New Orleans, USA, February 1 6.

ooper and E. Herskovits. A Bayesian method for the induction of probabilistic
networks from data. achine Learning, 1 2.

David Shepard Associates, Business One Irwin, Illinois. The new direct mar eting,
1

D. Denning. An intrusion-detection model. Transacti ns n  ftware ngi-
neering, 13 2 , 1 87.

T. . Dietterich and R. S. ichalski. Discovering patterns in sequences of events.
Arti cial ntelligence, 25:187 232, 1 85.



41

42

43

44

45

46

47

48

ol
52

93

54

165

Direct arketing Association. anaging database mar eting techn [ gy f r success,
1 2.

. Ester, H. riegel, and . wu. A database interface for clustering in large spatial
databases. In r c. fthe Ist ntl nference n n wledge isc very in atabases
and ata ining, ontreal, anada, August 1 5.

. Faloutsos, . Ranganathan, and . anolopoulos. Fast subsequence matching in
time-series databases. In 7 c¢. fthe A nference n  anagement f
ata, ay 1l 4.
U. Fayyad, . Reina, and P. Bradley. Initialization of iterative refinement clustering

algorithms. In 7 ¢. fthe 4th ntl nference n n wledge isc very and ata
ining, New ork, August 1 8.

U. Fayyad, . P. Shapiro, P. Smyth, and R. Uthurusamy, editors. Advances in
n wledge isc very and ata ining. AAAT IT Press, 1 6.

U. Fayyad, N. Weir, and S. . D orgovski. Skicat: A machine learning system for
automated cataloging of large scale sky surveys. In 1 th ntl nference n achine
Learning, une 1 3.

R. Feldman, . Aumann, A. Amir, and H. annila. Efficient algorithms for discov-
ering frequent sets in incremental databases. In r ceedings f the 1

rsh p n esearch ssues m ata ining and n wledge isc very, Tucs n,
Ari na, ayl 7.

D. H. Fisher. nowledge acquisition via incremental conceptual clustering. achine
Learning, 2 2 , 1 87.

T. Fukuda, . orimoto, S. orishita, and T. Tokuyama. Data mining using two-

dimensional optimized association rules: Scheme, algorithms, and visualization. In
rc fthe A nference n  anagement f ata, ontreal, anada,
une 1 6.

T. Fukuda, . orimoto, S. orishita, and T. Tokuyama. ining optimized associa-

tion rules for numeric attributes. In 7 c. fthe 1 th A ymp sium n  rinciples

f atabase ystems, ontreal, anada, unel 6.
. Fukunaga. nitr ducti n t tatistical attern ec gniti n. Academic Press, 1

artner roup. ata ining The ext enerati n [ usiness ntelligence , AT
research Note T-517-246, artner roup Inc., Stamform, T edition, arch1 4.

ehrke, R. Ramakrishnan, and . anti. Rainforest - a framework for fast decision
tree construction of large datasets. In r c. fthe L nference, New ork,
August 1 8.

raefe, U. Fayyad, and S. haudhuri. On the efficient gathering of sufficient statis-
tics for classification from large S L databases. In r ¢. fthe Jth ntl  nference
n n wledge isc very and ata ining, New ork, August 1 8.



95

o6

o7

o8

61

62

63

64

65

66

67

68

166

ray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggre-
gation operator generalizing group-by, cross-tab, and sub-total. In rc¢. f1 nt |
nference n  ata ngineering, New Orleans, USA, February 1 6.

ray, S. haudhuri, A. Bosworth, A. Layman, F. Pellow, and H. Pirahesh. Data
cube: A relational aggregation operator generalizing group-by, cross-tab and sub-
totals. ata ining and n wledge isc very,11:2 53,1 T.

S. uha, R. Rastogi, and . Shim. URE: An efficient clustering algorithm for
large databases. In r c. fthe A nference n  anagement [ ata,
Seattle, Washington, une 1 8.

D. unopulos, H. annila, and S. Salu a. Discovering all most specific sentences by
randomized algorithms. In r ¢. f the sixth nternati nal  nference n atabase
The ry, anuary 1 7.

P. . Haas, . F. Naughton, S. Seshadri, and L. Stokes. Sampling-based estima-
tion of the number of distinct values of an attribute. In r ceedings f the ighth
nternati nal  nference n ery Large atabases L , pages 311 22, urich,
Switzerland, September 1 5.

T. Hagerup and . Rub. A guided tour of herno bounds. nf rmati n r cessing
Letters, 33:3 5 3 8,1 8

E. H. Han, . arypis,and . wumar. Scalable parallel data mining for association
rules. In rec. fthe A nference n  anagement [ ata, Tucson,
Arizona, ay 1 7.

. Han, . ai, and N. ercone. mnowledge discovery in databases: An attribute
oriented approach. In rec. fthe L nference, pages 547 55 , ancouver,
British olumbia, anada, 1 2.

. Han and . Fu. Discovery of multiple-level association rules from large databases.
In rec fthe 21st ntl nference n ery Large atabases, urich, Switzerland,
September 1 5.

.Han, .Fu, . operski, W. Wang, and O. aiane. D L: A data mining query
language for relational datbases. In r ¢. fthe 1 w r sh p n research
issues n data mining and n wledge disc very, ntreal, anada, ay 1l 6.

S. . Hong. R- INI: A heuristic algorithm for generating minimal rules from exam-
ples. In 8rd aci ¢ im ntl nference n A, August 1 4.

. Houtsma and A. Swami. Set-oriented mining of association rules. In ntl n-
ference m ata ngineering, Taipei, Taiwan, arch 1 5.

T. Imielinski. From file mining to database mining. In r ¢. f the 1
w T sh p n research issues n data mining and n wledge disc very, pages 35 3 ,
ay 1 6.

T. Imielinski and H. annila. A database perspective on knowledge discovery.  m-
municati n fthe A ;3 11 :58 64, Nov1 6.



6

71

72

73

74

75

76

7

78

81

82

83

167

T. Imielinski, A. irmani, and A. Abdulghani. Discovery board application program-
ming interface and query language for database mining. In r c. f the 2nd ntl

nference n n wledge isc very and ata ining, Portland, Oregon, August
1 6.

International Business achines. hite paper n data mining, Technical report, 1 5.

Internationl Business achines. ntelligent iner sers wuide, ersion 1 Re-
lease 1, SH12-6213-  edition, uly 1 6.

H. . agadish. A retrieval technique for similar shapes. In rc¢. f the A
nference n  anagement f ata, pages 2 8 217, Denver, ay 1 4.

H. . agadish and . Faloutsos. Data reduction a tutorial. Fourth international
conference on nowledge Discovery and Data ining, tutorial, August 1 8.

lemettinen, H. annila, P. Ronkainen, H. Toivonen, and A. I. erkamo. Finding

interesting rules from large sets of discovered association rules. In Third ntl n-

ference n nf rmati n and n wledge anagement, pages 4 1 4 7, aithersburg,
aryland, November 1 4. A Press.

F. orn, H. . agadish, and . Faloutsos. Efficiently supporting ad hoc queries
in large datasets of time sequences. In r c. fthe A nference n
anagement f ata, pages28 3 ,1 T.

F. orn, A. Labrinidis, . otidis,and . Faloutsos. Ratio rules: A new paradigm for
fast, quantifiable data mining. In r ¢. fthe L nference, New ork, August
1 8.

R. rishnamurthy and T. Imielinski. Practitioner problems in need of database
research: Research directions in knowledge discovery. ,2 3:76
78, September 1 1.

ulkarni. ODb ect oriented extensions in S L3: a status report.
1 4
?

. I. Lin, H. . agadish, and . Faloutsos. The T -Tree: An index structure for
high-dimensional data. L urnal, 3 4 :517 542, 1 4.

. Lohman, B. Lindsay, H. Pirahesh, and . B. Schiefer. Extensions to starburst:
Ob ects, types, functions, and rules. mmunicati ns fthe A ,341 , October
1 1.

D. . Lubinsky. Discovery from databases: A review of Al and statistical techniques.
In A -8 r sh p n n wledge isc veryin atabases, pages?2 4 218, Detroit,
August 1 8 .

.A. aorand .Feng. EFD: A hybrid knowledge statistical-based system for the
detection of fraud. nt! wrnal f ntelligent ystems, 77,1 2.

H. annila and H. Toivonen. On an algorithm for finding all interesting sentences.
In ybernetics and ystems, Ilume , The 13th ur pean eeting n ybernetics
and ystems esearch, ienna, Austria, April1 6.



84

85

86

87

88

168

H. annila, H. Toivonen, and A. I. erkamo. Discovering frequent episodes in se-
quences. In r c. fthe 1st ntl nference n n wledge isc very in atabases
and atae ining, ontreal, anada, August 1 5.

ehta, R. Agrawal, and . Rissanen. SLI : A fast scalable classifier for data
mining. In rec. fthe ifth ntl nference n ztending atabase Techn 1 gy
T , Avignon, France, arch 1 6.

ehta, . Rissanen, and R. Agrawal. DL-based decision tree pruning. In r c.
fthe 1st ntl nference n n wledge isc very in atabases and ata ining,
ontreal, anada, August 1 5.

elton and N. attos. S L3 a tutorial. Twenty-second international conference
on ery large data bases, tutorial, September 1 6.

elton and A. Simon. nderstanding the new L A ¢ mplete guide.  organ
au man, 1 2.
R. eo, .Psaila,andS. eri. Anew S L like operator for mining association rules.

In rc. fthe 22nd ntl nference n ery Large atabases, Bombay, India, Sep
1 6.

R. S. ichalski. A theory and methodology of inductive learning. In ichalski
et al., editors, achine Learning, An Arti cial ntelligence Appr ach, [ 1. organ
aufmann, 1 83.

D. ichie, D. . Spiegelhalter, and . . Taylor. achine Learning, eural and
tatistical lassi cati n. Ellis Horwood, 1 4.
R. . illerand . ang. Association rules over interval data. In rc¢. fthe A
nference n  anagement f ata, pages 452 461, ay 1 7.
ohan, D. Haderle, . Wang, and . heng. Single table access using multi-

ple indexes: optimization, execution, and concurrency control techniques. In 7 c.
nternati nal  nference n ztending atabase Techn [ gy, pages 2 43, 1

I.  umick, D. wuass, and B. umick. aintenance of data cubes and summary
tables in a warehouse. In 7 ¢. fthe A nference n  anagement f
ata, Tucson, Arizona, ay 1 7.

R. usick, . atlett, and S. Russell. Decision-theoretic subsampling for induction
on large datsets. In th ntl nference n achine Learning, 1 3.

. P. Nearhos, . . Rothman, and .S. iveros. Applying data mining techniques
to a health insurance information system. In r c¢. fthe 22nd ntl nference n
ery Large atabases, umbai Bombay , India, September 1 6.

R. T. Ng, L. . S. Lakshmanan, . Han, and A. Pang. Exploratory mining and
pruning optimizations of constrained association rules. In r ¢. fthe A
nference n  anagement f ata, Seattle, Washington, une 1 8.

Oracle. racle atabase Administrat rs uide lumes |, ersi n .
ay 1 2.



11

111

112

113

16

.S. Park, .S. hen,and P. S. u. An e ective hash based algorithm for mining
associationrules. In r c¢. fthe A - nference n  anagement f ata,
San ose, alifornia, ay 1 5.

PostgreS L Organization. stgre L .83 ser  anual, February 1 8.

uest: IB  develops market basket analysis system. ¢ res, ay 1 4.

. R.  uinlan. Induction over large databases. Technical Report STAN- S-73 ,
Stanford University, 1 7 .

.R. uinlan. 4. r grams f r achine Learning. organ aufman, 1 3.

. R. uinlan and R. L. Rivest. Inferring decision trees using minimum description
length principle. nf rmati n and  mputati n, 1 8 .

. Ra amani, B. Iyer, and A. haddha. Using DB2 s ob ect-relational extensions
for mining association rules. Technical Report TR, 3-6 , Santa Teresa Laboratory,
1B orporation, September 1 7.

R. Rastogi and . Shim. PUBLI : A decision tree classifier that integrates building
and pruning. In rec. fthe L nference, New ork, August 1 8.

N. Roussopoulos, . otidis, and . Roussopoulos. ube tree: Organization of
and bulk incremental updates on the data cube. In r c. f the A
nference n  anagement f ata, Tucson, Arizona, ay 1 7.

. A. Roytberg. A search for common patterns in many sequences. mputer Ap-
plicati ns in the 1 sciences, 8 1 :57 64, 1 2.

S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with
relational database systems: Alternatives and implications. In r c. f the A
nference n  anagement f ata, Seattle, Washington, une 1 8.

S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with
relational database systems: Alternatives and implications. Research Report R
117 123,IB Almaden Research enter, San ose, alifornia, arch 1 8.
Longer version of the SI  OD 8 paper .

A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining associ-
ation rules in large databases. In 7 c¢. fthe L nference, urich, Switzerland,
September 1 5.

S. . Selimand . A.Ismail. -means-type algorithms: A generalized convergence
theorem and characterization of local optimality. Transacti ns n attern
Analysis and  achine ntelligence, PA 1-6 1 , 1 84.

. Shafer and R. Agrawal. Parallel algorithms for high-dimensional similarity oins for
data mining applications. In r ¢. fthe L nference, Athens, reece, August
1 7



114

115

116

117

118

11

12

121

122

123

124

125

126

127

17

. Shafer, R. Agrawal, and . ehta. SPRINT: A scalable parallel classifier for data
mining. In 7 ec. fthe 22nd ntl nference n ery Large atabases, Bombay,
India, September 1 6.

. Shim, R. Srikant, and R. Agrawal. High-dimensional similarity oins. In r ¢. f
the 13th ntl nference n ata ngineering, Birmingham, U. ., April1 7.

A. Siebes and . L. ersten. ESO: inimizing database interaction. In rec. f
the 3rd ntl nference n n wledge isc very and ata ining, Newport Beach,
alifornia, August 1 7.

. Silverstein, S. Brin, R. otwani, and . Ullman. Scalable techniques for mining
causal structures. In rc. fthe L nference, New ork, August 1 8.

R. Srikant and R. Agrawal. ining generalized association rules. In 7 c. fthe 21st
ntl nference n ery Large atabases, urich, Switzerland, September 1 5.

R. Srikant and R. Agrawal.  ining quantitative association rules in large relational
tables. In rc¢. fthe A nference n anagement f ata, ontreal,
anada, unel 6.

R. Srikant and R. Agrawal. ining sequential patterns: eneralizations and perfor-
mance improvements. In r c¢. fthe ifth ntl nference n ztending atabase
Techn 1 gy T , Avignon, France, arch 1 6.

R. Srikant, . wu, and R. Agrawal. ining association rules with item constraints.
In rec. fthe 8rd ntl nference n n wledge isc very in atabases and ata
ining, Newport Beach, alifornia, August 1 7.

. R. Stonebraker and . emnitz. The POST RES next generation database
management system.  mmunicati ns fthe A ,341 ;1 1.

S. Thomas, S. Bodagala, . Alsabti, and S. Ranka. An efficient algorithm for the
incremental updation of association rules in large databases. In r ¢. fthe 8rd ntl

nference n n wledge isc very and ata ining, Newport Beach, alifornia,
August 1 7.

S. Thomas and S. hakravarthy. Incremental mining of constrained associations.
Technical Report TR 8- 18, University of Florida, ainesville, Florida, October
1 8.

S. Thomas and S. hakravarthy. Performance evaluation and optimization of oin
queries for association rule mining. Technical Report TR, 8- 17, University of Florida,
ainesville, Florida, October 1 8.

S. Thomas and S. Sarawagi. ining generalized association rules and sequential
patterns using sql queries. In r ¢. fthe 4th ntl nference n n wledge isc very
and ata ining, New ork, August 1 8.

H. Toivonen. Sampling large databases for association rules. In r c. f the 22nd
ntl nference n ery Large atabases, pages 134 145, umbai Bombay , India,
September 1 6.



128

12

13

131

132

133

171

D. Tsur, . Ullman, S. Abiteboul, . lifton, R. otwani, S. Nestorov, and A. Rosen-
thal. uery Flocks: A generalization of association rule mining. In r c¢. fthe A
nference n  anagement f ata, Seattle, Washington, une 1 8.

S. . Weiss and . A. ulikowski. mputer ystems that Learn  lassi cati n
and redicti n eth ds fr m {tatistics, eural ets, achine Learning, and zpert
ystems. organ aufman, 1 1.

R. B. atesand .H. onnet. A new approach to text searching. mmunicati ns
fthe A ,351 :74 82, October 1 2.

aki, S. Parthasarathy, . Ogihara, and W. Li. New algorithms for fast discov-
ery of association rules. In r ¢. fthe 8rd ntl nference n n wledge isc very
and ate ining, Newport Beach, alifornia, August 1 7.

T. hang, R. Ramakrishnan, and . Livny. BIR H: An efficient data clustering
method for very large databases. In rc. f the A nference n
anagement f ata, ontreal, anada, unel 6.

hao, P. . Deshpande, and . F. Naughton. An array-based algorithm for simul-
taneous multidimensional aggregates. In r c¢. fthe A nference n
anagement [ ata, Tucson, Arizona, ay 1 7.



BIO RAPHI ALS ET H

Shiby Thomas was bornon ay 3 ,1 71,in othamangalam, erala, India. He received his
Bachelor of Technology degree in computer engineering from Regional Engineering ollege,
alicut, India, in ay 1 2. After his graduation he worked for a year as a systems
engineer at Wipro Systems, Bangalore, India. He received his aster of Technology degree
in computer science and engineering from Indian Institute of Technology, Bombay, India,
in anuary 1 5.
He oined the Department of omputer and Information Science and Engineering
at the University of Florida in fall, 1 5. He has worked as a teaching assistant in the
omputer and Information Science and Engineering Department of the University and as
a research assistant in the Database Systems Research and Development enter of the
department. In Summer 1 7, he worked as a summer intern in the uest data mining
group at the IB  Almaden Research enter, San ose, alifornia. He will receive his
Doctor of Philosophy degree in December 1 8.
His research interests include data mining and decision support technologies, real-time

databases and transaction processing.

172



