
STATIC ANALYSIS OF ECA RULES AND USE OF THESE RULES
FOR INCREMENTAL COMPUTATION OF
GENERAL AGGREGATE EXPRESSIONS

By

SEUNG-KYUM KIM

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

1996

Dedicated to My Parents

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Dr. Sharma Chakravarthy for the

continuous guidance and support during the course of this work. I thank Dr. Eric

Hanson, Dr. Herman Lam, Dr. Stanley Su, and Dr. Suleyman Tufekci (in alphabetic

order) for serving on my supervisory committee and for their perusal of this disserta-

tion. I would like to thank Mrs. Sharon Grant for keeping the warm and comfortable

research environment. I also thank many fellow students at the Database Systems

R&D Center for their help and friendship.

Finally, I am deeply indebted to my parents for their endless sacri�ce and love to

me.

This work was supported in part by the O�ce of Naval Research and the Navy

Command, Control and Ocean Surveillance Center RDT&E Division, and by the

Rome Laboratory.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS : iii

LIST OF FIGURES : vi

ABSTRACT : vii

CHAPTERS : 1

1 INTRODUCTION : 1

1.1 Active Databases : 1
1.2 Data Warehouses : 4
1.3 Problem Statement : 6

1.3.1 Support for Alternative User Requirements in Active Rules Ex-
ecution : 6

1.3.2 E�cient Support of Aggregates in Data Warehouses : : : : : : 8
1.3.3 Structure of the Dissertation : : : : : : : : : : : : : : : : : : : 9

2 STATIC ANALYSIS OF ACTIVE RULES : : : : : : : : : : : : : : : : : : 10

2.1 Introduction : 10
2.2 Limitations of the Earlier Rule Execution Models : : : : : : : : : : : 13
2.3 Assumptions and De�nitions : 16

2.3.1 Rule Execution Sequence (RES) and Rule Commutativity : : 16
2.3.2 Dependencies and Dependency Graph : : : : : : : : : : : : : : 20
2.3.3 Trigger Graph : 22

2.4 Con
uence and Priority Speci�cation : : : : : : : : : : : : : : : : : : 23

3 IMPLEMENTATION OF CONFLUENT RULE SCHEDULER : : : : : : 30

3.1 Strict Order-Preserving Rule Execution Model : : : : : : : : : : : : : 30
3.1.1 Extended Execution Graph : : : : : : : : : : : : : : : : : : : 30
3.1.2 Strict Order-Preserving Executions : : : : : : : : : : : : : : : 32
3.1.3 Implementation : 33
3.1.4 Parallel Rule Executions : 36

3.2 Alternative Policies for Handling Overlapping Trigger Paths : : : : : 40
3.2.1 Serial Trigger-Path Executions : : : : : : : : : : : : : : : : : : 40
3.2.2 Serializable Trigger-Path Executions : : : : : : : : : : : : : : 42
3.2.3 Comparisons with Strict Order-Preserving Execution : : : : : 43

3.3 Discussion and Conclusions : 45

iv

4 AGGREGATE CACHE : 48

4.1 Motivation : 48
4.2 Updating Cached Aggregates : 51
4.3 Incremental Update of Aggregates : 56

4.3.1 Syntactic Conventions : 56
4.3.2 Incrementally Updatable Aggregates : : : : : : : : : : : : : : 57
4.3.3 Algebraic Aggregates and Non-Algebraic Aggregates : : : : : 58
4.3.4 Summative Aggregates : 61
4.3.5 Binding of Variables : 66
4.3.6 Decomposition of Summative Aggregates : : : : : : : : : : : : 68
4.3.7 Normalization of Summative Aggregates : : : : : : : : : : : : 73
4.3.8 Incremental-Updatability of Nested Summative Aggregates : : 79

4.4 Looking-Up Cached Aggregates : 84
4.5 Conclusions : 88

5 CONCLUSIONS : 90

REFERENCES : 92

BIOGRAPHICAL SKETCH : 95

v

LIST OF FIGURES

2.1 Rule execution graphs : 14

2.2 Overlapped trigger paths : 15

2.3 A con
icting rule set : 24

2.4 Priority graphs for Figure 1.4 : 25

2.5 A pair of trigger graph and dependency graph : : : : : : : : : : : : : 27

2.6 A priority graph : 27

2.7 An execution graph : 28

3.1 Overlapping trigger paths and extended execution graph : : : : : : : 31

3.2 Three di�erent orderings of dependency edges in Figure 3.1(b) : : : : 32

3.3 Extended execution graph in strict order-preserving executions : : : : 32

3.4 Extended execution graph with rule counts : : : : : : : : : : : : : : : 34

3.5 Algorithm { Build EG() : 35

3.6 Algorithm { Schedule() : 37

3.7 A priority graph with absolute priorities : : : : : : : : : : : : : : : : 41

3.8 Translation to serializable trigger-path execution { Step 1 : : : : : : : 43

3.9 Translation to serializable trigger-path execution { Step 2 : : : : : : : 44

4.1 A Data Warehouse and Aggregate Cache : : : : : : : : : : : : : : : : 50

vi

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Ful�llment of the
Requirements for the Degree of Doctor of Philosophy

STATIC ANALYSIS OF ECA RULES AND USE OF THESE RULES
FOR INCREMENTAL COMPUTATION OF
GENERAL AGGREGATE EXPRESSIONS

By

Seung-Kyum Kim

May, 1996

Chairman: Dr. Sharma Chakravarthy
Major Department: Computer and Information Science and Engineering

In this work we address two major issues that are related within the framework of

active databases. Firstly, we propose a practical approach to rule analysis. We show

how alternative rule designer choices can be supported using our approach to achieve

con
uent rule execution in active databases. Our model employs priority information

to resolve con
icts between rules, and uses a rule scheduler based on the topological

sort to achieve correct con
uent rule executions. Given a rule set, a trigger graph

and a dependency graph are built from the information obtained by analyzing the

rule set at compile time. The two graphs are combined to form a priority graph, on

which the user is requested to specify priorities (or resolve con
icts) only if there exist

dependencies in the dependency graph. The user can have multiple priority graphs

by specifying di�erent priorities depending on application semantics. From a priority

graph, an execution graph is derived for every user transaction that triggers one or

more rules. The rule scheduler uses the execution graph. Our model also correctly

handles the situation where trigger paths of rules triggered by a user transaction are

overlapping, which are not handled by existing models. We prove that our model

achieves maximum parallelism in rule executions.

Next, we propose a cache mechanism, called aggregate cache for e�ciently support-

ing complex aggregate computations in data warehouses. We discuss several cache

update strategies in the context of maintaining consistency between base databases

and aggregates cached in the data warehouse. We formally de�ne the incremental

update of aggregates, which is a prime issue for the aggregate cache. Further we

classify algebraic aggregates into summative aggregates that include a vast variety of

aggregates applicable in data warehouses to support decision making and statistical

data analysis. We prove that there is a precise subclass of summative aggregates that

can be incrementally updated. For the incrementally updatable class of summative

aggregates, we propose an e�cient cache mechanism that allows many user-queries

to share accesses to the cached aggregates in a transparent way.

CHAPTER 1
INTRODUCTION

1.1 Active Databases

For the past decade, making the traditional passive databases active by incorpo-

rating a set of rules has drawn a lot of attention from the database research and devel-

opment community. Originated from the concept of triggers proposed for the System

R [16] and largely developed from the production rule languages for expert systems

such as OPS5 [9], the research on active databases is now getting matured and sev-

eral active database systems are being (or were) implemented including HiPAC [12],

Ode [19], Postgres [35], Starburst [39], Samos [17], Ariel [29], and Sentinel [13].

While there are variations, a representative active database paradigm is to use

the ECA rules (Event-Condition-Action) [12] with either the set-oriented semantics

or the tuple-oriented (instance-oriented) semantics over the relational or Object-

Oriented database. An ECA rule consists of three parts, event, condition, and action

parts. Events usually correspond to database operations, especially data manipu-

lation operations such as insert, delete, and update. For some systems as HiPAC

and Sentinel, temporal events and external events (e.g., user signals) are included

too. All of these events are called primitive events. For the Object-Oriented model,

a method call is regarded as an event as well. Conditions are generally assumed to

be predicates over parameters and database queries without side e�ects. An action

consists of a set of data manipulation operations or a function call.

When an event occurs in the system, rules whose event part corresponds to the

event occurred are triggered. Of the triggered rules, one rule is picked based on some

1

2

criteria (or by a process known as con
ict resolution). Then, the condition part of

the selected rule is tested. If the condition is satis�ed, the action part of the rule is

executed. The process of picking one triggered rule, testing condition, and executing

action is repeated until no more triggered rules remain.

For event speci�cation and detection in active databases (adopting the ECA rule

paradigm), three major approaches have been taken. The common goal in these

approaches is to support composite events. A composite event is a composition of

primitive events and/or other composite events. For instance, in Sentinel [13], given

two eventsE1 and E2, a disjunction of them,E1rE2 is de�ned to occur when eitherE1

or E2 occurs. While similar sets of composite events are de�ned in all the approaches,

distinctions are found in the ways of detecting such composite events. In Ode, �nite

automata are used to detect composite events expressed by a variation of regular

expression [21, 20], while in Samos, a labeled Petri Net is adopted [18]. In Sentinel,

on the other hand, we use an event graph where each leaf node represents a primitive

event and an intermediate node represents a composite event consisting of other

events represented by its child nodes. When a primitive event occurs, the occurrence

is propagated to its parent node. A parent node, with an appropriate restriction

for each type of composite event, collects occurrences of its child events, noti�es an

occurrence of the composite event if a certain condition is met, and propagates the

occurrence of the composite event to its own parent node [13].

For condition speci�cation and testing, there are few systems that take a sophis-

ticated approach, except Ariel. In case a condition is represented by a database

query, that query should not update database contents (i.e., side e�ect free), and it

is interpreted as satis�ed if the query returns a nonempty result. In Ariel, condition

testing is done by an algorithm, called A-TREAT [28]. It uses the discrimination

network to e�ciently compare a large number of patterns to a large number of data

3

without repetitive scanning. A-TREAT can speed up rule processing in a database

environment and reduce the storage requirement of TREAT algorithm.

On the other hand, there are two representative rule execution semantics, tuple-

oriented (or instance-oriented) semantics and set-oriented semantics [30]. When an

event occurs, it can triggers one or more rules. These triggered rules are called in-

stances of their respective rules. Even for one rule, there may exist multiple instances

of one rule for any period of time. It should be noted that as events, granularities of

data manipulation operations are quite coarse. For instance, an event of insert to a

relational table is usually de�ned to occur when any tuple is inserted into the table.

In other words, the granularity of the insert event is the whole relation, not a tuple.

Also, in SQL, an insert, delete, or update statement can modify multiple tuples in

one execution. Therefore if a rule is triggered by any of the data manipulation oper-

ations, it is likely that such an event will give rise to multiple instances of the same

rule. The two rule execution semantics make a di�erence in such situations. Suppose

one execution of insert statement inserts three tuples, t1, t2, and t3, into a table. And

a rule r1 is triggered by that insert event. In the tuple-oriented semantics, t1, t2, and

t3 trigger their own instance of r1, and for each instance of r1, its condition is tested,

and if satis�ed, its action is executed. However, in the set-oriented semantics, only

one instance of r1 is executed for t1, t2, and t3; that is, r1's condition is tested just

once and if the condition is satis�ed, the action part of r1 is carried out on each of t1,

t2, and t3. Postgres has the tuple-oriented rule execution semantics, while Starburst

and Ariel have the set-oriented semantics. HiPAC and Sentinel, on the other hand,

have rather di�erent a rule execution semantics. In these systems, conceptually all

triggered rules are executed concurrently using the nested transaction model [12, 6].

4

1.2 Data Warehouses

In order to support e�cient processing of queries which are often of complex forms

and span over vast amount of data which in turn could be distributed and even het-

erogeneous, one viable approach is to maintain a separate dedicated repository that

holds the gist of base data and to process the queries over the repository. By doing

so, it is expected that decision support applications that usually involve lots of such

otherwise expensive queries can also be detached from ordinary online transactions

being performed over the underlying base databases, thereby signi�cantly enhanc-

ing performance of both categories of applications. This approach, known as data

warehousing [31], is rapidly becoming popular, and a lot of research e�ort is recently

being put to solve various related issues [33].

A data warehouse system can be viewed as a multi-layered database system. At

the bottom level, there are several databases, called base databases, each of which

is an operational, independent database system. At the top level, there is one spe-

cialized, (almost) read-only database system that contains the most abstracted or

summarized data derived from the databases in one level below. As a result, this

system constitutes a pyramid-structured abstraction of information (or data). But

usually only a two-layer structure is assumed; that is, base databases and a sum-

marized database which we call data warehouse. Between the two layers, a physical

separation is generally assumed. The base databases can also be distributed and even

heterogeneous. All these separated databases are connected through a network.

Since the data warehouse and base databases are separated and the data ware-

house contains information derived from the base databases, it is a natural require-

ment that as base databases change, the data warehouse should be updated accord-

ingly, if the changes are relevant to the information in the data warehouse. Therefore,

5

an intermediate layer between the two layer would be necessary to mediate communi-

cations between the two layers. This intermediate layer is responsible for monitoring

changes made to the base databases and propagating them to the data warehouse to

update its contents. In practice, however, the intermediate layer can be two interface

layers, each of which resides in each base database and in the data warehouse. The

interface layer in base databases is responsible for detecting changes in its respective

base database and it should communicate with the interface layer in the data ware-

house to propagate the changes. One issue arising here is when to or how often to

propagate the changes. Proposed approaches in the literature include eager propa-

gation for a currency critical data set, polling for a data set that changes slowly or

whose currency requirement is not critical, and lazy (or on-demand) propagation for

a data set that changes slowly and is not used frequently.

A closely related issue to the change propagation is the incremental update of the

data warehouse. It is unthinkable to repopulate (or re-derive) the data warehouse

whenever a change is made in a base database. Therefore, there should be a way

to incrementally update the data warehouse with the propagated changes. In fact,

this issue is not a new one. View materialization [8, 27] in the relational database

deals with a similar problem, but not identical. Although the data warehouse can be

viewed as a set of materialized views (derived from base databases), unlike view mate-

rialization, the data warehouse has a lot of problems that need special attention. The

views de�ned in the data warehouse can be very complex for which the conventional

view materialization techniques are inadequate. They usually contain historical data

and highly aggregated and summarized data. This is another reason why the view

materialization techniques cannot be directly applied [37]. Recently, the issue of view

materialization has been revisited by several researchers including [23, 24].

6

1.3 Problem Statement

1.3.1 Support for Alternative User Requirements in Active Rules Execution

Using ECA rules in active database systems for real-life applications involves

implementing, debugging, and maintaining a large number of rules. Experience in

developing large production rule systems has amply demonstrated the need for under-

standing the behavior of rules especially when their execution is non-deterministic.

Availability of rules in active database systems and their semantics create additional

complexity for both modeling and verifying the correctness of such systems.

For the e�ective deployment of active database systems, there is a clear need for

providing an analysis (both static and dynamic) and explanation facility to under-

stand the interaction{among rules, between rules and events, and between rules and

database objects. Due to the event-based nature of active database systems, special

attention has to be paid for making the context of rule execution explicit [15]. Unlike

an imperative programming environment, rules are triggered in the context of the

transaction execution and hence both the order and the rules triggered vary from one

transaction/application to another.1

Ideally, the support environment needs to be able to accept expected behavior and

compare it with the actual behavior to provide a useful feedback on the di�erences

between the two. This has to be done in the context of database objects, rules,

events, and transaction sets that are executed concurrently.

Short of this, it is useful to provide alternatives that allow the designer to choose

among various options that are meaningful to his/her application. For example, user

1Use of the nested transaction model for rule execution in Sentinel [6, 36] provides such a context.
Our graphics visualization tool [14] using Motif displays transaction and rule execution by using
directed graphs to indicate both the context (i.e., transactions/composite events) and the execution
of (cascading) rules. We plan to augment the existing visualization capability with the static analysis
proposed in this paper.

7

requirements may come from the following set of answers as far as rule execution is

concerned:

1. No preference; any arbitrary execution order of rules and their �nal result is

acceptable.

2. Arbitrary �nal state is NOT acceptable. The designer wants to see a unique �-

nal result whenever the same set of rules executes from the same initial database

state (i.e., Con
uent Rule Execution is desirable).

3. This particular group of rules must give a unique result when any subset of

these rules executes. No preference for the rest of the rules.

4. This application must have this order and that application must have that

order, if a di�erent execution order gives a di�erent result.

It is evident that the ability to interact with the designer and to support alterna-

tive user requirements is quite important. As a result, support environments for the

design of ECA rules in the context of active databases need to support:

� ECA rule analysis to provide feedback on the interaction of rules either globally

or with respect to transactions,

� Con
uence analysis at rule scheduling time (in addition to static analysis),

� Parallel rule execution where possible for e�ciency reasons, and

� Visualization of actual run time rule execution and related contextual informa-

tion.

In the �rst part of this thesis (Chapters 2 and 3), we propose an approach that

addresses the above. We address con
uent rule executions (which deal with obtaining

a unique �nal database state for any initial set of rules) for a user transaction. We

8

show that previous rule execution models are inadequate for con
uent rule executions

in some cases, and propose extensions that can readily meet the alternative user

requirements with respect to con
uent executions. We also show that our model

naturally supports parallel rule executions.

1.3.2 E�cient Support of Aggregates in Data Warehouses

Although for years there has been great interest in the data warehouse within the

database industry and within academia as well, it does not appear that an e�cient,

fully functional, and
exible data warehouse system has emerged yet. There are

many reasons for that. Part of them are purely engineering problems. There are

a lot of legacy database systems that are still running and lack interface capability

with any other new systems. Extracting data from such a system and monitoring

data changes may not be very theoretically challenging, but from the engineering

point of view, they are not trivial tasks at all. On the other hand, there are still

issues to be answered in more systematic and fundamental ways. One such issue that

we �nd very important is the e�cient support of aggregates in data warehouses. As

data warehouses contain a lot of highly summarized data and many applications in

data warehouses perform from simple to very complex analyses over the data, it is

crucial to improve performance of such aggregate or summary operations. In a naive

implementation, it could take more than several hours to perform a simple summation

over millions of records dispersed in base databases. With such a response time, no

one would expect an interactive data analysis, which is an important requirement for

the data warehouse to be indeed useful as a cooperative tool.

With this consideration in mind, in Chapter 4, we propose a practical means to

boost the performance of aggregate processes in data warehouses. The aggregate

cache that we propose saves in the system (i.e., the data warehouse) previous results

of aggregate computations. As base databases change, the stored results are updated

9

appropriately. Along with such an engineering aspect, in our work we identify and

prove that there is an exact class of aggregates that are guaranteed to be incrementally

updatable, a result that we believe is a theoretical contribution to the research on

data warehouse.

1.3.3 Structure of the Dissertation

The rest of this dissertation is structured as follows. In Chapter 2, we introduce

formal de�nitions of con
uent rule execution and show conditions in which con
uent

rule execution can be achieved. In Chapter 3, we generalize the notions developed in

Chapter 2 to obtain con
uent rule execution in general situations and rule scheduling

algorithms along with a proof of maximal parallelism that our approach attains. In

Chapter 4, we propose the aggregates cache and identify and prove a class of aggre-

gates that can be incrementally updatable. Chapter 5 contains general conclusions

for this dissertation.

CHAPTER 2
STATIC ANALYSIS OF ACTIVE RULES

2.1 Introduction

Incorporating ECA rules (Event-Condition-Action rules) into the traditional data-

base systems, thereby making them active databases, can broaden database applica-

tions signi�cantly [5, 12, 19, 30]. Also, ECA rules provide more
exible and general

alternatives for implementing many database features, such as integrity constraint

enforcement, that are traditionally hard-wired into a DBMS [10, 11, 35, 38, 39].

An ECA rule consists of three parts: event, condition, and action parts. Execu-

tion of ECA rules goes through three phases: event detection, condition test, and

execution of action. An event can be a data manipulation or retrieval operation, a

method invocation in Object-Oriented databases, a signal from timer or the users,

or a combination thereof. An active database system monitors occurrences of events

pre-speci�ed by ECA rules. Once speci�ed events have occurred, the condition part

of the relevant rule is tested. If the test is satis�ed, the rule's action part can be

executed. In Sentinel [13], a rule is said to be triggered when the rule has passed the

event detection phase; that is, when one or more events which the rule is waiting for

have occurred. When an ECA rule has passed the condition test phase, it is said to

be eligible for execution.1 In this work, we use \trigger" to describe the eligible rules

assuming that the condition part has been satis�ed or it is nil.

1The de�nition of trigger is blurred as condition-action rules such as the production rule [9]
have evolved to ECA rules. A condition-action rule is triggered and eligible for execution when
the current database state satis�es the speci�ed condition, whereas for an ECA rule to be ready to
execute, it has to pass separate event detection and condition test phases.

10

11

The ECA rule execution model (rule execution models in general) has to address

several issues. First, for various reasons multiple rules can be triggered and eligible

for execution at the same time. For example, suppose that two rules ri and rj are

de�ned, respectively, on two events E1 and (E1rE2) and there are no conditions

speci�ed for the rules, where (E1rE2) is a disjunction of two component events E1

and E2. A disjunction occurs when either component event occurs [13]. Now, if

event E1 occurs, it will trigger both ri and rj . As addressed by Aiken et al. [3, 4],

multiple triggered rules pose problems when di�erent execution orders can produce

di�erent �nal database states. If an active database system randomly chooses a rule

to execute (out of several triggered rules), as many extant systems do as the last

resort, that will make the �nal database state nondeterministic. This adds to the

problem of understanding applications that trigger rules.

To deal with multiple triggered rules, a generally taken approach is to de�ne

priorities among con
icting rules [2, 12, 28, 34]. When multiple con
icting rules are

triggered at the same time, a rule with the highest priority is selected for execution.

While we believe the prioritization is a sound approach, we notice that the previous

priority schemes are incomplete and inadequate to handle the complexity caused by

trigger relationships between rules.

On the other hand, Aiken et al. [3] focus on testing whether a given rule set has

the con
uence property. A rule set is said to be con
uent if any permutation of the

rules yields the same �nal database state when the rules are executed. If a rule set

turns out to be not con
uent, either the rule set is rewritten to remove the con
icts

or priorities are explicitly de�ned over the con
icting rules. Then, the new rule set

is retested to see if it has the con
uence property. A problem with this approach is

that it tends to repeat the time-consuming test process until the rule set eventually

becomes con
uent. Also, it has not shown by which mechanism con
uence can be

12

guaranteed as priorities between con
icting rules are added to the system as a means

of con
ict resolution.

There are other subtle problems with the ECA rule execution model. Suppose

that ri and rj mentioned previously have condition parts. As event E1 occurs, the

two rules pass the event detection phase. Assume that both rules have passed the

condition test and are ready to execute their action part. It is possible that the

execution of one rule's action, say ri's, can invalidate rj's condition that was already

tested to be true; that is, ri can untrigger rj. Apart from the issue of whether or

not the condition test should be delayed up to the point (or retested at the point)

just before execution of the action part, if one rule untriggers other rules, it is very

likely that the rule set is not con
uent. The opposite situation can also happen.

Suppose the condition of ri was not met. So its action part would not be executed.

But execution of rj's action could change database state so that ri's condition could

be satis�ed this time. Therefore, if rj executes �rst and ri's condition is tested after

that, ri will be able to execute too. Again, execution order of the two rules makes

a di�erence. Instead of proposing a more rigorous rule execution model to deal with

the anomalies, we consider such rules as con
icting with one another so that the rule

designer can be informed of these rules. This view will allow us to cover the problem

within the framework of con
uent rule executions.

In this work we explore problems of con
uent rule executions, which deal with

obtaining a unique �nal database state for any initial set of rules that is triggered by

a user transaction. We show that previous rule execution models are inadequate for

con
uent rule executions and propose a new rule execution model that guarantees

con
uent executions. It is also showed that our model is a perfect �t for parallel rule

execution.

13

2.2 Limitations of the Earlier Rule Execution Models

Early rule execution models such as one used in OPS5 [9] deal with problems of

con
uent rule executions only in terms of con
ict resolution. When multiple rules

are triggered (and eligible for execution), the rule scheduler selects a rule to exe-

cute according to a certain set of criteria such as recency of trigger time, complexity

of conditions. Although this scheme has been used in the AI domain, users in the

database domain prefer to deterministic states from the executions of transactions.

Furthermore, the con
ict resolution approach is not a complete answer to the con-

uence problem since it is based on dynamic components such as recency of trigger

time. For the above reasons, we do not consider this approach in our work.

A somewhat di�erent approach taken in active database systems such as Star-

burst [2, 4] and Postgres [34, 35] is to statically assign execution priorities over rules.

In these systems if multiple rules are triggered, a rule with the highest priority among

them is executed �rst. However, rule execution models in these systems cannot guar-

antee con
uent rule executions unless all the rules (not only con
icting ones) are

totally ordered. This problem is illustrated in the following examples.

Example 2.2.1 Figure 2.1(a) shows a nondeterministic behavior of rule execution

even when all con
icting rules are ordered. In the �gure solid arrows represent trigger

relationships. Dashed lines represent con
icts and an arrow on a dashed line indicates

priority between two con
icting rules. As shown, two pairs of rules are con
icting:

(r2; r5) and (r3; r5). The con
icting rules are ordered in such a way that r2 precedes

r5 and r5 precedes r3 in execution when the pairs of con
icting rules are triggered at

the same time. Now suppose r1 and r4 are triggered by the user transaction at the

same time. (Note that these rules are denoted by solid circles in the graph.) In a

rule execution model such as Starburst, one of r1 and r4 will be randomly picked for

execution since there is no con
ict between them, thus no order speci�ed. Suppose r4

14

r 1

r 2

r 3

r 4

r 5

r 6

r 1

r 2

r 3

r 4

r 5

r 6

(b)(a)

Figure 2.1. Rule execution graphs

is executed �rst; then it will trigger r5. Yet there is no order between r1 and r5 which

are ready to execute. So r5 may go �rst, and its execution will trigger r6. Then, r6,

r1, r2, and r3 may follow. Including this execution sequence, two of all legitimate

execution sequences for the rule set are as follows: (1) hr4 � r5 � r6 � r1 � r2 � r3i and
(2) hr1 � r2 � r3 � r4 � r5 � r6i. Note that relative orders of two con
icting rules, r2 and
r5 (as well as r3 and r5) in the two rule execution sequences are di�erent, thereby

unable to guarantee con
uent execution. <

Example 2.2.2 Figure 2.2 illustrates another situation where the previous rule execu-

tion models fail to achieve con
uent rule executions. There is a dependency between

rk and rl, and rk has priority over rl. In this example, ri and rj are triggered by

the user transaction. Note also that ri is an ancestor of rj in the trigger relationship

and thereby trigger paths originated from both rules overlap one another. Given

that priority, the following two (and more) sequences of rule executions are possible:

hri � rj � rk � rl � rj � rk � rli and hri � rj � rk � rj � rk � rl � rli. Now relative orders of two

con
icting rules rk and rl in the two execution sequences are di�erent. Therefore

con
uent rule executions cannot be guaranteed in the given situation. <

As the previous examples suggest, a problem that the extant active rule execution

models fail to address properly is that even though two rules are not directly con
ict-

ing each other, they may trigger other rules that are directly con
icting. Depending

15

r i

jr

r k

r l

r i

jr

r k

r l

(a) (b)

[1]

[2]

[3]

[4]

Figure 2.2. Overlapped trigger paths

on execution order of triggering rules, the directly con
icting rules may be executed

in a di�erent order from what the user speci�ed, likely resulting in non-con
uent rule

executions. Unless all the direct con
icts are removed by rewriting the rules, one

possible remedy for this problem, implied in Starburst [3], would be to regard the

indirectly con
icting rules as con
icting ones. Figure 2.1(b) illustrates how con
icts

of Figure 2.1(a) are propagated toward ancestor rules in the trigger relationship as

this approach is taken. An undesirable consequence of propagating con
icts is that

it severely limits parallel rule execution. In addition, it is not always clear how to

propagate con
icts in some cases as Figure 2.2(a) shows.

Another problem that the previous rule execution models do not handle was shown

in Example 2.2.2 where trigger paths of rules triggered by the user transaction overlap.

In fact, this new situation poses additional problems for priority speci�cation. That

is, any static priority schemes speci�ed before rules' execution cannot range over all

possible permutations of con
icting rules execution, since one cannot anticipate which

rules will be triggered by the user transaction how many times. For instance, given

the rule set of Figure 2.2(a), there can be two distinct �nal database states which

result from rule execution sequences, hri�rj �rk�rl�rj �rk �rli and hri�rj �rk �rj �rk�rl�rli. All
other legitimate rule execution sequences are equivalent to one of the two sequences

16

in terms of �nal database states. However, if rj is triggered twice and ri once by the

user transaction, the number of distinct �nal database states increases up to �ve. As

ri and rj are triggered more number of times, the number of di�erent �nal database

states increases exponentially. Therefore, it is not realistic to provide every possible

alternatives for these cases. Rather, a less general scheme of priority speci�cation,

which provides only some speci�c alternatives, needs to be considered.

Figure 2.2(b) shows one way of specifying priority for the rule set of Figure 2.2(a),

which is similar to the priority scheme adopted in Postgres [34]. Numbers in brackets

denote absolute priorities associated with rules. A larger number denotes a higher

priority. This priority speci�cation guarantees con
uent rule executions although

non-con
icting rules (ri and rj) too need to be assigned priorities. Note that the

given priority speci�cation is (unnecessarily) so strong that it e�ectively imposes a

serial execution order hrj � rk � rl � ri � rj � rk � rli, thereby ruling out any parallel rule

executions. For instance, one instance of rj could run in parallel with a series of ri

and rj without a�ecting the �nal database state.

In the subsequent sections, we develop a novel rule execution model and a pri-

ority scheme that not only ensures con
uent rule executions but also allows greater

parallelism.

2.3 Assumptions and De�nitions

2.3.1 Rule Execution Sequence (RES) and Rule Commutativity

Informally, a rule execution sequence (RES) is a sequence of rules that the system

can execute when a user transaction triggers at least one rule in the sequence. To

characterize RESs, we �rst de�ne partial RESs. Throughout this work, R denotes

system rule set, a set of rules de�ned in the system by the user. D denotes a set of

all possible database states determined by the database schema. (dj ; Rk), dj 2 D

and Rk � R, denotes a pair of a database state and a triggered rule set. If Rk is a

17

set of rules directly triggered by a user transaction, it is specially called UTRS that

stands for User-Triggered-Rules-Set. UTRS is, in fact, a multiset since as we shall

see later, multiple instances of a rule can be in it. S denotes a set of all partial RESs

(see below) de�ned over R and D.

Partial RES. Given R and D, for a nonempty set of triggered rules, Rk � R

and a database state dj 2 D, a partial RES, � is de�ned to be a sequence of rules

that connects pairs of a database state and a triggered rule set as follows:

� = h(dj ; Rk)
ri! (dj+1; Rk+1)

ri+1! � � � ri+m�1! (dj+m; Rk+m)i

where dj+l 2 D (1 � l � m) is a new database state obtained by execution of ri+l�1,

each rule ri+l (0 � l < m) is in a triggered rule set Rk+l, and eligible for execution

in dj+l, i.e., dj+l evaluates the rule's condition test to true. Each triggered rule set

Rk+l � R (1 � l � m) is built as Rk+l = ((Rk+l�1�fri+l�1g)�Ruk+l)[Rtk+l, where
Ruk+l is a set of rules untriggered by ri+l�1 and Rtk+l is a set of rules triggered by

ri+l�1.2 <

In this work, if only sequences of rule executions are of interest, for simplicity we

write a partial RES without associated database states and triggered rule sets. For

example, the partial RES above can be denoted as � = hri � ri+1 � � � ri+m�1i, and we

already used this form of partial RESs in the previous sections.

Among partial RESs, we are interested in some, called complete RESs (or simply,

RESs), that satisfy certain conditions.

Complete RES. GivenR and D, for a nonempty set Rk � R that is a set of rules

triggered by a user transaction (i.e., UTRS) and dj 2 D is a database state produced

2Subscripts, i; i+1; � � � ; i+m� 1, attached to rules, are intended to mean that they are m rules
that need not be distinct (similarly for d's and R's). They do not represent any sequential order of
rules with respect to subscript numbers. That is, they should not be interpreted as, for instances,
r10; r11; r12 � � �, in case where ri is r10. For a precise denotation, we could use i0; i1; � � � ; im�1, instead.
However, we have opted for the less precise notation in favor of simplicity throughout this work.

18

by operations in the user transaction, a complete RES (or RES), � is de�ned to be a

partial RES:

� = h(dj ; Rk)
ri! (dj+1; Rk+1)

ri+1! � � � ri+m�1! (dj+m; Rk+m = ;)i

where no triggered (and eligible) rules remain after execution of the last rule ri+m�1

(i.e., Rk+m = ;). <

Note that given Rk and dj , there may be multiple di�erent RESs, even in a case where

there is only one rule in Rk, and those RESs do not necessarily have the same set of

rules executed, since a rule's triggering/untriggering other rules may be dependent

on the current database state. In this work we use rule schedule in informal settings

interchangeably with complete RES.

Rule shu�ing. Given a partial RES �1, two rules ri and rj in �1 can exchange

their positions provided rj 2 Ry, yielding a di�erent partial RES �2 as below:

�1 = h(dx; Ry)
ri! (dk; Rl)

rj! (du; Rv)i

�2 = h(dx; Ry)
rj! (dm; Rn)

ri! (ds; Rt)i

<

Next we de�ne an important property of rules that is used to show if a system rule

set is con
uent. Two rules are de�ned to be commutative if shu�ing them always

yields the same result.

Rule commutativity. Given R and D, two rules ri; rj 2 R are de�ned to be

commutative, if for all Ry � R, where ri; rj 2 Ry, and for all database state dx 2 D,
the following two partial RESs can be de�ned:

h(dx; Ry)
ri! (dk; Rl)

rj! (du; Rv)i

19

h(dx; Ry)
rj! (dm; Rn)

ri! (du; Rv)i

where dx; dk; dm; du 2 D need not be distinct and likewise Ry; Rl; Rn; Rv � R need

not be distinct. <

Note that any rule is trivially commutative to itself.

Equivalent partial RESs. Two partial RESs �i and �j are de�ned to be equiv-

alent (�) if:

1. �i and �j begin with the same pair of database state and triggered rule set, and

end with the same pair of database state and triggered rule set; and

2. in �i and �j the same set of rules is triggered, possibly in di�erent orders. <

The two partial RESs shown in the de�nition of rule commutativity are equivalent.

In fact, the rule commutativity is used to prove that two or more partial RESs are

equivalent, and the equivalence of partial RESs is, in turn, used to show whether

given a system rule set is con
uent or not. Incidentally, it should be noted that

without condition 2), the equivalence de�nition can still be valid. However, with

our static analysis method it is not possible to identify all such equivalent partial

RESs. To make presentation of this work coherent, we chose a more restrictive form

of equivalence.

The equivalence of partial RESs naturally lends itself to de�nition of equivalence

classes of partial RESs. For givenR andD, the set of all partial RESs, S is partitioned
into disjoint classes by the equivalence relation (�). All partial RESs belonging to

an equivalence class have the same �nal result, i.e., the same database state and the

triggered rule set.

20

Equivalence class of partial RESs. For a partial RES, � 2 S, the equivalence

class of � is the set S� de�ned as follows:

S� = f
 2 S j
 � �g:

<

Of partial RESs belonging to the same equivalence class, for the discussion in this

work we de�ne canonical partial RES, or canonical RES for short, to be a partial

RES that comes �rst when all the partial RESs are sorted by their rules' concatenated

subscripts in lexicographical order. For instance, assuming that an equivalence class

includes only three partial RESs, �i = hr1 � r2 � r4 � r3i, �j = hr1 � r4 � r2 � r3i, and
�k = hr1 � r2 � r3 � r4i, �k is the canonical RES representing that equivalence class (by

lexicographically sorting concatenated subscripts of the partial RESs, i.e., 1234 (�k),

1243 (�i), and 1423 (�j)) Of our prime interest is the equivalence class of complete

RESs.

Con
uent rule set. Given R and D, if there exists only one equivalence class of

complete RESs for every nonempty set R0 � R and every d 2 D, R is de�ned to be

con
uent. <

2.3.2 Dependencies and Dependency Graph

If a di�erent execution sequence of the same rules can produce a di�erent �nal

database state, it is because of certain interactions between rules and between rules

and the environment. If we assume the execution environment to be �xed and there is

no interference from the user while rules are executing, the interactions between rules

must be the sole reason for non-con
uent rule executions. Based on this, we de�ne

rules' interactions responsible for non-con
uence as dependencies between rules, much

like those of the concurrency control in transaction processing. We de�ne two kinds

of dependencies.

21

Data dependency. Two distinct rules ri and rj are de�ned to have data depen-

dency with each other if ri writes in its action part to a data object that rj reads or

writes in its action part, or vice versa. <

Untrigger dependency. Two distinct rules ri and rj are de�ned to have untrigger

dependency with each other if ri writes in its action part to a data object that rj reads

in its condition part, or vice versa. <

If two rules have data dependency with each other, the input to one rule can be

altered by the other rule's action. Thus it is very likely that the a�ected rule would

behave di�erently. The data dependency can also mean that one rule's output can be

overridden by the other rule's output. This also has a bearing on the �nal outcome.

If there is no data dependency, two rules act independently. Therefore, there should

be no di�erence in the �nal outcome due to a di�erent relative execution order of the

two rules.

On the other hand, if there is untrigger dependency between two rules ri and rj,

this implies that one rule's action can change the condition which determines whether

the other rule is to execute or not. If the a�ected rule, say ri, has already executed

�rst, it is unrealistic to revoke the e�ect of ri. As a result, both ri and rj will execute

in this case. However, if the a�ecting rule rj executes �rst, it can prevent ri from

executing. Since it is assumed that there are no read-only rules, the two di�erent

execution sequences can result in di�erent database states even though there is no

data dependency.3

From the observation above, it is clear that the absence of data dependency and

untrigger dependency between two rules is a su�cient condition for the two rules to be

3It should be noted that whether or not the untrigger dependency can indeed a�ect con
uent
execution depends on rule execution model employed by an active database system. If the rule
execution model does not re-check the condition part of a rule just before it executes the action part
of that rule, then no rule is untriggered. In such a case, it can appear that the untrigger dependency
is no longer a problem and only data dependency matters.

22

commutative. (The reverse is not necessarily true.) If there exists either dependency

between two rules, the rules are said to con
ict with each other. Obviously, con
icting

rules are non-commutative.

Lemma 1 Given a partial RES �, a new partial RES �0 obtained by freely shu�ing

rules in � is equivalent to �, as long as relative orders of con
icting rules in both

RESs are equal if there are any con
icting rules.

Proof of Lemma 1 Suppose � and �0 are not equivalent despite the same relative

orders of con
icting rules in them. Then, there must be one or more pairs of non-

con
icting rules in � that can be shu�ed but result in a di�erent (non-equivalent)

partial RES. These non-con
icting rules are, then, con
icting and should have the

same relative orders in � and �0, which is a contradiction. 2

Below, we de�ne dependency graph that represents dependencies between rules

in the system rule set.

Dependency graph. Given system rule setR, a dependency graph,DG = (R;ED)

is an undirected graph where R is a node set in which a node has one-to-one mapping

to a rule and ED is a dependency edge set. For any nodes u and v in R, a dependency

edge (u; v) is in ED if and only if there is data dependency or untrigger dependency

(or both) between u and v. <

A dependency graph is non-transitive; that is, (u; v) and (v;w) in ED do not

imply (u;w) in ED. Edges in a dependency graph represent only direct dependencies.

An indirect (transitive) dependency is represented by a path consisting of a set of

connected dependency edges.

2.3.3 Trigger Graph

A trigger graph (TG) is an acyclic directed graph representing trigger relationships

between rules within a given system rule set R. For system rule set R, TG = (R;ET)

23

has a node set R in which a node has one-to-one mapping to a rule and a trigger edge

set ET . For any two nodes (i.e., rules) ri and rj in R, trigger edge set ET contains

a directed edge, called trigger edge, (ri
T! rj), if and only if ri can trigger rj. It is

de�ned that ri can trigger rj if execution of ri's action can give rise to an event that

is referenced in the event speci�cation of rj.4 A trigger path in a trigger graph is a

(linear) path starting from any node and ending at a reachable leaf node.

Note that for rules ri and rj above, it is possible that rj is not triggered by ri

at run time if ri's action part contains a conditional statement. Nevertheless we

conservatively maintain a trigger edge if there is any possibility of ri's triggering rj.

In addition, we are assuming that a trigger graph is acyclic to guarantee termination

of rule executions [3]. If a trigger graph contains a cycle, it is possible that once a

rule in the cycle is triggered all the rules in the cycle keep triggering the next rule

inde�nitely. We also assume that there exists a separate mechanism for detecting

cycles in a trigger graph so that the rule designer can rewrite the rules in such a case.

Incidentally, it should be noted that a trigger relationship between two rules does

not necessarily imply a dependency between the rules. For instance, given a trigger

edge (ri
T! rj), if ri for sure triggers rj and no other rules are triggered from ri and rj,

there are only two possible partial RESs for the two rules, hri � rj � rji and hrj � ri � rji.
If there is no data or untrigger dependency between ri and rj (i.e, the two rules are

commutative), the two RESs are equivalent despite the trigger edge.

2.4 Con
uence and Priority Speci�cation

In this section we present basic ideas that give us a handle for dealing with

con
icting rules in order to obtain con
uent rules executions. We consider simple

4We admit that this de�nition of \can trigger" is rather crude. In Sentinel, for example, if a
rule is waiting for an occurrence of (E1;E2), which is a composite event sequence and occurs when
E2 occurs provided E1 occurred before, the occurrence of E1 alone never triggers that rule. In our
current work, however, we do not pursue this issue any further. (For event speci�cations in Sentinel,
see Chakravarthy et al. [13].)

24

r 1

r 2

r 3

r 4

r 5

r 6

Figure 2.3. A con
icting rule set

cases �rst. When there are n distinct rules to execute and m pairs of con
icting rules

among them, intuitively, the maximum number of di�erent �nal database states that

can result from all di�ering RESs is conservatively bounded by 2m, since each pair of

con
icting rules can possibly produce two di�erent �nal database states by changing

their relative order.

Example 2.4.1 Figure 2.3 is a redrawing of Figure 2.1(a) with removal of directions

on dependency edges (r2; r5) and (r3; r5). Note that r1 and r4, denoted by solid nodes

in the graph, are in UTRS, a set of rules initially triggered by a user transaction.

Assuming that all the six rules are executed, all complete RESs that can be generated

should be equal to a set of possible merged sequences of two partial RESs hr1 � r2 � r3i
and hr4�r5�r6i. Then, all the possible merged (now complete) RESs can be partitioned

into up to four groups by relative orders between r2 and r5 and between r3 and r5 as

follows: (1) (r2 ! r5) (r3 r5), (2) (r2! r5) (r3! r5), (3) (r2 r5) (r3 r5), and

(4) (r2 r5) (r3! r5). However, since there exists an inherent order between r2 and

r3, i.e., (r2 ! r3), dictated by a trigger relationship, no merged RESs can contain

combination (4) due to a cycle being formed. Combination (4) is dropped from

consideration. Since cumulative e�ect of all the other rules are the same regardless

of their execution order, the three combinations are the only factor that can make a

di�erence in the �nal database state. Therefore, in this example, up to three distinct

�nal database states can be produced by all possible complete RESs. <

25

r 1

r 2

r 3

r 4

r 5

r 6

r 1

r 2

r 3

r 4

r 5

r 6

r 1

r 2

r 3

r 4

r 5

r 6

(a) (b) (c)

Figure 2.4. Priority graphs for Figure 1.4

Using the three possible orderings of con
icting rules in Example 2.4.1, we can

assign directions to dependency edges in the graph of Figure 2.3. Resulting graphs,

which we call priority graphs, are shown in Figure 2.4. These priority graphs present

how priorities can be speci�ed over con
icting rules in order to make rule executions

con
uent. Also, importantly, they represent partial orders that the rule scheduler

needs to follow as it schedules rule executions. As we shall see in the following

section, the rule scheduler basically uses a topological sort algorithm working on a

subgraph of priority graph, and this demands the priority graph to be acyclic.

Example 2.4.2 All possible topological sorts on priority graph of Figure 2.4(a) corre-

spond to an equivalence class represented by a canonical RES, �1 = hr1� �r2�r4� �r5� �r3�r6i
{ for clarity we use � hereafter to denote con
icting rules as �r2. Note that a RES,

hr1 � r4 � �r2 � �r5 � �r3 � r6i is equivalently converted to �1 by shu�ing r2 and r4, which are
commutative. Similarly, �2 = hr1 � �r2 � �r3 � r4 � �r5 � r6i and �3 = hr1 � r4 � �r5 � �r2 � �r3 � r6i
represent equivalence classes obtained when the topological sort is carried out on

priority graphs of Figures 2.4(b) and (c), respectively. <

The formal de�nition of the priority graph is given below.

Priority graph. Given trigger graph TG = (R;ET) and dependency graph

DG = (R;ED), priority graph, PG = (R;EP) is a directed acyclic multigraph formed

26

by merging TG and DG, where R is a node set de�ned as before and EP is a pri-

ority edge set. For any two distinct nodes u; v 2 R, (u
T! v) 2 EP if and only if

(u
T! v) 2 ET , and either (u

D! v) 2 EP or (v
D! u) 2 EP if and only if (u; v) 2 ED.

(u
D! v) (or (v

D! u)) is called directed dependency edge to distinguish it from undi-

rected ones in ED, and the direction of the edge is given by the user. <

For a PG, a trigger edge is depicted by a solid arrow line while a directed depen-

dency edge is depicted by a dashed arrow line. A PG is de�ned to be a multigraph

because it can have more than one edge (actually two edges, i.e., a trigger edge and

a directed dependency edge) between two nodes. It should be noted that if a node u

is an ancestor of a node v in TG and there is a dependency edge (u; v) in DG, the

corresponding directed dependency edge in PG is automatically set to (u
D! v), not

to form a cycle in PG.

Example 2.4.3 Figures 2.5(a) and (b) show a trigger graph and its dependency

graph counterpart respectively. Figure 2.6 shows a priority graph built out of the

two graphs. Note that directions of dependency edges are determined by the user

as a way of specifying priorities between con
icting rules. However, direction of

dependency edge between r1 and r8 (between r2 and r4 as well) is set by the system

as shown in the graph because r1 is an ancestor of r8 in a trigger path. <

Note that given a system rule set R, when an active database system is running,

subsets of R will be triggered and executed dynamically. In order to schedule those

rules, the rule scheduler builds a subgraph of a given PG, called execution graph,

when a user transaction triggers rules.

Execution graph. Given a system rule set R, a priority graph PG = (R;EP),

and a UTRS R0 � R, an execution graph EG = (RE; EE) is a subgraph of PG where

RE is a node set and EE is an edge set. RE is recursively de�ned as RE = fr j

27

r 1

r 3 r 5

r 6 r 8

r 9

r 10

r 11 r 2

r 4

r 7

r 1

r 2

r 3 r 4 r 5

r 6 r 8r 7

r 9

r 10

r 11

(b)(a)

Figure 2.5. A pair of trigger graph and dependency graph

r 1

r 3 r 4 r 5

r 6 r 8r 7

r 9

r 10

r 11 r 2

Figure 2.6. A priority graph

r 2 R0 _ (9r0 9(r0 T! r) (r0 2 RE ^ (r0
T! r) 2 EP)g. For any two distinct nodes

u; v 2 RE, (u
T! v) 2 EE if (u

T! v) 2 EP and (u
D! v) 2 EE if (u

D! v) 2 EP . <

Simply stated, the node set RE consists of a UTRS plus those rules that are

reachable from rules in the UTRS through trigger paths in PG. The edge set EE is

a set of trigger and directed dependency edges that connect nodes in RE.

Example 2.4.4 Figure 2.7 shows an execution graph derived from a priority graph of

Figure 2.6 when a UTRS has rules r3, r5, and r10. A rule schedule can be obtained by

performing the topological sort on the execution graph. The canonical RES for the

28

r 3 r 5

r 6 r 8r 7

r 9

r 10

r 11

Figure 2.7. An execution graph

equivalence class represented by the execution graph is hr3 � r6 � r7 � r5 � r8 � r9 � r10 � r11i.
Note that priority graphs shown in Figure 2.4 are, in fact, execution graphs as well.

<

Lemma 2 Given execution graph EG = (RE; EE), a set of rule execution sequences

corresponding to all feasible topological sorts on EG constitutes an equivalence class,

independent of initial database state.

Proof of Lemma 2 Since EG is acyclic and all pairs of con
icting rules in EG are

ordered (i.e., have an edge between them), all topological sorts on EG should have

the same relative orders of con
icting rules. Then, by Lemma 1, RESs represented

by the topological sorts are equivalent to each other. Also, since Lemma 1 holds

without any premise on initial database states, Lemma 2 also holds regardless of

initial database states. 2

The power of choice is now given to the users. There may be one system-wise

priority graph for all rules de�ned in the system. All applications will be governed by

a single type of con
uent rule executions in such a case. More preferably, however,

each user (or each application) may have a separate priority graph tailored for speci�c

29

needs. Also, given a con
icting rule set, the user may choose to specify priorities

over only a part of con
icting rules and is not concerned about the rest of them.

The rule scheduler will ignore unspeci�ed (thus undirected) dependency edges in a

priority. Taking this approach, our rule execution model can readily meet various

user requirements with respect to con
uent rule executions.

CHAPTER 3
IMPLEMENTATION OF CONFLUENT RULE SCHEDULER

3.1 Strict Order-Preserving Rule Execution Model

In the previous chapter, only simple cases were considered. In particular, the

structures of trigger graphs were trees, all rules in a UTRS were distinct and no trigger

paths existed between these rules. As a result, no trigger paths in the execution

graph overlapped with one another. When rules in a UTRS have overlapping trigger

paths, the priority graph and execution graph de�ned in the previous chapter do not

capture the semantics. For example, consider Figure 3.1(a) which is the same as

Figure 2.2(a). When ri and rj are triggered by a transaction, both rules instantiate

their own trigger paths, and these trigger paths overlap with each other.1 If we

think of the graph as an execution graph, it yields two partial RESs from the graph:

hri � rj � �rk � �rli and hrj � �rk � �rli. Therefore, a rule schedule (alternatively a complete

RES) should be a merged RES of the two partial RESs. A possible merged RES is

hri � rj � rj � �rk � �rl � �rk � �rli. Issues to be addressed in this chapter are, (i) obtaining rule

schedules from an execution graph where trigger paths are overlapping, (ii) assurance

of the con
uence property when rules are executed in accordance with any of such

rule schedules, and (iii) parallel rule schedule taking advantage of the availability of

con
uent multiple rule schedules.

3.1.1 Extended Execution Graph

In order to understand the e�ect of overlapping trigger paths, we introduce an

extended execution graph, used only for illustration purposes. Recall that given a

1The overlapping of trigger paths is not directly visible in Figure 3.1(a).

30

31

r i

jr

r k

r l

jr’

kr’

lr’

r i

jr

r k

r l

(b)(a)

Figure 3.1. Overlapping trigger paths and extended execution graph

system rule set along with its trigger graph, each rule in a UTRS instantiates a

subgraph of the trigger graph, whose sole root is that rule. However, it is possible to

derive an execution graph, from given a priority graph and a UTRS, such that every

rule in the UTRS becomes a root node in the resulting extended execution graph.

Example 3.1.1 Figure 3.1(b) shows the extended execution graph of Figure 3.1(a).

In the extended execution graph, rj and r0j (similarly other rules as well) are the same

rule and only represent di�erent instantiations. Since there is a dependency between

rules rk and rl, this dependency may well be present between all instantiations of

rk and rl as shown in Figure 3.1(b). Directions of dependency edges in an extended

execution graph might be either inferred from the priority graph or speci�ed by the

user. Figure 3.2 shows three di�erent acyclic orderings of relevant dependency edges

of Figure 3.1(b). Once an acyclic extended execution graph is given, the rule scheduler

can schedule rule executions using the topological sort. All possible topological sorts

constitute one equivalence class. <

The extended execution graph, however, cannot be used for priority speci�cation;

it is created only at rule execution time and priorities need to be speci�ed before

that. Thus we need to �nd alternative ways to interpret a priority graph.

32

r i

jr

r k

r l

jr’

kr’

lr’

(b)

r i

jr

r k

r l

jr’

kr’

lr’

(a)

r i

jr

r k

r l

jr’

kr’

lr’

(c)

Figure 3.2. Three di�erent orderings of dependency edges in Figure 3.1(b)

r 5

r 1

r 2

r 5

r 1

r 2

r 4

r 3 2r’ 3r"

5r"5r’

4r’ 4r"r 4

(b)(a)

Figure 3.3. Extended execution graph in strict order-preserving executions

3.1.2 Strict Order-Preserving Executions

One way to derive an extended execution graph is to faithfully follow what the

user speci�es in the priority graph, i.e., priorities between con
icting rules. In strict

order-preserving executions, if rule ri has precedence over rule rj in a priority graph,

all instances of ri precede all instances of rj in resulting rules schedules. Given a

priority graph, an extended execution graph is obtained by simply adding directed

dependency edges in the priority graph to duplicated overlapping trigger paths. This

scheme provides a simple solution for overlapping trigger paths, regardless of the

number of times trigger paths overlap.

33

Example 3.1.2 Figure 3.3(a) shows a priority graph where rules r1, r2, and r3 are in

UTRS and their overlapping trigger paths are denoted by partial RESs, hr1 � �r2 � �r4 � �r5i,
h �r2 � �r4 � �r5i, and h �r3 � �r4 � �r5i. Figure 3.3(b) illustrates how an extended execution graph

is built using strict order-preserving executions. First, overlapping trigger paths are

separated. Second, any dependency edge in the priority graph that connects a rule

in an overlapping trigger path and a rule in any trigger path is also introduced in the

extended execution graph. For example, (r2
D! r04) and (r

00

3

D! r05). Given the extended

execution graph, the rule scheduler can schedule rule execution by performing the

topological sort. All feasible topological sorts should constitute one equivalence class

since in the topological sorts, executions of all con
icting rules are ordered in the

same ways. The canonical RES for the extended execution graph of Figure 3.3(b) is

hr1 � �r2 � �r2 � �r3 � �r4 � �r4 � �r4 � �r5 � �r5 � �r5i. (Note that ri, r0i, and r00i are the same rule.) <

3.1.3 Implementation

In order to implement a rule scheduler conforming to the strict order-preserving

execution, one could directly use extended execution graphs such as Figure 3.3(b).

However, there is a simpler way to derive an execution graph without having to du-

plicate every overlapping trigger path. Consider the extended execution graph of

Figure 3.3(b). In the strict order-preserving execution, directions of all dependency

edges incoming to and outgoing from overlapping trigger paths are all the same as

shown in the graph. Therefore, it is unnecessary to duplicate overlapping trigger

paths. We, instead, add a rule count to each node of a plain execution graph. A

rule count attached to a node indicates how many rules in UTRS share the trigger

path which the node (i.e., rule) belongs to. Figure 3.4 depicts how the plain execu-

tion graph of Figure 3.3(a) is extended using rule counts. In the new graph, m(i)

represents that the trigger path is shared by i instances of the associated rule.

34

r 5

r 1

r 2

r 4

r 3 m(1)

m(1)

m(2)

m(3)

m(3)

Figure 3.4. Extended execution graph with rule counts

Now the new extended execution graph can be used with a minor modi�cation

to the topological sort. Whenever a rule is scheduled, its rule count in the execution

graph is decreased by 1. If the rule count reaches 0, the node and outgoing edges are

removed from the execution graph.

Figure 3.5 describes an algorithm, Build EG() for building an execution graph

for given a priority graph (PG) and a UTRS. It uses M [], an array of size of

the system rule set R, to hold rule count values of rules in EG. If rule ri is (to

be) in EG, M [i] represents the rule count attached to ri. Build EG() calls a sub-

routine, DFS Copy Tree() for every instance in UTRS. Remember that UTRS is a

multiset. It can have multiple instances of the same rule due to multiple triggers.

DFS Copy Tree() traverses the PG in the depth-�rst search fashion and copies a

portion of the PG that are reachable through trigger edges in PG. It also increases

rule count of each node that it visits. The execution graph of Figure 3.4 is obtained by

applying Build EG() to the priority graph of Figure 3.3(a) with UTRS = fr1; r2; r3g.
Once an execution graph is built by Build EG(), the rule scheduler can schedule

rule executions. However, it is possible that some rules in a trigger path in an

execution graph are not triggered at all by its parent rule at run time. In such a

case, other rules in other trigger paths that have an incoming dependency edge from

that rule should not wait. Otherwise the rule scheduler will get stuck. Furthermore,

35

Given PG and UTRS:

Build EG()

f
EG = ;;
initialize array M[] to 0's; // M[] is rule count array

for every ri 2 UTRS do

call DFS Copy Tree(ri);
g

DFS Copy Tree(ri)
f
if (ri 62 EG) then

copy ri into EG;
M[i]++; // increase rule count of node ri
// copy trigger edges

for all rj such that 9(ri T! rj) 2 PG do

f
call DFS Copy Tree(rj);

if ((ri
T! rj) 62 EG) then

copy (ri
T! rj) into EG;

g
// copy dependency edges

for all rj such that 9(ri D! rj) 2 PG do

f
if (rj 2 EG) and ((ri

D! rj) 62 EG) then

copy (ri
D! rj) into EG;

g
g

Figure 3.5. Algorithm { Build EG()

36

if a rule is not triggered, all its descendant rules in trigger path will not be triggered

either. This consideration should be taken recursively downward trigger paths.

Figure 3.6 describes the rule scheduling algorithm, Schedule(), which is a modi�ed

version of topological sort. Given an execution graph EG, it arbitrarily selects a node

(i.e., rule) with indegree 0. Since EG is acyclic, there should always be at least one

node with indegree 0. After executing the selected rule, the scheduler decreases

rule count of the node by 1, and if the rule count reaches 0, the node is removed

along with any trigger and dependency edges outgoing from the node. However,

before the removal, it checks whether the executed rule has triggered child rules in

trigger paths. If there are child rules that are not triggered, then Schedule() calls a

subroutine DFS Dec M() for those child rules. DFS Dec M() traverses down EG in

a depth-�rst search fashion and decreases rule count of each node it visits by 1. If

rule count of a node becomes 0, it removes the node and all outgoing edges.

Theorem 1 The strict order-preserving rule execution model guarantees con
uent rule

executions.

Proof of Theorem 1 Based on Lemma 2, algorithms Build EG() and Schedule()

together serve as a constructive proof for the theorem since by the algorithms, over-

lapping trigger paths are separated, e�ectively making them ordinary acyclic graphs,

and the topological sort is performed on the graphs. 2

3.1.4 Parallel Rule Executions

The execution graph naturally allows parallel execution of rules. In the extended

form, such as Figure 3.3(b), all rules with indegree 0 can be launched in parallel for

execution. Since there should be no dependency edges between nodes with indegree 0

in an execution graph,2 relative execution order of those independent rules does not

2Note that an execution graph reduces its size as rules are executed.

37

Given EG:

Schedule()

f
while (EG 6= ;) do

f
choose a node ri with indegree 0;
execute ri;
M[i]--; // decrease rule count of node ri

for all rj such that 9(ri T! rj) 2 EG do

if (rj was not triggered by execution of ri) then

call DFS Dec M(rj);
if (M[i] = 0) then

delete node ri and edges (ri
T! rk) and (ri

D! rl),
for any k and l, from EG;

g
g

DFS Dec M(rj)
f
M[j]--;

for all rk such that 9(rj T! rk) do

call DFS Dec M(rk);
if (M[j] = 0) then

delete node rj and edges (rj
T! rl) and (rj

D! rm),
for any l and m, from EG;

// don't need to delete dependency edges incoming to rj!
g

Figure 3.6. Algorithm { Schedule()

38

a�ect the �nal outcome. Note also that multiple instances of the same rule can be

scheduled for execution at the same time.

In an execution graph with rule counts, which we use for our work, all rules with

indegree 0 are scheduled simultaneously as many times as the rule counts associated

with the rules. In Figure 3.4, for instance, after scheduling and executing each one

instance of r1 and r3 in parallel, two instances of r2 can be scheduled for execution

since rule count of r2 is 2. In order to implement the parallel rule executions, we have

to make some changes to the algorithm of Figure 3.6 which we will not elaborate in

this work. Whenever execution of one instance of a rule is completed, the associated

rule count need be decreased by 1 and its child rules have to be checked to see whether

they are triggered or not by the parent rule. If some are not triggered, DFS Dec M()

should be called to recursively decrease rule counts along trigger paths. Since the

rule count array M[] and execution graph are shared data structures, some locking

mechanism need be used to avoid update anomalies within the data structures.

One important measure in parallel processing is the degree of parallelism. In the

active rule system, the maximum parallelism is bounded by dependencies between

rules in the system rule set. For instance, if all the rules are independent of each other,

ideally all triggered rules can be executed in parallel. As dependencies between rules

increase, the degree of parallelism would decrease. However, other components too

can restrict parallelism. As discussed in Section 2.2, improper priority speci�cation

and rule execution modelmay execute a given rule set serially which could be executed

in parallel. Speci�cally in our work, two components can hamper parallelism, all

resulted from static analysis. First, precision of dependency analysis between two

rules can a�ect parallelism. Even though there is data dependency between two

rules, they can be commutative in reality. Being unable to detect such a hidden

commutativity results in a false dependency edge in an execution graph, likely costing

39

parallelism. Second, precision of trigger relationship analysis can similarly a�ect

parallelism. If we know for sure that one rule triggers another rule, the trigger edge

between the two rules can be deleted after all rule count values are computed. This

way, the two rules can be scheduled in parallel if there is no other path connecting

them in the resultant execution graph. Using static analysis, we cannot completely

avoid uncertain trigger edges, and presence of the uncertain trigger edges can cost

parallelism. However, ignoring the loss caused by imprecision of static analysis, the

strict order-preserving rule executions exploit the maximum parallelism existing in a

given system rule set. We state it in Theorem 2.

Theorem 2 Using the strict order-preserving rule executions, the active rule execu-

tion model achieve the maximum parallelism within limitations of static trigger and

dependency analysis.

Proof of Theorem 2 Given any acyclic extended execution graph, there are two

kinds of edges; trigger edges and dependency edges. We �rst assume that no trigger

edges can be removed, that is, they are all uncertain trigger edges. Now suppose

there are super
uous dependency edges in the execution graph whose absence does

not a�ect the �nal database state. (Therefore we can remove them safely to increase

parallelism.) There can be only two types of dependency edges in an acyclic execution

graph. Given any dependency edge (ri
D! rj), ri is either a proper ancestor of rj in

a trigger path containing both ri and rj or not an ancestor of rj in any trigger

path. In the �rst case, even though the dependency edge is redundant in terms

of representation, removal of that edge does not allow rj to execute before ri since

rj is yet to be triggered by ri or its descendant. Thus, removal of the �rst type

of dependency edges has no e�ect of increasing parallelism. In the second case, if

(ri
D! rj) is the only dependency path that can be interconnected by trigger edges and

dependency edges to connect ri to rj, obviously this cannot be removed at any rate. If

40

there exist other dependency paths connecting ri to rj whose lengths are longer than

(ri
D! rj) (of course, if such paths exist, they should be longer than one-edge path

(ri
D! rj)), (ri

D! rj) is redundant, but again, removal of the dependency edge does

not allow rj to execute before ri. By applying this argument to all dependency edges

present in the extended execution graph, we can see that dependency edges are either

necessary or redundant, but removal of redundant edges does not increase parallelism.

Since the execution graph with rule counts are equivalent to the extended execution

graph under the strict order-preserving rule executions, we can conclude that the rule

scheduler exploit the maximum parallelism inherent in the system rule set. 2

3.2 Alternative Policies for Handling Overlapping Trigger Paths

3.2.1 Serial Trigger-Path Executions

In order to handle overlapping trigger paths, there may be other approaches than

the strict order-preserving rule executions. One obvious approach among them is

serial trigger-path execution in which all rules in an overlapping trigger path execute

before any other rules in other overlapping trigger paths. In other words, when

trigger paths overlap, rules in those overlapping trigger paths execute in trigger-path

by trigger-path fashion. For instance, in Figure 3.1, hri � rj � �rk � �rl � rj � �rk � �rli is a
serial trigger-path execution.

Although the serial trigger-path execution could appear more intuitive, unfor-

tunately it brings forward the old problem again. Di�erent serial trigger-path exe-

cutions may result in di�erent �nal database states when there exist dependencies

between the overlapping trigger paths. Therefore the user has to choose one serial

order over the con
icting overlapping trigger paths to obtain a unique �nal database

state. However, choosing a serial order in advance (i.e., at compile time) is not al-

ways possible, since, as discussed in Section 2.2, multiple instances of the same rule

may be in UTRS and one cannot predict them before the rules execute. To reiterate

41

r 5

r 1

r 2

r 4

r 3 [10][15]

[20]

Figure 3.7. A priority graph with absolute priorities

that, let's assume that A, B, and C are three overlapping trigger paths rooted by

rules a, b, and c, respectively, and the trigger-paths are all con
icting each other.

Then, if each one instance of a, b, and c is in UTRS, any of six permutations (3!)

made of A, B, and C (i.e., serial trigger-path executions) may produce a di�erent

result. However, if rule a is triggered twice while the other rules remain as before,

four trigger paths A, A0, B, C will be instantiated and the permutations increase to

24 (4!). As more instances of a, b, or c are added to UTRS, the permutation will

increase exponentially.

From the observation above, it is apparent that we again have to settle for a less

general scheme, which will be discussed below, than the full-
edged serial trigger-

path execution. Figure 3.7 shows a priority graph that is slightly di�erent from

Figure 3.3(a). The new graph has dependency edges between r1 and r4, and between

r3 and r5 as before. Also, it uses absolute priorities (numbers in brackets) attached

to rules rather than directed dependency edges. Using this priority graph, the rule

scheduler will be able to schedule a serial trigger-path execution by executing rules

in a trigger-path whose root rule's priority is the highest. For instance, if rules r1, r2,

and r3 are each triggered once by a user transaction, given the priorities, the serial

trigger-path execution being scheduled will be h �r1 � r2 � �r4 � �r5 � r2 � �r4 � �r5 � �r3 � �r4 � �r5i.
Now if r2 is triggered twice and r1 and r2 once, then since priority of r2's instances is

42

lower than r1 and higher than r3, the resultant serial trigger-path execution will be

h �r1 � r2 � �r4 � �r5 � r2 � �r4 � �r5 � r2 � �r4 � �r5 � �r3 � �r4 � �r5i.
Althouh we will not elaborate in this work, it will be worthwhile to investigate

more e�cient and convenient ways of specifying serial execution orders, if the serial

trigger-path execution is to be pursued for implementation. Using absolute priorities

could be a hassle as pointed out in Section 2.2. On the other hand, sacri�cing

generality in serial order speci�cation might do more good than harm. For example,

it can be assumed that in a trigger path, ancestors have priority over their descendents

when they are in UTRS (or vice versa). If such an assumption is made, the explicit

priority speci�cation between r1 and r2 in Figure 3.7 can be omitted. It should

be noted that in order to schedule serial trigger-path executions, the rule scheduler

described in the previous section need be modi�ed appropriately to deal with the

added absolute priorities.

3.2.2 Serializable Trigger-Path Executions

A more interesting scheduling than the serial trigger-path execution would be

serializable trigger-path execution in which rule execution sequence may not be a

serial trigger-path execution but the �nal result is equivalent to that of a serial

trigger-path execution. In Figure 3.7, for example, one can see that a rule execution

sequence hri � rj � rj � �rk � �rl � �rk � �rli is equivalent to the serial trigger-path execution

hri � rj � �rk � �rl � rj � �rk � �rli. Therefore, the former is a serializable trigger-path execution.

Once a serial execution order of overlapping trigger paths is set, it can be readily

translated to a serializable trigger-path execution using extended execution graph.

Figure 3.8 illustrates the �rst step to translate a serial trigger-path execution, shown

in Figure 3.7 assuming r2 is triggered twice, to an equivalent serializable trigger-path

execution. In Figure 3.8, dashed lines, presently undirected, represent dependencies

between rules (only inter-trigger-path dependencies are shown), and directed dotted

43

r 5

r 1

r 2

r 4

2r’

5r’

4r’

2r"

4r"

5r"

4r’’’

5r’’’

3r

Figure 3.8. Translation to serializable trigger-path execution { Step 1

lines connecting the last rule in a trigger path to the �rst rule in the next trigger

path (between r5 and r02, for example) impose the serial order speci�ed in Figure 3.7.

Ignoring the undirected dependency edges and regarding the newly added dotted

arrows as only dependency edges, our rule scheduler will schedule the original se-

rial trigger-path execution. Then, as the second step of translation, directions of

dependency edges are set by following trigger paths bridged by the dotted arrows

so that the directions are consistent with the serial order. After that, the dotted

arrows are deleted. Figure 3.9 shows the result of the second step translation. Now if

the translated execution graph is fed to the rule scheduler, an equivalent serializable

trigger-path execution will be generated. Note that there may be multiple equivalent

serializable trigger-path executions and they are those that enable parallel rule exe-

cutions. Maximum parallelism of Theorem 2 still holds for the translated execution

graph.

3.2.3 Comparisons with Strict Order-Preserving Execution

Collating the serializable (or serial) trigger-path execution with the strict order-

preserving execution raises an interesting point. Although choosing between them

would remain as largely subjective a matter, entrepreneurial policies and applica-

tions' semantics could favor one over the other. Suppose rule ri triggers rule rj and

there is a dependency between them. When multiple instances of ri are triggered

44

r 5

r 1

r 2

r 4

2r’

5r’

4r’

2r"

4r"

5r" 5r’’’

4r’’’

3r

Figure 3.9. Translation to serializable trigger-path execution { Step 2

by a user transaction, in the traditional transaction processing environment, the se-

rializable trigger-path execution would be favored since, regarding a trigger path as

a subtransaction, it appears to �t well into what already exist in that environment.

On the other hand, when ri stands for an absolute raise to an employee's salary

(say, $1000) and rj for a relative raise (say, 5%), then the strict order-preserving

execution would make more sense, if the company has a policy that applies all ap-

plicable absolute raises before relative raises. Considering the serializability is often

used as a correctness criterion for executions of subtransactions in the nested trans-

action which, in turn, has been proposed to be used for rule executions in some

active databases [6, 12], this example illustrates that the serializability may not be

an appropriate choice for some cases even if it is strengthened to yield con
uent rule

executions.

As for implementation, the serializable trigger-path execution is less favorable in

our current framework. Compared to the strict order-preserving execution, it requires

a di�erent priority speci�cation scheme than the simple priority graph. However, once

transformed properly to the form of Figure 3.9, the serializable trigger-path execu-

tion is on the par with the strict order-preserving execution in terms of exploiting

maximum parallelism in rule executions.

45

3.3 Discussion and Conclusions

In this work we have proposed a new active-rule execution model along with pri-

ority speci�cation schemes to achieve con
uent rule executions in active databases.

As other rule execution models, we employ prioritization to resolve con
icts between

rules. Ideally, by prioritizing executions of con
icting rules whose di�erent relative

execution orders can yield di�erent database states, one can achieve con
uent rule

executions. It is necessary, however, to prioritize as few rules as possible since prior-

itizing many rules in a meaningful way itself could be a challenge and the more rules

prioritized, the less rules being able to execute in parallel. Prioritizing con
icting

rules only, on the other hand, may call for incorrect results as executions of seem-

ingly independent rules can trigger and execute con
icting rules in the wrong way.

Also, when rules in the same trigger path are triggered resulting in overlapping trig-

ger paths, more problems can be brought up. Unlike previous rule execution models,

our model uses a rule scheduler based on the topological sort to respect all the speci-

�ed priorities if applicable. This way, rules being triggered and executed from a user

transaction can follow the execution sequence imposed by the priority speci�cation

to make their execution con
uent. We also have proposed the strict order-preserving

rule execution to deal with overlapping trigger paths. In the strict order-preserving

rule execution, when a part of or the whole trigger path is multiply executed and

there are priorities between rules in the trigger path, the rules are executed in such a

way that no rule appears before rules with higher priorities if any. It has been shown

that our rule execution model can exploit maximum parallelism in rule execution.

Lastly, we have discussed other possible ways of handling overlapping trigger paths,

i.e., the serial trigger-path execution and serializable trigger-path execution.

There are other related issues not pursued in our current work. One of such

issues is precision of data dependency (or dependency in general). Our de�nition in

46

Section 2.3.2 may be too coarse as some rules might be commutative despite presence

of the de�ned dependencies. If an active rule language has a de�nite form as SQL,

the de�nition of dependency and its detection may be tightened by analyzing static

expressions in rule de�nition as done in Baralis and Widom [7]. In Sentinel, a rule has

a very general form since the condition and action parts can be arbitrary functions.

In such a system, even detecting dependency with a margin of imprecision can be

challenging. However, we know empirically that in general only a few stored data

items are referenced in those functions. The rule designer should be able to readily

recognize the referenced data items and classify them into read-set and write-set.

Once the read-set and write-set are obtained, the dependency graph can be drawn

as usual.

The problem of con
uent executions can be further complicated in those active

databases such as Sentinel [13] and HiPAC [12] where coupling modes between event

and condition and between condition and action are de�ned. In Sentinel and HiPAC

three coupling modes are de�ned: immediate, deferred, and detached modes. For

coupling modes between event and condition, the immediate mode prescribes that

condition be tested immediately after a relevant event is detected. In deferred mode,

condition is tested after all user-de�ned operations (except commit/abort) in the

current transaction are performed. In detachedmode, condition is tested in a di�erent

transaction. The semantics of these modes holds for the coupling modes between

condition and action as well.

Our work described in this thesis assumes the immediate mode between event

and condition and between condition and action as well. However, considering that

in the deferred mode, tests (or actions) are carried out in the same order as the

occurrence order of events that triggered the rules, our model works well for deferred-

deferred couplings between event and condition and between condition and action.

47

Interestingly, in a situation where event-condition coupling is the immediate mode

and condition-action coupling is the deferred mode, our model is still applicable. But

this combination of coupling modes precludes the possibility of one rule's untriggering

the others since all tests are completed before any action is performed. On the

other hand, the detached mode doesn't suit with our model and other models as

well that deal only with con
icts within a transaction boundary. By detaching the

execution of action part from the current transaction, even execution of only one

rule can result in di�erent �nal database states depending on interaction between

the detached transaction and the parent transaction. And those interactions are

governed by transaction model the system employs. Unless a rule execution model is

geared with the transaction model, there is no room to control the inter-transaction

interactions to make rule executions con
uent.

CHAPTER 4
AGGREGATE CACHE

4.1 Motivation

Complex aggregate expressions are frequently computed in data warehouses to

support decision making and for statistical data analysis. These computations are

expensive to perform as they require at least one full scan of usually huge (or even

distributed) base databases (or operational databases). Hence, it is vital for the

data warehouse applications to have a means of reducing the computation overhead.

An approach used to address this problem is to materialize views de�ned in the data

warehouse, assuming that both the underlying base databases and the data warehouse

use the relational data model. There already exists a body of literature on view

materialization in the context of relational databases or deductive databases [8, 22, 25,

27]. Recently, the same issue has been reexamined by several researchers [23, 24, 40]

from the data warehouse viewpoint. However, bulk of the literature deals with SPJ

(Select-Project-Join) views. Quite a few papers mention materialization of aggregates

as a means of performance improvement, but no in-depth study has been reported

except [32]. Using view materialization, some of SPJ views de�ned in the data

warehouse schema are chosen to be materialized. Then, when base databases change,

materialized views that are a�ected by the change are updated in an incremental way

if possible; otherwise the a�ected views are rematerialized. Realistically, however,

application of traditional view materialization techniques seems inappropriate for

the data warehouse environment for the following two reasons:

48

49

1. Unlike views, aggregates are usually not prede�ned and it is hard to predict

what aggregates on what data items are computed, since aggregates tend to be

used in ad hoc queries.

2. Due to the natural process of data analysis or decision making, many aggregates

are not likely to be used again (or rarely used) after some period of heavy usage.

Note that the second reason above implies the presence of temporal locality prop-

erty of aggregates usage in data warehouse applications. This is one good reason

to introduce the cache mechanism for handling aggregates in data warehouses. In

addition, by using a cache, an aggregate is cached the �rst time when it is actually

used. That is, the user is not required to declare in advance what aggregates would

be used. Therefore this is also a good way to deal with ad hoc queries containing

aggregates.

In addition to the temporal locality, the spatial locality is also observed in aggre-

gate usage in data warehouse applications. That is, when an aggregate is used in a

query, other aggregates closely related to this aggregate in terms of data modeling

perspectives are also expected to be queried sooner or later. For example, if average

salary of all employees in a department has been queried, it is more likely that av-

erage age of the same group of employees is queried in a short period of time than

total order placed today. Unfortunately, this sort of spatial locality is too loose and

abstract to be used to enhence e�cience of cache. Therefore we will not consider the

spatial locality in our work.

In this work we propose an aggregate cache. As Figure 4.1 shows, the aggregate

cache can be added to a data warehouse as a plug-in. The aggregate cache uses part

of the data warehouse (i.e., disks) as a cache. It interacts with query processor of the

data warehouse manager (therefore, the query processor need be modi�ed to some

extent) to expedite computation of aggregates. It also interacts with the integrator,

50

Integrator

Cache
Aggregate

Manager

Manager

Change Detector
& Notifier

Base Database 1

Change Detector
& Notifier

DBMS

Base Database 2

Change Detector
& Notifier

Data Warehouse

DBMS

Base Database n

DBMS
......

Figure 4.1. A Data Warehouse and Aggregate Cache

which intercepts change noti�cations from base databases that are relevant to cached

aggregates, and updates a�ected cached aggregates appropriately.

When an aggregate in a query (of the data warehouse user) is processed, the query

processor of the data warehouse manager �rst consults the aggregate cache manager.

If the aggregate is found in the cache, the stored value is used for processing the query.

Otherwise, the aggregate needs to be re-computed from data in base databases or

from data in the data warehouse if an appropriate (presumably, summarized) copy

is present there. In any case, the computed aggregate is cached for later use, unless

otherwise directed.

51

For the aggregate cache proposed in this work, not all aggregates need be cached.

If the user knows that some of the aggregates will not be used again, the user should be

able to mark such aggregates in queries so that they are not cached by the aggregate

cache. On the other hand, if a certain set of aggregates is known to be used frequently,

these aggregates can be pre-computed and installed in the cache and will not be

replaced until explicitly requested to do so. Between these two extremes, all ordinary

aggregates are cached when they are �rst referenced in queries and replaced out later

by a cache replacement policy. By taking this approach, as far as aggregates are

concerned, the aggregate cache as a whole behaves as an adaptive schema for a data

warehouse that dynamically adapts itself to uncertain and varying user requirements.

4.2 Updating Cached Aggregates

As base databases change, there should be some way of re
ecting those changes

to aggregates cached in the data warehouse, if the changes are relevant. Presuming

a�ected aggregates are known, one way is to invalidate the a�ected aggregates. This

method was addressed by Sellis [32] in the context of maintaining derived data in

relational databases. However, in data warehouse environments, where changes to

base databases are expected to be frequent (one of the very reasons why the data

warehouse was introduced), simply invalidating a�ected aggregates will not be a good

approach as cached aggregates would not have much chance to be reused. Therefore,

our natural choice is updating a�ected aggregates as necessary.

Again assuming a�ected aggregates are known when base databases change, there

may be several ways of updating the aggregates as outlined below:

Rematerialization:

A�ected aggregates are recomputed by rescanning base databases.

52

Periodic Update:

Changes to base databases are kept in respective base databases and periodi-

cally the changes are propagated to the data warehouse. The data warehouse,

then, collects the changes and incrementally updates a�ected aggregates.

Eager Update:

Every time a change is made to a base database, if the change is relevant to

any cached aggregates, it is propagated to the data warehouse so that the data

warehouse can incrementally update the a�ected aggregates.

On-demand Update:

Changes to base databases are accumulated either on the sides of base databases

or on the side of data warehouse, forming delta �les. When a cached aggregate

is accessed by a query, relevant delta �les are collected and the aggregate is

updated using the delta �les.

The rematerialization approach is the most expensive. In the aggregate cache,

rematerializing a�ected aggregates prior to their usage makes little sense unless the

system load is particularly light at that time. This method, however, can be combined

with an incremental method to handle a few cases where the incremental method

cannot be applied.

A naive implementation of the periodic update could be troublesome. If the

frequency of update is too low, values of cached aggregates will be outdated. If

the frequency is too high, on the other hand, it will degrade the performance of

system. Rather than independently used, the periodic update can be geared with the

on-demand update as it will be explained later.

The eager update could appear to be the best way to deliver the up-to-date values

of cached aggregates quickly. However, unless the system's timeliness requirement is

53

so stringent, this method is considered to be an overkill since generally one does not

know when cached aggregates are to be used and whether or not they would ever be

used again before they are replaced out. Furthermore, there is no guarantee that the

eager update will always outperform other methods in the timeliness measure since

it could take up too much of system resources if base databases change often and

there are many cached aggregates to update. In fact, a simulation result reported by

Adelberg et al. [1], in which various recomputation methods for maintaining derived

data were compared, shows that the eager update is inferior to the on-demand update

in terms of query response time. Although the simulation setting does not completely

match the situation of aggregate maintenance in a data warehouse environment, we

think we can safely extrapolate this result to draw a similar result in the aggregate

cache.1

The on-demand update is considered the best �t for the aggregate cache since the

frequency with which the base databases change is expected to be much higher than

the access frequency of aggregates in the data warehouse. As mentioned earlier, the

delta �les can be kept either in base databases or in the data warehouse. Keeping

delta �les in data warehouse is, in e�ect, more like the eager update since whenever a

related base database changes, the change need be transferred to the data warehouse

although, unlike the eager update, recalculations of a�ected cached aggregates happen

only when they are referenced. On the other hand, keeping delta �les in each base

database will cause some delay when an a�ected cached aggregate is referenced. If

1We expect that the gap between the eager update and the on-demand update will widen in
the aggregate cache, since the simulation by Adelberg et al. [1] does not consider the overhead
of change propagation between a base database and the data warehouse, which is likely to be
substantial. Extensive change propagation in the eager update will deteriorate the performance of
the eager update further. Moreover, we can regard an aggregate as a derived data with a huge \fan-
in," which is used in the simulation to describe the number of source data for a derived datum, since
an aggregate need be recomputed whenever a row in a referenced relation is modi�ed. According to
the simulation result, the gap between the eager update and the on-demand update widens as the
fan-in increases.

54

the data warehouse and base databases are connected through a network, network

connection and data transfer time will dominate the delay. In our work, by default

we keep delta �les in base databases, but if a base database has di�culty in keeping

them and the network overhead between the base database and the data warehouse

is not severe, delta �les for that base database should be able to be kept in the data

warehouse.

An important premise for using the on-demand update (the eager update and

periodic update as well) is that aggregates can be computed incrementally. Although

a large class of aggregates can be computed incrementally, there are some aggregates

which cannot be computed incrementally. Such aggregates include order-related ones

such as min, max, and median [26, 27]. When an aggregate cannot be computed

incrementally, the aggregate is rematerialized (i.e., recomputed) on demand.

One problem with the on-demand update is that for a cached aggregate, if related

base databases change frequently and the aggregate is not referenced for a long time,

delta �les can grow too big in base databases. This problem can be handled in several

ways:

1. The data warehouse periodically polls base databases on behalf of cached ag-

gregates that are not referenced for a certain period of time. Base databases,

then, repond by sending delta �les to the data warehouse. This is the periodic

update.

2. Each base database monitors sizes of delta �les. If size of a delta �le grows

over a limit, the base database noti�es the data warehouse and sends the over-

sized delta �le to it. This is an aperiodic (or asynchronous) counterpart of the

periodic update.

3. Instead of keeping delta �les, base databases keep numeric delta's of a�ected

aggregates and the numeric values are sent when aggregates are referenced in the

55

data warehouse. As a simplistic example, when aggregate count(*) on a relation

in a base database is cached, the numeric delta in this case is the di�erence in

the numbers of tuples inserted into and deleted from that relation. When the

aggregate is referenced, the numeric delta is sent to the data warehouse, instead

of delta �le containing inserted and deleted tuples.

4. The overgrown delta �les are discarded and related cached aggregates are re-

placed out.

Clearly, the aperiodic update (the second one above) is better than the periodic

update since in the aperiodic update, transfer of delta �les takes place only when

necessary.

The numeric delta method (the third one) has an e�ect of distributing burden

of the data warehouse to base databases. If base databases can sustain the newly

imposed load, the performance of data warehouse should improve since network tra�c

can be reduced substantially and incremental updates in the aggregate cache become

simpler. A drawback of this method is the added complexity, especially on the sides

of base databases. Base databases now have to know what aggregates are being

cached and all the information needed to perform partial computations of a�ected

aggregates.

Discarding overgrown delta �les is closely coupled with the cache replacement

policy. If the policy is LRU (Least-Recently-Used) or its variation, cached aggregates

not referenced for a long period of time can be replaced out or just
ushed. Therefore,

it is justi�able to discard overgrown delta �les if related cached aggregates are not

used for a long time. Of course, if delta �les are to be discarded, related cached

aggregates should also be deleted.

To sum up, in our aggregate cache, we use both aperiodic update and numeric

delta in conjunction with the on-demand update. The aperiodic update is used when

56

a base database is unable to implement the numeric delta method due to its limited

functionality or when an aggregate does not allow the numeric delta method.

4.3 Incremental Update of Aggregates

As mentioned in the previous section, the incremental update is a premise for the

on-demand update that is adopted in the aggregates cache. In our current work, an

aggregate is de�ned in a general way to be a function that takes as input one or more

nonempty sets of objects, called aggregate input sets and zero or more scalar variables

and returns as output one scalar value. Elements in an aggregate input set are

denoted by a variable called aggregate variable. An aggregate input set corresponds

to a group of values of an attribute in a relational table.

4.3.1 Syntactic Conventions

We present syntactic conventions used in subsequent sections.

� Aggregate input sets are denoted by capital letters such as X, Y , and Z. If

size of a set X (i.e., cardinality) is of signi�cance and the size is n, a positive

integer, the set is denoted by Xn.

� Aggregate variable of an aggregate input set X is denoted by the lower-case let-

ter, x, and it represents an element in X. For Xn, elements in the set are distin-

guished by attaching a distinct subscript to x as Xn = fx1; x2; � � � ; xi; � � � ; xng.

� Aggregates are denoted by capital script letters such as F and H. An aggregate
F with its arguments can be denoted as follows:

F(Xn; Ym; � � � ; Zo; �; �; � � � ;
):

where Xn; Ym; � � � ; Zo are aggregate input sets and �; �; � � � ;
 are zero or more

independent scalar variables.

57

4.3.2 Incrementally Updatable Aggregates

Informally, incremental update of an aggregate means that when a new element

is added to the aggregate input set (assuming the aggregate has only one input set)

or an old element is deleted from the aggregate input set, the new value of the

aggregate is computed from the added (or deleted) element and the current value of

the aggregate stored in the system. If an aggregate has multiple aggregate input sets,

let's assume for the time being that all the aggregate input sets are of the same size

and insertions or deletions take place such a way that all the sets remain in the same

size. Many aggregates used in statistical analysis fall into this category. In order to

de�ne incremental update precisely, we �rst de�ne positive delta and negative delta

below.

Let's assume an aggregate F(Xn; Yn; � � � ; Zn; �; �; � � � ;
). For convenience, let

n�1 and
n be two sets containing parameters for F as follows:

n�1 = fXn�1; Yn�1; � � � ; Zn�1; �; �; � � � ;
g;

n = fXn; Yn; � � � ; Zn; �; �; � � � ;
g:

Now, suppose that for the aggregate F , the current aggregate input sets are

Xn�1; Yn�1; � � � ; Zn�1, and xn; yn; � � � ; zn are inserted elements to their respective input

sets (thereby making them Xn; Yn; � � � ; Zn, respectively).

Positive delta, �n is de�ned such that

�n = F(
n)�F(
n�1): (4.1)

Aggregate F is incrementally updatable on the inserted elements into the aggre-

gate input sets, if there exists an algebraic function g such that

�n = g(F1(
n�1);F2(
n�1); � � � ;F i(
n�1);

H1(
n);H2(
n); � � � ;Hj(
n); xn; yn; � � � ; zn) (4.2)

where all Fk's (1 � k � i) and Hl's (1 � l � j) are aggregates whose values are

already known or incrementally updatable and none of Hl's is F .

58

For the same aggregate F , suppose that the current aggregate input sets are

Xn; Yn; � � � ; Zn and x0n; y
0

n; � � � ; z0n are deleted elements from their respective input sets

(thereby making them Xn�1; Yn�1; � � � ; Zn�1).

Negative delta, �n�1 is de�ned such that

�n�1 = F(
n�1)�F(
n): (4.3)

Aggregate F is incrementally updatable on the deleted elements from the aggre-

gate input sets, if there exists an algebraic function g such that

�n�1 = g(F1(
n);F2(
n); � � � ;F i(
n);

H1(
n�1);H2(
n�1); � � � ;Hj(
n�1); x
0

n; y
0

n; � � � ; z0n) (4.4)

where all Fk's (1 � k � i) and Hl's (1 � l � j) are aggregates whose values are

already known or incrementally updatable and none of Hl's is F .
An aggregate F is de�ned to be incrementally updatable, if F has both positive

delta �n (equation 4.1) and negative �n�1 (equation 4.3) that are computable for

all n > 1.

Once �n is computed, F(
n) in equation 4.1 can be obtained by adding �n to the

known value of F(
n�1). Likewise, from �n�1, F(
n�1) in equation 4.3 is obtained

by adding �n�1 to the known value of F(
n).

Now, if an aggregate is sensitive to every insertion into (or a deletion from) any

one aggregate input set, the de�nition of positive delta and negative delta can be

extended in a straightforward way so that the aggregate can be incrementally updated

whenever an insertion (or a deletion) is made. We would not elaborate the extension

in this work.

4.3.3 Algebraic Aggregates and Non-Algebraic Aggregates

Aggregates are �rst classi�ed into algebraic ones and non-algebraic ones. An

algebraic aggregate is an aggregate that takes as input only aggregate input sets of

59

real numbers and independent scalar variables of the real number and returns as

output one real number and consists of only algebraic operations de�ned over the

real number.2 A non-algebraic aggregate is an aggregate that its domain or range is

non-numeric or uses non-algebraic operations.

Example 4.3.1 Here are some examples of algebraic aggregates.

count(Xn) =
nX
i=1

1

sum(Xn) =
nX
i=1

xi

average(Xn) =

Pn
i=1 xiPn
i=1 1

=
sum(Xn)

count(Xn)

Sxy(Xn; Yn) =
nX
i=1

(xi � x)(yi � y) =
nX
i=1

xiyi �
Pn

i=1 xi
Pn

i=1 yi
n

Sxy(Xn; Yn) is sum of products of distances of x and y from their means, x and y

(i.e., average(Xn) and average(Yn)), and is used to compute simple linear regression.

<

Example 4.3.2 Non-algebraic aggregates include max(Xn), min(Xn), median(Xn),

and r-th percentile(Xn; r) which is the value such that r percent of x's in Xn fall at

or are below that value. These aggregates all involve procedural operations, thus not

algebraic aggregates. <

Example 4.3.3 For some simple algebraic aggregates, positive delta (�) and negative

delta (�) de�ned in Section 4.3.2 can be directly obtained by algebraic manipulations.

Below, we show how positive delta and negative delta of average(Xn) are derived.

�n = average(Xn)� average(Xn�1)

2Note that the real number subsumes the integer. Therefore, aggregates taking integer sets and
return an integer or real number, such as count(*), can be included by the de�nition.

60

=

Pn
i=1 xi
n

�
Pn�1

i=1 xi
n� 1

=
(n� 1)

Pn
i=1 xi � n

Pn�1
i=1 xi

n(n� 1)

=
n
Pn

i=1 xi �
Pn

i=1 xi � n
Pn�1

i=1 xi
n(n� 1)

=
n(
Pn

i=1 xi �
Pn�1

i=1 xi)�
Pn

i=1 xi
n(n � 1)

=
nxn �Pn

i=1 xi
n(n� 1)

=
nxn �Pn�1

i=1 xi � xn
n(n � 1)

=
(n� 1)xn �Pn�1

i=1 xi
n(n� 1)

=
(n� 1)xn
n(n � 1)

�
Pn�1

i=1 xi
n(n� 1)

=
xn
n
� average(Xn�1)

n

=
xn � average(Xn�1)

n

=
xn � average(Xn�1)

count(Xn)

�n�1 = average(Xn�1)� average(Xn)

=

Pn�1
i=1 xi
n� 1

�
Pn

i=1 xi
n

=
n
Pn�1

i=1 xi � (n� 1)
Pn

i=1 xi
(n� 1)n

=
n
Pn�1

i=1 xi � n
Pn

i=1 xi +
Pn

i=1 xi
(n� 1)n

=
�n(Pn

i=1 xi �
Pn�1

i=1 xi) +
Pn

i=1 xi
(n� 1)n

=
�nxn +Pn

i=1 xi
(n� 1)n

=
�nxn

(n� 1)n
+

Pn
i=1 xi

(n� 1)n

=
�xn
n� 1

+
average(Xn)

n� 1

61

=
average(Xn)� xn

n� 1

=
average(Xn)� xn

count(Xn�1)

�n and �n�1 above are computable for every n > 1. Therefore, average(X) is incre-

mentally updatable. Compare �n and �n�1 to equations 4.2 and 4.4 respectively. In

�n, average(Xn�1) is already known and count(Xn) can be incrementally computable

from value of count(Xn�1). In �n�1, average(Xn) is known and count(Xn�1) can be

computed from value of count(Xn). <

4.3.4 Summative Aggregates

The vast majority of aggregates that are used or have a good potential of being

used in decision making applications are those that perform some types of summa-

tion operations. We call such aggregates summative aggregates. In light of this

observation, we focus our e�ort on making them incrementally updatable.

Let Xn; Ym; � � � ; Zo be aggregate input sets whose respective current sizes are

n;m; � � � ; o, and xi 2 Xn (1 � i � n), yj 2 Ym (1 � j � m), � � � ; zk 2 Zo (1 � k � o)

be aggregate variables whose data types are numeric.

Summative Aggregate: Given aggregate input sets,Xn; Ym; � � � ; Zo, a summative

aggregate is de�ned to be an algebraic aggregate that has summation operators (
P
s)

in it as shown below:

F(Xn; Ym; � � � ; Zo) =
�X

�=1

f(�; �;H(Xn; Ym; � � � ; Zo)) (4.5)

where f(�; �;H(Xn; Ym; � � � ; Zo)) is called summation body, � is called index variable

and always starts from 1, � is called termination variable and indicates the �nal index

value, � 2 fxi; yj; � � � ; zkg, (�; �) 2 f(i; n); (j;m); � � � ; (k; o)g, and H(Xn; Ym; � � � ; Zo)

is a summative aggregate nested in F and di�ers from F . If aggregate input sets

62

have the same size (i.e., Xn; Yn; � � � ; Zn), the de�nition of summative aggregate can

be simpler as follows:

F(Xn; Yn; � � � ; Zn) =
nX
i=1

f(xi; yi; � � � ; zi; i) (4.6)

where the summation body f(xi; yi; � � � ; zi; i) may (recursively) contain other sum-

mative aggregates.

When the summation body of a summative aggregate contains one or more sum-

mation operators, the aggregate is called nested summative aggregate.

The summation body in a summative aggregate is de�ned to be an aggregative

polynomial, de�ned below.

Aggregative polynomial. An aggregative polynomial is a polynomial that con-

sists of zero or more plus' (+'s) as operators and aggregative monomials as operands.

Aggregative monomial. An aggregative monomial is a non-zero real constant

multiplied by zero or more factors. A factor is either an aggregate variable, an

index variable, a summative aggregate, or a parenthesized aggregative polynomial,

any of which may be raised by a non-zero rational number or be an argument of

transcendental functions on the real number such as the logarithm.3 An aggregative

monomial that does not contain another aggregate is called atomic. An aggregative

monomial is sometimes called a term.

Example 4.3.4 Given aggregate variables, x, y, and z and index variables, i and j,

the following are aggregative monomials:

1; 1xi; �2:5 i2xi; x3i y
�1
i (

Pn
j=1 zj)

2;
p
xi � yi (= (xi�yi)1=2); log2 xi:

3Ceiling (d e),
oor (b c), and absolute (j j) functions are included too.

63

In x3i y
�1
i (

Pn
j=1 zj)

2, factors are x3i , y
�1
i , and (

Pn
j=1 zj)

2, whereas in log2 xi, the sole

factor is log2 xi. Except for x3i y
�1
i (

Pn
j=1 zj)

2, all the aggregative monomials are

atomic. <

Example 4.3.5 Given aggregate variables, x and y and index variables, i, j, and k,

the following are aggregative polynomials:

xi � (
Pn

j=1 xj)=(
Pn

k=1 1) (= xi + (�(Pn
j=1 xj)(

Pn
k=1 1)

�1)); xiyi; 1:

Aggregative polynomial xi � (
Pn

j=1 xj)=(
Pn

k=1 1) has two terms (aggregative mono-

mials), xi and �(Pn
j=1 xj)=(

Pn
k=1 1), while the others have one term. <

Example 4.3.6 All aggregates but average(Xn) shown in Example 4.3.1 are summa-

tive aggregates whose summative bodies are aggregative polynomials. <

For a summative aggregate, one might be tempted to try to derive a positive delta

and a negative delta directly as done in Example 4.3.3. However, deriving deltas for a

nontrivial summative aggregate is not only arduous a work, but also such a derivation

is not always possible. Furthermore, unless the derivation can be fully automated

in an e�cient way (which is very improbable), the aggregates cache cannot use the

deltas to incrementally update cached aggregates. For summative aggregates, there

exists a more e�cient and simpler way of incremental update. We �rst consider

non-nested summative aggregates in this subsection.

Lemma 3 A summative aggregate whose summation body is an atomic aggregative

monomial is incrementally updatable.

Proof of Lemma 3 Obvious by the de�nition of summative aggregate.

2

64

Lemma 4 A summative aggregate whose summation body is an aggregative polynomial

is incrementally updatable if all summative aggregates in aggregative monomials of

the aggregative polynomial are incrementally updatable.

Proof of Lemma 4 Assume any aggregative polynomial, f1(�) + f2(�) + � � �+ fv(�)
where each fs(�), 1 � s � v, is an aggregative monomial and (�) represents any
subset of aggregate variables and index variables de�ned in the original summative

aggregate and need not be equal to each other. Then, by the distribution property

of
P

operator over additive (plus and minus) terms, the following equality holds:

nX
i=1

(f1(�) + f2(�) + � � �+ fv(�)) =
nX
i=1

f1(�) +
nX
i=1

f2(�) + � � �+
nX
i=1

fv(�):

Thus, if each
Pn

i=1 fs(�) can be updated incrementally, the original summative ag-

gregate on the left-hand side of the equation above can be computed incrementally.

2

Now, the summative aggregate is extended to include more algebraic aggregates

as follows.

Extended summative aggregate. Given a set of aggregate input sets,
 = fXn;

Ym; � � � ; Zog and a set of summative aggregates over subsets of
, F1(
1), F2(
2),

� � �, Fv(
v),
s �
 (1 � s � v), an aggregate F 0 over
 is de�ned to be an extended

summative aggregate if there exists an algebraic function g on the real number such

that

F 0(Xn; Ym; � � � ; Zo) = g(F1(
1);F2(
2); � � � ;Fv(
v)): (4.7)

Note that in equation 4.7, the algebraic function g is not a summative aggregate by

de�nition. g takes no argument of a set { its arguments are any number of scalar real

values (since each F s aggregate returns a scalar real number), whereas an aggregate

is de�ned to take at least one aggregate input set.

65

Example 4.3.7 While the de�nition of extended summative aggregate covers a vast

variety of algebraic aggregates that perform certain types of cumulative operations,

perhaps the best known example of extended summative aggregate will be

average(Xn) =
nX
i=1

xi=
nX
i=1

1 = sum(Xn)=count(Xn):

Another example,

log (
nX

i=1

xi) = log (sum(Xn)):

<

Example 4.3.8 This example shows an extended aggregate, grand average(Xn; Ym)

which is an average of two related aggregate input sets, X and Y .

grand average(Xn; Ym) =
grand sum(Xn; Ym)

grand count(Xn; Ym)

=

Pn
i=1 xi +

Pm
j=1 yjPn

i=1 1 +
Pm

j=1 1
:

<

Lemma 5 The extended summative aggregate of equation 4.7 is incrementally updat-

able if all F s(
s)'s (1 � s � v) are incrementally updatable.4

Proof of Lemma 5 Since g is a function, over a de�ned interval of its domain (see

footnote 4), it should map a unique combination of input values (rather, every unique

vector of input values) to the same one real number. Then, the mapping should

remain the same no matter whether the input values are obtained through an in-

cremental update or recomputed on the new aggregate input sets of the underlying

summative aggregates. 2

4 A function on the real number may have intervals of domain where the function is unde�ned
(e.g., logarithm over negative values). Therefore, it is possible that for a certain g, g cannot be
(incrementally) computed on some values of input summative aggregates. However, that is not
because of the incremental update, but because of the de�nition of that speci�c aggregate.

66

Incidentally, it is interesting to note that if function g of equation 4.7 is a proce-

dural function (i.e., non-algebraic function), Lemma 5 does not hold in general. A

simple counter example: g being max().

4.3.5 Binding of Variables

As shown in equation 4.5, a summative aggregate has two additional types of

variables (other than aggregate variables), which are index variables and termination

variables. Below, we describe how these variables are bound to a value or to other

variable:

� The subscript of every aggregate variable is bound to an index variable; that is,

an index variable is used to refer to a speci�c element in each aggregate input

set.

� An instance of an index variable used in an aggregative monomial is bound to

the index variable.

� The initial value of an index variable is always bound to 1 by de�nition.

� The �nal value of an index variable is bound to its matching termination vari-

able.

� The termination variable of the outermost
P

operator is either unbound (in

most cases) or bound to a constant. If it is unbound, it should be bound to

the current size (cardinality) of an associated aggregate input set when the

aggregate is referenced by a query.

� The termination variable of an inner
P

operator (i.e., in summation body)

is either unbound, bound to an index variable of its an outer
P

operator, or

bound to a constant.

67

It should be noted that when a termination variable is bound to the cardinality

of an aggregate input set, it is not necessary for the real value of the cardinality to be

known, unless it is explicitly used in the summation body. In an incremental update,

the purpose of termination variable is to know the latest element to be added to (or

to be deleted from) an aggregate input set. On the other hand, if the cardinality is

explicitly used in the summation body, it is interpreted as the simplest summative

aggregate, COUNT(*) of the associated aggregate input set.

Scope of bindings. Each binding has a scope. A binding is in e�ect only within

its scope. Scope of a summative aggregate is inside of its outermost
P

operator.

Scopes of the index and termination variables associated with a
P

operator is inside

of the summation operation, which is also called the
P
's scope. Scope of an aggregate

variable is the scope of its associated index variable. A nested summative aggregate

has multiple nested scopes. For any two index variables, either one variable's scope

properly contains the other variable's scope or the two scopes are independent. If

two index variables' scopes are independent, the two index variables may be denoted

by the same letter.

Example 4.3.9 The following are summative aggregates in which
P

operators are

nested (i.e., nested summative aggregates).

F1(Xn; Yn; Zn) =
nX
i=1

(xi
iX

j=1

(yj

jX
k=1

i2zk))

F2(Xn; Yn; Zn) =
nX
i=1

(xi
iX

j=1

(yj
iX

k=1

i2zk))

F3(Xn; Yn; Zn) =
nX
i=1

(xi(
nX

j=1

yj �
nX

k=1

zk)) =
nX
i=1

(xi (
nX

j=1

yj �
nX

j=1

zj))

In particular, in F3, scopes of
Pn

j=1 yj and
Pn

k=1 zk are independent. So, both sum-

mative aggregates can be represented using the same index variable j. <

68

4.3.6 Decomposition of Summative Aggregates

In the aggregate cache, the basic unit cached is a summation over an aggregative

monomial. It is, therefore, more bene�cial to decompose a complex summative ag-

gregate into a set of smaller component summative aggregates and store their values

in the aggregate cache. When value of the original summative aggregate is necessary,

it can be easily restored from the values of the cached component aggregates. This

approach facilitates sharing cached component aggregates among many summative

aggregates. Furthermore, the decomposition plays a more important role in the ag-

gregate cache. While decomposing the original summative aggregate and normalizing

the decomposed summative aggregates, it becomes known whether the original sum-

mative aggregate can be incrementally updated or not.5 If the original summative

aggregate is not incrementally updatable, it can still be cached but the cached value

should be invalidated if changes in base databases a�ect it.

In principle, the decomposition process is done in two steps: expansion of the

summation body of a given summative aggregate and distribution of
P

operators

over the expanded summation body. If a given summative aggregate is nested (i.e., it

contains other summative aggregates), the summation body is recursively expanded

until no further expansion is possible. Then,
P

operators are distributed over the

whole expansion. By the distribution property of
P

operator over additive terms,

sum of the decomposed summative aggregates is equivalent to the original summative

aggregate.

In order to describe the expansion procedure precisely, let's represent an arbitrary

aggregative monomial h(�) as follows:

h(�) = cap11 a
p2
2 � � � aptt (4.8)

5The normalization will be discussed in Section 4.3.7

69

where � is a union of aggregate input sets and index variables, c is a non-zero real

constant, each apll (1 � l � t) is a factor, assuming that if t = 0, no factor is present

in the aggregative monomial,6 and each pl (1 � l � t) is a non-zero rational number.

If apll denotes a factor other than a transcendental function, it means al raised by

pl. Otherwise, a
pl
l simply denotes a transcendental function. (See Section 4.3.4 and

Example 4.3.4.)

In order to expand the aggregative monomial h(�) of equation 4.8, each factor apll
(1 � l � t) is expanded �rst. If it is expanded into multiple terms, h(�) is expanded
accordingly into multiple aggregative monomials by usual algebraic manipulations.

Example 4.3.10 If ap11 and aptt in equation 4.8 are expanded into (a
p11
11

+ a
p12
12
) and

(a
pt1
t1 �a

pt2
t2) respectively, h(�) is expanded into four aggregative monomials as follows:

h(�) = cap11 a
p2
2 � � � aptt

= ca
p11
11
ap22 � � � aptt + ca

p12
12
ap22 � � � aptt

= ca
p11
11
ap22 � � � apt1t1 � ca

p11
11
ap22 � � � apt2t2

+ ca
p12
12
ap22 � � � apt1t1 � ca

p12
12
ap22 � � � apt2t2 :

<

Expansion of factor. Expansion of a factor apll in equation 4.8 is obtained by a

factor expansion procedure below:

1. If apll denotes a transcendental function, expansion of apll is apll itself. That is,

a transcendental function is not (or can't be) expanded.7

6Hereafter, for a sequence of any entities, �1; �2; � � � ; �t (t � 0), if t = 0, the sequence is assumed
to be null (i.e., no entity in the sequence).

7For some transcendental functions, there are a few cases in which expansion is possible. For
example, log (xi=yi) can be expanded into logxi� log yi. However, in most cases such an expansion
is not possible. Therefore, in our work we do not expand transcendental functions.

70

2. If pl (of a
pl
l) is not a positive integer, expansion of factor apll is apll itself.8

3. Otherwise, al (of a
pl
l) is expanded �rst as follows:

(a) If al is a parenthesized aggregative polynomial, its component aggrega-

tive monomials are recursively expanded �rst and their results are added,

yielding hl1(�0) + hl2(�0) + � � � + hlw(�0) (w � 1), where �0 is a subset of

� and each �0 need not be equal to each other. Then, expansion of al is

hl1(�0) + hl2(�0) + � � �+ hlw(�0).

(b) If al is a summative aggregate
P�

�=1 fl(�0), its parenthesized summation

body (fl(�0)) is recursively expanded �rst, yielding hl1(�0)+hl2(�0)+ � � �+
hlw(�0) (w � 1). Then, expansion of al is

P�
�=1 hl1(�0)+

P�
�=1 hl2(�0)+ � � �+P�

�=1 hlw(�0).

(c) If al is an index variable or an aggregate variable, expansion of al is al

itself.

After expanding al, if the expansion of al is a single term, expansion of fac-

tor apll is apll . Otherwise, expansion of factor apll is obtained by applying the

multinomial theorem (see below) to the expansion of al. <

After expansion of a summation body is completed, if there exist factors in the

form of (csa
ps1
s1 a

ps2
s2 � � � apsrsr)

pq (r � 1) in the expansion, they are converted into

cpqs a
ps1pq
s1 a

ps2pq
s2 � � � apsrpqsr

.

Decomposition of summative aggregates. Suppose a summative aggregate (not

extended),
Pn

i=1 f(�), where � is a union of aggregate input sets and index variable

i. In order to apply the expansion procedure described so far, the summation body

8Again, for an expression (a1 + a2 + � � � + an)p, if the exponent p is not a positive (rather,
non-negative) integer, it is generally not possible to expand the expression in �nite steps.

71

f(�) (which is an aggregative polynomial) is changed into an aggregative monomial

by parenthesizing it as follows:

nX
i=1

f(�) =
nX
i=1

(f(�)): (4.9)

Then, after expanding the new summation body, let the result be:

(f(�)) = h1(�0) + h2(�0) + � � �+ hv(�0) (v � 1) (4.10)

where each hs(�0) (1 � s � v) is an aggregative monomial, �0 is a subset of �, and
each �0 need not be equal to each other. Then, by distributing

P
operator over the

right-hand side of equation 4.10, the following decomposed summative aggregate is

obtained:
nX
i=1

f(�) =
nX
i=1

h1(�0) +
nX
i=1

h2(�0) + � � �+
nX
i=1

hv(�0): (4.11)

Decomposition of extended summative aggregates. For an extended summative

aggregate, F(�) = g(F1(�0);F2(�0); � � � ;Fv(�0)) (v � 1), each argument summative

aggregate F s(�0) (1 � s � v) is decomposed �rst, yielding F 0

s(�0). Then, the original
argument summative aggregates are substituted with the decomposed ones, yielding

F(�) = g(F 0

1(�0);F 0

2(�0); � � � ;F 0

v(�0)).

Anymonomials (not only aggregative monomials) in the form of (a1+a2+� � �+an)p

where p is a positive integer can be expanded using the multinomial theorem which

is an extension of the binomial theorem.9 The binomial theorem and multinomial

theorem are presented below.

Binomial theorem. Let p be a positive integer. Then for all x and y,

(x+ y)p =
pX

k=0

p
k

!
xkyp�k

9In fact, the multinomial theorem (binomial theorem as well) holds even when the exponent p is
a non-zero rational number. However, in general, expanding such a monomial results in an in�nite
series, which is of no use for the aggregate cache.

72

where

p
k

!
= p! = k! (p � k)!.

Multinomial theorem. Let p be a positive integer. Then for all x1; x2; � � � ; xt,

(x1 + x2 + � � �+ xt)
p =

X
p

p1p2 � � � pt

!
xp11 x

p2
2 � � � xptt ;

where the summation extends over all possible sequence of non-negative integers

p1; p2; � � � ; pt with p1 + p2 + � � �+ pt = p, and

p

p1p2 � � � pt

!
= p! = p1! p2! � � � pt!.

Example 4.3.11 When (x1 + x2 + x3 + x4 + x5)6 is expanded, the coe�cient of

x31x2x
2
4x5 (= x31x

1
2x

0
3x

2
4x

1
5) equals

6
3 1 0 2 1

!
=

6!

3! 1! 0! 2! 1!
= 60:

When (4x1 � 2x2 + 3x3)5 is expanded, the coe�cient of x21x
3
2x3 equals

5
2 3 1

!
42(�2)331 = �3840:

<

Using the multinomial theorem, it is possible to expand any aggregative monomial

raised to a positive integer power; if its component monomials are raised, they can be

recursively expanded. From a practical viewpoint, however, it is not a good idea to

expand an aggregative monomial which is raised by more than 3, since the number

of total monomials produced increases exponentially. In this regard, we expand

(recursively) only those aggregative monomials raised by 3 or less.

Example 4.3.12 Consider the following summative aggregate:

nX
i=1

(xi � yi)2

where the summation body is (xi � yi)2. Assume that the current aggregate input

sets are Xn�1 and Yn�1 and aggregate value on these input sets,
Pn�1

i=1 (xi � yi)2 is

73

stored in the aggregate cache. Then, upon insertions of xn and yn, the new aggregate

value can be computed by adding value of (xn � yn)2 to the stored aggregate value.

The summative aggregate is decomposed as follows:

nX
i=1

(xi � yi)2 =
nX
i=1

(x2i � 2xiyi + y2i) =
nX
i=1

x2i � 2
nX
i=1

xiyi +
nX
i=1

y2i :

Instead of storing
Pn�1

i=1 (xi�yi)2 directly, it is much better to store
Pn�1

i=1 x
2
i ,
Pn�1

i=1 xiyi,

and
Pn�1

i=1 y
2
i so that other summative aggregates too can make use of the store values.

Similarly, a more complex summative aggregate is decomposed as follows:

nX
i=1

(2xi � yi + zi)
3

=
nX
i=1

(8x3i � y3i + z3i � 12x2i yi + 12x2i zi + 6xiy
2

i

+ 3y2i zi + 6xiz
2

i � 3yiz
2

i � 12xiyizi)

= 8
nX
i=1

x3i �
nX
i=1

y3i +
nX
i=1

z3i � 12
nX
i=1

x2i yi + 12
nX
i=1

x2i zi + 6
nX
i=1

xiy
2

i

+ 3
nX
i=1

y2i zi + 6
nX
i=1

xiz
2

i � 3
nX
i=1

yiz
2

i � 12
nX
i=1

xiyizi:

This summative aggregate shows the rapid increase of the number of aggregative

monomials as the exponent increases. <

4.3.7 Normalization of Summative Aggregates

Normalization of a summative aggregate is a process of simplifying the sum-

mative aggregate. The simplest normalization is to pull a constant, multiplying

the summation body, out of the scope of its summation operator. For instance,

Pn
i=1�4xi = �4

Pn
i=1 xi. By normalizing a summative aggregate in this way,

Pn
i=1 xi

can be cached instead of
Pn

i=1�4xi so that cache operations can be more e�cient.

In fact, the normalization plays a more profound role than making cache operations

e�cient. It enables certain types of summative aggregates to be incrementally up-

dated, which otherwise cannot be. In this subsection we extend this simple idea in

order to normalize complex nested summative aggregates.

74

As summative aggregates are nested, some unbound entities (variables and com-

ponent summative aggregates) can be present within the scope of a summative aggre-

gate. These unbound entities hinder the process of incremental update of summative

aggregates since their values are not known at the time of an incremental update.

There are several entities that can be unbound within a component summative ag-

gregate of a nested summative aggregate.

1. An index variable of an outer summation operator.

2. An aggregate variable indexed by an index variable of an outer summation

operator.

3. A summative aggregate whose termination variable is bound to the cardinality

of an aggregate input set.

4. A summative aggregate whose termination variable is an index variable of an

outer summation operator.

The goal of normalization is to make, recursively, every summative aggregate con-

tain only those entities bound to its index variable by moving unbound entities plus

a constant multiplying the aggregative monomial out of the scope of the summative

aggregate. Therefore, once a normalization is completed, no unbound entities shall

remain within any summative aggregate's scope.

Normalization Process

Without loss of generality, it is assumed that a summative aggregate is decom-

posed maximally (i.e., as far as possible) before normalized. After the decomposi-

tion, each decomposed summative aggregate should have a summation body of an

aggregative monomial. Then, the normalization is performed against each decom-

posed summative aggregate. The following is a decomposed summative aggregate to

75

be normalized:
�X

�=1

cap11 a
p2
2 � � � aptt (t � 0) (4.12)

where � is an index variable, � is a termination variable, c is a non-zero real constant,

each apll (1 � l � t) is a factor, and each pl (1 � l � t) is a non-zero rational number.
(See equation 4.8.)

Given an index variable �, a factor is fully bound to � if � is the sole index

variable that appears in the factor. A factor is partially bound to � if � and other

index variables appear in the factor. If � does not appear in a factor, the factor is

unbound to �.

Normalization of a summative aggregate 4.12 takes two passes:

1. For each factor apll , if al (of a
pl
l) is a summative aggregate, it is normalized �rst,

yielding cpll a
pl
l1
apll2a

pl
l(tl)

. After all component summative aggregates are normal-

ized, let the result be the following:

�X
�=1

(ccp11 c
p2
2 � � � cptt)ap111ap112 � � � ap11(t1)a

p2
21
ap222 � � � ap22(t2) � � � a

pt
t1a

pt
t2 � � � aptt(tt) (4.13)

where each ts � 1 (1 � s � t), and let q = t1 + t2 + � � �+ tt.

2. Unbound factors in the summative aggregate 4.13 are moved out of the scope

of the
P

operator as follows:

(ccp11 c
p2
2 � � � cptt)apu1u1

apu2u2
� � � apuvuv

�X
�=1

a
pb1
b1
a
pb2
b2
� � � apbwbw (v � 0; w � 0) (4.14)

where each apuu is an unbound factor to �, each apbb is a either fully or partially

bound factor to �, and v + w = q.10

In the transformed summative aggregate 4.14, if the right-hand side of
P

operator

contains only bound factor to � and all component summative aggregates, if any, are

10Note that by the normalization a summative aggregate can be transformed to an extended
summative aggregate. (See F2 and F3 in Example 4.3.13.)

76

normalized, the summative aggregate is called normalized. Otherwise, the original

summative aggregate 4.12 is called unnormalizable.

Theorem 3 A normalized summative aggregate is equivalent to the original summative

aggregate, that is:

�X
�=1

cap11 a
p2
2 � � � aptt = (ccp11 c

p2
2 � � � cptt)apu1u1

apu2u2
� � � apuquq

�X
�=1

a
pb1
b1
a
pb2
b2
� � � apbrbr

:

Proof of Theorem 3 We �rst show that summative aggregates 4.13 and 4.14 are

equivalent, that is:

�X
�=1

(ccp11 c
p2
2 � � � cptt)ap111ap112 � � � ap11(t1)a

p2
21
ap222 � � � ap22(t2) � � � a

pt
t1a

pt
t2 � � � aptt(tt)

= (ccp11 c
p2
2 � � � cptt)apu1u1

apu2u2
� � � apuvuv

�X
�=1

a
pb1
b1
a
pb2
b2
� � � apbwbw

: (4.15)

To show the equivalence above, we put (ccp11 c
p2
2 � � � cptt)apu1u1 a

pu2
u2 � � � apuvuv

of summative

aggregate 4.14 back inside
P

operator. Then, the following equality should hold since

the left-hand side and the right-hand side of the equation are literally equivalent

(q = v + w):

�X
�=1

(ccp11 c
p2
2 � � � cptt)ap111ap112 � � � ap11(t1)a

p2
21
ap222 � � � ap22(t2) � � � a

pt
t1a

pt
t2 � � � aptt(tt)

=
�X

�=1

(ccp11 c
p2
2 � � � cptt)apu1u1

apu2u2
� � � apuvuv

a
pb1
b1
a
pb2
b2
� � � apbwbw

:

Letting (ccp11 c
p2
2 � � � cptt)apu1u1 a

pu2
u2 � � � apuvuv

be � and expanding
P

operator of the right-

hand side of the equation above, the following equation is obtained:

�X
�=1

(ccp11 c
p2
2 � � � cptt)apu1u1

apu2u2
� � � apuvuv a

pb1
b1
a
pb2
b2
� � � apbwbw

= �1(a
pb1
b1
)1(a

pb2
b2
)1 � � � (apbwbw)1 + �2(a

pb1
b1
)2(a

pb2
b2
)2 � � � (apbwbw)2

+ � � �+ ��(a
pb1
b1
)�(a

pb2
b2
)� � � � (apbwbw)�

where �� or (a
pb
b)� (1 � � � �) represents an expression in which all occurrences of

index variable � are substituted by a value of �. However, since � is unbound to �

77

(i.e., there is no occurrence of � in �), all ��'s (1 � � � �) should be the same in

the above equation. Therefore, we get the following equation, thereby proving the

equality of the equation 4.15:

� [(a
pb1
b1
)1(a

pb2
b2
)1 � � � (apbwbw

)1 + (a
pb1
b1
)2(a

pb2
b2
)2 � � � (apbwbw

)2

+ � � �+ (a
pb1
b1
)�(a

pb2
b2
)� � � � (apbwbw

)�]

= (ccp11 c
p2
2 � � � cptt)apu1u1

apu2u2
� � � apuquq

�X
�=1

a
pb1
b1
a
pb2
b2
� � � apbrbr :

The next step is to show the equivalence between summative aggregates 4.12

and 4.13. If any factor apll in summative aggregate 4.12 is a power of a summative

aggregate (i.e., al is a summative aggregate), the factor is normalized to cpll a
pl
l1
apll2a

pl
l(tl)

.

Then, the proof shown above implies the equivalence of apll and cpll a
pl
l1
apll2a

pl
l(tl)

. (The

equation 4.15 directly proves al = clal1al2 � � � al(tl).) If the summation body of al

contains other summative aggregates again, they are (recursively) equivalently nor-

malized before al is normalized. Therefore, we can conclude that summative aggre-

gates 4.12 and 4.13 are equivalent, thereby proving Theorem 3.

2

Normalization of extended summative aggregates. In order to normalize an ex-

tended summative aggregate, F(�) = g(F1(�0);F2(�0); � � � ;Fv(�0)) (v � 1), it is

decomposed �rst, yielding F(�) = g(F 0

1(�0);F 0

2(�0); � � � ;F 0

v(�0)). Then, each decom-

posed argument summative aggregate F 0

s(�0) (1 � s � v) is normalized, yielding

F 00

s (�0). Then, the original argument summative aggregates are substituted with the

normalized ones, yielding F(�) = g(F 00

1(�0);F 00

2(�0); � � � ;F 00

v(�0)).

Example 4.3.13 The following nested summative aggregates are converted to their

respective normalized forms.

F1(Xn; Yn) =
nX
i=1

(xi
iX

j=1

2i3yj) = 2
nX
i=1

(i3xi
iX

j=1

yj)

78

In F1, 2 and i
3 are unbound in

Pi
j=1 2i

3yj. So, these entities are moved out of index

variable j's scope. As a constant, 2 is further moved out of index variable i's scope.

F2(Xn; Ym) =
nX
i=1

(xi
mX
j=1

yj) = (
mX
j=1

yj)(
nX
i=1

xi)

In F2, the component aggregate
Pm

j=1 yj is an unbound summative aggregate. Thus,

it can be treated as a constant from the viewpoint of any surrounding summative

aggregates. So is the result. Note also that the normalized F2 is no longer an

ordinary summative aggregate, but an extended summative aggregate. (The same

for F3 below.)

F3(Xn; Yn; Zn) =
nX
i=1

(xi
iX

j=1

(yj
nX

k=1

jzk))

=
nX
i=1

(xi(
nX

k=1

zk)
iX

j=1

jyj)

= (
nX

k=1

zk)(
nX
i=1

(xi
iX

j=1

jyj))

In F3, the component summative aggregate
Pn

k=1 jzk is unbound and in itself, it

contains an unbound index variable j. So, it moves j up to j's scope and it itself

moves out of the outermost i's scope.

F4(Xn; Yn) =
nX
i=1

(xi �
nX

j=1

yj)
1=2

In F4, on the other hand, even though
Pn

j=1 yj is unbound, there is no known way of

moving the unbound summative aggregate out of the outer index variable i's scope.

Therefore, F4 is unnormalizable. <

Example 4.3.14 In this example, as an extended summative aggregate, the standard

deviation is normalized. The standard deviation has two argument summative ag-

gregates,
Pn

i=1(xi� x)2 and n (i.e.,
Pn

i=1 1), which are decomposed in equations 4.18

and 4.19 below. Then, the decomposed argument summative aggregates are normal-

ized in equation 4.20. Note that in the normalized aggregate, there are only three

unique summative aggregates,
Pn

i=1 x
2
i ,
Pn

i=1 xi, and
Pn

i=1 1.

79

� = F(Xn) =

sPn
i=1(xi � x)2
n� 1

(4.16)

=

vuuuut
Pn

i=1

�
xi �

Pn

j=1
xjPn

j=1
1

�2
(
Pn

i=1 1) � 1
(4.17)

=

vuuuut
Pn

i=1

x2i � 2xi

Pn

j=1
xjPn

j=1
1
+
�Pn

j=1
xjPn

j=1
1

�2!

(
Pn

i=1 1)� 1
(4.18)

=

vuuuut
Pn

i=1 x
2
i +

Pn
i=1

�
�2xi

Pn

j=1
xjPn

j=1
1

�
+
Pn

i=1

�Pn

j=1
xjPn

j=1
1

�2
(
Pn

i=1 1)� 1
(4.19)

=

vuuuuuut
Pn

i=1 x
2
i � 2

Pn

j=1
xjPn

j=1
1

Pn
i=1 xi +

�Pn

j=1
xj

�2
�Pn

j=1
1

�2 Pn
i=1 1

(
Pn

i=1 1)� 1
(4.20)

<

4.3.8 Incremental-Updatability of Nested Summative Aggregates

As Lemma 3 states, a summative aggregate is incrementally updatable if its sum-

mation body is an atomic aggregative monomial. In case its summation body is an

aggregative polynomial, by Lemma 4, the summative aggregative is incrementally

updatable, if each aggregative monomial in the aggregative polynomial is atomic.

For nested summative aggregates, however, it turns out that not all of them are in-

crementally updatable. In this subsection we identify those nested aggregates that

are not incrementally updatable. Also, for those that are incrementally updatable,

we present how to compute them.

Summative aggregates shown in Example 4.3.13 are quite suggestive of which

nested summative aggregates are incrementally updatable and which are not. In

short, all F1, F2, and F3 in the example are incrementally updatable, whereas F4 is

not.

80

Let's compare F2 and F4 �rst. It should be noted that without the normalization,

even F2 cannot be incrementally updated. F2 has a summation body of (xi
Pm

j=1 yj)

that nests an unbound summative aggregate
Pm

j=1 yj. One cannot save the value of

F2(Xn�1; Ym�1) =
Pn�1

i=1 (xi
Pm�1

j=1 yj) and use that value to compute F2(Xn; Ym) on

insertion of (xn; ym), due to the following inequality:

F2(Xn; Ym) =
nX
i=1

(xi
mX
j=1

yj)

6=
n�1X
i=1

(xi
m�1X
j=1

yj) + (xn
mX
j=1

yj) = F2(Xn�1; Ym�1) + (xn
mX
j=1

yj):

Only after normalizing F2, the following equality is obtained, thereby making incre-

mental update possible:

F2(Xn; Ym) = (
nX

i=1

xi)(
mX
j=1

yj)

= (
n�1X
i=1

xi)(
m�1X
j=1

yj) + (xn)(ym) = F2(Xn�1; Ym�1) + (xn)(ym):

The reason why F2 is not incrementally updatable before the normalization is that

the unbound summative aggregate
Pm

j=1 yj within the scope of index variable i should

act as a constant while it takes part in the outer summation operator's operation,

but without the normalization, its value varies in successive incremental updates. By

normalizing F2, however, the original aggregate is transformed to a multiplication

of two summative aggregates, each of which can be independently incrementally

updated. Then, by Lemma 5, the normalized summative aggregate is incrementally

updatable.

On the other hand, as mentioned in Example 4.3.13, F4 cannot be normalized.

Similar to F2 before the normalization, F4 has the following inequality:

F4(Xn; Yn) =
nX
i=1

(xi �
nX

j=1

yj)
1=2

6=
n�1X
i=1

(xi �
n�1X
j=1

yj)
1=2 + (xn �

nX
j=1

yj)
1=2

81

= F4(Xn�1; Yn�1) + (xn �
nX

j=1

yj)
1=2:

Since F4 cannot be normalized, there is no chance of F4 being incrementally updat-

able.

F1 and F3 are incrementally updatable as mentioned. Unlike F2, however, these

summative aggregates are still nested even after the normalization. Nonetheless, F1

has the following equality:

F1(Xn; Yn) = 2
nX
i=1

(i3xi
iX

j=1

yj)

= (2
n�1X
i=1

(i3xi
iX

j=1

yj)) + (2n3xn
nX

j=1

yj)

= F1(Xn�1; Yn�1) + (2n3xn
nX

j=1

yj)

The above equation itself can be served as a proof by induction of the incremental up-

datability. When i = 1 (base), the equality holds trivially, letting F1(X0; Y0) = 0. As-

sumingF1(Xn�1; Yn�1) is incrementallyupdatable (induction hypothesis), F1(Xn; Yn)

is incrementally updatable since
Pn

j=1 yj too is incrementally updatable. Thus,

proved.

Now consider a little experiment with F4. F4 is modi�ed to F5 as below so that

the inner summative aggregate becomes bound:

F5(Xn; Yn) =
nX
i=1

(xi �
iX

j=1

yj)
1=2

=
n�1X
i=1

(xi �
iX

j=1

yj)
1=2 + (xn �

nX
j=1

yj)
1=2

= F5(Xn�1; Yn�1) + (xn �
nX

j=1

yj)
1=2:

A similar induction can be used to prove correctness of the above equality. Therefore,

F5 is incrementally updatable.

82

For every summative aggregate, it is true that if the summative aggregate contains

any unbound variables or unbound summative aggregates, the summative aggregate

in question cannot be incrementally updated.

Lemma 6 A summative aggregate that contains only bound entities is incrementally

updatable, if, recursively, all its component summative aggregates, if any, contain

only bound entities.

Proof of Lemma 6 For any summative aggregate,

F(Xn; Yn; � � � ; Zn) =
nX
i=1

f(xi; yi; � � � ; zi; i):

Proof by induction.

(Below we show only the case of insertion. For the case of deletion, similar induction

steps can be easily applied.)

1. When i = 1 (base):

Letting F(X0; Y0; � � � ; Z0) = 0, incremental update on the �rst insertion

(x1; y1; � � � ; z1),

F(X1; Y1; � � � ; Z1) = F(X0; Y0; � � � ; Z0) + f(x1; y1; � � � ; z1; 1):

Thus, the summative aggregate is incrementally updatable on the �rst insertion.

2. Induction hypothesis:

Suppose for n > 1 that F(Xn�1; Yn�1; � � � ; Zn�1) is incrementally updatable.11

3. Induction:

On n-th insertion (xn; yn; � � � ; zn), by the induction hypothesis,

F(Xn; Yn; � � � ; Zn) = (
n�1X
i=1

f(xi; yi; � � � ; zi; i)) + f(xn; yn; � � � ; zn; n)

= F(Xn�1; Yn�1; � � � ; Zn�1) + f(xn; yn; � � � ; zn; n):
11It should be reminded that n is not directly used in aggregate computations. Its sole purpose

is to distinguish the previous (or the next) update from the current update. If n appears in a
summation body, it should be interpreted as aggregate count(*).

83

Therefore, if f(xn; yn; � � � ; zn; n) can be incrementally computed, F(Xn; Yn;

� � � ; Zn) should be incrementally updatable. By the postulation of the lemma,

all entities in f(xn; yn; � � � ; zn; n) are bound, thereby their values, except those

of bound component summative aggregates, are immediately known. Thus, if

there is no component summative aggregate in f(), value of f() can be computed

immediately. Otherwise, f() waits until values of all component aggregates,

say, F 0()'s, become known. F 0()'s, in turn, are all bound by the postulation.

Therefore, by applying induction steps similar to those thus far, F 0()'s can be

immediately computed by adding its previous value to the value of its sum-

mation body, say, f 0(xn; yn; � � � ; zn; n), if f 0(xn; yn; � � � ; zn; n) can be computed

immediately. Otherwise, F 0() waits again. Applying these steps repeatedly,

eventually computation will reach into the deepest nest where no summative

aggregates are used. Then, summation body of that deepest aggregate can be

computed by values in (xn; yn; � � � ; zn; n), and the recursion is unwound up into

f() and eventually f(xn; yn; � � � ; zn; n) is computed.

2

Theorem 4 Every normalized summative aggregate is incrementally updatable.

Proof of Theorem 4 Straightforward from Lemma 6 and the de�nition of normal-

ization. 2

Corollary 1 Every normalized extended summative aggregate is incrementally updat-

able.

Proof of Corollary 1 Straightforward from Lemma 5 and the de�nition of normal-

ization of extended summative aggregates. 2

84

It should be noted that Corollary 1 does not imply that the class of normal-

ized (rather, normalizable) extended summative aggregates is the largest class of

summative aggregates that can be incrementally updated. There are a few cases in

which unnormalizable (by our normalization method) summative aggregates can be

incrementally updated by \manually" normalizing them as shown in the following

example.

Example 4.3.15 Given a summative aggregate,
Pn

i=1 log
�
n
xi

�
, if the user manually

expands equation 4.21 into equation 4.22 (equivalently, if the user writes the sum-

mative aggregate in the form of equation 4.22), the given summative aggregate can

be normalized to equation 4.24, thereby being incrementally updatable.

nX
i=1

log
�
n

xi

�
=

nX
i=1

log

 Pn
j=1 1

xi

!
(4.21)

=
nX
i=1

0
@log nX

j=1

1 � log xi

1
A (4.22)

=
nX
i=1

0
@log nX

j=1

1

1
A� nX

i=1

log xi (4.23)

=

0
@log nX

j=1

1

1
A nX

i=1

1 �
nX
i=1

log xi: (4.24)

<

4.4 Looking-Up Cached Aggregates

In the preceding sections we have described how aggregates, especially summative

aggregates, cached in the aggregate cache can be updated in an incremental way. In

this section we investigate an e�cient way of looking up a cached aggregate that is

requested by a query.

Unlike in an ordinary cache mechanism, cache look-up has a great importance in

the aggregate cache. First of all, cache look-up is no longer simple a task. For system

built-in aggregates, �nding them in the cache still remains simple since they must

85

have �xed names and �xed argument formats. However, for user-de�ned aggregates,

their names cannot be good keys for locating them. Moreover, it is a doubtful ap-

proach to allow the users to name their aggregates. The aggregate cache needs to

be as transparent to the users as possible. Explicitly naming an aggregate implies

that if the name is forgotten or not known, the cached aggregate cannot be used or

shared. Related and more important is the fact that even though an aggregate is

�rst requested, thus not cached yet, it is possible that a similar aggregate is already

cached and the requested aggregate can be derived from the cached one. If cache

look-up is relied entirely on explicit naming, it is not possible to �nd out such a

derivability.

Example 4.4.1 Suppose that two users are using the same database. Suppose further

that average is not a built-in aggregate. One user wants to compute average over

an aggregate input set X, and names it avg(X). Not long after the �rst user has

completed the computation, the second user wants the same aggregate but does not

know that the same aggregate has been computed with a name avg. So, he/she

requests the aggregate by a name average(X). And, the same average is recomputed

even though a copy is in the cache. Now, the third user comes in and wants sum,

which is again supposed not to be built-in, over X. If average(X) and count(X) are

in the cache, it should be possible to derive sum(X) from them. But if any of the

three is user-de�ned and its semantics is not correctly understood by the system,

such a derivation would not be possible. <

In our approach, we provide a small number of built-in (prede�ned) aggregates

that have �xed names and semantics. For user-de�ned summative aggregates, they

too can have names but those names are only for de�nitional convenience. That

is, a user can de�ne named summative aggregates and use the names in his/her

queries to refer to the de�ned aggregates. However, when a summative aggregate

86

is cached, whether built-in or user-de�ned, it is decomposed and normalized into

several smaller summative aggregates. Then, each of the decomposed summative

aggregates is cached if that aggregate is not cached already. When a query requests

a summative aggregate, the aggregate is looked up in the cache by following similar

steps. The queried aggregate is parsed, decomposed and normalized, and each de-

composed aggregate is searched in the cache. If all the decomposed aggregates are

found in the cache, value of the queried aggregate is readily computed by using the

information obtained when the aggregate is parsed and the values retrieved from the

cache. Thus, for cached summative aggregates, their names are immaterial as long

as cache look-up is concerned.

Example 4.4.2 This is a comprehensive example. When Sxy(Xn; Yn), which was

shown in Example 4.3.1, is cached or looked up in the cache, the following equations

87

show how the original aggregate is decomposed and normalized.

Sxy(Xn; Yn) =
nX
i=1

(xi � x)(yi � y) (4.25)

=
nX
i=1

(xi �
Pn

j=1 xjPn
k=1 1

)(yi �
Pn

j=1 yjPn
k=1 1

) (4.26)

=
nX
i=1

(xiyi � xi
Pn

j=1 yjPn
k=1 1

� yi
Pn

j=1 xjPn
k=1 1

+

Pn
j=1 xjPn
k=1 1

Pn
j=1 yjPn
k=1 1

) (4.27)

=
nX
i=1

(xiyi)�
nX
i=1

(xi

Pn
j=1 yjPn
k=1 1

)�
nX
i=1

(yi

Pn
j=1 xjPn
k=1 1

)

+
nX
i=1

(

Pn
j=1 xjPn
k=1 1

Pn
j=1 yjPn
k=1 1

) (4.28)

=
nX
i=1

(xiyi)�
Pn

j=1 yjPn
k=1 1

nX
i=1

xi �
Pn

j=1 xjPn
k=1 1

nX
i=1

yi

+

Pn
j=1 xjPn
k=1 1

Pn
j=1 yjPn
k=1 1

nX
i=1

1 (4.29)

=
nX
i=1

(xiyi)�
Pn

j=1 yj

n

nX
i=1

xi �
Pn

j=1 xj

n

nX
i=1

yi +

Pn
j=1 xj

n

Pn
j=1 yj

n
n (4.30)

=
nX
i=1

(xiyi)�
Pn

i=1 xi
Pn

i=1 yi
n

(4.31)

First, x and y (averages of Xn and Yn) in equation 4.25 is rewritten into summative

aggregates, resulting in equation 4.26. Equation 4.26 is, then, expanded to equa-

tion 4.27, and
P
s are distributed over summation body of equation 4.27, resulting in

equation 4.28. Now, the normalization is performed on equation 4.28. Equation 4.29

is a result of the normalization. It contains four unique normalized (decomposed)

summative aggregates,
Pn

i=1 xi,
Pn

i=1 yi,
Pn

i=1 xiyi, and
Pn

i=1 1 that should be incre-

mentally updatable. These summative aggregates are �rst searched in the cache. If

they are all found in the cache, then Sxy(Xn; Yn) can be obtained immediately. If any

of them is not found, then that aggregate has to be recomputed from values in base

databases (or in the data warehouse if an appropriate copy is being maintained).

Value of Sxy(Xn; Yn) is obtained using cached/recomputed summative aggregates,

88

and all the recomputed summative aggregates are cached for later use. Later on, if

other query requests any of the cached summative aggregates, say, summation of Xn,

such an aggregate will be found in the cache until replaced out by other aggregate.

On the other hand, equations 4.30 and 4.31 show a process of algebraic simpli�cation

of equation 4.29. However, we do not carry out any such simpli�cation. In most

cases, the number of unique summative aggregates does not decrease even after such

a simpli�cation. Therefore, penalty for not simplifying should be minimal. <

4.5 Conclusions

In this work we have proposed the aggregate cache to improve performance of

complex aggregate queries in the context of data warehouses. Considering aggre-

gate computation is a frequent operation in data warehouse applications and such

a computation is expensive to perform, reuse of once-computed results is a natu-

ral choice. On top of that, the temporal locality of aggregate accesses observed in

decision making processes makes such a cache approach more attractive.

The Aggregate cache has a close bearing on the view materialization since a

cached aggregate can be deemed as a materialized view of underlying tables in base

databases. As the incremental view update is an important issue in the view mate-

rialization, incremental update of a cached aggregate as relevant underlying tables

change is a crucial problem in the aggregate cache. If an underlying table is updated

and the update a�ects a cached aggregate, the update should be propagated to the

cache so that the cached aggregate too can be updated appropriately.

Based on currency requirement for cached aggregates, there are several schemes

of when to update cached aggregates as base databases change. Rematerialization,

periodic update, eager update, and on-demand update have been discussed, and

the on-demand update has been chosen for the aggregate cache since it is not only

perfectly geared with the cache philosophy, but also outperforms other approaches.

89

We have investigated a way of incrementally updating summative aggregates,

which cover a vast variety of aggregates performing some types of cumulative op-

erations. Importantly, we have identi�ed a class of summative aggregates that is

incrementally updatable and inclusive enough to cover many aggregates used in data

warehouse applications, and proposed an e�cient cache look-up method.

CHAPTER 5
CONCLUSIONS

In this work we have addressed two related issues within the framework of active

databases. First, we have proposed a practical approach to static analysis of active

rules and their con
uent execution based on di�erent user requirements. When the

user wants the full con
uent rule execution, that requirement can be easily met by

removing con
icts in the rule set or by specifying priorities between the con
icting

rules. If con
uent rule execution is unnecessary, the system can avoid controlling

rule executions. The con
uence can also be enforced for only a subset of rules. Using

our approach, it is also possible to support multiple, application-based con
uency

controls. In addition, our approach is the best �t for parallel rule execution.

In the second part of our work, we have proposed the aggregate cache that is a

cache mechanism for aggregates used in data warehouses. The aggregate cache can

improve the performance of aggregate computations signi�cantly by saving previous

results. It uses a novel approach to cache look-up, in which a queried aggregate is

found in the aggregate cache by looking-up its component aggregates. Our aggregate

cache is transparent to the user; no intervention from the user is necessary to run

the aggregate cache. Also importantly, we have identi�ed a precise class of aggre-

gates that can be incrementally updated. We expect that the aggregate cache can be

implemented by using active rules over active database systems. Change detection

and propagation will be able to be implemented using the event detection facility in

underlying active base databases. In the data warehouse { it is assumed to be an

active database too, incrementally updating cached aggregates as changes are prop-

agated to the aggregate cache can also be implemented using active rules. However,

90

91

the query processor of data warehouse should be modi�ed appropriately to make use

of cached aggregates.

REFERENCES

[1] B. Adelberg, B. Kao, and H. Garcia-Molina. Database support for e�ciently
maintaining derived data. Technical report, Department of Computer Science,
Stanford University, Stanford, CA, 1995.

[2] R. Agrawal, R. Cochrane, and B. Lindsay. On maintaining priorities in a pro-
duction rule system. In Proceedings International Conference on Very Large
Data Bases, pages 479{487, Barcelona, Spain, 1991.

[3] A. Aiken, J. Hellerstein, and J. Widom. Static analysis techniques for predicting
the behavior of active database rules. ACM Transactions on Database Systems,
20(1):3{41, Mar. 1995.

[4] A. Aiken, J. Widom, and J. Hellerstein. Behavior of database production rules:
Termination, con
uence, and observable determinism. In Proceedings Interna-
tional Conference on Management of Data, pages 59{68, San Diego, CA, 1992.

[5] E. Anwar, L. Maugis, and S. Chakravarthy. A new perspective on rule sup-
port for object-oriented databases. In Proceedings International Conference on
Management of Data, pages 99{108, Washington, DC, May 1993.

[6] R. Badani. Nested transactions for concurrent execution of rules: Design
and implementation. Master's thesis, CIS Department, University of Florida,
Gainesville, FL, October 1993.

[7] E. Baralis and J. Widom. An algebraic approach to rule analysis in expert
database systems. In Proceedings International Conference on Very Large Data
Bases, pages 475{486, Santiago, Chile, 1994.

[8] J. Blakely, P. Larson, and F. Tompa. E�ciently updating materialized views. In
Proceedings ACM SIGMOD Conference on Management of Data, pages 61{71,
Los Angeles, May 1986.

[9] L. Brownston, R. Farrell, E. Kant, and N. Martin. Programming Expert Sys-
tems in OPS5: An Introduction to Rule-Based Programming. Addison-Wesley,
Reading, MA, 1985.

[10] S. Ceri and J. Widom. Deriving production rules for constraint maintenance. In
Proceedings International Conference on Very Large Data Bases, pages 566{577,
Brisbane, Australia, 1990.

[11] S. Ceri and J. Widom. Deriving production rules for incremental view main-
tenance. In Proceedings International Conference on Very Large Data Bases,
pages 577{589, Barcelona, Spain, 1991.

92

93

[12] S. Chakravarthy, B. Blaustein, A. P. Buchmann, M. Carey, U. Dayal, D. Gold-
hirsch, M. Hsu, R. Jauhari, R. Ladin, M. Livny, D. McCarthy, R. McKee, and
A. Rosenthal. Hipac: A research project in active, time-constrained database
management (�nal report). Technical Report XAIT-89-02, Xerox Advanced In-
formation Technology, Cambridge, MA, Aug. 1989.

[13] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite events
for active databases: Semantics, contexts, and detection. In Proceedings Inter-
national Conference on Very Large Data Bases, pages 606{617, Santiago, Chile,
Sep. 1994.

[14] S. Chakravarthy, Z. Tamizuddin, and J. Zhou. SIEVE: An interactive visualiza-
tion and explanation tool for active databases. In Proc. of the 2nd International
Workshop on Rules in Database Systems (RIDS'95), pages 179{191, October
1995.

[15] O. Diaz, A. Jaime, and N. W. Paton. Dear: A debugger for active rules in an
object-oriented context. In Proc. of the 1st International Conference on Rules
in Database Systems, September 1993.

[16] K. P. Eswaran. Speci�cations, implementations, and interactions of a trigger
subsystem in an integrated data base system. IBM Research Report RJ1820,
Aug. 1976.

[17] S. Gatziu and K. R. Dittrich. SAMOS: An active, object-oriented database
system. IEEE Quarterly Bulletin on Data Engineering, 15(1-4):23{26, December
1992.

[18] S. Gatziu and K. R. Dittrich. Events in an object-oriented database system. In
Proc. of the 1st International Conference on Rules in Database Systems, Septem-
ber 1993.

[19] N. Gehani and H. Jagadish. Ode as an active database: Constraints and triggers.
In Proceedings International Conference on Very Large Data Bases, pages 327{
and 336, Barcelona, Spain, 1991.

[20] N. H. Gehani, H. V. Jagadish, and O. Shmueli. COMPOSE: A system for
composite event speci�cation and detection. Technical report, AT&T Bell Lab-
oratories, Murray Hill, NJ, December 1992.

[21] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Event speci�cation in an object-
oriented database. In Proceedings International Conference on Management of
Data, pages 81{90, San Diego, CA, June 1992.

[22] T. Gri�n and L. Libkin. Incremental maintenance of views with duplicates. In
Proceedings International Conference on Management of Data, pages 328{339,
San Jose, CA, 1995.

[23] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in data
warehousing environments. In Proceedings International Conference on Very
Large Data Bases, pages 358{369, Zurich, Swizerland, 1995.

[24] A. Gupta, I. Mumick, and K. Ross. Adapting materialized views after rede�ni-
tions. In Proceedings International Conference on Management of Data, pages
211{222, San Jose, CA, 1995.

94

[25] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incremen-
tally. In Proceedings International Conference on Management of Data, pages
157{166, Washington, DC, 1993.

[26] E. Hanson. User-de�ned aggregates in the relational database system INGRES.
Master's report, University of California, Berkeley, CA, 1984.

[27] E. Hanson. E�cient Support for Rules and Derived Objects in Relational
Database Systems. PhD thesis, University of California, Berkeley, CA, 1987.

[28] E. Hanson. The design and implementation of the Ariel active database rule sys-
tem. Technical Report UF-CIS-018-92, CIS Department, University of Florida,
Gainesville, FL, 1992.

[29] E. Hanson. Rule condition testing and action execution in Ariel. In Proceedings
International Conference on Management of Data, pages 49{58, San Diego, CA,
1992.

[30] E. Hanson and J. Widom. An overview of production rules in database systems.
The Knowledge Engineering Review, 8(3):121{143, Sep. 1993.

[31] W. Inmon and R. Hackathorn. Using the Data Warehouse. John Wiley & Sons,
Inc., New York, 1994.

[32] T. Sellis. E�ciently supporting procedures in relational database systems. In
Proceedings International Conference on Management of Data, San Francisco,
CA, 1987.

[33] IEEE Computer Society. IEEE data engineering bulletin: Special issue on ma-
terialized views and data warehousing, June 1995.

[34] M. Stonebraker, E. Hanson, and S. Potamianos. The POSTGRES rule manager.
IEEE Transactions on Software Engineering, 14(7):897{907, July 1988.

[35] M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On rules, procedures,
caching and views in database systems. In Proceedings International Conference
on Management of Data, pages 281{290, Atlantic City, NJ, 1990.

[36] Z. Tamizuddin. Rule execution and visualization in active oodbms. Master's
thesis, CIS Department, University of Florida, Gainesville, FL, May 1994.

[37] J. Widom. Research problems in data warehousing. In Proceedings International
Conference on Information and Knowledge Management (CIKM), Nov. 1995.

[38] J. Widom, R. Cochrane, and B. Lindsay. Implementing set-oriented production
rules as an extension to starburst. In Proceedings International Conference on
Very Large Data Bases, pages 275{285, Barcelona, Spain, 1991.

[39] J. Widom and S. Finkelstein. Set-oriented production rules in relational
database systems. In Proceedings International Conference on Management of
Data, pages 259{270, Atlantic City, NJ, 1990.

[40] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in
a warehousing environment. In Proceedings International Conference on Man-
agement of Data, pages 316{327, San Jose, CA, 1995.

BIOGRAPHICAL SKETCH

Seung-Kyum Kim was born on December 23, 1961, in Inju, Chungnam, South

Korea. He received his Bachelor of Engineering degree in computer science from

Ajou University, South Korea, in 1985. After his graduation, he worked as a research

engineer at ETRI (Electronics and Telecommunication Research Institute) in South

Korea. He fully participated in a research project developing a relational DBMS

while working at ETRI.

In Fall 1990, he joined the Department of Computer and Information Science

and Engineering at the University of Florida for his graduate studies. He received

his Master of Science degree in computer and information science and engineering

in 1993. Having continued his studies at the same department, he will receive his

Doctor of Philosophy degree in May 1996.

His research interests include active databases, data warehouses, temporal databases,

and transaction processing.

95

