ACKNOWLEDGEMENT

[would like to express my sincere gratitude to Dr. Sharma Chakravarthy for giv-
ing me an opportunity to work on this challenging topic and for providing continuous
guidance, advice, and support throughout the course of this research work. I thank
Dr. Eric Hanson and Dr. Li-Min Fu for serving on my supervisory committee and
for their careful perusal of this thesis. I would like to thank Sharon Grant for main-
taining a well administered research environment. I also thank many of my friends
for making my stay in Gainesville memorable.

On a more personal note, I would like to thank my father Dr. Sami Anwar, my
mother Mrs. Afaf Anwar, my great bother Tarek, my two wonderful sisters Hanan
and Nahla, and my cute little nephew Tamer. Without their love, support and

constant encouragement this work would not have been possible.

This work was (in part) suported by the National Science Foundation Research
Initiation Grant IRI-9011216 and by the Office of Naval Technology and the Navy

Command, Control and Ocean Surveillance Center RDT&E Division.

TABLE OF CONTENTS

ACKNOWLEDGMENTo i
0.1 INTRODUCTION 1
0.2 PREVIOUS RELATED WORK 2

0.2.1 High Performance Active Databases (HiPAC) 2
0.2.2 Ode e 3
023 ADAM 7
0.2.4 Object Integrity using Rules 9

0.3 MOTIVATION AND ISSUES 11
0.4 DESIGN OF ECA RULES FOR SENTINEL 15
0.4.1 Design Goals o 16
0.4.2 Need for a Reactive Asynchronous Object Interface 18
0.4.3 Alternatives to Incorporating Rules in an OODBMS 20
044 FEventso 21
0.4.5 Eventsas Objects 24
0.4.6 Rule Specification o000 31

0.5 Implementation Details00 37
0.5.1 The Reactive Class 38
0.5.2 The Notifiable Class 40
0.5.3 The Rule Class 40
0.5.4 The Event Class 43
0.5.5 Event Detection Implementation 44
0.5.6 Rule Implementation 44

0.6 Examples A7
0.6.1 ExampleOne 0. 47
0.6.2 Example Two 54
0.6.3 Example Three 58
0.6.4 Example Four o000 60
0.6.5 Example Five oo 63
0.6.6 ExampleSix. o 64

0.7 CONCLUSION AND FUTURE RESEARCH 67
0.7.1 Contributions and Conclusions 67
0.7.2 Future Research 69
REFERENCES« . . 70

i

0.1 INTRODUCTION

During the past years data base management systems (DBMS) have undergone
dramatic changes as a result of the increasing requirements of modern day applica-
tions. Conventional record-oriented data base systems are subject to the limitations
of a finite set of data types and the need to normalize data. These limitations have led
to the evolution of a new paradigm, namely object-oriented data bases (OODBMS),
which offer increased modeling power, flexible abstract data-typing facilities and the
ability to encapsulate data and operations via the message metaphor. Despite the
ability to model complex objects and relationships, these OODBMSs lack some of the
requirements of a large class of new applications, specifically those requiring moni-
toring of situations and responding to them automatically, possibly subject to timing
constraints.

Active data bases have been proposed to meet some of the requirements of
non-traditional applications. Active OODBMSs extend the normal functionality of
OODBMSs with support for monitoring user-defined situations and reacting to them
without user or application intervention. These DBMSs continuously monitor situ-
ations to initiate appropriate actions in response to data base updates, occurrence
of particular states or transition between states, possibly within a response time
window.

The key distinction between an active and a passive object, as conveyed in the
database literature, lies in an active object’s ability to initiate asynchronous actions,
as a separate thread of execution, without necessarily receiving messages. Typlcally,

“passive” objects respond to messages through a synchronous interface; they receive
a message and based on its interpretation then perform some operations "and return a
result. Extant active OODBMSs define active objects as objects which monitor their
own state by executing operations asynchronously in response to changes occurring
internally to their own state.

Rules, in the context of an active DBMS, consist primarily of three components:
an event, a condition, and an action. An event is an indicator of a happening (ei-
ther simple or complex). Events are recognized by the system or signalled by the
user. For example, database events such as insert, delete, and update are detected
by the OODBMS. The condition specifies an optional predicate over the database
state which is evaluated when its corresponding event occurs. The conditions to be
monitored may be arbitrarily complex and may be defined not only on single data
values or individual database states, but also on sets of data objects, transitions be-
tween states of materialized/derived objects, trends and historical data. Actions are
the operations to be performed when an event occurs and its associated condition
evaluates to true. Actions may be programs which may in turn cause the occurrence
of other events. Once rules are specified declaratively to the system, it is the sys-
tem’s responsibility to monitor the situations (event-condition pairs) and execute the
corresponding action when the condition is satisfied without any user or application
intervention. The advantage of using rules as a means of providing active behavior,
is the freedom from explicitly hard-wiring code which checks the situations being
monitored into each program that updates the database.

The mechanism by which rules are integrated into an OODBMS has a profound
impact on the active functionality provided. Considerable differences exist between
the approaches taken for rule integration by current active OODBMSs. In this paper,
we describe a mechanism for integrating rules into an OODBMS that subsumes and
enhances upon the active functionality provided by these existing systems. Our
proposed approach improves upon the notion of an active object, the types of events

that can be expressed and detected, the flexibility provided and the performance of
the system.

This paper is organized as follows. Section 2 begins by defining the problem
statement and presenting the contributions of this paper. A detailed survey of the
existing active OODBMSs then follows in Section 3. Special emphasis is given to de-
termining the active functionality provided, the types of events supported, how rules
are specified and the extensibility of the system. Section 4 proceeds by presenting
our proposed approach while specifically addressing the issues involved in integrating
rules in an OODBMS as well as specifying and detecting events. Section 5 presents
a comparison between our approach and existing active OODBMSs based on several
given examples while Section 6 discusses the implementation issues involved. The
final section, Section 7, presents the conclusion and highlights future areas of work.

0.2 PREVIOUS RELATED WORK

In this section we provide an overview of the current active OODBMSs found in
the literature. Later in this paper, we provide a back-of-the-envelope comparison of
Sentinel with other work discussed here.

0.2.1 High Performance Active Databases (HiPAC)

HiPAC ([C*89],[DBMS8S]) was a research endeavor on active and time constrained
data management. Event-condition-action rules form the basis for active behavior
in HiIPAC. Rules are treated as first class objects and each rule is an instance of the
system defined rule class. Rules in HIPAC are defined by specifying a rule identi-
fier, an event, a condition, an action, timing constraints, contingency plans and rule
attributes.

Since rules are first class objects in HiIPAC, they are treated in a uniform manner
as other objects in the system. The rule operations supported in HiPAC are create,
delete, enable, disable, and fire. The first four of these operations are performed at
the request of applications, while the fifth operation is invoked automatically by the
system in response to event signals. In addition, since rule operations are performed
in transactions, they are subject to concurrency control. Create, delete, enable and
disable are considered write operations, while fire is considered a read operation.
Therefore, concurrent firing of rules is allowed, whereas the other operations require
exclusive access to the rule object. HiIPAC does not incorporate any form of conflict
resolution when multiple rules are triggered. In fact, all triggered rules are executed
concurrently, subject to serializability criteria.

Comments on HiPAC

o The primary advantage of HiPAC is that it treats rules in a uniform manner
as other objects. Rules are conceived as first class objects which are created,
deleted and modified in the same fashion as other objects.

e Rule operations are implemented as methods thus ensuring that a rule’s state
is accessed only through its interface.

o HiPAC fully addresses rule execution semantics and provides a flexible approach
for rule execution by introducing the notion of coupling modes.

e No conflict resolution is performed when multiple rules are triggered; all mul-
tiple triggered rules are executed concurrently.

class supplier {
Name sname;
Name state;

public :
const Name Get-Name();
void Change-Name(Name new);

constraint :
state == Name("NY") || state == Name("") : printf("Invalid supplier location\n");
triggers:

T1() : quantity < MINIMUN ==> Reorder();

Figure 0.1.

o Although HiPAC addresses complex events, some events cannot be expressed
and detected, namely, access, conjunction and periodic events.

0.2.2 Ode

Ode ([GJ91b],[GJ91a]) is a database system and environment based on the ob-
ject paradigm. The database is defined, queried and manipulated using the database
programming language O-+4, which is an upward-compatible extension of the object
oriented programming language C4+4 [GJ91b]. Ode provides active behavior by the
incorporation of constraints and triggers. Each constraint and trigger consists of a
condition and an action. Constraints and triggers are defined declaratively within a
class definition as shown in Figure 3.1. Constraints are used to maintain the notion
of object consistency and hence are applicable to all instances of the class (along with
its subclasses) in which they are declared. Triggers, on the other hand, are used for
purposes other than object consistency and are applicable only to those instances, of
the class in which they are declared (along with its subclasses), specified explicitly by
the user. A trigger is activated on an object by using the call:

object_id— > T;(arguments)

This call associates trigger T; with the object whose identity is object 2d.

It is important to realize that there is no notion of ECA rulesin Ode. An ECA rule
is viewed as a unit consisting of an event FE;, a condition C; and an action A;, where
the signalling of event F; causes the evaluation of condition C; and if C; is satisfied, the
execution of A;. The approach taken in Ode differs in that a condition C; is paired
with an action A; only, forming a constraint/trigger. Therefore, constraints and
triggers are fired as a result of the invocation of any non-constant member function.
Thus events in Ode are considered as the disjunction of all non-constant member
functions.

Events are generated as a result of the of the invocation of non-constant public
member functions. Private and protected member functions do not generate events.
All events signalled by an object of class A cause the evaluation of all constraints
and triggers declared within class A. Event detection occurs via a method based
mechanism : constraints and triggers are precompiled into each place in the code
where they might be activated, specifically, at the end of each non-constant public
member function and before the commit of every transaction.

Constraints

Constraints consist of a predicate (condition) and an optional handler. Con-
straints implement the notion of integrity constraint maintenance and are of two
types: soft and hard.

Soft constraints, in contrast to hard constraints, allow temporal inconsistencies
to exist within a transaction. All soft constraints are precompiled into one public
method called soft-constraints. All hard constraints are precompiled into one public
method called hard-constraints. The soft-constraints method is invoked at the end
(before commit) of a transaction. This is basically the deferred coupling mode, hence,
soft constraints will be evaluated only once, regardless of how many times a relevant
object has been updated. The hard-constraints method is invoked at the end of each
non-constant public method, i.e. it uses the immediate coupling mode. This means
each triggering of a hard constraint will cause it to fire.

The evaluation and execution of the condition and handler occur within the trig-
gering transaction. If the condition evaluates to false, the handler is executed. The
handler is basically code which attempts to rectify the inconsistent state. If after
execution of the handler the inconsistent state still exists, the transaction will abort.
This means the condition is evaluated twice, once before and once after the execution
of the handler. If no handler is specified, the transaction is immediately aborted.

Triggers

Triggers in Ode are used for monitoring database conditions other than those
representing consistency violations. Triggers in Ode are parameterized and can be
activated multiple times with different parameters([GJ91b], [GJ91a]). Triggers con-
sist of a name, parameters and a trigger body. Triggers are declared within a class
definition and can be of two forms :

trigger-condition ==> trigger-action
or
within expression 7 trigger-condition ==> trigger-action [: timeout-action]

The second form is used for specifying timed triggers. In contrast to constraints,
a trigger-action is executed if the trigger-condition evaluates to true. There are two
types of triggers: once-only and perpetual triggers. Once-only triggers are deactivated
immediately after being fired, while perpetual triggers are automatically reactivated
after being fired. The activation of all types of triggers occurs explicitly by the
user. FEach trigger is precompiled into its own public method (the name of the
public method is the name of the trigger). The invocation of a trigger method by
an instance causes its activation on that instance. Furthermore, the precompiler
generates a public method, triggers, which contains all the trigger conditions. The
public method triggers is precompiled at the end of each non-constant public method.
It a trigger condition evaluates to true, its respective trigger body is appended to a
to-be-executed list. Trigger bodies are executed in separate transactions after the

commit (not necessarily immediately after) of the transaction firing them. An active
trigger’s body will be executed only once, regardless of the number of times the
relevant object is updated within a transaction. Since trigger execution is in the
detached mode, the trigger condition is evaluated twice, once at the end of the public
member function and once before execution of the trigger’s action.

More recently Ode([GJS92c¢],[GJS92a],[GJSI2b]) has proposed a language for spec-
ifying composite events. They have also adopted a declarative approach for specifying
events; events are declared within class definitions. Basic (primitive) events are de-
fined and composite event are constructed by applying operators to basic events. The
basic events that are supported are object state events (creation, deletion, access, up-
date, read), method execution events (before or after the execution of a method),
timed events and transaction events. The event operators supported are relative,
prior, sequence, choose, every, fa and faAbs.

Basic events can be quahﬁed with a mask thus producing logical events. A mask is
an optional predicate that allows users to specify more specific events. For instance,
assume that the execution of the withdraw method constitutes a basic event. This is
specified as :

after withdraw(Item I, int q)

In order to specify that the withdrawal of a large sum of money constitutes a
basic event, a mask can be used. The mask hides the occurrences of the withdrawal
of small sums of money. For instance :

after withdraw(Item I, int q) && g > 100

is an event that is raised only if the amount withdrawn is greater than 100.

As previously mentioned, the event operators supported are relative, prior, se-
quence, choose, every, fa and faAbs. Although the relative and prior operators are
sequence operators, their semantics differ when applied to composite events. For ex-
ample, the event relative(E, F), where E and F are composite events, is raised when
the last logical event of E occurs prior to the first logical event of F. On the other
hand, the event prior(E, F) is raised when the last logical event of E occurs prior
to the last logical event of F irrespective of the occurrences of the remaining logical
events of E and F. The sequence operator denoted as sequence(FEy,...,F,), is raised
when E}, occurs immediately after Ey_1. A modifier + has also been introduced which
denotes infinite repetition. This modlﬁer can be applied to the relative, prior and
sequence operators. For example, relative+(E) implies the infinite disjunction :

relative(E) | relative(E, E) | relative(E, E, E) | ..
Limited repetition is also supported by introducing an mteger constant with the
operators relative, prior and sequence. For instance, the fifth occurrence of the exe-
cution of the method deposit is specified as :

relative 5 (after deposit)
The choose operator is used for selecting particular occurrences of events. To raise

an event after the fifth transaction commits is specified as :

choose 5 (after tcommit)

class stockRoom {
Item itemg[max];
intn;
public :
stockRoom();

trigger :
T1() : perpetual sequence(after deposit; after withdraw) ==> printLog();
b

Figure 0.2.

The every operator is used for specifying events that occur periodically. For ex-
ample, to raise an event periodically after five transactions commit is specified as :

every b (after tcommit)

The last two operators fa and faAbs are used for monitoring the occurrence of
an event during an interval marked by the occurrences of other events. The event
denoted as fa(E, F, G) is defined as the first occurrence of event F relative to the
event E, and with no occurrences of event G (relative to E) taking place prior to
F([GJS92¢]). The operator faAbs denoted as faAbs(E, F.,G) is similar to the fa
operator however the event G is defined relative to the beginning of the the history
of events rather than relative to event E.

To illustrate how complex events are declared in Ode consider the code in Figure
3.2. The perpetual trigger T1 is triggered when the withdraw method is executed
immediately after the execution of the deposit method.

Detection of composite events is accomplished by using finite automata. Each
event expression maps an event history to another event history that contains only the
events at which the event expression is satisfied and the trigger should fire [GJS92a].
Each event expression has an automaton associated with it that reaches the accep-
tance state when the event is raised. Input to the automaton is the event history,
the sequence of logical events, of the object with which the automaton is associated.

Events in Ode are treated as expressions declared within class definitions at com-
pile time. This approach has several disadvantages. First, the treatment of events as
expressions results in a dichotomy between events and other objects. Second, events
cannot be created, deleted and modified dynamically. In addition, the introduction
of new event types, attributes and operations require major modifications thus com-
promising the system’s extensibility. The major disadvantage of this approach is the
inability to express complex events that are raised by occurrences of events in differ-
ent classes. To clarify, Ode has adopted a local view of complex events; a complex
event defined in class A can only be raised by events occurring in that same class A.
Therefore, complex events cannot be raised by events spanning over several different
classes. For example, assume that a bank and a real estate class are defined. In
addition, assume a person is interested in purchasing real estate if the interest rates
at the bank drop and the price of real estate decreases. This complex event is raised

when a conjunction of events take place specifically, an event in the bank class and
an event in the real estate class. Complex events of this nature cannot be expressed
in Ode due to their local view of events.

Comments on Ode

e By not grouping an event, condition and action together, excessive checking
occurs. This is because each event causes the evaluation of each hard constraint
and trigger predicate, regardless of whether the event triggers them or not.

e Constraints and triggers are precompiled into methods. This approach severely
compromises the ensurance of inheritance, since a subclass may override the
methods defined in its superclasses.

e In our opinion, the demarcation between constraints and triggers is arbitrary
and does not contribute in any way to the processing of rules. Furthermore,
triggers may be used to specify constraints.

e There is no conflict resolution. Multiple triggered constraints and triggers are
fired in random order.

o The need for once-only and perpetual triggers can be eliminated if a mechanism
for deactivation is provided. Again the reasons for not supplying deactivation
is not clear.

o Although complex events are supported, there is a dichotomy between events
and other objects. This is because events are not treated as objects which are
created, deleted and modified as other objects in the system.

o Events are declared within class definitions and thus cannot be designated as
persistent or transient. Furthermore, adopting a declarative approach for event
specification prevents events from being created, modified and deleted dynam-
ically.

o We feel that the introduction of the mask is unnecessary since the condition
can determine whether to trigger the rule or not. In addition, optimization
techniques should handle its efficient evaluation.

e A local view of events is adopted; an event defined in class A can only be
raised by events occurring in that same class A. Thus events that are raised by
occurrences spanning over several classes cannot be expressed. Therefore, intra-
object events can be expressed whereas inter-object events cannot be expressed

0.2.3 ADAM
ADAM [DPGI1] is an active OODB implemented in PROLOG. It focuses on

providing a uniform approach to the treatment of rules in an object oriented envi-
ronment. In addition, it adopts the ECA format for rules, defines and treats rules
as first class objects. Moreover, rule operations are implemented as class methods.
Events in ADAM are also treated as objects which are created, modified and deleted
in the same fashion as other objects.

Rules are incorporated in ADAM by using an object based mechanism. Basically,
an object’s definition is enlarged to indicate which rules to check when the object
raises an event. Thus each class structure is augmented with a class-rules attribute;

this attribute has as its value the set of rules that are to be checked when the class
raises an event. In order for ADAM to support the inheritance of rules, each class
definition is enlarged with an activated-by attribute. This attribute is defined as
follows :

attribute(att-tuple(activated-by,global,set,optional,rule-class,
[activated-by wof class ::
class-rules of class
union
activated-by of is-a of class]))

This attribute forces any update to the class-rules attribute of any class to be
reflected in the activated-by attribute of all its subclasses. This process is performed
automatically by the system [DPGI1].

The Event Object

Events in ADAM are classified into DB events, clock events and application
events. An event-class is defined which has three subclasses: db-event, clock-event
and application-event. Fach event is an instance of one of these three subclasses.
Events in ADAM are basically generated either before or after the execution of a
method. When an event is raised, all the methods’” arguments are passed by the sys-
tem to the condition and action part of the rule. Thus, the condition and action code
may refer to the method’s input or output parameters during evaluation. Events are
created, modified, and deleted in the same manner as other objects in the system. In
order to create an event, the user must specity the name of the method generating the
event and when the event should be raised. For example, an event object is created
as follows :

new([0ID, [
active_method([put-age]),
when([before])

11) => db_event.

This event is raised before the method put-age is executed. Notice that the active-
method attribute does not indicate the class in which the method put-age is defined;
only the method name is specified.

The Rule Object

ADAM defines a class named the Rule-class where each rule is an instance of that
class.! The structure of the Rule-class consists of the attributes event, active-class,
is-it-enabled, disabled-for, condition and action. The Rule-class also has methods
which define rule operations. A rule is created by sending the following message :

new([0ID, [

event ([3@db-event]),
active-class([student]),
is-it-enabled([truel),
disabled-for([10@student,23@student]),
condition([(

1Rules could also be instances of a class derived from the Rule-class.

current-arguments([StudentAge]),
StudentAge > 90
)1,

action([(
current-object (TheStudent)
current-arguments ([StudentAge]),
get—cname(StudentName) => TheStudent,
writeln([’The student ’, StudentName,
’with age ’, StudentAge,
’exceeds the expected age’]),

~ L
I

> integrity-rule

Let us assume that the object identifier of the event instance created previously is
3Q@db-event. The event attribute indicates the event which triggers the rule. In this
example, the event attribute has as its value 3@db-event hence, the rule is triggered
before the execution of the method put-age. This method may be potentially defined
in several different classes. In order to disambiguate which put-age method triggers
the rule, we refer to the active-class attribute. The active-class attribute has as its
value student. Therefore, the rule is triggered before a student object executes the
method put-age. The is-it-enabled attribute specifies whether the rule is enabled or
not while the disabled-for attribute has as its value the set of student objects for
which the rule is disabled. The condition attribute specifies the condition to be
checked when the event is raised and the action attribute specifies the action to be
performed if the condition is satisfied. Both the condition and action refer to the
arguments of the method put-age.

ADAM allows a rule’s constituents to be modified dynamically. For example, it
is possible to specify the condition and action parts of the rule at run-time. Fur-
thermore, the condition and action parts are defined dynamically rather than at
compile time. The dynamic characteristics provided by ADAM are influenced by the
interpretive environment in which ADAM is implemented and thus it is difficult to
accomplish all of this in a language such as C4++.

Comments on ADAM

e ADAM provides a uniform treatment of rules in an object oriented context
as other objects. Rules are treated as objects which are created, deleted and
modified in the same manner as other objects.

e Rule operations are implemented as methods thus ensuring that a rule’s state
is accessed only through its interface.

e Inheritance of rules from superclasses to subclasses is supported. However, the
method by which inheritance is supported is specific to the PROLOG language
and hence cannot be easily applied to other object oriented programming lan-
guages.

e ADAM only supports the immediate coupling mode and does not support the
other coupling modes proposed in HiPAC.

10

e Although ADAM does not support complex events, the system is extensible
enough to support them. This is due to their treatment of events as objects.

e ADAM does not efficiently allow a rule to be applicable to only one instance of
a class. This is accomplished by disabling the rule for all other instances.

0.2.4 Object Integrity using Rules

Object Integrity using Rules (henceforth OIR) [MP90] lays special emphasis on
the application of production rules in object-oriented databases to enforce integrity
constraint maintenance. Although this effort was designed and implemented for the
O, system, it is general enough to be applied to any object-oriented database system.
Constraints are typically classified as either static or dynamic. Static constraints
determine the consistency of a database state while dynamic constraints monitor the
correctness of state transitions.

OIR supports the maintenance of static as well as some types of dynamic con-
straints, specifically two-state predicate constraints. Two-state predicate constraints
are dynamic constraints that can be expressed in terms of the initial and final states
of a transaction.

Constraints in OIR are perceived and implemented as objects which can be cre-
ated, deleted and modified in the same fashion as other objects. A powerful feature
provided is the non-restrictiveness of constraint applicability; constraints can be de-
fined on one class (intra-class), several classes (inter-class) and on object behavior
(only if they can be defined as pre- or post conditions to methods). Moreover, con-
straints have a scope. They can be global in nature and hence hold for all applications
that run on a database, or local and apply to particular applications only. Rules in
OIR are treated as objects that are instances of Oy Rule class (or a subclass of the
Rule class). Rule objects are tuples of the form :

< Name, E, Q, A, P, S, AP >

where N(ame) is a string that identifies the rule; E(vent) is an expression de-
scribing one event that triggers the rule; Q(uery) is the condition to be tested when
the event E is raised. The condition is an O, query. A(action) is the action to be
performed if the query Q is satisfied. The action is a sequence of ('O operations.
P(riority) is a priority level for rule execution. This is used to determine which rule to
fire when multiple rules are triggered; S(tatus) indicates whether the rule is enabled
or disabled; AP(plicability) indicates when to check the rule, e.g. pre- or post-method
execution. OIR supports the rule operations Add, Delete, Enable, Disable, Fire and
Change-priority. Each operation is implemented as a method of the system defined
Rule class.

Events in Oy are associated with either message sending or the passing of time.
Message-related events are of the form [Receiver, Method]. Events of this type are
raised when the Method is sent to the Receiver. The Receiver can either specity a par-
ticular instance or a class name. Time related events are expressed as TIME(value).

Constraints are specified declaratively as production rules to the system and later
transformed into O, rule objects. Static constraints consist of two components: a
predicate and an action. Static constraints are defined using the following syntax :

< P—-—>A>

P is a first order logic predicate and A is a designer-defined action.

11

On the other hand, dynamic constraints are expressed in terms of temporal logic.
Temporal logic augments first order logic with the modal operators always, some-
time, and next. OIR supports the modalities always and sometime only. Dynamic
constraints are specified declaratively as follows :

sometime P: before Transaction
sometime P, after Transaction
always P; before Transaction
always P, after Transaction

Each dynamic constraint is transformed into a set of static constraints to be
checked before and after a transaction. For example, a dynamic constraint is trans-
formed into :

< P(State;) — > A; > and < P,(State,) — > A, >

where 1 and o indicate input and output states, P, and P, are first order logic
predicates and State; and State, are input and output states of Transaction.

After the user declares the constraints as production rules they are transformed
into an initial set of Oy rules. This transformation consists of three phases. The first
phase transforms production rules of the form < P — > A > into pairs of the form <
Q, A >. Q is a query that represents the predicate P. The second phase consists of
determining all events that may potentially violate the constraint. These events are
determined by performing a phase analysis on the query Q. Basically, the query Q is
treated as a path expression that is examined to extract all references to objects or
class names. This static analysis is not sufficient since the predicates on classes and
objects interact. Therefore, the third phase examines the database schema in order
to identify all methods which, sent to the potential source of violation, may indeed
cause violation [MP90]. The output of this last phase are pairs of the form [Receiver,
Method]. Therefore, predicate rules are transformed into a set of rule objects Ry,
Ry,....R,,where each R; has the same < Q,A > and different events.

Comments on OIR

e Provide a uniform treatment of rules in an object oriented environment; rules
are objects which are created, deleted and modified in the same fashion as other
objects.

e Rule operations are implemented as methods thus ensuring that a rule’s state
is accessed only through its interface.

e Support the inheritance of rules from superclasses to subclasses.
e Constraints can be defined on one class, several classes and on object behavior.

o A large amount of processing time is required to transform production rules
into rule objects. This is because all events that may violate a constraint have
to be determined by the system. This is in contrast to requiring the user to
explicitly specify the events which triggers the rule. However, this is a compile
time and not a run-time overhead.

e The condition and action parts of rules are redundant. This is because poten-
tially many objects may have the same condition and action.

12

e They only support the immediate coupling mode and do not support the other
coupling modes proposed in HiPAC.

e They do not support complex events.

0.3 MOTIVATION AND ISSUES

In strong contrast to the relational model, numerous design issues and difficulties
arise when one attempts to incorporate active capability in the object oriented model.
In this section we shall examine these various issues in order to

Local vs. Global Rules

Rules in an active relational database have been treated as global constraints
which must be satisfied by all relations in the database. This global treatment of
rules can no longer be valid in the context of an active OODBMS due to a fun-
damental feature of the OO paradigm, viz. abstraction. An abstraction denotes the
essential characteristics of an object that distinguish it from all other kinds of objects
and thus provide crisply defined conceptual boundaries, relative to the perspective
of the viewer [Boo91]. Rules defined on an object undoubtedly contribute to the
essential characteristics, especially behavior of an object. In many applications, ob-
jects differ considerably in both structure and behavior from one another. Therefore,
it is realistic to assume that different kinds of objects may have different rules ap-
plicable to them. Hence, rules in an active OODBMS need to be viewed as local
constraints defined on sets of objects. This local view does not prohibit users from
defining global rules? as well; global rules may be easily defined for the system by
utilizing inheritance. To illustrate the applicability of local rules, consider a stock
market application. A consumer may specify a rule that states if IBM stock price
falls below a certain threshold, then purchase as much IBM stock as possible. This
rule is applicable only to IBM stock objects and not other stock objects such as DEC,
Apple, etc. The above notion of local and global rules is applicable to instances of
a particular application. To elaborate, local rules are applicable to a subset of the
instances defined in an application while global rules are applicable to all instances
within an application. It is possible to extend this notion of local and global rules to
the application level. Local rules can be applicable only to the application in which
they are defined and not applicable to all other applications. Similarly, global rules
can be applicable to all applications that are supported on the database.

Rule Specification

Rule specification plays an important role in any active DBMS. Although there
is a consensus amongst the database community about the constituents of a rule,
no general rule specification format has been agreed upon. In fact, several active
OODBMSs have followed different approaches to rule specification. In the relational
model, rules have been specified partially by a query and partially by a transaction.
The object-oriented model provides numerous alternatives to the designer for speci-
fying rules. To elaborate, rules can be specified in a declarative manner, embedded
inside other objects as attributes or data members, or as objects. Rule specification
has a profound impact on the active functionality of a system. Therefore, a large
portion of research time was devoted to the careful analysis of the advantages and
disadvantages of each alternative, aiming at determining the approach that achieves
maximum functionality.

2This global view of rules is confined to the application in which the rules are defined.

13

Rule Evaluation

Another aspect regarding rules is when and how rules are checked and executed.
Rules are triggered from within transactions, consequently, when rules are checked
and executed is related to the triggering transaction. HiPAC ([C*89],[DBMS8]) pro-
poses three different possibilities for rule checking and execution, viz, immediate,
deferred and detached. The immediate coupling mode states that the rule should be
checked immediately after it is triggered and from within the triggering transaction.
The second mode, deferred, specifies that a rule should be checked at the end (be-
fore commit) of the triggering transaction. The last mode, detached, states that a
rule should be checked from a separate transaction. How rules are checked imposes
a significant overhead on the performance of the system. To elaborate, a rule may
be checked whenever any event occurs or whenever a particular event occurs. Rule
checking overhead is significantly reduced by checking rules only when particular
events take place. Furthermore, multiple rules may be triggered simultaneously. In
this situation, two possibilities are applicable, namely execution of all or a subset of
the triggered rules. Another issue regarding multiple triggered rules is rule execu-
tion priority; the triggered rules may be executed serially (in some random order or
according to a prespecified priority) or concurrently.

Compile time vs. Run-time Rules

Although there is a tendency among most active OODBMS to treat rules as enti-
ties known at compile time, we recognize the need for run-time rules as well. Compile
time rules connote persistent, immutable and tested rules. Many applications may
indeed require additional flexibility not provided by compile time rules. Run-time
rules permit users to dynamically create rules and test their correctness and perfor-
mance before actually designating them as persistent. In addition, run time rules
may be utilized as a means for testing hypothetical scenarios without resorting to
adding them to application programs and recompiling the system. This is especially
true as interpretive object oriented environments are becoming popular.

Events

An important rule component is the event which represents the occurrence of
a particular database state or situation. Considerable amount of work has been
conducted on event specification in the relational model. Unfortunately, this work
cannot be directly adopted to the object oriented context for several reasons. The
main reason is that events in a relational context primarily deal with the operations
that are performed on tables, specifically, insert, delete, and modify. On the other
hand, in an OO context, the constantly changing entity is the object. An object
changes state via the message passing protocol; the object receives messages and
based upon the semantics of the message, performs some operations. Therefore, in
an OO context events are primarily related to objects and the messages they receive.
Secondly, when an event is signalled, it is necessary to pass some parameters to the
condition and action. This is required since the condition and action may potentially
reference the entity that has been updated. To illustrate, a condition may check to
see if the changed value of a data item falls below a certain threshold. The param-
eters collected and passed on to the condition and action differ considerably in the
relational versus the object oriented model. In the relational model, the parameters
collected are usually the name of the relation and the tuples being accessed, inserted,
modified or deleted. For example, after the insertion of a tuple into a table, the
parameters collected are the relation name and data items being inserted. In an OO

14

model, these parameters are not applicable and therefore it is necessary to determine
the parameters that need to be collected when events are signalled.

When examining the types of events supported in existing active OODBMSs,
it is noticed that the events supported are relatively simple in nature. Although
these events serve the requirements of most applications, it is recognized that a large
class of applications require the ability to express and monitor events which may be
arbitrarily complex in nature. To clarify, consider the communication links between
two computers existing on separate sites. These computers are connected by three
communication links that require constant monitoring. Upon detecting the failure
of all three links, the machines need to be shut-down and the links re-established.
This example illustrates the need for supporting the specification and detection of
complex events, i.e. the monitoring of communication link; and communication link;,
and commumcatwn links.

Traditional Monitoring View Point Proposed Monitoring View Point

Stateto

@ @ be monitored

propagaty propagate monitor ,/4 A “\ monitor
I
/ \

Vi | \

<—— Fixed Asynchronous operations =< ——- Dynamically Determined Monitoring

Figure 0.3. Monitoring View Point

Active Functionality

As mentioned previously, the active functionality provided by current active OO-
DBMSs consists of allowing objects to perform some asynchronous operations as a
result of changes to their own state. Therefore, an active object is viewed as an object
capable of responding to situations occurring internally to its state. Furthermore,
these asynchronous operations are determined at compile time and cannot changed
at run-time. Numerous existing applications require objects to monitor and react
to changes occurring to their own state as well as changes occurring to the state of
other objects. Thus an active object needs to monitor and react to changes occurring
internally to itself as well as externally to other unrelated objects. Moreover, what

15

an object monitors and reacts to needs to be determined dynamically. To illustrate
consider a stock market application. Although the prices of most products fluctuate
as a result of supply and demand, some stock object prices are sensitive to external
changes. For example, the price of oil may increase dramatically due to the eruption
of war in the Gulf. Hence, an oil object needs to monitor and react to world events,
i.e. situations occurring externally to its own state. As another example, consider a
hospital application. A doctor object may be required to monitor the temperature
of a particular patient and react to those temperature changes by requesting some
medical examinations. Furthermore, the doctor object can potentially monitor any
patient object. Therefore, the patient object monitored by the doctor object needs
to be determined dynamically. Moreover, the doctor object can also stop monitoring
a patient when the patient’s health improves. Hence, the doctor object should be
able to stop monitoring and reacting to a patient object dynamically.

The active functionality provided by current active OODBMSs is limited and does
not accommodate the above monitoring view point. Furthermore, the asynchronous
operations performed by an object, as a result of changes to its own state, cannot
be changed at run-time. In order to enhance the active functionality currently pro-
vided, we propose a reactive asynchronous interface to objects. This reactive interface
allows an object to send messages out asynchronously regarding changes occurring
internally to its own state. Therefore, this allows objects to be aware of changes
occurring to other objects and reacting to those changes by executing some asyn-
chronous operations. Hence, the thrust of our approach lies in the monitoring view
point. To elaborate, in contradistinction to the traditional internal monitoring view
point adopted by current active OODBMSs, we extend the monitoring view point to
an external one also. Hence, an active object can monitor its own state as well as the
state of other objects and react to those state changes accordingly. This monitoring
view point enhances the traditional internal monitoring view point, where an active
object can only monitor its own state. Moreover, we have introduced a subscription
and notification mechanism. This mechanism allows an object to dynamically deter-
mine which objects to monitor and react to. Hence, the subscription and notification
mechanisms enable an object to dynamically subscribe to the events of other objects
that change their state. To recount, the essential characteristic of a reactive object
lies in its ability to react to changes occurring internally to its state as well as com-
municate to any other object regarding the change in its state. Figure 0.3 depicts
the traditional and proposed monitoring view points.

The task of incorporating rules into an OODBMS involves other numerous issues
not directly addressed here. The set of rules defined in the system may potentially
be very large, hence, efficient rule management mechanisms need to be employed.
Furthermore, each database operation may possibly trigger events and cause rule
evaluation. Rule evaluation undoubtedly imposes an overhead on the system and if
not performed efficiently may severely decrease system performance. This necessi-
tates the introduction of rule optimization strategies as well as techniques for reducing
rule checking. Although these issues are beyond the scope of this paper, they are
mentioned in some discussions to assay the performance of our approach with respect
to these issues as well as demonstrate the extensibility of our design.

0.4 DESIGN OF ECA RULES FOR SENTINEL

While examining existing active OODBMSs two main limitations become appar-
ent. Firstly, these systems allow active objects to monitor their own state only. An
active object is defined as an object capable of initiating asynchronous operations in
response to changes occurring to its own state as well as to the state of other objects.

16

This implies that an active object should be able to take actions by monitoring its
own state as well as the state of other objects. Although existing active OODBMSs
agree with this definition of an active object, they do not support it in its entirety.
These systems adopt an internal monitoring view point only, thus allowing active ob-
jects to monitor their internal state only. Furthermore, the asynchronous operations
initiated by an active object, in response to changes to its own state, are pre-defined
at compile time and cannot be changed at run-time. The second limitation is con-
cerned with the types of events which can be expressed and detected. These active
OODBMSs support the specification and detection of events which are simple in
nature only. Although Ode([GJS92c¢],[GJS92a],[GJSI2b]) supports the specification
and detection of complex events, the method by which they are incorporated results
in a dichotomy between events and other types of objects. Furthermore, they have
adopted a local view of events, thus events that are raised by occurrences spanning
over several different classes cannot be expressed.

This paper provides a seamless way of integrating rules in an object-oriented
framework. We concentrate on improving the active functionality provided by current
active OODBMSs with an emphasis on the modularity and the extensibility of the
resulting system. This is accomplished by extending the monitoring view point of
objects; we view active objects as objects capable of monitoring their own state as
well as the state of other objects. By introducing a reactive asynchronous object
interface, objects are now able to propagate changes occurring on their state to other
objects. This propagation enables objects to be informed of and react to changes
occurring to other objects. We also allow objects to dynamically determine which
objects to monitor and how to react to the state changes of those objects. This is
accomplished by the subscription and notification mechanisms. The novel aspect of
our work lies not only in introducing a reactive asynchronous interface to objects
and a subscription and notification mechanism, but in addressing complex events.
Our proposed approach supports the specification and detection of simple as well
as complex events. While supporting complex events special emphasis was given to
treating events uniformly as other objects in the system. In addition, we improve
upon the types of events that can be expressed by allowing complex ‘events to be
raised by events spanning over several different classes. This section is organized as
follows. The first subsection presents our design goals. The next subsection discusses
the need for a reactive asynchronous interface to objects. The remaining sections
provide a detailed explanation of the integration of rules, complex event specification,
and detection in an OO context.

0.4.1 Design Goals

An active OODBMS needs to address several issues including how to specify and
integrate rules; how to specify and detect events; how and when rules are checked
and executed; how multiple triggered rules are executed. These issues have received
significant attention in several active OO systems, specifically, ([GJ91b], [DPGI1]).
The approach taken in ODE is a method-based mechanism; rules in the form of
constraints and triggers are precompiled into every method where they might be
activated. ADAM uses an object-based mechanism; the object’s definition is enlarged
to indicate which rules to check when events are signalled. ODE’s approach has
several drawbacks including :

1. Excessive rule checking is incurred; constraints and triggers are checked at the
end of each non-constant public member function.

17

. Constraints and triggers cannot be modified dynamically. This is because con-

straints and triggers are specified inside class definitions and then preprocessed
into member functions.

Rules on constraints and triggers cannot be specified. For example, it is not
possible to specify a rule that states if trigger T; fires then perform some action

A

The approach taken in ADAM has the following drawbacks:

1.

They provide an inefficient mechanism for specifying rules applicable to only
one instance of a class. This is accomplished by disabling the rule for all other
instances.

A rule is associated to only one particular class. This makes it impossible for a
rule to be triggered by events occurring in different classes.

They do not provide a mechanism for the specification and detection of complex
events.

They support the immediate coupling mode and do not support the other cou-
pling modes proposed in HiPAC.

The approach taken in this paper attempts to avoid the drawbacks of Ode and
ADAM and attempts to combine and extend the strengths of each. During our design
phase, we found it necessary to fulfill the following goals:

To provide a seamless incorporation of rules in the C4++ programming language.

To enhance the monitoring view point currently provided by active OODBMSs,
specifically, enabling objects to monitor their own state as well as the state of
other objects.

To provide an efficient mechanism for associating rules to all instances of a class
as well as to a subset of those instances.

Support the inheritance of rules from a class to its subclasses.
To reduce the amount of rule checking necessary upon the signalling of events.
To enable the specification and detection of primitive as well as complex events.

Support the immediate, deferred and detached coupling modes proposed in

HiPAC.

Support various contexts defined in [?] for complex event detection and param-
eter computation.

In order to achieve the above goals several design decisions were made. Firstly,
we found it necessary to introduce a reactive asynchronous interface to objects. In
addition, rules and events were found necessary to be treated as objects. Lastly, a
new mechanism, the subscription and notification mechanism, was incorporated in

18

order to improve the active functionality provided and reduce the amount of rule
checking required.

The object-oriented environment offers numerous design alternatives for the in-
corporation of rules. In the following subsections we describe the advantages and
disadvantages of each alternative, aiming at shedding light upon the rationale be-
hind our design choices. We begin by explaining the need for adopting an external
monitoring view point, i.e. the need for introducing a reactive asynchronous object
interface.

0.4.2 Need for a Reactive Asynchronous Object Interface

Currently, existing active OODBMSs allow active objects to monitor their internal
state only. When examining the needs of numerous applications we realize that
objects require the ability to monitor their own state as well as the state of other
objects. Therefore, in contrast to adopting an internal monitoring view point, an
external one is requlred To illustrate the need for this different monitoring view
point consider a stock market application. Assume that the prices of the stock items
IBM, DEC and Apple are continuously fluctuating. Furthermore, assume that a
person object, Mike, is interested in acquiring IBM stock if its price is less than $85
per share. This example illustrates the need for the Mike object to monitor changes
occurring to the IBM object and react to those changes by purchasing IBM stock
if the price is appropriate. Although this behavior can be achieved by other active
systems, the objects which are affected by changes to the IBM object need to known
at compile time. Thus the Mike object needs to be known at compile time in order
to model this behavior. More importantly, Mike will always be affected by IBM
price changes during the duration of the program. Therefore, in order to allow this
behavior to be determined dynamically, a mechanism must be devised whereby the
Mike and IBM objects can communicate. This communication can be established
by introducing a reactive asynchronous object interface; this interface equips objects
with the capability of propagating changes occurring on their state to other objects.
Consequently, objects are informed of changes occurring to other objects and can
react to those changes by performing some operations. As another example consider
a hospital application with a patient object Rebecca and a doctor object Dr_Toskes.
Assume that Dr_Toskes needs to perform an ice-bath procedure on Rebecca if her
temperature rises above a certain level. Therefore, the Dr_Toskes object needs to be
informed of changes occurring to the Rebecca object and then react to those changes
accordingly. Hence, the Rebecca object needs to propagate changes occurring to
its temperature to other objects, thereby allowing other objects to react to changes
occurring to its own state.

The above examples illustrate the need for a reactive asynchronous interface to
objects. Objects require a mechanism by which they can communicate with one an-
other. In order to achieve this, we classify objects as being either passive, reactive, or
notifiable. Passive objects are those objects which perform operations synchronously;
a passive object receives a message and then performs some operations. We define
reactive objects as objects capable of propagating changes occurring on their state to
other objects. Notifiable objects are those objects being informed or notified of the
changes occurring to the state of a reactive object. Thus, notifiable objects perform
operations as a result of changes occurring externally to their state, i.e. changes to
other objects. Figure 4.1 illustrates the behavior of a reactive object.

We chose the C++4- object-oriented programming language for modeling an ac-
tive OODBMS. The choice of this object-oriented programming language does not
compromise the generality of our approach; our approach is not language specific

19

<.
-
S
< -
e
<T-eeeeoes Reactive Asynchronous Interface = <=———— Conventional Synchronous Interface

Figure 0.4. Reactive Object’s Behavior.

and thus can be implemented using other object-oriented programming languages.
Two classes were defined, the Reactive and the Notifiable classes, for modeling the
reactive asynchronous object interface. Any instance of a class derived from the Re-
active class has the capability of propagating events occurring on its state to other
objects. Similarly, any instance of a class derived from the Notifiable class has the
capability of being notified of events occurring to other objects. Therefore, in the
stock market example, the class Stock is derived from the Reactive class, thereby
allowing the IBM stock object to propagate changes occurring to its state to other
objects. Similarly, in the hospital example, the class Patient is derived from the Re-
active class, thereby allowing the Rebecca object to propagate changes occurring to
its state to other objects. Furthermore, a Rule class was defined and derived from
the Notifiable class, thus rule objects are objects capable of being notified of events
occurring to other objects. Hence, the stock market example can be modeled by
creating a Purchase rule object which is applicable to the Mike person object. In this
example the event is an update of IBM stock price, the condition is the price is less
than $5000, and the action is Mike purchasing IBM stock. The Purchase rule object
needs to be notified of updates occurring to the IBM stock object and then react by
sending an asynchronous purchase message to Mike (if the price is less than $5000).
Consequently, the IBM stock object needs to propagate changes occurring to its price
to the Purchase object. In this way the IBM and Mike objects are communicating
via the Purchase rule object; the IBM object notifies the Purchase rule object of
its price changes and then the Purchase rule object checks if the price is less than
$5000. If the price is found appropriate, the Purchase rule object sends out an asyn-
chronous purchase message to Mike. Similarly, in the hospital example a rule object
Temperature is created which is applicable to the Dr_Toskes object. This rule has an
event of update to Rebecca’s temperature, condition of the temperature exceeding
a certain level, and an action of sending an ice-bath message to Dr_Toskes. The
Temperature rule object needs to be informed of changes occurring to the Rebecca
object. In order for this information to reach the Temperature object, the Rebecca
object needs to propagate changes occurring to its state to the Temperature object.
Once this propagation takes place, the Temperature object checks the temperature
level; if the temperature if found to exceed a certain level, the Temperature object
sends out an asynchronous ice-bath message to Dr_Toskes. Therefore, the Dr_Toskes
object is reacting to changes occurring to the Rebecca object via the Temperature
rule object. The class hierarchy created is illustrated in Figure 0.5. In later subsec-
tions we describe a new technique, the subscription and notification mechanism, that
enables notifiable objects to subscribe to the events propagated by reactive objects.

20

Once a notifiable object X subscribes to a reactive object Y, object X will be notified
of the events propagated by object Y. Therefore, in the stock market example, the
Purchase rule object must subscribe to the IBM object in order to be informed of
changes occurring to the IBM object. Similarly, the Temperature rule object must
subseribe to the Rebecca object.

Reactive Notifiable

Stock Patient Rule

Figure 0.5. Reactive and Notifiable Class Hierarchy.

0.4.3 Alternatives to Incorporating Rules in an OODBMS

The object-oriented environment offers numerous design alternatives for the in-
corporation of rules. Rules can be specified declaratively, embedded inside other
objects as attributes or data members, or as objects. Undoubtedly, the mechanism
by which rules are specified in an OODBMS has a profound impact on the active
functionality provided. We chose to treat rules as first class objects. This subsection
discusses the advantages and disadvantages of each alternative aiming at providing
insight to our design decision.

Rules as Declarations

The first design alternative for specitying rules is the declarative approach. Rules
are declared by the user and then inserted by the system into each place in the code
where they might be triggered. It is necessary to first determine where and how
rules should be declared. Rules are associated with objects and contribute to their
behavior. Thus the natural place for declaring rules is within class definitions. We
shall not discuss rule declaration syntax since it does not affect the active function-
ality provided. The primary advantage of this approach is its simplicity; the user
is only required to declare rules and not be concerned with issues regarding event
detection, rule checking etc. Furthermore, the declaration of rules within class defi-
nitions offers an easy mechanism for determining the rules applicable to objects; this

21

information is easily obtained from the class definitions themselves. In addition, the
inheritance of rules is easily supported. However, by following this approach rules are
not treated in a uniform manner as other obJects and their existence is dependent
upon the existence of other objects. Furthermore, the system is not extendible since
the introduction of new rule components, e.g. rule priority levels, requires modifying
all class definitions containing rule declarations. The main disadvantage of this ap-
proach lies in its inefficiency in handling the addition, deletion and modification of
rules. This is because changing the rules defined for objects requires the modification
of class definitions and thus recompiling the system. This presents a major problem
for interpretive object-oriented environments. In addition, some rule declarations will
be redundant. For example, assume a rule is defined which states that an employer’s
salary must always be less than the manager’s salary. In order to model this rule it
is necessary to declare it twice, specifically, once within the employee class and once
within the manager class.

Rules as Data Members

Each data member has a type associated with it. Therefore, by treating rules as
data members we must first find a convenient type to model them. Let us assume
that an appropriate type has been determined®. The advantage of this approach is its
reusability and extensibility; once a type has been defined it can be used throughout
an application as well as in other applications. Furthermore, the introduction of
new rule components only requires redefining the type definition. Moreover, rules are
easily associated with objects since they are part of an object’s structure. In addition,
rules can be easily added, deleted and modified dynamically. The disadvantage of
this approach is twofold. The main disadvantage is it does not support inheritance.
This is because the value of a data member cannot be inherited. Secondly, a rule’s
existence is dependent upon the existence of other objects.

Rules as Objects

In our approach rules are treated as first class objects. This design decision is
based on the numerous advantages gained by treating rules as objects. First, rules can
created, modified and deleted in the same manner as other objects, thus providing a
uniform view of rules in an object-oriented context. Secondly, rules are now separate
entities that exist independently of other objects in the system. Moreover, the user
has the flexibility of determining the longevity of rules, i.e. rules can be designated
as transient or as persistent objects. In addition, they are also subject to the same
transaction semantics as other objects. Third, each rule will have an object identity,
thereby allowing rules to be associated to other objects. Fourth, the structure and
behavior of rules can be tailored to model the requirements of various applications.
For example, it is possible to create subclasses of the rule class and define special
attributes or operations on those subclasses. Lastly, by treating rules as first class
objects an extendible system is provided. This is due to the ease of introducing new
rule attributes or operations on rules; this requires the modification of the rule class
definition only.

In the following subsections we define an event in the context of an object-oriented
environment, describe the different types of events, and discuss our design decisions
pertaining to the specification and incorporation of events.

3This excludes the possibility of a class. This possibility is examined in the next subsection.

22

0.4.4 Events

In this subsection we provide a brief description of the events and event operators
proposed in Snoop[?] for the object oriented environment. An event is defined
as something that happens at a point in time. In an object-oriented context, the
events of interest are concerned with changes to an object’s state. An object’s state
changes as the result of an update operation. Update operations occur through the
invocation of private, protected and public member functions. Therefore, we view
each message sent to an object as a potential event. Considering messages sent to
objects as events per se is ambiguous; it is not clear whether the event is raised before
or after the execution of the method. To resolve this ambiguity, the before message
and after message clauses are introduced. The before message indicates the signalling
of the event before the message is executed; similarly, the after message indicates the
signalling of the event after the execution of the message.

Events are categorized as being either primitive or complex. Primitive events are
further classified into begin of message (BOM), end of message (EOM), and temporal
events. Complex events are derived by applying event operators to primitive events.
The event operators are disjunction, conjunction, sequence, aperiodic and periodic.

Primitive Events

The term primitive event connotes that they are the simplest form of events de-
tected by the system. Primitive events are the building blocks from which composite
events are formed and detected. In the following sections we give an overview of the
different types of primitive events.

BOM and EOM

BOM and EOM are events that are raised immediately before and after the in-
vocation of a private, protected and public member function respectively. The pa-
rameters collected after the detection of these events include the signature of the
message, identity of object receiving the message, a time stamp and the parameters
of the message itself. The signature of a message is a string which uniquely identifies
a method. The time stamp represents the time of occurrence of the event.

The term begin refers to the point before the receipt of the message and end refers
to the point after executing all operations within the method including the return
statement. It is worth accentuating that messages sent to objects are considered as
primitive events regardless of the type of operations performed by the method.

Temporal events

Temporal events are events associated with time. Time can be visualized as an
infinite line divided into segments of equal length.

Temporal events may be specified in two ways, either as an absolute point on the
time line or relative to the occurrence of another event E. These two methods are
termed as absolute and relative temporal events.

Absolute events

As mentioned previously, absolute events refer to a particular point ¢, on the time
line. Hence, absolute events comprise of a time string denoting a point in time. The

23

time string has the form of (hh:mm:ss:)mm/dd/yy. For example, an absolute event
may be (12:30:00)04/25/92. The parameter collected is a time string, representing
the time of occurrence of the absolute event.

Relative events

Relative events consist of an event E and a time string. The time string denotes
a time lapse after the occurrence of the event E. To illustrate, assume a person must
dial a telephone number within one minute after hearing the dial tone. The event

E is the sound of the dial tone and the time string is [(00:01:00)//]. The parameter
collected is the time of occurrence of the relative temporal event.

Composite Events

Composite events provide a powerful mechanism for expressing events. Many
applications exist which are not well served by primitive events alone. For example,
an application may require that event E be expressed as the conjunction of events
El and E2. A composite event is derived by applying event operators to primitive
events. The operators are disjunction, conjunction, sequence, aperiodic and periodic.

Conjunction

The conjunction of two events, All(E1,E2), is signalled when both El and E2
occur, regardless of the order of execution. This operator expresses events which
fire when a set of events occurs. The parameters collected are the outerunion of
El’s and E2’s parameters. To illustrate the usefulness of this operator, consider
the communication links between two computers on separate sites. Assuming the
computers have three independent communication links, it is necessary to re-establish

the links if all three links fail.

Disjunction

The disjunction of two events, E1 V E2, is used to signal an event when either
E1 or E2 occur. This operator expresses events which fire due to the occurrence of
one or more events. For example, in a process control environment, it is of interest
to open all valves if the pressure or temperature increases. The parameters collected
are the outerunion of E1’s and E2’s parameters.

Sequence

The sequence operator expresses events which are fired by a sequential occurrence
of a set of events. This composite event, denoted by E1;E2, is signalled when the last
event in the sequence (E2) occurs, provided all its successors have occurred. The time
of occurrence of a successor event is greater than or equal to the occurrence time of its
predecessors. This operator is used for expressing events which occur in a predefined
order. For example, in a windows environment, the event press button followed by
release button causes a new window to pop up on 'the screen.The parameters collected
are the outerunion of all the parameters in the sequence.

Aperiodic
Aperiodic events can be expressed using the two operators A and A*.

Operator A

An aperiodic event using the A operator is denoted by A(E1,E2,E1’). This event is
signalled whenever the event E2 occurs during the interval defined by the occurrences

24

of E1 and E1’. This operator is useful for monitoring events within a predefined time
interval. For example, during the flight of an aircraft, it might be required to monitor
the height of the plane starting from take off till landing. The event take off and
landing are the events E1 and E1’ respectively. The event E2 is the monitoring of
the height of the aircraft. The parameters collected are the parameters of the events

El, E2 and E1’.
Operator A*

An aperiodic event using the A* operator is denoted by A*(E1,E2,E1’). The
event E2 may occur repeatedly during the time interval defined by E1 and E1’. Fach
time E2 occurs, the parameters are collected. However, E2 is signalled only at the
time E17 is signalled. Hence, E2 is signalled only one time during this time interval,
regardless of the number of times it occurs. This operator can be used for integrity
checking, where integrity checks occur at the end of a transaction.

Periodic

A periodic event is an event which occurs repeatedly after a finite and constant
amount of time. Periodic events, denoted by P(E1,t,E1"), consist of an event El,
a time interval t and a terminating event E1’. To illustrate the usefulness of the
operator, consider a computer disk storage device. It may be required to perform a
backup of the disk every consecutive week for the year of 1992. This can be spec-
ified by P((00:00:00)01/01/1992, (00:00:00)00/14/00, ((23:59:59)12/31/1992). The
parameters collected for this event are the outerunion of the parameters of E1 and
El.

0.4.5 Events as Objects

The fact that events are constituents of rules may lead us to treat events as rule
attributes.* This approach works well for systems supporting events of primitive
nature only. However, as a system progresses towards supporting both primitive and
complex events a more elaborate approach is needed. In order to determine how to
specify events we must first examine their properties. The first property noticed is
that each event has a state. The essential state associated with each event is whether
the event has occurred or not, and the parameters collected when an event is raised.
Furthermore, events also have a structure. For example, a complex event CE may
consist of the conjunction of two events E1 and E2. In addition, events also have
some behavior. For example, the complex event CE is signalled when both events 1
and E2 are signalled.

From the above discussion, one observes that events have a state, structure and
some behavior, i.e. events exhibit the properties of objects. Therefore, by treating
events as objects we are able to fulfill all the requirements of supporting primitive and
complex events. More importantly, there is no dichotomy between events and other
types of objects; events are objects which are created, deleted and modified as other
objects. A system defined Event class was created. This definition allows subclasses
to be created having different structures and behavior. Each such subclass defines the
attributes and necessary operations for modeling exactly one of the complex event
types. By treating events as objects, richer and more complex event definitions can
be created and easily incorporated. To illustrate the extensibility and flexibility of
this approach consider the following scenario. It may be of interest to a particular

4This excludes the possibility of a class.

25

system to determine the number of times each event occurs. This requirement is
easily provided by augmenting the class definition with an occurrence-times attribute.
In the next subsection we describe the event hierarchy created when modeling the
different types of events discussed previously.

The Event Hierarchy

Event

—

Primitive

Absolute Relative

Conjunction Digunction Sequence Periodic Aperiodic

Figure 0.6. Event Hierarchy

The definition of events involves the description of their structure and behavior.
The simplest type of event supported is the primitive event which is in the form of
messages sent to objects. All other complex events are built from primitive events.
By defining the Event class, primitive and complex events’ structure and behavior can
be defined by using inheritance. The primitive, conjunction, disjunction, sequence,
aperiodic, periodic, absolute and relative events are defined as subclasses of the Event
class. Fach subclass definition is augmented with the necessary attributes and oper-
ations required for modeling the event type it represents. Figure 4.3 illustrates the
event hierarchy created.

In order to illustrate the structure and behavior of an event let us consider the
Primitive subclass definition shown in Figure 4.4.

The private data member event-name uniquely identifies the method which gen-
erates the event. The other data member, occurred, indicates whether the event
has occurred or not. Additional attributes may be included to represent time of oc-
currence, number of occurrences, etc. Events are created, modified and deleted in
the same manner as other objects. For instance, an event object can be created as
illustrated in Figure 4.5.

26

class Primitive : Event

{

int occurred;
char *event-name;

public :
Primitive (char * name) { event-name = name; };

b

Figure 0.7.

Event* empsal = new Primitive ("end Emp::Set-Sal (float x)");

Figure 0.8.

The event-name string uniquely identifies the method that raises the event in
addition to specifying when the event is raised. Therefore, the event is raised after
the execution of the method Set-Sal defined in the Emp class.

Primitive event specification

In an object-oriented framework, changes to an object’s state occurs via the mes-
sage passing protocol. Whenever an object receives a message, this message may
potentially change the object’s state. One of our main objectives is to reduce the
amount of rule checking required upon the signalling of events. This can be accom-
plished by requiring the user to specify which member functions are to be treated as
primitive event generators. Basically, a primitive event generator is a method which
raises an event and causes rule evaluation upon its invocation. Therefore, rule check-
ing is reduced since rules are checked only when a message designated as a primitive
event generator is invoked. This is in contrast to checking rules after the invocation
of every method. The invocation of all other methods do not impose any overhead
on rule checking.

In order for the user to specify a method as a primitive event generator, the
method must be defined in a class derived from the reactive class. Event generators
are specified in the public, private and protected sections of a reactive class as follows:

In the employee class definition shown in Figure 4.6, BOM events will be generated
when an employee object receives the private Change-Salary and the public Get-Age
messages. EOM events will be generated as a result of executing the methods Get-
Salary and Get-Age. Notice that a method may generate both BOM and EOM events;
this is the case for the member function Get-Age. The method Get-Name does not
generate any events, and hence its invocation does not cause any rule evaluation.

After specifying the event generators, the user is responsible for creating the
appropriate event and rule objects which are informed of the generated primitive

27

class Employee : Reactive
{

int age;

float salary;

char *name;

event begin Change-Salary(float x);

public:
event end Get-Salary();
event begin & & end Get-Age();
char* Get-Name();

Figure 0.9.

events. For example, in the previous example the user can potentially create four
Primitive event objects. This is illustrated in the Figure 4.7.

Event* change = new Primitive ("begin Employee::Change-Salary (float x)");
Event* getsal = new Primitive ("end Employee::Get-Salary ()");
Event* end-getage = new Primitive ("end Employee::Get-Age ()");

Event* begin-getage = new Primitive ("begin Employee::Get-Age ()");

Figure 0.10.

Temporal events are also a form of primitive events. Temporal events are gener-
ated by treating the clock as a reactive instance of the class definition given in Figure

4.8.

Inheritance of Primitive events

Inheritance is a mechanism whereby relationships among classes are established.
Inheritance forms a hierarchy among classes where subclasses typically augment and
redefine the structure and behavior of its superclasses. Each reactive class defini-
tion explicitly specifies methods that can generate primitive events. The generation
of these primitive events describes a part of the class behavior and consequently is
inherited to all subclasses. A subclass may invoke the methods defined in its super-
classes; these invocations generate primitive events only if the method is declared
as an event generator in a superclass. A subclass may also define new methods.
For these newly defined methods to generate events, they must be declared as event
generators within the subclass definition. Furthermore, a subclass may redefine the

28

class Time : Reactive

{
int hh, mm, ss;
int month, day, year;

public :
event end Update-Time();

Figure 0.11.

methods defined in its superclasses. In order for these redefined methods to generate
primitive events, they must be designated as primitive event generators in the sub-
class definition. If the redefined methods are not specified as event generators their
subsequent invocations do not generate primitive events. To illustrate these concepts
consider the example given in Figure 4.9.

The above example defines two classes, viz, the Rectangle and Square classes.
The Rectangle class is derived from the Reactive class, consequently all instances of
the Rectangle class can propagate changes occurring on their state to other objects.
The Square class is a subclass of the Rectangle class and hence inherits the methods
defined in the Rectangle class. Instances of the Square class can also propagate
changes occurring on their state to other objects since the Square class is a subclass
(although not a direct subclass) of the Reactive class. The methods Draw and Area
defined in the Rectangle class are designated as primitive event generators. Their
subsequent invocations will generate the EOM end Rectangle::Draw() and BOM begin
Rectangle::Area() primitive events respectively. The invocation of the method Rotate
defined in the Rectangle class does not generate any events. Similarly, the method
Magnify defined in the Square class is designated as primitive event generator. Hence,
its subsequent invocations will generate the BOM begin Square::Magnify(int times)
primitive event. The methods Area and Reduce defined in the Square class do not
raise events upon their invocation.

As shown above, two instances have been created, namely, a door rectangle
object and a box square object. Whenever the door object receives the message
Draw an EOM end Rectangle::Draw() is generated. Furthermore, whenever the door
object receives the message Area a BOM begin Rectangle: :Area() event is gener-
ated. Similarly, whenever the box object receives the message Magnify a BOM begin
Square::Magnify(int times) primitive event is generated. Since the Square class in-
herits the method Draw, the box object generates an EOM end Rectangle::Draw()
primitive event when it receives the message Draw. It is important to notice that the
name of the event generated contains the class name Rectangle and not Square. This
is because the Draw method is designated as a primitive event generator in the Rect-
angle class only. In order for the box object to generate the EOM end Square::Draw()
primitive event upon execution of the Draw method, the Draw method must be rede-
clared in the Square class and designated as a primitive event generator. Although,

29

class Rectangle : Reactive
{
public :
event end Draw();
event begin Area();
Rotate (float angle);
|3

class Square : Rectangle

{
public :
Area();
event begin Magnify (int times);
Reduce (int times);
H

Rectangle door;
Square box;

door.Draw();
box.Draw();
box.Area();
door.Area();
box.Rectangle::Area();
box.Magnify (2);
box.Reduce(4);

/* generates EOM primitive event */
/* generates EOM primitive event */
/* does not generate a primitive event */
/* generates BOM primitive event */
[* generates BOM primitive event */
/* generates BOM primitive event */
/* does not generate a primitive event */

Figure 0.12.

30

the Square class inherits the primitive event generator Area, no events are gener-
ated when the box object executes the method Area. This is because this method
is redeclared in the Square class and not designated as a primitive event generator.
The only way for the box object to generate an event upon executing the method
Area is by explicitly invoking the method Area defined in the Rectangle class, i.e
box.Rectangle:: Area().

Complex FEvent Specification

An event expression in Snoop[?] can be denoted as E(Fq,Fs, ... ,FE,) where
each F; is an event constituent of the complex event. Each F; may be primitive or
complex event expressions. In order to visualize a complex event object, it is helpful
to consider a tree T=(V,E) consisting of a set of nodes V and a set of edges E. Each
node represents one of the event object constituents F; of the complex event. All the
leaf nodes represent primitive event objects.

In order to illustrate the structure of a complex event object assume that a gradu-
ate student graduates if he/she completes 39 credit hours of course work or completes
33 credit hours of course work and 6 hours worth of research. The complex event
object which detects student graduation has the form depicted in Figure 4.10.

OR

O O

Figure 0.13.

Event pel = new Primitive ("end Student::Finished-39 ()");
Event pe2 = new Primitive ("end Student::Finished-33 ()");
Event pe3 = new Primitive (" end Student::Research-6 ()");
Event cel = new And (pe2, pe3);

Event ce2 = new Or (pel, cel);

Figure 0.14.

31

This complex event can be created as illustrated in Figure 4.11. This code first
creates three primitive event objects : pel, pe2 and pe3. These primitive event objects
are raised when a student object executes the methods Finished-39, Finished-33 and
Research-6 respectively. These three methods must be declared as primitive event
generators inside the student class definition. Two complex event objects, cel and
ce2, are then created. The object cel is an instance of the And class and is created
by anding the events pe2 and pe3. The object ce2 is an instance of the Or class and
is created by oring the events pel and cel. Therefore, the complex event cel is raised
when both pe2 and pe3 occur (irrespective of the order of occurrence) whereas ce2 is
raised when either event pel or event cel occur.

Complex Event Detection

The monitoring of a complex event begins after the creation of the event object.
When a primitive event is signalled, its parameters are recorded in the tree node
representing that primitive event. Thus each tree node acts as an event recorder,
i.e. it records the parameters collected during the signalling of the event which it
represents. The detection of a complex event occurs by detecting each complex event
constituent F; and then traversing the tree in an upward fashion until the root node
is reached. Once the root node is reached, the complex event is signalled. After
the complex event is signalled, all the tree nodes are cleared of the parameters they
recorded and the monitoring is resumed again.

In the above discussion, it is implicitly assumed that each event E; is signalled
only once during the monitoring of the complex event. This may not always be
the case since each E; may be signalled multiple times before the complex event is
signalled. Since each signalling of an event F; produces a different set of parameters,
we have to define which set of parameters are to be used in the condition and action
evaluation. The solution to this problem is in supporting the different contexts,
namely the recent, chronicle and cumulative contexts proposed in [CM91]

In recent context, only one set of parameters for each event FE; is recorded at
all times. The parameters recorded are the most recently generated parameters, i.e.
the parameters of the last occurrence. This method is simple to implement since
the system does not have to store all parameters generated. If an event constituent
FE; is raised multiple times, the system discards the previous stored parameters and
stores the most recently generated parameters. In this paper we have delimited the
discussion to recent context.

The chronicle context computes the parameters of a complex event by pairing the
parameters generated for each component F; in chronological order. Therefore, the
system must maintain a queue of all the set of parameters collected for each event
component F£;. The last context, the cumulative context, is similar to the chronicle
context. A history of all parameters generated is maintained; however, the parameters
used in condition and action evaluation include all the parameters collected for each
event component F;.

0.4.6 Rule Specification

The primary structure defining a rule is the event which triggers the rule, the
condition which is evaluated when the rule is triggered, and the action which is
executed if the condition is satisfied. Rules are instances of a system defined Rule
class. The Rule class is derived from the system defined Notifiable class, thereby
enabling rule objects to be notified of the primitive events generated by reactive
objects.

32

Rules can be classified into class level and instance level rules depending on their
applicability. Class level rules are applicable to all instances of a class whereas in-
stance level rules are applicable to particular instances. Since class level rules model
the behavior of a particular class, they are declared within the class definition itself.
On the other hand, instance level rules are declared in the application code. Rules,
regardless of where they are declared, are translated to notifiable rule objects.

There are mainly two differences between class level and instance level rules.
First, class level rules are applicable to all instances of a class, throughout program
execution (when enabled). Instance level rules, however, are applied to a varying
subset of instances. Secondly and more importantly, a class level rule can only be
applied to one type of object (e.g. to only person objects). Instance level rules
are more powerful since they can be potentially applied to different types of objects.
Instance level rules can thus monitor situations spanning over different classes. This is
accomplished by the rule subscribing to the different types of objects to be monitored.

class Person : Reactive

{

public :
event begin Marry (Person* spouse);

Rules:
R : Marriage;
E : Event* marry = new Primitive ("begin Person::Marry (Person* spouse)”);
C: if sex == spouse.sex
A : abort

b

Figure 0.15.

The declaration of a class level rule entails specifying a rule name, an event,
a condition and an action. Class level rules are declared in the rule section of a
class as shown if Figure 4.12. In the above example the rule name is Marriage, the
event is a person object receiving the message Marry, the condition checks whether
the person objects getting married are of the same sex, and the action aborts the
triggering transaction. Notice that the method Marry is declared as a primitive event
generator inside the person class definition. This rule, when enabled, is applicable to
all person objects. Furthermore, it is checked meedmtely from within the triggering
transaction whenever the event is raised, i.e. this is the immediate coupling mode.

Instance level rules, on the other hand, are applicable to only those instances
explicitly specified by the user. Instance level rules are declared in application code.
Let assume that a specific employee, Fred, should have a yearly income of less than
$30,000. Furthermore, assume that this rule should be checked at the end (before
commit) of the triggering transaction, i.e. in the deferred coupling mode.

In order to model the above rule we must first be able to detect the end of a
transaction. This can be accomplished by creating a dummy class whose sole purpose

33

is in signalling the end of a transaction. This class can be defined as shown in Figure

4.13.

class Transaction : Reactive
{
public :
event end End-Transaction();

Figure 0.16.

After the user defines the class in Figure 4.13, the user must explicitly invoke
the method End-Transaction before the commit of a transaction. This invocation
signals the end of a transaction. For example, the user can create a Transaction
instance, EndTran, and invoke the message given in Figure 4.14 before the commit
of a transaction :

Transaction EndTran;

EndTran.End-Transaction();

Figure 0.17.

The instance level rule is then created as illustrated in Figure 4.15.

Employee Fred;

Event* change-inc = new Primitive ("end Employee::Change-lncome(int amount)");
Event* end-of-tran = new Primitive ("end Transaction::End-Transaction()");

Event* level = new And (change-inc, end-of-tran);

Rule IncomeLevel (level, if amount > 30000, Change-Income(30000));

Figure 0.18.

This rule has as its event a complex event object that is raised when an employee
object executes the method Change-Income and a transaction object executes the

34

method End-Transaction. Both these methods must be declared as primitive event
generators in their respective class definitions. The condition part of the rule checks
whether the income is greater than $30,000 and the action sets the salary to $30,000.
In order for the IncomelLevel rule object to be notified of the events generated by the
employee object Fred and the Transaction object EndTran, the rule must subscribe
to those objects. This is accomplished as shown in Figure 4.16.

EndTran.Subscribe(Incomel evel);

Fred.Subscribe(lncomelLevel);

Figure 0.19.

Once the rule IncomelLevel subscribes to the objects Fred and EndTran, all primi-
tive events generated by Fred and EndTran are propagated to the rule object. There-
fore, the IncomelLevel rule object is monitoring the objects Fred and EndTran simulta-
neously. The advantage of the subscription and notification mechanism is in enabling
rule objects to monitor situations spanning over different classes. In this particular
example, the rule object Incomel.evel is monitoring both the Person and Transaction
classes.

By defining a rule class, we can model the applications better. For example,
single thread execution systems require some form of conflict resolution policy when
multiple rules are triggered simultaneously. A conflict resolution mechanism can be
incorporated by adding a priority data member in the rule class. Therefore, the
highest priority triggered rule will be fired. Furthermore, the immediate, deferred
and detached coupling modes, proposed in HiPAC, can be incorporated by adding
appropriate data members within the rule class definition.

A notifiable rule object subscribes to a set of reactive objects. All the primitive
events generated by those reactive objects are propagated to the rule object via the
notification mechanism. The notifiable rule object records only those primitive events
of interest and discards the rest.

The benefits incurred by defining the above rule class are enumerated below :

1. Rules are created dynamically enabling the modification of their attributes
during run-time.

Rules are treated uniformly as other objects in an OODBMS.
A rules existence is independent of the existence of other objects.

Rules may be specified as persistent or transient.

Gtk W

Rules have an identity, therefore, any updates to their state is reflected in all
objects referring to them.

6. Rules may be designated to be reactive. This provides the capability of speci-
fying rules on rules.

35

7. As rules are instances of a rule class, rules may be arranged in a hierarchical
structure. This provides a natural classification technique for rules.

The Subscription and Notification Mechanism

The subscription and notification mechanism was designed to reduce the amount
of rule checking required upon the signalling of events. Furthermore, this mechanism
allows rules to monitor different types of objects simultaneously. This technique was
implemented by defining the notifiable and reactive classes. They are discussed in
the following subsections.

The Notifiable Class

The primary objective for defining the notifiable class is allowing objects to receive
and record primitive events generated by reactive objects. The rule class is a subclass
of the notifiable class, thus rule objects receive and record primitive events generated
by reactive objects. The notifiable class is defined as illustrated in Figure 4.17.

class Notifiable
{

public :
Record (int* obj, char *event-name, int argc ...);

1

Figure 0.20.

The method Record performs the necessary operations for documenting propa-
gated primitive events. It takes as its parameters the identity of the reactive object
which generated a primitive event, the primitive event generated, and the number
and actual values of the parameters sent to the reactive object.

The Reactive Class

In order for a class to provide reactive capabilities it requires a facility for spec-
ifying which of its methods generate primitive events, a mechanism for propagating
generated primitive events along with their parameters to notifiable objects, and
a method for notifiable objects to request the acquisition of information regarding
generated primitive events. The requesting mechanism is termed as the subscrip-
tion mechanism and the propagation of generated primitive events is termed as the
notification mechanism.

Due to the fact that potentially many classes may require reactive capabilities, i.e.
the subscription and notification mechanism, a class was defined whose sole objective
is the provision of these reactive capabilities. This class is named the reactive class
and is defined as illustrated in Figure 4.18.

The public interface of the reactive class constitutes the mechanisms by which the
subscription and notification processes are provided to subclasses. Each subclass in-
herits the private data member head and the six methods shown above. All instances

36

class Reactive

{
list-of-subscribers * head;

public :
Subscribe (Notifiable * obyj);
Unsubscribe (Notifiable * obyj);
Reactive() {head = Null; };
Notify (int *obj, char *event-name, int argc ...);

Figure 0.21.

of classes derived from the reactive class are reactive objects. We will proceed by
describing the operations performed by each method.

The subscribe method manages the set of notifiable objects associated with each
reactive object. The parameter of the subscribe method, 0bj, is the identity of a
notifiable object wishing to be notified of generated primitive events. The subscribe
method adds the notifiable object to the set of notifiable objects currently associated
with a reactive object. The unsubscribe method performs the opposite operation
provided by the subscribe method. It takes as its parameter the identity of a notifiable
object and removes it from the set of notifiable objects associated with a reactive
object.

The list of subscribers are the recipients of all information regarding generated
primitive events and are informed of these occurrences via the notify method. The
notify method takes as its parameters the identity of a reactive object, a unique
identifier string event-name and an integer argc. The declaration of the notity method
ends with an ellipsis thus it may additionally take an unspecified number and type
of paramters. The o0bj parameter specifies the reactive object which generated a
primitive event and the event-name parameter represents the generated primitive
event, i.e. the message sent to the reactive object. The number of parameters sent to
a reactive object are specified by argc while the actual paramters are specified using
the ellipsis feature.

The advantages gained by defining the above reactive class include :

e Providing an efficient mechanism whereby other classes may share the structure
and behavior of the reactive class. This is accomplished by inheritance.

e Prevention of reactive objects from accessing and potentially mishandling the
set of notifiable objects associated with them. This is accomplished by defining
the list-of-subscribers data member in the private section of the reactive class.

e The abstraction of the essential characteristics of the reactive class relative to
the perspective of reactive objects.

e Providing an extensible reactive model. The modification of the reactive class
definition tailors the system according to new requirements.

37

0.5 Implementation Details

Our Sentinel project was developed using an OODBMS, Zeitgeist, that was de-
veloped at Texas Instruments. Zeitgeist is an open, modular, extensible architecture
for object oriented database systems. Zeitgeist is implemented using C++ on Sun-4
Unix platforms. This OODB architecture consists of several modules namely, the
transactional store, the persistent object store, the object communications, the ob-
ject translation, the object manager, the type manager, the extended transactions,
the change manager, the object query and the user interfaces module. We shall begin
by describing each module and then explain how we extended Zeitgeist into an active
OODBMS.

The Transactional Store provides atomic commit, object identifier-base retrieval
and crash recovery. Its interface hides the details of platform, storage organization
and replication.

The Persistent Object Store adds object oriented concepts such as object identity,
knowledge of inter-object references (used to cluster and prefetch), and typing and
inheritance to the capabilities of the Transactional Store.

The Object Communications module’s function lies in reliably moving objects
between the Persistent Object Store and the Object Manager, and between different
Object Managers. This movement is necessary in order to deliver messages remotely
to objects rather than bringing an object to the message and then delivering the
message. This module provides remote procedure calls and handles the details of
message delivery and retry. It uses the Object Translation module to convert objects
between internal and external formats for shipment and delivery.

The Object Translation module’s function is to map objects between their internal
in memory form and their external representations. This module is compiler and
platform dependent since it deals with the run-time representation of objects.

The Object Manager provides the user with the programming language interface
to the database. This module allows applications to perform several operations in-
cluding to save, retrieve, and send messages to objects held in the Persistent Object
store. Furthermore, it allows applications to start, commit and abort transactions.
Both eager and lazy fetching policies are supported by this module.

The Type Manager serves as the central repository of type information. Appli-
cations use this module to share, reuse, evolve type definitions and to generate type
declarations. The Object Translation module uses this module to find types, formats
and extents during translation. The Object Query uses it to determine if an object
is of a type that allows it to be lazily fetched. The Object Query module uses it to
learn additional semantics associated with language constructs and to get handles to
methods in order to execute them during a query.

The Extended Transactions enhances the transaction facilities provided by the
Object Manager. This module provides application specific concurrency control,
nested transactions and cooperative work.

The Change Manager is responsible for keeping track of object versions, the parts
of an object, and dependencies among objects. The user has the choice of keeping
no version history, linear versions, branching versions and the option of saving whole
objects or reconstructing objects from forward or backward deltas.

The Object Query module provides a set oriented interface for transient and
persistent objects. It supports object identity and queries over complex objects,
methods and inheritance structure.

The User Interfaces module provides instance and type inspectors in addition to
reflecting the types of objects stored.

38

In order to incorporate rules in Zeitgeist we modified the class hierarchy to include
the newly defined Reactive, Notifiable, Event and Rule classes. The class hierarchy
created is illustrated in Figure 6.1. The purpose of the zg-pos class is to allow objects
to become persistent. Therefore, by deriving the Rule class from the zg-pos class,
rule objects can be designated as persistent. Notice that the Rule class is not a direct
subclass of the zg-pos class; the Rule class is derived from the Notifiable class which is
a direct subclass of the zg-pos class. The Rule class is derived from the Notifiable class
in order for rule objects to be capable of receiving and recording the events propagated
by reactive objects. Similarly, the Event class (and its subclasses) is derived from the
zg-pos class. Hence, event objects can also be designated as persistent. The Reactive
class is derived from the superclass Zeitgeist. In the following subsections we describe
the Reactive, Notifiable, Event and Rule classes.

0.5.1 The Reactive Class

In order for a class to provide reactive capabilities it requires: a facility for spec-
ifying which of its methods generate primitive events, a mechanism for propagating
generated primitive events along with their parameters to notifiable objects and a
method for notifiable objects to request the acquisition of information regarding gen-
erated primitive events. The requesting mechanism is termed as the subscription
mechanism and the propagation of generated primitive events is termed as the noti-
fication mechanism.

Due to the fact that potentially many classes may require reactive capabilities, i.e.
the subscription and notification mechanism, a class was defined whose sole objective
is the provision of these reactive capabilities. This class is named the reactive class
and is defined as follows :

The public interface of the reactive class constitutes the mechanisms by which the
subscription and notification processes are provided to subclasses. Each subclass in-
herits the private data member head and the six methods shown above. All instances
of classes derived from the reactive class are reactive objects. We will proceed by
describing the operations performed by each method.

The subscribe method manages the set of notifiable objects associated with each
reactive object. The parameter of the subscribe method, 0bj, is the identity of a
notifiable object wishing to be notified of generated primitive events. The subscribe
method adds the notifiable object to the set of notifiable objects currently associated
with a reactive object. The unsubscribe method performs the opposite operation
provided by the subscribe method. It takes as its parameter the identity of a notifiable
object and removes it from the set of notifiable objects associated with a reactive
object.

The list of subscribers are the recipients of all information regarding generated
primitive events and are informed of these occurrences via the notify method. The
notify method takes as its parameters the identity of a reactive object, a unique
identifier string event-name and an integer argc. The declaration of the notity method
ends with an ellipsis thus it can additionally take an unspecified number and type
of parameters. The o0bj parameter specifies the reactive object which generated a
primitive event and the event-name parameter represents the generated primitive
event, i.e. the message sent to the reactive object. The number of parameters sent
to a reactive object are specified by argc while the actual parameters are specified
using the ellipsis feature.

The advantages gained by defining the above reactive class include :

39

o e

Sequence

Zeitgeist

zg_pos

Periodic

Noatifiable

Aperiodic Absolute é

Figure 0.22.

40

class Reactive

{
list-of-subscribers * head;

public :
Subscribe (Notifiable * obyj);
Unsubscribe (Notifiable * obyj);
Reactive() {head = Null; };
Notify (int *obj, char *event-name, int argc ...);

Figure 0.23.

e Providing an efficient mechanism whereby other classes may share the structure
and behavior of the reactive class. This is accomplished by inheritance.

e Prevention of reactive objects from accessing and potentially mishandling the
set of notifiable objects associated with them. This is accomplished by defining
the list-of-subscribers data member in the private section of the reactive class.

e The abstraction of the essential characteristics of the reactive class relative to
the perspective of reactive objects.

e Providing an extensible reactive model.The modification of the reactive class
definition tailors the system according to new requirements.

0.5.2 The Notifiable Class

The primary objective for defining the notifiable class is allowing objects to receive
and record primitive events generated by reactive objects. The rule class is a subclass
of the notifiable class, thus rule objects receive and record primitive events generated
by reactive objects. The notifiable class is defined as given in Figure 6.3.

The method Record performs the necessary operations for determining whether
the rule should be fired or not. This method takes as its parameters the identity of
the reactive object which generated a primitive event, the primitive event generated,
and the number and actual values of the parameters sent to the reactive object.
This method then passes these parameters on to the event part of the rule. The
event objects then check whether the generated event triggers the rule or not. If
the generated event triggers the rule, these parameters are then stored in the event
object. Otherwise, the generated events are discarded.

0.5.3 The Rule Class

The primary structure defining a rule is the event which triggers the rule, the
condition which is evaluated when the rule is triggered, and the action which is
executed if the condition is satisfied. In order to model the structure of rules, a rule
class is defined. Rules are notifiable objects having an event object as an attribute,

41

class Notifiable
{

public :
Record (int* obj, char *event-name, int argc ...);

1

Figure 0.24.

and the condition and action as public member functions®. In addition, the rule
operations create, delete, update, enable and disable are implemented as methods.
The definition of the class rule is as illustrated in Figure 6.4.

Each notifiable rule object consists of data members name, event-id, condition,
action and enabled. The rule attribute name takes as its value the name of the rule
while the rule attribute event-id denotes the identity of the event object associated
with the rule. The data members condition and action are pointers to the condition
and action member functions respectively. The last attribute enabled denotes whether
the rule is enabled or not. When a rule is enabled it receives and records propagated
primitive events. The condition method is executed when the corresponding event
occurs, and if satisfied, the action method is executed.

There are numerous advantages gained by defining a rule class. First, rule opera-
tions are implemented as class methods, thus ensuring that a rule’s state is accessible
only through its interface. In addition, the introduction of new rule attributes or
behavior can be easily incorporated by extending the rule structure and/or inter-
face. Thus by defining a rule class, we can model applications better. For example,
single thread execution systems require some form of conflict resolution policy when
multiple rules are triggered simultaneously. A conflict resolution mechanism can be
incorporated by adding a priority data member in the rule class. Therefore, the
highest priority triggered rule will be fired®. Another advantage is inheritance and
overriding. Overriding is a mechanism for redefining the methods of superclasses
in subclasses. This mechanism is useful for redefining the operations on rules. For
example, integrity constraint rules are rules which must be enabled at all times. In
order to guarantee that integrity constraint rules are never disabled, a new subclass
may be defined where the disable method is redefined to have no effect. To elaborate,
the user may define a subclass, Integrity-Constraints, from the rule class as shown in
Figure 6.5. The disable method is redefined to print an error message. Hence, the
user should instantiate all rules representing integrity constraints from this class.

The benefits incurred by defining the above rule class are enumerated below :

>Each rule defined has its own condition and action implemented as methods defined in the Rule
class.
5We propose to fire multiple triggered rules concurrently.

42

class Rule : Notifiable
{
char* name;
Event* event-id;
PMF *condition;
PMF *action;
int enabled;

public:

virtual int Enable&();

virtual int Disable();

virtual Update(Event* eventid);
virtual int Condition();

virtual int Action();
Rule(Event* eventid);

~Rule();

Figure 0.25.

class Integrity-Constraints : Rule
{
public:
virtual int Disable()
{
printf("\nCannot Disable This Rule\n");
}

|3

Figure 0.26.

43

1. Rules are created dynamically enabling the modification of their attributes
during run-time.

Rules are treated uniformly as other objects in an OODBMS.
A rules existence is independent of the existence of other objects.

Rules may be specified as persistent or transient.

RAEE

Rules have an identity, therefore, any updates to its state is reflected in all
objects referring to it.

6. Rules may be designated to be reactive. This provides the capability of speci-
fying rules on rules.

7. As rules are instances of a rule class, rules may be arranged in a hierarchical
structure. This provides a natural classification technique for rules.

0.5.4 The Event Class

The definition of events involves the description of their structure and behavior.
The structure and behavior of events depend on the event type. The Event class
was defined and several classes were derived from it. FEach subclass defined the
necessary attributes and operations for modeling the event type it represents. This
class hierarchy was previously illustrated in Figure 4.3. To illustrate the structure of
an event type let us consider the And class. Event objects of this class are composed
by applying the conjunction operator to two events. The And class is defined as
shown in Figure 6.6.

class And : Event

{

Event* |eft;
Event* right;
public :

And (Event* |, Event* r);
¥

Figure 0.27.

The above class definition has the data members left and right, and the constructor
And. Both the left and right data members have as their value an event object
identifier representing the two events which constitute the complex event object.
The constructor creates an And event object by taking the identifiers of two event
objects as its parameters. The other subclasses are defined in a similar fashion.

44

0.5.5 Event Detection Implementation

In order to incorporate rules in Zeitgeist, an event detection mechanism had to be
designed. The system is required to detect the execution of member functions. This
can be basically accomplished in two ways. The first approach requires transforming
member function definitions to include code which signals the event. This is the
approach followed by Ode. Therefore, this approach requires the modification of
member functions. Although a parser can be easily used to insert the code which
signals the event in the appropriate places, there are two main disadvantages to
this approach. First, after the methods are modified they need to be recompiled.
Hence, this approach does not work well for large numbers of compiled methods
and existing library routines. The detection of BOM events is not difficult, since it
requires inserting code at the beginning of methods only. However, the detection of
EOM events requires inserting code immediately before each return statement and at
the end of each method. Therefore the second disadvantage is the significant amount
of preprocessing time required.

The second approach does not require modifying user defined methods. In fact,
only class definitions are modified and need to be recompiled. This is accomplished
by creating wrap-around member functions. To elaborate, let us assume that the
execution of the method Set-Salary constitutes a primitive EOM event. Rather than
inserting code that signals the event before each return statement in the method
Set-Salary, a new method is created. This newly created method invokes the method
Set-Salary and then signals the event. In this way the method Set-Salary is not
modified and hence does not require recompilation. To illustrate the wrap-around
concept assume that the employee class is defined as shown in Figure 6.7.

The method Set-Salary is declared as an event generator hence, its execution
should raise an event. A new member function is generated and declared inside the
employee class definition. This member function invokes the method Set-Salary and
then signals the event. The new employee class definition is shown in Figure 6.8.

The Notity method informs subscribers of the occurrence of the event. Hence, in
order for events to be generated the newly defined method must be invoked. This is
a disadvantage since the user must explicitly generate events by invoking the newly
defined methods. We opted for this approach since it severely decreased our compila-
tion time. Qur proposed design can be implemented by using a parser and following
the first approach.

0.5.6 Rule Implementation

The declaration of each rule object is stripped of the condition and action. The
condition and action code is then inserted

We support class level and instance level rules. Class level rules are declared
within class definitions whereas instance level rules are declared in application code.
When rules are declared, regardless of their type, the user is under the impression
that the condition and action are rule attributes. Actually, this is not the case. The
condition and action parts are transformed into member functions of the Rule class.
This is necessary since conditions and actions are executed during run-time and the
only way to implement them are as methods. As an example consider the instance
level rule declaration shown in Figure 6.9.

The above code is stripped of the condition and action part and transformed into
the code given in Figure 6.10.

The condition and action part are then transformed into member functions are
inserted into the Rule class. The name of the condition method is generated by

45

class Employee : Reactive
{

int age;

float salary;

public :
event end Set-Salary (float value);
Set-Age (int value);
b

Employee::Set-Salary (float value)
{

saary = value;

return;

h

Figure 0.28.

46

class Employee : Reactive
{

int age;

float salary;

public :
Set-Salary (float value);
Set-Age (float value);
end-Set-Salary (float value)
{
Set-Salary(value);
Notify(...)
}
b

Figure 0.29.

Rule* Withdraw (wevent, "if amount > balance", "abort");

Figure 0.30.

Rule* Withdraw (wevent, & Rule::ConditionWithdraw, & Rule::ActionWithdraw);

Figure 0.31.

47

augmenting the word Condition with the rule name. In this particular example the
method name is Condition Withdraw. Similarly, the name of the action method is
generated by augmenting the word Action with the rule name. In this particular
example the method name is Action Withdraw. The new Rule class definition is as
shown in Figure 6.11.

class Rule : Notifiable

{

int ConditionWithdraw()
{

if amount > balance
return(l);

else
return(0);

int ActionWithdraw() { abort} ;
};

Figure 0.32.

0.6 Examples

This section provides a comparison between our proposed approach and the active
OODBMSs Ode and ADAM. This comparison will be in the form of illustrating
how various rules are specified and implemented in each system. The examples

given here accentuate how our proposed approach subsumes and enhances the active
functionality provided by Ode and ADAM.

0.6.1 Example One

Let us define a rule which is applicable to all instances of a supplier class. The
rule states that if a supplier’s location is specified, then the location is required to
be New York City. When the rule is violated an error message should be produced
stating an invalid location specification.

Ode

This rule translates to a hard constraint in Ode and is specified declaratively
within the supplier class definition as shown in Figure 0.33.

48

class supplier {
Name sname;
Name state;

public :
const Name Get-Name();
void Change-Name(Name new);
const Name Get-State();
void Change-State(Name new);

constraint :
state == Name("NY") || state == Name("") : printf("Invalid supplier location\n");

Figure 0.33. Hard constraints in Ode

This hard constraint is checked after a supplier object is accessed via the invoca-
tion of the non-constant public member functions Change-State and Change-Name.
If the constraint evaluates to true, the statement associated with the constraint, the
handler, is executed. After execution of the handler, the constraint is checked once
again. If the constraint is still not satisfied, as it will not be in this particular example,
the triggering transaction is aborted.

The supplier class definition is preprocessed and stripped of the constraint sec-
tion. This section is then inserted into a newly generated member function called
hard-constraints. The hard-constraints member function is then called from within
each non-constant public member function, specifically, before each return statement.
The Change-State and Change-Name member functions are modified to reflect this
invocation. The preprocessed supplier class definition and the two member functions
are illustrated in Figure 0.34, Figure 0.35 and Figure 0.36 respectively.

Although this rule is easily specified in Ode, unnecessary checking of the rule is
incurred as a result of invoking non-constant public member functions other than
Change-State; each invocation of the member function Change-Name causes the
checking of the supplier rule although the data member state is not accessed from
within it. Another comment regarding Ode is the excessive preprocessing time re-
quired. This is due to inserting the invocation of the hard-constraints member func-
tion before each return statement found in each non-constant public member function.

ADAM

In ADAM, the supplier rule is translated to an event object and a rule object. The
member function which raises the event is then identified in addition to determining
whether the event is raised before or after the execution of that member function. In
this example the event is raised after the execution of the member function Change-
State. Hence, the event object is created by sending the message shown in Figure 0.37.

49

[* Preprocessed class definition */
class supplier {
Name sname;
Name state;

public :
const Name Get-State();
void Change-State(Name new);
const Name Get-Name();
void Change-Name(Name new);
void hard-constraints(); /* Newly generated member function */

b

Figure 0.34.

/* Newly generated hard-constraints member function */

void supplier::hard-constraints()

{
if (state == Name("NY") || state == Name(""))
return;
else
printf("Invalid supplier location\n");
¥
Figure 0.35.
I* Preprocessed non-constant member functions */
void supplier::Change-State(Name new) void supplier::Change-Name(Name new)
{ {
state = new; sname = new;
hard-constraints(); /* Inserted code */ hard-constraints(); [* Inserted code */
return; return;
I b

Figure 0.36.

30

new ([OID, [
active-method ([Change-State]),
when ([after])

11) => db-event

Figure 0.37.

This event is raised after the method Change-State is executed. Assuming that
the event identifier of the event shown above is 3@db-event, the rule object is then
specified as illustrated in Figure 0.38.

new ([OID, [
event ([3@db-event)),
active-class ([supplier]),
is-it-enabled ([trug]),
disabled-for ([]),
condition ([(
current-arguments ([state]),
state != Name("NY") or state = Name("")
))B
action ([(
current-object(Thesupplier),
current-arguments ([state]),
writeln (['Invalid location specified']),
fail
)
1) => integrity-rule

Figure 0.38.

This rule specifies 3@db-event as its event attribute, which is the object identifier
of the event created previously. The class on which this rule is applicable is specified
by the active-class attribute. In this particular example, the active-class attribute
assumes the value of supplier. In order to make the rule applicable to all instances
of the supplier class the disabled-for attribute is left empty. The condition section of
the rule specifies the condition to be evaluated upon occurrence of the event is raised,
viz, checking whether the supplier state is not New York City. The action section of
the rule defines the action to be performed when the condition is satisfied, namely,
print an error message and then abort the triggering transaction.

51

Sentinel

In our approach we first identify the type of event which triggers the rule. In
this particular example the event is a primitive EOM event since the event is raised
after the execution of the method Change-State. The next step entails identifying
the rule type. This is determined by whether the rule is applicable to all instances of
a particular class or to a subset of those instances. This rule is class level rule since
it is applicable to all instances of the supplier class. Therefore, the rule is specified
declaratively within the supplier class definition. The supplier class definition declares
the event generator and the class level rule as shown in Figure 0.39.

class supplier : Reactive {
Name sname;
Name state;

public :
const Name Get-Name();
void Change-Name(Name new);
const Name Get-State();
event end void Change-State(Name new); /* Specification of an event generator */

R: Location

E: new Primitive ("end supplier::Change-State(Name new)");
C: Invaid-State();

A: abort;

Figure 0.39.

As in Ode, the class definition is preprocessed and stripped of the code which
specifies the event generators and the class level rules. The code defining the class
level rules is inserted at the beginning of the main program where the rules and
their respective events are created dynamically. Each event defined by the user is an
instance of an existing system defined class. Similarly, each rule defined by the user
is an instance of the system defined Rule class. Each rule processed by the system
appends the Rule class definition with two methods representing the rule’s condition
and action. The name of the condition method is generated by appending the word
Condition with the user provided rule name. Therefore, in this example the name of
the method representing the condition is ConditionLocation. Similarly, the name of
the action method is generated by appending the word Action with the user provided
rule name. Therefore, in this example the name of the method representing the action
is ActionLocation. The next step is to generate the wrap-around member functions
which are used for notifying rule objects of generated events. These wrap-around
member functions are declared and defined within the supplier class definition. A
special wrap-around member function is created for the constructor whose function is
to make the class level rules subscribe to each supplier object created. The resulting
preprocessed supplier class has the form shown in Figure 0.40.

52

class supplier : Reactive{
Name sname;
Name state;

public :

void supplier();
void subscribe-supplier()
{
Subscribe(& Location);
supplier();
}
const Name Get-Name();
void Change-Name(Name new);
const Name Get-State();
void Change-State(Name new);
void end-Change-State(Name new)

{
Change-State(new);

/* Newly generated wrap-around member function */

/* Newly generated wrap-around member function */

Notify(this,"end Change-State(Name new)",1, & new);

Figure 0.40.

33

The modified Rule class definition is as shown in Figure 0.41 while the condition
and action member functions are defined as illustrated in Figure 0.42.

class Rule: Notifiable

{

char* name;
Event *event-id;
PMF *condition; /* PMF isapointer to amember function */
PMF *action;
int enabled;
public :
virtual int Enable();
virtual int Disable();
virtual int ConditionLocation(int* obj);
virtual int ActionLocation(int* obyj);

Figure 0.41.

int Rule::ConditionL ocation(int* obj) int Rule::ActionLocation(int* obj)
{ {
if(((supplier*)obj)->InValid-State()); Abort;
return(l); return(1);
else 1
return(0);
¥

Figure 0.42.

The code shown in Figure 0.43 creates the event and rule objects and is placed
at the beginning of the main program.

main(argc, argv)
int argc, char** argv;
{

Rule Location (new Primitive ("end Change-State(Name new)", & Rule::ConditionL ocation, & Rule::ActionLocation);

Figure 0.43.

o4

0.6.2 Example Two

The second example is related to employees and their respective managers. The
rule states that an employee’s salary must always be less than the manager’s salary.

Ode

This rule translates into two complementary hard constraints in Ode. The first
hard constraint is declared within the employee class and is violated if the salary
is greater than the manager’s salary. The second constraint is declared inside the
manager class and is violated if the salary is less than all the employees’ salaries.
The code in Figure 0.44 shows how these constraints are specified.

class manager;

class employee

{
manager * mgr;
float sal;
public :

float salary();
constraint :
sal < mgr->salary();

class manager : public employee
{
employee *emp<MAX>;
int sal_greater_than_all_employees();

public :
constraint :
sal_greater_than_all_employees();
h
Figure 0.44.
ADAM

In ADAM, two events must be detected and they are the execution of the method
Set-Salary by an employee object and the execution of the method Set-Salary by a
manager object. Since the method which raises the event in both cases has the same
name, only one event object needs to be created. The event object is created as
shown in Figure 0.45.

This rule is applicable to both the employee and manager classes. Inheritance of
rules is supported in ADAM, i.e. rules attached to a superclass are inherited by all

)

new ([OID, [
active-method ([Set-Salary]),
when ([after])

11) => db-event

Figure 0.45.

subclasses. Although the manager class is a subclass of the employee class, inheri-
tance cannot be utilized in this particular example. This is because the condition to
be evaluated when an employee object executes the method Set-Salary is different
from the condition to be evaluated when a manager object executes the method Set-
Salary. Therefore, it is necessary to create two different rule objects. The first rule
object should have the active-class attribute as employee while the second rule object
should have the value of the active-class attribute as manager. Both rule objects
are applicable to all instances of their respective active-classes hence, the disabled
for attribute is left empty. Furthermore, both rules have the same event attribute
value which is assumed to be 2@db-event. The rule objects are created by the code
fragment given in Figure 0.46 and Figure 0.47.

/* Rule object for employee class */

new ([OID, [
event ([2@db-event)),
active-class ([employesg]),
is-it-enabled ([trueg]),
disabled-for ([]),
condition ([(
current-arguments ([sal]),
sal > mgr->saary(),
D),
action ([(
current-object(Theemployee),
current-arguments ([sal]),
writeln (['Invalid Salary’]),
fail
)
1) => integrity-rule

Figure 0.46.

56

/* Rule object for manager class */

new ([OID, [
event ([2@db-event]),
active-class ([manager]),
is-it-enabled ([trug]),
disabled-for ([]),
condition ([(
current-arguments ([sal]),
sal < sa_greater_than_all_employees(),
)2
action ([(
current-object(Themanager),
current-arguments ([sal]),
writeln ([Invalid Salary’]),
fail
)
1) => integrity-rule

Figure 0.47.

Sentinel

This example illustrates how our approach provides an elegant means for monitor-
ing events spanning over several different classes. The rule is triggered when either
an employee or manager object executes the method Set-Salary. This rule can be
easily modeled by creating a complex event object which consists of applying the
conjunction operator to two primitive EOM events.

The next step involves specifying the event generators of the classes employee
and manager. In the employee class the method generating an event is Set-Salary.
Hence, execution of this method by an employee object generates the primitive EOM
event end employee::Set-Salary(float amount). Although, this method is inherited by
the manager class, the user must redefine the member function Set-Salary inside the
manager class. This redefinition is necessary in order for a manager object to gener-
ate the primitive EOM event end manager::Set-Salary(float amount) upon execution
of Set-Salary. If the method is not redefined in the manager class, the Set-Salary
method will always generate the primitive EOM event end employee::Set-Salary(float
amount), regardless of whether the object executing Set-Salary is of type employee
or manager. Therefore, the employee and manager classes are defined by the user as
shown in Figure 0.48.

In this particular example, the rule should be applied to all employee and manager
instances, i.e. the rule is a class level rule. However, this rule does not need to be
defined in both the employee and manager classes. It is sufficient to define it in the
employee class and then it will be inherited by the manager class.

57

class manager;
class employee : Reactive
{

manager * mgr;

float sal;

public :

float salary();
event end Set-Salary(float amount);
int CheckSal();

R:VaidSaary
E: new Or (new Primitive ("end employee::Set-Salary(float amount)™),
new Primitive ("end manager::Set-Salary(float amount)"))
C: if (strcmp(event-name, "end employee:: Set-Salary(float amount)") ==0)
CheckSal();
elseif(stremp(event-name, "end manager:: Set-Salary(float amount)™”) == 0)
sal_greater_than_all_employees();
A: abort;

class manager : public employee
{
employee *emp<MAX>;
int sal_greater_than_all_employees();
public :
sa_greater_than_all_employees();
event end Set-Salary(float amount);

Figure 0.48.

38

The condition part of the ValidSalary rule first determines the type of the object
generating the event. This is checked dynamically by examining the event name.
If the event name is end employee::Set-Salary(float amount), then the object is an
instance of the class employee. However, if the event name is not end employee::Set-
Salary(float amount), i.e. end manager::Set-Salary(float amount), then the object is
an instance of the manager class. If an employee object generates the event, then
the employee’s salary is compared to the manager’s salary. On the other hand, if a
manager object generates the event, then the manager’s salary is compared to the
salaries of all employees. The third parameter of the rule, the action, aborts the
triggering transaction when the condition is satisfied.

This example illustrates how our approach provides a more succinct solution to
implementing this rule when compared to Ode and ADAM. In Ode it was necessary
to define two complementary constraints, although both constraints are used for
the same purpose, viz, checking that an employee’s salary is always less than the
manager’s salary. In ADAM although only one event object was created, it was also
necessary to create two rule objects. We defined only one rule and capitalized on the
facility provided by any object-oriented programming language, namely, inheritance.

0.6.3 Example Three

Let us now consider rules which are applicable to only a subset of the instances
of a particular class. Assume it is of interest to always monitor the inventory level
of wine bottles in a storehouse. It is of no interest to monitor other inventory items.
If the number of wine bottles falls below a certain threshold, then it is necessary to
place a reorder request.

Ode

This rule is applicable only to the inventory item wine. Hence, a trigger is used
to model this rule. Triggers in Ode have to be explicitly activated on an object by
the user. The trigger is declared inside the class inventitem as shown in Figure 0.49.

classinventitem
{
inventitem (Name iname, double weight, int gty, double price);
void deposit(int amount);
void withdraw(int amount);
int reorder-level();
void place-order();

trigger :

order() : perpetual after withdraw & & qty < reorder-level () ==> place-order();
b

Figure 0.49.

39

The name of the trigger is order and it does not take any parameters. The mask
checks to see whether the quantity at hand is less than a certain threshold. If this
mask evaluates to true the action of reordering of the item is performed. The next
step is to activate the trigger on the wine inventory item. This is accomplished by
the code in Figure 0.50. The trigger is activated in the application code.

inventitem™ Wine(RedWine, 12, 350, 37.50);

Wine->order(); [* Activation of thetrigger order on the inventitem Wine */

Figure 0.50.

As with hard constraints, triggers are checked before each return statement in
each non-constant public member function. Therefore, this trigger will be checked in
all the member functions defined in the class inventitem. After the trigger is fired,
the user must explicitly reactivate it again.

ADAM

In ADAM the event object must be created first. Since the rule should be checked
only when the inventory is decreased, the active method is withdraw. The event is
created as illustrated in Figure 0.51.

new ([OID, [
active-method ([withdraw]),
when ([after])

11) => db-event

Figure 0.51.

The main disadvantage of ADAM lies in the difficulty of attaching a rule to
exactly one instance only. This is accomplished by disabling the rule for all other
instances of the class. Hence, the disabled-for rule attribute will be extremely large.
This has a profound affect on rule checking since each object executing the active
method is compared to all objects in the disabled-for attribute. A more serious
problem is the ability to keep track of all newly created instances and include them
in the disabled-for attribute list. Let us assume that a wine, cigarette, coffee and tea
inventitem instances have been created with respective identities of 1@inventitem,
2@inventitem, 3Qinventitem and 4@inventitem. Furthermore, assume the identity of
the event object created previously is 1@db-event. The rule object is then created
by the code fragment give in Figure 0.52.

Sentinel

The rule is triggered by the method withdraw and hence this method is specified
as an event generator in the inventitem class definition. Since this rule is applicable

60

new ([OID, [
event ([1@db-event)),
active-class ([inventitem]),
is-it-enabled ([true]),
disabled-for ([2@inventitem, 3@inventitem, 4@inventitem]),
condition ([(
current-arguments ([aty]),
gty >= reorder-level ()
)2
action ([(
current-object(Theinventitem),
current-arguments ([qty]),
place-order()

)
1) => integrity-rule

Figure 0.52.

only to the wine instance, i.e. it is an instance level rule, it is not defined within the
inventitem class. The rule is defined in the main program and then it subscribes to
the events generated by the wine instance. The code shown in Figure 0.53 creates
the event and rule objects in addition to performing the subscription.

inventitem Wine (RedWine, 12, 350, 37.50);

Event* level = new Primitive("end inventitem::withdraw(int amount)");

Rule QtyLevel (level, CheckLevel(), place-order());

Wine.Subscribe(QtyLevel);

Figure 0.53.

The code defining the rule is translated into :
0.6.4 FExample Four

Let us consider a banking system. The possible operations performed on a bank
account are deposit and withdraw. A withdrawal can be performed if the amount to

61

class Rule: Notifiable

{

char* name;
Event *event-id;
PMF *condition;
PMF *action;
int enabled;
public :
virtual int Enable();
virtual int Disable();
virtual int ConditionQtyLevel(int* obj);
virtual int ActionQtyL evel (int* obj);

Figure 0.54.

int Rule::ConditionQtyLevel(int* obj)
{
if(((inventitem®*)obj)->CheckLevel())
return(l);
else
return(0);
}

int Rule::ActionQtyL evel (int* obj)
{

((inventitem*)obj)->place-order();

b

inventitem Wine (RedWine, 12, 350, 37.50);

Event* level = new Primitive ("end inventitem::withdraw(int amount)");

RULE QtyLeve (level, & Rule::ConditionQtyLevel, & Rule::ActionQtyL evel);
Wine.Subscribe(QtyL evel);

Figure 0.55.

62

be withdrawn does not exceed the current bank account balance. Deposit operations
may be performed without any restrictions.

Ode

This rule can be expressed in Ode by declaring a basic event that is raised before
the execution of the method Withdraw. Furthermore, a mask can be defined which
checks whether the current balance is greater than the amount to be withdrawn.
This mask shields all occurrences of the execution of the Withdraw method when
the balance can satisfy the amount to be withdrawn. The trigger is declared in the
Account class as shown in Figure 0.56.

class Account

{
float balance;

public :
Deposit (float amount);
Withdraw (float amount);

trigger:
T1() : perpetual before Withdraw(float amount) & & balance < amount ==> tabort;

Figure 0.56.

ADAM

This rule is easily modeled in ADAM because the before notion is supported. The
event object is created by sending the following message :

new ([OID, [
active-method ([Withdraw]),
when ([before])

11) => db-event

Figure 0.57.

The rule object is then created with the event attribute having the identity of the
object created above. The active-class attribute is Account and it is enabled for all
instances. The condition checks the if the balance is less than zero while the action
prevents the execution of the method Withdraw if the condition is satisfied. The rule
object is created by the code given in Figure 0.58.

63

new ([OID, [
active-method ([Withdraw]),
when ([before])
11) => db-event
Figure 0.58.
Sentinel

The Withdraw method is declared as a primitive event generator inside the Ac-
count class. In this particular example the key words event begin are inserted before
the declaration of the method Withdraw. The rule is a class level rule and hence is
defined inside the class definition. This is illustrated in Figure 5.27.

class Account : Reactive

{
float balance;

public :
Deposit (float amount);
event begin Withdraw (float amount);

Rules:
R: AllowWithdraw
E: new Primitive ("begin Account::Withdraw(float amount)")
C: CheckBalance()
A: abort

1

Figure 0.59.

0.6.5 Example Five

To illustrate complex events consider an operating system that uses a deadlock
avoidance policy. After a process requests and then acquires some resource, a dead-
lock detection algorithm is executed. If a deadlock is detected, the process is termi-
nated. This rule cannot be expressed in ADAM since it does not provide the support
necessary for detecting complex events. Hence, we consider Ode and our approach
only.

Ode

This event can be specified in Ode using the relative operator. Thus a trigger
needs to be defined that is fired when the method Acquire is executed after the

64

method Request is executed. This complex event is specified in the Resource class
definition as illustrated in Figure 5.28.

class Resource

{

int units;

public :
Request (int x);
Acquire (int x);
Detect-Deadlock ();

trigger :
T1() : perpetual relative(after Request, after Acquire) ==> Detect-Deadlock();

Figure 0.60.

Sentinel

The two methods which generate primitive events are Request and Acquire. They
are specified as event generators in the resource class definition shown in Figure 5.29.

class Resource : Reactive

{

int units;

public :
event end Request (int x);
event end Acquire (int x);
Detect-Deadlock ();

Figure 0.61.

The event, in this example, is a complex event constructed by applying the se-
quence operator to two primitive events. The two primitive events are EOM of
Request and EOM of Acquire. The code fragment given in Figure 5.30 specifies the
creation of the complex event and the rule object.

The OS event object has the structure given in Figure 5.31.

0.6.6 Example Six

Let us now consider another rule that requires the monitoring of events spanning
over several different classes. The rule is triggered when the interests rates at a

65

class Sequence : Event

{
Event* E1, E2;
int occurred-el, occurred-e2;

public :
Sequence (Event* eventl, Event* event2)
{
El = eventl;
E2 = event?;
}
b

Event* pel = new Primitive ("end Resource::Request (int x)");
Event* pe2 = new Primitive ("end Resource::Acquire (int X)");
Event* OS= new Primitive Sequence (pel, pe2);

Rule* OSRULE (OS, "Detect-Deadlock()", "abort");

Figure 0.62.

Sequence

O O

Figure 0.63.

66

bank drop followed by a decrease in the price of real estate. Therefore, this is a
complex event constructed by using the sequence operator. Although Ode supports
the sequence operator, this event cannot be expressed in Ode. This is because the
event spans over two classes. ADAM cannot express this event since it does not
support complex events. Therefore, we consider our approach only.

Sentinel

Firstly, the methods which generate primitive events should be declared as event
generators. The methods InterestDec and Realllstate Dec, defined in the bank and real
estate classes respectively), are declared as event generators. The next step entails
creating the event object which monitors these two events. This event object is an
instance of the sequence class and is created as shown in Figure 5.32. After that
a rule object is created which subscribes to the bank and real estate instances that
should be monitored.

Event* interest = new Primitive ("end bank::InterestDec(float amount)");
Event* estate = new Primitive ("end realestate:: Real EstateDec(float amount)”);
Event IntEst = new Sequence(interest, estate);

Figure 0.64.

67

0.7 CONCLUSION AND FUTURE RESEARCH

0.7.1 Contributions and Conclusions

In this paper we presented a generic framework for the integration of rules in an
OODBMS, thereby achieving active functionality. By capitalizing on the features
provided by the OO paradigm, rules are incorporated into an OODBMS without
resorting to the introduction of ancillary mechanisms. The major contribution of
this paper is in providing a mechanism by which objects may monitor and react
to changes occurring to the state of other objects. In addition, the asynchronous
operations initiated by an active object, as a result of changes to its own state as well
as changes to the state of other objects, can be changed at run-time. Furthermore,
this work improves upon existing active OODBMSs by supporting the specification
and detection of complex as well as primitive events. Moreover, the approach taken
here provides the flexibility for supporting both compile time as well as run-time rules.
These features were provided with special emphasis given to providing a modular and
extensible system.

To summarize, the contributions of this paper are :

e Adopting an external monitoring view point, thereby allowing an object to react
to changes occurring to other objects as well as changes occurring internally to
itself.

o Allowing an object to dynamically determine which objects to monitor and
react to. This is accomplished by introducing the subscription and notifica-
tion mechanism. This mechanism also reduces the amount of rule checking
necessary.

o The seamless incorporation of ECA rules in an OODBMS. Rules are treated
as first class objects which can be created, deleted and modified in the same
manner as other objects.

e Supporting the immediate and deferred coupling modes proposed in HiPAC. In
the future we aim to support the detached coupling mode.

e Supporting the specification and detection of complex as well as primitive events
(a subset of what was proposed in Snoop[?]). Furthermore, events are sup-
ported in a uniform manner without resorting to the introduction of ancillary
mechanisms.

o Allowing rules to be associated to all instances of a class as well as to a subset
of those instances.

e Supporting both compile time as well as run-time rules.

e Providing a comprehensive comparison of the active functionality provided by
current active databases.

e Finally, implementation of the above in Sentinel.

63

Comparison of Object Oriented Active Databases

System | Monitoring Event |Rule Complex| Eventsas | Rulesas | Inheritance | Coupling | Specify Rules| Environment
View Point Scope | Scope | Events Objects Objects | of Rules Modes |on Rules

HIPAC | Internal Yes Yes Yes Yes |, Df, Det | No m_m_o_ smalltalk

ETM Internal Yes No No No I No DAMASCUS

Ode Internal 1 345 | Yes No No Yes I, Df, Det | No C++

ADAM | Internal 1 3 No Yes Yes Yes I Yes PROLOG

OIR Internal 12 3,456 No No Yes Yes _ No 0,

OSAM* | Internal 1.2 3 No No Yes Yes I, Df No C++, ONTOS

Sentinel | Lot 12 345 | Yes |Yes Yes Yes |, Df Yes C++

1 IntraClass 2 Inter-Class 3 Class-Level 4 Instance-Level 5 Global 6 Local

| Immediate Df Deferred Det Detached

69

0.7.2 Future Research

The task of incorporating rules in an OODBMS involves numerous issues. In
this thesis we have attempted to address most issues; however some areas remain
unaddressed. These areas offer future directions for research and are:

e Our approach presents a low level implementation for providing active behavior
in an OODBMS. Future work can entail transforming any given specification
language into ECA rules and then using our approach for providing active
functionality.

e Our work supports the specification and detection of complex events. However,
we have only supported a subset of the events specified in Snoop[Mis91] and
the most recent context for parameter computation. Additional research is
required in order to identify the requirements for supporting the chronicle and
cumulative contexts for parameter computation as well as support for temporal,
periodic and aperiodic events.

o Rule evaluation imposes a large overhead on system performance. Hence, rule
optimization strategies as well as techniques for reducing rule checking are
imperative for realizing an efficient active OODBMS.

e Currently, rule operations are conceived and implemented as methods. The set
of rules defined in the system can be potentially very large hence, efficient rule
management techniques need to be employed.

o Currently, the condition and action components of ECA rules are required to
be known at compile time. This is because they are implemented as methods.
Additional work is required in order to specify the condition and action parts
dynamically.

o Currently, applications are limited to sharing data objects only and cannot
communicate with each other. Our future effort will address communication
among application processes using the active database paradigm.

[Boo91]

[C+89]

[CM91]

[DBMSS]

[DPGI1]

[GJ91a]

[GJILD]

[GJS92a]

[GJS92b]

[GJS92c]

REFERENCES

Grady Booch. Object Oriented Design with Applications. The Ben-
jamin/Cummings Publishing Company, Inc., Redwood City, California,
1991.

Sharma Chakravarthy et al. HIPAC: A Research Project in Active, Time
Constrained Database Management. Technical Report XAIT-89-02, Xerox
Advanced Information Technology, Cambridge, MA, July 1989.

S. Chakravathy and D. Mishra. An event specification language (snoop)
for active databases and its detection. Technical Report UF-CIS TR-91-
23, Database Systems R&D Center, CIS Department, University of Florida,
E470-CSE, Gainesville, FL. 32611, Sep. 1991.

U. Dayal, A. Buchmann, and D. McCarthy. Rules are Objects Too: A
Knowledge Model for an Active, Object-Oriented Database Management
System. In Proceedings 2nd International Workshop on Object-Oriented
Database Systems, Bad Muenster am Stein, Ebernburg, West Germany,
Sept. 1988.

O. Diaz, N. Paton, and P. Gray. Rule Management in Object-Oriented
Databases: A Unified Approach. In Proceedings of 17th International Con-
ference on Very Large Data Bases, Barcelona (Catalonia, Spain), Sept.
1991.

N. H. Gehani and H. V. Jagadish. Ode as an Active Database: Constraints
and Triggers. In Proceedings of 17th International Conference on Very
Large Data Bases, pages 327-336, Barcelona (Catalonia, Spain), Sep. 1991.

N. H. Gehani and H. V. Jagadish. Ode as an Active Database: Constraints
and Triggers, Technical Report. Technical report, AT&T Bell Laborato-
ries, Murray Hill, New Jersey 07974, 1991.

N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite Event Speci-
fication in Active Databases: Model & Implementation. Technical report,

AT&T Bell Laboratories, Murray Hill, New Jersey 07974, 1992.

N. H. Gehani, H. V. Jagadish, and O. Shmueli. Event Specification in an
Active Object-Oriented Database. Technical report, AT&T Bell Labora-
tories, Murray Hill, New Jersey 07974, 1992.

N. H. Gehani, H. V. Jagadish, and O. Shmueli. Event Specification in
an Object-Oriented Database. In Proceedings International Conference on

Management of Data, pages 81-90, San Diego, CA, June 1992.
70

[Mis91]

[MP90]

71

D. Mishra. Snoop: An event specification language for active databases.
Master’s thesis, Database Systems R&D Center, CIS Department, Univer-
sity of Florida, E470-CSE, Gainesville, FL. 32611, Aug. 1991.

C. Medeiros and P. Pfeffer. Object Integrity Using Rules. Technical Report.
Technical report, GIP-ALTAIR, 1990.

