
GENERALIZATION AND ENFORCEMENT OF ROLE-BASED ACCESS

CONTROL USING A NOVEL EVENT-BASED APPROACH

by

RAMAN ADAIKKALAVAN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2006

Copyright c© by RAMAN ADAIKKALAVAN 2006

All Rights Reserved

To my father, mother, and sister’s and brother’s family.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Sharma Chakravarthy

for constantly motivating and encouraging me and for providing me great guidance and

support during the course of this research work. I would like to thank him for being an

excellent advisor and I am also looking forward to work with him outside of UTA. I would

like to thank Professors Alp Aslandogan, Leonidas Fegaras, Mohan Kumar and David

C. Kung for their interest in my research, for taking time to serve in my dissertation

committee and for their comments, suggestions, guidance and help at the time of need.

I would like to thank J Carter M Tiernan for all her support, encouragement and

guidance during the years I have been in UTA as a graduate teaching assistant and an

instructor. I would also like to thank Medhat Saleh for all his help. I wish to thank all

my colleagues (past and present) at ITLab for their support and encouragement and for

making the stay at ITLab over the last five years more enjoyable. I am also grateful for

my friends for their interest in my research and for their helpful discussions and invaluable

comments. I would also like to thank all my friends who were with me in all walks of my

life. I am grateful to all the professors and mentors who have helped me throughout my

career, both in India and United States.

Finally, I am also extremely grateful to my parents Adaikkalavan Meyyappan and

Soundaram Adaikkalavan, sister R. Meenakshi, brother-in-law MC. Ramanathan, brother

A. Kasi Meyyappan, sister-in-law K. Anitha and niece R. Indhumeena and other family

members for their endless love and support. Without their encouragement and endurance,

this work would not have been possible.

iv

This work was supported in part by the research grants of Sharma Chakravarthy

from the National Science Foundation (IIS-0326505, MRI-0421282 and IIS-0534611). I

would also like to acknowledge the support from the Computer Science and Engineering

Department at UTA for providing me with teaching assistantships at the time of need.

May 10, 2006

v

ABSTRACT

GENERALIZATION AND ENFORCEMENT OF ROLE-BASED ACCESS

CONTROL USING A NOVEL EVENT-BASED APPROACH

Publication No.

RAMAN ADAIKKALAVAN, Ph.D.

The University of Texas at Arlington, 2006

Supervising Professor: Sharma Chakravarthy

Protecting information against unauthorized access is a key issue in information

system security. Advanced access control models and mechanisms have now become nec-

essary for applications and systems due to emerging acts, such as the Health Insurance

Portability and Accountability Act (HIPAA) and the Sarbanes-Oxley Act. Role-Based

Access Control (RBAC) is a viable alternative to traditional discretionary and manda-

tory access control. RBAC has been shown to be cost effective and is being employed

in various application domains on account of its characteristics: rich specification, policy

neutrality, separation of duty relations, principle of least privilege, and ease of manage-

ment. Existing RBAC approaches support time-, content- and purpose-based, as well

as context-aware and other forms of access control policies that are useful for develop-

ing secure systems. Although considerable amount of effort has been spent on policy

specification aspects, relatively much less attention has been paid towards flexible en-

forcement of various aspects of RBAC approaches. Furthermore, current approaches are

vi

inadequate, as many applications and systems require the more dynamic and expressive

event pattern constraints.

In this thesis, we have focused on several aspects of RBAC, including generalization

and enforcement of RBAC, by exploiting and extending a well-established event-based

framework that has a solid theoretical foundation. Specifically, we have addressed the

following problems and made the following contributions:

• Enforcement of existing RBAC Approaches: Security mechanisms are required for

enforcing security policies. We have provided a flexible event-based technique for

enforcing the RBAC standard and other current extensions in a uniform manner

using an event framework. We have extended the event specification and detection

with interval-based semantics for event operators and alternative actions for active

rules.

• Generalization of RBAC and Snoop: We have generalized RBAC policies with

expressive event pattern constraints. We have shown how to model diverse con-

straints, such as precedence, dependency, non-occurrence, and their combinations,

using event patterns that are not available in existing RBAC approaches. Event

patterns are event expressions that have simple and complex events as constituent

events and they control the state change. Snoop, an event specification language,

provides the basis for extensions needed to support the generalized RBAC. The gen-

eralization of RBAC using constraints based on event patterns can be accomplished

by the extended Snoop.

• Enforcement of Generalized RBAC: We have shown the modeling and enforcement

of generalized RBAC policies using the extended local event detector (LED). We

have introduced event registrar graphs for capturing simple and complex event oc-

currences and keeping track of event patterns. We have also shown how RBAC with

expressive event pattern constraints can be enforced using event registrar graphs.

vii

When compared to other mechanisms, the proposed event-based enforcement mech-

anism has the advantage of using the same framework for both policy specification

and enforcement. We have briefly explored identification and handling of policy

conflicts.

• Usability in RBAC: We have enhanced the usability of RBAC by adding an intel-

ligent module for discovering roles and guiding (or prompting) the user to acquire

appropriate roles for performing operations on objects. This approach relieves the

user from the details of role-permission assignment and allows concentrating on

their task. We have developed several algorithms for discovering roles, and ana-

lyzed their complexity and effectiveness.

• Novel Applications: We have developed various applications for demonstrating the

applicability of the results obtained in this thesis. i) We have shown how role-

based security policies can be supported in web gateways using a smart push-pull

approach. ii) We have shown how event operators based on interval-based semantics

can be utilized for information filtering. iii) We provided an integrated model for

advanced data stream applications that supports not only stream processing but

also complicated event and rule processing. We have also shown how the integrated

model can be utilized for a network fault management system.

This thesis is a first step in the direction of bridging the gap that currently ex-

ists between policy specification and enforcement. By mapping RBAC policies using a

framework (event-based in our case) that can be incorporated with the underlying system

in various ways (integrated, layered, wrapper-based, and distributed), we have not only

extended RBAC to make it more useful, but also shown how the extended specifications

can be mapped and enforced. This combination of specification and enforcement using

a common framework forms the core contribution of the thesis.

viii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . vi

TABLE OF CONTENTS . ix

LIST OF FIGURES . xiv

Chapter

1. INTRODUCTION . 1

1.1 Role-Based Access Control . 2

1.2 Event Framework . 5

1.3 Research Motivations and Problems . 7

1.4 Summary of Contributions . 15

1.5 Thesis Organization . 20

2. RELATED WORK . 21

2.1 Role-Based Access Control . 21

2.1.1 Policy Enforcement Mechanisms 25

2.1.2 Constraint Specifications . 27

2.2 Interval-Based Semantics . 28

2.3 Usability in RBAC . 29

2.4 Role-based Security for Web Gateways 29

2.5 Advanced Information Filtering . 31

2.6 Event Streams and Network Fault Management 32

3. INTERVAL-BASED EVENTS AND THEIR SEMANTICS 34

3.1 Introduction . 34

ix

3.1.1 Event Detection . 35

3.2 Interval-Based Semantics of Snoop . 40

3.2.1 Primitive Events . 41

3.2.2 Event Expressions . 42

3.2.3 Composite Events . 43

3.2.4 Event Operators . 44

3.2.5 Event Combinations . 47

3.2.6 Event Consumption Modes . 48

3.2.7 Event Histories . 50

3.3 Interval-Based Event Operator Formalization in Continuous Context . . 51

3.4 Interval-Based Event Operator Formalization in Cumulative Context . . 57

3.5 Composite Event Detection . 63

3.5.1 Composite Event Detection Using Event Graphs 63

3.5.2 Algorithms and Implementation 66

3.6 Summary . 71

4. ENFORCING ROLE-BASED ACCESS CONTROL MODELS 73

4.1 Introduction . 73

4.2 Approaches for Enforcing Role-Based Models 76

4.2.1 The Wrapper-based Approach . 77

4.2.2 The Integrated Approach . 79

4.2.3 The Event-driven Approach . 80

4.3 Event-Based Active Authorization Rules 85

4.3.1 Simple Events . 86

4.3.2 Conditions . 86

4.3.3 Actions and Alternative Actions 87

4.3.4 Complex Events . 88

x

4.4 Active Authorization Rules Synthesis for Access Control Enforcement . . 89

4.4.1 Entity Relationship Modeling . 90

4.4.2 Mapping OWTE and RBAC Elements 91

4.4.3 Enforcement using Active Rules 92

4.4.4 Summary and Advantages of OWTE Rules 105

4.5 Prototype Implementation . 105

4.6 Summary . 108

5. GENERALIZATION OF ROLE-BASED ACCESS CONTROL 109

5.1 Introduction . 109

5.1.1 Motivation Examples . 110

5.1.2 Event-Based Generalization . 114

5.2 Event Specification Generalization . 119

5.2.1 Existing Event Definitions . 119

5.2.2 Advantages and Limitations of Event Specification 125

5.2.3 Generalized Simple Events . 127

5.2.4 Generalized Event Patterns . 129

5.2.5 Complete, Uncomplete and Failed Events 133

5.2.6 Complete, Uncomplete and Failed Rules 135

5.3 Simple Events in RBAC . 136

5.4 Constraints on Simple Events using Rules 139

5.5 Event Pattern Constraint Specification 144

5.5.1 Sample Event Pattern Policies . 146

5.5.2 Constraints Summary . 158

5.6 ANSI RBAC Generalization Summary 158

5.7 Summary . 159

6. GENERALIZED ROLE-BASED ACCESS CONTROL ENFORCEMENT . . . 162

xi

6.1 Event Detection Graphs . 162

6.1.1 Limitations of LED . 167

6.2 Event Registrar Graphs . 169

6.2.1 Simple Event Detection . 172

6.2.2 Event Pattern Detection . 174

6.2.3 Summary . 176

6.3 Event Pattern Policies with ERG . 176

6.3.1 Simple Event Detection . 177

6.3.2 Event Pattern Detection . 180

6.3.3 Sample Policy Enforcement . 184

6.4 Policy Conflict Identification . 186

6.5 Summary . 189

7. USABILITY IN ROLE-BASED ACCESS CONTROL 190

7.1 Introduction . 190

7.2 Issues and Problems . 192

7.3 SmartAccess . 196

7.3.1 User Request and Response Handler 196

7.3.2 RBAC Server . 198

7.3.3 Role Checking . 199

7.3.4 Object Access Request Handler . 201

7.3.5 Analysis of the Algorithms . 206

7.3.6 Requests Generation . 209

7.3.7 Authorization Rule Server . 210

7.4 Summary . 211

8. NOVEL APPLICATIONS . 213

8.1 Role-Based Security for Web Gateways 213

xii

8.1.1 Introduction . 214

8.1.2 Problems and Issues . 216

8.1.3 Role-Based Security . 219

8.1.4 SmartGate Architecture . 220

8.1.5 Future Directions . 226

8.1.6 Summary . 227

8.2 Advanced Information Filtering . 228

8.2.1 Introduction . 228

8.2.2 User Specification . 230

8.2.3 InfoFilter . 233

8.2.4 Pattern Detection . 236

8.2.5 Summary . 240

8.3 Event Streams . 240

8.3.1 Introduction . 240

8.3.2 MavEStream: An Integrated Model 245

8.3.3 Summary . 251

8.4 Network Fault Management . 251

8.4.1 Introduction . 252

8.4.2 Problem Definitions . 254

8.4.3 Proposed NFM i system . 255

8.4.4 Summary . 260

9. CONCLUSIONS AND FUTURE WORK . 261

9.1 Future Work . 264

REFERENCES . 266

BIOGRAPHICAL STATEMENT . 286

xiii

LIST OF FIGURES

Figure Page

1.1 Research Contributions Overview . 15

2.1 Core RBAC . 22

2.2 Hierarchical RBAC . 22

2.3 Static SoD Relations with Role Hierarchies 23

2.4 Dynamic SoD Relations . 24

3.1 Point-Based Semantics . 37

3.2 Interval-Based Semantics . 39

3.3 Time Line . 40

3.4 Event Notations . 41

3.5 Overlapping Event Combinations . 47

3.6 Disjoint Event Combinations . 48

3.7 Examples of the Sequence Operator . 51

3.8 Examples of the PLUS Operator . 53

3.9 Examples of the NOT Operator . 54

3.10 Examples of the A and A* Operators . 56

3.11 Examples of the NOT Operator (Cumulative Context) 60

3.12 Event occurrences on the time line . 64

3.13 An Event Graph . 65

3.14 An Event Graph in Continuous Context 66

4.1 The Wrapper-Based Approach . 78

4.2 Optimizations based on Role Semantics 85

xiv

4.3 Access Control Policy Specification . 107

5.1 GTRBAC Online Course Example (Role-Permission Assignment) 111

5.2 Enforcing ANSI RBAC Specification . 115

5.3 Add Active Role - Core RBAC . 116

5.4 RBAC with Event Pattern Constraints Overview 118

5.5 RBAC Operations as Simple Events . 139

5.6 Add Active Role - Hierarchical RBAC . 142

5.7 ANSI RBAC Generalization Summary . 161

6.1 LED’s Event Detection Graph . 166

6.2 Instance Rule List . 166

6.3 Event Registrar Graph . 169

6.4 Event Registrar Graph With Shadow Event Node 170

6.5 Simple Event Detection in Detection Graphs 172

6.6 Simple Event Detection in Registrar Graphs 175

6.7 Simple Event Detection in RBAC . 179

6.8 Event Pattern Detection in RBAC . 181

6.9 Event Pattern Detection in RBAC With Shadow Node 182

6.10 ERG for Policy 7 . 184

6.11 Complex Event Pattern Policy . 186

7.1 User-Role-Permission in RBAC . 192

7.2 Role-based Access Policy . 193

7.3 Role-Permission Assignments (PA) . 194

7.4 SmartAccess RB Authorizations . 197

7.5 RBAC (a) Users; (b) Roles; (c) UA; (d) Active Roles 198

7.6 Role-Permission Relationships . 200

7.7 CheckAccess without Role Discovery in Core RBAC 202

xv

7.8 CheckAccess with RoleDiscovery in Core RBAC 203

7.9 CheckAccess with RoleDiscovery in Dynamic SoD Without Hierarchies . . 205

8.1 Role Hierarchy with Access Policy . 216

8.2 Streaming Access Privileges . 218

8.3 SmartGate Architecture . 221

8.4 User Request/Response (a) General; (b) SmartGate 222

8.5 Assignments (a) PA; (b) Categories . 223

8.6 Users and Roles (a) Assigned; (b) Active 224

8.7 Architecture of InfoFilter . 234

8.8 Illustration of Pattern Flow in InfoFilter 235

8.9 Illustration of Stream Flow in InfoFilter 235

8.10 Pattern Detection Graph (PDG) . 237

8.11 Pattern Detection (a) Pattern Occurrences; (b) PDG 238

8.12 MavEStream: Four Stage Integration Model 245

8.13 A Typical Telecomm Network . 252

8.14 Motivation Example . 254

8.15 Inter-Domain Network Fault Management System Architecture 257

xvi

CHAPTER 1

INTRODUCTION

Protecting information against unauthorized access is a key issue in information

system security. Unabated growth in the number and types of information repositories

and the availability of improved access to these repositories makes it difficult to protect

information from being accessed without appropriate permission. The problem of access

control is more complicated in enterprises with large number of users and shared reposi-

tories. Furthermore, advanced access control and authorization models and mechanisms

have now become a necessary requirement in applications and systems due to emerg-

ing acts, such as the Health Insurance Portability and Accountability Act (HIPAA) and

the Sarbanes-Oxley Act. Earlier access control mechanisms [1, 2, 3, 4, 5, 6, 7] used by

operating systems (e.g., Discretionary Access Control) or defense establishments (e.g.,

Mandatory Access Control) are no longer adequate for the complex information access

that need to be managed today [8]. Role-Based Access Control (RBAC) [9, 10, 11, 12, 13]

allows users to access information systems based on their current job functions (or roles).

Current RBAC extensions support time-, content- and purpose-based, context-aware as

well as other constraints [14, 15, 16, 17, 18, 19, 20, 21, 22, 23] that are useful for developing

secure systems.

We introduce Role-Based Access Control and a well-established event framework

in Sections 1.1 and 1.2, respectively. We motivate the need for flexible techniques for

enforcing RBAC, generalizing RBAC and coupling both RBAC and the event framework,

in Section 1.3, which are the main focuses of this thesis. In Section 1.4, we discuss and

1

2

list the specific problems addressed in this thesis providing the summary of contributions.

We outline the thesis organization in Section 1.5.

1.1 Role-Based Access Control

Information assurance and security ensures the confidentiality, integrity, authentica-

tion, availability, and non-repudiation of information systems. Confidentiality (privacy,

secrecy) prevents unauthorized users from reading and learning sensitive information.

Integrity prevents unauthorized users from modifying objects or data items. Authen-

tication verifies user’s or subject’s identity. Availability prevents denial of service or

unauthorized withholding of information or resources. Non-repudiation provides proof

of the origin or delivery of data.

“Information security, refers to security measures that implement and assure secu-

rity services in communication systems (or communication security) and computer sys-

tems (or computer security) [24].” “Communication security, is a mechanism by which

a person or process can communicate directly with a cryptographic module and that

can only be activated by the person, process, or module, and cannot be imitated by

untrusted software within the module [25].” Communication security [24] is also defined

as “the measures that implement and assure security services in a communication sys-

tem, particularly those that provide data confidentiality and data integrity and that

authenticate communicating entities, and is usually understood to include cryptographic

algorithms and key management methods and processes, devices that implement them,

and the life cycle management of keying material and devices.”

On the other hand, “Computer security, is a mechanism by which a computer

system user can communicate directly and reliably with the trusted computing base

(TCB) and that can only be activated by the user or the TCB and cannot be imitated

by untrusted software within the computer [26].” Computer security [24] is also defined

3

as “the measures that implement and assure security services in a computer system,

particularly those that assure access control service, and is usually understood to include

functions, features, and technical characteristics of computer hardware and software,

especially operating systems.” Computer security deals with the prevention and detection

of unauthorized actions by users of a computer system. Computer systems manipulate

data and mediate access control for data items or objects.

Access control evaluates all access requests to resources by authenticated users and

determines whether the requests must be granted or denied, ensuring both confidentiality

and integrity. Access control policies correspond to the high-level rules describing the

accesses to be authorized by the system and mechanisms implementing the policies via

low level functions. In other words, “A security policy is a statement of what is, and

what is not, allowed (using Specification language, English)” and “A security mechanism

is a method, tool, or procedure for enforcing a security policy” [27]. In this thesis, we

concentrate on the specification and enforcement of access control policies and their

applications.

Role-Based Access Control (RBAC) [9, 10, 11, 12, 13], where object accesses are

controlled by roles (or job functions) in an enterprise rather than a user or a group, has

proven [28, 29, 30] to be an effective alternative to traditional access control mechanisms,

such as Discretionary (DAC) and Mandatory Access Control (MAC) [1, 2, 3, 4, 5, 7].

DAC model (e.g., used in Unix) leaves a certain amount of access control to the discretion

of the object’s owner or to anyone else who is authorized to control the object’s access.

MAC or Multi Level Security (MLS) model (e.g., used in defense establishments) does

not allow a user to own or change access rights. The need and the relevance of RBAC as

an alternative to traditional access control mechanisms for efficiently handling complex

authorization management of data in various domains are well-established. Role-Based

Access Control has been shown as cost effective [31] and is being employed in various

4

domains [32] because of various factors: rich specification, policy neutrality, separation

of duty relations, principle of least privilege, and ease of management.

Role-Based Access Control Policies: Roles, Users, Permissions, and Sessions

are the basic ingredients of RBAC policies, where role represents job functions, and

permissions represent objects and operations. Relationships between these basic element

sets form the RBAC standard [12], which consists of four functional components. In the

Core RBAC, users and permissions are assigned to roles. A user is granted access to an

object when the user is active in a role that has the required permissions. For instance,

user Bob will be allowed to read object payroll.xls when he is active in the role Manager

(i.e., the role Manger has the permissions for object payroll.xls). In order for Bob to

activate the role Manager he has to be assigned to that role. The hierarchical RBAC

adds role hierarchies to the Core RBAC. With role hierarchies, roles (junior) inherit

other roles (senior), where users assigned to senior roles are authorized to access objects

of junior roles. Third and fourth functional components deal with providing separation of

duty (SoD) constraints (static or dynamic) on Core or Hierarchical RBAC. A Static SoD

constraint does not allow users to be assigned to mutually conflicting roles. A Dynamic

SoD constraint does not allow users to be assigned to mutually conflicting roles in the

same session. In RBAC, operations such as role-assignments (de-assignments), role-

enabling (disabling) and role-activations (deactivations) are constrained for supporting

fine-grained access policies. Most of the research have widely explored and extended

RBAC for supporting various constraints, such as temporal, context-aware, control flow

dependency, and so forth. For instance, user-role assignments can be constrained for

a particular time period (e.g., allow user Bob to be active in role Manager only during

weekdays between 8 a.m. and 6 p.m.). Enterprises in different domains [32, 33, 34] have

different access control requirements. Constraints [14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

35, 36, 37, 38] are critical in applying RBAC in diverse domains as they provide flexibility

5

and allow enterprises to specify fine-grained RBAC policies. Furthermore, RBAC with

constraints support accurate modeling of object behavior in the real-world.

1.2 Event Framework

Initially, the active capability was proposed to meet some of the critical require-

ments of non-traditional (database) applications. The active capability extends the nor-

mal functionality of the underlying systems with support for monitoring user-defined

situations and reacting to them without user or application intervention. These sys-

tems continuously monitor situations to initiate appropriate actions in response to the

occurrences of interest (or events). Rules, also referred to as triggers, along with events

provide active functionality. There is consensus in the database community on the Event-

Condition-Action (or ECA) rules [39, 40] as being one of the most general formats for

expressing event-based rules in an active database management system.

As the event component was the least understood part of the ECA paradigm (con-

ditions correspond to queries, and actions correspond to transactions), there has been a

large body of work on languages for event specification. Snoop [41, 42] was developed as

the event specification component of the ECA formalism used as a part of the Sentinel

project [43] for active Relational or object-oriented DBMSs. Snoop provides well-defined

event semantics for simple and complex events over various event consumption modes (or

parameter contexts). The Local Event Detector (LED) provides the event detection mech-

anism for Snoop event specification using event detection graphs. Sentinel is an event

framework that incorporates Snoop and LED for supporting event specification and detec-

tion and is used for situation-monitoring. ECA rules can be defined either at application

or system level, and are used to process event sequences and to make the underlying

system active for applications, such as situation monitoring and change detection. In

addition to active databases, these rules provide active capability for applications in sev-

6

eral other domains (e.g., XML [44, 45], RDF [46], semantic web [47], sensor databases

[48], ubiquitous computing [49], web page monitoring [50], P2P database systems [51],

information filtering [52], information retrieval, active security, and spatial data mining).

A number of event processing systems using the ECA paradigm have been proposed

and implemented in the literature: ACOOD [53], ADAM [54], Alert [55], Ariel [56, 57],

COMPOSE [58], Hipac [59], ODE [60, 61], REACH [62], Rock & Roll [63], SAMOS

[64, 65], Sentinel [43], SEQ [66], UBILAB [67], and [68, 69]. A comprehensive introduction

and description about most of these systems can be found in [39, 40].

An event was initially defined to be an instantaneous, atomic (that happens com-

pletely or not at all) occurrence of interest. An event, which is an indicator of happening

can be either primitive (e.g., depositing cash in a bank) or composite (e.g., depositing

cash, followed by withdrawal of cash). Primitive or Simple events occur at a point in

time (i.e., the time of depositing). Composite or Complex events occur over an interval

(i.e., the interval starts at the time cash is deposited and ends when cash is withdrawn).

Composite events are defined using primitive events and event operators. An event ex-

pression specifies a composite event. The time of occurrence of the last event in an event

expression is used as the time of occurrence for the entire event expression. Thus, primi-

tive events are detected at a point in time, whereas the composite events can be detected

either at the end of the interval (i.e., detection/point-based semantics) or can be detected

over the interval (i.e., occurrence/interval-based semantics).

Snoop provides a large number of event operators: AND, OR, NOT, Sequence, Plus,

Periodic, Aperiodic, Cumulative Periodic and Cumulative Aperiodic. Snoop uses

the detection/point-based semantics for all these event operators. User-defined situations

to be monitored are event expressions containing primitive events and composite event

operators. LED uses an event graph or an event detection graph (EDG) for representing

an event expression expressed in Snoop. EDG is used as opposed to other approaches

7

such as Petri nets used by Samos [64, 65] and an extended finite state automata used

by Compose [58]. By combining event trees on common sub-expressions, an event graph

is obtained. A data flow architecture is used for the propagation of primitive events to

detect composite events. All leaf nodes in an event tree are primitive events and internal

nodes represent composite events. By using event graphs, the need to detect the same

event multiple times is avoided since the event node can be shared by many events. In

addition to reducing the number of detections, this approach saves a substantial amount

of storage space (for storing partial event occurrences and their parameters), thus leading

to an efficient approach for detecting events. Event occurrences flow in a bottom-up

fashion. When a primitive event occurs and is raised, it is sent to its leaf node, which

propagates it to one or more parent nodes (as needed) for detecting one or more composite

events.

Event consumption modes (or parameter contexts) [41, 42, 70] are needed for de-

tecting events, since in an unrestricted context (where none of the event occurrences are

discarded after participating in event detection) not all the detected events are meaning-

ful for an application. Consumption modes essentially delimit the events detected and

parameters computed, and accommodate a wide range of application requirements. The

choice of a consumption mode also suggests the complexity of event detection and storage

requirements for a given application. Snoop provides detection/point-based semantics for

all event operators in four consumption modes: Recent, Chronicle, Continuous and Cu-

mulative.

1.3 Research Motivations and Problems

The primary goal of this work is to explore various issues related to the gener-

alization and enforcement of RBAC by exploiting the approach taken in Sentinel – by

8

incorporating access control policies as event-based rules that can be enforced using the

event detection and rule execution framework.

• Enforcement of RBAC and its Extensions: Enterprises can model access

control policies using either the RBAC standard or any of its extensions. Both

the specification and enforcement are critical in employing these policies in real-

world systems. Most of the research has explored and extended Role-Based Access

Control with constraints, such as time-, content-, purpose-based, context-aware,

and so forth for supporting authorization management of data in diverse domains.

For example, the health care domain requires extensive temporal (e.g., day doctor,

night doctor) and context-aware (e.g., emergency room, intensive care) constraints.

On the other hand, most of these systems have concentrated mostly on policy

specifications and very little on the ease of their enforcement.

Access control policies are specified using various languages, such as rule speci-

fication languages [71], XML policy specification languages [72], pseudo-natural

languages [73], rule definition languages, and so forth. Security mechanisms with

existing systems or models [21, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81] are confined

to a single policy or a particular form of constraints. For example, some systems do

not support role hierarchies but they support separation of duty relations, whereas

some other systems support subsets of temporal constraints. Furthermore, in most

of the systems, policy specification and enforcement are decoupled. For instance,

the system proposed in [73, 77, 78] converts policies specified in pseudo natural

language into Java classes for enforcement via a sequence of steps. There is no

clear separation between the system code and the RBAC policy enforcement code.

Changes or alterations in policies are difficult to accommodate. Thus, in general,

existing enforcement mechanisms do not provide a general and flexible suite of

9

techniques for enforcing the RBAC standard and other extensions in a uniform

manner.

Sentinel – a well established framework for supporting event paradigm in an un-

derlying system, integrates (either loosely or tightly) Snoop and the Local Event

Detector. Active (or ECA) rules are widely used as a framework to make a sys-

tem - a server, a database, an operating system or combinations thereof - active.

It has been shown that active rules can be integrated with a system, or can be

executed using a middle-ware (or an agent), or can be used with legacy systems

using wrappers. Furthermore, they can be defined either at the system level or

at the application level, and can be executed directly without further translations.

Active rules not only have a well-defined semantics, but they can be added to ex-

isting systems and executed to enforce access control policies, if the policies can be

mapped to active rules. Thus, the first challenge is to show the adequacy of active

rules for enforcing RBAC approaches. Once access control policy specifications are

translated to active rules, they can be directly executed for enforcing the policies

they correspond to. In other words, policy specification and enforcement are not

orthogonal.

• Interval-based Semantics: In all the existing event specification and detection

systems, including Snoop and LED, composite events are considered as “instanta-

neous”, although they occur over an “interval”. Because of this, all the proposed

event specification languages detect a composite event at the end of an interval over

which it occurs (i.e., detection/point-based semantics). When events are detected

using the point-based semantics, where event occurrence and event detection are

not differentiated, it leads to non-intuitive detection of events [82, 83], when certain

event operators, such as a sequence, are composed more than once. Interval-based

semantics is proposed in this work to overcome the problems caused by the point-

10

based semantics. Both point- and interval-based semantics are needed as one is not

sufficient for all applications. Furthermore, since event consumption modes are used

in most applications, the interval-based semantics needs to be extended to event

consumption modes as well. Even though there has been some work in providing

interval-based semantics for Unrestricted [82] and Recent consumption mode [83],

it needs to be extended to other modes [41] such as Continuous and Cumulative.

Events that are detected using event consumption modes are subsets of events de-

tected using the unrestricted context (except for the cumulative context). Thus, in

order to use active rules for the enforcement of RBAC approaches, Snoop event op-

erators have to be formalized in interval-based semantics in all consumption modes

for correct event detection.

• Generalization of RBAC and Event Specification: Roles in Generalized Tem-

poral RBAC [23] assume three different states: enabled, disabled and active. Role

operations such as enabling, disabling, activation, and deactivation are constrained

in RBAC as they control the role state changes. In addition, various other op-

erations, such as assignments, de-assignments and user access requests, are also

constrained. Currently, constraints can be specified in many ways: parameterized

roles, predicates, simple role-dependent events (events based on role operations),

simple role-independent events (events based on external factors such as time), en-

vironmental roles (e.g., location) and so forth. In many cases, the aforementioned

constraints are inadequate for capturing real-world scenarios. Constraints based on

simple events (occurrence of interest) and event patterns allow capturing of complex

yet meaningful real-world polices and control the role and system state changes.

As events are omnipresent, event-driven policies, verifications, and enforcements

[20, 23, 38, 84, 85, 86], are gaining importance in the RBAC domain.

11

Simple events can be defined based on role operations (i.e., role-dependent events)

or based on the underlying system or application or can be even external to the

system (i.e., role-independent events). Constraints on simple role-dependent events

are inadequate in many situations as access needs to be controlled based on event

patterns (or composition of simple role-dependent or role-independent events). On

the other hand, merely capturing the temporal history information over which the

simple role-based events occur is not sufficient as the temporal dimension across

different occurrence of events (complex events) is required. In other words, the

temporal history over which the combinations of role-dependent, role-independent,

role-interdependent events are spread across needs to be captured. Thus, a partic-

ular state (role or system) change Sj in the system can be controlled by the oc-

currence of multiple events E1, E2, . . . , Ei following a particular pattern Ep within

a time interval ∆t. Ep represents the event pattern, and events E1, E2, . . . , Ei can

be simple or complex events. Ordering of events that occur over a period of time

T can be specified using event patterns, which combine various constituent simple

or complex events using logical, temporal, and other relationships. Thus, all op-

erations in a RBAC system can be constrained by complex yet meaningful event

patterns. Temporal RBAC [20] introduced simple role events providing periodical

enabling and disabling roles using triggers. Generalized Temporal RBAC [23] ex-

tended this in the following ways: modeled three different states (disabled, enabled,

active) for roles, duration constraints, time based semantics for role hierarchies and

separation of duty relations. Nevertheless, as discussed above, constraints based

on simple role events alone are insufficient.

Generalization of RBAC with constraints based on event patterns can be accom-

plished by combining the key features of the current RBAC approaches with Sen-

tinel. For facilitating the generalization of RBAC, current event specification ap-

12

proaches including point- and interval-based event specification, have to be gener-

alized due to various limitations. One of the major problems with the current event

specification is the lack of support for attribute-based semantics, which is critical

in information security. For example, an event pattern can be used to track the

same user (i.e., an attribute) entering different wards in an hospital. Without the

support for attribute-based semantics this cannot be modeled using event patterns.

Another major problem with the current event specification is that they support

only coarse-grained simple events. For instance, activating a user in a specific

role cannot be supported. Thus, in order for generalizing RBAC with constraints

based on event patterns, current event specification approaches, including Snoop

and LED, have to be generalized as well.

• Enforcement of the Generalized RBAC: As mentioned previously, policy spec-

ifications need to be complemented with flexible enforcement mechanisms. Even

though we have already discussed the motivation of policy enforcement was to

mainly develop a flexible mechanism to enforce the existing RBAC approaches,

with the generalization of RBAC using event pattern constraints, enforcement tech-

niques also have to be generalized. Furthermore, these techniques must still be able

to support current RBAC approaches and should not be disjoint from the policy

specification. Sentinel cannot be used as is for the enforcement as the LED (event

detection graph) is not designed to handle attribute-based simple and complex

events. As simple and complex events have to be tracked for granting access based

on event patterns, current event detection graphs have to be generalized. Thus,

LED had to be generalize in a way that allows the enforcement of existing RBAC

approaches and the generalized RBAC.

• Usability in RBAC Approaches: Computing systems have intertwined them-

selves into daily activities of humans and play a vital role. Well-known security

13

violations have occurred largely due to human errors and not because of system

weakness according to a CompTIA’s study (“Committing to Security Benchmark

Study: A CompTIA Analysis of IT Security and the Workforce” [87]). In order

to reduce security violations, there is an indispensable need to design secure yet

usable systems. Traditionally, usability and human computer interaction [88] were

not considered as critical design issues. Secure system design should include us-

ability as an inherent design requirement (instead of an afterthought) as systems

that are easy to use prevent human errors. On the other hand, we have to avoid

building systems that are usable but not secure. With various constraints, RBAC

models have the ability to provide fine-grained access control. Even though these

policies allow security administrators to manage shared resources and information

repositories in an efficient manner, users face some problems while using RBAC

systems.

In RBAC, users and objects are assigned to one or more roles. Currently, there

are some efforts [89, 90] that provide rule-based approaches for assigning users to

roles in an effective way. On the other hand, users should be active in the role

that has the required permissions before access is granted. Thus, they have to

know what roles are required to perform operations on objects. In general, with

respect to role activations, current systems follow the human-active, system-passive

model. Users often get swamped with role activations due to numerous factors that

include increase in the number of objects, multiple role assignments, and shifting

roles often, and lean toward activating all the assigned roles violating the principle

of least privilege. Thus, systems that enforce RBAC must be designed with usability

to alleviate some of problems faced by users and security administrators.

• Novel Applications: Below we discuss several novel applications where we demon-

strate the applicability of the results obtained in this thesis.

14

RBAC Applications: Efficient and effective web gateways or proxy servers are

important to control the access privileges of users and protect private networks that

are connected to the Internet, thus providing a productive and safe web environ-

ment. Access control in the form of complex access rules based on users or user

sets (groups) has been studied extensively. The objective of this work is to provide

role-based security for web gateways utilizing the RBAC. Role-Based security re-

duces the administrative burden, provides fine grained access control and supports

various constraints, such as context-aware and temporal, seamlessly.

Interval-Based Semantics Applications: Information filtering includes moni-

toring text streams to detect patterns that are more complex than those handled

by current search engines. Text stream monitoring and pattern detection have far

reaching applications such as tracking information flow among terrorist outfits, web

parental control, and business intelligence. Pattern characterization requirements

of applications entail an expressive language for specifying complex patterns than

what is currently provided by Information Retrieval Query Languages and current

information filtering systems. In addition to complex pattern specification, we have

to design effective pattern detection techniques for filtering information.

Attribute-Based Semantics Applications: Several event specification lan-

guages and processing models have been developed, analyzed, and implemented.

More recently, data stream processing has been receiving a lot of attention to deal

with applications that generate large amounts of data in real-time at varying input

rates and to compute functions over multiple streams that satisfy quality of service

requirements. A few systems based on the data stream processing model have been

proposed to deal with change detection and situation monitoring. However, current

data stream processing models lack the notion of composite event specification and

computation, and they cannot be readily combined with event detection and rule

15

Figure 1.1. Research Contributions Overview.

specification, which are necessary and important for many applications such as the

network fault management.

1.4 Summary of Contributions

In this thesis, we have generalized the RBAC using a novel event-based approach

that combines the key features of the RBAC model with a powerful event framework. In

short (see Figure 1.1), during the course of this research, we have extended Snoop opera-

tors with interval-based semantics to avert incorrect event detection, we have shown how

ECA rules can be used to enforce RBAC approaches, we have generalized Snoop event

specification and exploited it for generalizing RBAC with event pattern constraints, we

have extended LED event detection mechanism for enforcing generalized RBAC policies

and developed several novel applications for both generalized Snoop and RBAC. Below,

we summarize our contributions along the lines of the motivations provided above.

• Interval-Based Semantics: We have formally defined Snoop event operators us-

ing interval-based semantics in continuous and cumulative contexts using event his-

tories. These formal definitions include constraints that are based on the conditions

over initiators, detectors, and terminators that should be satisfied for a particular

context. Then, we have shown how online events are detected in interval-based

16

semantics using event detection graphs. The interval-based semantics have been

implemented using partial-event histories or event graphs providing procedural se-

mantics. Algorithms for all the operators have been developed for all the contexts

including the unrestricted context. We have also shown that the events that are

detected by these contexts using interval-based semantics are subsets of the un-

restricted context. Most of the above mentioned works have been published in

[91, 92, 93].

• Enforcement of RBAC and its Extensions: We have shown how active au-

thorization rules or extended ECA rules are used to enforce RBAC, and its ex-

tensions such as temporal, and control flow dependency constraints in a uniform

way. We have also shown how active security is provided to take timely actions to

prevent malicious activities. The generated rules have different granularities and

classifications based on their functionality. Mapping of the RBAC standard and

its extensions using extended ECA rules provides a practically applicable view of

RBAC. Event expressions and rules used to realize all of the Role-Based models can

be easily enforced in any underlying system (that provide some hooks) to support

Role-Based models. Most of the above mentioned works have been published in

[85, 94].

• Generalization of RBAC and Event Specification: We have motivated the

need for the RBAC generalization with constraints using event patterns. We have

identified the advantages and limitations of Sentinel – Snoop and LED. We have

generalized the current simple event definition and have identified the space of

simple events that are required for constraint specification in RBAC. We have

also generalized the current complex event operator definitions with both implicit

and explicit condition expressions. We have introduced complete, uncomplete,

and failed events and rules that are associated with each event type. We have

17

generalized RBAC with a comprehensive set of constraints based on event patterns.

Event patterns with simple and complex events as constituent events have been

shown to model constraints, such as precedence, dependency, non-occurrence, and

their combinations, that are not available with existing RBAC approaches. Even

though we have introduced various simple events and complex event operators that

are useful in constraint specification, new operators can be plugged in seamlessly

in our framework.

• Enforcement of the Generalized RBAC: We provide a flexible and generalized

security mechanism for enforcing existing and generalized RBAC policies. We have

identified the limitations of LED and event detection graphs. We have introduced

complete, uncomplete and failed events and rules, and have shown how rules are

used to check basic RBAC policy constraints. We have introduced event registrar

graphs for capturing simple and complex event occurrences and keeping track of

event patterns. In other words, these graphs maintain the temporal history over

which the constituent events occur and detect those event patterns that are satis-

fied. Event registrar graphs follow a bottom-up data flow paradigm and are efficient

as they allow the sharing of simple and complex events and event patterns. We

have also shown how RBAC with expressive event pattern constraints can be en-

forced using event registrar graphs and active authorization rules. When compared

to other mechanisms, our event-based enforcement mechanism is not disjoint from

policy specification. In other words, generalized RBAC policies with event pattern

constraints can be readily converted into event registrar graphs and executed. Fi-

nally, we have shown how policy conflicts can be identified and resolved, though

they require further investigation.

• Usability in RBAC Approaches: We have made RBAC more usable for users

by allowing them to use RBAC systems without the knowledge of what roles are

18

required to perform operations on objects. We have developed a number of al-

gorithms for discovering roles and analyzed them. When the users get an access

DENIAL message from our algorithms, it actually means that there are no roles

that can be activated to make this request happen. This is a much stronger denial

and is more useful than what the current systems provide. Our algorithms are

general-purpose and can be used in any system that enforce RBAC approaches.

Notifications provided by our approach allow users to concentrate on what data

needs to be accessed rather than the roles that are required for access, and thus

preserving principle of least privilege. Roles are disclosed to the user without any

information leak. Although role discovery has its associated overhead with respect

to system response time, it reduces user response time, increases user satisfaction

or usability and supersedes other algorithms that provide binary replies and follow

the human-active, system-passive model. We have published this approach and

most of the algorithms in [95].

• RBAC Applications: We have provided a smart push-pull approach for sup-

porting role-based security in web gateways. By leveraging RBAC, the number of

access rules and their complexity is greatly reduced, thus reducing the administra-

tive burden. Moreover, there are additional advantages, such as seamless constraint

specification (e.g., time of the day, quotas based on bandwidth or time, IP address,

location, etc.), and fine grained access control decisions. Providing role-based se-

curity by leveraging RBAC increases the level of security and productivity, creates

a more secure perimeter around enterprise networks, and makes web a safer envi-

ronment. Our approach enables the proxy server to act smarter, rather than just

allow or deny access based on access rules, while preserving the principle of least

privileges. We have enhanced the access control decisions (i.e., allow, deny, ask

19

for) from traditional web gateways or proxy servers that provide just binary access

decision (i.e., either allow or deny). This work has been published in [96].

• Interval-Based Semantics Applications: We have developed a content-based

system for filtering text streams. We support expressive user patterns using PSL

(Pattern Specification Language) and provide filtering on streams and notification.

With expressive patterns and well-defined semantics, PSL overcomes the limitations

of the current information filtering systems used for specifying expressive user pat-

terns. We have also developed PDG (Pattern Detection Graph), a bottom-up data

flow paradigm for detecting the patterns specified using PSL. We have published

this work in [52, 97].

• Attribute-Based Semantics Applications: We have integrated both event and

stream processing systems synergistically to provide an end-to-end system for many

advanced applications. We have provided an integrated model for advanced stream

applications that supports not only stream processing, but also complicated event

and rule processing. We analyzed the similarities and differences between the

stream processing and the event processing models to identify a number of enhance-

ments needed for both the models. We have shown how events can be generated

from the stream processing system. We have also shown why current event pro-

cessing models are inadequate for handling event streams and why attribute-based

semantics for event operators are required. We have also extended the rule process-

ing model for handling event streams. On the other hand, we have also proposed a

network fault management system where the above mentioned integrated model is

utilized. Most of these works have been published in [98, 99].

20

1.5 Thesis Organization

The rest of this thesis is organized as follows: We discuss the related work along the

lines of our motivations and contributions in Chapter 2. We explain the interval-based

semantics for event operators in Chapter 3. We show how extended ECA rules along with

interval-based semantics can be used for the enforcement of existing RBAC approaches in

Chapter 4. We discuss how we have generalized and combined both RBAC and Sentinel

and how the generalized RBAC policies are enforced in Chapters 5 and 6, respectively.

We show how we have made RBAC more usable in Chapter 7. We discuss various

applications that we have developed to show the applicability of the results obtained

from this thesis in Chapter 8. We conclude and provide future work in Chapter 9.

CHAPTER 2

RELATED WORK

2.1 Role-Based Access Control

Role-Based Access Control (RBAC) [9, 10, 11], where object accesses are controlled

by roles (or job functions) in an enterprise rather than a user or group, has proven

to be a positive alternative to traditional discretionary and mandatory access control

mechanisms. RBAC allows organizations to form access control policies based on roles

(or job functions) rather than users or groups. Users and permissions are assigned to

roles, which act as the semantic center. RBAC models are policy neutral and they

support principle of least privilege. RBAC does not provide a complete solution for all

access control issues, but with its rich specification it has proven to be cost effective [31]

by reducing the complexity in authorization management of data.

Lately, RBAC has been standardized (NIST RBAC [12]) and is defined in terms of

four model components; core RBAC, hierarchical RBAC, and static and dynamic sepa-

ration of duty relations. RBAC Reference Model defines sets of basic RBAC elements;

users, roles, permissions, operations and objects. It also defines the relations between

these basic elements as types and functions. NIST RBAC Standard [12] is defined in

terms of four model components and their restricted combinations:

1) Core RBAC: defines relationships between three basic elements (i.e., users, roles,

permissions). Permissions consist of objects and associated operations that can be

performed on those objects. Core RBAC is shown in Figure 2.1.

2) Hierarchical RBAC: defines hierarchies between roles. “Mathematically, a hierar-

chy is a partial order defining a seniority relation between roles, whereby senior roles

21

22

USERS

SESSIONS

ROLES

OPERATIONS OBJECTS

PERMISSIONS

User Assignments
(UA)

user_sessions session_roles

Permission
Assignments

(PA)

Figure 2.1. Core RBAC.

acquire the permissions of their juniors, and junior roles acquire the user membership

of their seniors” [12]. Hierarchical RBAC is shown in Figure 2.2.

USERS

SESSIONS

ROLES

OPERATIONS OBJECTS

PERMISSIONS

User Assignments
(UA)

user_sessions session_roles

Permission
Assignments

(PA)

Role Hierarchy (RH)

Figure 2.2. Hierarchical RBAC.

3) Static Separation of Duty (SoD) Relations: used to enforce conflicts of interest

policies which may arise as a result of user gaining permissions to conflicting roles.

Static SoD relations prevent these conflicts between roles by placing constraints on the

assignment of users to roles. Static SoD relations model component defines relations

23

in both the presence and absence of role hierarchies. Static SoD relations with the

presence of role hierarchies is shown in Figure 2.3.

USERS

SESSIONS

ROLES

OPERATIONS OBJECTS

PERMISSIONS

User Assignments
(UA)

user_sessions session_roles

Permission
Assignments

(PA)

Role Hierarchy (RH)SSD

Figure 2.3. Static SoD Relations with Role Hierarchies.

4) Dynamic SoD Relations: these are similar to the static SoD that limits user

permissions, but they differ by the context in which the constraints are placed. A

user can be assigned to “m” (i.e., two or more) mutually exclusive roles, but cannot

be active in “n” or more mutually exclusive roles at the the same time, where n ≥ 2

and n ≤ m. Dynamic SoD relations model component defines relations in both the

presence and absence of role hierarchies. Dynamic SoD relations without the presence

of role hierarchies is shown in Figure 2.4.

RBAC Extensions:

Standard RBAC alone does not suffice to handle various constraints that are re-

quired in diverse domains. For instance, hospitals and pervasive spaces require temporal

and context-aware constraints. Furthermore hospitals might require to track the usage

of patient records, thus, requiring usage-based or purpose-based access control. RBAC is

being extended extensively, for supporting diverse domains in authorization management

24

USERS

SESSIONS

ROLES

OPERATIONS OBJECTS

PERMISSIONS

User Assignments
(UA)

user_sessions session_roles

Permission
Assignments

(PA)

DSD

Figure 2.4. Dynamic SoD Relations.

of data, with various constraints such as temporal, context-aware constraints, privacy-

aware and so forth. Generalizing RBAC, by supporting diverse constraints in a uniform

manner, will make it applicable to a larger class of real life applications.

Constraints are crucial in an access control model [14, 17]. In particular, in Role-

Based models, they are critical while managing the user-role and role-permission assign-

ments, with or without the presence of role hierarchies or separation of duty relations.

The importance of constraints has been shown in various domains with diverse applica-

tions [17]. RBAC has been extended extensively with various constraints for supporting

diverse domains in authorization management of data. All the extensions are critical,

as enterprises in different domains have different requirements. Below we have briefly

explained some of the constraints:

• Temporal [20, 23]: Generalized Temporal RBAC extends the Temporal RBAC

and provides an exhaustive set of temporal constraints. There have been lot of work

in providing temporal constraints for RBAC. These constraints are critical in many

domains, for example, health care domain requires extensive temporal constraints

(i.e., controlling access to objects based on day-doctor and night-doctor).

• Context-aware [19, 73]: allows organizations to include context-aware con-

straints in RBAC. These constraints play a major role in many domains, for exam-

25

ple, pervasive computing environments require dynamic context-aware constraints

(i.e., access to objects is allowed only in a secured network).

• Privacy-aware [100]: allows organizations to include purpose based access control

constraints in RBAC.

• Event: Controlling the access to objects is based on any arbitrary event. Those

events can be temporal (time clock/ system time), location-based (from a sensor),

system predefined (invoking of any application or process), database triggers (insert,

delete or update of tuples) and so forth.

2.1.1 Policy Enforcement Mechanisms

Current systems enforcing RBAC are custom-implemented, domain-specific and

are confined to particular form of constraints. None of the existing systems, to the best

of our knowledge, support the complete RBAC standard and its extensions in a seamless

way. Thus, we explain some of the current systems below along with the features they

support.

OASIS [73, 78, 77] contains two types of rules and they are 1) activation rules,

and 2) authorization rules. It supports dynamic role deactivations by use of rules, and

it does not support role hierarchies explicitly and cardinality constraints. With the

extended model, OASIS supports some temporal constraints, and context dependent

constraints in the form of environmental predicates. OASIS requires administrators to

specify enterprise policies using pseudo-natural language (i.e., Restricted English [78])

for authentication and authorization. These predicates are translated into a series of

forms such as higher-order logic, first-order predicate calculus, horn clauses and finally

converted to Java classes. The generated Java classes change as the authorization rules

change. Even though OASIS uses pseudo-natural language that is transparent, it is

26

cumbersome and a cognitive-burden for administrators. The implementation of OASIS

is not clearly discussed except the fact that it takes a middle-ware approach.

Adage [71, 101], a rule-based authorization system for distributed applications,

supports separation of duty by using history based constraints. The system does not

support important RBAC features such as role hierarchies and cardinality constraints. It

requires the administrators to specify the authorization rules manually. X-GTRBAC [72]

is an XML based policy specification framework and architecture for enterprise wide

access control. The framework supports GTRBAC specifications [23] and enforces a

set of GTRBAC constraints. The model does not support time based SOD. It requires

administrators to specify policies using X-GTRBAC specification language based on a

BNF-like grammar, called X-Grammar provided by the framework.

Temporal RBAC [20] “supports periodic role enabling and disabling, and temporal

dependencies among such actions.” Role triggers are used to express these temporal

dependencies and to enable and disable roles either immediately or after a specified

amount of time. On the other hand, in this work we show how active rules are used to

support RBAC, its extensions and active security, seamlessly. We have also shown how

the Generalized Temporal RBAC [23, 37] can be enforced, using examples. [102, 103]

show how multipolicy access control is supported but they do not explicitly consider the

extended RBAC with various constraints and active security. [80] shows how context

constraints are enforced in an RBAC environment.

Attribute-Based RBAC or AB-RBAC [89, 90] is a rule-based model that was devel-

oped to assign users to roles automatically, based on the authorization rules defined by

enterprise administrators. Rule-based language defined in AR-RBAC supports minimal

temporal aspects in the form of range constraints, but is not expressive enough to support

various other constraints. In addition, this model also requires enterprise administrators

27

to manually specify rules using the RB-RBAC language. Role hierarchies are induced

from the seniority among authorization rule attributes when all the assumptions hold.

In addition to these systems, several commercial and open source systems [74, 81,

104, 105, 106, 107, 108] support some form of RBAC.

2.1.2 Constraint Specifications

Role-based access control has been extended extensively with various constraints

[14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. All these constraints are critical in providing

fine-grained access control and for making RBAC usable over diverse domains. Some

of the current models or systems [20, 23, 38, 37] support event-based constraints, mini-

mally. With these models or systems only simple role events and their restricted boolean

combinations are allowed. We have extended RBAC with expressive event-based con-

straints, which allow the modeling of event ordering with non-occurrence, precedence,

dependency, control-flow and many other constraints. Event-based constraints can be

specified over various granularities.

Bertino et. al, provided event driven RBAC policies in TRBAC [20]. TRBAC

supports periodic enabling and disabling of roles and handle their temporal dependencies

with role triggers. It allows runtime requests by administrators for enabling and disabling

of roles. Role events were associated with priorities to handle conflicts. It also provided

a specification language, its formal semantics and a polynomial safeness check to reject

inconsistent specifications. Even though extensions provided by TRBAC were necessary

in many situations they were not sufficient.

Joshi et. al. extended TRBAC as Generalized TRBAC [23]. extends the TRBAC

model with temporal constraints for user-role and permission-role assignments, modeling

of three states for roles (active, enabled, disabled), duration and role activation con-

straints, and time-based semantics of role hierarchies and separation of duty constraints

28

in the presence of temporal constraints. In general, it provides extensive temporal con-

straints and overcomes the problems present in TRBAC. Even though [37] extends trigger

capability with generalized triggers it assumes only conjunction and disjunction of role

events. Shafiq et al. proposed a Petri-Net based verification framework [38] for event-

driven RBAC polices, based on roles with three states. These policies are modeled using

the extended set of consistency rules [109]. These extended set of rules model cardinality,

inheritance, separation of duty, precedence and dependency constraints.

In the above strands of work, simple role-dependent events such as assignments/de-

assignments, activations/deactivations, and enabling/disabling are used for the specifi-

cation of constraints. But these simple events act as used in the specification of sim-

ple dependency and precedence constraints. On the other hand, with expressive event

constraints both simple and complex events can act as sub-patterns in event patterns,

allowing the modeling of real-world situations. In addition, we have introduced new con-

straints such as non-occurrence and have allowed the specification of constraints based

on role-dependent and role-independent events.

2.2 Interval-Based Semantics

Although there is a considerable amount of work on event specification languages

and operators (ACOOD [53], ADAM [54], Alert [55], Ariel [56, 57], COMPOSE [58],

Hipac [59], ODE [60, 61], REACH [62], SAMOS [64, 65], and Snoop [41, 42]), all previous

proposals have used detection- or point-based semantics. All these languages detect

composite events using different approaches. For example, Sentinel uses event graphs to

detect a composite event, whereas Samos uses Petri nets to detect the composite events,

but all of them use point-based semantics.

Liebig, C., et al., [110] provide algorithms for event composition and consump-

tion using accurate interval based time stamping that guarantees the property of time

29

consistent order. They also illustrate the same with a window mechanism to deal with

varying transmission delays when composing events from different sources. Though the

paper claims that event consumption modes like recent and chronicle can be unambigu-

ously defined by using an accurate interval-based time stamping, it uses the point-based

semantics for the composite event detection and has the same drawbacks.

The need for interval-based semantics for event detection is explained with concrete

examples by Rönn, P., in [111], using Snoop operators, but does not deal with formal

semantics, algorithms and implementation for any of the context in Snoop. Roncancio,

C.L. mentioned about detecting events using the duration-based (i.e., interval-based)

semantics in [112]. The need for duration-based semantics, operators that are supported,

and the formal semantics and implementation of those operators are not explained.

2.3 Usability in RBAC

None of the existing systems that enforce RBAC and its extensions [21, 71, 72, 73,

76, 80, 102], to the best of our knowledge, provide discovery-based role activations.

Similar to role activations, assigning users to roles is a critical problem. [89] pro-

vides attribute-based RBAC, a rule-based model for assigning users to roles automati-

cally, based on the authorization rules defined by enterprise administrators. It discusses

user role assignments, but not the roles that have to be activated by the users. There has

been some work that deal with the disclosure or release of policies [113], automatic trust

negotiations [114], reasoning services in autonomic communications [115] and so forth.

On the other hand, these systems and do not provide discovery-based role activations,

and do not deal with complete RBAC and its extensions.

2.4 Role-based Security for Web Gateways

Web filtering plays a significant role in providing a more productive and safe web

environment. Proxy servers or web gateways do not replace web servers and firewalls,

30

but complement them by providing multi-layer security for enterprise networks. Many

tools/systems have been developed to support access control based on users and groups,

and to the best of our knowledge none of the current systems support Role-Based (RB)

security. Thus, some of the commercial and research products/models that are related

to SmartGate are explained below.

Comparisons of the commercial systems are available in [116] and all these systems

support various features, but access control is based only on users or user sets.

BlueCoat’s Advanced Web Proxy [117] supports various granular web access

policies based on users, groups, time of the day, location, network, address, user agents

and other application domain based attributes. However, it does not support RB security

while providing access control. SurfControl’s Web Filter [118] incorporates quality

content understanding, adaptive reasoning technology and supports sophisticated filter-

ing rules based on users and groups, precise bandwidth control, prioritized bandwidth,

time based application of rules, time/ volume thresholds. Even though Web Filter pro-

vides tools required to control access, these are not based on roles, and thus does not

have the advantages of RB security. Websense’s Enterprise [119] supports customized

Internet access policies based on user, group, department, workstation or network. Again

it does not support RB security. Similarly, Microsoft’s ISA 2004 [120] and Novell’s

Border Manager [121] do not support RB security.

In addition to the above systems, RB security has been provided for web servers in

[122] and is used for providing access control for inbound traffic. Even though it provides

RB security, it still follows the access/deny model as opposed to the ternary (which can

be expanded further) model followed in SmartGate. Roles corresponding to users are

provided using the secure cookies or smart certificates for accessing a web page from a

web server. Users are provided with the roles in the form of cookies or certificates as they

can be connected to the Internet from anywhere. Once authenticated, users are provided

31

with the set of assigned roles, which does not satisfy the principle of least privilege.

On the other hand, cookies or certificates are not required since access control in web

gateways are for network users who are authenticated and their roles are activated by the

underlying system. SmartGate provides RB security for web gateways, essentially for the

outbound traffic from an enterprise network to provide a safe web environment. Contrary

to [122], SmartGate satisfies the principle of least privilege as not all the assigned roles

need to be active all the time.

2.5 Advanced Information Filtering

Commercially and freely available information filtering systems were developed to

provide solutions to assist users in extracting relevant information. SIFT [123, 124]

designed at Stanford University, is a content-based filtering system. Boolean queries and

Vector Space Model [125] are used to construct user profiles, allowing users to specify

keywords that are to be included and those that are to be excluded, when filtering

USENET articles. However, SIFT does not consider structural information while filtering

documents. It makes no distinction between positions of words in a structured text, such

as those appearing in a title or body. It does not support proximity, regular expressions,

frequency, structural, and sequence operators. GLIMPSE (Global Implicit Search) [126],

another content-based filtering system utilizes indexing and query schema for retrieving

files. It supports Boolean queries and approximate matching such as regular expressions.

However, it does not support proximity, frequency, structural, sequence, and compositions

of queries. Igrep [127] is an approximate matching tool for large data collections. It

accepts words, phrases, and set of characters such as wild cards, ranges, etc. Regular

expressions are supported to provide approximate matching. Again, it does not support

frequency, structural, sequence, and not all the compositions of queries. Inquery [128],

is a ranked retrieval system, and Lemur [129], a toolkit based on Inquery is used for

32

Language Modeling and Information Retrieval. Both the above are typical information

retrieval (IR) systems and are not information filtering systems, that can filter patterns

over text streams. Even though Inquery’s language supports structural queries it does

not have the capability to search within a paragraph, or within a range of words, which

is possible using InfoFilter’s WITHIN operator. It also does not support frequency.

2.6 Event Streams and Network Fault Management

Our work on Event Stream Processing is directly related to a set of papers [130,

131, 132, 133, 134, 135], which mainly focus on the system architecture, Continuous

Query (CQ) execution (i.e., scheduling and various non-blocking join algorithms), and

QoS delivery mechanisms for stream processing. The main computations over stream

data are limited to the computation of relational operators over high-speed streaming

data, and the event and rule processing and the extensions to CQs to enhance their

expressive power and computation efficiency are rarely discussed. A number of sensor

database projects, Cougar [136, 137], TinyDB [138, 139] have also tried to integrate the

event processing with query processing under a sensor database environment. However,

the event-driven queries proposed in TinyDB is used to activate queries based on events

from underlying operating systems. Our focus in this work is to process large number

of high volume and highly dynamic event streams from CQ processing stage for the

applications that needs complex event processing and CPU-intensive computation (i.e.,

CQs) for generating events.

Our work in Network Fault Management is related to a set of papers that have

tried to provide various solutions for network fault management. [140, 141, 142] discuss

a distributed architecture for network management system and the proposed systems are

domain specific, rather than an inter-domain system as proposed in this paper. How-

ever, most of the telecommunication service providers employ a central fault management

33

system because of the high demands of various experts and efficiency of their collabo-

rations to fix malfunctions. [143] proposed an architecture for an multi-layered network

through various interfaces to exchange information between domain-managers and an

inter-domain manager. It is also short on flexibility like other network fault manage-

ment systems. The architecture proposed in this paper takes a totally different approach

and greatly simplifies the complexities of the system and increases its flexibility through

CQs.

CHAPTER 3

INTERVAL-BASED EVENTS AND THEIR SEMANTICS

Point- or detection-based event semantics does not differentiate between event de-

tection and occurrence and has been used for detecting events in most of the systems that

support Event-Condition-Action rules. However, this is a limitation for many applica-

tions that require interval- or occurrence-based event semantics. In this chapter, Snoop

(an event specification language) event operators have been formalized using interval-

based semantics (termed SnoopIB) in various event consumption modes. Local event

detector (LED) for detecting simple and complex event detection using event detection

graphs is discussed. Representative algorithms for detecting SnoopIB operators and their

implementation in the context of Sentinel (a system incorporating Snoop and LED) is

also discussed.

3.1 Introduction

There is consensus in the database community on Event-Condition-Action (or

ECA) rules as being one of the most general formats for expressing rules in an active

database management system [39, 40]. Furthermore, it has been shown that an under-

lying system can be made active capable using ECA rules. As the event component

was the least understood (conditions correspond to queries and actions correspond to

transactions) part of the ECA rule, there is a large body of work on languages for event

specification and detection. Snoop [41, 42] was developed as the event specification com-

ponent of the ECA rule formalism used as a part of the Sentinel project [43] on active

object-oriented DBMS. On the other hand, local event detector (LED) provides the event

detection mechanisms in Sentinel.

34

35

An event was initially defined to be an instantaneous, atomic occurrence of inter-

est and the time of occurrence of the last event in an event expression was used as the

time of occurrence for an entire event expression (point-based semantics), rather than

the interval over which an event expression occurs (interval-based semantics). This intro-

duces semantic discrepancy for some operators when they are composed more than once

[82, 83]. In all event specification languages used in active DBMSs (ACOOD [53], ADAM

[54], Alert [55], Ariel [56, 57], COMPOSE [58], Hipac [59], ODE [60, 61], REACH [62],

SAMOS [64, 65], and Snoop [41, 42]) even composite events are considered as “instanta-

neous”, although they occur over an “interval”. Because of this, all the proposed event

specification languages detect a composite event at the end of an interval over which it

occurs (i.e., point-based semantics). Interval-based semantics is needed to overcome the

problems that are caused by the point-based semantics.

Snoop event operators were formally defined in the recent context (i.e., for appli-

cations where the events are happening at a fast rate and multiple occurrences of the

same type of event only refine the previous data value, e.g., sensor applications.) using

interval-based semantics in [83, 144]. Interval-based semantics has substantial differences

when compared to the point-based semantics. Below, we explain event detection with

a detailed example using both point-based and interval-based semantics, and highlight

why the distinction between point-based and interval-based semantics is critical.

3.1.1 Event Detection

We will first identify the conditions that are needed to detect an event. Primitive

events are predefined in the system and are detected at the time of occurrence. Composite

event detection on the other hand involves two steps:

1. checking the detection condition based on the operator semantics

2. determining the time of detection.

36

These two steps are handled differently in point-based semantics and interval-based

semantics as explained below. Consider an example where a stock trading agent wants

to take some action when “Dow Jones Industrial (DJI) average increases by 5 percent,

followed by a 5 percent price increase in Sun Microsystem stocks and a 2 percent price

increase in IBM stocks”. The stock trading agent uses Snoop event operators to express

this requirement.

“If (DJIA≫ (Sun ∆ IBM)) then take the appropriate action”.

• DJIA, Sun, IBM are primitive events that correspond to DJI average increases

by 5%, 5% price increase in Sun stocks, and 2% price increase in IBM stocks,

respectively.

• (Sun ∆ IBM) and (DJIA ≫ (Sun ∆ IBM)) are composite events, where “≫”

(snoop “sequence” event operator) represents a sequence condition and “∆” (snoop

“AND” event operator) represents the AND condition.

• “≫” detects a sequence of two events whenever the first event happens before the

second event. “∆” detects an “AND” event whenever both the events happen.

Semantics for these operators are different for point-based semantics and interval-

based semantics and are illustrated below.

3.1.1.1 Point-Based Semantics

Case 1: Assume that primitive events DJIA, Sun, and IBM occur at 10.30 a.m.,

10 a.m., and 11 a.m. respectively. Figure 3.1 depicts events that are detected along with

the times of occurrence and detection.

1. Primitive events are detected at the time of occurrence. Thus, events DJIA, Sun,

and IBM are detected at 10.30 a.m., 10 a.m., and 11 a.m., respectively.

2. Composite event (Sun ∆ IBM) detection involves two steps, as previously men-

tioned:

37

Time
10 a.m.
Sun5

10.30 a.m.
DJIA5

11 a.m.
IBM2

Interval over which, event
(DJIA5 >> (Sun5 ∆ IBM2)) occurs

Interval over which, event (Sun5 ∆ IBM2) occurs

Time at which, event
(Sun5 ∆ IBM2) is detected

Time at which, event
(DJIA5 >> (Sun5 ∆ IBM2)) is detected

Figure 3.1. Point-Based Semantics.

(a) As both the events Sun and IBM have occurred the “AND” condition is sat-

isfied.

(b) Sun starts the composite event (Sun ∆ IBM) detection at 10.00 a.m. IBM

terminates the composite event (Sun ∆ IBM) at 11 a.m. Since events are

considered as “instantaneous” and are detected at the end of the interval, the

composite event (Sun ∆ IBM) is detected at 11 a.m. (though it occurred

over an interval from 10 a.m. to 11 a.m.).

3. Composite event (DJIA≫ (Sun ∆ IBM)) detection involves two steps:

(a) The “Followed by” condition is only satisfied when the event DJIA happens

before the event (Sun ∆ IBM). In our example, this condition is satisfied,

since event DJIA is detected at 10.30 a.m. (step 1) and event (Sun ∆ IBM)

is detected at 11 a.m. (step 2b). Thus, the event DJIA happens before the

event (Sun ∆ IBM) (i.e., 10.30 a.m. < 11 a.m.).

(b) The Composite event (DJIA≫ (Sun ∆ IBM)) is detected at 11 a.m. (even

though it occurs over an interval from 10.30 a.m. to 11 a.m.)

38

Even though the event Sun had occurred well before the event DJIA (i.e., 10.00

a.m. < 10.30 a.m.), the composite event (DJIA≫ (Sun ∆ IBM)) is detected, which is

incorrect. This is because of the condition checking in step 3a fails to capture the correct

semantics, since it does not consider the start of the interval. From this, it is evident that

point-based semantics does not detect events in the correct way under certain patterns of

event occurrences. The point-based semantics typically used by all the aforementioned

event specification languages used in active DBMSs does not differentiate between event

occurrence and event detection and have similar problems.

3.1.1.2 Interval-Based Semantics

The same examples are used to explain interval-based semantics in this section,

where both times (start and end) are considered. This brings out the need for intervals

for real-world events and the re-examination of the instantaneous occurrence assumption.

Case 2: Let us assume that the primitive events DJIA, Sun, and IBM occur at

10.30 a.m., 10 a.m., and 11 a.m. respectively. Figure 3.2 depicts events that are detected,

along with the time of occurrence and detection.

1. Primitive events are detected at the time of occurrence, thus the events DJIA, Sun,

and IBM are detected at [10.30 a.m., 10.30 a.m.], [10 a.m., 10 a.m.], and [11 a.m.,

11 a.m.], respectively. As shown above, the primitive events have the same start

and end times.

2. Composite event (Sun ∆ IBM) detection involves two steps, as previously men-

tioned:

(a) The “AND” condition is satisfied, since both the events have occurred.

(b) With the interval-based semantics, the start time of an event is considered

and is detected over an interval. As explained in Case 1, the event Sun starts

39

Time
10 a.m.
Sun5

10.30 a.m.
DJIA5

11 a.m.
IBM2

Event (DJIA5 >> (Sun5 ∆ IBM2)) is not detected, since

it overlaps with the composite event (Sun5 ∆ IBM2)

Interval over which, event (Sun5 ∆ IBM2) occurs

Interval over which, event

(Sun5 ∆ IBM2) is detected

Figure 3.2. Interval-Based Semantics.

and the event IBM terminates the composite event (Sun ∆ IBM), but the

composite event is detected over the interval [10 a.m., 11 a.m.]

3. Composite event (DJIA≫ (Sun ∆ IBM)) detection involves two steps:

(a) The “Followed by” condition is only satisfied when the event DJIA happens

before the event (Sun ∆ IBM). In our example, this condition is not satisfied,

since the event DJIA is detected at 10.30 a.m. in step 1, and the composite

event (Sun ∆ IBM) is detected over the interval [10.00 a.m., 11 a.m.] in step

2b. Thus, the event DJIA does not happen before the event (Sun ∆ IBM)

(i.e., 10.30 a.m. ≮ 10 a.m.).

(b) The composite event (DJIA≫ (Sun ∆ IBM)) is not detected.

Both the cases 1 and 2 detect the composite event (DJIA≫ (Sun ∆ IBM)) using

the same set of primitive events. Case 1 uses point-based semantics and the composite

event is detected, which is not correct as the event Sun had occurred well before the event

DJIA. Case 2 detects events using interval-based semantics, where the composite event

is correctly not detected. Thus, event detection using interval-based semantics is needed

40

0 2 Time

Figure 3.3. Time Line.

for detecting events correctly. The rest of the chapter elaborates on event operators using

the interval-based semantics.

Although the above example makes a case for the need for alternative semantics,

whether an application/domain can live with non-interval-based semantics is a design

decision. It is clear that both detection/point-based and interval-based semantics are

needed as one is not sufficient for all applications. Furthermore, since event consumption

modes are used in most applications, the interval-based semantics needs to be extended

to event consumption models as well. Events that are detected using event consumption

modes are subsets of events detected using the unrestricted context. Snoop supports four

event consumption modes (i.e., Recent, Chronicle, Continuous, and Cumulative) and a

number of event operators. First, we formally define the Snoop event operators in both

Continuous and Cumulative contexts using event histories (i.e., a log). The Snoop event

operators were formalized in Recent context in [83, 144]. On the other hand, it is nearly

impossible to formalize operators in Chronicle context. Second, we show how Snoop event

operators detect events occurring online (i.e., one event at a time) using event detection

graphs, and comment on the implementation of event operators in Sentinel. Finally, we

present a few representative event operator algorithms for event detection.

3.2 Interval-Based Semantics of Snoop

We assume an equidistant discrete time domain having “0” as the origin and each

time point represented by a non-negative integer, as shown in Figure 3.3. The granularity

41

End Time of the Event (↓E)

Start Time of the Event (↑E)

Figure 3.4. Event Notations.

of the domain is assumed to be specific to the domain of interest. In security domain,

events can be generated based on user file access. In object-oriented databases, interest

in events comes from the state changes produced by method executions by an object.

Similarly, in relational databases, interest in events comes from the data manipulation

operations, such as insert, delete, and update. Similar to these database (or domain

specific) events, there can also be temporal events that are based on time, or explicit

events that are detected by an application program (outside of a DBMS) along with its

parameters.

An event occurs over a time interval [t1, t2] and is denoted by O(E, [t1, t2]), where

E is the event, t1 is the start time of the event denoted by ↑E, t2 is the end time of the

event denoted by E↓ and “O” represents the interval-based Snoop semantics. Start and

end times of an event are shown in Figure 3.4 and are formally defined as:

Start time: O(↑ E, t) , ∃t ≤ t′(O(E, [t, t′]))

End time: O(E ↓, t′) , ∃t ≤ t′(O(E, [t, t′]))

3.2.1 Primitive Events

Primitive events are finite set of events that are predefined in the (application)

domain of interest. A primitive event is detected atomically at a point on the time line

shown in Figure 3.3. Primitive events are distinguished as domain specific, temporal

and explicit events (for more details refer to [70]). For example, method execution by

42

an object in an object-oriented system is a primitive event. These method executions

can be grouped into before and after events (or event types) based on where they are

detected (immediately before or after the method call).

Definition 1. A primitive event E occurs over an interval [t, t′], where t is the start

time and t′ is the end time of an event, and is expressed as O (E, [t, t′]). For event E, t

is the same as t′, as a primitive event is detected atomically at a point on the time line.

A primitive event is defined as:

O(E, [t, t′]) , ∃t = t′(O(E, [t, t′]))

3.2.2 Event Expressions

For many real-world applications, supporting only primitive events is not adequate

as there is a need for specifying more complex patterns of events, such as, arrival of a

report followed by a detection of a specified object in a specific area. Complex patterns

of events cannot be expressed with a language that does not support expressive event

operators along with their semantics. An appropriate set of operators along with the clo-

sure property allows one to construct complex composite events by combining primitive

events and composite events in ways meaningful to an application interested in situation

monitoring. To facilitate this, we have defined a set of event operators along with their

semantics. Snoop [41, 42] is an event specification language that is more comprehensive

and subsumes other languages in terms of event operators. It is used to specify com-

binations of events using operators, such as AND, OR, NOT, Sequence, Plus, Periodic,

Aperiodic, Cumulative Periodic and Cumulative Aperiodic. These operators have

been chosen based on various classes of applications, such as network monitoring, process

control, trigger needs in databases, and so forth [70].

Events, event expressions, conditions, and actions play different semantic roles in

the ECA paradigm. Conditions are very different from composite events as conditions

43

check on the resulting state after events have occurred and detected, whereas events are

composed to detect a complex occurrence. If complex events were to be detected as

part of a condition then a condition has to implement the semantics of composition of

each operator; in other words, the entire local event detector needs to be implemented

as part of a condition. In contrast, event detectors receive a large number of events and

only combine those that correspond to the operator semantics and event consumption

modes. All the details of buffering events and handling them are transparent to the user.

This is not dissimilar from providing abstract data types and their composability rather

than each programmer building their own version of a data type. On the other hand,

conditions check whether to take an action or not based on the parameters passed from

the occurrence of events.

3.2.3 Composite Events

Composite events are constructed using primitive events and event operators over

composite events. A composite event consists of a number of primitive events and com-

posite event operators: The set of events of a composite event are termed as constituent

events of that composite event. A composite event is said to occur over an interval, but

is detected at the point when the last constituent event of that composite event is de-

tected. The detection and occurrence semantics is clearly differentiated and the detection

is defined in terms of occurrence as shown in [82, 83].

We introduce the notion of an initiator, detector, and terminator for defining event

occurrences. A composite event occurrence is based on the initiator, detector, and ter-

minator of that event, which in turn are constituent events of that composite event.

An initiator of a composite event is the first constituent event whose occurrence starts

the composite event, a detector of a composite event is the constituent event whose

occurrence detects the composite event, and a terminator of a composite event is the

44

constituent event that is responsible for terminating the composite event. Note that

initiators, detectors, and terminators need not be distinct nor unique for a given event

expression.

Snoop operators can be divided into two groups - binary operators and ternary

operators based on the number of events associated with an operator. Binary snoop

operators are of the form “(E1 op E2, [t1, t2])” and ternary snoop operators are of the

form “op (E1, E2, E3), [t1, t2]”. “E1 op E2” and “op (E1, E2, E3)” are both composite

events that occur over the time interval t1 and t2, t1 being the start time of the initiator

as well as the composite event, and t2 being the end time of the detector/terminator as

well as the composite event.

3.2.4 Event Operators

Below, we define Snoop operators intuitively in the unrestricted (or general) con-

text. This means events, once they occur, cannot be discarded at all. For a “≫” (Snoop

sequence operator) event, all event occurrences that occur after a particular event will get

paired with that event as per the unrestricted context semantics. The formal definitions

for these snoop operators in unrestricted context can be found in [82, 83]. Below, “O”

represents the interval-based Snoop semantics.

AND (∆): O(E1 ∆ E2, [t1, t2]) formally represents the conjunction of two events. The

Conjunction of two events E1 and E2, denoted by “E1 ∆ E2”, occurs when both E1 and

E2 occur, irrespective of their order of occurrence. Either E1 or E2 can act as initiator

or terminator.

SEQUENCE (≫): The sequential composition of two events is represented as O(E1≫

E2, [t1, t2]). The Sequence of two events E1 and E2, denoted by E1≫ E2, occurs when

E2 occurs, provided E1 has already occurred. This implies that the end time of occurrence

45

of E1 is guaranteed to be less than the start time of occurrence of E2. E1 is the initiator

and E2 is the terminator of the sequence event.

OR (∇): O(E1 ∇ E2, [t1, t2]) formally represents the disjunction of two events. The

Disjunction of two events, denoted by E1 ∇ E2, occurs when E1 occurs or E2 occurs.

E1 and E2 act as both initiators and terminators.

NOT (¬): Determines the time of non-occurrence of an event in the context determined

by two other events, and is represented as O(¬(E3)[E1 ≫ E2], [t1, t2]). It detects the

nonoccurrence of event E3 in the closed interval formed by the end time of E1 (i.e., t1 or

E1) and start time of E2 (i.e., t2 or E2). As it is a non-occurrence of E3 in a predefined

interval, the occurrence time of a NOT event is just that interval (i.e., [t1, t2]).

Aperiodic (A, A*): An Aperiodic event E is represented by O(A(E1, E2, E3), [t1, t2]),

where E1, E2 and E3 are event expressions, E1 is the initiator, E2 is the detector and

E3 is the terminator. E is signaled each time E2 occurs during the interval defined by

the occurrences of E1 and E3 and the occurrence time of E is the occurrence time of E2.

In other words, there must be no occurrence of E3 wholly within the interval between

the occurrences of E1 and E2. This operator is useful when the occurrence of an event

has to be monitored in the context determined by two other events. For example, an

application that requires any change in the temperature of an object to be signaled from

the beginning of the experiment to the end of that experiment can be modeled by this

operator.

On the other hand, there are situations when a given event is signaled more

than once during a given interval (e.g., transaction) and, rather than firing the rule

every time the event is signaled, we want the rule to be fired only once. The Cumula-

tive Aperiodic operator is provided to meet this requirement and is expressed as O(A*

(E1, E2, E3), [ts2, te2]). This event is similar to the non-cumulative version except that

it accumulates the occurrences of E2 within the interval formed by E1 and E3 and is

46

detected only once when E3 occurs. Thus, occurrence time of an A* event is the inter-

val formed by the start time of the first occurrence of E2 and the end time of the last

occurrence of E2 within the interval formed by E1 and E3.

Periodic (P, P*): The Periodic event is defined as an event P that repeats itself within a

constant and finite amount of time after the occurrence of the initiator event so long as the

terminator does not occur. The Periodic event is expressed as O(P (E1, E2, E3), [t2, t2]),

where E1 is the initiator, E2 is the detector, and E3 is the terminator. While E1 and E3

can be any type of events, E2 should be a time string (temporal event). The periodic

event occurs after time period [t] specified by E2 within the time interval started by E1

and ended by E3. The Periodic event expresses that a certain period of time specified

by E2 has elapsed a whole number of times since the initiator has occurred. Hence, the

occurrence time of the periodic event is the same as the detection time event E2 (i.e.,

[t2, t2]). The Periodic event has many applications, for example, when a bank database

is required to print the summary of all transactions of each customer at the end of the

month.

Similar to the Aperiodic event, the Periodic event has a cumulative variant P*

expressed as O(P* (E1, E2, E3), [ts2, te2]). P* occurs only once when the event E3 occurs

and it accumulates the event E2 occurrences at the end of each period and is made

available when P* occurs. Occurrence time of a P* event is the interval formed by the

first occurrence of E2 and the last occurrence of E2 with the interval formed by E1 and

E3.

Plus (PLUS): It is a relative temporal event that is started by the occurrence of an

event and is signaled after the specified time period. The PLUS event is represented as

O(PLUS(E1, E2), [t2, t2]), where E1 is an event expression and E2 is a time string [t].

Event E1 is the initiator, and E2 is the terminator. Similar to the Periodic event, the

47

1

7

2

65

3 4

8 9

10

11

12

13

� Event E
1
 instance

� Event E
2
instances End Time of the Event (↓E)

Start Time of the Event (↑E)

Figure 3.5. Overlapping Event Combinations.

occurrence time of the PLUS event is the time of occurrence of event E2 (i.e., [t2, t2]).

The PLUS event occurs only once after time [t], after the event E1 occurs.

3.2.5 Event Combinations

Another aspect of interval-based event occurrences is that they can be either over-

lapping or disjoint.

Overlapping Event Combinations: When events are allowed to overlap, all

combinations in which two events can occur [145, 146] are shown in Figure 3.5. In this

work, event operators are formally defined using overlapping event combinations.

Disjoint Event Combinations: When events are not allowed to overlap, we

have fewer combinations. This may be meaningful for many applications where the same

event should not participate in more than one composite event or when only one of the

48

E
1

E
2

E
1

Figure 3.6. Disjoint Event Combinations.

overlapping events is of interest. The possible disjoint event combinations are shown in

Figure 3.6.

3.2.6 Event Consumption Modes

Events are detected in the unrestricted (or general) context. In the absence of any

mechanism for restricting event usage (or consumption), events need to be detected and

parameters for those composite events need to be computed using the unrestricted con-

text definitions of the Snoop event operators. However, the number of events produced

(with unrestricted context) can be large and not all event occurrences may be mean-

ingful for an application. With diverse application domains, it turned out that these

application domains may not be interested in the unrestricted context all the time but

need mechanisms to tailor the semantics of event expressions to their domain needs. In

addition, the detection of these events has substantial computation and space overhead,

which may become a problem for situation monitoring applications.

In order to provide more meaningful event occurrences to match application needs,

Snoop introduced several parameter contexts (or event consumption modes): Recent,

Chronicle, Continuous, and Cumulative. The idea behind the parameter contexts is to

filter the events (or the history) generated by the unrestricted context in various ways

to reduce the number of events generated. It is also the case that each context defined

generates a subset of events generated by the unrestricted context. The ideal situation

is to allow users to roll their own context as needed.

49

Recent Context: Applications, where events are happening at a fast rate and

multiple occurrences of the same event only refine the previous value, can use this context.

Only the most recent or the latest initiator for any event that has started the detection

of a composite event is used in this context. This entails that the most recent occurrence

just updates (summarizes) the previous occurrence(s) of the same event type. We have

formalized Snoop operators over recent context in our previous work [83].

Continuous Context (Sliding Window Events): In applications where event

detection along a moving time window is needed, continuous context can be used. This

context is especially useful for tracking trends of interest on a sliding time point governed

by the initiator event. For example, computing change of more than 20% in Dow Jones

average in any 2-hour period requires each change to initiate a new occurrence of an

event, and can be expressed as an Aperiodic event as A (E1, E, PLUS (E1, 2 hours)),

where the event E1 starts the 2 hour period, the event PLUS (E1, 2 hours) detects and

terminates the 2 hour period, E can be any arbitrary event, and the change in average

can be computed in the condition part once the event is detected. In this context, each

initiator starts the detection of that composite event, and a single detector or terminator

may detect one or more occurrences of that same composite event. In other words, each

initiator starts a new window, and the events are detected until (or when) a terminator

occurs. For binary Snoop operators, all the constituent events (initiator, detector and/or

terminator) are deleted once the event is detected. For ternary Snoop operators, detectors

are different from terminators. Detectors detect the event occurrence (e.g., Aperiodic)

and are deleted once detected. A terminator terminates the event (e.g., Aperiodic*) and

deletes the corresponding initiator and terminator pair along with the constituent events

that cannot be used in future events. Future events are the events that are initiated by

the initiators that are not paired with this terminator.

50

Cumulative Context (Semantic Window Events): Applications use this con-

text when multiple occurrences of constituent events need to be grouped (or accumulated)

and used in a meaningful way when the event occurs (e.g., banking application). In this

context, all occurrences of an event type are accumulated as instances of that event until

the event is terminated (i.e., forming a semantic window between the earliest initiator

that was not terminated and a terminator). An event occurrence does not participate in

two distinct occurrences of the same composite event. In both the binary and ternary

operators, detector and terminator are the same, and once detected and terminated, all

constituent event occurrences that were part of the detection are deleted. Other events

that can act as a constituent event for some future event are preserved.

We will use the start and end of an event defined earlier for formally defining the

event operators. In order to express this more concisely, the predicate Oin (occurrence

in an interval) [82], is used and is formally defined as:

Oin(E[t1, t2]) , ∃t′
1
, t′

2
(t1 ≤ t′

1
≤ t′

2
≤ t2 ∧O(E, [t′

1
, t′

2
]))

3.2.7 Event Histories

The Snoop operators explained in Section 3.2.4 are based on the event occurrences

over a time line. In Sections 3.3 and 3.4, using the notion of event histories, we formalize

these definitions to take the event consumption modes into account. An event history

maintains a history of event occurrences up to a given point in time. Suppose e1 is an

event instance of type E1, then E1 [H] represents the event history that stores all the

instances of the event E1 (namely e1
i). Events in an event history are ordered by their

end time.

• Ei [H] - Event history for event Ei.

• [tsi, tei] - Indicates the Start time (tsi) and End time (tei) of an event instance ei
j

of the event type Ei.

51

1

3

4 6

5

2

7

9

10

8

e
2

2

e
1

1

e
2

1

e
1

2

e
1

3

1211 e
2

3

Figure 3.7. Examples of the Sequence Operator.

3.3 Interval-Based Event Operator Formalization in Continuous Context

In this section, we define formally in continuous context some of the operators

defined in the unrestricted context [82]. Event operators are already defined intuitively

in unrestricted context in Section 3.2.4.

In the following subsections, we will use the following way for defining the SnoopIB

operators: 1) An example showing the events that are detected in unrestricted context

using interval-based semantics, 2) Formal definition for the operators in continuous con-

text, and 3) An example showing the events that are detected in continuous context.

SEQUENCE(≫):

The event histories shown below are based on the event occurrences shown in Figure

3.7 and are used to explain the detection of sequence event (E1 ≫ E2) in both recent

and unrestricted contexts.

E1 [H] = {e1
1 [3, 5], e1

2 [4, 6], e1
3 [8, 9]}

E2 [H] = {e2
1 [1, 2], e2

2 [7, 10], e2
3 [11, 12]}

52

Events detected in Unrestricted Context: The “≫” event defined in Sec-

tion 3.2.4 generates the following pairs of events from the above event histories in the

unrestricted context.

{(e1
1, e2

2) [3, 10], (e1
2, e2

2) [4, 10], (e1
1, e2

3) [3, 12], (e1
2, e2

3) [4, 12],

(e1
3, e2

3) [8, 12]}

Formal Definition in Continuous Context:

O(E1≫ E2, [ts1, te2]) , ∀E2 ∈ E2[H] ∧ ∀E1 ∈ E1[H]

{O(E2, [ts2, te2]) ∧ (∄(O(E2′[ts, te]))|(te < te2) ∧ E2′ ∈ E2[H])

∧ (O(E1, [ts1, te1]) ∧ (ts1 ≤ te1 < ts2 ≤ te2))}

∨ ∀E2 ∈ E2[H] ∧ ∀E1 ∈ E1[H]

{O(E2, [ts2, te2]) ∧ ((∃(O(E2′[ts, te]))|(te < te2) ∧ E2′ ∈ E2[H])

∧ (∄(O(E2′′[t′s, t
′

e]))|(t
′

s > te1) ∧ (t′e < te2) ∧ E2′′ ∈ E2[H]))

∧ (O(E1, [ts1, te1]) ∧ (ts1 ≤ te1 < ts2 ≤ te2) ∧ (ts1 > te))}

In this context, a detector or terminator can detect or terminate more than one initiator

and produce as many events as the number of initiators. Thus, in order for a set of

initiators to form the sequential composition with a terminator (i.e., E2 ∈ E2 [H]), there

should be no occurrence of any other instance of event E2 (i.e., E2′ ∈ E2 [H]) in the

interval formed by the set of initiators and terminator. This is handled in two cases as

shown above; the first case deals with the first terminator instance and the second case

deals with other terminator instances. In the first case, (∄(O(E2′[ts, te]))) defines the

first instance of the terminator, and (ts1 ≤ te1 < ts2 ≤ te2) composes the set of initiators

sequentially with this terminator. In the second case, two instances of the terminator

are considered (i.e., E2′ and E2), where E2′ happens before E2. The set of initiators that

occur within the time interval formed by these terminators is composed sequentially with

53

3

4 6

5 e
1

1

e
1

2

1211 e
1

3

9

10

16

Figure 3.8. Examples of the PLUS Operator.

E2, as it will give the set of initiators terminated by E2. The condition that E2′ happens

before E2 is stipulated using (∄(O(E2′′[t′s, t
′
e]))|(t

′
s > te1) ∧ (t′e < te2) ∧ E2′′ ∈ E2[H]).

Events detected in Continuous Context: When event e2
1 occurs, there is no

event in the event history of E1 that satisfies the “≫” operator condition. When the

event e2
2 occurs, it detects the continuous event with the event pairs (e1

1, e2
2) [3, 10]

and (e1
2, e2

2) [4, 10]. On the other hand, it does not pair with the event e1
3 as the

sequence condition fails. According to the continuous context definition, the events e1
1,

e1
2, and e1

3 have already participated in event detection and cannot act as constituent

events for event e2
3. When the event e2

3 occurs it does not detect any event as there are

no initiators. The event pairs generated by the “≫” operator in continuous context are:

{(e1
1, e2

2) [3, 10] and (e1
2, e2

2) [4, 10]}

Plus (PLUS):

The PLUS event occurs only once after the time interval specified by E2 after the

occurrence of event E1 and is denoted by (PLUS (E1, E2), [t2, t2]), where E1 is an event

expression and E2 is a time string. By definition, start and end times of the PLUS

event are the same. For example, the event (PLUS (E1, 4)) is detected 4 units after the

occurrence of event E1, and is used to explain the event detection in the unrestricted

context. Event histories shown below are based on the event occurrences shown in Figure

3.8 and are used to explain the detection of PLUS events in the unrestricted context.

54

1

3

4 6

5

2

7

9

10

8

e
2

2

e
1

1

e
2

1

e
1

2

e
1

3

1211 e
2

3

e
3

1

55

Figure 3.9. Examples of the NOT Operator.

E1 [H] = {e1
1 [3, 5], e1

2 [4, 6], e1
3 [11, 12]}

Events detected in Unrestricted Context: For the events in the event history,

the “PLUS” event defined in Section 3.2.4 generates the following pairs of events in the

unrestricted context:

{(e1
1, 4) [9, 9], (e1

2, 4) [10, 10], (e1
3, 4) [16, 16]}

The PLUS operator’s unrestricted context definition holds for the continuous con-

text, since the PLUS operator is detected only once after the occurrence of the event

E1.

NOT (¬):

The event histories shown below are based on event occurrences shown in Figure

3.9 and are used to explain the detection of NOT event in the unrestricted context. The

event histories for events E1 and E2 are the same as in the “≫” operator:

E3 [H] = {e3
1 [5, 5]}

55

Events detected in Unrestricted Context: The “¬” operator generates the

following events in unrestricted context: {(e1
2, e2

2) [4, 10], (e1
2, e2

3) [4, 12], (e1
3, e2

3) [8,

12]}

Formal Definition in Continuous Context:

O(¬(E3)[E1, E2], [ts1, te2]) , ∀E2 ∈ E2[H] ∧ ∀E1 ∈ E1[H] ∧ ∀E3 ∈ E3[H]

{O(E2, [ts2, te2]) ∧ (∄(O(E2′[ts, te]))|(te < te2)

∧ E2′ ∈ E2[H]) ∧ {(O(E1, [ts1, te1]) ∧ (ts1 ≤ te1 < ts2 ≤ te2)

∧ ¬Oin(E3, [te1, ts2]))}}

∨ ∀E2 ∈ E2[H] ∧ ∀E1 ∈ E1[H] ∧ ∀E3 ∈ E3[H]

{O(E2, [ts2, te2]) ∧ ((∃(O(E2′[ts, te]))|(te < te2)

∧ E2′ ∈ E2[H])

∧ (∄(O(E2′′[t′s, t
′

e]))|(t
′

s > te) ∧ (t′e < te2) ∧ E2′′ ∈ E2[H]))

∧ {(O(E1, [ts1, te1]) ∧ (ts1 ≤ te1 < ts2 ≤ te2) ∧ (ts1 > te)

∧ ¬Oin(E3, [te1, ts2]))}}

The “¬” operator formal definition has two cases and is similar to the “≫” operator

formal definition. The “¬” operator determines the time of non-occurrence of an event

(i.e., E3) in the context determined by two other events (i.e., E1, E2). It can be expressed

as the sequential composition of (i.e., “≫”) of events E1 and E2, where there is no

occurrence of event E3 in the interval formed by these events. The sequential composition

of two events in the continuous context is explained earlier. Non-occurrence of event E3

in the interval formed by E1 and E2 is specified using the condition ¬Oin(E3, [te1, ts2]).

Events detected in Continuous Context: In the above example, when the

event e2
1 occurs, there is no event in the event history of E1 that satisfies the “¬”

operator condition. When event e2
2 occurs, only the event e1

2 can combine with e2
2, as

56

1

3

4 6

5

2

7

9

10

8

e
2

2

e
1

1

e
2

1

e
1

2

e
1

3

1211 e
2

3

e
3

1

55

Figure 3.10. Examples of the A and A* Operators.

the event e1
1 had already been terminated by the occurrence of e3

1, and the event e1
3

does not fulfill the sequence condition. The event e2
2 detects the “¬” event with the

event pairs (e1
2, e2

2) [4, 10]. When the event e2
3 occurs, it does not detect any event, as

there are no initiators. The event pairs generated in continuous context are: {(e1
2, e2

2)

[4, 10]}

OR (∇):

The semantics of the “∇” (OR) operator does not change with the context, as each

occurrence is detected individually.

Aperiodic (A):

The event histories shown below are based on event occurrences shown in Figure

3.10 and are used to explain the detection of “A” event in both recent and unrestricted

context:

E1 [H] = {e1
1 [3, 5], e1

2 [4, 6]}

E2 [H] = {e2
1 [1, 2], e2

2 [8, 9], e2
3 [7, 10], e24 [11, 12]}

E3 [H] = {e3
1 [11, 11]}

57

Events detected in Unrestricted Context: (A(E1, E2, E3), [ts1, te1]) detects

the following pairs of events using event histories:

{(e1
1, e2

2) [8, 9], (e1
2, e2

2) [8, 9], (e1
1, e2

3) [7, 10], (e1
2, e2

3) [7, 10]}

In the case of the Aperiodic operator, formal definition given for unrestricted con-

text holds for continuous context. The Aperiodic operator is a ternary operator, where

events those occurred before the terminator are deleted, as they cannot take place in fu-

ture event detection. Thus, events detected by both unrestricted and continuous contexts

are the same.

Events detected in Continuous Context: By definition, the occurrence time

of “A” is the occurrence time for E2. With the event histories shown in Figure 3.10,

aperiodic operator detection in continuous context is explained. When the event e2
2

occurs, initiators that can be paired with this event are e1
1 and e1

2. In this case, the

event e2
2 is just a detector, so that the detection initiators e1

1 and e1
2 can take part in

future event detection till the terminator occurs. So the event e2
3 can be paired with the

same initiators. But when the event e2
4 occurs, there are no initiators that are available

for detection, since terminator e3
1 has terminated all the initiators. Thus the events

generated by this operator in continuous context are:

{(e1
1, e2

2) [8, 9], (e1
2, e2

2) [8, 9], (e1
1, e2

3) [7, 10], (e1
2, e2

3) [7, 10]}

3.4 Interval-Based Event Operator Formalization in Cumulative Context

SEQUENCE (≫):

Events detected in Cumulative Context: In this context, a detector or ter-

minator produces only one event. The event histories are used for the detection of the

“≫” operator defined above. The event histories corresponding to the event occurrences

shown in Figure 3.7 are given below, where E1 [H] is the initiator event history and E2

[H] is the terminator event history.

58

E1 [H] = {e1
1 [3, 5], e1

2 [4, 6], e1
3 [8, 9]}

E2 [H] = {e2
1 [1, 2], e2

2 [7, 10], e2
3 [11, 12]}

When the terminator event e2
1 occurs, there is no initiator event in E1 [H] that

satisfies the “≫” operator condition. The event e1
1 occurrence initiates a sequence event.

The event e1
2 occurrence is accumulated. When the event e2

2 occurs, E1 [H] has events

{e1
1 [3, 5], e1

2 [4, 6], e1
3 [8, 9]}. Thus, e2

2 detects the event initiated by the event

e1
1 generating the following event (e1

1, e1
2, e2

2) [3, 10], since it satisfies the sequence

condition (ts1 ≤ te1 < ts2 ≤ te2) (i.e., (3 ≤ 5 < 7 ≤ 10) for pair (e1
1, e2

2)). As shown, all

the events in between the pair (e1
1, e2

2), in this case e1
2, are accumulated. Even though

e1
3 occurred before e2

2, it is not detected since it does not satisfy the condition (9 < 7).

According to the cumulative context definition, the events e1
1, e1

2 and e2
2 are deleted as

they have already participated in event detection and cannot act as constituent events

for future detections. In addition, the event e1
3 is also deleted as it has occurred before

the start time of e2
2 and does not satisfy the sequence condition. As there are no events

after end time of e2
2, the event e2

3 does not detect any event. The event pairs detected

by sequence operator in continuous context are:

(e1
1, e1

2, e2
2) [3, 10]

59

Formal Definition in Cumulative Context:

O(E1≫ E2, [ts1, te2]) ,

∀E2 ∈ E2[H]

{O(E2, [ts2, te2]) ∧ (∄E2′[ts, te]|(te < te2) ∧ E2′ ∈ E2[H])

∧ {∀E1 ∈ E1[H](O(E1, [ts1, te1]) ∧ (ts1 ≤ te1 < ts2 ≤ te2))}

}

∨

∀E2 ∈ E2[H]

{O(E2, [ts2, te2]) ∧ ((∃E2′[ts, te]|(te < te2) ∧ E2′ ∈ E2[H])

∧ (∄E2′′[t′s, t
′

e]|(t
′

e > te) ∧ (t′e < te2) ∧ E2′′ ∈ E2[H]))

{∀E1 ∈ E1[H](O(E1, [ts1, te1]) ∧ (ts1 ≤ te1 < ts2 ≤ te2)

∧ (ts1 > te) ∧ (∄E1′[t′s1, t
′

e1]|(t
′

s1 > te) ∧ (t′s1 < ts1)

∧ E1′ ∈ E1[H]))

}

}

Two events e1 ∈ E1 [H] and e2 ∈ E2 [H] are said to occur in sequence in the cumulative

context only when there is no occurrence of e2′ ∈ E2 [H] before the occurrence of e2

and all the other occurrences of e1′ ∈ E1 [H] that occur in between the pair e1 and e2

are accumulated. There are two cases to formally define the operator (refer the formal

definition above). The first case applies when there is no other terminator available

in the terminator history (i.e., it is the first occurrence of the terminator). In other

words, there should be no occurrence of other terminators before this terminator and

this terminator should be in sequence with all initiators till that point. In this case,

all the event occurrences of the initiator are accumulated, and the cumulative event is

60

1

3

4 6

5

2

7

9

10

8

e2
2

e1
1

e2
1

e1
2

e1
3

1111 e1
4

e3
1

55

1412 e2
3

Figure 3.11. Examples of the NOT Operator (Cumulative Context).

detected. The second case applies when there is more than one terminator present in the

history. For this case, there should be no occurrence of other terminators in between the

start of the initiator and the end of the terminator or a terminator can occur only if its

end time is less than the start time of the initiator. In other words, an initiator starts

an event occurrence and a terminator terminates and detects the “≫” event, with the

events in between taken as constituent events, and there should be no other instance of

the terminator.

OR (∇):

The semantics of “∇” does not change with cumulative context as each occurrence

is detected individually.

Plus (PLUS):

The PLUS operator’s unrestricted context definition holds for the cumulative con-

text, since it is detected only once after the occurrence of the event E1 and there is only

one terminator for an initiator.

61

NOT (¬):

Events detected in Cumulative Context: The “¬” Operator can be expressed

as the sequence of E1 and E2 where there is no occurrence of the event E3 in the interval

formed by these events. The event histories corresponding to the event occurrences shown

in Figure 3.11 are given below, where E1 [H] is the event e1 history, E2 [H] is the event

e2 history, and E3 [H] is the event e3 history.

E1 [H] = {e1
1 [3, 5], e1

2 [4, 6], e1
3 [8, 9], e1

4 [11, 11]}

E2 [H] = {e2
1 [1, 2], e2

2 [7, 10], e2
3 [12, 14]}

E3 [H] = {e3
1 [5, 5]}

When the terminator event e2
1 occurs, there is no initiator event in E1 [H] that

can pair with e2
1. The event e1

1 occurrence initiates a sequence event. The event e1
2

occurrence is accumulated. When the event e2
2 occurs, E1 [H] has events {e1

1 [3, 5], e1
2

[4, 6], e1
3 [8, 9]}. But the event e1

1 [3, 5] cannot combine with the event e2
2 [7, 10] since

there is an occurrence of e3
1 [5, 5] in between e1

1 and e2
2 (i.e., 5 ≤ 5 ≤ 7), thus a NOT

event is not detected. The event e1
4 [11, 11] initiates the next NOT event. When the

event e2
3 [12, 14] occurs, it pairs with the event e1

4 detecting (e1
4, e2

3) [11, 14], as there

is no occurrence of an event e3 in the interval [11, 12]. The event pair generated by the

NOT operator in cumulative context is:

{(e1
4, e2

3) [11, 14]}

62

Formal Definition in Cumulative Context:

O(¬(E3)[E1, E2], [ts1, te2]) ,

∀E2 ∈ E2[H]

{O(E2, [ts2, te2]) ∧ (∄E2′[ts, te]|(te < te2) ∧ E2′ ∈ E2[H])

{∀E1 ∈ E1[H] ∧ E3 ∈ E3[H]

(O(E1, [ts1, te1]) ∧ (ts1 ≤ te1 < ts2 ≤ te2)

¬Oin(E3, [te1, ts2]))}

}

∨

∀E2 ∈ E2[H]

{O(E2, [ts2, te2]) ∧ ((∃E2′[ts, te]|(te < te2) ∧ E2′ ∈ E2[H])

(∄E2′′[t′s, t
′

e]|(t
′

e > te) ∧ (t′e < te2) ∧ E2′′ ∈ E2[H]))

{∀E1 ∈ E1[H] ∧ E3 ∈ E3[H]

(O(E1, [ts1, te1]) ∧ (ts1 ≤ te1 < ts2 ≤ te2) ∧ (ts1 > te)

∧ (∄E1′[t′s1, t
′

e1]|(t
′

s1 > te) ∧ (t′s1 < ts1)

∧ E1′ ∈ E1[H])

∧ ¬Oin(E3, [te1, ts2]))

}

}

The formal definition above has two cases similar to the sequence operator formal defini-

tion. The non-occurrence of the event e3 ∈ E3 [H] between two events e1 ∈ E1 [H] and

e2 ∈ E2 [H] is said to occur in the cumulative context only when there is no occurrence

of e2′ ∈ E2 [H] before the occurrence of e2 and all the other occurrences of e1′ ∈ E1 [H]

63

that occur in between the pair e1 and e2 are accumulated. The first case applies when

there is no other terminator available in the terminator history (i.e., first occurrence of

the terminator). In other words, there should be no occurrence of other terminators be-

fore this terminator and this terminator should be in sequence with all initiators till that

point and there should not be any occurrence of an event e3 in between the initiator and

terminator as specified by the condition (¬Oin(E3, [te1, ts2])). In this case, all the event

occurrences of the initiator are accumulated and the cumulative event is detected. The

second case applies when there is more than one terminator present in the history. For

this case, there should be no occurrence of other terminators in between the start of the

initiator and the end of the terminator or a terminator can occur only if its end time is

less than the start time of the initiator. In addition, there should not be any occurrence

of the event e3 in between the initiator of the composite event and the terminator as

specified by the condition (¬Oin(E3, [te1, ts2])).

3.5 Composite Event Detection

3.5.1 Composite Event Detection Using Event Graphs

In Sections 3.3 and 3.4, definitions using event histories were given for operators

in continuous and cumulative contexts. They are appropriate for applications whose

event histories are collected and processed for event occurrences. In many real-world

monitoring applications, events are streaming in as they occur and composite events

need to be detected on the fly (as they occur) and cause appropriate actions. In this

section, we will explain how composite events are detected from the implementation

perspective, when events occurs online, and show that the events detected in either way

are the same.

Sentinel uses an event graph or event detection graph (EDG) for representing an

event expression, in contrast to other approaches, such as Petri nets used by Samos

64

e
1

1
e
1

2
e
3

1
e
2

1
e
4

1
e
1

3
e
2

2
e
3

2
e
1

4
e
4

2

e
1

5

2 3 4 5 6 7 8 9 10 111

Time

Figure 3.12. Event occurrences on the time line.

and extended finite state automata used by Compose. By combining event trees on

common sub-expressions, an event graph is obtained. A data flow architecture is used

for the propagation of primitive events to detect composite events. All leaf nodes in

an event tree are primitive events and internal nodes represent composite events. By

using event graphs, the need to detect the same event multiple times is avoided since

the event node can be shared by many events. In addition to reducing the number

of detections, this approach saves a substantial amount of storage space (for storing

partial event occurrences and their parameters), thus leading to an efficient approach

for detecting events. Event occurrences flow in a bottom-up fashion. When a primitive

event occurs and is detected, it is sent to its leaf node, which forwards it to one or more

parent nodes (as needed) for detecting one or more composite events.

As described in previous sections, the introduction of contexts makes event detec-

tion more meaningful and computationally less expensive for many applications. Below,

we illustrate how composite events are detected using interval semantics proposed with

an example that uses the same set of primitive events occurring over a time line. The

same event graph is used for detecting events in all contexts on a need basis. With each

node, there are 4 counters indicating whether an event needs to be detected in a partic-

ular context. The counter is also used to keep track of the number of composite events

an event participates in. When this counter reaches zero, there is no need to detect that

event any more in that context, as there are no events dependent on that event.

65

E
1

E
2

>>

E
4

E
1

¬¬¬¬

∆∆∆∆E
3

A

CB

Figure 3.13. An Event Graph.

In Figure 3.12, the numbers 1, 2, 3, 4, 5, 11 represent time points on the time line

at which a primitive events occur. If we take the primitive event e1
2, it is said to occur

in the time interval [2, 2], and the event e2
1 is said to occur in the time interval [4, 4].

The composite events that combine these two events occur over a time interval [2, 4],

where [2] is the start time and [4] is the end time of the composite event. In Figure 3.14

we represent the events in terms of their occurrence intervals in square brackets (e.g., [2,

2] represents event e1
2) for simplicity. The composition is shown using multiple events

within a bracket (e.g., [[1, 4], [2, 7]] represents [[e1
1, e2

1], [e1
2, e2

2]]).

Figure 3.13 represents the composite event (¬E3)((E1 ≫ E2), (E1 ∆ E4)). The

Leaf nodes, E1, E2, E3, and E4, represent the primitive events and the nodes A, B and

C represent the composite events. The NOT event is a composite event that contains

AND, SEQUENCE as its constituent events. When any two events are paired in either

node B or C, they are passed to node A where the “¬” event is detected. We will present

the detection of events in the continuous context. Figure 3.14 shows the snapshot of

the event states in continuous context in the event graph at the time of the event e4
2

occurrence.

In the continuous context (refer Figure 3.14), events e1
1 and e1

2 are paired with the

event e2
1, since one terminator may detect one or more initiators. When the event e2

2

66

[9, 10]

[8, 8]

[1, 4]

[6, 7]
[2, 4]

[6, 10]

[[1, 4], [6, 10]]

[[2, 4], [6, 10]]

E
1

E
2

>>

E
4E

1

¬¬¬¬

 ∆∆∆∆E
3

A

CB

Figure 3.14. An Event Graph in Continuous Context.

occurs, it pairs with the event e1
3. The occurrence of the event e4

2 terminates the events

e1
3 and e1

4 in the node C. When these events are sent to the node A, the events (e1
1, e2

1,

e1
3, e4

2) and (e1
2, e2

1, e1
3, e4

2) are detected. But (e1
4, e4

2) is not paired with the events

(e1
3, e2

2) since there is an occurrence of the middle event e3
2 between these events. This

initiator pair cannot start any more event detection, because of the occurrence of the

middle event e3
2 and all the events are removed. Figure 3.14 shows all the events that

are available in the nodes A, B, C when event e4
2 occurs. Thus, events detected in this

context are:

{(e1
1, e2

1, e1
3, e4

2) [[1, 4], [6, 10]], (e1
2, e2

1, e1
3, e4

2) [[2, 4], [6, 10]]}

3.5.2 Algorithms and Implementation

The Snoop event operator algorithms in LED are based on the point-based seman-

tics. With current point-based event operator algorithms the processing cost involves

α comparisons of timestamp (i.e., comparing only on the end of the interval). With

interval-based algorithms it will involve at most 2 ∗ α comparisons as it has to compare

the start as well as the end timestamp. In other words, the asymptotic upper bound

67

(i.e., O) on the running time of the event operator algorithms are the same for both

point-based and interval-based event operator algorithms.

In this section, we will provide algorithms that detect events according to the

interval-based semantics. In the manner in which ECA rules are used for monitoring

situations, events occur over a time line and are sent to the event detector. All events

in the form of an event history are not submitted to the event detector. In fact, as part

of event detection, the event detector at any point sees only a partial history in time.

The algorithms presented in the following subsections detect events according to interval

semantics, although they do not see the complete history at any given point in time.

How the start interval is handled is shown in the algorithm. The algorithms defined

in the following subsections are implemented in Sentinel. The formal definitions and

algorithms have been designed for all contexts. The notations used in the algorithms are

shown below:

Notations used in the algorithms:

• ei (e.g., e1, e2) – A Primitive or Composite event instance or occurrence

• Ei (e.g., E1, E2) – An event list that maintains the partial history of the occurrences

of event ei

• t s – Start time of the event (Start Interval)

• t e – Ending time of the event (End Interval)

3.5.2.1 The algorithm for the Sequence operator in Cumulative Context

/* ei can be recognized as coming from the left or right branch of the operator tree

and parameter list represents event properties */

PROCEDURE seq_cumulative (ei, parameter_list):

1 If ei is the left event

2 Append e1 to E1

68

3 If ei is the right event

4 If E1 is not empty

5 For every e1 in E1 and if (t_s (e2) > t_e (e1))

6 Append e1 to tempE1

7 If tempE1 is not empty

8 Pass <tempE1, e2> to parent with t_s

(tempE1’s EarliestStartTime) and t_e (e2)

9 Remove all event occurrences from tempE1

10 Remove all event occurrences from E1

Explanation of the algorithm:

1. If the event is from the left child (i.e., initiator of this operator) then continue

2. Accumulate event e1 occurrences in list E1

3. If the event is from the right child (i.e., terminator of this operator) then

continue

4. When there is an initiator in the list, then continue

5. Check whether each event occurrence of e1 has preceded the e2 occurrence

6. if above step is true, then add the event e1 to a list tempE1

7. if there is at least one initiator then perform

8. Pass the accumulated event occurrences of e1 and e2 along with the time of

occurrence. The start time of the composite event is the start time of the first occurrence

of e1 (initiator) and the end time for the composite event is the end time of the terminator.

10. A Terminator has occurred and all the event occurrences in the left child have

to be removed.

69

3.5.2.2 The algorithm for the Sequence operator in Continuous Context

/* ei can be recognized as coming from the left or right branch of the operator tree,

and parameter list represents event properties */

PROCEDURE seq_continuous (ei, parameter_list):

1 If ei is the left event

2 Append e1 to E1

3 If ei is the right event

4 If E1 is not empty

5 For every e1 in E1 and if (t_s (e2) > t_e (e1))

6 Pass <e1,e2> to parent with t_s (e1), t_e (e2)

7 Remove all event occurrences from E1

Explanation of the algorithm:

1. - 4. are same as the algorithm for cumulative context

5. For each event occurrence in E1, check whether it has preceded the e2 occurrence

6. if the above step is true, then pass the event occurrences of e1 and e2 along

with the time of occurrence. The start time of the composite event is the start time of

e1 and the end time for the composite event is the end time of the terminator.

7. A terminator has occurred and all the event occurrences in the left child have

to be removed.

3.5.2.3 The algorithm for the NOT operator in Cumulative context

The NOT operator detects the nonoccurrence of the event E2 in the closed interval

formed by E1 and E3.

PROCEDURE not_cumulative (ei, parameter_list)

1.a If ei is the left event

1.b Append e1 to E1

70

2 If ei is the middle event

3 If E1 is not empty and t_e (E1’s EarliestEndTime) t_s (e2)

4 Append e2 to E2

5 If ei is the right event

6 If (E1 is not empty and (t_e (E1’s EarliestEndTime) < t_s (e3))

7 If E2 is not empty

8.a For every e1 in E1

8.b If (t_e (e1) < t_s (e3))

8.c For all e2’s in E2

8.d If (t_e (e2) > t_s (e3) or t_s (e2) < t_s (e1))

8.e Append e1 to tempE1

8.f Delete e1 from E1

9.a If tempE1 is not empty

Pass <tempE1, e3> to the parent with t_s

9.b (tempE1’s EarliestStartTime) and t_e (e3)

10.a For every e2 in E2

10.b If (t_e (E1’s EarliestEndTime) > t_s (e2))

10.c Delete e2 from E2

11 Else

11.a For every e1 in E1

11.b If (t_e (e1) < t_s (e3))

11.c Append e1 to tempE1

11.d Delete e1 from E1

Pass <tempE1, e3> to the parent with t_s

71

11.e (tempE1’s EarliestStartTime) and t_e (e3)

Explanation of the algorithm:

1. If the event is from the left child (i.e., initiator of this operator), then append

it to the list E1

2. If the event is from the middle child (i.e., event E2 in our case), then continue

3. and 4. If the list E1 is not empty and the end time of the first occurrence of

event e1 is less than or equal to the start time of the this event, then append this event

to the list E2

5. If the event is from the right child (i.e., event E3 in our case), then continue

6. When there is an initiator in the list and the end time of the first occurrence

of event e1 is less than to the start time of the this event, then continue

7. - 10. Check whether all the event occurrences of e1 have preceded the e3

occurrence and there is no occurrence of event e2 in between them. If there is any event

pair, then detect the NOT event. Remove all the event e2 occurrences that satisfy the

condition in 10.b

11. if there is no occurrence of event e2, detect a NOT event with all the event e1

occurrences and the event e3

3.6 Summary

Interval-based semantics is required by applications where the event detection and

event occurrence need to be differentiated. In this chapter, we have formally defined the

Snoop event operators using interval-based semantics in both continuous and cumulative

contexts using event histories. These formal definitions include constraints that are based

on the conditions over initiators, detectors, and terminators that should be satisfied for

a particular context. Then, we have shown how online events are detected in interval-

based semantics using event detection graphs. The interval-based semantics has been

72

implemented using partial-event histories or event graphs providing procedural semantics.

Algorithms for all the operators have been developed for all the contexts, including the

unrestricted context. We have also shown that the events that are detected by these

contexts are subsets of the unrestricted context. We have published the formalization

operators and algorithms using continuous and cumulative context in [91, 92, 93].

CHAPTER 4

ENFORCING ROLE-BASED ACCESS CONTROL MODELS

Dynamically monitoring the state changes of an underlying system, and detecting

and reacting to changes without delay are crucial for the success of any access control

enforcement mechanism. RBAC has been widely explored and extended and, in spite of

its expressive specification, there has been not much work on a flexible and generalized

framework for its enforcement. Most of the enforcement mechanisms are for the restricted

combinations of NIST RBAC components and are customized to a specific system (e.g.,

OS, databases) and do not address how RBAC extensions can be supported. Currently,

there is no framework that can be used to support various extensions in an uniform

manner. Although RBAC has been shown to be better-suited for enterprises in diverse

domains, the lack of a framework for its support has affected its usage pragmatically.

With their inherent nature, ECA rules are prospective candidates to carry out change

detection and to provide access control. As ECA rules provide active capability to the

underlying system (i.e., for making the passive systems to active systems) they are also

termed as active rules.

4.1 Introduction

With the ever growing impact of computing systems on our daily activities, security

and privacy have a greater role to play. Role-Based Access Control [9, 10, 11], where

object accesses are controlled by roles (or job functions) in an enterprise rather than

a user or group, has shown to be a positive alternative to traditional access control

mechanisms. RBAC does not provide a complete solution for all access control issues,

but with its rich specification, it has shown to be cost effective [31] by reducing the

73

74

complexity in authorization management of data. ANSI RBAC standard [12] is defined

in terms of four model components and their combinations; core RBAC, hierarchical

RBAC, and static and dynamic separation of duty relations. Constraints play a major

role in access control models [17] and RBAC is being extended with various constraints

for supporting authorization management of data in diverse domains: Temporal [20, 23],

context-aware [19, 73], privacy-aware [100], control flow dependency [37], etc. All these

extensions, which are critical for access control, warrants for a flexible and generalized

security mechanism for enforcing Role-Based models. Even though a lot of work has been

carried out in the specification for making RBAC more expressive, there is still lots of

work that need to be carried out in enforcing these specifications in a flexible way that

is essential for making RBAC better-suited for enterprises in diverse domains.

Enterprises can formalize their access control (or security) policies using RBAC

or its extensions that provide additional constraints. Enterprises in different domains

have different access control requirements; for example, the health care domain requires

extensive temporal and context-aware constraints (e.g., emergency room, intensive care).

Current security mechanisms do not provide a generalized approach for enforcing RBAC

and its extensions in a uniform manner. For example, some systems just support separa-

tion of duty (SoD) relations, but without role hierarchies. Similarly, they do not adapt to

policy or role structure changes in enterprises, which is indispensable for making RBAC

usable. For example, when an enterprise wants to change its working hours of a role, then

the low level semantic descriptors1 have to be modified. In current systems, it is a burden

on the administrator to modify and maintain these low level semantic descriptions, such

as authorization rules, manually.

1In this work, we refer to authorization rules, Java classes, and other mechanisms that are used to

enforce the access control as low level semantic descriptors.

75

Taking timely actions based on the state changes of the underlying system over

a period of time and alerting the administrator regarding the malicious activities will

complement the access control system. For example, all the constraints that are satisfied

by a user when activating a role should hold TRUE until the role is deactivated. When

any one of the constraints becomes FALSE before deactivation, then that role should

be deactivated. Prevention of malicious activities in the system plays a major role in

providing security. Enterprises require the detection and prevention of malicious activ-

ities from causing damage without human intervention. Furthermore, prevention and

detection will ameliorate the security of the underlying system so that enterprises can

be more secure. For example, when access requests by unauthorized roles for some files

are more than a certain number of times within a duration, an internal security alert is

triggered and some critical authorization rules are disabled2 and the administrators are

alerted.

Existing systems (or models) [71, 72, 73, 74, 75, 81, 89, 90, 147] enforcing RBAC are

custom-implemented, domain-specific and are confined to a particular form of constraints.

All these systems neither enforce complete RBAC standard nor provide a generalized

approach for enforcing it over diverse underlying systems. Furthermore, they do not

provide an approach for enforcing RBAC extensions in a uniform manner. Thus, systems

(or models) that need to enforce RBAC in a generalized manner should be able to provide

uniform and transparent handling of the RBAC standard and its extensions, adapt to

policy and role structure changes in an enterprise, and support high level specification of

enterprise access control policies.

We provide a security mechanism that is flexible, generalized, and portable for

enforcing Role-Based Models. In this work we will address the following; i) provide

and analyze various approaches for enforcing Role-Based models, ii) present approaches

2Actions are predefined by the security administrators.

76

for generating events in any underlying system, iii) introduce event-based active autho-

rization rules, iv) synthesize active authorization rules for access control enforcement,

v) discuss how RBAC standard and its extensions (i.e., Role-Based Models) are enforced

in a uniform and transparent manner, vi) show how active rules can be used to provide

active security, and vii) show the creation of an initial set of rules using Sentinel+ based

on an enterprise access control policy and show how the rules are regenerated when there

is a change in the access control policies. Sentinel+ is an enhanced version of Sentinel

[148, 43], an active object-oriented system.

4.2 Approaches for Enforcing Role-Based Models

For brevity, we group all the role-based authorization models containing NIST

RBAC and its extensions, such as GTRBAC, GRBAC, PRBAC and so forth, as Role-

Based Models or RBMs. Security mechanisms enforce or implement security rules and

models [149]. These mechanisms have to be independent of the security model so that

it is possible to check the correctness of security requirements, consistency of the secu-

rity polices, and so forth. Furthermore, a generalized, flexible, and extensible security

enforcement mechanism will allow enterprises to employ various security policies i.e.,

RBAC, GTRBAC, GRBAC, and so forth. On the other hand, intertwining and hard-

wiring of policies with security mechanisms will limit the ability of an enterprise to adapt

to dynamic changes in the security policies. In this section, approaches for supporting

RBMs are discussed.

Many open source and commercial projects/products support some form of RBAC:

Linux [105, 106, 107, 108], Microsoft Windows [104], Sun Solaris [81] and Relational

databases [74] such as Oracle, Sybase ASE, Informix and IBM DB2. Given any underlying

system, supporting RBMs would require analysis pertaining to the following dimensions.

1. How to support RBMs in systems that do not explicitly support RBMs.

77

2. How to support RBMs in systems that provide ways to support user customized

functionalities.

3. How to support RBMs in systems that support some RBMs or have some hooks

that can be exploited to support RBMs. How much can we leverage the existing

support provided by the system.

In order to support RBMs to the above mentioned categories, the following factors

should be analyzed carefully.

1. How much can we change the underlying system in order to support RBMs. In

other words, what needs to be changed in the underlying system.

2. How many types of constraints can be supported with the security mechanism. In

other words, can it be flexible to support constraints such as temporal, event-based,

context-based, content-based, and so forth.

3. How should the security mechanism implement NIST RBAC. Should it be imple-

mented as a component (i.e., Core, Hierarchical, Static SOD, Dynamic SOD) or

should it be based on the role semantics.

4. Can the security mechanisms support single application, multi application/single

system or multi-system. In other words, can it be flexible and generalized to support

diverse underlying systems, such as operating systems, databases and so forth.

Below we provide three approaches based on the above requirements.

4.2.1 The Wrapper-based Approach

Legacy systems that do not support any RBMs can do so using the wrapper-based

approach. The basic assumption is that the underlying system does not support any

kind of hooks and it is either extremely difficult or impossible, in most cases, to modify

the source code of the underlying system. Typically, a wrapper is built for each of the

existing (or native) application or application process that is available in the underlying

78

system. Access control capabilities and other functionalities are added to the wrappers,

which in turn check for RB policies whenever an native application (or process) is invoked

either by a user or by other processes. Once the required constraints are met, wrapped

application will in turn invoke the native application (i.e., function call or process).

Figure 4.1 illustrates a typical wrapper-based approach. As shown, a native ap-

plication or application process invocation will invoke a wrapped application. All the

constraints that need to be checked are available in the wrapper. Enterprise access con-

trol policy information, such as roles, objects and so forth, are maintained separately

and are used by the wrapped application for checking the required constraints. Once the

wrapper has finished checking the constraints it can either invoke the native application

if all the constraints are met, or can deny if any one of the constraint is not met. For

example, whenever the editor VI is invoked, the function call is rerouted to WVI (i.e.,

Wrapped VI) which checks for RB policies using the database. After constraint checking

is performed the native VI is invoked or the denial message is returned.

.

.

.

SYSTEM
(NO RBM

SUPPORT)

2
3

4
1

WVI
VI

DENY
VI

1 - Native Application or Application Process Call
2 - Wrapped Application or Application Process Call
 with Additional Conditions
3 - Native Application or Application Process Call
4 - Denial Message

Figure 4.1. The Wrapper-Based Approach.

79

Wrappers can be either local or global, i.e., there can be a separate wrapper for a

single native application or for a set of native applications, but they are system dependent.

Enterprise access control policies that are based on RBMs have to be implemented using

separate security mechanisms that can be utilized by the wrappers for checking the

constraints. In other words, wrappers exploit the available security mechanisms, that

enforce RBMs, for providing RBMs to the underlying legacy system. Thus, the extent

of support of RBMs, i.e., roles, role hierarchies, separation of duty relations, temporal,

location-based, event constraints, and so forth, depends on the security mechanisms that

enforce it. In addition, none of the existing systems support event-based constraints.

The main advantage of this approach is that it does not require any modification

to the underlying system. In addition, wrappers are transparent to the user or other

application processes. On the other hand, this approach needs a good understanding of

the underlying system and wrappers have to be developed for each legacy system and

application separately. Furthermore, new wrappers have to be written for every new

application, thus making the system management and/or maintenance more complex.

The wrapper-based approach is preferred only when there is no other alternative to

support RBM’s in the underlying system as it is not flexible, extensible or portable.

4.2.2 The Integrated Approach

The integrated approach requires modification to the underlying system for in-

corporating RBMs. The basic assumption is that the underlying system provides some

way of supporting user customized functionalities and the developers have sufficient un-

derstanding of the system to make changes at the lower level. For example, in Linux,

Kernel Modules can be exploited to add and change functionalities to the kernel on the

fly [150]. Similarly Patches can be applied to kernels to incorporate user-required func-

tionalities. With Kernel Modules, the kernel need not be recompiled as the modules

80

can be loaded and unloaded on demand. Thus, RBMs can be supported using Kernel

Modules which does not bloat the kernel and which is easier to debug and develop. On

the other hand, there are other systems that do not support any mechanism equivalent

of Kernel Modules as in the case of Linux. Some projects, such as LIDS [105] have

developed a mandatory access control for Linux using kernel patches.

Similar to the wrapper-based approach, security mechanisms are independent of

the underlying system, thus limiting the extent of RBMs that can be supported. The

primary advantage of the integrated approach is its flexibility to add a minimum amount

of code and incorporate many kinds of optimization that result in good performance.

However, the implementation of an integrated approach requires access to the internals

of the system. As the implementation of the RBMs is by a system-by-system basis, it is

very hard and in most cases, impossible to maintain. In addition, it is not clear how event

constraints can be supported as none of underlying systems provide a way of specifying

and detecting events. In the case of Linux, implementation of RBMs may also depend

on the kernel version. Even though an integrated approach is viable in some systems it is

not the case always. Analogous to the wrapper-based approach, the integrated approach

is not flexible, extensible or portable.

4.2.3 The Event-driven Approach

The basic assumption for this approach is that the underlying system provides

some hooks that can be exploited to incorporate RBMs effectively. Utilizing the hooks

provided, additional user-required functionalities, such as the RBMs, can be supported

in the underlying system. In this approach, policy enforcement and the incorporation of

those policies into the system are separated. This is done using the following steps:

- enterprise access control policies are provided as high level specifications by security

administrators.

81

- event based active rules (please refer Section 4.3) are generated automatically (or semi-

automatically) from the high level specifications. In other words, supporting RBMs

using event based active rules.

- events are detected from the underlying system whenever any user-identified event

occurs. For example, an event can be the invocation of an application or application

process (please refer Section 4.3 for other type of events). The detected events trigger

appropriate set of active rules, thus enforcing RBMs.

The first step, which involves high level specification of policies, can be done via a

graphical user interface and is briefly explained in Section 4.5. In order for generating

event-based active rules from the high level specification, first we have to illustrate the

adequacy of these active rules for enforcing RBMs. If this is viable, then events can

be raised and appropriate conditions can be checked based on roles, and RBMs can be

supported in a uniform and transparent manner. We have explained event-based active

rules, how they are used in supporting RBMs, how they can be generated, and how active

security is provided, in Sections (4.3-4.5).

As this is an event-driven approach, primitive events (i.e., occurrence of interest)

have to be identified in a system-by-system basis. Thus, identification and generation

of primitive events is crucial in this approach. Primitive events can be based on tem-

poral (system time), location-based (sensors), invocation of applications, processes and

library routines in the underlying system, insert, delete and update of tuples in relational

databases, and so forth. Composite events (please refer Section 4.3) can be maintained

within the system or outside of the system. Primitive events can be generated in various

ways and are explained in Section 4.2.3.1. For example, System Calls can be intercepted

and utilized to generate primitive events in Linux. Similarly, triggers can be used for gen-

erating events in relational databases [151]. Once the events are generated or triggered,

using event-based active rules (refer Section 4.3), RBMs can be effectively supported.

82

Event-based active rules support RBMs with constraints, such as temporal, context-

aware, and so forth. Furthermore, as this is an event-driven approach, event constraints

can be supported without any problem. On the other hand, the same set of event-

based active rules can be reused in any underlying system for enforcing RBMs, making it

portable. Thus, a set of rules can enforce a particular Role-Based Model and the same set

of rules can be reused in any underlying system (e.g., Linux, Windows, Databases). As

this approach can support RBMs and any arbitrary event, it is flexible and generalized.

4.2.3.1 Approaches for Event Generation

In this section, we will elaborate on how events can be generated from an underlying

system. As temporal events can be generated from any underlying system and location-

based events can be generated from any sensor, we will concentrate on other events, such

as invocation of applications, processes, insertion of tuples in relational databases and so

forth.

Linux Systems: In Linux systems, various approaches can be used for generating prim-

itive events. We have explained two of such approaches below.

- System Calls: These calls cause software interrupts and serve as gates into the

kernel when an operating system service is required [150]. Pointers to these calls

are maintained in a table called “sys call table”. Primitive events can be triggered

by altering this table, but how the altering is done is totally dependent on the kernel

version. The main advantage of this approach is that the generation of primitive events

are centralized, as any process in the system has to finally invoke the system call in

order to access any service provided by the operating system.

- Library Routines: “Library functions are linked to programs and are more portable

[150].” System calls are wrapped around by library routines for performing certain

operations. For example, fopen() (function open) in turn invokes sys open() to actually

83

open a file. Thus, primitive events can be generated from library routines. The main

disadvantage of this approach is the identification of library routines that need to

generate primitive events.

Operating Systems: The above approaches are particular to Linux-based systems, but

there are many generalized approaches for generating primitive events in Linux, Windows,

Solaris and other systems. One such approach is the binary instrumentation approach

[152, 153].

- Binary Instrumentation: In this approach, instrumentation is performed at the

binary level [152]. Instrumentation is the ability to control the access to constructs

for possible semantic alteration pertaining to any code. Constructs can be either pure,

i.e., functions following standard calling conventions, or arbitrary, i.e., code blocks

composed of instructions not adhering to standard calling conventions. Similarly, an

instrumentation can be local, i.e., for a single process or a thread within the process or

global, i.e., for all processes. In addition, instrumentation can also be active or passive.

Thus, by utilizing binary instrumentation, primitive events can be triggered whenever a

process or thread within a process tries to request a service from the operating system.

Once events are triggered, active rules can be used to check for role-based constraints

before allowing the process to proceed further.

Databases: Similar to the approach presented in [154], events can be generated in object

oriented databases whenever a function is invoked by an object. In relational databases

[151], triggers can be used to generate primitive events for basic operations, such as

insert, delete and update.

Applications: Similar to the binary instrumentation discussed above, programming

instrumentation can be used to generate events from applications. For example, Bauer

et. al. [155] discuss Polymer – a language and system, for defining and composing

complex security policies for Java applications at run-time. Polymer enforces security

84

policies on untrusted Java applications by dynamically monitoring their behavior and

modifying them. Although events can be generated from Java applications using this

approach, it still falls under the category of the integrated approach discussed above.

Thus, it inherits all the problems of the integrated approach, since Java Virtual Machine

or Java Language API can change over time.

4.2.3.2 Optimizations

It is apparent that in order to support different RBAC components (or RBMs)

in the same system, one should not hardwire the semantics of the operations, such as

role activate and role assign, precisely as the semantics differ from one component to

the other. Let us take an enterprise that formulates policies using hierarchical RBAC.

There are I roles, where J roles have hierarchies and K roles don’t take part in role

hierarchy relationships (i.e., I = J +K and J ∩K = Θ). If NIST RBAC is implemented

as components, then for all the roles (i.e., I) the conditions pertaining to hierarchies

should be checked irrespective of their membership in the hierarchies. On the other

hand, if NIST RBAC is implemented following the role semantics, then role hierarchy

conditions can be checked only for those K roles. The implementation of NIST RBAC as

components or following the role semantics become even more crucial with SOD relations

and other constraints.

With the event-driven approach, it is easier to enforce RBMs based on the role

semantics rather than based on the access control model, as one event can be associated

with many active rules. The association of various “Condition-Action-Alternative Ac-

tion” component with “AddActiveRole” operation from [12], is depicted in Figure 4.2.

Thus, in the rest of the chapter we will show how event-driven approach is used to enforce

RBMs using event-based active rules.

85

Condition-Action-Alternative Action

Condition-Action-Alternative Action

Condition-Action-Alternative Action

for core RBAC

for Hierarchical RBAC

for Static SoD RBAC

AddActiveRole

Figure 4.2. Optimizations based on Role Semantics.

4.3 Event-Based Active Authorization Rules

We introduce On-When-Then-Else authorization rules, which are enhanced ECA

rules with alternative actions and enhanced operator semantics to support authorization

management of data. (Note: In the rest of the chapter, we will use active authorization

rules, active rules, authorization rules, and OWTE rules, interchangeably.)

Active authorization rules consist of five components and they are

• A Rule name (or Rname),

• An occurrence “O” of an event (or an occurrence of interest) Ei that triggers a set

of rules,

• “W” checks the conditions < C1, C2, . . . Cn> when an associated event is triggered,

• “T” triggers a set of actions < A1,A2, . . .An> when the conditions evaluate to

TRUE, and

• “E” triggers a set of alternative actions < AA1,AA2, . . .AAn> when the conditions

evaluate to FALSE.

An event occurrence can trigger rules that can be in the form of multiple rules,

nested/cascaded rules, prioritized rules, and causality rules. OWTE rules are specified

as shown below:

86

RULE [Rname

On Event < E i>

When < C1, C2, . . . Cn>

Then < A1,A2, . . .An>

Else < AA1,AA2, . . .AAn>]

4.3.1 Simple Events

An event is an occurrence of interest in an application or a system. All the events

that are predefined in the underlying system (i.e., domain-specific) are known as prim-

itive or simple events (Please refer Chapter 3 for more information on events). File

operations (i.e., opening, closing, etc.) in operating systems, method execution by ob-

jects in object oriented systems, data manipulations, such as insert, delete and update,

in relational database management systems, system clock of the underlying system (i.e.,

absolute or relative temporal events), external events (i.e., based on the data from sen-

sors), and so forth, are all simple or primitive events. For instance, shown below is

an event Ei that is detected when a function F is invoked by an object U . Parameters

(< PA1,PA2, . . .PAn>) are used by OWTE rules for checking conditions and perform-

ing actions.

Event Ei = U→ F(< PA1,PA2, . . .PAn>)

Some of the above mentioned events are used to enforce various functionalities of

RBAC. For example, when a user moves from one location to another, external events

can trigger some rules that can “activate/deactivate” roles.

4.3.2 Conditions

Multiple conditions i.e., < C1, C2, . . . Cn> can be associated with an event. These

conditions are evaluated when an event occurs. For example, when a user tries to open

87

a protected file in a pervasive computing domain, the system can check whether the

network is secure or insecure and can make decisions accordingly.

4.3.3 Actions and Alternative Actions

Once events are detected and all the associated conditions are evaluated to TRUE,

the predefined system critical actions (i.e., < A1,A2, . . .An>) are performed. For ex-

ample, when an internal security is triggered, the system takes the following actions;

i) generate reports and alert administrators, ii) deactivate a set of roles, iii) demote cer-

tain roles’ permissions, and iv) block access requests or impose certain access restrictions.

On the other hand, current event processing models do not handle when the conditions

evaluate to FALSE. In OWTE rules, alternative actions < AA1,AA2, . . .AAn> are trig-

gered when the condition evaluation returns FALSE. Alternative actions are critical in

the security domain. For example, when the user is in an insecure network, then the

protected file access should be denied.

Rule 1 (Rule with a Simple Event). Create a rule that checks for permissions when user

Bob tries to open a file “patient.dat” using the command 3“vi (patient.dat)”.

EVENT E1 = Bob→ vi(patient.dat)

RULE [S1

On E1

When if (checkaccess(Bob, patient.dat) is TRUE)

return TRUE; else return FALSE;

Then < allowopening patient.dat >

Else raise error “insufficient privileges”]

3We have used vi(patient.dat) to indicate that the file is opened using vi editor. This is just for

understanding and it is not the case always.

88

When user Bob opens the file i.e., O, permissions are checked using “checkaccess”

i.e., W; if Bob has the permission (i.e., if the condition returns TRUE), Then the file is

opened, Else an error is raised.

4.3.4 Complex Events

In addition to simple events, complex events are often required in many situations.

Using complex or composite events additional constraints can be placed on event occur-

rences while providing access control. Complex events are composed of more than one

simple or complex events using event operators [41, 93]. Some of the event operators are

AND, OR, NOT, SEQUENCE, Periodic, Aperiodic, and PLUS, and are formally defined

in Chapter 3. We explain some of these operators below in the context of RBAC and its

extensions, even though all of them are critical in access control.

Sequence (E1, E2): When two events4 E1 and E2 occur (i.e., “O”), a SEQUENCE

event is detected and the corresponding rules are triggered. With this event operator, E1

should occur before E2. The condition that a user should be active in role A to activate

role B (i.e., prerequisite roles in RBAC) can be specified using this event operator.

OR (E1, E2): This event is detected when any one of the two events, E1 or E2,

occurs and the corresponding rules are triggered.

Plus (E1, δ): This event is a relative temporal event. A simple or composite event

occurrence starts a PLUS event (i.e., at time “T”). After the specified time interval or

duration “δ” (i.e., at time “T + δ”), the PLUS event is detected. For example, a user

can be deactivated from a role after a certain duration “δ” using this operator.

Aperiodic (E1, E2, E3): This event is detected whenever the event E2 occurs

between two other events E1 and E3. The event E1 starts the Aperiodic event and E3

terminates the same. Event occurrences of E2 cannot detect an Aperiodic event before

4Events are represented as Ei in all the operators and they can be both simple and complex.

89

the occurrence of event E1 or after E3. Only when the event E2 occurs within E1 and E3,

an Aperiodic event is detected and the corresponding rules are triggered. For instance,

using Aperiodic, a role can be allowed to be enabled only during a transaction.

Periodic (E1, τ , E3): This event is similar to Aperiodic event except that it is

detected at a regular time interval “τ” between two other events E1 and E3. This event

operator can be used to periodically monitor the underlying system and generate reports.

All the above mentioned operators are critical and are necessary for providing

authorization management of data. Apart from the examples provided, all the operators

are also used for supporting various other functionalities of RBAC. Even though there are

other operators, we have explained only a few in the context of RBAC and its extensions.

A rule involving event operator PLUS is shown below.

Rule 2 (A Rule with a Complex Event). Create a rule for restricting user Bob from

keeping the file “patient.dat” open for more than 2 hours (i.e., δ). In other words, close

the file forcefully after 2 hours.

RULE [C1

On PLUS(E1, 2 hours)

When TRUE

Then < Closefile >]

In the above rule, the PLUS event5 is started when user Bob opens the file “pa-

tient.dat” using the “vi” editor (i.e., event E1 from Rule 1). This event is detected when

the duration δ (i.e., 2 hours) is elapsed, and the file is closed forcefully.

4.4 Active Authorization Rules Synthesis for Access Control Enforcement

In this section, we show the mapping between the basic elements in RBAC and its

extensions and the OWTE rule specification. In doing so, we are establishing OWTE rules

5In Rule 2, the PLUS event in the “ON” clause can be a named event as in Rule 1 i.e., “ON E2”,

where Event E2 = PLUS(E1, 2hours).

90

as an enforcement mechanism for the realization of access control policies. In addition,

we will demonstrate the following; 1) rules enforcing RBAC, 2) rules enforcing RBAC

extensions, and 3) rules supporting active security.

4.4.1 Entity Relationship Modeling

RBAC contains three basic element sets namely users (or U), roles (or R), and

permissions (or P). In addition to these basic elements, RBAC extensions have additional

elements, such as “purpose” and “object-policy” in privacy-aware RBAC [100] and so

forth. U represents humans, user applications and so forth, R represents a job function

in an enterprise, P represents the operations that can be carried out on objects by R,

and “purpose” represents business purposes6. All the basic elements are considered as

entities as they represent something that has a separate existence or conceptual reality.

All the users (i.e., humans, user agents, etc.) and roles (e.g., manager, cashier, etc.) in

an enterprise are modeled as entity instances of the basic entities U and R, respectively.

Entities U and R have M:N (i.e., many-to-many) relationship. Similarly, entities

can be associated with other entities by the means of role-permission assignments, role

hierarchies, purpose hierarchies, and so forth. Thus, associations between the entities

represents their relationships forming an Entity Relationship [156] like model. In this

work we will consider only the entities U and R and their relationships while discussing

our approach. On the other hand, constraints, such as separation of duty relations,

temporal, context-aware, active security, and others are placed on the relationships 7 so

that only entity instances that satisfy the constraints are allowed to take part in the

relationship. For example, constraints that are placed on user-role activation are checked

when an instance of entity U needs to take part in the relationship with an instance of

entity R.

6The purpose for which an operation is executed [100].
7These are similar to descriptive attributes [156] in ER model but for different purposes

91

4.4.2 Mapping OWTE and RBAC Elements

Mappings between OWTE rule elements and RBAC elements are provided below.

• All the events are represented as the set O, conditions as W , actions as T , alter-

native actions as E , and all the OWTE rules as S. External events are represented

as EE , system generated or local events as LE , and application generated events

as AP . Simple events set SE =
⋃
{AP , EE ,LE}. Complex events are represented

as the set CE and they contain several constituent events based on the operator

semantics. Thus, event set O =
⋃
{CE ,SE}.

• In access control, different requests are initiated by u ∈ U . For example, when a

user needs to activate a role he/she should make a request. When all the requests

are considered as a function/method call, then u ∈ U will invoke a method (i.e., u→

F (. . .)) in order to perform any activity in the system. Thus, all the requests, such

as role assignments/deactivations/enabling/disabling, accessing objects, etc, are

represented as the set Q. All the requests that are made by u ∈ U are represented

as the set UQ ⊆ U X Q, and all the user requests UQ form a subset of application

events.

• A rule s ∈ S is triggered when an event o ∈ O is detected. In NIST RBAC, only

an element uq ∈ UQ can trigger the simple event se ∈ SE , as it alone can request

accesses, assignments, activations, and so forth. On the other hand, in RBAC

extensions and active security, temporal events te ∈ LE , external events ee ∈ EE ,

such as locations from sensors, and so forth can trigger simple event se ∈ SE . For

example, when a user u ∈ U tries to activate a role r ∈ R using a user request

uq ∈ UQ, it will trigger an event o ∈ O. Similarly, any complex event ce ∈ CE

is always triggered by simple events, as they compose more than one simple or

complex event.

92

• Constraints are placed while an entity tries to take part in a relationship with

another entity (i.e., when requests are made). Diverse constraints are possible in

an access control system, such as; i) assignment time constraints, ii) activation

time constraints, and iii) temporal constraints. All the constraints can be imposed

with w ⊆ W, ee ∈ EE , le ∈ LE , and ce ∈ CE . For example, when a user tries to

activate a role by triggering an event, conditions will check whether the user has the

permission to be active in role (i.e., (u, r) ∈ UA8). On the other hand, constraints

such as prerequisite roles, maximum number of active roles for an user, how long a

user can be active in a role, etc. can be specified using ce ∈ CE .

• When a rule s ∈ S is triggered t ⊆ T and e ⊆ E are performed which in turn allow

or deny requests q ⊆ Q.

4.4.3 Enforcement using Active Rules

In this section, we demonstrate the use of active rules for enforcing certain func-

tionalities of RBAC and its extensions, and for providing active security. Generation of

authorization rules along with their implementation are discussed in Section 4.5.

All the active authorization rules that are generated form a rule pool. Three kinds

of rules are available in the rule pool; i) administrative rules, ii) activity control rules,

and iii) active security rules. Administrative rules are used with high level specification of

access control policies, activity control rules are used to control the activities that can be

performed by the instances of U , and active security rules are used for monitoring the state

changes and taking preventive measures. Rules are generated at different granularities

within each classification. Specialized rules that are specific to an instance of U (e.g.,

Bob), localized rules are specific to a particular role and are created based on the role

properties, and globalized rules are generalized and are not specific to any role.

8User-role assignments are set UA ⊆ U X R (Please refer to [12] for more details).

93

Consider three simple scenarios; 1) An user Jane should be restricted to a maximum

of five active roles at a time, 2) A role Programmer can be activated only by five users at a

time, and 3) An user Jim needs to be assigned to a role. Authorization rule corresponding

to scenario 1 is a specialized rule, as it restricts a particular user Jane from being active

in more than five roles. On the other hand, for scenario 2, the rule should be based on

the role as there can be many users who can be active in a role. Thus, a localized rule

that correspond to a particular role is created to limit the number of active users. On

the contrary, for scenario 3, user Jim should be assigned to a role and it can be any role.

This rule is a globalized rule, as it controls all the user-role assignments (i.e., the same

rule is invoked with different parameters). Rules corresponding to scenarios 1 and 2 are

activity control rules whereas 3 is an administrative rule.

4.4.3.1 Rules Illustrating RBAC Enforcement

We demonstrate the enforcement of core, role hierarchies, static SoD, and dynamic

SoD RBAC Standard components with the following active authorization rules.

Rule 3 (Add Active Role). Assume that a user is assigned to role R1. In order to

perform some operations that are allowed for R1, the user has to activate the role R1.

The rule activates R1 by adding R1 to the active role set of that user session.

EVENT E2 = user → AddActiveRoleR1(sessionId)

This rule corresponds to the “addActiveRole” from [12]. When the user tries to

activate the role R1, the function “AddActiveRoleR1” is invoked with the users’ session

identifier (or sessionId) as its parameter. This raises the event E2, which in turn triggers

the rule that checks whether the user can be activated in the role R1. Below shown are

four rules that correspond to different role properties;

94

RULE [AAR1

On E2

When (user IN userL) && (sessionId IN sessionL) &&

(sessionId IN checkUserSessions(user)) &&

(R1 NOT IN checkSessionRoles(user)) &&

(checkAssignedR1(user) IS TRUE)

Then addSessionRoleR1(sessionId)

Else raise error “Access Denied Cannot Activate”]

The rule AAR1 is used when role R1 does not take part in any relationship (i.e.,

core RBAC) such as hierarchies and SoD relations. First it checks whether user is

available in list userL9, then it checks whether the sessionId exists in list sessionL and

whether the session is owned by that user. Once verified, it checks whether the user is

assigned to role R1 using the function “checkAssignedR1” as a user should be assigned

in order to activate any role. It then checks whether the role R1 is not activated in that

session using “checkSessionRoles”. Once all the above conditions are verified, role R1 is

activated in that user session by invoking the function “addSessionRoleR1” and adding

it to the active role set10.

9We assume, users’ lists, role lists, and session lists containing user, role and session information,

respectively, are already available. We also assume that other functions that are used in the rule are

also available.
10The set containing all the active roles for an user.

95

RULE [AAR2

On E2

When (user IN userL) && (sessionId IN sessionL) &&

(sessionId IN checkUserSessions(user)) &&

(R1 NOT IN checkSessionRoles(user)) &&

(checkAuthorizationR1(user) IS TRUE)

Then addSessionRoleR1(sessionId)

Else raise error “Access Denied Cannot Activate”]

The rule AAR2 is used when the role R1 takes part in the general role hierarchies.

All the conditions are same as in rule AAR1 except one condition, which checks whether

the user is authorized to that role using the function “checkAuthorizationR1” instead of

“checkAssignedR1” . This is carried out, since the user can activate the role R1 if he is

assigned to the role R1 or to any of its senior roles.

RULE [AAR3

On E2

When (user IN userL) && (sessionId IN sessionL) &&

(sessionId IN checkUserSessions(user)) &&

(R1 NOT IN checkSessionRoles(user)) &&

(checkAssignedR1(user) IS TRUE) &&

(checkDynamicSoDSet(user, R1) IS TRUE)

Then addSessionRoleR1(sessionId)

Else raise error “Access Denied Cannot Activate”]

The rule AAR3 shown below is used when the role R1 takes part in the dynamic

SoD relation without hierarchies. This rule is similar to the rule AAR1 but with addi-

tional conditions for checking whether the dynamic SoD constraints are satisfied. Func-

96

tion “checkDynamicSoDSet” checks whether the addition of role R1 to the active role

set of the user satisfies the mutual exclusive constraints discussed in [12].

RULE [AAR4

On E2

When (user IN userL) && (sessionId IN sessionL) &&

(sessionId IN checkUserSessions(user)) &&

(R1 NOT IN checkSessionRoles(user)) &&

(checkAuthorizationR1(user) IS TRUE) &&

(checkDynamicSoDSet(R1) IS TRUE)

Then addSessionRoleR1(sessionId)

Else raise error “Access Denied Cannot Activate”]

The rule AAR4 is used when the role R1 takes part in the dynamic SoD relation

with hierarchies. This rule is similar to AAR2 but with additional conditions for checking

whether dynamic SoD constraints are satisfied, similar to AAR3.

Similar to all the above scenarios, activating a role that has the static SoD relation

will use the rule AAR2 if the role R1 takes part in the role hierarchies or the rule AAR1

is used if it does not take part.

Rule 4 (Cardinality Constraints). Restrict the number of users who can be active in a

role at the same time. For instance, there is only one person in the role of a university

president. Below shown rule allows only five users to be active in role R1 at a time.

Similarly, the number of roles a user can be active at the same time can also be restricted.

EVENT E3 = addSessionRoleR1(sessionId)

EVENT E4 = removeSessionRoleR1(sessionId)

97

RULE [CC1

On E3

When if (CardinalityR1(INCR) IS TRUE) return TRUE

else return FALSE

Then perform action <add role R1 to session with sessionId>

Else raise error “Maximum Number of Roles Reached”]

RULE [CC2

On E4

When TRUE

Then CardinalityR1(DECR)]

Cardinality constraint for the above mentioned scenario requires to restrict the role

activation so that no more than five users are activated. When the user tries to activate

role R1 it triggers any one rule from AAR1 . . .AAR4 based on the access control policy

and role property, since these rules are used to activate the role R1. When the user

satisfies all the conditions then the function “addSessionRoleR1” is invoked in order to

add the role R1 to active role set of that user session. This function raises event E3

which in turn raises rule CC1 shown above. It checks whether the maximum limit of 5

users is reached by invoking the function “CardinalityR1” with value INCR indicating

the addition of a user. If the maximum number of users for role R1 is not reached, then

the role is activated, else the error “Maximum Number of Roles Reached” is raised by

rule CC1. Similarly, when the role R1 is deactivated event E4 is detected and the function

“CardinalityR1” is invoked with DECR as the parameter, which reduces the count of the

number of users active in role R1 by one, so that new users can be activated.

98

Rule 5 (Check Access). Check whether the subject (i.e., instance of U) of a given session

is or is not allowed to perform a given operation (e.g., read, write, etc.) on a given object

(e.g., .dat file, etc.)

EVENT E6 = user → checkAccess(sessionId, operation, object)

RULE [CA1

On E6

When (sessionId IN sessionL) &&

(operation IN opsL) && (object IN objL) &&

(For ANY role IN getSessionRoles(sessionId)

(IF checkPermissions(operation,object, role) IS TRUE

return TRUE))

Then < allow Access >

Else raise error “Permission Denied”]

The rule CA1 is triggered when the user tries to perform any operation on any

object (i.e., event E6). The rule allows the user-requested operation only when at least

one role from his active role set for that session has the required permission. This is

carried out by the “For” statement that retrieves all the roles from the active role set and

checks whether at least one role has the required permission using the “checkPermissions”

function. Above shown rule is the same for all the roles that do or do not take part in

any type of relationships.

4.4.3.2 Rules Illustrating RBAC Extensions Enforcement

Even though RBAC has been extended extensively with various constraints, be-

low we demonstrate the support for temporal and control flow dependency constraints.

Generalized Temporal RBAC [23] provides an exhaustive set of temporal constraints.

99

Control flow dependency constraints often occur in task oriented systems and are stricter

forms of dependency constraints [37]. We show how a subset of time based SoD and

post-condition constraints from [37] are supported.

Rule 6 (Disabling Time SoD). Two roles from a given role set RS cannot be disabled

at the same time in the interval (I, P) (NOTE: (I, P) corresponds to 〈[begin, end], P 〉,

where P is a periodic expression denoting an infinite set of periodic time instants, and

[begin, end] is a time interval denoting lower and upper bounds that are imposed on

instants in P). Role disabling is of main concern where availability is a primary concern

[37]. For instance, both “Nurse” and “Doctor” roles cannot be disabled at the same time

within the interval ([begin, end], P)11.

EVENT StartD = event corresponding to date expression

EVENT EndD = event corresponding to date expression

EVENT ET1 = roleDisableNurse()

EVENT ET2 = roleDisableDoctor()

EVENT ET3 = OR(ET1, ET2)

EVENT ET4 = Aperiodic([StartD], ET5, [EndD])

EVENT ET5 = Aperiodic([10 : 00 : 00/ ∗ / ∗ /∗], ET3,

[17 : 00 : 00/ ∗ / ∗ /∗])

11In this example we consider P as 10 a.m. to 5 p.m. every day. 10 a.m. every day is represented

as [10:00:00/*/*/*], where the general form is “24h:mi:ss/mm/dd/yyyy”. Periodic expression P in

GTRBAC can be represented using event operators in active rules.

100

RULE [T SOD1

On ET4

When (if roleDisableNurse == TRUE

((if checkActiveDoctor() IS TRUE) return TRUE

else return FALSE)

else if roleDisableDoctor == TRUE

((if checkActiveNurse() IS TRUE) return TRUE

else return FALSE))

Then (if roleDisableNurse == TRUE Then disableNurse()

else if roleDisableDoctor == TRUE Then disableDoctor())

Else (if roleDisableNurse == TRUE

raise error “Denied as Doctor Already Disabled”

else if roleDisableDoctor == TRUE

raise error “Denied as Nurse Already Disabled”]

The rule T SOD1 provides time based SoD constraints, which does not allow both

the roles “Nurse” and “Doctor” to be disabled at the same time in the interval (I, P).

We have represented the interval I and P as [StartD, EndD] and ([10:00:00/*/*/*],

[17:00:00/*/*/*]), but they can any type of simple or complex event. For example,

[StartD] can be the start of the year and [EndD] can be the end of the year. The event

ET1 is raised whenever the role “Nurse” needs to be disabled. This will trigger the event

ET3 that is an OR event, which propagates the same to both the Aperiodic events ET4

and ET5. The event ET4 triggers the rule T SOD1 when an user tries to disable the role

Nurse within 10 a.m. and 5 p.m. and within [begin, end]. The rule T SOD1 determines

whether the role “Nurse” can be disabled by checking whether the role “Doctor” is

active, if so it allows to disable the role “Nurse” else it raises an error. In the similar way,

101

disabling of the role “Doctor” is addressed. All the internal conditions such as checking

with role lists are not shown in the above rule.

Rule 7 (Deactivating a Role after δ). Deactivate an activated role after a duration δ.

This is similar to limiting car parking to a fixed number of hours at one time [23]. Below

shown rules restrict the duration constraints on a per user-role basis, where a role R3 is

deactivated after the specified maximum duration in one activation by the user Bob.

EVENT ET5 = Bob→ addActiveRoleR3(sessionId)

EVENT ET6 = startEventET7(sessionId)

EVENT ET7 = PLUS(ET6, δ)

RULE [AAR5

On ET5

When . . .

Then (. . .) startEventET7(sessionId)

Else . . .]

RULE [T SOD2

On ET7

When TRUE

Then deactivateRoleR3(sessionId)]

The event ET5 is raised whenever the user Bob activates the role R3. This triggers

the rule AAR5 which in turn raises the event ET6. We have not shown all the other

clauses of the rule AAR5, intentionally. The event ET6 starts the PLUS event ET7.

After the duration δ the event ET7 is detected and the rule T SOD5 is raised, which

deactivates the role R3. The event ET5 cannot be used to start the PLUS event ET7 as

the event ET7 should be started only after the role R3 is activated.

102

Rule 8 (Post-condition CFD). If an event occurs, then the other event must also oc-

cur. For instance, if role “SysAdmin” role is enabled then role “SysAudit” must also be

enabled, other wise both the roles should not be enabled.

EVENT ET8 = enableRoleSysAdmin()

EVENT ET9 = enableRoleSysAudit()

EVENT ET10 = disableRoleSysAdmin()

EVENT ET11 = disableRoleSysAudit()

RULE [CFD1

On E8

When (. . .)

Then (. . .) enableRoleSysAudit()

Else raise error “Cannot Activate SysAdmin”]

RULE [CFD2

On E9

When (. . .)

Then (. . .)

Else disableRoleSysAdmin() &&

raise error “Cannot Activate SysAudit”]

As shown above, when the role “SysAdmin” has to be enabled, it will trigger

event ET8 which will trigger rule CFD1. This rule enables the role “SysAdmin” and

tries to enable role “SysAudit” by triggering event ET9. This event triggers rule CFD2

which in turn enables the role “SysAudit” when all conditions are met. When it cannot

enable the role “SysAudit” it disables the role “SysAdmin” by invoking the function

“disableRoleSysAdmin”. As function “enableRoleSysAudit” is the only function that

can enable the role “SysAudit” OWTE rules overcomes the problems faced by [37].

103

4.4.3.3 Rules Illustrating Active Security

Active security is critical for detecting and monitoring the state changes of the

underlying system to take timely actions.

Rule 9 (Transaction Based Activation). Any junior employee is allowed to activate the

role “JuniorEmp” ONLY IF the role “Manager” is activated. On the other hand, if the

role “Manager” is deactivated, then role “JuniorEmp” should also be deactivated.

EVENT ET12 = user → addActiveRoleManager(sessionId)

EVENT ET13 = user → addActiveRoleJuniorEmp(sessionId)

EVENT ET14 = user → deactivateRoleManager(sessionId)

EVENT ET15 = user → deactivateRoleJuniorEmp(sessionId)

EVENT ET16 = startEventET16(sessionId)

EVENT ET17 = startEventET17(sessionId)

EVENT ET18 = Aperiodic(ET16, ET13, ET17)

RULE [ASEC1

On E12

When (. . .)

Then < activateRoleManager >

<startEventET16(sessionId)>

Else raise error “Permission Denied”]

104

RULE [ASEC2

On E14

When (. . .)

Then < deactivateRoleManager >

if activeJuniorEmp() IS TRUE

< deactivateRoleJuniorEmp >

startEventET17(sessionId)

Else raise error “Permission Denied”]

RULE [ASEC3

On E18

When (. . .) return (TRUE|FALSE))

Then < activateJuniorEmp >

Else raise error “Permission Denied”]

The event ET12 and ET13 are raised when roles “Manager” and “JuniorEmp”

have to be activated, respectively. Similarly, events ET14 and ET15 are raised when the

roles have to be deactivated. On the other hand, the event ET16 is raised after the

role “Manager” is activated and the event ET17 is raised after the role “Manager” is

deactivated. As shown, the event ET12 triggers the rule ASEC1 which in turn activates

the role and raises the event ET16. Similarly, the event ET14 triggers the rule ASEC2

which in turn deactivates the role and raises the event ET17.

Let us assume that a user is trying to activate role “JuniorEmp”. It will raise

the event ET13, which does not take any action as the Aperiodic event ET18 is not

yet started. Activating role “Manager” triggers the event ET12 which checks for the

necessary conditions and activates the role, and raises the event ET16 that in turn starts

the Aperiodic event ET18. Now, when an user tries to activate role “JuniorEmp”, it raises

105

the event E13 which in turn raises the Aperiodic event ET18 that had been already started.

This triggers the rule ASEC3 which in turn checks whether all the constraints are satisfied

in the “W” clause and returns TRUE or FALSE. If it returns TRUE, role “JuniorEmp”

is activated using < activateJuniorEmp >. On the other hand, deactivating the role

“Manager” raises the event ET14. After deactivation, the role “JuniorEmp” is deactivated

and the event ET17 is raised, which in turn terminates the Aperiodic event ET18. As

the event ET17 acts as a terminator it stops the Aperiodic event ET18 and the future

activation of role “JuniorEmp”, until the role “Manger” is activated again.

4.4.4 Summary and Advantages of OWTE Rules

In this section we have explained the synthesis of active authorization rules for

enforcing RBAC and its extensions. We have demonstrated the seamless approach for

supporting RBAC, its extensions and active security with various examples and rules.

In addition to the above, privacy-aware RBAC [100] can also be enforced using OWTE

rules as it also follows the Entity Relationship model described before.

4.5 Prototype Implementation

Sentinel [148, 43] is an active object oriented system that supports event based rule

capability i.e., Event-Condition-Action model, using a uniform framework. In Sentinel, a

reactive object is an object that has traditional object definition plus an event interface

and a notifiable object is capable of being informed of the occurrence of some event. The

event interface lets the object designate some or all of reactive object methods as primitive

event generators. Together, both the kind of objects enable asynchronous communication

with the rest of the system. Sentinel includes an event detector that is responsible for

processing all the notifications from different objects and eventually signaling to the rules

that some event has occurred triggering them. In addition, external monitoring module

supports external events such as those from sensors, thus, supporting location/context-

106

aware events. Sentinel+ is an enhanced version of Sentinel that supports OWTE rules.

In our implementation, users are allowed to provide high level specification of enterprise

access control policies (ACPs) using RBAC Manager, a graphical tool (i.e., a widget tool

kit). In RBAC Manager, ACPs can be specified using various widgets which takes the

form of a Entity-Relationship like model as described in Section 4.4.

Enterprise XY Z described below will be used in this section to explain user speci-

fication, rule generation and implementation. In enterprise XY Z, ACPs are formulated

using NIST RBAC with static SoD with role hierarchies. It consists of two major de-

partments “purchase” and “approval”. Purchase department is authorized to place the

“purchase order” for equipments or other materials required by the enterprise. Approval

department is the one that can authorize the purchases. Thus, static SoD relations are

required, since the same person placing purchase orders cannot authorize it. In enter-

prise XY Z, there are five roles with the following hierarchies purchase manager (PM)

→ purchase clerk (PC) → clerk, and approval manager (AM) → approval clerk (AC)

→ clerk. For instance, role PM is a senior role to PC. Roles AC and PC have static

SoD constraint relation between them. Since role hierarchies are present PM inherits the

static SoD constraints from PC. Thus, a user assigned to the role PM cannot be assigned

to the role AM or AC. Likewise, an user assigned to the role AM cannot be assigned to

the role PM or PC.

High level specification for enterprise XY Z is shown in Figure 4.3. All the nodes

represent an instance of entity R (i.e., roles). First, the role nodes corresponding to

roles PM, AM, PC, AC and Clerk are created. Flags corresponding to relationships

(i.e., hierarchy, station SoD relations, and active security constraints) are stored in the

node. For instance, role nodes PC and AC have the Static SoD flags set once they are

connected using the dashed line. All the flags are set when the role node to TRUE or

FALSE when the policies are specified using a graphical tool RBAC Manager. Parent

107

PM AM

PC AC

Clerk

Static SoD

Hierarchy

Subscribers

Role Nodes

Figure 4.3. Access Control Policy Specification.

nodes are connected to the child nodes when there is a hierarchical relationship and static

SoD constraints are represented as a dashed line between two nodes. Each node has an

internal subscriber list that is used to point to the parent node. This pointer allow the

child nodes to identify their parent nodes when the list of authorized users is required.

On the other hand, constraints can be propagated in a bottom up manner using the

pointers. (Note: Pointers shown in the Figure are not specified by users and they are

generated by the system using the flags.)

Once the policies are specified, they are instantiated and the rules are generated.

Let us take role PC for the discussion. Role PC has a static SoD and role hierarchy and

when the policies are instantiated, rules corresponding to the role PC are generated. For

instance, rule corresponding to activating role PC (i.e., “addActiveRolePC”) is created.

This rule is similar to rule AAR2 that was explained in Section 4.4 as role PC has static

SoD and role hierarchies. Similarly all the other rules corresponding to PC and all the

other roles are also created. Once all the rules are created it can enforce the policy

specified by the enterprise. Currently, we assume that the policies specified using NIST

108

RBAC and others do not have inconsistencies, but we are in the process of developing

advanced consistency checking mechanisms.

When there is a change in the policy, for example, the shift time of role “day

doctor” is changed from (8 a.m. to 4 p.m.) to (9 a.m. to 5 p.m.), it can be easily

changed in the high level specification and the corresponding rules can be regenerated.

This can be done without burdening the administrator as the rules are created using the

access specification graph. With current systems and models it is a cumbersome process

as all the low level semantic descriptions have to be changed manually. When there are

thousands of rules, it is highly error prone to change them manually.

4.6 Summary

In this chapter we have shown how active authorization rules rules are used to

enforce RBAC, and its extensions such as temporal, and control flow dependency con-

straints in a uniform way. We have also shown how active security is provided that can

take timely actions and prevent malicious activities. Rules generated have different gran-

ularities and classifications based on their functionalities. Expression of RBAC standard

and its extensions in terms of OWTE rules provide practically applicable view of RBAC.

Same set of rules can be used to realize all of the Role-Based models and the same set

of rules can be realized in any underlying system (that provide some hooks) to support

Role-Based models. Large enterprises have hundreds of roles, which requires thousands of

rules for providing access control, and generating these rules manually is error-prone and

a cognitive-burden for non-computer specialists. High level specifications of access control

policies eliminate the above problems and are transparent to non-computer specialists.

OWTE rules are not created manually by administrators and we have shown briefly how

authorization rules are generated from high level specifications of access control policies

using Sentinel+.

CHAPTER 5

GENERALIZATION OF ROLE-BASED ACCESS CONTROL

Time-, content-, and purpose-based, context-aware as well as other constraints

play a critical role in realizing Role-Based Access Control in diverse domains. In this

chapter, we extend and generalize RBAC with event pattern constraints. We introduce

constraints based on the expressive event patterns1 that allow RBAC security policies to

include both simple and complex event patterns that occur over a period of time. These

constraints can be specified on, and using, both role-dependent and role-independent

operations, facilitating the modeling of complex constraints that are required in many

real-world applications. First, we motivate the need for event pattern constraints in

RBAC. Second, we generalize the simple and complex event definitions. Finally, we

identify simple or basic events in the context of RBAC, and introduce various operators

for modeling event pattern constraints.

5.1 Introduction

Enterprises in different domains have different access control requirements [32, 33,

34]. Constraints [14, 15, 16, 17, 18, 19, 20, 21, 22, 23] are critical in realizing RBAC

over diverse domains, as they provide the flexibility for specifying fine-grained RBAC

policies. Users, roles, and permissions are the three basic element sets of RBAC, and

they are constrained for supporting fine-grained access policies. There has been a lot

of work in adding constraints to RBAC such as time-, event-, content-, purpose-based,

context-aware, and so forth.

1Event patterns are event expressions defined in Chapter 3.

109

110

Briefly, roles in RBAC can assume three different states [23]: enabled, disabled

and active. Role operations such as enabling, disabling, activation, and deactivation are

mainly constrained as they control the role-state changes. In addition, various other

operations such as assignments, de-assignments and user access requests are also con-

strained. On the other hand, constraints can also be specified based on the users or

permissions. Currently, constraints can be specified in many ways; parameterized roles,

predicates, simple role-dependent events (events based on role operations), simple role-

independent events (events based on external factors such as time), environmental roles

(e.g., location) and so forth. Although RBAC has been explored and extended with vari-

ous constraints, they use some static way of providing constraints (elaborated below). In

particular, instead of extending RBAC along various dimensions (e.g., temporal dimen-

sion) individually, is it possible generalize constraint specification? Our premise is that

any occurrence of interest can be considered as an event, and those events can be used

to generalize constraint specification. This is detailed with the following example.

5.1.1 Motivation Examples

Generalized Temporal RBAC [23] extends the RBAC in the temporal dimension

and provides exhaustive set of temporal constraints. Let us take the scenario of a

class room lecture from GTRBAC [157]. In this example, GTRBAC places periodic-

ity/duration constraints on the role-permission assignments (i.e., Time duration/period

over which the object’s permissions can be assigned to roles).

With virtual universities and online degree’s awarded, online course management

play a critical role. Consider the example of an online course management, shown in

Figure 5.1 (reproduced from [157]). The main reason for selecting an online course

management application, is their need and utilization of access control policies. Assume

that a professor offers an online course on “Computer Security”. The professor creates

111

role CS
Registrant

HW 1 (PHW
1
)

HW 2 (PHW2)

HW n (PHWn)

Lecture 1 (PL
1
)

Lecture 2 (PL2)

Lecture n (PLn)

HWS 1 (PHWS
1
)

HWS 2 (PHWS
2
)

HWS n (PHWS
n
)

(startdate, enddate)

(startdate+1week, enddate)

(startdate+(n-1)week, enddate)

(startdate+3days, startdate+2weeks)

(startdate+10days, startdate+3weeks)

(startdate+7(n-1)days, startdate+2weeks)

(startdate+2weeks, enddate)

(startdate+3weeks, enddate)

(startdate+(n+1)weeks, enddate)

Homework Solutions

Lectures

Homework

Role-Permission
assignement Intervals

Student 1

Student 2

Student n

Figure 5.1. GTRBAC Online Course Example (Role-Permission Assignment).

a role “CSRegistrant” as shown in Figure 5.1, and divides the course materials to be

posted online into three sections (object categories):

1. Lectures: There are n lectures – Lecture 1, Lecture 2, . . . Lecture n. The permission

set related to the ith lecture is represented as PLi.

2. Home works: There are n homework assignments (shown as HW 1, HW 2, . . . HW n)

corresponding to n lectures. The permission set associated with the ith homework

assignment is PHWi.

3. Homework solutions: There are n homework solutions (shown as HWS 1, HWS

2, . . . HWS n) corresponding to the n homework assignments. The permission set

associated with the ith homework solution is PHWSi.

112

The course starts on the date startdate and ends on enddate. The course duration

is n+2 weeks – n lectures for n weeks and 2 remaining weeks for reviews and exams. The

professor uses the following three rules to control access to the different sections:

The rule corresponding to the lectures is:

Rule 1: The ith lecture is made available to students on the start of the ith week

of the course (say Monday) and is made accessible till the end of the course.

For homework assignments, the professor uses the following rules:

Rule 2a: Three days after the start of a weekly lecture, the corresponding home-

work assignment will be made accessible to the students.

Rule 2b: One week after the end of the ith lecture, the ith homework assignment

will be removed (i.e., it is made inaccessible).

The rule corresponding to the homework solutions is:

Rule 3: when an homework assignment is removed as in the rule 2b above, then

the corresponding solution is posted and it is made available till the end of the course.

Problems with Current Approach: Figure 5.1 shows the constraint specifica-

tion and how rules 1 through 3 are enforced. Let us take Lecture 1; as shown, Lecture 1

is posted on startdate and ends in enddate. This is a static date assignment and needs to

be changed; every semester, every course, every section, etc. Thus, making this assign-

ment dynamic this problem can be averted. For instance, when the date is considered

as a simple event, which is triggered from a smart calendar every semester, then there

is no need of static assignment of dates. Let us take Lecture 2 to n; as shown, Lecture 2

should be posted exactly one week from the date Lecture 1 started and Lecture n should

be posted exactly one week from the Lecture n-1. The above postings do not take into

account the real life scenarios where a lecture can span more than one week. In this

case, it will be appropriate, if the Lecture i+1 can be started when Lecture i is completed.

113

Thus, completion of the Lecture i can trigger a simple event that can in turn start Lecture

i+1.

Consider Homeworks 1 to n; all the homeworks are assigned after 3 days from

the start of the weekly lecture, and they are disabled one week after the end of the

corresponding lecture (see Rules 2a and 2b). These static assignments will also inherit

the problems discussed above, and will certainly lead to cascading mix up situations.

Thus, modeling the enabling of homework as an relative event (i.e., an event is triggered

after a certain time of the associated event occurrence) to a lecture event, will allow

dynamic modeling without any mix up. Similarly, homework assignments have to be

associated with the homework assignments using events to avoid the problems discussed

above. With event-based access control, the above enhancements will make the online

course management more effective, and convenient to the professor.

Summary: From the above online course management example it is discernible

that events are required to model real-world scenarios. The above example brought out

the need for simple events (events generated from smart calendar) and complex events

(a relative event that is dependent on another event).

In addition to the online course management, we discuss another example where

events are required. Health care domain requires both temporal and context-aware con-

straints, but it also requires event-based access control. Consider a scenario where a

Nurse is trying to enter the patient wards. Consider, three wards virus, pregnant, hy-

giene, where the virus ward has patients with virus, the pregnant ward has patients who

are pregnant, and the hygiene ward is a place for the employees to hygienize themselves.

A typical requirement would be to control the access to the wards, so that the nurses

exiting virus ward do not enter (intentionally or unintentionally) the pregnant ward,

without hygienizing. On the other hand, if the nurses come directly, or from the hygiene

ward to the pregnant ward, they need to be granted access. In order to model these

114

requirements, complex events are required, and cannot be modeled and enforced using

the current access control models. This typical scenario requires the detection of an

non-occurrence event pattern (or NOT event described in Chapter 3), where the event

pattern will be initiated when the nurse enters the virus ward and will be terminated

when the same nurse enters the hygiene ward. When the nurse enters the virus ward,

and then try to enter the pregnant ward, non-occurrence of the hygienizing event should

be captured, and the access must be denied.

Events defined in the above two examples are based on the users, roles, objects, and

operations. There are other scenarios where various event patterns have to be combined,

and not just a non-occurrence event pattern. We have shown many other scenarios in the

following sections, and have shown how they can be specified using event patterns. In

general, current systems do not support expressive event patterns and their unrestricted

combinations.

5.1.2 Event-Based Generalization

Temporal RBAC [20] introduced simple role events providing event-based con-

straints for periodically enabling and disabling roles using triggers. Generalized Temporal

RBAC [35, 36, 37, 158, 23] extended this further: by modeling three different states (dis-

abled, enabled, active) for roles, by adding duration constraints, time based semantics for

role hierarchies, and separation of duty relations. As events are ubiquitous, event-driven

[20, 23, 84, 94, 85, 38, 86] policies, verifications, and enforcements are gaining importance

in RBAC.

Figure 5.2 illustrates a typical system enforcing the ANSI RBAC functional specifi-

cation. Users represent the subjects and objects represent the system resources. Database

shown in the figure represents the users, roles and other mappings that need to be main-

tained for enforcing the RBAC policies. Function or method definitions shown in the

115

Database

User

User

 addUser(...) {...}
 deleteUser(...) {...}
 addRole(...) {...}
 deleteRole(...) {...}
 assignUser(...) {...}
 deassignUser(...) {...}
 +

 grantPermission(...) {...}
 revokePermission(...) {...}
 createSession(...) {...}
 deleteSession(...) {...}
 addActiveRole(...) {...}
 dropActiveRole(...) {...}
 checkAccess(...) {...}
 +............

O
bj

ec
ts

Figure 5.2. Enforcing ANSI RBAC Specification.

figure represents the NIST RBAC standard functions (refer Chapter 2 and [12]). Func-

tions “addUser(. . .){. . . }”, “addActiveRole(. . .){. . . }”, and so forth, are invoked based

on the user operation. For instance, when a user is trying to activate any role in the

system, function “addActiveRole(. . .)” is invoked. The function definition is shown in

Figure 5.3. This function accepts user, role and session as an input. It checks whether

the information regarding user, role and session is TRUE. It also checks whether the user

is assigned that role. It then adds the role to this session (i.e., activates the role). When

the user does not have the permission it denies the access.

How can events be used to generalize the RBAC constraint specification in all the

four components of the ANSI RBAC reference model needs to be addressed. One of the

main goal is to preserve the ANSI RBAC functional specification without dissevering

the function definitions. Constraints on events can be based on the context, temporal,

or other events. Simple (or primitive) events can be defined based on the RBAC basic

elements sets or the operations performed (i.e., role-dependent events) or based on the

116

Figure 5.3. Add Active Role - Core RBAC.

underlying system or application or external to the system (i.e., role-independent events).

Constraints on the simple role-dependent events, proposed by current systems, are inade-

quate in many situations as the role-dependent events need to be controlled based on the

complex event patterns (or the composition of simple role-dependent or role-independent

events). In addition, merely capturing the temporal history information over which the

simple events occur are not sufficient as the temporal dimension across different oc-

currence of events (complex events) is required. In other words, temporal history over

which the combinations of role-dependent, role-independent, role-interdependent events

are spread across needs to be captured.

As event pattern specification assumes a domain-specific set of simple events and

the rest of the complex events are built using these primitive events and a number of event

operators, it fits well with the needs of applications domains. Event-based approach also

allows one to expand the set of primitive events dynamically as the need arises. This

approach readily permits the use of event patterns for controlling the roles, as the system

states change. For example, occurrence of multiple events E1, E2, . . . , Ei following a

particular pattern Ep within a time interval ∆t can allow a particular state change Sj in

the system. Ep represents the event pattern, and events E1, E2, . . . , Ei can be simple or

117

complex events or other event patterns. Ordering of events that occur over a period of

time T can be specified using event patterns, which combine various constituent events

using logical, temporal, and other relationships or operators. Thus, all operations in a

RBAC system can be constrained by complex yet meaningful event pattern constraints.

Extending RBAC with event pattern constraints will provide a dynamic and generalized

way of providing constraints. Furthermore, it will allow applications to model real life

situations and will cater a larger class of applications.

Invocations of the function definitions shown in Figure 5.4, can be captured as

simple events. Thus, the generalization of RBAC with event pattern policies can be

achieved by introducing an abstraction between the function invocations and the func-

tion definitions, as shown in Figure 5.4. Event pattern policies are specified on these

role-dependent operations. Thus, whenever a function is invoked it triggers an event

which in turn is checked for event ordering based on the event pattern constraint. Once

the event pattern constraint is met original RBAC definitions are invoked using the func-

tion definitions “ addUser(. . .). . . ”, “ addActiveRole(. . .). . . ”, and so on. Thus, event

pattern constraints act on top of the original RBAC constraints. This abstraction also

allows the support of all the four components of the ANSI RBAC in a seamless manner,

as function definitions from any of the component can be plugged-in as needed. On

the other hand, event pattern policies can also contain role-independent operations as

constituent events. For example, when an event corresponding to the role activation is

triggered, other constraints based on context, time, etc can be checked before invoking

the function “ addUser(. . .). . . ” to check basic RBAC constraints.

Primary Goals: Based on our discussions the primary goals for our work are:

• To incorporate RBAC into the existing event framework.

• To preserve the ANSI RBAC functional specification without dissevering the func-

tion definitions.

118

Database

User

User

 _addUser(...) {...}
 _addActiveRole(...) {...}
 _deleteUser(...) {...}
 _addRole(...) {...}
 _deleteRole(...) {...}
 _assignUser(...) {...}
 _deassignUser(...) {...}
 +

 _grantPermission(...) {...}
 _revokePermission(...) {...}
 _createSession(...) {...}
 _deleteSession(...) {...}
 _addActiveRole(...) {...}
 _dropActiveRole(...) {...}
 _checkAccess(...) {...}
 +............

 addUser(...);
 addActiveRole(...);
 deleteUser(...);
 addRole(...);
 deleteRole(...);
 assignUser(...);
 deassignUser(...);
 +

 grantPermission(...);
 revokePermission(...);
 createSession(...);
 deleteSession(...);
 addActiveRole(...);
 dropActiveRole(...);
 checkAccess(...);
 +............

RBAC policies with
Event Pattern Constraints

Policy Specification and Enforcement

F
in

e-

gr
ai

ne
d

C
on

tr
ol

s

O
bj

ec
ts

Figure 5.4. RBAC with Event Pattern Constraints Overview.

• To generalize the existing event framework so that it can be used for a larger class

of applications including RBAC.

• To generalize RBAC with the generalization of event framework.

In this chapter we will discuss the generalization and extension of RBAC with

event pattern policies. In the rest of the chapter we present expressive event pattern

constraints for RBAC. First, we explain simple or basic events, complex events, event

attributes, event operators and event types in Snoop. We discuss the limitations of the

current event specification and then generalize it. We then discuss events in the context

of RBAC and show the adequacy of events for capturing RBAC policies and extend

119

them with event pattern constraints. We also show how event pattern constraints are

specified for all RBAC operations. Specification of constraint alone are not sufficient

as security mechanisms to enforce them are equally important. The main advantage of

our event-based approach is due to the enforcement techniques. With the Local Event

Detector (LED), once event pattern policies are specified using Snoop language they

can be directly enforced in the underlying system. In other words, in our approach

specification and enforcement are not orthogonal, as opposed to the current approaches.

We discuss the enforcement of these generalized event pattern policies in Chapter 6.

5.2 Event Specification Generalization

Events have been employed successfully in various application domains for situation

monitoring. Snoop and SnoopIB discussed in Chapter 3 provide well-defined point-based

and interval-based event semantics, respectively. Although both event semantics can

be used for event patterns, they are inadequate for supporting many newer application

domains including RBAC. First, we discuss why current event patterns are insufficient

using different application domains, and then show how we generalize the current event

specification. We then show how the generalized event specification is used in generalizing

the ANSI RBAC with event-based constraints.

5.2.1 Existing Event Definitions

Events2 are organized into a hierarchy of event classes for providing a common

structure and behavior. Each event occurrence of an event class is the instance of that

particular event. Events are classified as simple and complex, where the simple events are

domain-specific and complex events are compositions of simple and complex events using

predefined event operators. First, we define the set of simple events that act as the basic

2We give a brief overview of the existing event specification in this section. For a more detailed

discussion please refer to Chapter 3.

120

building block for event patterns. We also explain event attributes, types, properties,

definitions, and representations. Second, we discuss the set of event operators that are

used for constructing constraints, and introduce the BNF for the constraint specification.

Finally, we discuss the semantics of both the simple events and complex event operators.

Definition 2 (Event). An event is defined as any occurrence of interest in an application,

system, or environment. An event E occurs over a time interval [t1, t2] and is denoted by

O(E[t1, t2]), where t1 is the start time of the event denoted by ↑ E, t2 is the end time of

the event denoted by E ↓ and “O” represents the interval-based event semantics3.

Start and end time of an event is formally defined as:

Start time : O(↑ E, t) , ∃t ≤ t′(O(E, [t, t′]))

End time : O(E ↓, t′) , ∃t ≤ t′(O(E, [t, t′]))

5.2.1.1 Event Attributes, Types and Properties

Each event has a well-defined set of attributes that provide the necessary informa-

tion about that event. These attributes are based on implicit and explicit parameters.

Implicit parameters are optional and, contain system and user defined attributes, such

as: event name, time of occurrence (tocc), the object instance that raised the event if

it is an object-oriented model. For example, implicit parameters for any user operation

in the system employing RBAC can be user, session id, and tocc. On the other hand,

explicit parameters are collected from the event itself and values for these parameters

are assigned when it is raised. For example, explicit parameters for a function invoca-

tion are the formal parameters of that function itself. In this work we represent event

3Even though events occur over an interval they can be detected using either detection-based or

interval-based semantics (Chapter 3)

121

attributes as shown below where Ail and Axm represent optional implicit and available

explicit parameters, respectively.

< [Ai1, Ai2, . . . , Ail], (Ax1, Ax2, . . . , Axm) >

For any occurrence interest, events can be defined over different granularities. We

term these as event types as they act as the event schema addressing the specification of

attributes. For instance, in relational databases, event types can be based on:

• insert operation on any relation, and

• insert operation on a particular relation.

In addition, each event has a unique name, which can also act as an event type. An event

type can occur more than once, for example, insertion of two tuples into a relation with

separate insertion calls will trigger the same event type twice. Thus, event occurrences

are assigned an identifier eid to identify them uniquely. We use an event type and an

event instance interchangeable in our discussions, as the distinction is usually clear from

the context.

Events have structure and behavior and can be either definite or non-definite.

Structure of an event is similar to the structure of an object in object-oriented program-

ming. For example, when a binary event is defined, it requires two constituent events.

Similarly, behavior of an event is same as that of an object. For instance, in a binary

event, behavior defines when the event will be raised based on its constituent events.

Both these properties are required when defining an event. In the context of RBAC,

binary events allow the specification of constraints with two simple or complex events.

Events that are bound to occur are termed as definite events (e.g., time-based) while

others are termed as non-definite events.

Occurrence of an event indicates the happening of the occurrence of interest, initial-

ization, and collection of attribute values. Detection of an event indicates the satisfaction

122

of conditions, event propagation, and rule triggering. For instance, when a binary event

is detected it represents the satisfaction of the constraints enforced by the complex event

pattern.

5.2.1.2 Simple or Primitive Events

Domain-specific, predefined events are known as simple or primitive events. A

simple event is detected atomically at a point on the time line. Simple events are dis-

tinguished as domain specific, temporal and explicit events. Some examples of simple

events are:

1. File operations (e.g., file open) in operating systems.

2. Method invocations by objects in object oriented systems.

3. Data manipulation operations (e.g., insert) in databases.

4. System clock of the underlying system (i.e., absolute or relative temporal events).

5. External events (i.e., based on the data from sensors).

Definition 3 (Simple Event). A simple event E occurs over an interval [t, t′], where t

is the start time and t’ is the end time of an event, and is expressed as O(E[t, t′]). For

event E, t is the same as t’, as a simple event is detected atomically at a point on the

time line. A simple event is defined as:

O(E[t, t′]) , ∃t = t′(O(E, [t, t′]))

123

In accordance with the object-oriented paradigm, existing event specifications allow two

kind of primitive event definitions, based on the method invocations (or function calls).

Simple events defined on the method invocations are shown below:

Event ES1 = F(Af1, Af2, . . . , Afr);

Event ES2 = U → F(Af1, Af2, . . . , Afr);

• Event ES1 is detected when the function F is invoked by any object.

• ES2 is detected when a function F is invoked by an object instance U .

(Af1, Af2, . . . , Afr) are the formal parameters and U is the object instance that is

invoking the function. In the above, the formal parameters are explicit parameters, and

the object instance is an implicit parameter.

5.2.1.3 Event Patterns

Simple events are often not adequate for modeling real-world scenarios. Complex

events are defined by composing more than one simple or complex event using event

operators. Let us consider a scenario, where an activity d is allowed after several other

activities a, b, and c happen in a certain order forming a pattern. This can be formu-

lated using a complex event Eop((Eop(a, b, c)), d), where Eop represents event operators,

and activities a through d can be simple or complex events. This entire expression can

be considered as a event pattern. A number of event operators [93, 39, 40] have been

proposed in the literature based on the requirements of several application domains that

were considered. Most of these operators are discussed in Chapter 3. Below we pro-

vide the Backus Naur Form (BNF) [70] for the event pattern specification. This can be

extended whenever a new event operator is added. This includes the event operators

and constituent events, but not the composition conditions. In other words, compo-

124

sition conditions can be based on the point-based semantics, interval-based semantics,

or the generalized semantics discussed later in this Chapter. The BNF provided is left

associative.

E1 ::= E1 ∆ E2 | E2

E2 ::= E2 ∇ E3 | E3

E3 ::= E3 ≫ E4 | E4

E4 ::= ANY(E3, VALUE) | E5

E5 ::= E5, E6 | E6

E6 ::= NOT(E1, E1, E1)

| A(E1, E1, E1)

| A*(E1, E1, E1)

| P(E1, [ts], E1)

| P(E1, [ts]:p, E1)

| P*(E1, [ts], E1)

| P*(E1, [ts]:p, E1)

| PLUS(E1, [ts])

| [ts]

| External Events

| EN:(E1)

| (E1)

VALUE ::= integer | ∞

In the BNF E1 represents an event and EN represent the event name. These names

can be used while specifying the constituent events of the complex event. Without event

names it is impossible to differentiate an event occurrence corresponding to a constituent

125

event and for accessing its attributes. ts represents the time string (an absolute time

point), and VALUE represents the number of events that are needed for detecting an ANY

event.

5.2.2 Advantages and Limitations of Event Specification

Below we discuss both the advantages and limitations of the event specification

based on newer application domains.

Advantages

• Snoop and SnoopIB event specification languages allow the specification of complex

event-based policies. On the other hand, LED converts event specifications into

event detection graphs (detailed in Chapter 6) and detects events based on the event

specification. In other words, event specification and detection are not disjoint in

our framework. Thus, when both are used for RBAC, both policy specification and

enforcement can be done in a combined manner.

• Snoop supports various complex event operators that were derived from diverse

domains. On the other hand, new event operators have to be added when a new

kind of event pattern or complex event needs to be captured. Snoop is extensible

so that new operators can be plugged-in as and when needed.

• Current event operator semantics is purely based on timestamps. With newer

domains requiring other kind of semantics, current event operator semantics have

to be changed. With Snoop and SnoopIB event specification we can plug-in the

new semantics, seamlessly.

• Once simple events are identified, complex events are composed from simple events

via operators. Similarly, with conditions and actions are separated from the events

themselves. This abstraction allows the preservation of the ANSI RBAC functional

specification without dissevering the function definitions.

126

Limitations

• With existing event semantics, simple events are captured and detected when an

occurrence of interest happens. Conditions associated with the event are checked

and the corresponding actions are taken. On the other hand, with security domain,

events and conditions have to treated together and not as separate entities. For

example, consider the role activation as an occurrence of interest. In this case,

event has to be raised when someone is trying to activate the role, conditions have

to be checked whether the user can be activated, and then the event has to be

detected and the user should be activated.

• As discussed above, in accordance with the object-oriented paradigm, Snoop allows

only two kinds of simple events. One event based on the instance invoking the

method, and the other based on the class. This is a limitation, as events can be

defined based on many other aspects, such as a condition on the attribute. Thus,

primitive event definition has to be generalized to include other parameters as well.

• Similar to the above, with previous work, including our work in Chapter 3, event

semantics were based solely on tocc (i.e., time-based event semantics), and does not

include attributes, predicates, or their combinations. In other words, conditions for

compositions in complex events are based on the time of occurrence of constituent

events. For example, a sequence event is detected when the first event happens

before the second event. With newer domains this is necessary but not sufficient.

For example, a sequence event can be detected only when the first event happens

before the second event, and the user attribute of both events are same (i.e., tracking

of two events by the same user). Thus, current event operators have to generalized,

as they cannot be used directly in modeling access control policies.

• In security domain, capturing violations are critical. Currently, only the events

that follow a particular order are considered for event detection. For example,

127

with a Sequence operator there are two constituent events where the first event

should occur ahead of the second event. What happens when a second event occurs

without the first event’s occurrence?. Currently, the second event is dropped and

it is a limitation as this occurrence of the second event without the first event can

be a violation of a security policy. In other words, partial and failed events have to

be captured.

5.2.3 Generalized Simple Events

Currently, simple events are captured/raised when the occurrence of interest hap-

pens, and are detected. Corresponding rules are executed and complex events are notified

of its occurrence. As discussed previously, there can be situations where events have to

be detected only when a condition is satisfied. Let us consider two events, ES1 and ES2

defined on the function “setPrice(price);”.

Event ES1 = setPrice(price);

Event ES2 = setPrice(stockId = GOOG, price);

Event ES1 is a class-level event and is raised whenever the method “setPrice”

is invoked. Event ES2 is an instance-level event and is raised whenever the method

“setPrice” is invoked by an object “GOOG”. On the other hand, the following occurrence

of interests cannot be specified with the existing simple event definitions:

1) Price > $100 (explicit parameter)

2) stockId = GOOG AND Price > $500 (implicit and explicit parameter)

3) Events that occur only after 18.00 hrs everyday (implicit parameter)

Thus, in order to handle these kind of requirements, Snoop simple events have to

be generalized. With simple events, event attributes can be categorized into implicit and

explicit parameters as discussed in Section 5.2.1.1. With method invocations, all the

formal arguments or parameters can be treated as explicit parameters of that method.

128

Similarly, objects instances that invoke the method, time of invocation, and so on can be

considered as the implicit parameters of that event. In general, only these two type of

parameters can be associated with any simple or complex event. On the other hand, when

events need to be detected based on some conditions, only the parameters associated with

that event can be checked for those conditions. Thus, simple events can be generalized

with expressions based on these two kinds of parameters. On the other hand, there

can be cases where arbitrary conditions can be checked that are not based on the event

parameters, and we do not discuss those in this work. Thus, we have generalized simple

events with two kind of expressions; implicit expressions (Iexpr) and explicit expressions

(Eexpr) based on the implicit and explicit parameters, respectively.

Event EventName = (FunctionName(objInstance, Ax1, Ax2, . . . , Axr), (Iexpr ∧ Eexpr));

In the above, EventName corresponds to the name of the event, FunctionName corre-

sponds to the name of the function, (Ax1, Ax2, . . . , Axr) correspond to the formal argu-

ments or explicit parameters, Iexpr represents the implicit expression, and Eexpr represents

the explicit expression. These expressions evaluate to either TRUE or FALSE. As an ex-

ample, consider

Eexpr ← (Ax1 = “Nurse”)

The Eexpr expression returns TRUE when the value of attribute Ax1 is equal to “Nurse”.

Below we show four types of events based on both Iexpr and Eexpr expressions.

Event EP1 = F(Ax1, Ax2, . . . , Axr); / ∗ Iexpr = Eexpr = ∅ ∗ /

Event EP2 = U → F(Ax1, Ax2, . . . , Axr); / ∗ Iexpr; and Eexpr = ∅ ∗ /

Event EP3 = (F(Ax1, Ax2, . . . , Axr) : E); / ∗ Iexpr = ∅ and Eexpr; ∗/

Event EP4 = (U → F(Ax1, Ax2, . . . , Axr) : E); / ∗ Iexpr; and Eexpr; ∗/

129

Event EP1 and EP2 are same as our existing event definition. As shown event EP1 is

detected when the function F is invoked by any object with both Iexpr = ∅ and Eexpr = ∅.

Similarly event EP2 is detected when the function F is invoked by object U (i.e., Iexpr =

U) and Eexpr = ∅. In other words, event EP2 is raised when the Iexpr expression evaluates

to TRUE. Thus, both EP1 and EP2 are specific cases of our generalization. On the other

hand event events EP3 and EP4 are simple events that cannot be specified with existing

event definition. Event EP3 is detected when the method is invoked by any object and

satisfies the Eexpr expression as Iexpr = ∅. The event is raised when the method is invoked

and the condition specified by Eexpr evaluates to TRUE. Similar to the above, event EP4

is raised when both Iexpr and Eexpr expressions return TRUE.

For the previously discussed occurrence of interests, we define simple events based

on the above generalization:

1) Event ES3 = setPrice(price);

2) Event ES4 = (setPrice(price), (price > 100)); /* Eexpr */

3) Event ES5 = (setPrice(price), (t occ > 18.00)); /* Iexpr */

4) Event ES6 = (setPrice(price), (stockId = GOOG)); /* Iexpr */

5) Event ES7 = (setPrice(price), ((stockId = GOOG) ∧ (price > 500))); /* Iexpr

and Eexpr */

Although the effect of simple event generalization can be achieved by moving both

Iexpr and Eexpr to the rules it will be inefficient - due to unnecessary rule processing

as events are raised and filtered at the rules, and cannot be used as part of the event

patterns.

5.2.4 Generalized Event Patterns

Definition 4 (Event Pattern). A complex event E occurs over an interval [t, t′], where

t is the start time of initiator, and t′ is the end time of detector.

130

User activities over a period of time can be characterized as event patterns and is

captured using complex events.

Similar to the primitive event definition generalization, we have generalized the

current event operator definitions. Typically, an event operator defines how the complex

event patterns need to be detected based on incremental composition of other complex

or simple event patterns that occur over a period of time. In other words, complex

event operators collect all the occurrences of constituent events and detect an event

if they follow the required pattern or behavior. In general complex event consists of

event operator, constituent events, and composition conditions. Existing event operators

compose constituent events using timestamps including SnoopIB detailed in Chapter 3.

On the other hand, composition conditions can be generalized to be based on the event

attributes (i.e., implicit and explicit parameters). Thus, current event operator semantics

with just timestamp comparison act as a special case of the generalization with Iexpr and

Eexpr expressions. Below we show the generalized way of specifying complex events, that

include event attributes.

O(Eop (E1, . . . En), (Iexpr ∧ Eexpr), [ts, te])

• Eop represents an n-ary event operator (e.g., unary, binary and so forth)

• (E1, . . . En) represents all the simple constituent events of the complex event. The

constituent event that starts the event detection is termed as the initiator.

The constituent event that detects and raises the complex event is termed as the

detector. The constituent event that terminates the complex event is termed as

terminator. Thus, the event that acts as the detector raises the event.

• [ts, te] represents the start and end time of the complex event where ts is the start

time of the first constituent event and te is the end time of the last constituent

event.

131

• Iexpr represents condition expression based on the implicit parameters of the con-

stituent events and returns a Boolean value. When we represent the current op-

erator semantics, all the timestamp comparison is a part of the Iexpr. In other

words, interval-based semantics (SnoopIB) introduced in Chapter 3 will be ∈ Iexpr.

Similarly, point-based semantics (Snoop) will also be ∈ Iexpr. For example, for

a binary event operator with events E1 and E2, Iexpr = tocc(E1) θ tocc(E2),

where tocc represents the timestamp of event occurrence, and θ can be any operator

<,>,≤,≥, =, 6=,∈,

• Similar to the simple event, Eexpr represents condition expression based on the

explicit parameters of the constituent events and returns a Boolean. For example,

for a binary event operator with the events E1 and E2, Eexpr = E1(Axi) θ E2(Axj),

where attributes E1(Axi) and E2(Axj) have values from the same domain.

• complex event Eop is detected iff all the above mentioned expressions return TRUE.

These expressions can be empty and return TRUE always. We assume that all these

expressions must not be empty at the same time, as it will detect the complex event

always.

We will explain the binary event operator Sequence (≫), which captures the sequen-

tial occurrence of constituent events. In other words, it is raised only when the second

constituent events happens after the first constituent event. Sequence event is repre-

sented as “O(E1 ≫ E2, [t1, t2])” and occurs when event E1 occurs4 before event E2 (i.e.,

((E1 ↓) < (↑ E2))), and t1 =↑ E1 and t2 = E2 ↓. This event is detected when event E2

occurs, which is the detector. In the above, (Iexpr = tocc(↑ E1) < tocc(E2 ↓))∧(Eexpr = ∅).

Below we explain the event operators intuitively except OR and AND where we

show how current timestamp based semantics is formulated in the unrestricted context

4Even though events are represented as Ei in all the operators, they can be either simple or complex.

132

using the generalization. In all the operators Eexpr is empty. We will explain the expressive

event pattern constraint specification using these operators in the following sections.

• OR O(E1 ∇ E2, [t1, t2]): It is a disjunction operator and is detected when any one

of the two events E1 and E2 occur, and Iexpr = ∅.

• AND O(E1 ∆ E2, [t1, t2]): It is detected when both events E1 and E2 occur. Order

of occurrence between E1 and E2 is not considered, and (Iexpr = (tocc(E2 ↓) <

tocc(↑ E1)) ∨ (tocc(E1 ↓) < tocc(↑ E2))).

• NOT O(¬(E2)(E1 ≫ E3), [t1, t2]): Non-occurrence of an event E2 in between two

other events E1 and E3 triggers the NOT event. Iexpr includes the interval- and

point-based semantics.

• Plus O(Plus(E1, ∆), [t2, t2]): It is a relative temporal event. A simple or compos-

ite event occurrence starts the Plus event (i.e., at time “T”). After the specified

time interval or duration “∆” (i.e., at time “T + ∆”) the Plus event is detected.

• Aperiodic O(A(E1, E2, E3), [t1, t2]): It is detected whenever event E2 occurs be-

tween two other events E1 and E3. Event E1 starts the Aperiodic event and E3

terminates the same. Event occurrences of E2 cannot detect an Aperiodic event

before the occurrence of event E1 or after E3. Only when event E2 occurs within E1

and E3, an Aperiodic event is detected and the corresponding rules are triggered.

• Any(m, (E1, . . . , En)) It is detected when m number of events are detected,

where 0 < m ≤ n and n corresponds to the number of distinct events specified. In

this event operator order of occurrence between events is not considered.

• Periodic O(P (E1, τ, E3), [t2, t2]): This event is similar to Aperiodic event except

that it is detected at a regular time interval “τ” between two other events E1 and

E3.

133

• Cumulative Aperiodic O(A∗ (E1, E2, E3), [t1, t2]): Event E1 starts and event E3

terminates and detects the A* event. Event occurrences of E2 between E1 and E3

are accumulated.

• Cumulative Periodic O(P ∗ (E1, τ, E3), [t2, t2]): This event is similar to A* event

except that event E2 is a time string specifying periodicity.

As opposed to the alternate simple event generalization, the effect of complex event

generalization cannot be achieved by moving both Iexpr and Eexpr to rules. This is because

composite events will be detected incorrectly if Iexpr or Eexpr are moved to rules. In other

words, expressions associated with composite events cannot be moved to rules.

5.2.5 Complete, Uncomplete and Failed Events

Complex events occur over an interval and are detected over an interval. Start of

the interval is the start time of the first event (i.e., initiator) and end of the interval is the

end time of the last (i.e., detector) constituent event. For the event ESEQ defined before,

start time t is the time of detection of a and end time t′ is the time of detection of b as

both these events were assumed as simple events. On the other hand, when we consider

a as a complex event then t will be ↑ a. Thus, the time of occurrence and detection for

a complex event is an interval formed by [t, t′].

As complex events combine more than one event, they are detected only when the

event completes. We categorize these events as complete events. Actions corresponding

to an event can be performed iff that event is complete. In other words, current event

detection semantics are based on the If-Then paradigm. Even though event completion

is necessary in many situations it is not required in all the domains including the access

control domain.

134

Let us consider a policy in RBAC, where role operation b has to be allowed after

operation a has been performed. This particular policy can be formulated as a event

pattern shown below using the ≫ operator;

Event ESEQ = (≫ (a, b));

In the above we assume that a and b are simple events and are already defined. Thus,

when b occurs after a, the ≫ event is raised and the corresponding action is taken

(i.e., allow operation b). Consider the event ESEQ; when event b occurs (request for

performing the activity) and event a has not occurred (activity has not been performed),

access request operation b should be declined and user should be notified that he cannot

perform that operation. This requires an additional capability of current event detection

semantics paradigm to infer that a composite event (always the detector) of a complex

event has been detected, but not other events to complete the detection of the complex

event. To identify such occurrences the If-Then-Else mechanism is proposed (because

the If-Then mechanism only detects complete events and ignores the others). Thus, the

extension allows for additional actions to be taken when the detector occurs and the

event is not completed because of the non-occurrence of other constituent events. We

term these events as uncomplete events. Similar to complex events, simple events can

also be complete or uncomplete. For instance, when the predicate value does not satisfy

Eexpr expression it is considered as an uncomplete event.

In addition to complete and uncomplete events there can be other type of events.

Consider a NOT event operator. When the second event does not occur between the

first and third event, an NOT event is detected. When the first event and third event

occur without the middle event it is a complete event. When the second event and third

event occur without the first event or when the third event occurs without the first event

then they are considered as uncomplete events. On the other hand, when the first event,

135

second event and third event occur, a NOT event is not detected and is categorized as

failed event.

In general, complete, uncomplete, and failed events are defined as:

“A complete event E occurs when, i) an initiator initiates that event, ii) all the

constituent events occur, and iii) a detector occurs and completes that event.”

“An uncomplete event E occurs when i) event E is not initiated, ii) other constituent

events can occur, and iii) a detector occurs.”

“A failed event E occurs when i) an initiator initiates that event, ii) other con-

stituent events occur, and iii) a detector occurs and completes that event, but the event

fails because some constituent event has occurred.”

5.2.6 Complete, Uncomplete and Failed Rules

An event (simple or complex) occurrence can trigger multiple rules, nested/cascaded

rules, prioritized rules, and causality rules. In this section we have introduced rules that

are associated with complete, uncomplete as well as failed events. Event occurrences can

raise complete, uncomplete, and failed events and thereby rules associated with them.

With complex events, uncomplete rules are raised when the detector event occurs without

the occurrence of the initiator event. On the other hand, all the three kinds of rules are

specified in the same way. Active authorization rules consist of five components (refer

Chapter 4 for more details) and they are:

• Rname : Type – Name of the rule and Type corresponds to Complete, Uncomplete

and Failed.

• “ON” an event Ei that triggers this rule.

• “WHEN” checks the conditions < C1, C2, . . . Cn> when an associated event is trig-

gered.

136

• “THEN” triggers a set of actions < A1,A2, . . .An> when the conditions evaluate

to TRUE.

• “ELSE” triggers a set of alternative actions < AA1,AA2, . . .AAn> when the con-

ditions evaluate to FALSE.

Consider complete rule R:C and uncomplete rule R’:U that are associated with pre-

viously defined event ESEQ for checking required policies and taking appropriate actions.

When event a occurs followed by the occurrence of event b, then complete event ESEQ

is detected and rule R:C is triggered. Once the rule is fired it checks the required poli-

cies (encoded as part of conditions and actions) and it either allows the user to perform

the operation or denies the same. In the case of uncomplete event ESEQ, rule R’:U is

triggered and appropriate actions are triggered.

5.3 Simple Events in RBAC

The objectives of identifying simple events in the context of RBAC are:

1. to show the adequacy of events to represent RBAC occurrence of interests and to

model RBAC policies.

2. to enhance and extend RBAC policies with expressive event patter constraints.

3. to demonstrate the versatility of the event-based approach as both a specification

and enforcement mechanism.

In our approach, any user operation can be designated as an event. However, in

the context of RBAC, a subset of them can be designated as events if that is meaningful.

Event types in RBAC are based on: i) subject or user; ii) role; and iii) system. These

elements form various event types that are based on both role and non-role operations.

For example, event types can be based on: 1) specific operation performed on a role, or

2) specific operation requested by a user.

Some examples of simple events in the context of RBAC are:

137

1. User operations (e.g., role activation) in RBAC.

2. Role operations (e.g., role enabling) in RBAC.

3. System clock of the underlying system (i.e., absolute or relative temporal events).

4. External events (i.e., based on the data from sensors).

With RBAC, operations are performed by users in the system by invoking functions

(internally). As simple events are the basic building blocks of any event-driven system, it

should be able to represent all the occurrence of interest associated with the application

domain (e.g., RBAC). In any RBAC system a subject is allowed to perform an operation

on an object when it has the required permission. Typically, every subject has a set

of attributes that uniquely identifies the subject at various instances. Permissions are

granted to subjects only when they possess the required values for these set of attributes.

Apart from the attribute values possessed by subjects, the access control system also

uses additional values from the underlying system or environment that are related to

the subject for access checking, if defined as part of an access control policy. Thus,

considering RA as the set of attribute conditions that are required to be satisfied for

granting permission, RDA as the set of attribute values possessed by the subject at the

time of access request, and RIA as the set of attribute values from the environment

related to the subject, we can define RA as:

RA , RDA

⋃
RIA

Occurrence of interest in RBAC can be either based on the user or role operations

(e.g., enabling, disabling, assignments, de-assignments, activations, and deactivations) or

based on the underlying system (e.g., system clock) or environment (e.g., location). Both

these can be mapped and defined as simple event types, where the former occurrence of

interests that are based on role operations are defined as role-dependent events (ERD) and

the latter as role-independent events (ERI). For example, whenever a subject initiates

138

a role operation, a simple ERD is raised. Similarly, whenever a predefined occurrence of

interest based on the system clock happens, a simple ERI is raised. As explained before,

implicit and explicit parameter vales Ail and Axm associated with these events ERD and

ERI should supply the required values for RA.

In the context of RBAC, simple events (ERD) can be divided into four different

categories or types based on the set of users (subjects) U and roles R. All these events

are specialized cases of the generalized simple event definition.

1. ∀u ∈ U and ∀r ∈ R /* Iexpr = Eexpr = ∅ */

2. ∃u ∈ U and ∀r ∈ R /* Iexpr; and Eexpr = ∅ */

3. ∀u ∈ U and ∃r ∈ R /* Iexpr = ∅; and Eexpr; */

4. ∃u ∈ U and ∃r ∈ R /* Iexpr; and Eexpr; */

The above event types can be effectively used for specifying common and tailor-

made constraints and other operations. With the first type, events are raised irrespective

of the user or role (i.e., Iexpr and Eexpr expressions are empty). Let us consider the role

activation operation for defining a simple event. Whenever a user is trying to activate a

role in a session, the system invokes the function addActiveRole(). Formal parameters

of the function are: user, session and role. As event EAAR defined below is based on

the function that will be invoked irrespective of the user, it is raised when any user tries

to activate any role. This event is similar to event ES1.

Event EAAR = addActiveRole(user, session, role);

In the second category, subject-level events are defined on operations that are

performed by a specific subject irrespective of his/her role. When a subject performs

some operation in the system these events are triggered allowing the specification of

user-based constraints. For example, an event can be defined for user Tom when he

performs role activation. Thus, specific constraints along with common constraints can

139

be placed when Tom activates a role. The event corresponding to this is defined below.

This event is similar to ES2.

Event ETomAAR = (addActiveRole(user, session, role),(userId = “Tom”));

Simple events based on the final two categories are specific to a role. Role-level

events are based on a specific role and are triggered when any or a specific subject

associated with that role performs the operation. Events in this category allows the

specification of role-based constraints to all users or to a specific user. Below, we define

two events EAARM and ETomAARM corresponding to users trying to activate role “Man-

ager” and for Tom’s activation of role Manager. These events correspond to the event

types ES3 and ES4 described earlier.

Event EAARM = (addActiveRole(user, session, role), (role = “Manager”));

Event ETomAARM = (addActiveRole(user, session, role),

((userId = “Tom”) ∧ (role = “Manager”)));

 addUser(...);
 addActiveRole(...);
 deleteUser(...);
 addRole(...);
 deleteRole(...);
 assignUser(...);
 deassignUser(...);
 +

 grantPermission(...);
 revokePermission(...);
 createSession(...);
 deleteSession(...);
 addActiveRole(...);
 dropActiveRole(...);
 checkAccess(...);
 +............

Figure 5.5. RBAC Operations as Simple Events.

In general, all ANSI RBAC operations [12] shown in Figure 5.5 can be considered

as simple events.

5.4 Constraints on Simple Events using Rules

Users are allowed to carry out an operation iff they satisfy the access control policy.

Even though user operations are captured as events, their operations will be granted only

140

if they satisfy the standard RBAC or tailor-made access control policies. Active autho-

rization rules are the security mechanisms that act as low level semantic descriptors for

either allowing or denying the requested operations. RBAC operations such as assigning

users to roles, enabling roles, disabling roles, activating roles for user sessions, checking

access, adding users and roles, and many others are enforced via rules. Simple events are

triggered based on user requests and complex events are detected based on the history of

simplex events that are triggered and both simple and complex events are associated with

active rules, as appropriate, to enforce the access control policy checking. Separation of

events for capturing user activities and rules for policy checking facilitate the reuse of

the same rule for several events. For example, for all the four event types there can be a

single rule that checks condition when roles have to be activated. Rules can invoke other

rules allowing rule abstractions. Chapter 4 discusses how extended ECA rules are used

as security mechanism for the enforcement of RBAC and extended RBAC policies.

We will explain two rules for handling role activations where the one is tailor-made

for user Tom and the other is for all other users.

“Allow any user to activate any role.” This will be handled by the event EAAR

defined in Section 5.3 and Rule 1.

Rule 1. Rule for handling role activation for all the users in a system that has RBAC

policies.

RULE [RAAR : CR

On EAAR

When TRUE * specific constraints *\

Then < call > addActiveRole(user, session, role)

Else raise error “Access Denied Cannot Activate”]

“Allow user Tom to activate any role.” Event ETomAAR defined in Section 5.3 and

Rule 2 will handle this requirement.

141

Rule 2. Rule for handling role activation for user Tom in a system that has RBAC

policies.

RULE [RTomAAR : CR

On ETomAAR

When TRUE * specific constraints *\

Then < call > addActiveRole(user, session, role)

Else raise error “Access Denied Cannot Activate”]

Rule 1 is based on the event EAAR defined before. Whenever a user tries to acti-

vate a role in a session, event EAAR is raised. If there are constraints associated with

the event, they are checked. Event attributes, in this case, user, session and role are

passed on to the the rule. When all the constraints are satisfied, “T” part in the rule

RAAR is executed. In the above rule, there are no constraints associated, thus “C” part

returns TRUE. Similarly, Rule 2 is triggered when user Tom activates a role (i.e., event

ETomAAR). As both events EAAR and ETomAAR are for role activations, they invoke

addActiveRole(user, session, role), a function for checking common constraints for role

activations [12].

The function addActiveRole(user, session, role) shown below in Figure 5.6 is sim-

ilar to addActiveRole(user, session, role) in Figure 5.3 except that this function is for

RBAC with role hierarchies. Thus, all the four components of RBAC can be supported

seamlessly with our approach.

First it checks whether the user is available in set U that contains the list of

users5. Next, it checks the role, session and whether the session is owned by that user.

Once verified, it checks whether the user is authorized to that role using the function

5We assume that users lists U , role lists R, session lists S that contain user, role and session informa-

tion, respectively, are already available. In addition we also assume that other functions that are used

in the rule are also available.

142

Figure 5.6. Add Active Role - Hierarchical RBAC.

authorizedUsers() as a user should be assigned/authorized in order to activate any role.

This is carried out as the user can activate role if he is assigned to that role or to any

of its senior role. It then checks whether the role is not activated in that session using

sessionRoles(). Once all the above conditions are verified, role is activated in that user

session by invoking the function addSessionRole() by adding it to the active role set

(the set containing all the active roles for an user).

We defined two events EAAR and ETomAAR, and rules corresponding to them.

Function addActiveRole(user, session, role) is predefined based on the RBAC func-

tional components. Rules corresponding to events are triggered when users try to ac-

tivate any role. Shared constraints for any role activation is provided in the function

addActiveRole(user, session, role). This abstraction or granularity has two advan-

tages: 1. tailor made constraints can be specified in rules RTomAAR and RAAR, 2. func-

tional components can be just plugged in as needed. For example, the above function

addActiveRole(user, session, role) checks for role activations in the presence of role hi-

erarchies, but can be changed to static SoD constraint checking, seamlessly.

A context-based constraint has to be specified for ∀u ∈ U and ∀r ∈ R, while

activating a role. This policy can be enforced by placing context constraints on the

143

previously defined event EAAR. Rule 3 is the modified version of Rule 1. It checks

whether the location is “Room B” using a function checkLocation whose return type

is Boolean. Thus, users are allowed to activate roles only from “Room B”. Once the

context constraint is satisfied, function addActiveRole(user, session, role) is invoked as

in the case of Rule 1.

Rule 3. Allow all users to activate any role only if they are in location “Room B”

RULE [RAAR : CR

On EAAR

When checkLocation(“Room B”); /* Modified */

Then < call > addActiveRole(user, session, role)

Else raise error “Access Denied Cannot Activate”

]

This policy requires to check a context constraint for ∃u ∈ U and ∀r ∈ R. Event

ETomAAR handles the role activation for user Tom and placing a context constraint on

this event will enforce the policy. Rule 4 is the modified version of Rule 2 and it checks

whether the location is “Room C” using a function checkLocation whose return type is

Boolean.

Rule 4. Allow user Tom to activate any role only if he is in location “Room C”

RULE [RTomAAR : CR

On ETomAAR

When checkLocation(“Room C”); /* Modified */

Then < call > addActiveRole(user, session, role)

Else raise error “Access Denied Cannot Activate”

]

Modified rules 3 and 4 enforce the required policies. Only condition part of these

rules are modified to meet the requirements. Thus, constraints over simple events can

144

be specified, and corresponding rules can be modified automatically to enforce those

constraints. On the other hand, simple events can also be used in the policy specification.

Policy 1. Role Nurse should be enabled between 10 a.m. to 5 p.m. everyday.

This policy requires a repeating absolute temporal event that should occur every

day at two time points. We can model this policy with two events:

Event EP1a = (10:00:00/*/*/*);

Event EP1b = (17:00:00/*/*/*);

Everyday at 10 a.m. event EP1a is raised that triggers rule RP1a. Once triggered,

role Nurse is enabled by invoking the function “enableRole()”. Similarly, at 5 p.m. event

EP1b is raised and the rule RP1b is triggered, which disables the role.

RULE [RP1a : CR

On EP1a

When TRUE * Policy Conditions *\

Then < call > enableRole(“Nurse”)]

RULE [RP1b : CR

On EP1b

When TRUE * Policy Conditions *\

Then < call > disableRole(“Nurse”)]

In addition to the above absolute temporal events, Snoop supports various other

relative temporal operators which are discussed in the next section.

5.5 Event Pattern Constraint Specification

Roles can assume any of the three states [23]– disabled, enabled or active. When a

role is disabled it cannot be assumed in any user session. When a user assumes a enabled

role it makes the role active. In our model, simple and complex event pattern constraints

145

control the states of the role. Constraints can be of any type involving the event at-

tributes or system predicates. Operations such as role enabling, disabling, assignments,

de-assignments, activations, and deactivations are controlled by events. Some of these

operations trigger events which in turn changes the role state based on the satisfaction

of constraints.

Even though specification of constraints over simple events are necessary, they are

not sufficient in many situations. Events can depend on other events, thus acting as

constraints. These constraints that are enforced by events on other events are event

pattern constraints. In other words, with event patterns (or expressions), constituent

events depend on other constituent events based on the event operator. For example,

there can be a policy that will allow user Tom to activate any role iff user Jane is active

in role Manager.

Below we define three event pattern policies EPP1, EPP2, and EPP3, where one

event pattern is dependent (or controlled by) on another event pattern. As shown, in

policy EPP1 event E2 is granted access only if it follows event (sequence operator) E1.

If E2 occurs without the occurrence of event E1 then it is considered as an uncomplete

event and the associated uncomplete rule is executed. Consider event pattern EPP2,

which is a conjunction of event pattern EPP1 and event E3. The event pattern EPP3

with events E4 and E5 depend on the occurrence of the event pattern EPP2. Similar to

EPP1, EPP2, and EPP3, other event patterns can be specified using the BNF discussed

previously. Thus, event patterns can be simple or complex and it purely depends on the

access control policies of enterprises.

Event EPP1 = ≫(E1, E2);

Event EPP2 = ∆(EPP1, E3);

Event EPP3 = NOT (EPP2, E4, E5);

146

Both role-dependent ERD and role-independent ERI events can be combined sep-

arately using complex event operators, for detecting complex event patterns that occur

over a period of time. In addition, both classes of events can be combined together al-

lowing the detection of role-interdependent event (ERID) patterns. Previously we have

shown how constraints can be specified over simple events. On the other hand, requested

operations can be allowed when an event pattern that includes various events occur. Al-

though in Section 5.2.4 we have explained pattern operators that allow event pattern

specification, new pattern operators can be easily plugged-in in our framework.

5.5.1 Sample Event Pattern Policies

Below, we show some sample policies and show how pattern operators are used in

extending RBAC with event pattern constraints.

Policy 2 (Relative Temporal Policy). Deactivate user Tom from any active role after two

hours.

Event ETomDAR = PLUS(ETomAAR, 2 hours);

This policy is based on duration based constraint. As it requires to deactivate user

Tom from any active role after two hours, we need to associate this with the previously

defined role activation event ETomAAR. There are two steps involved; first step requires to

know when two hours is elapsed, and second is deactivating the role itself. PLUS operator

triggers an event after ∆T time of its constituent event’s occurrence. Thus, using the

PLUS event with ETomAAR and two hours, we can capture the first requirement.

RULE[RTomDAR : CR

On ETomDAR

When TRUE * Policy Conditions *\

Then < call > dropActiveRole(user, session, role);

]

147

Once the event for two hours of elapsing is captured, the second requirement of de-

activating the role can be carried out using the above complete rule. Role is dropped from

the Tom’s active role set by invoking the function dropActiveRole(user, session, role).

Plus event operator is a complete event as the detector of this event is a time

string (i.e., a definite event). Thus, there is no uncomplete rule associated with this

event. Similar to the above, this policy “Enable Role TrainingNurse fifteen minutes

after role Nurse is enabled.” can also be specified using the Plus event.

In the above Plus event pattern, event consumption modes can be used to address

various instances of Tom’s activation. In other words, when Tom activates the role from

various sessions, he be dropped based on the first occurrence, last occurrence, or each

occurrence using event consumption modes.

Policy 3 (Sequential Pattern Policy). Allow user Tom to activate any role only after

Jane has activated role Nurse.

This policy does not require the deactivation of Tom’s roles or stop Tom from acti-

vating other roles, even after Jane has deactivated the role Nurse.

Previously defined event ETomAAR handles role activation for user Tom. Similar

to this event, we have defined EJaneAAR below for handling user Jane’s role activation.

As the above policy requires to place constraints on the role activation of user Tom,

we will utilize the event ETomAAR, but not rule RTomAAR. Thus, invocation of function

“addActiveRole()” by user Tom will invoke ETomAAR and will detect the event EP3 defined

below.

Event EJaneAAR = (addActiveRole(user, session, role),(userId = “Jane”));

Event EP3 = ≫((EJaneAAR, ETomAAR), (EJaneAAR.role = “Nurse”));

The event EP3 places constraints on the role activation. Let us assume that Jane

has activated role Nurse. This will trigger the event EJaneAAR that will in turn ini-

tiate the event EP3. Now when Tom tries to activate a role then it will detect the

148

event EP3 initiated by the event EJaneAAR. As the role activation constraints are sat-

isfied and the event EP3 is detected, rule RP3 will be triggered. This rule invokes

addActiveRole(user, session, role), which allows the role activation, if Tom has the re-

quired permissions.

RULE [RP3 : CR

On EP3

When TRUE * Policy Conditions *\

Then < call > addActiveRole(user, session, role);

]

On the other hand, let us assume that user Tom tries to activate a role, but Jane

has not activated the role Nurse. In other words, the policy constraint is not satisfied.

In this case, the detector occurs albeit the initiator has not initiated event EP3. This

is an uncomplete event occurrence and it triggers rule U RP3, which in turn returns a

“Denied” message to Tom.

RULE [U RP3 : UR

On EP3

When TRUE * Policy Conditions *\

Then < raise action > “Denied”]

Similar to the above policy, pre-requisite role constraints can also be modeled using

the ≫ operator.

Policy 4 (Together Pattern Policy). Enable role Training Nurse when users Tom and

Jane have activated role Nurse.

The above policy requires two users (Tom and Jane) to be active in role “Nurse”

before allowing other users to assume role “Training Nurse”. This is a constraint on role

enabling. It is a constraint that requires occurrence of two ERD events and their order of

149

occurrence is not relevant. This is modeled using and AND event operator6. Both these

events are non-definite, as they are based on users. Previously defined events ETomAAR

and EP3 handle user Tom’s role activation. Similarly, event EJaneAAR handles user Jane’s

role activation.

Event EP4 specifies and enforces the Policy 4. This event is formulated using the

∆ operator. When both the events ETomAAR and EJaneAAR occur, this event is detected.

As the order of occurrence is not considered both these events act as detector as well as

initiator. For example, when Tom activates a role at first it acts as the initiator. Once

the event is initiated, when ever user Jane activates it raises this event. Similarly, user

Jane can activate a role at first and then user Tom can activate, which will also raise

event EP4. Thus, ∆ event falls into the category of complete event.

Event EP4 = ∆((EJaneAAR, EP3),

((EJaneAAR.role = “Nurse”) ∧

(EP3.role = “Nurse”)));

In the event EP4, we have specified attribute based composition condition. As

events EP3 and EJaneAAR are triggered for any role activation it cannot be used directly

in the complex constraint specification. Thus, we have specified that attribute role in

both the events should have a value “Nurse”. The event EP3 is used instead of the event

ETomAAR as the former controls Tom’s role activation. If we use the event ETomAAR in

this policy, then it will lead to a policy conflict. On the other hand, if there is a conflict

it will be detected by the enforcement mechanism.

Above shown is one way of specifying the composition condition and it is similar to

the WHERE clause of a SQL statement. Thus, successful activation of role “Nurse” by

both the users raise event EP4 triggering Rule RP4. Once the rule is triggered, it checks

6If the order of events are important then the sequence operator can be used.

150

for policy conditions (if any) and then call the function “enableRole()”, thus enabling

role “Training Nurse”.

RULE[RP4 : CR

On EP4

When TRUE * Policy Conditions *\

Then < call > enableRole(“TrainingNurse”);

]

Some of the below shown policies control the role activation of Tom, similar to the

policy P3. On the other hand, all these policies cannot coexist in the system at the same

time as it will lead to policy conflicts.

Policy 5. Allow user Tom to activate any role iff Jane is active in role Nurse.

In addition to Policy 3, this policy does not allow user Tom to activate other roles

once Jane has deactivated. On the other hand, it does not require to deactivate Tom from

all the active roles. This policy is specified using the Aperiodic operator of Snoop. With

Aperiodic operator, first event is the initiator, second event is the detector and third

event is the terminator. Thus, whatever event that has to be detected is constrained by

the initiator and terminator. We define event EJaneDAR for handling deactivation of user

user Jane.

Event EJaneDAR = (deactiveRole(user, session, role), (userId = “Jane”));

In the Aperiodic event EP5, event EJaneAAR that handles role activation for Jane

is the initiator, event EJaneDAR that handles the role deactivation is the terminator and

event ETomAAR that handles role activation for Tom is the detector.

Event EP5 = A((EJaneAAR, ETomAAR, EJaneDAR),

((EJaneAAR.role = “Nurse”) ∧

(EJaneDAR.role = “Nurse”)));

151

When event EJaneAAR occurs, Aperiodic event EP5 is initiated. Now, when event

ETomAAR occurs, event EP5 is raised and rule RP5 is triggered allowing the role activation

for Tom. When event EJaneDAR occurs, Aperiodic event is terminated. Once terminated,

role activation requests of ETomAAR are denied by triggering the rule U RP5, as it will

be an uncomplete event.

RULE [RP5 : CR

On EP5

When TRUE * Policy Conditions *\

Then < call > addActiveRole(user, session, role);

]

RULE [U RP5 : UR

On EP5

When TRUE * Policy Conditions *\

Then < raise action > “Denied”]

Policy 6. Allow user Tom to be active in any role iff Jane is active in role Nurse.

In addition to Polices 3 and 5 this requires to deactivate Tom from all the active roles

once Jane has deactivated role Nurse. This policy can be specified with the Aperiodic

operator as in Policy 5. The additional action of deactivating Tom’s roles can be carried

out in the role deactivation event EJaneDAR.

Policy 7. Allow user Tom to activate any role iff user Jane has activated role Nurse and

user Jim has not activated role TrainingNurse.

In contrast to the above defined policies, this policy allows Tom to activate any role

iff user Jim has not activated the role TrainingNurse. First, we define the role activation

event for user Jim below.

Event EJimAAR = (addActiveRole(user, session, role), (userId = “Jim”));

152

Previously defined events EJaneAAR and ETomAAR are used for defining Policy 7. In

this policy, non-occurrence of user Jim’s role activation is required for allowing user Tom

to activate any role. Thus, we model this policy using the NOT event operator as shown

below.

Event EP7 = NOT ((EJaneAAR, EJimAAR, ETomAAR),

(EJaneAAR.role = “Nurse” ∧

EJimAAR.role = “Training Nurse”));

With the NOT operator, first event is the initiator (EJaneAAR), last event is the

detector (ETomAAR) and middle event is the non-occurrence event (EJimAAR). When user

Jane activates the role Nurse, event EP7 is initiated. Let us assume that Tom tries to

activate a role thus raising event ETomAAR. Once raised, the NOT event is detected as

the middle event EJimAAR has not occurred. This triggers the rule RP7, activating the

role for user Tom.

RULE [RP7 : CR

On EP7

When TRUE * Policy Conditions *\

Then < call > addActiveRole(user, session, role);

Else raise error “Access Denied Cannot Activate”

]

Let us analyze two more cases: First, let us assume that user Jane has not activated

the role Nurse, similar to the one dealt with Policy 3. In this case, when user Tom tries

for role activation, it raises an uncomplete event triggering Rule U RP7. This will send

a denial message to the user.

153

RULE [U RP7 : UR

On EP7

When TRUE

Then < raise action > “Denied”]

With the other case, assume user Jane and user Jim have activated their roles.

When user Tom tries to activate the role, the NOT event EP7 will not be detected as

there is an occurrence of Jim’s role activation. Thus, this will be a failed event triggering

the rule F RP7 with a similar denial action.

RULE [F RP7 : FR

On EP7

When TRUE

Then < raise action > “Denied”]

In addition to the above NOT event, the motivation example discussed in Section

5.1 can be modeled using a NOT event. Below we show how to model the motivation

example.

Policy 8. Allow users active in role Nurse TO enter Pregnancy Ward FROM Virus

Ward IFF the user has made a Hygiene Stop

Below we define three events EVW, EHS, EPW corresponding to the access request

to virus ward, pregnancy ward, and hygiene stop, respectively. We then define event EP8

corresponding to the policy P8.

Event EVW = (checkAccess(session, operation, object), (object=Virus Ward));

Event EHS = (checkAccess(session, operation, object), (object=Hygiene Stop));

Event EPW = (checkAccess(session, operation, object), (object=Pregnancy Ward));

Event EP8 = (NOT (EVW, EHS, EPW), (EVW.userId = EHS.userId = EPW.userId));

When user enter from virus ward to the pregnancy ward, the complete rule R P8 :

CR is triggered. When the user enter from virus ward to hygiene stop and then to

154

pregnancy ward, the failed rule F R P8 : FR is triggered. When the users enter from

hygiene stop to pregnancy ward or directly to the pregnancy ward, the uncomplete rule

U R P8 : UR is triggered.

RULE [R P8 : CR * VWard TO PWard *\

On EP8

When TRUE

Then < raise action > “Denied”]

RULE [F R P8 : FR * VWard TO HStop TO PWard *\

On EP8

When TRUE * Policy Conditions *\

Then checkAccess(session, operation, object);]

RULE [U R P8 : UR * HStop TO PWard or directly TO PWard *\

On EP8

When TRUE

Then checkAccess(session, operation, object);]

Policy 9. Enable role X when any two roles of A, B and C are enabled.

In this policy, a role is enabled when two other roles from a set of three roles are

enabled. This policy can be modeled as shown below. Let us assume that three events

EEnableA, EEnableB and EEnableC are defined for enabling of roles A, B and C, respectively.

Event EP9 models the policy using ANY operator. Whenever two of the events occur,

the ANY event is detected and rule RP9 is triggered.

Event EP9 = ANY (2, (EEnableA, EEnableB, EEnableC));

155

RULE [RP9

On EP9

When TRUE * Policy Conditions *\

Then < call > enableRole(role)]

All the above policies are based on complex constraints and are modeled using

complex events. In addition, all the constituent events of the complex events are simple

events based on user operations, time- or context-based. According to complex event

specification BNF, complex event pattern constraints can be specified, where constituent

events of the complex events are in turn complex events. For example, we can have a

constraint using two sequences (≫ (≫ (A,B), C)). Below we illustrate them using some

examples.

Policy 10. Allow user Jack to activate role Training Nurse only when both users Tom

and Jane have activated role Nurse

This policy places a precedence constraint on role activation, but the constraints

depend on other users. Role activations corresponding to users Tom and Jane can be

utilized from Policy 4. Event EP10 captures the sequence between EP4 and EJackAAR.

Thus, event EJackAAR is allowed only when event EP4 has occurred. Once, event EP10

is detected, corresponding rules can be raised and user Jack can be allowed to activate.

Event EP10 = ≫((EP4, EJackAAR),

(EJackAAR.role = “Nurse”));

Policy 11. Enable role Training Nurse thirty minutes after both users Tom and Jane

have activated role Nurse

This policy is based on Policy 4. Thirty minutes after event EP4 defined in Policy

4 is detected, enable role Training Nurse. Thus, event EP11 is defined below using event

operator PLUS capturing the policy. This event is detected thirty minutes after the ∆

event is detected, and corresponding rules are triggered for enabling role Training Nurse.

156

Event EP11 = PLUS((EP4, 00 : 30 : 00));

Policy 12. Allow any user to activate role D after users have activated two of three roles

A, B and C

The above policy is based on role activations i.e., ∀u ∈ U and ∃r ∈ R. On the

other hand, the roles activation constraints are not based on the same user. We assume

that there are three events EA AAR, EB AAR, EC AAR and ED AAR corresponding to role

activations A, B, C and D, respectively.

Event EP12 1
= ANY (2, (EA AAR, EB AAR, EC AAR));

Event EP12 2
= ≫(EP12 1

, ED AAR);

Event EP12 1
is detected when any of the two roles A, B or C are raised. This will

initiate the sequence event EP12 2
. Similar to the explanation of Policy 3, when any

user is trying to activate role D, it triggers the uncomplete rule. On the other hand,

when users try to activate after event EP12 1
has initiated event EP12 2

, it triggers the

complete rule allowing them to activate role D.

Variations to Policy 12: We discuss various other additional constraints for

Policy 12 and how they can be easily accommodated with the same events used in the

policy. Let us consider four cases (1) any user can activate role A, B, C and D; (2) specific

users activating roles A, B, C and D; (3) same user should activate roles A, B, C, and role D

can be activated by some other user; (4) user who activates role D should have activated

roles A, B and C.

In these four cases, first case is handled by Policy 12. Second case can be handled

when user level events are used with events EP12 1
and EP12 2

. Third case can be handled

by modeling event EP12 1
as an attribute-based event. Similar to the third case, fourth

case can be modeled using the attribute-based for both the events EP12 1
and EP12 2

.

157

Audit Policies: Provision of auditing with access control system is an advantage

as auditing complements access control. Below we show the modeling of audit policies

using event operators.

Policy 13. Keep track of the number of activations for a role when it is enabled

In the above policy all the role activations have to be tracked, from the start of

the enabling of the role till it is disabled. Thus, the enabling should start the tracking

and disabling should end the tracking. We can model this policy using the cumulative

aperiodic operator A*. In this operator, the first event will be the role enabling event,

second event will be the role activation event and the third event will be the role disabling

event. Again, this policy can have variations similar to Policy 12.

Policy 14. Periodically monitor the underlying system and generate reports every one

hour between 8 a.m. and 8 p.m.

According to the above policy, monitoring of certain activities should begin every-

day at 8 a.m. and end at 8 p.m. and it should monitor and generate reports event one

hour. This policy can be modeled using a periodic operator P. In the P operator the first

event will be 8 a.m. everyday, second event will be the time interval one hour, and third

event will be 8 p.m. when the event should end.

Policy 15. Periodically monitor the underlying system every one hour between 8 a.m.

and 8 p.m. and generate reports every day at 8 p.m.

This policy has a subtle difference from Policy 14 as it requires to monitor the

system every one hour but the reports are generated at the end of the day. This policy

can be modeled using the cumulative periodic operator. First event is a time based event

at 8 a.m., second event is the time interval for checking and taking some action, and

third event is 8 p.m. when the report has to be generated. This operator allows the

accumulation of the event occurrences and is detected when the third event occurs.

158

5.5.2 Constraints Summary

Events allow the modeling of various constraints that cannot be modeled using

current access control models. We have shown diverse policies involving various types of

constraints and how they are modeled using event patterns. Constraints shown above

include both simple and complex constraints based on time, precedence, non-occurrence,

dependency and others, and their combinations. Using event pattern constraints, we

have shown how various occurrences of role-dependent and role-independent operations

and their combinations occurring over an interval can be modeled. Our approach allows

the modeling of current constraints in role-based access control models and extends them

using expressive constraint patterns.

5.6 ANSI RBAC Generalization Summary

Figure 5.7 illustrates the generalization of the ANSI RBAC using event-based rules.

In the previous sections we have motivated the generalization, identified the primary

goals, generalized event specification, and then generalized RBAC with event pattern

constraints. As shown in the Figure 5.7, RBAC functional specifications are preserved

without dissevering the function definitions. Functions such as the addActiveRole() have

been abstracted as addActiveRole() and addActiveRole(), where the former is modeled

as a simple event and the latter is the exact functional specification provided in [12]. On

the other hand, simple events act as a part of the event pattern, which allows the specifi-

cation of event-based constraints. Both simple events and event patterns are associated

with rules. Thus, when functions are invoked, simple events are raised which in turn

triggers rules or notifies event patterns. Based on the conditions, actions or alternative

actions are triggered. Abstracted functions such as the addActiveRole() are invoked

from the actions or alternative actions.

159

Because of the abstraction, notification of a simple event occurrence to an event

pattern is not straightforward, but is transparent to the user. Consider the sequential

pattern policy discussed previously. When the second event is controlled by the first event

occurrence, and the constraint checking corresponding to the first event is in the action

or alternative action part of the rule, then the sequential operator should be notified

only based on the result of that action. For instance, consider the role activation of Tom

is controlled by the role activation of Jane. Thus, when Jane tries to activate the role,

the simple event is raised. But, Jane can be either activated or denied in the action

part of the rule based on the constraints in the addActiveRole() function. Thus, the

sequential operator should be notified and Tom should be allowed to activate the role

iff the function addActiveRole() returns TRUE. This is illustrated by the dashed line

between the action/alternative action part and the event pattern, in the Figure 5.7.

Thus, based on our primary goals, the existing event framework has been general-

ized allowing it to be used for a larger class of applications including RBAC, and RBAC

has been generalized and incorporated with the generalized event framework.

5.7 Summary

Constraints play a vital role in realizing role-based access control over diverse do-

mains. First, we motivated the need for generalizing RBAC based on event pattern

constraints with some critical examples. We identified several advantages and limita-

tions of Snoop, and proposed several generalizations to overcome those limitations. In

particular, we have generalized the traditional simple and complex event definitions. We

then identified the simple or domain events that are required for constraint specification

in RBAC. We illustrated how policy checking is carried out via authorization rules. We

have shown how constraints can be placed on simple events using authorization rules.

We then generalized RBAC with event pattern constraints. Event patterns with com-

160

plex events and simple events as constituent events were used to model constraints such

as temporal, context, precedence, dependency, non-occurrence, and their combinations.

Even though we have discussed various pattern operators that are useful in constraint

specification, new operators can be plugged in seamlessly in on our framework.

161

Core Hierarchical DSoDSSoD

Functions
implementing

RBAC
Operations

C

C
C

CC

C

Added Constraints
in WHEN part

A

A
A

AA

A

Actions and
Alternative Actions

R
R

R
R

R

Rules:
CR, UR, FR

R

P

P

P
P

P

P

P P

P

P

P

P

P
P

P - Event Patterns

S - Simple Events

S

S

SS S

S

_addActiveRole(…); addActiveRole(…);

Figure 5.7. ANSI RBAC Generalization Summary.

CHAPTER 6

GENERALIZED ROLE-BASED ACCESS CONTROL ENFORCEMENT

Role-based access control generalization with expressive event pattern constraints

was discussed in Chapter 5. In this chapter, we discuss the enforcement of those RBAC

policies with event pattern constraints as enforcement mechanisms are equally important

in order to employ them in real-world applications. First, we explain the existing event

detection graph in Local Event Detector (LED) and show why it is inadequate to enforce

event patterns with implicit and explicit conditions expressions. We then introduce the

notion of an event registrar graph – a generalized event detection graph, for keeping

track of constituents events, that are a part of an event pattern, which typically occur

over a period of time. We show how expressive event pattern constraints are enforced.

Although we have extended RBAC with event pattern constraints, constraints required

by the ANSI RBAC [12] have to be satisfied in order to grant user requests. Thus, we

show how user- and role-tailored policies and standard RBAC constraints are enforced

using the rules associated with the event patterns.

6.1 Event Detection Graphs

With point-based semantics, LED [43, 148] uses an event detection graph (EDG)

(see Figure 6.1) for representing an event expression specified using Snoop [41]. LED

uses EDG in contrast to other approaches such as Petri nets used by Samos [64, 65] or

an extended finite state automata used by Compose [58]. By combining event trees on

common sub-expressions, an event graph is obtained. By using event graphs, the need

to detect the same event multiple times is avoided since the event node can be shared

by many events. In addition to reducing the number of detections, this approach saves

162

163

a substantial amount of storage space (for storing partial event occurrences and their

parameters), thus leading to an efficient approach for detecting events. All leaf nodes in

an event tree are primitive events and internal nodes represent complex events. Event

occurrences flow in a bottom-up fashion. When a primitive event occurs and is detected,

it is sent to its leaf node, which forwards it to one or more parent nodes (as needed) for

detecting one or more composite events. When both simple and composite events are

detected, associated rules are triggered.

Rules can be defined both on primitive and composite events. A rule can be

specified with a coupling mode, a triggering mode and a priority. Coupling modes as

described in HiPAC [159], specify when a rule is to be executed relative to the event firing

the rule. They were initially proposed for a transaction based execution environment such

as a DBMS. In a transaction based execution environment, all the events occur within

some transaction. The coupling mode of the rule indicates when a rule should be executed

relative to the event occurring in the triggering transaction. HiPAC defines three coupling

modes, namely the immediate, deferred and the detached modes. In Sentinel, event and

rule definitions can be placed anywhere within the application. It should be noted that

only named events can be used in rule definitions. Intermediate event expressions that

are not named cannot be associated with a rule. The definition of an event that is used

in a rule definition precedes the definition of the rule. As a result, it is possible that

a rule gets triggered by event occurrences that temporally precede the rule definition

time itself. As this might not be desirable in all situations, there is an option (the rule

trigger-mode) for specifying the time from which event occurrences to be considered for

the rule. Two options, NOW (start detecting all component events starting from this

time instant) and PREVIOUS (all component events since the event was detected last

are acceptable) are supported as rule triggered modes, with NOW being the default. It

should also be mentioned that an event is detected only if there are rules defined on that

164

event. In addition to the parameter context, coupling mode and trigger mode associated

with a rule, there is also a priority assigned to each rule. The default priority of a rule

is a priority of 1. The priorities increase with the increase in numerical values i.e., 2 is a

higher priority than 1, 3 is a higher priority than 2 and so on. Rules of the same priority

are executed concurrently and rules of a higher priority are always executed before rules

of a lower priority. It is possible that a rule raises events that in turn could fire more

rules and so on. This results in a cascaded rule execution. Furthermore, rules can be

specified either in the immediate coupling mode or the deferred coupling mode. Both

the priority and coupling mode of a rule have to be taken into account for scheduling the

rule for execution. (Please refer [148] for more details.)

Figure 6.1 (from [148]) illustrates the event detection graph. As shown leaf nodes

represent primitive or simple events and internal nodes represent the complex or com-

posite event. Two lists are associated with each node. Event subscriber list maintain the

child to parent relationship. Whenever a particular node is notified of an event occur-

rence, it will sweep the event subscriber list and propagate its occurrence. When this

list is empty then there are no other events that are interested in this event node. Rule

subscriber list associates all the rules that need to be executed or triggered when there is

an event occurrence. Thus, whenever an event occurs it first notifies its event subscriber

list and then sweeps the rule subscriber list executing the rules. As mentioned above

rules are executed based on their priority and coupling mode.

As discussed in previous chapters, any method invocation can be considered as an

event. These events can be classified as instance level and class level. Instance level

events are notified based on a particular instance invoking an object. Class level events

are notified when any instance invokes an object. Consider a rule (rule:A) associated with

a class level event (class:USER) and another rule (rule:B) associated with an instance

level event (USER:Tom). Let us assume that two users (Tom, Jim) are invoking the

165

same method. When Jim invokes, rule:A is executed and when Tom invokes both rules

A and B are executed. Rule A is referred as class level rule and rule B is referred as

instance level rule. On the other hand, LED allows the creation of an instance level rule

without an instance level event. In this case, an object instance is specified when the

rule is created.

In order to accommodate the different type of instance level rules, LED follows

two approaches. When instance level rules are specified without instance level events, it

stores all the instance level rules in the same primitive node to reduce the overhead of

creating multiple events. In order to facilitate this, it uses a special data structure as

shown in Figure 6.2. As shown, all the class level rules are associated with the NULL

instance and all other instance level rules are associated with the instances. On the other

hand, when users define instance level events and instance level rules on these events

then separate primitive event nodes are created and rules are associated.

In event detection, notifying a primitive event or a leaf node is an interesting is-

sue as there can be instance level and class level events. In LED, all the named events

(user defined events) and their event handles are kept in a hash table (eventNamesEv-

entNodes). Event handles for a particular event is obtained when the event is created.

Similarly, event signatures and event handles are kept in another hash table (eventSigna-

turesEventNodes). Event signatures are nothing but the method signatures over which

the event is defined. eventSignaturesEventNodes hash table is maintained only for primi-

tive events as they are raised from method invocations. As shown in Figure 6.1, whenever

a method is invoked its event signature is used to match the hash table and notify the

corresponding primitive event or leaf node. Similarly, complex or composite events are

notified using the eventNamesEventNodes hash table.

166

Figure 6.1. LED’s Event Detection Graph.

NULL

TOM

JIM

Figure 6.2. Instance Rule List.

167

6.1.1 Limitations of LED

With LED, events are detected based on the current primitive and complex event

definitions. Limitations of the current event specification, and how those are overcome

by the generalization were discussed in Chapter 5. Currently, whenever a primitive

node is notified it just propagates its occurrence to the internal node. On the other

hand, whenever a composite node is notified it checks for the semantics of the operator

associated with that node. If the conditions are satisfied, it will propagate it to its event

subscribers. For instance, when there is a Sequence (≫) operator, then it checks whether

the timestamp of the left event (initiator) is less than the right side event (detector).

With the generalization of both primitive and complex event definitions current

event detection graph cannot be used directly and needs to be generalized. Primitive

event generalization involves two condition expressions; implicit expression and explicit

expression. Extant primitive event definition can be considered as a special case of the

current generalization where the implicit expression represents the instance level events

and explicit expression is empty. With the generalization implicit expression can be

based on any implicit parameter and explicit expression can be based on any explicit

parameter. For example, implicit expression can be still instance level event, can be

some condition on the timestamp, and so forth. On the other hand, explicit expression

involve condition checking on attributes and current detection does not support this.

Thus, current method of primitive event notification is restricted to instances and cannot

be utilized for the generalized definition. Similar to the primitive event, complex event

definitions involve implicit and explicit condition expression. Current complex event

semantics can be considered as a special case of the generalization. For example, the

timestamp comparison of the Sequence operator can be considered as a special case

of the implicit expression. More specific, current operators are tightly coupled with

168

the time-based semantics. On the other hand, current complex event operators do not

consider explicit expressions. Thus, current EDG cannot be directly used for detecting

generalized complex event definitions.

Another major problem with current event detection is that the primitive events

are raised as soon as they have been notified. On the other hand, in many applications

whenever a primitive event is notified they have to be considered as potential events.

Consider a complex event based on a simple file open event. Whenever a user requests for

a file open, the corresponding simple event node is notified. Once notified it propagates

its occurrence to the complex event. On the other hand, this is incorrect as the complex

event should be notified only after the file is opened. In other words, when the user

does not have the required permissions to open a file the complex event should not be

notified. This problem is due to the abstraction between the event, condition, and action

in the ECA rule paradigm. The conditions are checked as part of the rule and actions are

triggered from the rule. Thus, current event detection has to be extended to propagate

event occurrence only when the corresponding rules have successfully executed. On the

other hand, propagation of event occurrence after the rule has been executed is required

but not for all applications. Similar to the primitive event, complex event detection also

has the same problem.

Currently, with EDGs rules are associated with events and are executed when the

event occurs (complete rules). On the other hand, there are many applications where

rules have to be executed when a part of the event occurs (uncomplete rules). We have

motivated and discussed the complete, uncomplete, and failed rules in Chapter 5. Thus,

EDG has to be extended to incorporate all types of rules.

169

Internal nodes - complex
event operators

Leaf nodes - simple events

Complete Rule subscriber list

Uncomplete Rule subscriber list

Event Signature to Event Node Mapping

Failed Rule subscriber list������������������Event subscriber list

���������������
Figure 6.3. Event Registrar Graph.

6.2 Event Registrar Graphs

Event registrar1 graphs (or extended event detection graphs) keep track or record

of event occurrences. ERGs record event occurrences as and when they occur and keep

track of the constituent event occurrences over the time interval they occur. ERGs are

acyclic graphs, where each event pattern is a connected tree. In addition, event sub-

patterns that appear in more than one event pattern are shared. ERG shown in Figure

1Merriam-Webster: an official recorder or keeper of records

170

6.3 has two leaf nodes and each of them represent a simple or primitive event. Similarly

the internal node represents the complex event. The ERG as a whole represents an event

pattern. In Figure 6.3, the complex event is a binary event operator (e.g., AND), thus

having two child events. Although the child events are simple events in the Figure 6.3 it

can be any other complex event, thus allowing a complex event pattern. Extant simple

and complex event nodes from EDG (Figure 6.1) are extended with the computation of

implicit and explicit condition expressions.������������ ������
Event Signature to Event Node Mapping

Figure 6.4. Event Registrar Graph With Shadow Event Node.

In order to facilitate the propagation of events as and when they occur, each node

in the ERG (see Figure 6.3) has three lists; event subscriber list, complete rule subscriber

171

list and uncomplete rule subscriber list. Event subscriber list contains all the events

that requires this event (node) to propagate once the event is detected. For instance,

consider a conjunction event pattern. First, leaf nodes for both the constituent events are

constructed. Second, internal node corresponding to the conjunction event operator is

constructed. Third, the parent (internal) node places its pointer in the event subscriber

lists of both the child (leaf) nodes. Finally, the child nodes are linked with the parent

nodes. Complete rule subscriber lists contain all the complete rules that need to be

triggered when the event represented by the node (leaf or internal) is detected. Similarly,

uncomplete rule subscriber list contain all the uncomplete rules. Extant EDGs (Figure

6.1) does not have two kind rules, thus with ERG event node semantics have to be

changed to handle this.

On a simple event occurrence the corresponding leaf node is notified and is prop-

agated to the internal nodes, if required. In other words, when a simple event occurs, it

should be propagated to the internal node if it is a part of that event pattern. Similarly,

internal nodes also propagate when they are the sub-patterns of other event patterns.

On the other hand, expressions and detection mechanisms have to be handled differently

for simple and complex event nodes. Another major difference with ERG is the handling

of potential events and actual events. As explained before, current EDG does not differ-

entiate between these two phases of event detection. Figure 6.4 illustrates how the ERG

handles the two phases of event detection (i.e., from potential event to an actual event).

Consider the binary operator AND with two child events, where the right child event is

a file open event. As shown in Figure 6.4, let us assume that there are two rules for the

right child event. First rule is to trigger a message, and the second rule checks conditions

and opens the file. Thus, the parent event (AND) node should be notified from the sec-

ond rule. Thus, we create a shadow node for the event-rule combination, which has the

event subscribers that need to be notified based on that rule. All application domains

172

do not require shadow nodes and there are some event types (e.g., temporal event) that

do not require them as well. On the other hand, shadow nodes are created transparent

to the user and the creation of shadow nodes can be based on the application domain or

can be a user-defined parameter at the time of rule creation.

Figures 6.3 and 6.4 illustrates the ERGs corresponding to a binary operator (com-

pose two constituent events). Similar to these ERGs other ERGs are created for all

the event patterns. Even though events are detected in the nodes, they follow different

semantics. Below we describe both simple and composite event detection.

ILCL

eventSignaturesEventNodes Hashtable

CL - Class Level Event
IL - Instance Level Event

IL

Instance Rule List

Specific Instances

GOOGIBM

Figure 6.5. Simple Event Detection in Detection Graphs.

6.2.1 Simple Event Detection

Figure 6.5 illustrates how primitive event nodes in an EDG are notified when an

object instance invokes a method. Primitive events in an EDG are detected using the

following steps:

173

1. Named events are defined by the user on member functions of a class. Users can

define class level and instance level events.

2. Method invocation by an object instance is captured as an event.

3. Using the method signature (also called as event signature), eventSignaturesEv-

entNodes (refer Figure 6.5) hash table is traversed.

4. When a method signature matches, ALL the events (class and instance level) that

were defined using this method are notified. In the Figure 6.5, IL (instance level)

nodes have instance checking mechanism, so that when there is a match the IL

event is detected and propagated. Similar to the list shown in Figure 6.2, CL (class

level) nodes are associated with instance rule list.

On the other hand, primitive events are detected in a slightly different manner

in an ERG due to implicit/explicit expressions and potential/actual events. Figure 6.6

illustrates how primitive event nodes in an ERG are notified when an object instance

invokes a method. As shown in the figure, each event signature can notify four types of

primitive event nodes. For detecting these type of events, virtual primitive event nodes

are created for each method signature that has a event defined on it. Implicit and explicit

condition expressions that were part of the primitive event nodes (refer Figure 6.3) are

moved into the virtual node (refer Figure 6.6). Primitive events in an ERG are detected

using the following steps:

1. Named events are defined by the user on member functions of a class. Users can

define events with or without implicit or explicit condition expressions. Primitive

events can be of four types IE (events with implicit and explicit expressions), I

(events with implicit expressions), E (events with explicit expressions) or ∅ (events

without expressions). When mapped to the EDG, instance level events can be

represented using the implicit expression, and class level events are events without

both expressions. Current EDG does not support the other two types of events.

174

2. Method invocation by an object instance is captured as an event.

3. Using the method signature eventSignaturesEventNodes (refer Figure 6.6) hash

table is traversed.

4. When a method signature matches, it notifies the corresponding virtual event node.

The virtual event node checks for ALL the four type of events i.e., IE, I, E, ∅. It

then notifies according to the expression satisfaction. On the other hand, the order

in which these expressions have to be checked purely depends on the application

domain. Furthermore, some application domains (e.g., RBAC) requires the notifi-

cation of exactly one event. In other words, when the instance matches, only that

event should be notified and not the class level. (In the following sections we will

detail this in the context of RBAC.) When compared to the event detection graph,

this approach with virtual event node is efficient as NOT all nodes (instance and

class level events) corresponding to that method signature are notified.

6.2.2 Event Pattern Detection

Primitive events have to notify once they are detected. As discussed previously,

events have two phases; capturing of potential events and propagating the actual event.

We have introduced shadow nodes in order to facilitate the two phases of event detection.

Thus, primitive event nodes notify the complex event in two ways; 1) traversing the event

subscriber list, and 2) executing the rules and then notify. Once complex events are

notified by all their child events then complex events can be detected.

Event pattern or complex event detection starts with a constituent event initiating

the event pattern. When the last constituent event occurs (detector), the event pattern

has to be detected. Similar to the primitive event detection, event pattern detection has

both implicit and explicit condition expression (refer Figure 6.3). Event pattern detection

involves the following steps:

175

II ^ E

I - Events with Implicit Expression
(e.g., instance level events)

E - Events with Explicit Expression
I ^ E - Events with Both I and E

- Events without I and E
 (i.e., class level event)

Ø

I

- Primitive Event Node

eventSignaturesEventNodes Hashtable

- Virtual Primitive
 Event Node

E E

I ^ E E I NULL

Ø

Figure 6.6. Simple Event Detection in Registrar Graphs.

1. Named complex events are defined by the user based on other named events, and

an event operator. Users can define events with or without implicit or explicit

condition expressions. For instance, the user can define that attribute one of the

left child and attribute two of the right child should be equal. On the other hand,

the current event operator semantics include timestamp comparison as default.

Thus, event patterns can have IE, I, E or ∅.

2. Whenever all the constituent events occur, the event pattern is ready for the de-

tection.

3. Detection involves the checking of both implicit and explicit expressions. Once

the expressions are satisfied, both subscriber lists (event and complete rule) can

be notified. On the other hand, the order in which these expressions have to be

176

checked purely depend on the application domain. Currently, we have included

the traditional timestamp semantics (can be considered as a subset of implicit

expression) with the event operators, but can be removed based on the application

domain.

4. Similar to the event notification by the primitive events, event patterns also use

shadow events for notifying its parents when required.

5. When the event pattern is not initiated, but the detector event has occurred then

it is treated as the uncomplete event and it should execute the uncomplete rule

subscriber list. For instance, with the Sequence operator, whenever the right child

notifies of its occurrence and the left child has not notified, then it is an uncom-

plete event. On the other hand, for some operators (e.g., AND) this cannot happen

and uncomplete rules are never executed. Similarly, for the NOT operator, com-

plete, uncomplete, and failed rules are executed. Again this depends the operator

semantics by itself and over various consumption modes.

6.2.3 Summary

Generalization of event detection graphs as event registrar graphs was discussed

above. We have shown how primitive and complex events are notified and detected. In

the following sections we will discuss how event registrar graphs can be used to enforce

the generalized RBAC with event pattern policy constraints.

6.3 Event Pattern Policies with ERG

Complex access control policies are modeled using the notion of interesting events

that occur based on the actions taken by the individual users in a system using events,

event operators and event patterns. The sequence of interesting events (or history) is

important, as complex specifications are modeled using event operators and patterns on

the sequence of event occurrences (or history). Constraint specification and access control

177

policy modeling using events are not effective unless there is a generalized mechanism to

detect events and trigger corresponding authorization rules. On the other hand, event

detection requires preserving the order of event occurrences that are spread across the

temporal dimension. In this section we discuss how event registrar graphs (ERGs) are

exploited for keeping track of and detecting events and triggering authorization rules.

6.3.1 Simple Event Detection

Generalized simple events are classified into four types based on the implicit and

explicit expressions; IE, I, E and ∅, and have to handled in the ERG. As detailed in

Chapter 5 events are captured based on the user operations or function invocations.

Even though the events are captured, they are detected via different ways based on users

and roles in the ERG. Four categories of events that need to be detected are;

1. ∀u ∈ U and ∀r ∈ R (∅ event)

2. ∃u ∈ U and ∀r ∈ R (Iexpr event)

3. ∀u ∈ U and ∃r ∈ R (Eexpr event)

4. ∃u ∈ U and ∃r ∈ R (Iexpr, Eexpr event)

Events from the first two cases can be thought of either class level or instance level

events, where users form the class. First case are class level events (∅) as these are raised

irrespective of users or roles. Second case are instance level events as these are based on

a particular user (Implicit parameter). With the third case events are raised only when

the when a user in a particular role has requested an operation. Final case have both

Iexpr and Eexpr expression conditions.

Even though all these events are captured based on the user operation they are

detected/raised using different semantics. In other words, the order of evaluation of IE,

I, E, and ∅ are specific to RBAC. With the ERG when ever a simple event is captured

from a user operation the leaf nodes corresponding to the event are notified. As discussed

178

previously, with RBAC domain, all the user operations captured might not lead to event

detection and it would require shadow event nodes. Consider events E1, . . . , E4;

E1 = (addActiveRole(user, session, role), (userId = “Tom”)); / ∗ I ∗ /

E2 = (addActiveRole(user, session, role), (role = “Manager”)); / ∗ E ∗ /

E3 = (addActiveRole(user, session, role), (userId = “Tom” ∧ role = “Manager”)); / ∗ IE ∗ /

E4 = addActiveRole(user, session, role); / ∗ ∅ ∗ /

Event E1 is based on user Tom and should be detected when he is trying to activate any

role. Event E2 is detected when any user is trying to activate role “Manager”. Event E3

is detected when user Tom tries to activate role Manager. Event E4 is detected when any

user tries to activate any role.

Let us consider a scenario, where user Tom is trying to active role “Nurse”. In this

case, which events from E1, E3 or E4 should be raised ? Event E3 cannot be raised

as it should be raised only when a “Manager” role is activated. Since the occurrence

of interest is only the activation of role by Tom only that event (E1) is raised. Let us

consider a scenario where Tom tries to activate role “Manager”. In this case, only event

(E3) is activated as event E3 is more specific than E1 and E2. Event E4 should be raised

only when users other than Tom try to activate any role except “Manager”. Thus, events

are raised/detected in the following order (refer Figure 6.7) in the RBAC domain:

1. ∃u ∈ U and ∃r ∈ R (Iexpr, Eexpr)

2. ∃u ∈ U and ∀r ∈ R (Iexpr)

3. ∀u ∈ U and ∃r ∈ R (Eexpr)

4. ∀u ∈ U and ∀r ∈ R (∅)

As shown above there can be multiple leaf nodes (primitive events) corresponding

to a function invocation. Virtual event nodes are implicit nodes that are created for

a function and is notified when that function is invoked. Once notified, based on the

179

I ^ E I E NULL

E1 E2 E4

addActiveRole(user, session, role)

E3

(1) (2) (3) (4)

Figure 6.7. Simple Event Detection in RBAC.

event categories they notify the leaf nodes corresponding to the simple event. Figure 6.7

illustrates the event registrar graph for events E1 through E4 explained above. A virtual

event node is shown corresponding to the function “addActiveRole(user, session, role)”.

With the expression evaluation ordering discussed above, the virtual node in Figure 6.7

has four lists. It will traverse the list in the clockwise direction starting from IE (or Iexpr,

Eexpr) (i.e., 1). Once it finds a match it will notify those primitive events and stop.

Consider the user Tom trying to activate the role “Nurse” using the function “ad-

dActiveRole()”. Virtual node corresponding to the function “addActiveRole()” is notified

and it checks and finds no match in the IE list (i.e., 1). It then traverses to I list (i.e., 2)

and finds a match, and notifies the event E1 and stops. On the other hand, when user

Jane tries to activate role “Nurse”, the same virtual node is notified. It checks and finds

no match in IE, I or E (i.e., 1, 2 or 3). Thus, it traverses to ∅ (i.e., 4) and then notifies

180

event E4. Thus, using the virtual node, all the leaf nodes corresponding to events from

all different categories are notified.

6.3.2 Event Pattern Detection

After the primitive event nodes are notified, their occurrence has to propagated

to the event pattern in which they take part. Even though simple event nodes notify

complex event nodes once they occur in the EDG/ERG, it is not the case in access control

domain, as events are detected only after policy constraints associated with the rule is

satisfied. In other words, even though user operations are captured as events not all

of them lead to the event propagation. Thus, event patterns must be notified from the

simple event nodes iff the constraints in the rules associated with the simple events are

satisfied.

Consider a complex constraint shown in Figure 6.8, “Tom is allowed iff Jim” has

activated any role. When user Jim tries to activate a role, the virtual node corresponding

to the function “ addActiveRole()” is notified which in turn notifies the primitive event

node. Rules corresponding to that node are triggered. If Jim has the required permis-

sions, he is activated in the rule by the “ addActiveRole()” function. Thus, only after

Jim has been activated in the rule, Tom should be allowed to activate. In other words,

just requesting for role activation by Jim should not allow Tom to activate as Jim might

not have the required policy permissions when checked in the rule. Thus, complex con-

straint satisfaction depends on the RBAC policy constraints. In other words, complex

events should be notified by the constituent events after the rule condition that checks

for the policy constraints returns TRUE. Thus, with the RBAC domain, shadow nodes

are required for all the user initiated events expect for events that are controlled (i.e., act

as a detector).

181

EP1 ��
EJ

addActiveRole(user, session, role)

ET��
I ^ E I E NULL

Figure 6.8. Event Pattern Detection in RBAC.

In order to model the complex event detection we define a shadow event that can

be associated with any event that has a policy constraint to be verified, transparent to

the user. The purpose of the shadow event is to propagate the event occurrence only

when the policy is satisfied. We have defined events corresponding to the above example.

EJ = (addActiveRole(user, session, role), (userId = “Jim”));

ET = (addActiveRole(user, session, role), (userId = “Tom”));

EP1 =≫(EJ,ET);

Event EJ and ET are simple events with implicit expression. Event EP1, is a sequential

event pattern with implicit expression (“time of occurrence(EJ) ¡ time of occurrence(ET)”).

182

EP1 ��
EJ

addActiveRole(user, session, role)

ET���
I ^ E I E NULL

Figure 6.9. Event Pattern Detection in RBAC With Shadow Node.

Figure 6.8 illustrates the complex constraint EP1 without the shadow node whereas Fig-

ure 6.9 illustrates with the shadow node. Event node EJ is notified from the virtual node

corresponding to the function “addactiveRole()” when user Jim is trying to activate any

role. RBAC policies corresponding to the role activation of Jim are associated with the

event EJ in the form of a rule. Once the policies are verified and Jim has been activated

in the requested role, it is propagated to event node EP1 through the shadow node. On

the other hand, if Jim does not have the permission, then the event is not propagated to

EP1.

With the ECA paradigm, event EP1 has two constituent events EJ and ET, where

EJ is the initiator of the event pattern and ET is the detector pattern. With the RBAC

183

domain, this can be said as the event ET is constrained by the occurrence of the event

EJ. Thus, in order to allow ET (detector), event EJ (initiator) should have happened.

Thus, RBAC policies corresponding to the role activation of Tom are associated with the

event EP1 in the form of a rule as opposed to event ET. As the event ET is controlled

by EJ, there are no rules associated with ET. As shown in Figure 6.9, event node ET

does not have any shadow event as it is constrained by event EP1 and policies for user

Tom are verified only in node EP1 and not in the node ET.

Complex constraints restrict the occurrence of the detector event by requiring it

to occur in an order defined by the event pattern. For example, in the above, event

corresponding to Tom should be constrained. Thus, it is modeled as the detector event

constrained by Jim’s event that act as the initiator. In other words, without the occur-

rence of the initiator, event registrar graph cannot initiate the event ordering process. In

an ERG, leaf nodes propagate to the internal nodes which model a complex constraint ei-

ther directly or using a shadow event. Similarly, internal nodes that act as a sub-pattern

for other event patterns propagate it to them either directly or using a shadow event.

Let use assume that Jim has activated the role, then event EP1 is notified and is

initiated. Now, if user Tom requests role activation it is notified to node ET. It is then

propagated to event EP1 without any shadow node or any policy verification. In the rule

associated with the node EP1 policies are verified for user Tom and the corresponding

role is activated. Thus, node EP1 is the detector and determines whether Tom is allowed

or denied activation. Let us assume that Jim has not activated any role, and Tom tries to

activate a role. As event ET is the detector event of EP1, occurrence of ET without prior

EJ will detect an uncomplete event EP1. Thus, Tom’s request will trigger the uncomplete

rule and a denial message is sent.

184

E
p7

EJane

addActiveRole(user, session, role)

E
Tom��EJim�

I ^ E I E NULL

������
Figure 6.10. ERG for Policy 7.

6.3.3 Sample Policy Enforcement

In this section we will show the enforcement of Policy EP7 defined previously. This

policy requires to place non-occurrence precedent constraints on the role activation by

the user Tom. We have shown the event corresponding to the policy, below;

185

Event EP7 = NOT ((EJaneAAR, EJimAAR, ETomAAR),

(EJaneAAR.role = “Nurse” ∧

EJimAAR.role = “Training Nurse”));

The ERG for the above shown events are illustrated in Figure 6.10. Events are

raised from the virtual node that corresponds to the role activation function “addActive-

Role()”. As shown, events EJaneAAR and EJimAAR, ETomAAR are the three leaf nodes.

Virtual node for function “addActiveRole()” has three nodes connected from its (I) list.

As ETomAAR is the event that is being constrained, there are no shadow events for it.

Whenever user Jane is activating any role it is propagated to node EJane. Event EJaneAAR

is propagated to event EP7 from the shadow event when user Jane satisfies the constraints

and activates any role. Propagation of the event initiates the event registrar graph cor-

responding to the event pattern EP7. When Jane activates role “Nurse”, capturing of

event ordering is initiated. When user Tom is trying to activate, it is propagated from

virtual node to event node ETom and then to event EP7 where the event ordering is

verified. As the event EP7 has been initiated and event EJimAAR has not occurred, user

Tom is verified for constraints in the rule and if satisfied Tom is activated in the requested

role. Consider three scenarios:

1. User Jane has activated role “Nurse” and user Jim has not activated role “Training

Nurse”. User Tom then requests for the role activation. In this scenario, event EP7

is initiated by Jane’s activation. When Tom request’s a complete event is detected,

as there is no occurrence of Jim’s activation. Thus, Tom’s request is allowed/denied

based on the complete rule execution.

2. Users Jane and Jim have activated role “Nurse”. User Tom then requests for the

role activation. In this case, event EP7 is initiated by Jane’s activation but there

186

NOT

E1 E2

SEQ E3

E5AND

EP1 EP2 EP3

E4

Figure 6.11. Complex Event Pattern Policy.

is an occurrence of Jim’s activation. Thus, a failed event is detected and the failed

rule is executed denying Tom’s request.

3. User Jane has not activated any role, and Tom requests for the role activation. In

this case, the event EP7 is not initiated, thus detecting an uncomplete event. This

event will execute the uncomplete rule and deny Tom’s request.

Similar to event detection graph, event sub-patterns can be shared and composed

in event registrar graphs to form complex graphs. Figure 6.11 illustrates a complex event

pattern policy.

6.4 Policy Conflict Identification

When a user operation is associated with more than one access control policy, con-

flicts arise. For example, allowing user Tom to activate a particular role via two different

policies introduces conflicts. These conflicts can be overcome by associating priorities

with policies. Policy conflicts can arise in two different places in our enforcement. First,

there can be conflicts with the basic RBAC policy specification. Second, there can be

187

conflicts with event pattern constraint specification. In this work, we assume that basic

policy specification does not have any conflicts. In this section we discuss ways for iden-

tifying policy conflicts when using event pattern constraints. The discussion of conflict

management is preliminary.

Policy conflicts arise when any event has a rule associated with it and the same

event is constrained by another event. For example, consider a sequential event pattern

A with two constituent events B and C. Let us assume that B is a role activation event

and C is a role deactivation event. Let event B be the initiator and C be the detector.

Thus, event C is constrained by the occurrence of B. In other words event C should

follow event B. In this case, whenever a role deactivation event occurs it is allowed only

when B has occurred. Allowing of role deactivation is carried out by the rule associated

with the sequential event pattern A. Thus, if there is a rule associated with event C

for deactivation, then there is a policy conflict. In general, whenever an event or event

pattern is a sub-pattern of another event pattern and is the detector of that larger

event pattern, then there cannot be any rules associated with the sub-pattern. On the

other hand, if the sub-pattern is an initiator or terminator this does not cause any policy

conflict. Below we discuss some event pattern policies from RBAC domain where conflicts

arise.

Consider Policy EP7 discussed previously. When user Tom is associated with more

than one policy, conflicts arise. Below we show two events and their rule definitions that

were previously discussed.

EventETomAAR = (addActiveRole(user, session, role), (userId = “Tom”));

188

RULE [RTomAAR

On ETomAAR

When TRUE

Then < call > addActiveRole(user, session, role)

Else raise error “Access Denied Cannot Activate”

]

Event ETomAAR defined above is raised/detected when user Tom requests for role

activation. Rule RTomAAR enforces the policy corresponding to NIST RBAC with role

hierarchies by invoking function addActiveRole(user, session, role). Once policies are

satisfied, Tom is activated in the requested role.

EventEP7 =NOT((EJaneAAR, EJimAAR, ETomAAR),

(EJaneAAR.role = “Nurse”∧

EJimAAR.role = “TrainingNurse”));

RULE [RP7

On EP7

When TRUE

Then < call > addActiveRole(user, session, role)

Else raise error “Access Denied Cannot Activate”

]

Event EP7 defines a policy that also restricts role activation by user Tom. As both

the events try to restrict user Tom when activating roles, one with the simple constraint

and other using the complex constraint, they have a policy conflict. Thus, when ad-

ministrators define a policy that conflict with other policy the system should be able to

identify.

189

In our approach, we can identify policies by analyzing the events and their rules

either while instantiating events/rules or while constructing event registrar graphs. Poli-

cies’ conflict when the same event acts as a detector in more than one event. When the

same event acts as a detector in more than one event, in our example Tom’s role acti-

vation, each of them are attached to an authorization rule for enforcing a policy. Thus,

allowing an event to act as only one detector event in the entire set of events, will avoid

policy conflicts.

6.5 Summary

In Chapter 4, we have shown the modeling and enforcement of various policies based

on RBAC and its extensions. Active authorization rules were used in the modeling and

enforcement of the policies. In Chapter 5, we generalized event definitions and introduced

complete, uncomplete, and failed events and rules, and discussed how they are used to

generalize ANSI RBAC. In this chapter, we have analyzed the limitations of current event

detection graph mechanism in LED. We then extended event detection graphs as event

registrar graphs to incorporate all the generalization introduced in Chapter 5 and for

capturing event occurrences and keeping track of event ordering. Event registrar graphs

follow a bottom-up data flow paradigm and are efficient as they allow the sharing of event

patterns and simple events. We have also shown how expressive event-based constraints

can be enforced using event registrar graphs. Finally, we have explained how policy

conflicts can be identified and resolved, though they require further investigation.

CHAPTER 7

USABILITY IN ROLE-BASED ACCESS CONTROL

In role-based access control, users and objects are assigned to one or more roles. An

user should be active in the role that has the required permissions before the access to an

object is granted. Thus, users should be aware of the role-permission (i.e., between roles

and objects) assignments for activating the required roles. In other words, they have to

know what roles are required to perform operations on objects. In general, with respect

to the role activation, current systems follow the human-active, system-passive model.

Users often get swamped with role activations due to numerous factors that include

increase in the number of objects, multiple role assignments, and shifting roles often,

and lean toward activating all the assigned roles violating the principle of least privilege

(PLP). In this chapter we introduce SmartAccess, a system based on the system-active,

human-passive model, that allows users to concentrate on what objects they need, rather

than what role should be activated in order to do their work efficiently. In other words,

we make RBAC more usable, preserve the PLP, and avert any information leak. We

provide algorithms for discovering roles and analyze various associated factors.

7.1 Introduction

Currently, operating systems, database management systems, and various other

systems support RBAC minimally in its primitive form. Current systems [19, 21, 71, 73,

76, 80, 89, 147] enforce RBAC in a binary mode; that is, they either allow or deny user

access requests. In general, with respect to role activations, they follow the human-active,

system-passive model, where users are required to know the role-permission assignments

for activating the required roles.

190

191

Even though employees can be assigned to more than one role in an enterprise

based on their job functions, they are not required to be active in all the assigned roles

at all times to access objects, preserving the principle of least privilege1 or PLP. This

introduces some problems while providing role-based authorization as users access re-

quests are granted only if they are active in a role that has the required permission. For

instance, consider a file analysis.scr that can be read only by the role Project Manager.

Consider an user Alice assigned to two roles Project Manager and Software developer,

but has only activated the role Software Developer. Thus, when Alice tries to read the

file analysis.scr the access control system denies access as Alice is not active in the role

Project Manager.

When users request object access, current systems check for the permissions based

on the active roles, authorized roles (when role hierarchies are present), and other con-

straints (if defined in the enterprise security policy) that are available at the time when

access requests are made, and provide binary replies i.e., allow or deny. Thus, users are

required to know beforehand the role-permission assignments or PA, which keeps track

of the operations that can be performed on the objects by the roles, so that they can

activate the required roles. However, being aware of the PA is cumbersome because of

various factors and they include:

- thousands of objects in enterprises.

- number of objects is ever increasing.

- users shift roles due to promotions, demotions, relocations, and so forth.

- restructuring of roles in enterprises.

Binary decisions – either allow or deny alone are not sufficient in real-life situations

where users often try to gain access without activating the required roles as they are PA-

unaware. Furthermore, with current systems, users tend to activate all the assigned roles

1At any given point in time no additional permissions are made available than required.

192

violating the PLP . Thus, access control systems should allow users to concentrate on

the data or the object that needs to be accessed, rather than the roles that fetch them

those access permissions. However, the system should also be able preserve PLP and

avert information leak.

To the best of our knowledge, this it the first work to introduce a system or an

approach that follows the system-active, human-passive model in supporting RBAC and

its extensions using role discovery. Previous works [113, 114, 115] deal with disclo-

sure/release of policies, automatic trust negotiations, reasoning services in access control

for autonomic communications, and so forth, but does not deal with RBAC and its exten-

sions. In this work we provide SmartAccess, a system that provides role-based authoriza-

tions and overcomes the above mentioned problems. It allows users to be PA-unaware,

interacts with users without leaking information and preserve PLP .

PA
U R OBJOPR

UA

PRMU - Users R - Roles
OPR - Operations OBJ - Objects
PRM - Permissions UA - User-Role Assignments

PA - Role-Permission Assignments

Figure 7.1. User-Role-Permission in RBAC.

7.2 Issues and Problems

Figure 7.1 illustrates the relationship between the basic element sets of RBAC –

users, roles and permissions. As shown, users are assigned to roles and permissions com-

bining operations and objects are assigned to roles (i.e., PA). Thus, users can activate

the required role, which in turn has permissions to access objects. This abstraction al-

193

lows users to shift (or switch between) roles seamlessly, and allows roles to be owners of

the objects rather than individual users. On the other hand, it requires users to be PA

aware, as users have to activate the required role in order to access objects, which is a

burden on the user. Hence, users lean toward activating all the assigned roles violating

PLP . However, this can be remedied if the system can transparently discover the role

that needs to be activated.

pdt.pam
...

totPur.xls
...

totPal.xls
...

target.xls
...

Set of
Objects

Roles
Access
Allowed

Clerk

Role
Hierarchy

EB C D

Account
Clerk

Purchase
Clerk

Sales
Clerk

Marketing
Manager

empT.avi
... A

Training

Figure 7.2. Role-based Access Policy.

Figure 7.2 illustrates the role-based access policy of an enterprise. As shown, there

are six roles where roles Purchase Clerk, Account Clerk and Sales Clerk are senior to

the role Clerk. For simplicity, objects that can be accessed by the roles are represented

as sets (A, . . . , E). For example, the object pdt.pam belongs to the set B. The role

Marketing Manager does not have any junior role and has permissions to access those

objects belonging to the set B. PA for RBAC policy defined in Figure 7.2 is shown2

in Figure 7.3. For instance, the role Account Clerk has permissions to access objects

belonging to the sets C, D and E .

2For brevity, we have not shown the operations that can be performed over the objects.

194

Y - Access Allowed N - Access Denied

N N
N
N
N

Y
N
N

N
N
N
Y

N
Y
Y
Y

C
le

rk

P
ur

ch
as

e
C

le
rk

S
al

es
 C

le
rk

A
cc

ou
nt

C

le
rk

 B (pdt.pam, ...)
 C (toPur.xls, ...)
 D (target.xls, ...)
 E (totPal.xls, ...)

Objects

Roles

Y
N
N
N

M
ar

ke
tin

g
M

an
ag

er

N
N
N
N

T
ra

in
in

g

N N N N A (empT.avi, ...) NY

Figure 7.3. Role-Permission Assignments (PA).

Consider a user Tom assigned to roles Marketing Manager and Purchase Clerk.

Even though Tom is assigned to two roles, he has to be active in those roles in order

to access the objects. For example, if Tom needs to access object pdt.pam, then he has

to be active in the role Marketing Manager. Even though there are lot more scenarios

that include context-aware constraints, separation of duty relations, etc, a set of sample

requests from the user Tom are shown below, with only role Marketing Manager activated;

1. Tom requests for pdt.pam and the access is GRANTED.

2. Tom requests for totPur.xls and the access is DENIED. Even though he can

access the same as he is assigned to role Purchase Clerk, he will not be permitted

as he is currently NOT active in the role. Thus, he needs to know that totPur.xls

can be accessed by the role Purchase Clerk and has to activate the role. Although

this can be argued as a viable process, it is cumbersome as there are thousands of

objects and hundreds of roles present in enterprises.

3. Tom requests for empT.avi and the access is DENIED. This object can be accessed

by users in role Training, which is required by all employees in order to complete a

training. Even though this role is not assigned to Tom he can acquire this role, as

he might be delegated to activate this role temporarily for the duration of training

195

by some authorized authority. Thus, in addition to assigned and authorized roles,

delegated roles should also be checked.

Although the access for requests 2 and 3 is DENIED directly, it is possible to provide

the same indirectly. It is evident from the above requests that user Tom should be aware

of the roles that need to be activated in order to access any object in the underlying

system. To be aware of PA relationships is cumbersome and is nearly impossible due to

various reasons. Some of them were explained briefly in Section 7.1 and the others are;

1. Users are usually assigned to more than one role.

2. With users shifting (or switching between) roles it becomes harder, as the new

users assigned to the roles have to be aware of the objects that were created by the

previous users in those roles. For example, when user Tom is assigned to the role

Account Clerk, he has to be aware of all the previously created objects that can be

accessed.

Issues concerning PA awareness are critical and can be addressed in a number

ways:

1. users activate all the assigned roles in every session.

2. system discovers and activates all the required roles based on the users’ access

request.

3. system discovers the required roles based on the users’ access request and requests

the user to activate the required role.

As explained earlier, adopting the first way violates the PLP , whereas the other

two ways require role discovery. With the second way, system can discover and activate

all the roles, but it increases the security risks and is not necessary as only one role is

required to grant the required access. Instead of activating all the roles, the system can

activate only one of the required roles based on inference, and inform the user. But

the process of inferring a particular role from a set of roles is not straightforward and is

196

complex. On the other hand, the system can activate the first role discovered and inform

the user, but it involves some security risks and it can surprise the user as the first role

discovered might be out of the context. With the third way, the system discovers the

required roles, but requests the user to activate any of those roles. Again the system can

notify the first role discovered, all the roles that have the required permission, or only

the role with the least permission set, though it purely depends on the enterprise.

Current systems are non-interactive and have the same problem of the PA aware-

ness burdening the user. Thus, systems should not merely provide binary replies based

on the current active roles, but need to be more user friendly. However, discovering roles,

notifying users, and requesting role activations require special attention as it should not

leak information and should preserve the PLP .

7.3 SmartAccess

Figure 7.4 illustrates the architecture of the SmartAccess system. As shown, user

requests from the underlying system is sent to SmartAccess, where the role checking

module checks for the access requests utilizing the RBAC server and authorization rule

server. All modules are explained in detail (except RBAC Server 3) in the following

subsections. RBAC server can be any server that provide role-based authorizations. For

instance, our event-based system discussed in Chapter 4 can be used as the RBAC server.

7.3.1 User Request and Response Handler

Input and output of access control systems are well defined, where the former is the

user access requests and the latter is either allowing or denying those requests. Access

requests contain the user who made the request, operation that needs to be performed,

and the object that needs to be accessed. In addition, there may be other domain-

based information such as time of request, context of request, delegations and so forth.

3It maintains the basic element sets of RBAC and their relationships.

197

SmartAccess

User Request/
Response Handler

RBAC
Server

Role Checking

Request
Generation

Authorization
Rule Server

R
eq

ue
st

s/
 R

es
po

ns
es

A
llo

w
/D

en
y/

N
ot

ify

Underlying Systems
(Operating Systems

Databases, ...)

Users

Figure 7.4. SmartAccess RB Authorizations.

In SmartAccess we represent the basic element sets (i.e., users, roles, objects, etc.) as

follows:

• U - users, S - user sessions 4, and R - roles.

• P - permissions5 (i.e., operations that can be carried out on objects), OBJS - objects,

and OPS - operations.

• ASRS - users’ assigned roles set, and ASRS ⊆ R.

• ACRS - users’ active roles set in a session ∈ S, and ACRS ⊆ ASRS.

• PORS - set consisting of potential roles that can be activated to gain permission, and

PORS ⊆ ASRS. When role hierarchies are considered potential roles can also be

from the authorized roles set.

• REQS - notifications or activation requests that are sent to the users’ session. It

contains instances of S,P , and PORS. Both at the start and the end of a session s1,

REQS = REQS − {s1reqs}, where s1reqs contain all notifications corresponding to

4A user can have multiple sessions, but a session is associated with only one user and can have many

active roles.
5In this work, we use basic permissions and not abstract permissions.

198

session s1. When REQS are based on a particular user or on the entire system (refer

Section 7.3.5), the above condition may be slightly different.

A typical request include the session ∈ S, the object ∈ OBJS and the operation

∈ OPS. For example, consider user Tom’s request for reading the object pdt.pam. This

request is received by this module and is sent to the Role Checking module where the

access permissions are checked. After the role checking, this module sends ALLOW,

DENY, or NOTIFY/REQUEST to the user.

(c)

(d)

User Active Roles
Tom Marketing Manager

User Assigned Roles
Tom Purchase Clerk
Tom Marketing Manager

Roles
Training
Marketing Manager
Purchase Clerk
Account Clerk
Sales Clerk
Clerk

(a)

(b)

Users
Tom
Jim
Jane

Figure 7.5. RBAC (a) Users; (b) Roles; (c) UA; (d) Active Roles.

7.3.2 RBAC Server

Enterprises utilizing RBAC for controlling accesses define their security policies

in terms of the instances of RBAC basic elements sets, namely, U , R and P , and are

maintained in the RBAC server. In other words, the server maintains all the users,

roles, permissions, objects, and operations in the enterprise. For instance, lists that are

maintained in the server for the RBAC policy defined in Figure 7.2 are shown in Figure

7.5. We assume three enterprise users and the corresponding list is shown in Figure

7.5(a). As illustrated in Figure 7.2 there are six roles and the corresponding list is shown

in Figure 7.5(b).

199

In addition, the server also maintains the relationships between RBAC elements, for

example, user-role assignments (U and R) have a many-to-many relationship. Similarly,

role-permission assignments represent the relationship between (R and P), role hierar-

chies represent the relationship between (R andR), and so forth. Figure 7.5(c) shows the

user-role assignments and Figure 7.5(d) shows the active roles of users. Role-permission

relationships are illustrated in Figure 7.6. Similarly, constraints such as separation of

duty relations and others are placed on the relationships, and are maintained in the

server.

7.3.3 Role Checking

Access requests received by the request handler are propagated to this module,

where roles are discovered and access decisions are taken. In RBAC, users can request

for activating roles, deactivating roles, accessing objects, and many others. Even though

requests such as role activations can be made smart by asking the user to satisfy more

constraints in order to activate the requested role, object access requests are more critical

for the decision making as discussed in Section 7.2. First, we explain the types of roles

that need to be discovered using the examples detailed in Section 7.2. Next, we explain

the working of object access request handler in Section 7.3.4. Finally, we analyze the

algorithms and associated factors in Section 7.3.5

Assigned and Authorized Roles: Whenever an user Tom requests for an object

totPur.xls the system checks his active roles (i.e., Marketing Manager in this case)

and authorized roles (if role hierarchies are present) for required permissions. As the role

Marketing Manager does not have the required permission, the access control system can

discover or infer the roles from the assigned/authorized roles that have the required per-

missions and those that can be activated by the user. In our example, only the assigned

role Purchase Clerk has the necessary permissions that Tom can activate it. Thus, the

200

Role Permission
 Objects Operation
Training empT.avi r
Marketing Manager Pdt.pam rwx
Purchase Clerk totPur.xls rwx
Account Clerk totPur.xls

target.xls
totPal.xls

r
rwx
r

Sales Clerk totPal rwx
Clerk

Figure 7.6. Role-Permission Relationships.

system notifies Tom that he should activate role Purchase Clerk in order to access the

object.

Delegated Roles: There can be other object requests on which Tom has indirect per-

missions. As mentioned in section 7.2 Tom can request for an object empT.avi and can

have indirect access permissions because of the role delegation. When there is a role

delegation, then the access control system checks the origin authentication and integrity

of the delegation, and grants the required access. Let us assume that the permission for

accessing an object empT.avi is delegated to Tom by some authorized authority. In this

case, the role delegation is verified and if it is valid then user Tom is given the required

access. Apart from the above requests there can also be other requests that require the

user to satisfy some constraints. For instance, let us assume there exists a context con-

straint that requires any user who needs to use the object pdt.pam should be accessing

it from a secured network. Thus, when Tom requests for pdt.pam from an unsecured

network the system denies his request even though he is active in Marketing Manager,

and notifies that he cannot access.

Separation of Duty Constraints: With respect to static SoD constraints, users are not

assigned to conflicting roles, thus, checking assigned roles is sufficient for role discovery.

201

When role hierarchies are considered with static SoD then authorized roles need to be

considered. When dynamic SoD constraints are included, with or without hierarchies,

discovering roles require some special cases to be handled, and they are explained in the

following algorithms.

Other Constraints: Constraints such as content-based, context-aware, purpose-based,

temporal, and so forth can be placed on the role operations. Although a user is active

in the required role, the user can still be denied access as the user is yet to satisfy other

constraints. For example, the user might be able to access only when he is accessing

from location B. Thus, during role activations the system can check for these required

constraints, but should notify the user without information leak.

1. check for access based on current credentials i.e., active roles, authorized roles, etc;

if allowed goto step 5; else goto next step;

2. check if the operation requested on the object can be performed by any of the user’s

assigned roles; if allowed send a NOTIFY/REQUEST to the user in a secure way

to activate the any role that has the required permissions (i.e., step 4); else goto

next step.

3. similar to the above, check for the delegated roles, constraints that need to be

satisfied, etc.; if allowed goto step 4; else deny access;

4. send a NOTIFY/REQUEST to the user in a secure way.

5. allow the user access.

7.3.4 Object Access Request Handler

In this section, we provide algorithms to handle users’ object access requests. First,

we will analyze the input and output of the algorithm. The input consists of a session ∈

S, an object ∈ OBJS and an operation ∈ OPS. Furthermore, requests can have other

free attributes Ai (i = 1 . . . n) that are required to satisfy other external constraints, if

202

INPUT: session, operation, object1

OUTPUT: result:BOOLEAN2

session ∈ S; operation ∈ OPS; object ∈ OBJS; PA;3

Retrieve all active roles in session as ACRS4

foreach role Ri ∈ ACRS do5

if (operation, object, Ri) ∈ PA then6

return TRUE /* allow object access request */7

if No role in ACRS satisfies the condition then8

return FALSE /* deny object access request */9

Figure 7.7. CheckAccess without Role Discovery in Core RBAC.

defined in the enterprise security policy. Once the input is received, it is processed and

the algorithm takes one of the following actions;

1. ALLOW access,

2. DENY access, or

3. NOTIFY the user and request for role activation, or other constraint satisfaction.

7.3.4.1 CheckAccess without Role Discovery in Core RBAC

Algorithm shown in Figure 7.7 handles object access requests6 in Core RBAC

without role discovery. Lines 1 and 2 show the input and output of the algorithm, where

the output is a binary (ALLOW/DENY) reply. Line 3 shows the sets used. In Line 4, all

the roles that are active in the session are retrieved as ACRS. Lines 5 through 7 check

if any role Ri ∈ ACRS has the required permission, and if it has (i.e., Line 6), it allows

the access request. If none of the roles from ACRS have the required permission (i.e.,

Line 8), it denies the access request.

7.3.4.2 CheckAccess with Role Discovery in Core RBAC

Algorithm for handling object access requests in Core RBAC with role discovery is

provided in Figure 7.8. In this algorithm, object access request histories are maintained,

6Identical to CheckAccess function detailed in [12].

203

INPUT: session, operation, object1

OUTPUT: result:BOOLEAN, por2

session ∈ S; operation ∈ OPS; object ∈ OBJS; req ∈ REQS; por ∈3

PORS;
Retrieve all active roles in session as ACRS4

Retrieve all assigned roles for session as ASRS5

foreach role Ri ∈ ACRS do6

if (operation, object, Ri) ∈ PA then7

RESET all session role requests in REQS8

return TRUE /* allow object access request */9

if No role in ACRS satisfies the condition then10

if (∃Rj ∈ ASRS∧ ∃req ∈ REQS) then11

return FALSE /* deny object access request */12

foreach role Rj ∈ ASRS do13

if (operation, object, Rj) ∈ PA then14

REQS = REQS ∪Rj15

return Rj /* notify por */16

if No role in ASRS satisfies the condition then17

return FALSE /* deny object access request */18

Figure 7.8. CheckAccess with RoleDiscovery in Core RBAC.

so that the user is not notified if the request for the same operation and object is more

than once in a session. In addition, this algorithm notifies the users, the first role

discovered.

Lines 1 and 2 show the input and output of the algorithm, respectively, where the

output is not a binary (ALLOW/DENY) reply. As shown, it outputs a role por ∈ PORS

that needs to be activated. Line 3 shows the sets containing the inputs, roles that can be

activated, and the requests. In Lines 4 and 5, all the roles that are active in the session

are retrieved as the ACRS, and all the assigned roles are retrieved as the ASRS. Lines

6 through 9 checks if any of the role Ri ∈ ACRS has the required permission. If any role

Ri has the required permission, it allows the access and removes previous access request

history from REQS for the corresponding session, operation, and object. If none of

the roles from the ACRS have the required permission (i.e., Line 10), it checks for the

204

ASRS through Lines 11 to 16. In Lines 11 and 12 it check for previous notifications,

and if there are any notification it sends a denial message. Through Lines 13 to 16 it

checks for the ASRS, and discovers role Rj that has the permission. Even though there

can be more than one assigned role that can be activated, this algorithm notifies the first

role discovered.

When none of the roles in the ASRS satisfies (i.e., Line 17), it denies the access

request. The denial actually means that there are NO roles that can be activated to

make this request happen. This is a much stronger denial than what current systems

provide and this is what is expected by an intelligent system.

Let us consider the access requests by the user Tom from Section 7.2. When the user

is requesting for the totPur.xls, the input to the algorithm (Figure 7.8) is {session1,

totPur.xls, read}. ACRS will contain the role Marketing Manager, and the ASRS will

contain the roles Marketing Manager and Purchase Clerk. After checking the Marketing

Manager, in Lines 6 through 9, it checks for the roles in ASRS. As there are no previous

notifications, it checks the roles in ASRS. As the role Purchase Clerk has the required

permission, it notifies the user to activate the role Purchase Clerk. If the user does not

activate the role and requests again, it will DENY the request.

7.3.4.3 CheckAccess with Role Discovery in Dynamic SoD Without Hierar-

chies

Figure 7.9 shows the algorithm that handles object access requests and discovers

the roles in RBAC with dynamic SoD and without role hierarchies. In contrast with the

previous algorithm, history of object access requests is not maintained. Thus, discovered

roles are notified for every request, when active roles do not have the permission. Instead

of notifying the first role discovered, the entire set of roles that can be activated are

notified to the user.

205

INPUT: session, operation, object1

OUTPUT: result:BOOLEAN, PORS2

session ∈ S; operation ∈ OPS; object ∈ OBJS; PORS;3

Retrieve all active roles in session as ACRS4

Retrieve all assigned roles for session as ASRS5

foreach role Ri ∈ ACRS do6

if (operation, object, Ri) ∈ PA then7

return TRUE /* allow object access request */8

if No role in ACRS satisfies the condition then9

foreach role Rj ∈ ASRS do10

if (operation, object, Rj) ∈ PA then11

/*check if Rj can be activated */12

if Rj can be added to ACRS then13

PORS = PORS ∪Rj14

/* check if there is a role that can be activated */15

if ({PORS} 6= ∅) then16

return {PORS} /* output roles that can be activated */17

else /* if {PORS} = ∅ */18

return FALSE /* deny object access request */19

Figure 7.9. CheckAccess with RoleDiscovery in Dynamic SoD Without Hierar-
chies.

Lines 1 through 5 are the same as in the algorithm shown in Figure 7.8. But, this

algorithm outputs the entire set of roles PORS that can be activated for gaining the

required permission. Lines 6 through 8 allows the access when any of the role Ri ∈ ACRS

has the required permission. If none of the roles fromACRS have the required permission

(i.e., Line 9), it checks for the ASRS in Lines 10 through 15. In Line 11 it checks for

the Rj ∈ ASRS that has the permission. It then checks whether the role Rj that has

the permission can be activated in that session. Whether a role can be activated in the

presence of dynamic SoD can be checked using a function similar to the AddActiveRole()

from [12]. After discovering that Rj can be activated, it adds it to the list PORS (Line

14). (Note: Lines 11 and 13 can also be interchanged.) After all the roles Rj are checked,

206

it sends notification if PORS 6= ∅ (Line 16-17). When none of the ASRS satisfies (i.e.,

Line 18-19) the access request is DENIED.

7.3.5 Analysis of the Algorithms

Users need not know all the role-permission assignments, as the above introduced

algorithms notify the user instead of providing binary replies. Algorithms presented

above handle users’ object access requests when enterprise security policies are defined

using core RBAC or dynamic SoD relations without role hierarchies. Similar to the

above, algorithms can be developed for discovering roles in the presence of 1) role hier-

archies, 2) static SoD with/without hierarchies, 3) dynamic SoD with hierarchies, and

4) constraints based on time, context, history, event and session.

For instance, when hierarchies are present, algorithm discovering roles should utilize

authorized role sets of the user. Similarly, other constraints such as time of the day, IP

address, quotas based on bandwidth or time, and so on can also be supported seamlessly

in SmartAccess. Even though we consider only the notion of basic permissions for role

discovery, we can utilize abstract permissions.

Information Leak and PLP: Confidentiality, one of the three main principles

of information security, requires systems to prevent the disclosure of information by

unauthorized accesses. Thus, whenever a user makes a access request, information should

not be disclosed. For example, when notifying the user of the required role the system

should not disclose the role information which the user does not have access. Notifications

generated by the algorithms are based on the discovered roles, which in turn are the set

of assigned or authorized roles for a user. Thus, users are not notified with roles that they

cannot activate preventing any information leak. Furthermore, as the users are notified

based on their assigned or authorized roles, it keeps the interaction simple. In general,

notification requests allow users to be PA unaware, preserving PLP .

207

Below we analyze some of the important factors associated with the role discovery

algorithms.

7.3.5.1 Single Vs. Multiple Role Discovery

When discovering the roles, either the first role that has the required permission

or all the roles that have the required permissions can be sent to the user. Even though

the user can activate the first role discovered, it can surprise the user as the first role

might not fit the users’ current context. In contrast, discovering all the roles increases

the computation time of the algorithm, but it allows the user to activate any discovered

role. In general, it depends on the enterprise requirement whether to discover all the

roles or to stop with the first one.

We have shown both kinds of role extractions in the above algorithms, where we

loop through all the roles to find which roles have permissions. With the roles as ab-

straction, it is not possible to check the objects for finding what roles can perform what

operations and intersect it with assigned roles set to extract those roles that need to be

activated. On the other hand, as mentioned earlier, inferring from the set of discovered

roles and sending only one role that is the most appropriate is nearly impossible.

In addition to the above ways of role discovery, all the roles can be discovered, but

the user can be notified with the role that has the least permission set or the user can

be notified with the all the roles ordered by the permission set. This way of notification

is a better way for satisfying the PLP .

7.3.5.2 Stateful Vs. Stateless

All the notifications sent to the users for object access requests are tracked using

REQS. Keeping track of requests for a particular session avoids the unnecessary role

discovery and the duplicate notification generation. In contrast, the cost of role discovery

increases as it has to maintain all the user requests in all the sessions. We have presented

208

algorithms following both the stateful and stateless model. Performance optimizations are

possible by caching the session request history while checking for roles and permissions.

While maintaining request histories, changes to role policies should be propagated so

that access is not granted for an unauthorized user.

7.3.5.3 Local Vs. Global

When algorithms follow stateful model they can keep track of the requests either

locally or globally. Requests can be maintained based on users or sessions, or for the

entire system. Maintaining local lists based on the users might include requests from more

than one session. As algorithms access these lists for every request during role discovery

they should be synchronized, which in turn increases the notification generation time.

Even though maintaining the requests based on the sessions increase the number of lists,

it reduces the notification generation time. Similar to the user based lists, global lists

also have similar set of problems.

7.3.5.4 Overhead and Complexity

Roles are discovered only when the access decisions are FALSE. Thus, when users

have an active role that has the required permission (i.e., TRUE), the runtime of algo-

rithms with or without role discovery is same. In case of vanilla algorithms that does

not involve role discovery it is the responsibility of the users to activate required roles,

either following several iterations or in the first attempt. However, when the roles are

discovered in a transparent manner and shown to the user, users can activate and request

again. Even though there is an associated overhead because of the role discovery, it still

supersedes the vanilla algorithms (e.g., Figure 7.7) as it reduces the user response time

and allow users to be PA unaware. As all the roles in the entire system are not checked

the delay is minimized.

Below we briefly analyze all the three algorithms explained before. Let us consider;

209

◦ |R| = n, where “| |” represents cardinality

◦ |ASRS| = assigned; |ACRS| = active

◦ assigned ≤ n; active ≤ assigned

◦ discover = assigned− active

◦ |PORS| ≤ discover; 0 ≤ discover ≤ assigned

Runtime of all the three algorithms are same if access decisions are TRUE. The

best case running time is O(1), where the first role in ACRS has the permission.Worst

case time is O(assigned), where last role in ACRS has the permission and active ==

assigned. When we consider active < assigned, the worst case time is O (active). We

use probabilistic analysis for the average case, for which, we need to have some idea of

the input distribution [160]. Since a role that fetches the required object for a users’

request is one of the roles from ACRS, we can assume a random order in which the roles

are selected. Thus, by utilizing the equation 5.6 of [160], we can compute the average

case running time of the algorithm as O (ln active).

Algorithms presented in Figures 7.8 and 7.9 discover roles. As roles are discovered

only if the access decision turns FALSE, we analyze the time taken for role discovery.

When considering the best case scenario for role discovery it is again O (1) when the first

role in (ASRS − ACRS) is notified, and it is O (discover) when all the roles have to

be discovered. On the other hand, worst case time for both the cases is O (discover).

Similar to our previous average case analysis, it takes O (ln discover) when the first role

is notified. Thus, runtime overhead for both the algorithms will be O (ln discover) when

the first role is notified and will be O (discover) when all the roles have to be notified.

7.3.6 Requests Generation

Requests can be either role-requests or constraint satisfaction requests. When any

one of the roles from PORS has to be activated or any other constraints have to be

210

satisfied by the user in order to allow an access request, requests are generated and sent

to the user. Requests that are generated should be sent to the user in a secure way. In

general, systems can use any means [161] to notify the user, but it should provide both

data integrity and data origin authentication. Secure way of communication play a major

role when enterprises utilize distributed access control.

7.3.7 Authorization Rule Server

Enterprise security policies are maintained in terms of authorization rules (refer

Chapter 4) in SmartAccess. All the user initiated operations are captured as events.

Occurrence of the event triggers an authorization rule that enforces the policy. Autho-

rization rules can be either integrated into the underlying system or can be maintained

outside the system. By maintaining them outside the system, the same set of rules can

be used to enforce access control in diverse systems.

7.3.7.1 Approaches for Role-Based Authorizations

Systems (Chapter 4) enforcing RBAC should be generalized and be able to provide

access control to diverse underlying systems (i.e., operating systems, databases, etc.)

in a uniform and transparent way. Although the system that provide access control

act as the reference monitor it should be loosely coupled with the underlying system.

Below we analyze two kind of approaches that can be exploited for providing role-based

authorizations.

Integrated Role-Based Authorization: With the integrated approach the un-

derlying system should be open to modification to incorporate access control modules

(or authorization rules). In other words, this approach assumes that the kernel of the

underlying system is understood so that it can be modified. There are a number of

advantages to this approach and they are summarized as follows; 1) flexibility to fine

tune the access control modules resulting in good performance. 2) only the minimum

211

amount of code that is required can be added. 3) additional functionalities can be easily

incorporated. 4) applications can be easily modularized and maintained. There are also

many disadvantages to this approach and they are; 1) requires access to the internals

of the underlying system including the source code. 2) it is not cost and time effective.

3) it is not generalized as it is tightly coupled and customized.

Mediated Role-Based Authorization: As opposed to the integrated approach,

in this approach the internals of the underlying system need not be accessed. It is

assumed that the underlying approach provides some hooks that can be exploited for

triggering events and invoking authorization rules. When this approach is employed, the

mediator or agent acts as the access control reference monitor for the underlying system.

Thus, conditions are evaluated in the mediator when there is a user request. The main

advantages of the mediated approach are; 1) provides access control in a generalized and

uniform way. 2) not customized to any underlying system. 3) it can provide role-based

authorizations to diverse domains and not domain-specific. 4) cost and time effective.

SmartAccess Role-Based Authorizations: As shown in Figure 7.4 SmartAc-

cess follows the mediated approach and handles all the access requests that are generated

in the underlying system. Whenever the underlying system receives an user request it

triggers an event which in turn invokes an authorization rule. Once the rule is triggered,

it is executed, which in turn evaluates the necessary conditions and triggers an action

which can be allow/deny/notify.

7.4 Summary

Abstraction provided by the roles allows them to own objects and allow users to

shift roles. On the other hand, for accessing objects users have to know the relation-

ship between roles and objects. SmartAccess, provided in this chapter, is a system that

provides role-based authorizations and overcomes the problem of PA awareness. Smar-

212

tAccess is proactive in that it provides the necessary notifications to the user acting in

anticipation of future problems that the user may face when he is requesting for access.

We have presented algorithms for discovering roles and analyzed various factors associ-

ated with them. When the users’ get a DENY from our algorithms it actually means

that there are no roles that can be activated to make this request happen. This is a much

stronger denial than what the current systems provide. Even though we have explained

the algorithms in the context of SmartAccess, these algorithms are general-purpose and

can be used in any system that enforces RBAC. Notifications provided allow users to

concentrate on what data needs to be accessed rather than the roles that are required

for access, and thus preserving principle of least privilege. Roles are disclosed to the user

without any information leak. Although role discovery has its associated overhead with

respect to system response time, it reduces user response time, increases user satisfaction

or usability and supersedes other algorithms that provide binary replies and follow the

human-active, system-passive model.

CHAPTER 8

NOVEL APPLICATIONS

In this chapter, various novel applications are introduced for demonstrating the

applicability of the results obtained in this thesis. First, we discuss a novel application

where the role discovery (refer Chapter 7) in RBAC was leveraged for providing fine

grained access control. Second, we discuss an advanced information filtering application

where information from text streams are filtered. This application uses the interval-

based semantics developed for complex event operators. Although this application is

not directly relevant to RBAC domain it can be used for various applications including

tracking of information flow among terrorist outfits. Finally, we discuss an event stream

processing system that utilizes the attribute-based semantics of events (Eexpr detailed in

Chapter 5) developed as part of the Snoop generalization. Furthermore, we show how the

event stream processing can be utilized for network fault management. From the above

it is evident that the results obtained from this thesis not only caters to the security

domain, but to a larger class of applications.

8.1 Role-Based Security for Web Gateways

Efficient and effective web gateways or proxy servers are important to control the

access privileges of users and to protect the private networks that are connected to the

Internet, thus providing a productive and a safe web environment. Access control in

the form of complex access rules based on the users or the user sets (groups) has been

studied extensively. The objective of this work is to provide role-based (RB) security for

the web gateways utilizing the Role-Based Access Control (RBAC). RB security reduces

the administrative burden, provides fine grained access control, and supports various

213

214

constraints such as, context-aware and temporal, seamlessly. In this section we elaborate

on the problems, issues that need to be addressed, and our approach for providing RB

security for web gateways by leveraging the flexibility and expressiveness of RBAC. Our

approach enables the proxy server to act smarter, rather than just allow or deny access

based on access rules, meanwhile preserving the principle of least privileges.

8.1.1 Introduction

With the ever growing impact of the Internet on our daily activities, security and

productivity have a greater role to play. Online shopping, stock trading, email com-

munication, credit card management, job search, news, e-greetings, online auction, and

bandwidth intensive applications (i.e., streaming media, online games, and MP3 down-

loads) are some of the capabilities of the Internet. When employees engage in any of these

activities during the work hours it threatens the enterprise productivity and security, and

makes the web a less safe environment for enterprises. Recent surveys [162, 163, 164, 165]

show that the enterprises are losing 30-40% of their productivity every year due to the

non-work (or non-business) related surfing during work hours. In addition, with its ever

expanding networks, the Internet also raises various security concerns and legal liabilities

of enterprises.

However, there are number of situations where certain legitimate users/departments

in enterprises require access to a subset of the above mentioned activities. For instance,

training and marketing departments might require streaming media access, the human

resources department may require access to job search sites, and the high level users

may also require some of these accesses. Web gateways or proxy servers control the

access privileges of users and protect private networks that are connected to the Internet.

Current gateways provide access control using complex access rules based on users or user

sets (groups) [116, 117, 118, 119, 120, 121]. The number of access rules used are large, as

215

they are based on the number of users or groups that are spread over multiple repositories.

Rules can be customized in order to support various policies such as, time/resource based

quotas, network/workstation based, IP address based, and so on. Writing these rules

based on the users or groups is a tedious job for administrators, and the number of rules

increases with the number of users and groups.

RBAC, where object accesses (or operations) are controlled by roles (or job func-

tions) in an enterprise rather than a user or group, has established itself as a viable

alternative to traditional discretionary and mandatory access control. Employees can be

assigned to more than one role in an enterprise where RBAC is employed. For example,

user Tom can be assigned to roles project manager and software developer. Employees

are not required to be active in all the assigned roles at all times (i.e., Tom can just

be active in software developer) preserving the principle of least privileges (i.e., at any

given point in time no additional permissions are made available than required) and this

introduces some problems while providing RB security. Suppose an employee (e.g., Tom)

needs to perform some activity, it might not be legitimate based on the current set of

active roles (e.g., software developer) but can be legal based on some inactive roles (e.g.,

project manager). In addition, users might get access delegated for a session from other

authorized users. Problems and issues that need to be addressed are elaborated in sec-

tion 8.1.2. In essence, systems that provide RB security should address all the problems

and issues, and be able to make additional decisions rather than just making traditional

binary decisions (i.e., allow or deny).

In this work we leverage the flexibility and expressive power of RBAC for providing

RB security in web gateways. To the best of our knowledge this is the first paper to

provide RB security for web gateways or proxy servers. The previous work deals with

providing RB security for web servers [122]. RB security provides fine grained access

control, reduces administrative burden, and supports various constraints such as context-

216

aware, and temporal. SmartGate, discussed in this work overcomes the problems outlined

above and those in section 8.1.2 by using a smart push-pull approach.

Employee
Training

Product
Demonstrations

Executive
Communications

Access to
Conferences

Researcher
Marketing
Executive

Regional
Manager

Training

Streaming
Media

Roles
Access

Privilege

Employee

Role
Hierarchy

Figure 8.1. Role Hierarchy with Access Policy.

8.1.2 Problems and Issues

Traditionally, web gateways were used for caching, to minimize the response time

of user requests. Over the years additional functionalities were supported such as con-

trolling the user or group accesses based on rules. Designing and specifying these rules

are cumbersome as these are based on specific users or user sets. On the other hand,

RBAC reduces the administrative burden and increases the cost savings of enterprises in

authorization management. This section discusses the issues that arise while providing

RB security. Formulation of access policies using RBAC, and how roles are checked for

users and permissions are explained in Sections 8.1.4.2 and 8.1.4.3 respectively. Support-

ing RB security as a middle-ware rather than a tight integration with proxy servers is

beneficial, as it can be used seamlessly with other underlying systems such as firewalls,

and so on.

217

Key findings in a recent study [162] show that 21% of Americans watch or listen to

Internet broadcasting monthly as compared to 10% in January 2000. Moreover, various

studies and observations show the increasing use of Internet for non-business usage during

work hours. Nonetheless, streaming media is effectively used by enterprises for various

necessary purposes and some of them are

1. Training: specialized training are provided to employees,

2. Web Casts: providing important events, seminars, etc.,

3. Product Demos: demonstrating products of the enterprise and its competitors,

4. Presentations: streaming conference presentations, and

5. Communications: used by enterprise executives for effective discussions.

Besides the streaming media, enterprises may need to restrict access for job searches,

online shopping, and so forth. They may also need other kind of application proxies

which restricts the put command in FTP accesses to avoid information leak, etc. In this

work our examples are based on the web proxy, but our approach is applicable to appli-

cations and other proxies as well. Key issues that need to be addressed when RB security

is introduced in web gateways are explained below. Consider an enterprise SmartWeb

that needs to support streaming media for some of its employees as shown in Figure 8.1.

Roles Marketing Executive, Researcher, Regional Manager, and Training have access to

the streaming media. Access permissions for all the roles are shown in Figure 8.2. The

role Employee is a junior role to the first three roles.

As shown in Figure 8.2 the role Employee cannot access any of the streams, whereas

the stream Employee Training can be accessed only by the role Training. Let us assume

that the user Tom is assigned to roles Marketing Executive and Regional Manager. When

a user access request arrives, access policies are checked for permissions based on the

users’ active role. Following are the requests from the user Tom when he is only active in

the Marketing Executive role;

218

1. Tom requests for Product Demonstrations and the access is granted.

2. The role Marketing Executive has no permission for Access for Conferences.

Even though he can request for the same as he is assigned to the role Regional

Manager, he will not be permitted as he is currently not active in the role.

3. Let us assume that the role Employee has permission to access a generic object XY.

Even though he cannot access the generic object XY directly, he can be granted the

required permissions as he is active in a role that is senior to the role Employee.

4. Tom is denied access for the stream Employee Training. The stream can be ac-

cessed by the users active in the role Training. This role is required by all the

employees in order to complete a training. On the other hand, it is appropriate

to delegate this role temporarily to the user for the duration of training by some

authorized authority.

Y - Access Allowed N - Access Denied

N N
N
N
N

Y
Y
N

N
Y
N
N

N
Y
Y
Y

E
m

pl
oy

ee

R
es

ea
rc

he
r

M
ar

ke
tin

g
E

xe
cu

tiv
e

R
eg

io
na

l
M

an
ag

er

Employee Training
Product Demonstrations
Access to Conferences
Executive Communications

Stream

Roles

Y
N
N
N

T
ra

in
in

g

Figure 8.2. Streaming Access Privileges.

From the above requests it is evident that only the first request is granted, directly.

Although the access for the remaining is denied directly, it is possible to provide the

same indirectly. These requests are crucial in the case of web gateways as users can

try to perform legitimate access even when they are not active in a role. Thus, RB

219

security enabled web gateways cannot just provide binary replies (i.e., either allow or

deny), but need to address additional issues. A straightforward manner to do so is by

activating all the roles that are assigned to the user, but it contradicts the principle of

least privileges and increases the security risks. However, granting accesses indirectly

requires special attention. SmartGate provides RB security and addresses the problems

and issues discussed above.

8.1.3 Role-Based Security

This section addresses the issues that arise while providing RB security. Formula-

tion of access policies using RBAC and the checking of the roles are explained in Sections

8.1.4.2 and 8.1.4.3, respectively. With traditional web gateways, object requests by the

users are granted if all the access rules are satisfied, else they are denied. In the case

of RB security, user’s access requests cannot be denied directly as discussed in section

8.1.2. Thus, when a user request arrives, the system that provides RB security should

make additional decisions and not just match access rules.

Let us take our previous example where user Tom is assigned to roles Marketing

Executive and Regional Manager, and is active only in the former role. All the issues

that need to addressed are explained using the role hierarchy shown in Figure 8.1 and

access permissions shown in Figure 8.2. Whenever Tom requests for the stream Product

Demonstrations he is granted access for the same as he is active in role Marketing Ex-

ecutive that has the required permissions. When he requests for the stream Access for

Conferences the system checks his active roles (i.e., Marketing Executive) for permis-

sions. As role Marketing Executive does not have the required permission the system

should make additional decisions. It should check if any of his assigned roles/junior roles

have the required permissions. In other words, the system should pull the information

from the server where roles are stored and check for permissions. In our example, he is

220

assigned to role Regional Manager that has the necessary permissions. Thus, the system

should convey to the user in a secure way that he should be active in certain roles in

order to access the object. If the user activates the role and requests again, then he can

be granted the required access.

However, there can be some other object requests to which he has indirect per-

missions. As mentioned in section 8.1.2 he can request for an object XY or a stream

Employee Training. He can have indirect access permissions via one of the junior roles

or role delegation. When such requests come, the system should verify whether any of

the junior roles has the required permissions and grant the access accordingly. In the

case of object XY he should be granted access as the junior role Employee has the re-

quired permissions. When there is a role delegation, then the system should check the

origin authentication and integrity of the delegation and grant the required access. Let

us assume that the permission for accessing stream Employee Training is delegated to

Tom by some authorized authority. In this case, the role delegation is verified and if it

is valid then user Tom is given the required access. Thus, a smart push-pull approach,

where the user identity is pulled from the server for checking and appropriate messages

are pushed to the user in a secure manner, is more appropriate for providing RB security

for web gateways. SmartGate discussed in the next section provides RB security using a

smart push-pull approach.

8.1.4 SmartGate Architecture

SmartGate is an access privilege control system that provides role-based security

for web gateways. SmartGate aims at investigating the support for role-based security

using smart push-pull. Figure 8.3 summarizes the high level architecture of SmartGate.

The SmartGate architecture is described in the following sections.

221

FTP
Gopher

HTTP Internet
mms

U
se

r
R

eq
ue

st
/R

es
po

ns
e

H
an

dl
er

Web Gateway

Requests/ Response

Web Gateway

Identity
Server

SmartGate

Role-requests

Role
Checking

Request
Generation

Figure 8.3. SmartGate Architecture.

8.1.4.1 User Request/Response Handler

Users (or user applications) request access to perform certain activities in the web.

For example, a client browser may ask permission to access a particular URL using the

HTTP protocol on behalf of the user who is logged in that machine. As shown in the

Figure 8.4(a) web gateways accept the request from user and match it against the access

rules and either allow or deny the request. SmartGate shown in the Figure 8.4(b) accepts

the user request and checks for permission. As a result of the check it can take three

actions as opposed to the traditional allow or deny and they are 1) allow access, 2) deny

access, and 3) role-request (or ask for) if one of the assigned role has the necessary

permission that is not currently active.

In SmartGate, user’s access request comprises of three elements:

• user identity (UI) (e.g., user name).

• other attributes (specified in the enterprise policy) such as ({ARS|DRS} [, IP, T , ...])

where ARS is the current set of active roles, DRS is the current set of delegated

roles, IP is the IP address, T is the time of occurrence.

222

• object for which the access is requested (O) (e.g., URL).

In a request, UI is required along with either the ARS or the DRS while the other

parameters are optional and are based on the enterprise policy. Delegate role set DRS

is always accompanied with the role-delegate and can be verified based on the issuing

authority (refer Section 8.1.4.4). Once the user request is received, this handler forwards

it to the role checking module.

SmartGate
Web

Gateways

1. Request

2. allow/
 deny

1. Request

2. allow/
deny/

ask for

(a) (b)

Figure 8.4. User Request/Response (a) General; (b) SmartGate.

After the request is processed, results are passed on to this handler which in turn

forwards it to the user. As shown in the Figure 8.4(b), response from the handler can

be an outcome of the request (i.e., allow), denial message, or request for some conditions

that need to be satisfied. These are further elaborated in the following subsections. In

order to simplify the discussions, we are not addressing the issue of how the user identity

is passed as this can be done in different ways.

8.1.4.2 Identity Server

Identity server is responsible for checking the existence of the user identity and

the corresponding access policy. It supports enterprise policies based on RBAC. Event-

Based RBAC allows enterprises to form access control policies based on RBAC and its

extensions (refer Chapters 4, 5, and 6). Figure 8.5(a) shows the roles and their associated

permissions. For example, the role researcher can access objects in categories 2, 3, and 5

223

whereas the role employee can just access category 6. Each category can contain many

types and are shown in Figure 8.5(b). For example, category 5 contains all the news

and job websites whereas category 2 contains the streaming media corresponding to the

Product Demonstrations.

Category Type
1 Employee Training
2 Product Demonstrations
3 Access to Conferences
4 Executive Communications
5 News, Jobs
6 Internal Websites

Role Permission
 Objects Operation
Marketing Executive Category (2) Allow
Regional Manager Category (2,3,4,5) Allow
Researcher Category (2,3,5) Allow
Training Category (1) Allow
Employee Category (6) Allow

(a) (b)

Figure 8.5. Assignments (a) PA; (b) Categories.

Figure 8.1 shows roles and their corresponding hierarchies where roles Marketing

Executive, Regional Manager, Researcher and Training are senior to role employee. With

hierarchical RBAC [12] all objects that can be accessed by the junior role employee are

also accessible by its senior roles. Thus, all of the above mentioned four roles can access

category 6. Each role is assigned to a set of users, and the Figure 8.6(a) shows users and

their assigned roles. For example, user Tom is assigned to roles Marketing Executive and

Regional Manager. Thus, user Tom has the required permissions to access categories 2,

3, 4, and 5 directly, and category 6 indirectly via role hierarchy. Identity server can be

expanded with separation of duty constraints or based on other attributes, for example,

certain roles can access certain objects only from 9 a.m. to 5 p.m. on weekdays.

When the input (UI, {ARS|DRS}, O) is provided, assigned roles {AR} cor-

responding to a user identity UI can be retrieved from the server. For example, set of

224

User Active Role
Tom Marketing Executive
Jim Employee

User Assigned Role
Tom Marketing Executive
Tom Regional Manager
Jim Employee

(a)
(b)

Figure 8.6. Users and Roles (a) Assigned; (b) Active.

assigned roles {Marketing Executive and Regional Manager} is retrieved by providing Tom

as the input. Figure 8.6(b) shows the user identity and its active roles. As illustrated, user

Tom is active only in the role Marketing Executive and not in the role Regional Manager.

Thus, access is directly allowed when the input (Tom, {Marketing Executive}, Pro-

duct Demonstrations) is provided to the server, but not (Tom, {Marketing Executive},

Access To Conferences).

8.1.4.3 Role Checking

Values corresponding to (UI, {ARS|DRS}, O) are received by this module from

the user request/response handler. Once received these values are passed to the identity

server. If the user has the necessary permission then the role checking module forwards

the request to the Web Gateway Request/Response module. Role checking module re-

ceives a deny access from the identity server when the user does not have the necessary

permission either with his active role set {ARS} or delegate role set {DRS}. In this case

it might be possible that the user may still have the permission based on the assigned

roles but may not be active in those roles preserving the principle of least privilege. Thus,

the user should be notified regarding the current state of denial and the conditions that

need to be satisfied in order to grant access rather than completely denying his request.

225

Instead of just denying the request this module performs the above required actions

using a smart pull from the identity server. For example, if the values corresponding to

(UI, {ARS|DRS}, O) are (Tom, {Marketing Executive}, Access To Conferences),

then identity server denies the access as the role Marketing Executive does not have

the permissions for Access to Conferences. Based on the result, role checking module

performs a smart pull and retrieves the assigned roles {Marketing Executive and Regional

Manager} from the identity server based on the user identity Tom and checks if the

assigned roles have the required permissions. If the user’s assigned roles has the required

permission, then it forwards the corresponding information to the role-request generation

module. In our example, the role Regional Manager has the required permission. On the

other hand, if the user’s assigned roles do not have the required permissions then the user

can be either allowed if he provides a role-delegation or can be denied. In both cases it is

propagated to the user request/response handler, which in turn sends the denial message

to the user. For example, if (Jim, {Employee}, Product Demonstrations) is provided,

then this module returns a deny or false to the user request/response handler. The

algorithms for discovering roles are detailed in Chapter 7.

8.1.4.4 Role-request Generation

When one of the roles that has the required permissions should be activated by the

user in order to allow an access request, role-requests are generated and are pushed to the

user. Role-requests that are generated are pushed from the SmartGate to the network

user. It can be done in many ways, such as, using digital signatures [161], etc. However,

the mechanism chosen should provide both data integrity and data origin authentication.

Role-request flag: Role-request generation creates the request and sends it to

the Request/Response handler which forwards it to the user. In some cases, the user

might not want to activate a role or he might not have a delegate certificate, in which

226

case the user issues the same request again. Thus, when the same user request is received

again, the role checking module should not check for access if the values corresponding to

{ARS|DRS} are not updated after the role-request is sent. In this case, role checking

is not performed in order to avoid cycles, and is carried out by setting an access flag for

the user request.

8.1.4.5 Web Gateway Request/Response

This module interacts with the current web gateways or proxy servers that reduces

the user response time by providing caching. When the input is (Jim, {Employee},

Internal Websites), the role checking verifies and forwards the request to this module.

If the requested object is available, this module gets the object from the web gateway.

Objects requested can be either in the cache or not in the cache and it depends on the

web gateway on how to retrieve it. In this example, the requested InternalWebsite is

retrieved and given to the user request/response handler to be forwarded to the user Jim.

8.1.5 Future Directions

SmartGate is generalized and can support RBAC Standard and other constraints

such as time of the day, IP address, quotas based on bandwidth or time, and so on. All

of the above functions can be supported seamlessly in SmartGate as it takes a general

approach for providing RB security for web gateways. In general, any type of constraint

can be supported when the required attribute values are provided. For example, as-

sume that user Jack is allowed to perform any action only between 9.00 a.m. to 5.00

p.m. on weekdays. When Jack requests at 6.00 p.m. using the following values (Jack,

{ARS|DRS}, O), then identity server checks the enterprise policy and denies access.

There may be a slight increase in user response time as SmartGate checks the roles

for every request that comes from the user in addition to the normal access rule checking

in traditional web gateways. Nevertheless, RB security provides fine-grained access poli-

227

cies and reduces administrative burden while formulating access policies. Performance

optimization is possible by caching the user request history while checking for roles and

permissions. While maintaining the user request history, if there is any change in the

role policy then it should be propagated to the role checking module so that the access

is not granted for an unauthorized user. On the other hand, objects can be in different

granularity. For example, if streaming media can be categorized then it can be assigned

separate roles or all the streaming media can be assigned to a single category. Role dele-

gation is important for specialized tasks like employee training, where roles are delegated

occasionally and exclusively depending on enterprise policies.

8.1.6 Summary

In this section we have provided SmartGate, a smart push-pull approach for sup-

porting RB security in web gateways. SmartGate has enhanced the access control de-

cisions (i.e., allow, deny, ask for) from traditional web gateways or proxy servers that

provide just binary access decision (i.e., either allow or deny). In current systems, access

rules are based on the users or user sets, which are complex and large in number. RB

security realizes the concept of RBAC; provides a practical and elegant mechanism for

controlling accesses in web gateways. By leveraging RBAC, the number of access rules

and their complexity is greatly reduced in SmartGate, thus reducing the administrative

burden. Moreover, there are additional advantages such as seamless constraint specifi-

cation (e.g., time of the day, quotas based on bandwidth or time, IP address, Location,

etc.), and fine grained access control decisions. SmartGate uses smart pull for getting

the required information from identity server and pushes the role-requests to the network

users. Providing RB security by leveraging RBAC increases the level of security and pro-

ductivity, creates a more secure perimeter around enterprise networks, and makes web a

safer environment.

228

8.2 Advanced Information Filtering

Information filtering includes monitoring text streams to detect patterns that are

more complex than those handled by search engines. Text stream monitoring and pattern

detection have far reaching applications such as tracking information flow among terror-

ist outfits, web parental control, and business intelligence. InfoFilter, a content-based

information filtering system, presented in this section, allows users to specify complex

patterns and detects these patterns in incoming text streams from various sources such as

news feed, emails, web pages and caption text from streaming videos. Complex patterns

such as combinations of sequential, structural patterns, wild cards, word frequencies,

proximity, Boolean operators and synonyms are formulated using the expressive pattern

specification language, PSL, proposed in this section. Once specified, these complex pat-

terns are detected using a data flow paradigm over Pattern Detection Graphs (PDGs).

8.2.1 Introduction

Recent advancements in computing have led to a digitized world with an ever

increasing data available online. Users often find themselves swamped with colossal

amount of information while retrieving task relevant data. Information filtering is the

process of extracting relevant or useful portions of information/documents from large data

repositories or continuous streams of textual data based on relatively static user patterns

(or queries). In this process, expressiveness of pattern (or query) specification by a user

and its detection play a significant role. Typically, a user profile in the form of one or

more patterns is created and submitted to the system, and patterns in such a profile

are filtered from the incoming text streams. In order to extract useful or meaningful

information, the user needs to have the flexibility to specify complex and meaningful

patterns using an expressive pattern specification language.

229

Based on the similarity between information filtering and information retrieval

[166, 167, 125], most of the existing filtering tools such as personalized information fil-

tering systems use Information Retrieval Query Languages (IRQLs) [166] for user query

specification. Thus, this work has been motivated by several observations on the IRQLs

and current query languages and the amount of expressiveness or flexibility desirable in

user pattern specification. As observed from the characteristics of the query languages

proposed in the literature, they support single-word, Boolean, context, natural language,

pattern matching and structural queries, and their compositions in a very restricted

manner.

Consider a real world example where a federal agent is tracking terrorist-related in-

formation streaming from various resources. He/she is interested in the occurrence of the

word “bomb” followed by the word “ground zero” occurring twice, along with the word

“automotive” or its synonyms (i.e., ((“bomb” FOLLOWED BY “ground zero”) occurring

twice) AND “automotive” (or its synonyms)). This pattern contains keywords, sequence

(FOLLOWED BY), phrase, frequency, synonyms, and a Boolean operator. This pattern

cannot be expressed using current query specifications as they do not support the fol-

lowing: 1) quantification of multiple occurrences (or frequency) of patterns and complex

compositions, and 2) a user cannot include synonyms in the pattern, and is required

to explicitly list all the synonyms as separate patterns . Thus, current query languages

are quite restrictive in their expressive power and need to be extended and generalized

to address the specification of meaningful complex user patterns. Pattern specification

alone does not suffice as detecting these complex patterns is equally important in order

to use these systems for real-world applications. The aim of this work is to overcome the

limitations mentioned above.

230

8.2.2 User Specification

In InfoFilter, users can specify simple and complex patterns using the Pattern

Specification Language, PSL. It supports the following operators and options: frequency,

synonyms, sequence, Boolean operators, structural, wild card, and proximity. Further-

more, any arbitrary complex pattern can be composed using the above operators. Some

of the operators in PSL have some similarities with event specification languages (refer

Chapter 3) used for the specification of events. Even though some of the operators are

similar, semantics of pattern operators are different as it includes the notion of proxim-

ity, which is crucial in information filtering. In addition, PSL supports pattern operators

such as regular expressions, frequency and synonyms. Also, PSL allows composition of

all the above operators for specifying complex patterns.

8.2.2.1 Pattern Types

In PSL, a pattern P is formally represented as P j
i , where i is the pattern identifier

and j is the instance of the pattern identifier. A pattern P is a function that maps from

the offset interval domain onto the boolean values, “True/False” corresponding to the

occurrence or non-occurrence of the pattern. Os is the start offset, and Oe is the end

offset of the pattern, where offset is the position of the word relative to the beginning of

the text stream. For example, in the phrase “user pattern”, if “user” occurs at offset 50

then “pattern” occurs at 51, and Os is 50 and Oe is 51.

According to the semantics of PSL, patterns are classified as:

Simple patterns: These are the basic building blocks and can be either System-

defined (i.e., built into the system), or User-defined. System-defined patterns are pre-

defined and they correspond to the structural elements present in text streams, such

as the beginning of a sentence, a paragraph, or a document/stream. For example, two

system-defined patterns BeginPara and EndPara are used to define the beginning and

231

end of a paragraph. On the other hand, possible user-defined patterns include a single

word or any of its synonyms (e.g., “filter”), multi-word or phrases (e.g., “information

filtering system”), or simple regular expressions (e.g., “filter*”).

Complex Patterns: These are composed of simple patterns, complex patterns,

pattern operators and options. PSL provides a comprehensive set of pattern opera-

tors and they are: Boolean (OR, NOT, NEAR), sequence (FOLLOWED BY), structure

(WITHIN), frequency (FREQUENCY), proximity (NEAR/N, FOLLOWED BY/N) and

the option synonym (SYN).

8.2.2.2 Operators for Pattern Specification

Semantics of PSL operators and options are explained below (formal definitions for

these operators and options are provided in [168]).

OR: Disjunction of two simple or complex patterns P1 and P2, denoted by (P1 OR

P2), occurs when either P1 or P2 occurs. For example, “information” OR “filtering” will

be detected when either one of the keywords occurs. Since simultaneous occurrences of

the same patterns are not possible in a stream (essentially a sequence), exclusive OR

semantics is used.

NOT: Non-occurrence of the simple or complex pattern P2 in the range formed by

the end offset of P1 and the start offset of P3, where P1 and P3 can also be simple or com-

plex patterns, is denoted by (NOT [/F](P2)(P1, P3)). “F” indicates the minimum number

of occurrences and its default value is 1. For example, NOT (“filtering”)(“information”,

“retrieval”) will be detected whenever “information” is followed by “retrieval” without

the word “filtering” occurring at least once in between them.

NEAR: Conjunction of two simple or complex patterns P1 and P2, denoted by

(P1 NEAR [/D] P2), occurs when both P1 and P2 occur, irrespective of their order of

occurrence. “D” is the maximum distance allowed between the patterns P1 and P2.

232

Default value of “D” is the scope of the operator (which can be the entire document),

and it refers to the AND operator of the Boolean model. The minimum value of D is 1.

For example, “information” NEAR/10 “filtering” will be detected whenever both these

words co-occur within a distance of 10.

FOLLOWED BY: Sequence of two simple or complex patterns P1 and P2, de-

noted by (P1 FOLLOWED BY [/D] P2), occurs when the occurrence of P1 is followed

by the occurrence of P2. The end offset of P1 is less than the start offset of P2; that is,

the occurrence interval of P1 and P2 should not overlap. “D” is the maximum distance

allowed between the two patterns P1 and P2. If “D” is not specified, the distance is

bounded by the scope of the operator (can be the entire document). If the value of “D”

is 1 (minimum value), this indicates that the patterns P1 and P2 form a phrase. For

example, “information” FOLLOWED BY /10 “filtering” will be detected whenever the

word “information” precedes “filtering” within a distance of 10 words.

WITHIN: Occurrence of a simple or complex pattern P2 in the range formed by

the end offset of the pattern P1 and the start offset of P3, denoted by (P2 WITHIN (P1,

P3)). The pattern is detected each time pattern P2 occurs in the range defined by patterns

P1 and P3. For example, “information filtering” WITHIN (BeginPara, EndPara) will be

detected whenever the phrase “information filtering” occurs within a paragraph. When

an expression is specified without a system-defined pattern, the default structure (e.g., a

document) is used as the default. This operator is crucial while expressing the scope of

the stream being processed.

FREQUENCY: Multiple occurrences of a simple or complex pattern that exceed

or equal to F, denoted by (FREQUENCY /[F] (P)). A pattern P is detected each time P

occurs at least F times, where “F” is the minimum number of occurrences specified by the

user. The default value of F is 1, which is the minimum value. All the occurrences that

are used for detection should be disjoint (i.e., the end offset of each pattern occurrence

233

should precede the start offset of the subsequent pattern occurrence). The same set of

occurrences is not used for detecting multiple patterns. For example, FREQUENCY/10

(“information filtering”) will be detected whenever the phrase “information filtering”

occurs at least 10 times. Frequency can be applied to any pattern expression.

SYN: This is an option and is specified along with a single-word pattern (cur-

rently), denoted by (P [SYN]), to indicate multiple single-word patterns that have the

same meaning, in a succinct manner. In PSL, specifying a single-word pattern with

SYN option is equivalent to specifying N simple patterns that carry the same meaning

(synonyms) as the original pattern. For example, if you specify the word “bomb”[SYN]

is equivalent to specifying “bomb” OR “explosives device” OR “weaponry” OR “arms”

OR “implements of war” OR “weapons system” OR “munition” . If any of these words

or phrases appears in the text, the pattern “bomb”[SYN] is detected. This option adds

simplicity and flexibility to the specification of single-word patterns. The same is true

for complex patterns with embedded synonym specification, e.g. “Bomb”[SYN] NEAR

“Ground Zero”.

Using the above operators, users can specify complex and meaningful patterns (refer

[168] for more patterns). For instance, a complex pattern (“bomb” occurring prior to

“ground zero” occurring twice, with a single occurrence of “automotive” or its synonyms),

can be specified using the PSL as

Pattern P1 = "bomb" FOLLOWED BY "ground zero"

Pattern P2 = FREQUENCY /2 (P1)

Pattern P3 = P2 NEAR "automotive" [SYN]

8.2.3 InfoFilter

InfoFilter analyzes text streams based on the content and structural information,

and notifies users when their patterns of interest are detected. Figure 8.7 shows various

234

Pattern Validator

Wordnet
Database Tool

Graph Generator

Notifier

Videos

Email

Web
Pages

InfoFilter Server

Stream Processor

USERS

News

Pattern Detector

Pattern Detector

PSL

r $ab te m
 y

Suffix trie

Figure 8.7. Architecture of InfoFilter.

modules of the InfoFilter server: Pattern Validator, Graph Generator, Stream Processor,

Pattern Detector, Notifier and other external components. Patterns can be associated

with different types of text streams (e.g., documents, web pages, and video captions).

User patterns are handled by certain modules and incoming streams are handled by

other modules. Pattern flow and its corresponding modules are shown in Figure 8.8,

and stream flow and its corresponding modules are shown in Figure 8.9, and both are

explained below.

Pattern flow in the InfoFilter is illustrated in Figure 8.8. Users submit patterns

using PSL to the InfoFilter server. These patterns are validated and processed upon

submission by the pattern validator. Once processed, these patterns are sent to the graph

generator. The graph generator constructs the PDGs corresponding to the patterns in the

pattern detector, and interacts with the WordNet Database tool to extract the synonyms

of single words if specified. It also stores the keywords, phrases and regular expressions,

embedded in these patterns in a shared suffix trie.

235

Pattern
Validator

Wordnet
Database Tool

Graph
Generator

USER
Patterns

r $ab tem
 y

Postfix Notation

Pattern Detection
Graph (PDG)

Extracted words, phrases,
synonyms, regular expressions

Synonyms

Suffix Trie

Figure 8.8. Illustration of Pattern Flow in InfoFilter.

Figure 8.9 depicts the stream flow in InfoFilter. As shown, stream processor in-

teracts with the shared suffix trie for pattern matching. In addition, it also interacts

with various pattern detectors associated with each stream type (i.e., email, text). Suffix

trie stores extracted keywords, phrases and regular expressions, whereas pattern detec-

tors store all the user patterns in form of PDGs. Incoming streams are tokenized using

stream based tokenizers (i.e., email stream tokenizer is different from text tokenizer).

Once tokenized, the lookup module matches the tokens against the stored patterns in

the shared suffix trie. Once a pattern is matched, it is sent to the corresponding PDG in

the pattern detector.

Videos

Email

Web
Pages

News

r $ab tem
 y

Stream Processor
Lookup

Text Streams

Suffix Trie

Tokenizer

Tokens

Tokens

notifications

match / not match

Pattern Detector Pattern Detector

Detected

Figure 8.9. Illustration of Stream Flow in InfoFilter.

236

InfoFilter continuously monitors various types of streaming text, detects simple

pattern occurrences and notifies the corresponding pattern detectors. For instance, a

user specifies the pattern “information” NEAR “filtering” to be detected in an email

stream. A separate pattern detector is used to detect the pattern in the email stream.

If the pattern is detected, the PDG constructed in this pattern detector is notified. The

pattern detector in turn alerts the notifier to send notifications to a user when a pattern

is detected.

8.2.4 Pattern Detection

User patterns are required to be detected as the incoming text streams flow into

the system. For simple patterns, detecting the pattern occurrence is straightforward. For

example, the keyword “Language” is detected just by simple pattern matching. However,

for complex patterns composed of complex sub-patterns, the detection should conform

to the semantics of PSL pattern operators where the order of pattern occurrence is

significant (e.g., FOLLOWED BY operator). For example, in order to detect a complex

pattern “Information” FOLLOWED BY/10 “Filtering”, the flow of pattern occurrences

should be preserved. Thus, a data flow paradigm in the form of a PDG is used to detect

the patterns according to the operator semantics and to maintain the flow of pattern

occurrences. In this section we address how patterns are detected using pattern detection

graphs and modes. How patterns are detected effectively using shared approaches are

explained in [168].

8.2.4.1 Pattern Detection Graphs (PDGs)

For each pattern or sub-pattern, a corresponding PDG is constructed. In a PDG

(Figure 8.10), leaf nodes represent simple patterns and internal nodes represent PSL

pattern operators. For example, Figure 8.11(b) shows the PDG corresponding to the

complex pattern “Query” FOLLOWED BY “Language”. Both the leaf and internal

237

Internal nodes - PSL operators

leaf nodes - simple patterns

reference to a parent node

Actions

Figure 8.10. Pattern Detection Graph (PDG).

nodes store information about their parent nodes in a subscriber list. Typically, during

the construction of a PDG, the parent node subscribes to its child nodes by placing its

reference in the subscriber list of the child nodes. In addition to the subscriber list, the

leaf node contains the name of the simple pattern it corresponds to. For complex patterns,

the internal node contains the name of the complex pattern, references to the nodes of

the sub-patterns and their parameters such as the offset of the pattern occurrence and

reference to the text stream in which it occurs.

The pattern occurrences flow through the PDG in a bottom-up manner. Once a

simple pattern occurrence is detected, the corresponding leaf node propagates it with the

associated parameters to the parent node as leaf nodes do not have storage capabilities.

For example, in Figure 8.11(b) when an occurrence of the simple pattern “Query” is

detected, it is propagated to the FOLLOWED BY node. Each parent node allocates a

space for storing the pattern occurrences that belong to its child nodes. Similarly, when

a sub-pattern occurrence is detected, the corresponding internal node propagates it to

the parent nodes, using the subscriber list.

238

offsetBS P2
1

0 50 100 150

P1
2P1

1

200 250

P2
2

BS: Beginning of a stream
P1: "Query" P2: "Languages"

(a)

FB: Followed By
Q: Query L:Languages

LQ

FB

(b)

Figure 8.11. Pattern Detection (a) Pattern Occurrences; (b) PDG.

8.2.4.2 Pattern Detection Modes

According to the characteristics of the PDGs, the detection of a complex pattern

requires the detection of its sub-patterns. The sub-pattern that starts the detection of

a complex pattern is termed the “initiating sub-pattern/pattern”. Similarly, the sub-

pattern that ends the detection of a complex pattern is termed the “terminating sub-

pattern/pattern”. In the most general case (termed unrestrictive mode), the complex

pattern occurrences are detected using all the occurrences of the sub-patterns. This may

generate a large number of pattern occurrences which can contain duplicates and may

not be meaningful.

Let us take a sample pattern “Query” FOLLOWED BY “Languages”, represented

as Q FOLLOWED BY L. Simple pattern occurrences {Q1 (P 1

1
), Q2 (P 2

1
), L1 (P 1

2
), L2

239

(P 2

2
)} are shown in Figure 8.11(a), where P i

j indicates the pattern occurrence and offset.

For these simple pattern occurrences, four combinations of complex pattern occurrences

are generated and they are:

{Q1, L1}, {Q2, L1}, {Q1, L2}, {Q2, L2}.

This poses a question as to which pattern occurrences can participate in the de-

tection of the complex pattern (i.e., which occurrence of Qi should be paired with Lj).

As singularity (i.e., a single pattern cannot detect two different patterns, thus creating

duplicates) and proximity (i.e., words that co-occur near each other are considered highly

correlated providing a semantic meaning) of pattern occurrences play a significant role in

information filtering domain, Proximal-Unique detection mode was developed to provide

an accurate pattern detection.

Proximal-Unique: Only the initiating sub-pattern/pattern occurrence that is

closest to the terminating sub-pattern/pattern occurrence is used for pattern detection,

ensuring the proximity property. From the above example, pattern occurrence Q1 (P 1

1
)

is discarded as Q2 (P 2

1
) will be the closest to the terminating sub-pattern/pattern oc-

currence L1 (P 1

2
). On the other hand, the initiating sub-pattern/ pattern occurrence is

discarded immediately after it has been used in any pattern detection, ensuring that no

duplicate pattern occurrences are generated. In other words, this mode entails that an

occurrence of a sub-pattern can participate only once in detecting a complex pattern.

Therefore, once the pattern occurrence Q2 is paired with L1 it cannot be paired with

L2. In this mode only the pattern occurrences {Q2, L1} are used to detect the complex

pattern shown in Figure 8.11(a). Since this detection mode emphasizes the proximity

and uniqueness of pattern occurrences, it is termed as Proximal-Unique.

240

8.2.5 Summary

In this section, we have presented the InfoFilter1 system, a content-based system

for filtering text streams. InfoFilter has been developed with an intent to support expres-

sive user patterns using PSL and to provide filtering on streams and notification. PSL,

proposed in this section, with its expressiveness and well-defined semantics, overcomes

the limitations of the current information filtering systems used for specifying and de-

tecting user patterns. It provides a complete set of pattern operators and options such as

frequency, synonyms, followed by, Boolean operators, structural, wild card, and proximity.

8.3 Event Streams

Although research seems to address event and stream data processing as two sepa-

rate topics there are a number of similarities between them. For many advanced stream

applications, both event and rule processing are needed and are not currently well-

supported. Extant event processing systems concentrate primarily on complex events

and rules and stream processing systems concentrate on stream operators, scheduling,

and quality of service issues. Synergistic integration of these models will be better than

the sum of its parts. We propose an integrated model to combine the capabilities of

both models for applications that not only need to monitor changes through continuous

queries (CQs), but also to express and process complex events from the simple events

generated by CQs.

8.3.1 Introduction

Event processing [43, 53, 54, 55, 56, 58, 61, 62, 63, 65, 66, 67] and lately stream data

processing [130, 131, 132, 133, 134, 135] have evolved independently based on situation

monitoring application needs. Several event specification languages [42, 65, 93, 169,

1Please refer [52, 168] for detailed information.

241

170, 171] for specifying composite events have been proposed and triggers have been

successfully incorporated into relational databases. Different computation models [43, 53,

60, 61, 62, 63, 64, 65] for processing events, such as Petri nets [64, 65], extended automata

[60, 61, 170], and event graphs [43, 53, 62] – have been proposed and implemented.

Various event consumption modes [42, 43, 62, 64, 65] (or parameter contexts) have been

explored. Similarly, stream data processing has received a lot of attention lately, and a

number of issues – from architecture [130, 132, 133, 134, 172] to scheduling [173, 174, 175]

to Quality-Of-Service (QoS) management [176, 177, 178] – have been explored. Although

both of these topics seem to be different on the face of it, we believe, based on the

applications we have analyzed that they augment/complement each other in terms of

computational needs of real-world applications. As it turns out, the computation model

used for stream data processing (data flow model) is not very dissimilar from some of the

event processing models (e.g., event graph), but developed with a different emphasis.

As many of the stream applications are based on sensor data, they invariably give

rise to events that need to be composed to detect composite (or complex) events on

which some actions need to be taken. A number of sensor database projects, Cougar

[136, 137], TinyDB [138, 139] have tried to integrate the event processing with query

processing under a sensor database environment. However, the event-driven queries

proposed in TinyDB, for example, are used to activate queries based on events from

underlying operating systems. Our focus in this work is to develop an end-to-end system

that can process highly dynamic event streams generated from continuous query (CQ)

processing stage for applications that need complex event processing as well.

Current event processing systems assume that primitive events are domain specific

and are assumed to be detected by the underlying system such as a database, operating

system (OS), or an application. Treating the output of complex computations in the form

of a stream query processing as events have not been addressed. Furthermore, combining

242

these two computational models - one window based and the other non-window based

(but using event consumption modes or parameter contexts) requires enhancements to

both models. This work addresses synergistic integration of these two strands of research

and development into a more expressive and powerful model of computation.

8.3.1.1 Motivating Example

We have analyzed several real-world applications [179] to understand the require-

ments and issues that need to be solved in order to have an end-to-end system. We

summarize one of them which we will use as a running example.

Example 1. In a car accident detection and notification system (adapted from the

linear road benchmark [180]), each expressway in an urban area is modeled as a linear

road, and is further divided into equal-length segments (e.g., 5 miles). Each registered

vehicle on an express way is equipped with a sensor and reports its location periodically

(say, every 30 seconds). Based on this location stream data, we want to detect a car

accident in a near-real time manner. If a car reports the same location (or with speed

zero mph) for four consecutive times, FOLLOWED BY at least one car in the same

segment with a decrease in its speed by 30% during its four consecutive reports, then it

is considered as a potential accident. Once an accident is detected, some actions may

have to be taken immediately: i) notify the nearest police/ambulance control room about

the car accident, ii) notify all the cars in 5 upstream segments about the accident, and

iii) notify the toll station so that all cars that are blocked in the upstream for up to 20

minutes by the accident will not be tolled.

Every car in the express way is assumed to report its location every 30 seconds

forming the primary input data for the above example. The format of car location data

stream (i.e., CarLocStr) is given below:

CarLocStr(timestamp, car_id, speed, exp_way,

243

lane, dir, x-pos)

CarSegStr is the car segment stream (or the input CarLocStr stream), but with

the location of the car replaced by the segment corresponding to the location. Query

shown below produces the CarSegStr from the CarLocStr stream.

SELECT timestamp, car_id, speed, exp_way,

lane, dir, (x-pos/5 miles) as seg

FROM CarLocStr;

Detecting an accident in the above Car ADN example has three requirements:

(1) IMMOBILITY: checking whether a car is at the same location for four consecutive

time units (i.e., over a 2 minutes window, in our example, as the car reports its

location every 30 seconds).

(2) SPEED REDUCTION: finding whether there is at least one car that has reduced its

speed by 30% or more during four consecutive time units.

(3) SAME SEGMENT: determining whether the car that has reduced its speed (i.e., car

identified in (2)) is in the same segment and it follows the car that is immobile (i.e.,

car identified in (1)).

Immobility of a car can be computed using CQs that are supported by the current

data stream processing systems as shown below:

SELECT car_id, AVG(speed) as avg_speed

FROM CarLocStr [2 minutes sliding window]

GROUP BY car_id

HAVING avg_speed = 0;

With the current event and stream processing models using a non-procedural lan-

guage2, it is difficult or impossible to efficiently compute the speed reduction. Whether

2Models that are based on procedures may compute this, but they are more difficult to use than those

models that are based on non-procedural languages (i.e., SQL). In this work we consider the latter one.

244

the cars that are found in requirements (1) and (2) are from the same segment can be

readily determined in an event processing model using a sequence operator [65, 62, 93].

As the cars that are identified in requirement (3) can be separated by more than 4 time

units, it requires an efficient, meaningful and less redundant approach to notifications.

In other words, number of times the accident is reported should be kept to a minimum.

This can be done efficiently using the current event processing models using the notion

of contexts (e.g., recent context for this case), but not the current stream processing

models. Although JOIN operator can be used to compute it in a roundabout manner,

the number of notifications (or the number of times an event is raised) are not minimized.

The real-world examples we have analyzed clearly illustrate the need for stream

processing followed by event processing to accomplish the task in an elegant manner3.

In addition, the above notifications have to meet some Quality of service (QoS) require-

ments. Processing of events using event detection graphs (analogous to a query tree)

and a data flow architecture is similar to the processing of data streams. We have ana-

lyzed the characteristics of event and data stream processing models and analyzed their

similarities and differences [98]. This will form the basis of our integrated model and

for identifying the extensions needed for each model. Although the computation models

are similar and events can be viewed as timestamp-based streams, operator semantics,

contexts, and processing requirements have a number of differences. Eventually, a num-

ber of extensions have to be made on the event processing side to accommodate high

input rates and QoS requirements. Some extensions need to be made on the stream side

3Although the literature from which the example is taken seems to indicate that event processing can

be combined into stream processing directly, we believe that it will be a clumsy way to approach this

problem and other complex problems as well. Semantically, stream and event processing play different

roles and hence need to be brought together in a synergistic way that preserves their individual semantics.

Furthermore, specification of events as continuous queries needs to be expressive and flexible.

245

to generate events (changes/values of interest) which are less in number as compared

to stream output and are meaningful. Also, we have provided constructs for defining

streams as events, event masks, and addressed architectural issues of coupling the two

models.

E
3

E2

J2
J1

S
2 S3

S
1 S4

Stage 3:
Event Processing

C Q
Processing

Stream 2 Stream 3

Stage 4: Rule Processing

S
ta

g
e

1:
 C

Q

P
ro

ce
ss

in
g

Streami - Incoming Streams
Sk - Select Operators
J

l
 - Join Operators

R
q
 - Rules

Ep - Event Nodes
Gr - Event Generator
LDET - LED Thread

Rule 1 Rule 2 Rule n... Rule 1 Rule 2 Rule n...

Stream 1 Stream
4

G
1 G

2

LEDT

MaskBuffer Notify Buffer

Stage 2:
Event Generation
Stream Modifiers

E
1

Figure 8.12. MavEStream: Four Stage Integration Model.

8.3.2 MavEStream: An Integrated Model

The proposed integrated model, termed MavEStream is shown in Figure 8.12 and

it consists of four stages: 1) CQ processing stage used for computing CQs over data

246

streams, 2) coupling stream output with event processing system, 3) event processing

stage that is used for detecting events, and 4) rule processing stage that is used to check

conditions, and to trigger predefined actions once events are detected. The seamless

nature of our integrated model is due the compatibility of the chosen event processing

model 4 (i.e., an event detection graph) with the model used for stream processing.

8.3.2.1 Continuous Query Processing

This stage processes normal CQs where it takes streams as inputs and gives com-

puted continuous streams. The scheduling algorithms and QoS delivery mechanisms (i.e.,

load shedding techniques) along with other techniques developed for stream processing

model can be applied directly. In many cases, final results of stream computations need

to be viewed as events for defining situations that use multiple streams and composite

events. A CQ may give rise to multiple events based on the attribute values of the output

stream. In Figure 8.12, operators S1, S2, and J1 form a CQ. Similarly, operators S3, S4,

and J2 form a CQ.

CREATE CQ CQName AS (Normal CQ statements)

Named Continuous Queries: In order to express computations clearly, CQs are

named. The name of a CQ is analogous to the name of a table in a DBMS and it has

the same scope and usage as that of a table. The queue (buffer) associated with each

operator in a CQ supports the output of a named CQ to be fed into the input queue of

another named CQ. A named CQ is defined by using the CREATE CQ statement shown

above. However, the FROM clause in a named CQ can use any previously defined CQs

through their unique names. The meta information of a named CQ is maintained in a

CQ dictionary in the system. The meta information includes the query name, its input

4It will be difficult to integrate either the Petri net event processing model of SAMOS or the extended

automata model of ODE with stream processing models

247

sources, all output attributes ordered by their order in final output tuples, and its output

destination(s). Events can be specified by using named CQs and in addition providing

conditions on attributes to generate multiple event types.

8.3.2.2 Event Processing

Below we discuss two limitations of current event processing systems. Event de-

tection graphs (or EDGs) in the current event processing systems do not have input

queues/buffer for event operators as the input rate of an event stream is not assumed to

be very high and highly bursty. Thus, in our integrated model, input queues/buffers are

added to event operator nodes (shown in Figure 8.12) to handle the highly bursty input

generated by the CQs from the CQ processing stage.

In a traditional event processing system, primitive events can be either class or

instance level, but both of them are based on timestamps. Instance level events play an

important role for events generated by stream processing, but with the dynamic nature

of incoming streams it is difficult or impossible to determine the instance level events

ahead of time. The example discussed below highlights the limitations of the current

event operators that operate solely on timestamp.

Consider the Car ADN (Section 8.3.1.1) example. Event Eimm represents IM-

MOBILITY and event Edec represents SPEED REDUCTION. Event Eacc represents

the accident and is detected when an event Eimm happens before event Edec. In addi-

tion, Eacc is detected only when events Eimm and Edec are generated by cars from the

SAME SEGMENT.

CQ1 <timestamp, car_id, speed, exp_way, lane, dir, segment_id>

CQ2 <timestamp, car_id, speed, exp_way, lane, dir, segment_id,

decrease_in_speed>

248

Stream CarSegStr (Section 8.3.1.1) sends inputs to the named continuous queries

CQ1 and CQ2. CQ1 checks the car for IMMOBILITY and CQ2 checks for SPEED

REDUCTION. Attributes of both CQ1 and CQ2 are shown above. We define events

Eimm and Edec on CQ1 and CQ2, respectively.

Eimm <9.00 am, 1, 0 mph, EW1, 3, NW, 104>

Edec <9.03 am, 2, 40 mph, EW1, 1, NW, 109, 45%>

Edec <9.04 am, 5, 20 mph, EW1, 4, NW, 104, 40%>

From the above, Eimm occurs at 9.00 am and Edec occurs at 9.03 am and 9.04

am. Eacc is detected when Eimm precedes Edec in time. From the above tuples, two

accidents are detected; car id 1 and car id 2, and car id 1 and car id 5. Thus, it

is evident that in current event processing systems, the important condition that both

the cars should be from the SAME SEGMENT is checked only after the event Eacc is

detected. This introduces a high overhead on the event computation as there can be

many unnecessary detection of event Eacc with nature of data stream applications.

The above example can be modeled using instance level events, but all the in-

stances of a class should be predefined (or known previously). This may be impossible

in a system where the data streams’ attribute values are dynamic. Even if the values are

predefined, they require large number of event nodes, which introduce high computation

and memory overhead. Hence, event processing needs to be burdened less to support

efficient detection. We have generalized event expression computation, so that attribute

conditions are checked before the events are detected. This generalized expression allows

both primitive and composite event nodes to detect events based on attribute-based con-

straints (or MASKS). MASKS are pushed to the event generator node with primitive

events (i.e., for leaf nodes in EDG) and are pushed into the event operator nodes (i.e.,

internal nodes in EDG) for other events. For instance, in Figure 8.12 MASKS corre-

sponding to CQ with J1 as the root node is pushed to event generator node G1. Thus,

249

when multiple events are defined on the same CQ but with different MASKS, all of them

are pushed to the corresponding event generator node.

CREATE EVENT Ename

SELECT A1, A2, ..., An

MASK AC1, AC2, ..., ACn

FROM ES | EX

Users can specify events based on CQs (for primitive events) or on Events using

the CREATE EVENT statement shown above.

- CREATE EVENT creates a named event Ename

- SELECT selects attributes A1, A2, . . . , An

- MASK applies conditions on the attributes

- ES is a named CQ or a CREATE CQ statement

- EX is an event expression that combines more than one event using event operators

Below we show how we model the CAR ADN example (Section 8.3.1.1) using

multiple5 CREATE EVENT statements.

CREATE EVENT Eimm

SELECT CQ1.car_id, CQ1.seg_id FROM CQ1

CREATE EVENT Edec

SELECT CQ2.car_id, CQ2.seg_id FROM CQ2

CREATE EVENT Eacc

SELECT Eimm.car_id, Edec.car_id

Eimm.seg_id, Eimm.timestamp

MASK Eimm.seg_id = Edec.seg_id

5We can also model the same using a nested statement.

250

FROM Eimm SEQUENCE Edec

Eimm is created from the CQ1 and Edec is created from the CQ2. If we need

to select cars from a particular seg id then it should be specified as a MASK in events

Eimm and Edec. In our integrated model, event generator nodes are created on CQ1 and

CQ2 so that events can be raised when ever there is an output from CQ1 or CQ2. Event

expression EX for the accident is Eacc = Eimm SEQUENCE Edec, where SEQUENCE

is an event operator that is detected when the first event precedes the second event in

time. In addition, MASK specifies that cars should be from the SAME SEGMENT and

is checked in the SEQUENCE operator node.

8.3.2.3 Coupling Event and Stream Processing

The local event detector (LED) has a common notify buffer (or event processor

buffer) into which all events that are raised are queued. A single queue is necessary as

events are detected and raised by different components of the system (CQs in this case)

and they need to be processed using their time of occurrence. Briefly, a new operator

is added to every stream query at the root if an event is associated with that CQ.

This operator can take any number of MASKS and for each MASK, a different event

tuple/object is created and sent to the notify buffer. This operator is activated only

when an ECA rule associated with that CQ is enabled. This operator is similar to the

select operator except that when it generates an event, it invokes an API of LED to

queue that event in the notify buffer. CQs output data streams in the form of tuples

and event generator operator nodes are attached to the root node of the CQ. As shown

in Figure 8.12, nodes J1 and J2 are attached to event generator nodes G1 and G2. In

addition, nodes G1 and G2 are also associated with MASKS. Thus, stream tuples from

J1 and J2 are converted to events by nodes G1 and G2.

251

8.3.3 Summary

In this work, we argued for keeping the semantics of event and stream processing

systems intact and integrating them synergistically to provide an end-to-end system

for advanced applications6. Our goal was to provide an integrated model for advanced

stream applications that supports not only stream processing, but also complicated event

and rule processing. We analyzed the similarities and differences between the stream

processing and the event processing models and identified a number of enhancements

needed. We elaborated on coupling the two systems, specifying ECA rules where the

events are generated by CQs. By using masks it is easier to specify expressive rules (car

example).

8.4 Network Fault Management

Network fault management has been an active research area for a long period

of time because of its complexity, and the returns it generates for service providers.

However, most fault management systems are currently custom-developed for a particular

domain. As communication service providers continuously add greater capabilities and

sophistication to their systems in order to meet demands of a growing user population,

these systems have to manage a multi-layered network along with its built-in legacy

logical processing procedure. Stream processing has been receiving a lot of attention to

deal with applications that generate large amounts of data in real-time at varying input

rates and to compute functions over multiple streams, such as network fault management.

In this section, we provide an integrated inter-domain network fault management system

for such a multi-layered network based on data stream and event processing techniques

explained in Section 8.3. We discuss briefly (please refer [99] for more details) various

6Please refer [98] for more information.

252

components in our system and how data stream processing techniques are used to build

a flexible system for a sophisticated real-world application.

8.4.1 Introduction

In telecommunication network management, Network Fault Management (NFM)

is defined as the set of functions that (a) detect, isolate, and correct malfunctions in a

telecommunication network, (b) compensate for environmental changes, and (c) maintain

and examine error logs, accept and act on error detection notifications, trace and identify

faults, carry out sequence of diagnostic tests, correct faults, report error conditions, and

localize and trace faults by examining and manipulating database information.

����������������
����������������
����������������
����������������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

MPLS VPN

And More

ATM Network
(Data)

Optical Network
SDH/SONET

Intelligent
Networks

Value−added
Networks

Other TCP/IP
Networks

Circuit Switch Network
(Analogue Voice)

Optical Domain

Circuit Domain ATM Domain
More Laye

rs
More D

omains

Figure 8.13. A Typical Telecomm Network.

A typical telecommunication network illustrated in Figure 8.13 is a multi-layered

network, in which the bottom layer provides transport service through SDH/SONET

networks. Above that, a PSTN switch network with a SS7 signaling network is used

to provide traditional voice services, and an ATM network is used to provide Internet

data service. Intelligent networks and other value-added networks can be added above

the PSTN switch networks, and BGP/MPLS VPN network can be added above the

ATM network. The NFM in such a multi-layered telecommunication network has been

253

an interesting research problem [140, 141, 142, 143, 181, 182, 183] in both industry and

academia for a long time because of its high cost and complexity. The recent convergence

of data network, cable network, and telecommunication network has further compounded

this problem.

Each network element (NE) in this multi-layered network reports the status of each

of its components and the status of its environment (e.g., temperature) periodically (e.g.,

every 5 minutes). Some NEs have simple capabilities such as summarizing its status by

processing the status message locally in order to decrease the number of messages to

be reported or to identify trivial messages. Hence, these messages arrive in a form of

a message stream, and each NE can be considered as a message stream source. These

status and alarm messages from each NE, each operation system (OS), and each link are

continuously collected in a network operation center (NOC) to be further analyzed by

experts to detect and to isolate faults. Once a fault is identified, sequences of actions

need to be taken locally and remotely. Due to the complexity of the network and differ-

ent interfaces of multiple-vendor’s devices, each layer has one or more independent NFM

systems [182, 183]. For example, there is a SDH/SONET fault management system for

the transport layer in the network as illustrated in Figure 8.13. There are also individual

fault management systems for circuit switch and Internet data networks. Similarly, all

vendors have their own fault management systems when multiple-vendors’ devices are

used. As a result, when a failure happens at a lower level, it is propagated to all the

components above, and a large volume of failure messages are reported to those indepen-

dent NFM systems. Moreover, there is a demand for providing an integrated view of the

whole network system and to process faults centrally.

254

Failure on Comman Physical Resource
(Fiber or Equipment Failures)

LOS
LOS

LOS

NE with Major Alarms

NE with Critical Alarms

LOS: Lost of Signals

Figure 8.14. Motivation Example.

8.4.2 Problem Definitions

Currently, for each independent NFM system, due to the large volume of messages

that are continuously reported by each NE and the complex message processing require-

ments, it is impossible to employ a traditional database management system (DBMS)

plus trigger mechanisms as the data processing paradigm for NFM. Current NFM sys-

tems have to hard code their data processing logic and specific monitoring rules (queries)

in the system. As a result, various filters, pattern languages, regular expressions are em-

ployed to find their interesting alarm messages and group those messages into multiple

subgroups based on various criteria. These subgroups are finally presented to experts

to diagnose root causes or route to an event correlation system to identify causes auto-

matically. Once the causes are identified, a ticket is placed to a trouble ticket system

to trace the problem and have corresponding engineers fix it. There are several major

shortcomings of these legacy systems. First, current systems have difficulty adapting to

new requirements from their customers because of the hard-coded queries. To add a new

query or to add a new monitoring rule, the system has to be reconfigured partially. Sec-

ond, current systems are very complicated, and their performance is poor because there

255

is almost no query optimization. Third, the scalability of the systems is limited because

of the tight integration between query processing and other logical components. Fourth,

there is no standard interface or language such as SQL to access those systems, which

makes them hard to use and manage. Finally, it is difficult to integrate different NFM

systems at different layers because of the hard-coded queries and different implementa-

tion techniques. As there is a dramatic growth in both the volume of message stream and

the number of interesting alarms, there is an increasing demand to process and manage

message streams for these applications. This motivates us to investigate various aspects

of a data stream, and to exploit various efficient and effective data stream processing

technologies, eventually to build an integrated network fault management system for a

large-scale telecommunication network.

Some of the challenges are unique to our system and are different with those issues

in current data stream processing models. First, the input stream consists of semi-

structured text messages, which include numerical data, date/time, place, phone number,

and other more critical and complicated information. Second, the computation required

to detect, isolate, and correct malfunctions in a fault management system is far more

complicated than the computation discussed in current data stream management systems

through a set of traditional relational operators. Finally, sequences of actions that need

to be take when a fault is detected is complicated and involves experts and can last for

long periods of time. These challenges make our system more critical and complicated

than current data stream processing systems.

8.4.3 Proposed NFM i system

Inter-domain network fault management (NFM i), illustrated in Figure 8.15, is

based on stream processing techniques to provide an integrated NFM system for a multi-

layered telecommunication network with on-line processing and near-real time response to

256

faults. The system has many advantages compared to a traditional domain specific fault

management system: 1) NFM i provides an integrated view of the status of the entire

network, and correlates alarms in a global domain, which greatly decreases the number

of alarms shown to network administrators, 2) it is more flexible than a traditional fault

management system. In a traditional fault management system, the alarm processing

is hard coded in the system, and as a result any change to the alarm processing (e.g.,

addition of new computations or rules to monitor) needs reconfiguration of the system.

The stream-based system proposed in this paper can easily add new computations by

adding new operators, and monitor new rules by issuing new continuous queries, and

3) the system is easier to use and maintain because of the flexibility of continuous queries

(extended SQL), and the clear separation of alarm processing and alarm expression.

On the other hand, our system is quite different from a traditional data stream

processing system in the following sense: 1) it processes semi-structured messages in

contrast to well-defined tuples assumed in most stream-based systems. Actually, the

processing to convert a semi-structured message to a well-defined tuple can be done as

stream processing, which usually takes at least one third or even more computational

power to handle this part of the work in our system, 2) the complicated processing

requirements cannot be addressed using the basic select-project-join and aggregation

operators. It requires computation of the correlations among alarms and an intelligent

decrease in the number of alarms shown to the administrators, and 3) it also involves

update operations, which are not discussed in the current data stream processing systems.

For example, when an administrator takes some actions for an alarm, certain information

(i.e., when and what kind actions have been performed) has to be added to the alarm.

Also when the problems related to that alarm have been fixed, the status of the alarm

has to be updated.

Below we explain the architecture of our proposed NFM system.

257

W
AN

TCP/X
.2

5/
TTY C

ha
nn

els

NEs/OSs/Links
Sensors/Agents

A
larm

 T
ransaction

A
larm

 U
pdate

A
larm

 V
iew

s

Configuration Terminals

Remote Control &

Message Logger

Env
iro

nm
en

ta
l S

en
so

rs

σ

σ

M

σ

σσM

M E

E

E

Status Reports

Alarm Messages

Sensor Data M
essage S

plitter Alarm Processing
Suppression Correlation

A
larm

 C
ontainer

SNMP Trap

Router

Alarm

M
essage F

ilter

Inform
ation

E
xtractor

Trouble Ticket System

R
ule P

rocessing

User Defined Triggers

Upstream Operation Systems
3ComCoreBuilder 5000TMSwitching Hub

cmgtcmgt

mgtfb fbfbfb fbfbfbfbtpl6tpl6 5302m5302m

���
���
���

���
���
���
����
������

Mini ATM switch

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

Figure 8.15. Inter-Domain Network Fault Management System Architecture.

Message splitter is the first function in our system that is applied over the incoming

alarm message streams. Each stream is a character stream, in which the messages are sent

continuously to the system character by character. Message splitter processes over the

character stream, distinguish each message and wraps a segment of consecutive characters

as a message. The message filter and information extractor module provides an intelligent

way to find interesting messages and extract required information from those messages.

It takes the message streams from message splitters as its input and outputs formatted

alarm messages which are similar to a tuple in a relation.

The main role of the alarm processing module is to detect and isolate the faults by

analyzing the relationships between input alarm messages. In the multi-layered network

shown in Figure 8.13, when the lower layer has a fault, it is usually propagated to all

its upper components. This fault propagation causes the number of alarms reported

by the entire network to increase exponentially. A single NE or OS reports the same

258

alarm periodically. Obviously, an administrator does not want to see the same problem

periodically before the problem is solved. However, the administrator wants to increase

the severity of the alarm if the problem is not fixed within a predefined time period in

order to draw more attention to the alarms that persists (or alive) in the system for a

long time. A fault in one component causes multiple NEs, OSs, and Agents to report the

same problem from their point of view. Some of those alarms have the same format and

similar content; while the others may have significantly different formats and different

contents. However, there exists certain relationships among these alarms, and based on

the relationships, an administrator wants the fault management system to automatically

process (NOT to discover the relationships) the relationships and decrease the number

of alarms presented to the administrators. Both problems require the fault management

system to continuously monitor the alarm streams and evaluate the relationships of these

alarms. By considering each alarm as an event, we propose to use our four phase model

explained in Section 8.3 to evaluate those relationships.

Both Event-Condition-Action (ECA) and stream processing models have their lim-

itations for handling applications that require a combination of stream and event/alarm

processing, such as fault management. The ECA model has its strength in expressing

and processing complex events. The CQ processing phase takes the output streams from

the message filter and information extractor as inputs and outputs computed continu-

ous streams to the event detection phase. In our NFM system, final results of stream

computations need to be viewed as events for detecting faults and isolating faults that

use multiple alarm streams and composite events. However, current stream processing

model is short of event and rule processing. It is also difficult to detect changes to one

or more attributes and to suppress the number of outputted alarms.

Every alarm that is produced by the alarm processing phase should be processed

scrupulously by the experts. An alarm container is proposed to contain all active alarms

259

7 outputted from the continuous query processing stage. This alarm container is imple-

mented as a large block of shared memory. Once an alarm is cleared, it is deleted from the

container. Alarm container can also be considered as a data source of streaming alarms,

and various CQs can be defined over it to present alarms to experts and to update the

status of alarms. An in-memory DBMS such as Times-ten [184] can also be used for this

purpose.

Since different experts have different domain knowledge, they only monitor a small

portion of alarms based on their knowledge and their interest. Therefore, various views

have to be defined to select alarms and to project most useful fields of an alarm. Current

fault management systems categorize alarms into a large number of small-groups based

on various fields, which are similar to GROUP BY clause in SQL, and then experts

subscribe to their groups of interest and define which fields should be shown on their

screens. Currently, all of this is done by defining various configuration files and there

is no methodology making the process inflexible and difficult to manage and maintain.

For example, when a new expert joins the team, those configuration files have to be

updated to select alarms for this expert. In our proposed system, rather than using

various configuration files to select alarms and to select fields from alarms, we propose to

use continuous queries to define various views for each expert, and the system can further

optimize those CQs to achieve a better performance. This set of CQs can be defined to

provide a set of snapshots of the alarm container. Once a new alarm is appended to the

container, it is also shown on the screen of relevant experts. If read is the only operation

over an alarm container, CQs work as intended. However, update and delete operations

over the alarm container are necessary during the course of alarm processing.

Though some human interventions are required to correct some malfunctions iden-

tified by the alarm continuous queries, there is a real need for rule processing which

7those waiting for further processing.

260

triggers a sequence of actions automatically based on some conditions and alarms. Some

malfunctions can be corrected without human interaction and some actions can be done

automatically but others require human intervention. For example, when a very critical

alarm is detected, an audio broadcast (in addition to sending an alarm to a group of

experts) may be necessary to get the attention of corresponding experts and adminis-

trators in order to respond to it as soon as possible. One alarm can trigger multiple

sequences of actions, and diverse alarms can trigger the same sequence of actions. In

order to handle multiple actions, Event-Condition-Action (or ECA) rules are used by the

system. Whenever an event arrives (i.e., outputs from our alarm continuous queries in

our system), corresponding condition is checked, and an action is triggered (if the con-

dition evaluates to true). In network fault management applications, most of the rules

should be immediately triggered as the problem needs to be brought to the attention of

various experts.

8.4.4 Summary

In this work, we have chosen a real-world problem and proposed a state-of-art net-

work fault management system based on event and stream processing techniques. We pro-

posed an architecture, set of operators, alarm processing techniques for an inter-domain

network fault management system for a multi-layered telecommunications network. In

order to do this, we had to come up with an integrated system that combines stream

data processing with event processing8. We also developed a set of solutions for the is-

sues in the proposed inter-domain network fault management system. Some are general

solutions that are applicable to most stream-based applications. However, some of the

solutions proposed in this chapter are specifically targeted to the special requirements of

network fault management domain.

8Please refer [99] for detailed information.

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

In this thesis, we have focused on several aspects of RBAC including generalization

and enforcement by exploiting and extending Sentinel – a well-established event-based

framework, the usability of RBAC, and novel applications of RBAC. Specifically, we have

addressed the following problems and made the following contributions:

• Enforcement of Existing RBAC Approaches: We have shown how active authoriza-

tion rules or extended ECA rules can be used to enforce RBAC and its extensions,

such as temporal, and control flow dependency constraints in a uniform way [85, 94].

The generated rules have different granularities and classifications based on their

functionality. The mapping of RBAC standard and its extensions to extended ECA

rules provide a practically applicable view of RBAC. The set of rules used to realize

all of the role-based models can also be used in an underlying system (that provides

some hooks) to support Role-Based models. We have also carried out a feasibility

study and analyzed alternative approaches for enforcing role-based models. We

have provided interval-based semantics [91, 92, 93] for Snoop event operators in

continuous and cumulative consumption modes to avert incorrect event detection.

• Generalization of RBAC and Event Specification: Constraints play a vital role in

providing fine-grained access control and realizing RBAC over diverse domains.

First, we motivated the need for generalizing RBAC based on event pattern con-

straints with some critical examples. We identified several advantages and limita-

tions of Snoop and LED, and proposed several generalizations to overcome those

limitations. In particular, we discussed how making event pattern specification and

261

262

its enforcement using a uniform approach is beneficial (typically they are disjoint

or orthogonal in all systems we are familiar with). We have generalized the tra-

ditional simple and complex event definitions. We then identified the simple or

domain events that are required for constraint specification in RBAC. We illus-

trated how policy checking is carried out via authorization rules. We have shown

how constraints can be placed on simple events using authorization rules. We then

generalized RBAC with event pattern constraints. Event patterns with complex

events and simple events as constituent events were used to model constraints, such

as temporal, context, precedence, dependency, non-occurrence, and their combina-

tions. Even though we have discussed various pattern operators that are useful

in constraint specification, new operators can be plugged in seamlessly into our

framework.

• Enforcement of Generalized RBAC: We have analyzed the limitations of current

event detection graph mechanism in LED. We then extended event detection graphs

as event registrar graphs to incorporate all the event generalizations and for captur-

ing event occurrences and keeping track of event ordering. Event registrar graphs

follow a bottom-up data flow paradigm and are efficient as they allow the sharing of

event patterns and simple events. We have also shown how expressive event-based

constraints can be enforced using event registrar graphs. We introduced complete,

uncomplete, and failed events and discussed how rules associated with them can be

used to check policy constraints based on the complex constraint satisfaction. Fi-

nally, we have explained how policy conflicts can be identified and resolved, though

it requires further investigation.

• Usability in RBAC: The abstraction provided by roles allows them to own objects

and allows users to shift roles. On the other hand, for accessing objects, users have

to know the relationship between roles and objects. Our approach is proactive in

263

that it provides the necessary notifications to the user acting in anticipation of

future problems that the user may face when the user is requesting access. We

have presented algorithms for discovering roles and have analyzed their complexity

and effectiveness [95]. When a user gets access DENIAL from our algorithm, it

actually means that there are no roles that can be activated to make this request

happen. This is a much stronger denial than what the current systems provide.

Notifications in our approach allow users to concentrate on what data needs to

be accessed rather than the roles that are required for access, thus preserving the

principle of least privilege. Roles are disclosed to the user without any information

leak. Although role discovery has its associated overhead with respect to system

response time, it reduces user response time, increases user satisfaction or usability

and is more effective than algorithms that provide binary replies and follow the

human-active, system-passive model.

• Novel Applications: We have developed several novel applications for demonstrating

the applicability of the results obtained in this thesis.

i) We have provided a smart push-pull approach for supporting Role-Based security

in web gateways [96]. The role-based security realizes the concept of RBAC and

provides a practical, elegant mechanism for controlling accesses in web gateways.

By leveraging RBAC, the number of access rules and their complexity is greatly

reduced, thus reducing the administrative burden. Moreover, there are additional

advantages, such as seamless constraint specification (e.g., time of the day, quotas

based on bandwidth or time, IP address, location, etc.), and fine-grained access

control decisions.

ii) InfoFilter, a content-based system for filtering text streams has been developed

with an intent to support expressive user patterns using a pattern specification lan-

guage and to provide filtering on streams and notification [52, 97]. We have shown

264

how event operators with interval-based semantics can be utilized for information

filtering. Although this application is not directly relevant to the RBAC domain, it

can be used for various applications including tracking of information flow among

terrorist outfits.

iii) We introduced an integrated model for advanced stream applications that sup-

ports, not only stream processing, but also complicated event and rule processing

[98]. The integrated model uses attribute-based semantics of events. In other

words, this model requires explicit expressions (E) developed as part of our work in

the generalization of Sentinel. We chose a real-world problem to propose a state-

of-the-art network fault management system based on event and stream processing

techniques [99].

9.1 Future Work

We have shown how active authorization rules are used in the enforcement of exist-

ing RBAC approaches in a uniform manner. Mapping of higher level policies into ECA

rules need to be examined. Complete set of rules that are required for the complete GTR-

BAC and other policy specifications need to be generated. In general, it will be interesting

to explore how extended ECA rules can be used in supporting other security models and

providing distributed and cross-domain access control for enterprises. Benchmarking and

the overhead of using ECA rules needs to be investigated. We have generalized RBAC

with event pattern constraint specification. Showing whether the event pattern approach

subsumes other approaches (individually) needs to be investigated. The formal seman-

tics for attribute-based evaluation of snoop operators in different contexts need to be

evaluated. We have also identified policy conflicts from our event pattern constraint

specifications, but this requires further investigation. Consistency checking of ECA rules

(cyclic and other undesirable properties) needs to be investigated. In addition, access to

265

these rules and their management (meta-level) need to be investigated. In general policy

verification, validation and conflict resolution should be explored further. Incorporation

of event registrar graphs into different systems in different ways, such as integrated,

and middle-ware, needs to be investigated. Update, redefinition, and flexibility of the

event-based approach need to be investigated, and applying this approach to common

information model (CIM) with respect to services is another direction. Need to investi-

gate the applicability of generalized event patterns to other domains to provide better

expressiveness. Finally, newer application domains, where RBAC with event pattern

constraints can be leveraged, need to be explored.

REFERENCES

[1] G. S. Graham and P. J. Denning, “Protection - Principles and Practice,” in Pro-

ceedings, AFIPS Spring Joint Computer Conference, Montvale, New Jersey, 1972,

pp. 417–429.

[2] D. E. Bell and L. J. LaPadula, “Secure Computer System: Unified Exposition and

MULTICS Interpretation,” The MITRE Corporation, Bedford, MA 01730, Tech.

Rep. MTR-2997 Rev. 1 and ESD-TR-75-306, rev. 1, Mar. 1976.

[3] A Guide to Understanding Discretionary Access Control in Trusted Systems,

NCSC-TG-003-87, National Computer Security Center, Sep. 1987.

[4] R. S. Sandhu, “Lattice-Based Access Control Models,” IEEE Computer, vol. 26,

no. 11, pp. 9–19, 1993.

[5] R. S. Sandhu and P. Samarati, “Access Control: Principles and Practice,” IEEE

Communications Magazine, vol. 32, no. 9, pp. 40–48, 1994.

[6] R. S. Sandhu, “Access Control: The Neglected Frontier,” in Proceedings, First

Australian Conference on Information Security and Privacy, Wollong, Australia,

1996, pp. 219–227.

[7] R. S. Sandhu and P. Samarati, “Authentication, Access Control, and Intrusion

Detection,” in The Computer Science and Engineering Handbook, A. B. Tucker,

Ed. CRC Press, 1997, pp. 1929–1948.

[8] D. D. Clark and D. R. Wilson, “A comparison of commercial and military com-

puter security policies,” Proc. IEEE Symposium on Security and Privacy, Oakland,

California, pp. 184–194, April 1987.

266

267

[9] D. F. Ferraiolo and D. R. Kuhn, “Role-Based Access Control,” in Proc. of the 15th

National Computer Security Conference, 1992, pp. 554–563.

[10] D. F. Ferraiolo, J. A. Cugini, and D. R. Kuhn, “Role-Based Access Control: Fea-

tures and Motivations,” in Proceedings, Annual Computer Security Applications

Conference, 1995.

[11] R. S. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-Based Access Control

Models,” IEEE Computer, vol. 29, no. 2, pp. 38–47, 1996.

[12] RBAC Standard, ANSI INCITS 359-2004, ANSI INCITS 359-2004, InterNational

Committee for Information Technology Standards, 2004.

[13] W. Eßmayr, S. Probst, and E. Weippl, “Role-based access controls: Status, dis-

semination, and prospects for generic security mechanisms.” Electronic Commerce

Research, vol. 4, no. 1-2, pp. 127–156, 2004.

[14] F. Chen and R. S. Sandhu, “Constraints for role-based access control,” in Proceed-

ings, ACM Workshop on Role-Based Access Control. New York, NY, USA: ACM

Press, 1996, p. 14.

[15] E. Lupu and M. Sloman, “Reconciling role based management and role based access

control,” in Proceedings, ACM Workshop on Role-Based Access Control. New

York, NY, USA: ACM Press, 1997, pp. 135–141.

[16] L. Giuri and P. Iglio, “Role templates for content-based access control,” in Pro-

ceedings, ACM Workshop on Role-Based Access Control. New York, NY, USA:

ACM Press, 1997, pp. 153–159.

[17] T. Jaeger, “On the increasing importance of constraints,” in Proceedings, ACM

Workshop on Role-Based Access Control. New York, NY, USA: ACM Press, 1999,

pp. 33–42.

268

[18] G.-J. Ahn and R. Sandhu, “Role-based authorization constraints specification,”

ACM Transactions on Information and System Security, vol. 3, no. 4, pp. 207–226,

2000.

[19] M. J. Moyer and M. Ahamad, “Generalized role-based access control,” in Proceed-

ings, International Conference on Distributed Computing Systems. Washington,

DC, USA: IEEE Computer Society, 2001, p. 391.

[20] E. Bertino, P. A. Bonatti, and E. Ferrari, “TRBAC: A temporal role-based access

control model,” ACM Transactions on Information and System Security, vol. 4,

no. 3, pp. 191–233, 2001.

[21] J. Crampton, “Specifying and enforcing constraints in role-based access control,” in

Proceedings, ACM Symposium on Access Control Models and Technologies. New

York, NY, USA: ACM Press, 2003, pp. 43–50.

[22] M. Strembeck and G. Neumann, “An integrated approach to engineer and enforce

context constraints in rbac environments,” ACM Transactions on Information and

System Security, vol. 7, no. 3, pp. 392–427, 2004.

[23] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor, “A Generalized Temporal

Role-Based Access Control Model,” IEEE Transactions on Knowledge and Data

Engineering, vol. 17, no. 1, pp. 4–23, Jan. 2005.

[24] Internet Security Glossary - RFC 2838, Network Working Group, 2000. [Online].

Available: http://www.ietf.org/rfc/rfc2828.txt

[25] Security Requirements for Cryptographic Modules, FIPS PUB 140-1, U.S. Depart-

ment of Commerce, 1994.

[26] Glossary of Computer Security Terms, NCSC-TG-004, ver. 1, National Computer

Security Center, (Part of the Rainbow Series.), 1998.

[27] M. Bishop, Computer Security: Art and Science. Addison-Wesley Professional,

Dec. 2002.

http://www.ietf.org/rfc/rfc2828.txt

269

[28] M. Nyanchama and S. L. Osborn, “Modeling Mandatory Access Control in Role-

Based Security Systems,” in Proceedings, IFIP Workshop on Database

Security, 1995, pp. 129–144.

[29] R. S. Sandhu and Q. Munawer, “How to do discretionary access control using roles,”

in ACM Workshop on Role-Based Access Control, 1998, pp. 47–54.

[30] S. L. Osborn, R. S. Sandhu, and Q. Munawer, “Configuring Role-Based Access

Control to Enforce Mandatory and Discretionary Access Control Policies,” ACM

Transactions on Information and System Security, vol. 3, no. 2, pp. 85–106, 2000.

[31] The Economic Impact of Role-Based Access Control, RTI Project

Number: 07007.012, National Institute of Standards and Technology (NIST), 2002.

[Online].

[32] “Role Based Access Control Case Studies and Experience,” Na-

tional Institute of Standards and Technology (NIST). [Online]. Available:

http://csrc.nist.gov/rbac/RBAC-case-studies.html

[33] K. Beznosov, “Requirements for access control: US healthcare domain,” in RBAC

’98: Proceedings of the third ACM workshop on Role-based access control.

New York, NY, USA: ACM Press, 1998, p. 43.

[34] M. Evered and S. Bögeholz, “A case study in access control requirements for a

health information system,” in CRPIT ’04: Proceedings of the second workshop

on Australasian information security, Data Mining and Web Intelligence, and

Software Internationalisation. Darlinghurst, Australia, Australia: Australian

Computer Society, Inc., 2004, pp. 53–61.

[35] J. B. D. Joshi, E. Bertino, and A. Ghafoor, “Hybrid role hierarchy for generalized

temporal role based access control model.” in COMPSAC, 2002, pp. 951–956.

http://csrc.nist.gov/rbac/RBAC-case-studies.html

270

[36] J. B. D. Joshi, E. Bertino, and A. Ghafoor, “Temporal hierarchies and inheritance

semantics for gtrbac.” in Proceedings, ACM Symposium on Access Control Models

and Technologies, 2002, pp. 74–83.

[37] J. B. D. Joshi, B. Shafiq, A. Ghafoor, and E. Bertino, “Dependencies and separa-

tion of duty constraints in GTRBAC.” in Proceedings, ACM Symposium on Access

Control Models and Technologies, 2003, pp. 51–64.

[38] B. Shafiq, A. Masood, A. Ghafoor, and J. B. D. Joshi, “A Role-Based Access

Control Policy Verification Framework for Real-Time Systems,” in Proc. of the

IEEE Workshop on Object-oriented Real-time Databases, 2005.

[39] J. Widom and S. Ceri, Active Database Systems: Triggers and Rules. Morgan

Kaufmann Publishers, Inc., 1996.

[40] N. W. Paton, Active Rules in Database Systems. New York: Springer, 1999.

[41] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim, “Composite Events

for Active Databases: Semantics, Contexts, and Detection,” in Proceedings, Inter-

national Conference on Very Large Data Bases. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 1994, pp. 606–617.

[42] S. Chakravarthy and D. Mishra, “Snoop: An Expressive Event Specification Lan-

guage for Active Databases,” Data and Knowledge Engineering, vol. 14, no. 10, pp.

1–26, 1994.

[43] S. Chakravarthy, E. Anwar, L. Maugis, and D. Mishra, “Design of Sentinel: An

Object-Oriented DBMS with Event-Based Rules,” Information and Software Tech-

nology, vol. 36, no. 9, pp. 559–568, 1994.

[44] J. Bailey, A. Poulovassilis, and P. T. Wood, “An Event-Condition-Action Language

for XML,” in Proceedings, International Conference on World Wide Web. ACM

Press, 2002, pp. 486–495.

271

[45] M. Bernauer, G. Kappel, and G. Kramler, “Composite Events for XML,” in Pro-

ceedings, International Conference on World Wide Web. ACM Press, 2004, pp.

175–183.

[46] G. Papamarkos, A. Poulovassilis, and P. T. Wood, “RDFTL: An Event-Condition-

Action Language for RDF,” in Proc. of The Hellenic Data Management Symposium,

2004.

[47] G. Papamarkos, A. Poulovassilis, and P. T. Wood, “Event-Condition-Action Rule

Languages for the Semantic Web,” in Proc. of the International Workshop on Se-

mantic Web and Databases, at the VLDB, 2003, pp. 309–327.

[48] M. Zoumboulakis, G. Roussos, and A. Poulovassilis, “Active Rules for Sensor

Databases,” in Proc. of the Workshop on Data management for Sensor Networks.

ACM Press, 2004, pp. 98–103.

[49] T. Terada, M. Tsukamoto, K. Hayakawa, T. Yoshihisa, Y. Kishino, A. Kashitani,

and S. Nishio, “Ubiquitous chip: A rule-based i/o control device for ubiquitous

computing.” in Proceedings, International Conference on Pervasive Computing,

2004, pp. 238–253.

[50] S. Chakravarthy et al., “WebVigiL: An approach to Just-In-Time Information Prop-

agation In Large Network-Centric Environments,” Hawaii, US, Aug. 2002.

[51] V. Kantere and A. Tsois, “Using ECA Rules to Implement Mobile Query Agents

for Fast-Evolving Pure P2P Database Systems,” in Proceedings, International Con-

ference on Mobile Data Management, Ayia Napa, Cyprus, 2005, pp. 164–172.

[52] L. Elkhalifa, R. Adaikkalavan, and S. Chakravarthy, “InfoFilter: A System for

Expressive Pattern Specification and Detection over Text Streams,” in Proceedings,

Annual ACM SIG Symposium On Applied Computing, Santa Fe, NM, USA, Mar.

2005, pp. 1084–1088.

272

[53] H. Engstrom, M. Berndtsson, and B. Lings, “Acood essentials,” University of

Skovde, Tech. Rep., 1997.

[54] O. Diaz, N. Paton, and P. Gray, “Rule Management in Object-Oriented Databases:

A Unified Approach,” in Proc. of VLDB, Sep. 1991.

[55] U. Schreier et al., “Alert: An Architecture for Transforming a Passive DBMS into

an Active DBMS,” in Proc. of VLDB, 1991.

[56] E. N. Hanson, “The Design and Implementation of the Ariel Active Database Rule

System,” IEEE TKDE, vol. 8, no. 1, 1996.

[57] E. N. Hanson, “Ariel,” in Active Rules in Database Systems, Norman W.Paton,

Ed. New York: Springer, 1999, pp. 221–232.

[58] N. H. Gehani, H. V. Jagadish, and O. Shmueli, “COMPOSE: A System For Com-

posite Event Specification and Detection,” AT&T Bell Laboratories, Tech. Rep.,

Dec. 1992.

[59] U. Dayal et al., “The HiPAC Project: Combining Active Databases and Timing

Constraints,” SIGMOD Record, vol. 17, no. 1, pp. 51–70, Mar. 1988.

[60] N. H. Gehani and H. V. Jagadish, “Ode as an Active Database: Constraints and

Triggers,” in Proc. of VLDB, Sep. 1991, pp. 327–336.

[61] D. L. Lieuwen, N. H. Gehani, and R. Arlein, “The Ode Active Database: Trigger

Semantics and Implementation,” in Proc. of ICDE, Mar. 1996, pp. 412–420.

[62] A. P. Buchmann et al., Rules in an Open System: The REACH Rule System. Rules

in Database Systems, 1993.

[63] A. Dinn, M. H. Williams, and N. W. Paton, “ROCK & ROLL: A Deductive Object-

Oriented Database with Active and Spatial Extensions,” in Proc. of ICDE, 1997.

[64] S. Gatziu and K. R. Dittrich, “SAMOS: An Active, Object-Oriented Database

System,” IEEE Quarterly Bulletin on Data Engineering, vol. 15, no. 1-4, pp. 23–

26, Dec. 1992.

273

[65] S. Gatziu and K. R. Dittrich, “Events in an Object-Oriented Database System,”

in Proceedings of Rules in Database Systems, Sep. 1993.

[66] P. Seshadri, M. Livny, and R. Ramakrishnan, “The Design and Implementation of

a Sequence Database System,” in Proc. of VLDB, 1996, pp. 99–110.

[67] A. Kotz-Dittrich, “Adding Active Functionality to an Object-Oriented Database

System - a Layered Approach,” in Proc. of the Conference on Database Systems in

Office, Technique and Science, Mar. 1993.

[68] I. Motakis and C. Zaniolo, “Formal Semantics for Composite Temporal Events in

Active Database Rules,” Journal of System Integration, vol. 7, no. 3-4, pp. 291–325,

1997.

[69] I. Motakis and C. Zaniolo, “Temporal Aggregation in Active Database Rules,” in

Proc. of SIGMOD, 1997, pp. 440–451.

[70] V. Krishnaprasad, “Event Detection for Supporting Active Capa-

bility in an OODBMS: Semantics, Architecture, and Implementa-

tion,” Master’s thesis, Database Systems R&D Center, CIS Depart-

ment, The University of Florida, Gainesville, 1994. [Online].

[71] R. T. Simon and M. E. Zurko, “Separation of Duty in Role-Based Environments,”

in Proc. of IEEE CSF Workshop, 1997, pp. 183–194.

[72] R. Bhatti, A. Ghafoor, E. Bertino, and J. B. D. Joshi, “X-gtrbac: an xml-based

policy specification framework and architecture for enterprise-wide access control.”

ACM Transactions on Information and System Security, vol. 8, no. 2, pp. 187–227,

2005.

[73] J. Bacon, K. Moody, and W. Yao, “A Model of OASIS Role-Based Access Con-

trol and its Support for Active Security,” ACM Transactions on Information and

System Security, vol. 5, no. 4, pp. 492–540, Nov. 2002.

274

[74] R. Chandramouli and R. S. Sandhu, “Role-Based Access Control Features in Com-

mercial Database Management Systems,” in Proc. of NISSC, 1998.

[75] D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn, “A Role Based Access Control Model

and Reference Implementation within a Corporate Intranet,” ACM Transactions

on Information and System Security, vol. 2, no. 1, pp. 34–64, 1999.

[76] R. Oppliger, G. Pernul, and C. Strauss, “Using Attribute Certificates to Implement

Role-Based Authorization and Access Controls,” in Proc. of Fachtagung Sicherheit

in Informationssystemen (SIS 2000), 2000.

[77] W. Yao, K. Moody, and J. Bacon, “A Model of OASIS Role-Based Access Control

and its Support for Active Security,” in Proceedings, ACM Symposium on

Access Control Models and Technologies, 2001.

[78] J. Bacon, M. Lloyd, and K. Moody, “Translating Role-Based Access Control Policy

Within Context.” in Proc. of POLICY, 2001.

[79] L. Zhang, G.-J. Ahn, and B.-T. Chu, “A Role-based Delegation Framework for

Healthcare Information Systems,” in Proceedings, ACM Symposium on Access

Con-trol Models and Technologies, June 2002.

[80] G. Neumann and M. Strembeck, “An Approach to Engineer and Enforce Context

Constraints in an RBAC Environment,” in Proceedings, ACM Symposium on

Access Control Models and Technologies, 2003.

[81] T. M. Chalfant, “Role Based Access Control and Secure Shell — A
TM

Closer Look At Two Solaris Operating Environment Security Features,”

Enterprise Server Group, Sun Microsystems, Inc., July 2003. [Online].

[82] A. Galton and J. Augusto, “Two Approaches to Event Definition,” in Proceedings,

International Conference on Database and Expert Systems Applications. Springer-

Verlag, 2002, pp. 547–556.

[83]

275

R. Adaikkalavan, “Snoop Event Specification: Formalization, Algo-

rithms, and Implementation using Interval-based Semantics,” Master’s

thesis, Information Technology Laboratory, CSE Dept., The University

of Texas at Arlington, Arlington, TX, U.S.A, 2002. [Online].

[84] R. Adaikkalavan and S. Chakravarthy, “ED-RBAC: A Flexible Event-

Based Framework for Enforcing RBAC and its Extensions,” CSE Dept., The

University of Texas at Arlington, Tech. Rep. CSE-2004-2, Feb. 2004. [Online].

[85] R. Adaikkalavan and S. Chakravarthy, “Active Authorization Rules for

Enforcing Role-Based Access Control and its Extensions,” in Proceedings, IEEE

International Conference on Data Engineering (International Workshop on

Privacy Data Man-agement), Tokyo, Japan, Apr. 2005, p. 1197.

[86] B. Shaiq, E. Bertino, and A. Ghafoor, “An optimal conflict resolution strategy for

event-driven role based access control policies,” CERIAS, Purdue University, Tech.

Rep. 2005-08, 2005.

[87] “Committing to Security Benchmark Study: A CompTIA Analysis of IT Secu-

rity and the Workforce (A White Paper Developed By TNS Prognostics),” The

Computing Technology Industry Association, Mar. 2004.

[88] L. F. Cranor and S. Garfinkel, Security and Usability: Designing Secure Systems that

People Can Use. O’Reilly, Aug. 2005.

[89] M. A. Al-Kahtani and R. Sandhu, “A Model for Attribute-Based User-Role Assign-

ment,” in Proceedings, Annual Computer Security Applications Conference, 2002.

[90] M. A. Al-Kahtani and R. Sandhu, “Induced Role Hierarchies with Attribute-Based

RBAC,” in Proceedings, ACM Symposium on Access Control Models and

Technolo-gies, 2003.

276

[91] R. Adaikkalavan and S. Chakravarthy, “Formalization and Detection of Events

Over a Sliding Window in Active Databases Using Interval-Based Semantics,” in

Proceedings, East-European Conference on Advances in Databases and Information

Systems, Budapest, Hungary, Sep. 2004, pp. 241–256.

[92] R. Adaikkalavan and S. Chakravarthy, “Formalization and Detection of Events Us-

ing Interval-Based Semantics,” in Proceedings, International Conference on Man-

agement of Data, Goa, India, Jan. 2005, pp. 58–69.

[93] R. Adaikkalavan and S. Chakravarthy, “SnoopIB: Interval-Based Event Specifica-

tion and Detection for Active Databases (in press),” Data and Knowledge Engi-

neering, 2005. [Online]. Available: http://dx.doi.org/10.1016/j.datak.2005.07.009

[94] R. Adaikkalavan, S. Chakravarthy, R. A. Liuzzi, and L. Wong, “Information Se-

curity: Using A Novel Event-Based Approach,” in International Conference on

Information and Knowledge Engineering, Nevada, USA, Jun. 2004, pp. 33–38.

[95] R. Adaikkalavan and S. Chakravarthy, “Discovery-Based Role Activations in Role-

Based Access Control,” in Proceedings, IEEE International Performance Com-

puting and Communications Conference (Workshop on Information Assurance),

Phoenix, Arizona, USA, Apr. 2006, pp. 455–462.

[96] R. Adaikkalavan and S. Chakravarthy, “SmartGate: A Smart Push-Pull Approach

to Support Role-Based Security in Web Gateways,” in Proceedings, Annual ACM

SIG Symposium On Applied Computing, Santa Fe, NM, USA, Mar. 2005, pp. 1727–

1731.

[97] S. Chakravarthy, L. Elkhalifa, N. Desphande, R. Adaikkalavan, and R. Liuzzi,

“Pattern Search over Streaming and Stored Data,” in Proc. of the ICAI, Nevada,

USA, Jun 2006.

http://dx.doi.org/10.1016/j.datak.2005.07.009

277

[98] Q. Jiang, R. Adaikkalavan, and S. Chakravarthy, “Towards an Integrated Model for

Event and Stream Processing,” CSE Dept., The University of Texas at Arlington,

Tech. Rep. CSE-2004-10, 2004.

[99] Q. Jiang, R. Adaikkalavan, and S. Chakravarthy, “NFM i: An Inter-domain Net-

work Fault Management System,” in Proceedings, International Conference on

Data Engineering, Tokyo, Japan, Apr. 2005, pp. 1036–1047.

[100] Q. He., “Privacy Enforcement with an Extended Role-Based Access Control

Model,” Department of Computer Science, NCSU, Tech. Rep. TR-2003-09, 2003.

[101] J. Hoagland, “Adage,” 1999. [Online].

[102] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca, “A System to Specify and

Manage Multipolicy Access Control Models,” in Proc. of POLICY, 2002.

[103] M. Koch, L. V. Mancini, and F. Parisi-Presicce, “On the specification and evolution

of access control policies,” in Proceedings, ACM Symposium on Access Control

Models and Technologies, 2001.

[104] “Authorization Manager (AzMan).” [Online]. Available:

http://www.microsoft.com

Detection System (LIDS).” [Online].

Access Control (RSBAC).” [Online]. Available:

[105] “Linux Intrusion

[106] “Rule Set Based

http://www.rsbac.org

[107] “Security Enhanced Linux.” [Online].

[108] “grsecurity.” [Online]. Available: http://www.grsecurity.net

[109] B. Shafiq, J. B. D. Joshi, and A. Ghafoor, “Petri-net Based Modeling for Verifica-

tion of RBAC Policies,” CERIAS, Purdue University, Tech. Rep. 2002-33, 2002.

http://www.microsoft.com
http://www.rsbac.org
http://www.grsecurity.net

278

[110] C. Liebig, M. Cilia, and A. Buchmann, “Event composition in time-dependent

distributed systems,” in Proceedings, Fourth International Conference on

Coopera-tive Information Systems. Washington, DC, USA: IEEE Computer

Society, 1999,

p. 70.

[111] P. Rönn, “Two Approaches to Event Detection in Active

Database Systems,” Master’s thesis, Department of Computer Science

(M.Sc. Dissertation), University of Skövde, 2001. [Online].

[112] C. Roncancio, “Toward Duration-Based, Constrained and Dynamic Event Types,”

in Second International Workshop on Active, Real-Time, and Temporal

Database Systems. LNCS 1553, 1997, pp. 176–193.

[113] P. A. Bonatti and P. Samarati, “A uniform framework for regulating service access

and information release on the web,” Journal of Computer Security, vol. 10, no. 3,

pp. 241–271, 2002.

[114] T. Yu, M. Winslett, and K. E. Seamons, “Supporting structured credentials and

sensitive policies through interoperable strategies for automated trust negotiation,”

ACM Transactions on Information and System Security, vol. 6, no. 1, pp. 1–42,

2003.

[115] H. Koshutanski and F. E. Massacci, “Deduction, abduction and induction, the

reasoning services for access control in autonomic communication,” in

Proceedings, IFIP TC6 WG6.6 International Workshop on Autonomic

Communication (WAC), 2004.

[116] “Web Filtering Products Feature Comparison,” SurfControl, 2004. [Online].

[117] “Proxy SGTM: Advanced Web Proxy,” Blue Coat Systems. [Online]. Available:

http://www.bluecoat.com/

http://www.bluecoat.com/

279

[118] “SurfControl Web Filter,” SurfControl, 2004. [Online].

[119] “Websense Enterprise,” Websense, 2004. [Online].

[120] “Miscrosoft Internet Security and Acceleration (ISA)

Server,” Microsoft, 2004. [Online].

[121] “Border Manager,” Novell, Inc., 2004. [Online].

[122] J. S. Park, R. S. Sandhu, and G.-J. Ahn, “Role-Based Access Control on the Web,”

ACM Transactions on Information and System Security, vol. 4, no. 1, pp. 37–71,

2001.

[123] T. Yan and H. Garcia-Molina, “The SIFT Information Dissemination System,”

ACM Transactions on Database Systems (TODS), vol. 24, no. 4, pp. 529 – 565,

December 1999.

[124] K. Aas, “Survey on personalized information filtering systems for the world wide

web,” Norwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway, pp.

1–30, December 1997. [Online]. Available: http://citeseer.ist.psu.edu/466499.html

[125] M. Berry, Survey of Text Mining : Clustering, Classification, and Retrieval. New

York : Springer-Verlag, 2004.

[126] U. Manber and S. Wu, “GLIMPSE: A Tool to Search Through Entire File Systems,”

in Proceedings of the USENIX Winter 1994 Technical Conference, San Fransisco,

CA, USA, October 1994, pp. 23–32.

[127] M. Araújo, G. Navarro, and N. Ziviani, “Large text searching allowing errors,” in

Proceedings of the South American Workshop on String Processing, R. Baeza-Yates,

Ed. Carleton University Press, 1997, pp. 2–20.

http://citeseer.ist.psu.edu/466499.html

280

[128] J. P. Callan, W. B. Croft, and S. M. Harding, “The INQUERY Retrieval System,”

in Proceedings of the International Conference on Database and Expert Systems

Applications, Spain, 1992, pp. 78–83.

[129] “Structured Query Retrieval in Lemur,” http://www.lemurproject.org.

[130] Q. Jiang and S. Chakravarthy, “Data Stream Management System for MavHome,”

in Proc. of ACM SAC, Mar. 2004.

[131] S. Babu and J. Widom, “Continuous Queries over Data Streams,” in ACM SIG-

MOD RECORD, Sep. 2001.

[132] D. Abadi et al., “Aurora: A New Model and Architecture for Data Stream Man-

agement,” VLDB Journal, vol. 12, no. 2, Aug. 2003.

[133] J. Chen et al., “NiagaraCQ: A Scalable Continuous Query System for Internet

Databases,” in Proc. of SIGMOD, 2000.

[134] S. Madden and M. J. Franklin, “Fjording the Stream: An Architecture for Queries

over Streaming Sensor Data,” in Proc. of ICDE, 2002.

[135] M. F. Mokbel et al., “PLACE: A Query Processor for Handling Real-time Spatio-

temporal Data Streams,” in Proc. of VLDB, Sep. 2004.

[136] P. Bonnet, J. E. Gerhke, and P. Seshadri, “Towards Sensor Database Systems,” in

Proc. of MDM, Jan. 2001.

[137] Y. Yao and J. E. Gehrke, “Query Processing in Sensor Networks,” in Proc. of

CIDR, Jan. 2003.

[138] S. R. Madden et al., “The Design of an Acquisitional Query Processor for Sensor

Networks,” in Proc. of SIGMOD, 2003.

[139] S. R. Madden et al., “TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Net-

works,” In Proc. of OSDI, Dec. 2002.

281

[140] L. H. Bjerring, D. Lewis, and I. Thorarensen, “Inter-Domain Service Management

of Broadband Virtual Private Networks,” Journal of Network and Systems Man-

agement, vol. 4, no. 4, pp. 355–373, 1996.

[141] R. Diaz-Caldera, J. Serrat-Fernandez, K. Berdekas, and F. Karayannis, “An Ap-

proach to the Cooperative Management of Multitechnology Networks,” Communi-

cations Magazine, IEEE, vol. 37, no. 5, pp. 119–125, 1999.

[142] M. A. Mountzia and G. D. Rodosek, “Using the Concept of Intelligent Agents

in Fault Management of Distributed Services,” Journal of Network and Systems

Management, vol. 7, no. 4, 1999.

[143] D. Medhi et al., “A Network Management Framework for Multi-Layered Network

Survivability: An Overview,” in IEEE/IFIP Conf. on Integrated Network Manage-

ment, May. 2001, pp. 293–296.

[144] R. Adaikkalavan and S. Chakravarthy, “SnoopIB: Interval-Based Event Specifica-

tion and Detection for Active Databases,” in Proceedings, East-European Confer-

ence on Advances in Databases and Information Systems. Germany: LNCS 2798,

Sep. 2003, pp. 190–204.

[145] J. Allen, “Towards a general Theory of action and time,” Artificial Intelligence,

vol. 23, no. 1, pp. 23–54, 1984.

[146] J. Allen and G. Gerguson, “Action and Events in Interval Temporal Logic,” Journal

of Logic and Computation, vol. 4, no. 5, pp. 31–79, 1994.

[147] M. Strembeck, “Conflict Checking of Separation of Duty Constraints in RBAC -

Implementation Experiences,” in Proc. of the Conference on Software Engineering,

2004.

[148] R. Dasari, “Events And Rules For JAVA: Design And Implementation Of A Seam-

less Approach,” Master’s thesis, Database Systems R&D Center, CIS Department,

The University of Florida, Gainesville, 1999.

282

[149] S. Castano, M. G. Fugini, G. Martella, and P. Samarati, Database Security (ACM

Press Book). Addison-Wesley, 1994.

[150] N. Dhanjani, “Hacking with Linux Kernel Modules,” in Proceedings

of the Hack In The Box Conference, Dec. 2003. [Online]. Available:

http://dhanjani.com/presentations/hwlkm/hwlkm-hitb-2003.pdf

[151] L. Li and S. Chakravarthy, “An agent-based approach to extending the native

active capability of relational database systems,” in Proceedings of the International

Conference on Data Engineering. IEEE Computer Society, Mar. 1999, pp. 384–

391.

[152] A. Vasudevan and R. Yerraballi, “SAKTHI: A Retargetable Dynamic Framework

for Binary Instrumentation,” in Proceedings of the Hawaii International Conference

on Computer Sciences, Jan. 2004.

[153] G. Hunt and D. Brubacher, “Detours: Binary Interception of Win32 Functions,”

in Proceedings of the 3rd USENIX Windows NT Symposium, Jul. 1999.

[154] S. Chakravarthy, “Sentinel: an object-oriented dbms with event-based rules,” in

Proceedings of the ACM SIGMOD international conference on Management of data.

New York, NY, USA: ACM Press, 1997, pp. 572–575.

[155] L. Bauer, J. Ligatti, and D. Walker, “Composing security policies with polymer,”

in ACM SIGPLAN 2005 Conference on Programming Language Design and Imple-

mentation (PLDI), Chicago, 2005.

[156] R. Ramakrishnan and J. Gehrke, Database Management Systems (3rd ed.).

McGraw-Hill, 2003.

[157] J. B. D. Joshi et al., “Generalized Temporal Role-Based Access Control Model

- Specification and Modeling,” CERIAS, Purdue University, Tech. Rep. 2001-47,

2001.

http://dhanjani.com/presentations/hwlkm/hwlkm-hitb-2003.pdf

283

[158] J. B. D. Joshi, E. Bertino, and A. Ghafoor, “An Analysis of Expressiveness and

Design Issues for the Generalized Temporal Role-Based Access Control Model,”

IEEE Transactions on Dependable and Secure Computing, vol. 2, no. 2, pp. 157–

175, Apr-Jun. 2005.

[159] J. Widom and S. Ceri, Eds., Active Database Systems: Triggers and Rules for

Advanced Database Processing. MK, 1996, ch. The HiPAC Project, pp. 177–206.

[160] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-

rithms (2nd ed.). McGraw-Hill, 2001.

[161] C. Adams and S. Lloyd, Understanding PKI (2nd ed.). Addison-Wesley, 2003.

[162] Join Bill Rose and Joe Lenski, “Internet and Multimedia 12: The Value of

Internet Broadcast Advertising,” Arbiton IBS and Edison Media Research, 2004.

[Online].

[163] “Surfing at Work: Corporate Networks Are Paying the Price,” SurfControl, 2004.

[Online].

[164] Brian E. Burke, “Content Security: The Business Value of Blocking Unwanted

Content,” IDC, 2003. [Online]. Available: http://www.idc.com

[165] “Surfing at Work: Ethics in Computing,” Dept of CSC, North Carolina State

University (Raleigh, NC). [Online].

[166] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. New York:

ACM Press / Addison-Wesley, 1999.

[167] G. Salton and M. McGill, Introduction to Modern Information Retrieval. New

York: McGraw-Hill, Inc., 1983.

[168] L. Elkhalifa, “InfoFilter: Complex Pattern Specification and Detection Over Text

Streams,” Master’s thesis, Information Technology Laboratory, CSE Dept., The

http://www.idc.com

284

University of Texas at Arlington, Arlington, TX, U.S.A, 2004. [Online].

[169] N. H. Gehani, H. V. Jagadish, and O. Shmueli, “Composite Event Specification in

Active Databases: Model & Implementation,” in Proc. of VLDB, 1992, pp. 327 –

338.

[170] N. H. Gehani, H. V. Jagadish, and O. Shmueli, “Event Specification in an Object-

Oriented Database,” in Proc. of SIGMOD, San Diego, CA, June 1992, pp. 81–90.

[171] S. Gatziu and K. R. Dittrich, “Detecting Composite Events in Active Databases

using Petri Nets,” in Proceedings of Workshop on Research Issues in Data Engi-

neering, Feb. 1994.

[172] R. Motwani et al., “Query Processing, Resource Management, and Approximation

in a Data Stream Management System,” in Proc. of CIDR, Jan. 2003.

[173] Q. Jiang and S. Chakravarthy, “Scheduling Strategies for Processing Continuous

Queries over Streams,” in Proc. of BNCOD, Jul. 2004.

[174] B. Babcok et al., “Operator scheduling in data stream systems,” The VLDB J.,

vol. 13, pp. 333–353, 2004.

[175] D. Carney et al., “Operator Scheduling in a Data Stream Manager,” in Proc. of

VLDB, Sep. 2003.

[176] N. Tatbul et al., “Load Shedding in a Data Stream Manager,” in Proc. of VLDB,

Sep. 2003.

[177] B. Babcock, M. Datar, and R. Motwani, “Load Shedding for Aggregation Queries

over Data Streams,” in Proc. of ICDE, Mar. 2004.

[178] A. Das, J. Gehrke, and M. Riedewald, “Approximate Join Processing over Data

Streams,” in Proc. of SIGMOD, 2003.

[179] Q. Jiang, R. Adaikkalavan, and S. Chakravarthy, “NFM i: An Inter-domain Net-

work Fault Management System,” in Proc. of ICDE, Apr. 2005.

285

[180] A. Arasu et al., “Linear Road: A Stream Data Management Benchmark,” in Proc.

of VLDB, Sep. 2004.

[181] J. Baras, H. Li, and G. Mykoniatis, “Integrated, Distributed Fault Management

for Communication Networks,” University of Maryland, Tech. Rep. CS-TR 98-10,

Apr. 1998.

[182] D. Gambhir, M. Post, and I. Frisch, “A Framework for Adding Real-Time Dis-

tributed Software Fault Detection and Isolation to SNMP-based Systems Manage-

ment,” Journal of Network and Systems Management, vol. 2, no. 3, 1994.

[183] P. Frohlich and W. Nejdl, “Model-based Alarm Correlation in Cellular Phone Net-

works,” in Proc. of the International Symposium on Modeling, Analysis, and Sim-

ulation of Computer and Telecommunications Systems (MASCOTS), Jan. 1997.

[184] C. T. Team, “In-memory Data Management for Consumer Transactions the

Timesten Approach,” in Proc. of SIGMOD, Jun. 1999.

BIOGRAPHICAL STATEMENT

Raman Adaikkalavan was born in Pudukkottai, India, in 1978. He received his

Bachelor of Engineering degree in Computer Science Engineering from Bharathidasan

University, Tamilnadu, India in May 1999. In the Fall of 2000, he started his graduate

studies in Computer Science and Engineering at The University of Texas, Arlington. He

received his Master of Science in Computer Science and Engineering from The University

of Texas at Arlington, in August 2002. He has worked as graduate teaching assistant,

faculty associate, and instructor in the Computer Science and Engineering department.

He received his Doctor of Philosophy in Computer Science and Engineering from The

University of Texas at Arlington, in August 2006. He is a member of TBP, UPE, ACM

and IEEE. He is also a recipient of the University Scholar award twice and is listed in

the Who’s Who Among Students in American Universities and Colleges. His current

research interests include security and privacy in databases, information retrieval, grid,

distributed and pervasive environments and complex event processing.

286

	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	INTRODUCTION
	Role-Based Access Control
	Event Framework
	Research Motivations and Problems
	Summary of Contributions
	Thesis Organization

	RELATED WORK
	Role-Based Access Control
	Policy Enforcement Mechanisms
	Constraint Specifications

	Interval-Based Semantics
	Usability in RBAC
	Role-based Security for Web Gateways
	Advanced Information Filtering
	Event Streams and Network Fault Management

	INTERVAL-BASED EVENTS AND THEIR SEMANTICS
	Introduction
	Event Detection

	Interval-Based Semantics of Snoop
	Primitive Events
	Event Expressions
	Composite Events
	Event Operators
	Event Combinations
	Event Consumption Modes
	Event Histories

	Interval-Based Event Operator Formalization in Continuous Context
	Interval-Based Event Operator Formalization in Cumulative Context
	Composite Event Detection
	Composite Event Detection Using Event Graphs
	Algorithms and Implementation

	Summary

	ENFORCING ROLE-BASED ACCESS CONTROL MODELS
	Introduction
	Approaches for Enforcing Role-Based Models
	The Wrapper-based Approach
	The Integrated Approach
	The Event-driven Approach

	Event-Based Active Authorization Rules
	Simple Events
	Conditions
	Actions and Alternative Actions
	Complex Events

	Active Authorization Rules Synthesis for Access Control Enforcement
	Entity Relationship Modeling
	Mapping OWTE and RBAC Elements
	Enforcement using Active Rules
	Summary and Advantages of OWTE Rules

	Prototype Implementation
	Summary

	GENERALIZATION OF ROLE-BASED ACCESS CONTROL
	Introduction
	Motivation Examples
	Event-Based Generalization

	Event Specification Generalization
	Existing Event Definitions
	Advantages and Limitations of Event Specification
	Generalized Simple Events
	Generalized Event Patterns
	Complete, Uncomplete and Failed Events
	Complete, Uncomplete and Failed Rules

	Simple Events in RBAC
	Constraints on Simple Events using Rules
	Event Pattern Constraint Specification
	Sample Event Pattern Policies
	Constraints Summary

	ANSI RBAC Generalization Summary
	Summary

	GENERALIZED ROLE-BASED ACCESS CONTROL ENFORCEMENT
	Event Detection Graphs
	Limitations of LED

	Event Registrar Graphs
	Simple Event Detection
	Event Pattern Detection
	Summary

	Event Pattern Policies with ERG
	Simple Event Detection
	Event Pattern Detection
	Sample Policy Enforcement

	Policy Conflict Identification
	Summary

	USABILITY IN ROLE-BASED ACCESS CONTROL
	Introduction
	Issues and Problems
	SmartAccess
	User Request and Response Handler
	RBAC Server
	Role Checking
	Object Access Request Handler
	Analysis of the Algorithms
	Requests Generation
	Authorization Rule Server

	Summary

	NOVEL APPLICATIONS
	Role-Based Security for Web Gateways
	Introduction
	Problems and Issues
	Role-Based Security
	SmartGate Architecture
	Future Directions
	Summary

	Advanced Information Filtering
	Introduction
	User Specification
	InfoFilter
	Pattern Detection
	Summary

	Event Streams
	Introduction
	MavEStream: An Integrated Model
	Summary

	Network Fault Management
	Introduction
	Problem Definitions
	Proposed NFMi system
	Summary

	CONCLUSIONS AND FUTURE WORK
	Future Work

	REFERENCES
	BIOGRAPHICAL STATEMENT

