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ABSTRACT
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Currently, a large class of data-intensive applications, in which data are presented

in the form of continuous data streams rather than static relations, has been widely rec-

ognized in the database community. Not only is the size of the data for these applications

unbounded and the data arrives in a highly bursty mode, but these applications have

to conform to Quality of Service (QoS) requirements for processing continuous queries

(CQs) over data streams. These characteristics make it infeasible to simply load the

arriving data streams into a traditional database management system and use currently

available techniques for their processing. Therefore, a data stream management system

(DSMS) is needed to process continuous streaming data effectively and efficiently.

In this thesis, we discuss and provide solutions to many aspects of a DSMS with the

emphasis on supporting QoS requirements and event and rule processing. Specifically,

we address the following problems:

System Capacity Planning and QoS Metrics Estimation: We propose a queueing

v



theory based model for analyzing a multiple continuous query processing system. Using

our queueing model, we provide a solution to the system capacity planning problem and

its reverse problem: given the resources and CQs, how to estimate QoS metrics? The

estimated QoS metrics not only can be used to verify whether the defined QoS require-

ments of CQs in a DSMS have been satisfied, but also form the base in a DSMS to

manage and control various QoS delivery mechanisms such as scheduling strategies, load

shedding, admission control, and others.

Run-Time Resource Allocation (Scheduling Strategies): We propose a family

of scheduling strategies for run-time resource allocation in DSMSs, which includes the

operator path capacity strategy (PC) to minimize the overall tuple latency, the operator

segment strategy and its variances: the memory-optimal segment strategy (MOS), which

minimizes the total memory requirement, and the simplified segment strategy, and the

threshold strategy, a hybrid of the PC and the MOS strategy.

QoS Delivery Mechanism (Load Shedding): We develop a set of comprehensive

techniques to handle the bursty nature of input data streams by activating/deactivating

a set of shedders to gracefully discard tuples during overload periods in a general DSMS.

We first formalize the problem and discuss the physical implementation of shedders. We

then develop a set of algorithms to estimate system capacity, to compute the optimal

location of shedders in CQs, and to allocate the total shedding load among non-active

shedders.

Event and Rule Processing We develop an integrated model, termed Estream, to pro-

cess complicated event expressions and rules under the context of data stream processing

through a group of enhancements to a DSMS. Our Estream model greatly improves the

expressiveness and computation ability of DSMSs in terms of processing complex real-life

events and makes DSMSs actively respond to defined events over data streams and carry

out defined sequences of actions automatically.
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Our algorithms and solutions developed in this thesis can be used individually to

assist QoS support in a DSMS. The most important contribution of this thesis is that

these algorithms and solutions form a framework for supporting QoS requirements QoS

requirements in a general DSMS.

Finally, the theoretical analysis is validated using a prototype implementation. We

have prototyped the proposed solutions, algorithms, and techniques developed in this

thesis in a general DSMS, termed MavStream, in C++.
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CHAPTER 1

INTRODUCTION

Traditional database management systems (DBMSs), consisting of a set of persis-

tent relations, a set of well-defined operations, and a highly optimized query processing

engine, have been researched for over 25 years and are widely used in applications that

require persistent storage and processing of ad hoc queries to manage and process large

volume of data. Usually, the data processed by DBMSs are less frequently updated data

items such as customers information, employees’ salary, and so on and the features pro-

vided by a DBMS are consistency, concurrency and recovery over well-defined operations

over relations such as insertion, deletion, and update and its efficiency for supporting

large volume of transactions over persistent data.

However, the past few years have witnessed a large class of data-intensive appli-

cations that produces high-frequency data updates such as stock markets, sensor appli-

cations, and pervasive environments. Also these applications produce data continuously.

In other words, they produce data 24 hours a day and 7 days a week and the data is typ-

ically presented in the form of a data stream. As a result, the volume of a data stream is

huge. On the other hand, these applications need sophisticated processing capability for

continuously monitoring incoming data and finding interesting changes or patterns over

the data in a timely manner. An example is to find the outliers from credit card usage

transaction logs, rather than sophisticated transaction processing provided by DBMSs.

These applications are different from DBMS applications in terms of their data sources

and computation requirements.
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It is clear that these applications do not fit the traditional DBMS data model and its

querying paradigm since DBMSs are not designed to load high-frequency updates in the

form of data streams and to provide continuous computation, expressed as continuous

queries, over stream data. The techniques developed in DBMSs can not be directly

applied to these applications. New data models and data processing techniques are

required to match the requirements of an increasing number of stream-based applications.

The systems that are used to process data streams and provide needs of those steam-based

applications are termed Data Stream Management Systems (DSMSs).

1.1 Data Streams

A data stream is defined as an infinite sequence of data items that are usually

ordered by their arrival time stamp explicitly or by their attributes (e.g., packet sequence

identifier in an IP session).

1.1.1 Data Stream Applications

Many applications from different domains generate data streams and need data

stream processing. In the following, we give a few examples of such applications:

Finance applications: Stock prices, cash flows, credit card transactions, among others,

are all presented in a form of data streams. The online analysis over these streams

includes discovering correlations, identifying trends and outliers (fraud detection),

forecasting future values, etc.

Computer network management applications: The SNMP (simple network man-

agement protocol) data, the routing table information (BGP table information),

the network traffic information are representative streams in the network field. All

these data arrive rapidly and are usually unbounded in size. Traffic engineering and
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network security [4] are two representative applications of data stream processing

systems in computer network management field.

Telecommunication management applications: The call-detail record (CDR) in-

formation, and various network management messages from network elements, such

as alarm message, performance message, and so on, fall into the category of stream-

ing data. The online billing system requires processing CDR information in real-

time in order to generate billing information on the fly. The universal fault man-

agement system is required to analyze alarm messages from various sources, such

as transport networks (SDH, SONET), switch networks (5ESS,DMS100), signaling

systems (SS7), and intelligent network systems (800 service and other value-added

systems), in order to locate the primary causes of various faults in real-time.

Homeland security applications: The security information from various sensors (e.g.,

scanners, cameras) at an airport checking point is presented in the form of data

streams, which is further used to detect abnormal behavior through analysis of

incoming information that is correlated with the information from other sources.

Sensor applications: Sensor monitoring [5][76][32] is another large group of applica-

tions of data stream processing system, which are used to monitor various events

and conditions through complex filtering and joining sensor streams. For example,

the highway traffic monitoring and querying, the smart house at UTA, etc..

On-line applications: Online bank systems generate transaction streams which need

to be analyzed immediately to identify potential fraud transactions. Online auction

systems such as Ebay [2] generate real-time bid streams and the systems need to

update the current bid price and make decisions in a real-time manner. Large web

systems such as Yahoo [7] and search engines such as Google [3] generate numerous

webclicks and user-query data streams and they need to analyze the streams to
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enable applications such as personalization, load balance, advertising, and so on on

the fly.

Others: Health care applications, such as patient’s condition monitoring. Applications

based on Global Positioning Systems (GPS), Supply-Chain applications from large

retailers such as Wall-Mart that use RFID (radio frequency identification) tags,

and others.

1.1.2 Data Stream Characteristics

Actual data streams (number of attributes, value ranges etc.) generated by dif-

ferent applications are different from each other. However, these streams share a set

of characteristics that should be taken into consideration when designing a data stream

management system. Those characteristics are summarized below:

• Data items arrive continuously and sequentially as a steam. They are usually

ordered by time or some other attribute(s). Therefore, the data items from a data

stream can only be accessed sequentially.

• Data streams are usually generated by external applications and they are sent

to DSMSs which can be either centralized or distributed or P2P systems, over

networks. The DSMSs do not have direct access or control over those data stream

sources.

• The amount of data in a data stream is very large. For example, the AT&T CDR

records are about 1 giga bytes per hour [69] and an OC-768 at Sprint can carry

traffic data at speeds as high as 40 gigabits per second. Theoretically, the size of

a data stream is potentially unbounded. Therefore, those data streams cannot be

stored first and then processed. Processing requirements does not permit storage

first and processing next. However, the stream (or parts of it) may be stored after
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processing for archival or other purposes. Also the nature of the input does not

allow one to make multiple passes over a data stream while processing.

• The input characteristics of a data stream are usually not controllable and unpre-

dictable. The input rate of a data stream ranges from a few bytes per second, for

example the readings of a sensor, to a few gigabits per second such as traffic data

over an OC-768 channel and it is not controllable. Also the input patterns of a data

stream are irregular and are usually bursty in nature. For example, a number of

data streams with a so-called self-similar property as reported from compute net-

work research are highly bursty. These streams include the local Ethernet traffic

streams [86], the HTTP traffic flows [43], and Email-messages.

• The data type in data streams varies from well-structured data streams such as

temporary readings to semi-structured message streams such as HTTP log streams,

message streams from a circuit switch, and complex XML document streams to un-

structured streams such as Email streams, document streams, and so on.

• The data items from data streams are not error-free.

The above characteristics of data streams are very different from those assumed for

relations processed by traditional DBMSs and as a result they pose many new challenges

in the design of DSMSs as we will discuss in 1.1.5. It is also clear that DSMSs are

proposed for a new category of data generated by applications that are not considered

(at least not fully considered) by DBMSs.

1.1.3 Data Stream Application Characteristics

Many applications, as discussed earlier in 1.1.1, need to process data streams and

they have different requirements for an underling DSMS. Fortunately, these requirements

can be categorized into a set of abstractions that need to be supported by a DSMS just



6

like that the requirements of DBMS-based applications have been abstracted into a set

of requirements to be supported by a DBMS.

• Continuous processing of newly arrived data is important for all stream-based ap-

plications. This requires a query to persist in the system as long as its input data

stream(s) is not terminated.

• Most stream-based applications can deal with approximate results as long as other

critical (e.g., real-time processing) requirements are satisfied. Approximate results

are acceptable when accurate results are not available. For example, an Internet

Search Engine Provider such as Google wants to personalized the result-pages based

on the processed query, such as inserting related advertisements or recommenda-

tions and so on. For each user query from user query streams, a DSMS computes its

relevance to all active advertisements in DBMSs and then inserts the top 5 adver-

tisements into the query-response pages and returns to the user. During high-load

periods, the system can not find the exact top 5 advertisements due to the limited

resources and it is acceptable to provide 5 most-related advertisements.

• Timely processing of data is another critical requirement as many stream-based ap-

plications need to respond to pre-defined or abnormal events in a real-time manner.

• Many stream applications have specific Quality of Service (QoS) requirements.

Common QoS requirements include response time (also termed tuple latency), pre-

cision, throughput, and so on and there exits a trade-off among these QoS metrics

for different applications.

• Complex event processing and rule processing is another important requirement

of many stream-based applications in order to detect events/conditions and fire

triggers in a timely manner when abnormal or user-defined events are detected.

For example, through analyzing the temperature readings of sensors in a smart-



7

house, a DSMS needs to take a sequence of actions such as dial-911 for a fire alarm

once it detects a sharp increase of the temperature in one room.

it is not feasible to support the above requirements for stream-based applications

by simply loading the data stream into a DBMS and using the state-of-the-art DBMSs. A

DBMS may be useful for providing persistent data management and transaction support

for some stream-based applications. However, it can not provide continuous results. It

has almost no support for QoS requirements and it always assumes that accurate results

are required by applications. Therefore, a new stream processing system is needed to

support the new requirements from a large number of newly emerging stream-based

applications.

1.1.4 Data Stream Model

The characteristics of data streams presented in Section 1.1.2 clearly indicate that

the data model used in traditional DBMSs is not a good fit for streaming data. A

new model, namely data stream model which is considered as a more suitable model for

streaming data, is used for processing data streams.

In the data stream model,

1. Data items arrive in the form of a data stream, which is considered as a sequence

of data items presented in a form of < t, v >, where t is the time stamp at which

the data item is generated and v is the actual data which can be as simple as any

primitive data or as complex as semi-structured messages or unstructured docu-

ments. A newly generated data item is appended to the existing sequence of data

items from the same data source.

2. The data items can only be accessed in a sequential order as they are generated

and only the data items that have been seen can be accessed. Moreover, data items

from data streams can only be accessed as few times as possible due to the cost
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associated with accessing an item multiple times. Normally, each data item can be

accessed only once.

3. The data sources that actually generate data streams are usually external to DSMS

and they are not controlled by the DSMS. The characteristics of a data stream is

unpredictable and uncontrollable.

4. The size of a data stream is infinite (or unbounded).

5. The arrival pattern of a sequence of data items from a data stream can be irregular

and bursty.

6. The items from a single data stream arrive based on their time stamps and no out

of order arrival is allowed in a single data stream. All data streams use a global

timer.

The data stream model is widely accepted and used when studying data stream

processing. A DSMS based on this model needs to compute the results in real-time as

new items arrive and in a continuously manner. The resources such as CPU cycles and

main memory size required by the model to compute functions over streams are limited

and usually inadequate as compared with the size of the sequence of data items seen so

far. All research results in this thesis are based on the data stream model and assumes

that judicial use of resources is needed for satisfying the QoS and other requirements.

QoS is important to the success of a DSMS. A fundamental QoS problem is how

to efficiently and effectively deliver pre-defined QoS requirements in a DSMS. In this

thesis, we exploited the following QoS delivery mechanisms: scheduling strategy and load

shedding. We also investigate the problem of QoS verification problem, which is: ”how

do we know the query results really satisfy predefined QoS metrics?”. Finally, we discuss

the integration of event and rule processing into a data stream processing system.
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1.1.5 Research Challenges and Problems

The characteristics of data streams and the newly emerging requirements of stream-

based applications pose many challenges in processing data streams [18], ranging from

theoretical study of data stream algorithms to query specification and computation ex-

pressiveness by extending SQL (structured query language) and to various components in

a full-fledged DSMS. However, we limit the problems to a few components of a DSMS in

this thesis our focus is on QoS related issues of a general DSMS. Specifically, we discuss

the following problems in this thesis in the context of a DSMS.

System Capacity Planning and QoS Verification: The problem of system capac-

ity planning in DSMSs is described as follows: given a set of continuous queries

with their QoS specifications over a set of data streams, what kind of resources

such as CPU cycles, memory size and others do we need to compute the given con-

tinuous queries and satisfy their QoS requirements. The reverse problem is equally

important. Given a system in terms of resources and a set of continuous queries

with their QoS specifications over data streams, does the system really be able

to satisfy specified QoS requirements of continuous queries. In other words, we

would like to verify whether the final query results really satisfy their pre-defined

QoS requirements. To the best of our knowledge, there is no solution for system

capacity planning for DSMSs and the currently proposed solution to the QoS veri-

fication problem is to continuously monitor the final query results and verify them

directly. Sampling techniques can also be used to reduce the cost. In order to fur-

ther decrease the cost and only verifying violations only at runtime, we exploit the

problem of how to predict the QoS metrics of final query results by using queuing

theory. Specifically, we propose solutions to the problems of predicating the tuple

latency of final query results in a DSMS and main memory required to process the
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queries in a DSMS through modeling the query processing system as a network of

queuing systems.

Scheduling Strategies: A DSMS needs to compute functions over data streams in

real time and in a continuous manner. The problem of resource allocation, also

termed scheduling strategy, arise in a multiple continuous query processing system

when multiple items from input streams arrive. Namely, we need a mechanism to

determine which query or which operator of a query should compute over the newly

arrival data items first. In a multiple query processing system, different queries

have different QoS requirements. Some of them favor a real-time response time.

Some of them prefer accurate results. Others may need both of them or neither of

them. From a query QoS requirement prospective, a DSMS can allocate resources

by employing a scheduling strategy based on their QoS requirements. However,

the problem is more complicated than it appears because: 1) a DSMS may have a

limited amount of resources (i.e., CPU cycles and Main Memory size); 2) different

objects (queries or operators) have different CPU cycle requirement and different

memory release capacity, and 3) the input pattern of a data stream is irregular

and highly bursty. Therefore, scheduling a different object to process one tuple

requires different CPU cycles and releases different amount of memory. This means

a scheduling strategy has significant impact on various aspects of performance of

a DSMS and it also poses different strategies to maximize the available physical

resources to handle bursty nature of input data streams.

For example, suppose there are two operators A and B in the system and it needs

1 second to process 1 tuple with a size of 2 bytes at operator A and output 1

tuple with a size of 1 byte (processing rate 1 tuple/second, memory release rate

1 byte/second). However, it needs 2 seconds to process 1 tuple with a size of 2

bytes at operator B and output a tuple with a size of 1 byte as well (processing
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rate 0.5tuple/second and memory release rate 0.5 byte/second). If input streams of

both operator A and B have an input of 1 tuple per second for 5 seconds and then

a pause, a scheduling strategy which schedules A first if there is any tuple waiting

at A, then schedules B, requires a maximal memory of 10 bytes (or 5 tuples at B)

which are waiting at B right after the bursty input period. Another strategy which

gives B a higher priority than A requires a maximal memory of 15 bytes (5 tuples

at A and 2.5 tuples at B) right after the bursty input period. If the system only

has 12 bytes memory in total, the second scheduling strategy definitely causes the

system to crash. Similarly, a scheduling strategy has a different impact on overall

tuple latency and throughput of a DSMS.

Load Shedding: The scheduling strategies discussed above can be used to allocate re-

sources carefully to satisfy the requirements of different queries in a DSMS given

sufficient total amount of resources. However, a DSMS may still be short of re-

sources in order to process all registered queries during temporary overload periods

due to the highly bursty input patterns in the input data streams. Under this

case, it is infeasible for a scheduling strategy, no matter how good (or optimal)

a scheduling strategy is, to satisfy all QoS requirements of all registered queries

in the system. A natural solution to this problem is to gradually discard some

unprocessed or partially processed tuples from the system. It is worth noting that

discarded tuples also degrade the quality of final query results. However, recall

from the characteristics of stream-based applications, many stream-based applica-

tions can tolerate approximate results. The process of gradually discarding some

tuples from a DSMS with a goal of minimizing the errors introduced towards the

final results is termed load shedding. The load shedding process is necessary and

important in a DSMS to deal with the bursty nature of its input data streams.
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One issue that arises during load shedding is the choice of tuples to discard and how

much to discard. Another issues is when to discard and when to stop discarding.

We will discuss details of the problem and our solutions to the problem in Chapter

5.

Event and Rule Processing: Many applications need DSMSs to processing streaming

data. They also need DSMSs to actively find interesting events and useful patterns

by processing streams and trigger a sequence of pre-defined actions once interest-

ing events are detected. The current DSMSs focus on the traditional computations

provided in DBMSs through a set of predefined operators such as SELECT, JOIN,

PROJECTION, AGGREGATITION, and so on. It has little support to express

complex events and the computation needed for detecting complex events and rule

processing. In contrast, event processing in the form of ECA (event-condition-

action) rules has been researched extensively from the situation monitoring view-

point to detect changes in a timely manner and to take appropriate actions. Several

event specification languages and processing models have been developed, analyzed,

and implemented. Researchers seem to address them as two separate topics. The

problems we address is: 1) how similar and different are these two threads of work

and the two models, namely data stream processing model and event processing

model? 2) will an integrated model that synthesizes these two by combining their

strengths do a better job than either one of them? 3) what extensions do we need

in a DSMS in order to synthesize an integrated model?

We investigated all above issues in this thesis.

1.2 Summary of Our Contributions

Our main work in this thesis targets building a general DSMS prototype, termed

MavStream, as part of the MavHome Project [42, 5] at the University of Texas at Ar-
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lington. However, the solutions and algorithms proposed in the thesis are not particular

for this project and can be applied to other DSMSs as well.

Continuous Query Modeling: System capacity planning and QoS verification are two

important problems in DSMSs to support QoS requirements of continuous queries.

System capacity planning has not been studied traditionally in the context of

database systems and we have not seen, to the best of our knowledge, any system

capacity planning study in DSMSs. The QoS verification is simply done through

monitoring output results and verifying QoS individually. To address both prob-

lems, we propose a queueing model to analyze QoS metrics such as tuple latency

and memory requirement in DSMSs using queuing theory in this thesis. We first

study the run-time characteristics of each operator in a continuous query plan by

modeling each operator in a select-project-join query as a stand alone M/G/1 queu-

ing system. We study the average number of tuples, average tuple latency in the

queue, and the distribution of the number of tuples and tuple latency in the queue

under the Poisson arrival of input data streams in our queueing model. We then

extend our queuing model to a multiple continuous query processing system. Each

operator in the system is modeled as an M/G/1 queuing system with vacation time

and setup time, where the vacation time of an operator is the period of time during

which it does not gain CPU cycles, and the setup time is the initialization time

of an operator before it starts processing the input tuples once it gains the CPU

cycles. The whole query processing system is modeled as a network of queuing

systems with vacation time and setup time. Under this queuing model, we analyze

both memory requirement and tuple latency of tuples in the system under two

service disciplines: gated-service discipline and exhausted service discipline. Based

on our queueing model, we can answer the question of whether a system in terms

of resources can compute a set of given continuous queries with QoS requirements



14

over given data streams. On the other hand, the memory requirement estimation

provides useful guideline for the allocation of buffer for each operator effectively

and in addition provides useful information for scheduling as well. The estimation

of tuple latency provides critical information about when the outputs of the sys-

tem violate their predefined QoS requirements, which implicitly determines when

the system has to activate appropriate QoS delivery mechanisms to guarantee the

predefined QoS requirements.

Scheduling Strategies: In a DSMS, different scheduling strategies can be employed

under different scenarios (i.e., light load periods, heavy load periods) to satisfy the

resource requirements of different queries. it is a challenge to effectively allocate

the limited resources (CPU cycles, Memory, and so on) to the queries at run-time.

In this thesis, we first present our scheduling model and then propose a family

of scheduling strategies for a DSMS. Specifically, the operator path capacity (PC)

scheduling strategy schedules the operator path with the biggest processing capac-

ity at any time slot. we prove that the PC strategy can achieve the overall minimal

tuple latency. In order to decrease its memory requirement, we further propose

the segment strategy in which the segment with the biggest processing capacity

is scheduled. Due to the larger processing capacity of the bottom operators in a

query plan, the segment can buffer its partially processed tuples in the middle of

an operator path. The segment strategy greatly improves the memory requirement

with a slightly larger tuple latency. The memory optimal segment strategy (MOS)

employs the same segment partition algorithm as the Chain strategy [21] proposed

in the literature, but minimizes the memory requirement. However, it schedules an

operator segment each time, instead of an operator each time as in the Chain strat-

egy. As a result, it achieves the strictly optimal memory requirement comparing

with the near-optimal memory requirement in the Chain. It also achieves better
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tuple latency and smoother throughput than the Chain strategy. The simplified

segment strategy is a variant of the MOS strategy as it partitions an operator

path into at most two segments, which preserves the low memory requirement of

the MOS strategy and further improves its tuple latency. Finally, the threshold

strategy is proposed, which is the combination of the PC strategy and the MOS

strategy. It activates the PC strategy to achieve the minimal tuple latency if the

memory is not a concern; otherwise, it acts as the MOS strategy in order to decrease

the memory requirement. We further discuss how to extend these strategies to a

multiple query processing system in which computation sharing through sharing

common sub-expressions is essential. All proposed strategies work under a general

multiple-CQ DSMS with computation sharing. The techniques of extending our

strategies to a multiple CQ processing system can also be applied to extend other

strategies that only work under a DSMS without computation sharing such as the

Chain strategy and others. The theoretical results are validated by an implementa-

tion where we perform experiments on all the strategies. The experimental results

clearly validate our theoretical conclusions. Furthermore, the threshold strategy in-

herits the properties of both the path capacity strategy and the simplified segment

capacity strategy, which makes it more appropriate for a DSMS.

Load Shedding: In order to deal with high bursty nature of input data streams of a

DSMS, we develop a framework and techniques for a general load shedding strategy

by dynamically inserting load shedders into query plans and activating/deactivating

existing shedders based on the estimation of current system load. These shedders

can drop tuples in either a randomized manner or using user-specified application

semantics. Specifically, we first address the problem of the physical implementation

of a load shedder with a goal of minimizing the overhead introduced by the shedder

itself. Our analysis and experiments show that a shedder should be part of the
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input queue of an operator in order to minimize the load introduced by the shedder

itself and to decrease the memory requirement by discarding tuples before they

enter the input queue. We then develop the solution for the problem of predicting

the system load through monitoring the input rates of the input streams. The

estimated system load implicitly determines when load shedding is needed and

how much. The proposed system load estimation technique can be applied to the

other load shedding techniques proposed in the literature as well. We also develop

algorithms to determine the optimal placement of a shedder in a query plan in order

to maximize load shedding and to minimize the error introduced by discarded tuples

during high-input periods. Once we determine how much load needs to be shed

and where, we propose a strategy for distributing the total number of tuples to

be dropped among all shedders with a goal of minimizing the total relative errors

in the final query results due to load shedding. Finally, we conduct extensive

experiments to validate the effectiveness and the efficiency of the proposed load

shedding techniques.

Event and Rule Processing: In order to extend the expressiveness and computa-

tion power of a DSMS to process massive complex events and rules, we develop

an integrated model with several enhancements to data stream processing model

to synthesize the data stream processing and event-processing model. Specifically,

we first analyze the similarities and differences between the event and stream pro-

cessing models and we clearly show that although each one is useful in its own

right, their combined expressiveness and computation power is critical for many

applications of stream processing, and there is a need for synthesizing the two into

a more expressive and powerful model that combines the strengths of each one.

We then provide several enhancement to the data stream processing model to sup-



17

port the complex event computation and rule processing over data streams. Those

enhancement include:

1) the ability to name CQs,

2) stream modifiers,

3) semantic windows,

4) extended event operators with input queues/buffers,

5) enhanced event expressions,

6) enhanced event consumption modes (or contexts), and

7) extended SQL to support combined specification of events and CQs.

Through the above techniques and enhancements, our integrated model not only

supports a larger class of applications, but also provides more accurate and efficient

ways for processing CQs and event expressions. All the enhancements proposed for

our integrated model do not affect any current stream processing techniques and can

be easily integrated into any current data stream management systems. Finally, we

discuss the implementation of the integrated model using the MavStream system

and the Local Event Detector of Sentinel.

1.3 Thesis Organization

The rest of thesis is organized as follows. We begin by providing an overview

of data stream processing and the architecture of proposed QoS driven DSMS and the

related work in Chapter 2. We then present our queueing model and how to perform

system capacity planning and verify QoS requirements of query results in Chapter 3.

We present our proposed scheduling strategies along with detailed theoretical and ex-

perimental analysis in Chapter 4. In Chapter 5, we present a set of comprehensive load

shedding techniques to handle bursty nature of input data streams of a DSMS. In Chap-

ter 6, we analyze both data stream processing and event processing model and discuss the
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enhancements to a general DSMS in order to synthesize two models to process massive

complex event expressions and rules. Finally, we conclude the thesis by summarize our

contributions with a discussion of open research problems in Chapter 7.



CHAPTER 2

DATA STREAM PROCESSING

The computation over data streams is expressed in the form of continuous queries

compared with one-time ad-hoc queries in DBMSs. This is due to two major reasons:

1) queries expressed in SQL in traditional DBMSs have gained much success and been

accepted widely. It is a natural solution to use SQL with some extensions to express

continuous queries, and 2) DSMSs have to compute results in a continuous manner and

output results in real-time. The ad-hoc queries cannot output results in a continuous

manner and hence continuous queries are natural choices. In this chapter, we will first

give an overview of continuous query processing and then present the architecture of

the proposed QoS-driven DSMS. Finally, we will discuss related work in data stream

processing and provide a summary of this chapter.

2.1 Overview of Data Stream Processing

2.1.1 Continuous Query

Continuous queries are modified/extended versions of one-time ad-hoc queries used

in traditional DBMSs. A continuous query plan consists of a set of operators, such as

project, select, join, and other aggregate operators, as one time ad-hoc query plans in

DBMSs. However, the operators in DSMSs are different from those in DBMSs in the

following aspects:

1. All operators in DSMSs have to compute in a streaming manner or in a non-blocking

mode. Many operators such as JOIN, SORT, and some aggregation operators in

DBMSs are blocking operators. They are blocking operators in the sense that they

19
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need to have all their inputs before they can output results. However, in the data

stream model presented in 1.1.4, it is impossible for operators in DSMSs to have

all their inputs before computing their functions since the size of a data stream is

assumed to be unbounded. As a consequence, these blocking operators have to be

modified to compute in a window-based manner by imposing a window over each

input data stream, such as a window-based symmetric hash join [122].

2. All operators are computed in a push-paradigm as compared with the pull-paradigm

in DBMSs. In traditional DBMSs, a query plan is processed by computing its top

operator by obtaining one tuple from each of its child operators. Each of its child

operators recursively calls their child operators to get required tuples in order to

output one tuple to its parent. However, in DSMSs, the input characteristics of

a data source (i.e., an input data stream) are not controllable. If the operators

were computed with the pull-paradigm, the operators would be blocked if there

was no input from one of its child operator temporarily. On the other hand, a child

operator may need to buffer a large number of tuples during bursty input periods

as its parent operators do not have any information about the input characteristics

of an input stream. To facilitate data stream processing, a push paradigm is used

and the tuples are pushed from bottom operators gradually to the top operators.

3. All operators are usually associated with a queue, which is used to store unprocessed

inputs and to deal with the bursty nature of stream inputs. As a result, the output

of one operator is directly output to the input queue of another operator.

As a result, a continuous query plan in DSMSs consists of a set of basic non-blocking

operators and the inter-queues that connect them and a continuous query processing

system over data streams can be conceptualized as a data flow diagram. In this diagram,

a node represents a non-blocking operator. While a directed edge between two nodes

represents the queue (or buffer) connecting those two operators, it also determines the
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Figure 2.1 Operator Path.

input and output relationship between those two operators. For example, the edge from

node A to node B indicates that the outputs of operator A are buffered into the queue

AB that is the input source of operator B. Each source (input stream) is represented as

a special source node, while the applications are represented as a root node in this data

flow diagram. Therefore, the edges originating from source nodes represent the earliest

input queues that buffer the external inputs; while the edges terminating at the root

node represent final output queues that buffer final query results. In this diagram, each

tuple originates from a source node, and then passes through a series of operators until

it reaches the root node or is consumed by an intermediate operator. We refer to the

path(s) that a tuple travels from a source node to the root node excluding the source

node and the root node as an operator path(OP), and the bottom node of an OP as its

leaf node.

The operator paths can be further classified into two classes in a multiple query

processing system as illustrated in Figure 2.1:

1. simple operator path, if there is no sharing among multiple queries as in Figure

2.1-a and2.1-b (one simple path ABC in Figure 2.1-a and two simple paths ACD

and BCD in Figure 2.1-b);

2. complex operator path, if two operators share the outputs of one operator as illus-

trated in Figure 2.1-c (one complex path: ABC/D).



22

An operator segment is defined as a set of connected operators along an operator path.

Similarly, there are simple operator segments and complex operator segments in multiple

query processing systems. Detailed algorithms are introduced in Section 4.3.3 to partition

an operator path into operator segments based on different criteria.

The operators also maintain statistical information such as selectivity, service time1,

and others as we maintain statistical information in a catalog of a DBMS. This infor-

mation is important and necessary for QoS delivery (i.e., scheduling, load shedding, and

others) and query optimization. This information is updated periodically during run-

time. The selectivity of an operator is maintained as a function (i.e., moving average)

of the old value and the current ratio of the number of input tuples and the number of

output tuples during a schedule and the service time of an operator is maintained as a

function of the old value and the current ratio of the total service time to the total num-

ber of tuples during a batch process (i.e., a schedule run). The overhead of maintaining

those statistic information is small because we only update them periodically.

2.1.2 Window Specification

As we mentioned earlier, blocking operators have to be modified to compute in a

non-blocking mode by imposing a window. A window is defined as a historical snapshot

of a finite portion of a stream at any time point. This window defines the meaningful

set of data used by operators to compute their functions. Currently, there are two types

of windows are used: tuple-based and time-based. In this thesis, we also introduce the

notion of a semantic window [72], which will be discussed later in the chapter 6.

A Time-based window can be simply expressed by [Range N time units] and a

Tuple-based window can be expressed by [Row N tuples], where N specifies the length

of the window.

1The CPU time needed for an operator to process one tuple.
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Figure 2.2 Data Streams In a Telecommunication Service Provider.

2.1.3 Examples of Continuous Queries

Consider the Call-Detail-Record (CDR) streams from circuit switches of a large

telecommunication service provider illustrated in Figure 2.2. CDR records are collected

for each outgoing or incoming call at a central office. Four fields, which are call ID, caller

for outgoing call or callee for incoming call, time, and event, which can be either START

or END, are extracted from each CDR and sent to a DSMS. Various online processing

over CDR streams can be done there. The following are three continuous queries over

Outgoing and Incoming streams.

Consider the first continuous query Q1, which finds all the outgoing calls longer

than 10 minutes over a 24-hour window (assume that no call lasts longer than 24 hours).
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Q1: SELECT O1.Call ID, O1.caller

FROM Outgoing O1 [Range 24 hours] , Outgoing O2

[Range 24 hours]

WHERE (O2.time - O1.time > 10

AND O1.call ID == O2.call ID

AND O1.event == START

AND O2.event == END)
This query continuously outputs all outgoing calls longer than 10 minutes originat-

ing from central office 1 and terminating at central office 2 within a 24-hour time sliding

window. The results form a new data stream because of the continuous output of result

records.

The second query is a join query, which finds all pairs of caller and callee between

two central offices over a 24-hour window.

Q2: SELECT O.Caller ID, I.callee

FROM Outgoing O [Range 24 hours] , Incoming I

[Range 24 hours]

WHERE (O.call ID == I.call ID

AND O1.event == START

AND O2.event == START)
The results from Q2 form a data stream too and the join is done using a 24-hour

sliding window on each stream.

Our final example query is an aggregation query, which computes total connection

time of each call between two central offices.
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Figure 2.3 Architecture of Proposed QoS-Aware DSMS.

Q3: SELECT O1.Call ID, SUM(O2.time - O1.time)

FROM Outgoing O1, Outgoing O2

WHERE (O1.call ID == O2.call ID

AND O1.event == START

AND O2.event == END)
The results of this query form a data stream too. However, only the most recent

result is correct and useful. The application has to update the previous value using the

most recent result. The results should be presented to the user in an update-only manner,

instead of an append-only manner.

2.2 Architecture of Proposed Data Stream Processing System

Figure 2.3 shows the system architecture of our proposed QoS-aware DSMS. The

system consists of six components: data source manager, query processing engine,

catalog manager, scheduler, QoS manager, and ECA manager. The data source

manager accepts continuous data streams and inserts input tuples into corresponding

input queues of query plans. It also monitors various input characteristics of a stream
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and data stream characteristics (i.e., sortedness). Those characteristics provide useful

information for query optimization, query scheduling, and QoS management. The query

processing engine is in charge of generating query plans and optimizing them dynam-

ically. It supports both CQs and one-time ad-hoc queries. The catalog manager stores

and manages the meta data in the system, including stream meta data, detailed query

plans, and resource information. The scheduler determines which query or operator

to execute at any time slot due to the continuous nature of the queries in the system.

Due to the fact that most of stream-based applications have different QoS requirements,

the QoS manager employs various QoS delivery mechanisms (i.e., load shedding, admis-

sion control, and so on) to guarantee the QoS requirements of various queries. In many

stream-based applications monitoring changes through continuous queries is necessary

and important in order to capture and understand the physical environment. However,

it is equally important to react to those changes immediately. The ECA manager in our

system is used to detect complex events and to respond to those events using predefined

actions. We discuss the details of each of these components in the proposed QoS-aware

DSMS system in the remaining of this thesis.

2.3 Related Work

In this subsection, we will discuss related work. We will first provide a brief review

of data stream processing systems and then related work in areas of continuous query

modeling, scheduling strategies, load shedding, and event and rule processing.

2.3.1 Data Stream Processing Systems

Tapestry [115, 61] was an experimental content-based filtering system over email

and message streams developed at the Xerox Palo Alto Research Center. It translates

filters specified by users based on their preferences and other personalization informa-
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tion into continuous queries internally and processes those continuous queries over an

appended-only database. Alert system used continuous queries, also called active queries

in [105], over active tables, which are append-only tables, to transform a passive DBMS

into an active DBMS without using triggers. It executes active queries over active tables

using a cursor with an enhanced fetch operation to keep track of new tuples appended

to active tables and the active queries continuously compute their functions over newly

returned tuples by the cursor from the active tables. Continuous queries were also used

in Tribeca [110] to monitor and analyze network traffic streams by using a data-flow

oriented query language.

OpenCQ [88], a distributed event-driven continual query system, used incremental

materialized-views to support continuous queries processing for monitoring persistent

data streams from a wide-area network. Niagara system [41] supports continuous queries

over large scale of streams through grouping queries based on their signatures to sharing

computation efficiently.

STREAM [6] is a general-purpose data stream management system developed at

Stanford University that expresses its queries in a declarative query language similar to

SQL. The research group of STREAM system proposed the Chain scheduling strategy

[21] that aims to minimize total memory requirement and a load shedding mechanism

[30] for aggregate queries. The work of STREAM also includes resource sharing [16, 99],

query caching [22], and others [13, 100, 23]. The PC strategy proposed in this thesis aims

to minimize the overall tuple latency as compared with the Chain strategy which aims to

minimize total memory requirement. The MOS strategy proposed in this thesis strictly

minimize the total memory requirement as compared with the near-optimal memory

requirement of the Chain strategy. Furthermore, we propose a simplified segment strategy

and a threshold strategy which are better-suited for a DSMS. The optimal properties

of the PC and the MOS strategy are proved in the context of a multiple-CQ processing
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system as compared with the proof of the memory optimal property of the Chain strategy

within a restricted DSMSs where no sharing computation is allowed.

Aurora [32] proposed a framework for the support of monitoring applications over

data streams. Continuous queries in Aurora form a data-flow diagram and new queries

are added to the diagram through decorating the diagram. Its work focuses on real-

time data processing issues, such as QoS- and memory-aware operator scheduling [33],

semantic load shedding for coping with transient spikes in incoming data rates, and other

issues. However, the scheduling strategies proposed do not have a theoretical analysis or

proof of their properties. Its next generation system, called Borealis [1, 8], is trying to

address the problems of dynamic revision of query results, dynamic query modification,

and flexible and highly-scalable optimization. At the time of writing this thesis, the

Borealis project is in its initial phase.

TelegraphCQ [40, 39] processing engine over data streams. It proposed an adaptive

engine based on Eddy [17] in which a router is used to route a tuple to an operator and

the outputs of each operator are returned to router to find their next operator. Based

on different system load and other factors, the router can change the path of a tuple

dynamically and each tuple from the same data source can have a different path.

There are also a group of data stream systems that are built exclusively for sensor

networks and applications such as TinyDB [91, 90], Cougar [28, 124]. Those systems

have a different focus from our proposed system and other systems discussed above,

where a central query processing system is proposed, and they mainly focus on network-

related query processing issues such as reducing communication costs, minimizing power

consumption, and so on.

MavStream [76, 59, 107], proposed in this thesis, aims to exploit general solutions

for QoS related issues and complicated event and rule processing. To the best of our

knowledge, the system capacity planning issue and QoS verification issue are first studied
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and their solutions are developed and discussed in this thesis. Also, the event and rule

processing under the context of data stream processing is first studied as well. We

propose scheduling strategies and load shedding techniques which aim at efficient QoS

delivery in more general DSMSs as compared to the proposed solutions in the literature.

The detailed contrast and comparison of the solutions proposed in this thesis with other

solutions in the literature are studied and discussed in detail in following subsections.

2.3.2 Continuous Query Modelling

The inputs of a DSMS are highly bursty data streams. This bursty nature impacts

the load of a DSMS dramatically. On the other hand, QoS requirements of continuous

queries in the system need query results to satisfy those QoS requirements even in the

presence of bursty input. This raises two important problems in a DSMS: 1) system

capacity planning. Given a set of continuous queries with their computation and QoS

requirements and a set of input data streams, what kind of system (in terms of resources

such as CPU cycles, Main Memory, and so on) is needed to compute the queries over

the given data streams? In other words, does the given system have enough capacity to

support the queries over given data streams? 2) system capacity and QoS metrics esti-

mation. Given the continuous queries with QoS requirements, the input data streams,

and the systems in terms of resources, can we approximately estimate the possible QoS

metrics for final query results output by the given system? The estimated QoS met-

rics provide important information for a DSMS to take corresponding actions including

changing scheduling strategies, activate load shedding mechanisms, and others based on

the difference between the estimated QoS metrics and required QoS metrics.

System capacity planning [94, 93] and QoS metrics estimation have been exten-

sively studied under the context of the artificial intelligence and computer and system

performance evaluation respectively. However, there is little work done in the context of
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database research mainly because there is little need and little support of QoS require-

ments in DBMSs. The highly bursty input-patterns and QoS requirements in DSMSs

make system capacity planning and QoS metrics necessary and important for DSMSs to

support QoS requirements. To the best of our knowledge, our work in modeling continu-

ous query is the first work in system capacity planning and QoS metrics estimation using

queueing theory under the data stream processing context.

Although there are a few papers that have studied the performance issues in DSMSs,

those papers focus on the study of the various components or operators in DSMS, rather

than the whole system as in our work of modeling continuous query. The performance

studies of various components or operators in DSMSs include Kang et al. [79] investigated

the various multi-join algorithms and studied their performance in continuous queries

over unbounded data streams. Golab et al. [60] analyzed incremental, multi-way join

algorithms for sliding window over data streams and developed a strategy to find a

good join order heuristically. Vilgas et al [120] study how to maximize the output rate

of a mulit-way join operator over stream data. In this thesis, we first use queueing

theory to analyze the performance issues in stream data management theoretically. We

then study the performance metrics of an operator over data streams given its input

characteristics. Furthermore, we extend our analysis method to a continuous query

in a multiple continuous query processing system, which enables us to estimate some

fundamental QoS metrics (i.e., tuple latency, memory requirement) in a DSMS. Those

QoS metrics provide critical quantitative information for us to design and plan a DSMS

(for example, to estimate minimal hardware configuration and to initially allocate the

memory size of an operator or a continuous query). The metrics computed also provide

necessary information to help us choose various QoS delivery mechanisms, such as when

to start or stop a CPU-saving scheduling strategy or a load shedding strategy.
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Regarding the QoS metrics estimation, monitoring and verification in DSMS, there

is little study in the literature. However, there are a few mechanisms proposed for QoS

delivery. Das et al [44] study the various load shedding strategies for sliding window join

operators over streaming data under limited resources. They provide the optimal offline

and the best online algorithms for sliding window joins. Nesime et al. [114] propose

load shedding mechanism in Aurora system [32] to relieve a system from an overloaded

situation. They provide solution for determining when to do load shedding through

continuously computing the CPU-cycle time required by each box (operator) or superbox

in the system. Once the total CPU-cycles exceed system’s capacity, the system begins

load shedding. Brian et al. [20] propose a set of load shedding techniques to aggregate

queries to guarantee their relative error requirements. The techniques presented in this

paper can be used as an alternative approach to determine in advance when load shedding

needs to be activated and can also be used as an assistant tool to enhance the system

capacity estimation and load shedding activation techniques proposed in the literatures.

Since it is a closed-form solution, it is a more efficient and low-cost approach as compared

with currently proposed approaches in the literature. Our work is also related to a set

of papers [118, 117, 122] that deal with the problems of multiple query optimizations

and scheduling. In terms of system analysis, our work is also related to the memory

characterization problem discussed in [12], where the authors characterize the memory

requirements of a query for all possible instances of the streams theoretically, and the

results provide a solid way to evaluate a query within bounded memory. We analyze

both memory requirement and tuple latency from a different point of view. Furthermore,

the trade-off among storage requirements, number of passes, and result accuracy under

a stream data model has been studied in [67][62]. [19] considers various statistics over a

sliding window under a data stream model.
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Finally, our work is related to a set of papers in network domain that deal with

the performance study of various queueing systems, congestion control and avoidance.

In the network and telecommunication domain, the queueing models are mostly either

multiple-server models [104, 84] along a traffic path from source node to destination or

cyclical models within one server [112, 71] such as switching strategies (put a packet

from input queue to output queue) of ATM switches. Those models are different from

our task-driven vacation queueing model presented in this thesis.

2.3.3 Scheduling Strategies

Various scheduling problems have been studied extensively in the literature. The

Chain strategy [29] has been proposed with a goal of minimization of the total internal

queue size. As a complement to that, the PC strategy proposed in this paper minimizes

the tuple latency. We also propose the Memory-Optimal-Segment (MOS) strategy to

minimize the total memory requirement. The MOS strategy uses no more memory than

that required by the Chain strategy and we prove that the strategy is an optimal one

in terms of total memory requirement in a general DSMS. The proof of optimal-memory

requirement of Chain strategy is only for a query processing system without computation

sharing through sharing common-subexpression. Also the techniques that we propose to

extend the MOS strategy to work under a multiple query processing environment can be

applied to the Chain strategy as well. The Chain-Flush strategy introduces techniques for

starvation-free and QoS satisfaction with a high cost (tuple-based scheduling). However,

the techniques proposed there can be applied to all strategies proposed in this thesis as

well. The Aurora project employs a two-level scheduling approach [33]: the first level

handles the scheduling of superboxes which is a set of operators, and the second level

decides how to schedule a box within a superbox. They have discussed their strategy

to decrease the average tuple latency based on superbox traversal without providing any
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proofs. However, we have used a different approach and have proved that our PC strategy

is optimal in terms of overall tuple latency. Although their tuple batching - termed train

processing - uses a similar concept used in the Chain strategy and our segment strategies,

it is unclear as to how to construct those superboxes. Furthermore, we provide a more

practical scheduling strategy – termed the threshold strategy, which has the advantages

of both the PC strategy and the MOS strategy. The rate-based optimization framework

proposed by Viglas and Naughton [118] has the goal of maximizing the throughput of

a query. However, they do not take the tuple latency and memory requirement into

consideration. Earlier work related to improving the response time of a query includes

the dynamic query operator scheduling of Amsaleg [11] and the Xjoin operator of Urban

and Franklin [116].

Other work that are closely related to our scheduling work are adaptive query

processing [17, 65, 117, 66], which address the efficient query plan execution in a dynamic

environment by revising the query plan. The novel architecture proposed in Eddy [17]

can efficiently handle the bursty input data, in which the scheduling work is done through

a router that continuously monitors the system status. However, the large amount of the

state information associated with a tuple limits its scalability and there is no proof on

the optimality of the results.

Finally, the scheduling work is part of our QoS control and management framework

for a DSMS and extends our earlier work of modeling CQ plan [73, 75], which addresses

the effective estimation of the tuple latency and the internal queue size under a dynamic

CQ processing system. Our modeling results can be used to guide a scheduling strategy

to incorporate QoS requirements of applications, and to predict overload situations.
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2.3.4 Load Shedding

The load shedding problem has been studied under the Aurora and STREAM

project. Our work in load shedding shares some of the characteristics of the load shedding

techniques proposed in [114]. However, we provide a more general and comprehensive

solution in this thesis. The load shedding techniques proposed in [30] are only for aggre-

gated continuous queries in a DSMS, rather than for general continuous queries which is

the focus in this thesis.

Our work differs from them in that: 1) to our best knowledge, we are the first

one to discuss the optimal physical implementation and location of a shedder. 2) the

proposed load shedding techniques with our scheduling strategies (i.e., earliest deadline

first or EDF) or QoS-aware strategies such as the Chain-Flush can guarantee the tuple

latency requirement of an query. 3) the proposed system load estimation technique

provides explicitly the total load in terms of total system capacity, and it does not need

to calculate the absolute system capacity as in [114]. And our system capacity estimation

technique is useful for other stream processing systems to make decisions on when to

activate/deactivate load shedding, and how much to shed. 4) the number of shedders

and the number of active shedders are minimized in the system. 5) each shedder has a

maximal capacity in our system, and its processing cost is minimized.

The work is also directly related to the work of various QoS delivery mechanisms

such as scheduling, admission control, etc, and to the work of various QoS metrics predic-

tion technologies. The Chain strategy [29] minimizes total memory requirements of a CQ

processing system, while the PC [77] minimizes the overall tuple latency of a CQ process-

ing system. Through those scheduling strategies, it is possible to meet QoS requirements

when system load does not exceed its capacity. The work [75, 73] of predicting tuple

latency of a query plan in a DSMS provides important techniques to assist a DSMS to

avoid violating its predefined QoS requirements.
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Finally, The work is related to architecture work of a DSMS from a system point

of view. The paper provides general load shedding techniques and system capacity es-

timation technology for various DSMSs: Telegraph system [89], STREAM system [24],

Aurora system [32], Niagara system [41], and Stream processing for sensor environments

[76], to name a few here.

2.3.5 Event and Rule Processing

Event detection and rule processing [45, 37, 36, 38, 87, 56, 105, 53, 47, 50, 82, 31]

have been studied extensively under the context of active database. However prior study

in event and rule processing focuses on the techniques and mechanism of transforming a

passive database management system to an active database management system. Most

of study are conducted under the context of database management systems and one of

the assumptions of those study is that the primitive events are low-frequency updates

(such as data manipulation operations, function calls, events from operating systems, and

so on). Also event expressions, operators and consumption modes are solely based on

timestamps in earlier studies. In this thesis, our study of event and rule processing focus

on complicated event and rule processing over the primitive events generated by stream

processing, which are typically generated by computing various continuous queries over

high-frequency updates and busty external data streams. Also our work is conducted

under the data stream model, rather than a database management system as most of

prior work. To the best of our knowledge, our work in complex event and rule processing

is the first study under the context of data stream processing. Our work enhances both

the computation and expressiveness ability of data stream management systems and has

no impact on the other components or techniques proposed in data stream management

systems.
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DSMSs have been studied from a system architecture point of view in many papers

[24, 32, 41, 89, 76, 95]. These work mainly focus on the system architecture, CQ execution

(i.e., scheduling and various non-blocking join algorithms), and QoS delivery mechanisms

for stream processing. The main computation over stream data is limited to the com-

putation of relational operators over high-speed streaming data, and the event and rule

processing and the extensions to CQs to enhance their expressive power and computa-

tion efficiency are rarely discussed. To the best of our knowledge, this paper is the first

to support event and rule processing for stream processing model and to enhance the

data stream computation model horizontally (i.e.,semantic window) and vertically (i.e.,

stream modifier, event and rule processing). The paper [14] proposed a CQ language for

event processing, and provided extension for primarily sliding windows. The intent of

this paper is not to provide a complete CQ language. Instead we propose a formal and

meaningful extension to express and compute a much richer set of computations, which

can be used to enhance current CQ languages without changing their syntax and the

overall computation model.

Our work [72] in event and rule processing is also closely related to a set of papers

[14, 125, 32] that try to enhance the expressiveness power of SQL in a data stream

environment. Carlo Zaniolo et al [125] tried to enhance the expressive power of SQL over

the combination of relation streams and XML streams by introducing new operators

(e.g. continuous UDAs) and supporting sequences queries (e.g., to search for patterns).

A. Arasu and J. Widom [14] proposed an enhanced SQL, termed CQL, to instantiate

the abstract semantics and to map from streams to relations. However, the notion of

semantic window proposed in this paper enhances the expressive power of SQL over

streams and improve the computation efficiency through accurate definition of a window,

which consequently reduces the number of tuples in the window, thereby reducing the

computation requirements of window-based operators. In [32], the window concept is
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based on an attribute and is specified in the form of (size s, Advance i), where s is

the size (in terms of values of an attribute) of the window and i is an integer or predicate

that specifies how to advance the window when it slides. However, the window is still

a static window (by specifying the fixed size of the window) and only one attribute can

be used to define a window. The semantic window proposed in this paper can be used

to define window based on meaningful information, rather than the size. The semantic

window based on SQL can be static or dynamic. More important, the implementation of

semantic window is straightforward by taking advantage of the existing SQL processor

and its run-time overhead can be low because of the well-developed SQL optimization

techniques.

Our event and rule processing work is further related to a set of papers [44, 60, 79,

108], which try to enhance the computation over streaming data. However, those papers

mainly focus on relational operators, such as multi-way join algorithms, and approxi-

mated join algorithms. These enhancements are not capable of efficiently computing the

changes over streaming data, which can be done efficiently through a family of stream

modifiers proposed in this paper. These stream modifiers allow a stream processing sys-

tem to flexibly express and efficiently monitor complicated change patterns for a large

group of stream applications. A number of sensor database projects, Cougar [28, 124],

TinyDB [91, 90] have also tried to integrate the event processing with query processing

under a sensor database environment. However, the event-driven queries proposed in

TinyDB is used to activate queries based on events from underlying operating systems.

Our focus in this paper is to process large number of high volume and highly dynamic

event streams from CQ processing stage for the applications that needs complex event

processing and CPU-intensive computation (i.e., CQs) for generating events.



38

2.4 Summary

In this chapter, we first gave an overview of data stream processing system: how a

stream processing system is modeled as a data-flow diagram and how window concept is

used to transform blocking operators in DBMSs to non-blocking operators in DSMSs. We

then presented the architecture of our proposed QoS-driven DSMS and a brief discussion

of its components. Finally, we discussed the related work in the literature that are

relevant to various components and techniques proposed in this thesis.



CHAPTER 3

MODELING CONTINUOUS QUERIES OVER DATA STREAMS

QoS is critical to the success of a DSMS. First, most streaming applications have

to monitor various events and respond to abnormal or user-defined events in a timely

manner. Second, different applications have different QoS requirements. For example,

tuple latency may be critical for some applications whereas accuracy of computed results

(with a bound on the error) may be important for other applications. Finally, QoS sup-

port is a key factor that distinguishes a DSMS from a traditional DBMS. If applications

do not have QoS requirements for query processing, a traditional DBMS with trigger

mechanism can satisfy most of them. Therefore, QoS related issues have gained much

more attention in the context of stream data processing. For example, the Aurora system

[32] has taken into consideration the QoS from the beginning.

There are two complementary ways to prevent a DSMS system from violating the

QoS requirements of continuous queries. 1) Given a set of continuous queries over data

streams, we need to plan what resources in terms of CPU cycles, main memory, and

so on, are required in order to support the set of queries. 2) Once a query processing

system is deployed, a system may experience all kinds of temporary overload periods due

to the irregular and bursty input mode of data streams. However, due to the continuous

computation characteristic of continuous queries, it is undesirable and even impossible

to stop the production system and upgrade the system. This motivates us to develop

various QoS delivery mechanisms, given a system with a set of continuous queries over

input data streams, to try to satisfy QoS requirements of continuous queries.

39
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Various QoS delivery mechanisms are being exploited and will be discussed in

details in the rest of the thesis. (1) A scheduling strategy, which will be discussed

in Chapter 4, tries to allocate more resources to those queries with more critical QoS

requirements, which makes it possible to satisfy the QoS requirements of some or all

queries by allocating resources carefully at run time among queries when system load

is not too heavy. The path capacity scheduling strategy [77] can achieve an overall

minimal tuple latency, while The MOS and the Chain scheduling strategy [29] try to

minimize the total memory requirement of queries. However, when system load exceeds a

certain threshold, it is impossible to guarantee some QoS requirements by only employing

scheduling strategies. (2) Load shedding discussed in Chapter 5, which drops tuples (in

either a random manner or using some semantics), is a natural choice to relieve system

load and guarantee sufficient resources for scheduling strategies to satisfy all predefined

QoS requirements. Since some applications have QoS requirements for both tuple latency

and precision of final query results, dropping too many tuples can violate the required

precision of final query results. In this case, we have to deactivate some queries and

guarantee sufficient resources to deliver the QoS requirements of the other queries in the

system, instead of violating the QoS requirements of all active queries. Therefore, (3) an

admission control needs to be used to control the number of active queries in the system,

and determine which victim queries have to be deactivated when there is not enough

resources to deliver the QoS requirements of active queries. In a general system, all

three mechanisms may have to be employed simultaneously and to work collaboratively

in order to satisfy all predefined QoS requirements due to the highly dynamic changes in

load experienced during stream processing.

A system has to activate different mechanisms and deactivate some of them at

different levels of system load because of the highly dynamic system load caused by

bursty input rate of a data stream. When system load is not too heavy, scheduling
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strategies are capable of satisfying QoS requirements. It is not necessary to activate load

shedding [114][20] which introduces unnecessary errors in final query results, but we still

need to determine which scheduling strategy can achieve better performance as system

load fluctuates. When system load exceeds a certain level, both scheduling strategies and

the load shedding mechanism have to be employed. When system load further increases,

the admission control has to be activated as well. A fundamental problem here is when a

QoS delivery mechanism has to be activated or be deactivated, and which one to activate

or deactivate such that the active mechanism(s) can guarantee sufficient resource for all

per-defined QoS requirements and minimize the extra-errors introduced in final query

results.

This chapter focuses on these two fundamental problems related to QoS control

and management. Namely: 1) system capacity planning problem which, given a set of

continuous queries with their QoS specifications over a set of data streams, addresses the

kind of systems in terms of resources such as CPU cycles, memory size and others needed

to compute the given continuous queries and satisfy their QoS requirements; and 2) QoS

metrics estimation problem which, given a system in terms of resources and a set of

continuous queries with their QoS specifications over data streams, can estimate various

QoS metrics of a continuous query in the system based on current system state (i.e.,

input rate of a data stream, characteristics of continuous queries). If we can estimate

those QoS metrics, we can activate or deactivate corresponding QoS delivery mechanisms

based on the difference the estimated QoS metrics from the required QoS parameters.

In this chapter, we develop a queueing model to study the dynamics of a DSMS

given a set of continuous queries over a set of given data streams. Through our queueing

model, we can estimate various QoS parameters. Through the queueing model and those

estimated quantitative QoS parameters, (1) we are able to do system capacity planning

and provisioning through the quantitative information provided by our queueing model.
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That is given the input characteristics of input data streams and the computation (i.e.,

query plans) and the QoS requirements, we are able to estimate the kind of system, in

terms of CPU cycles and the amount of memory, that we need to complete given tasks.

(2) we are able to activate and deactivate suitable QoS delivery mechanisms based on the

difference of the estimated QoS parameters from the defined QoS requirements. (3) we

are able to verify whether a system satisfies the defined QoS requirements by comparing

the estimated QoS parameters with defined QoS requirements.

For our theoretical model, we have to monitor input rate of each input stream.

However, various components of DSMSs need to monitor the input characteristics of data

streams, such as query optimization, scheduling, load shedding, and other purposes. Also

approximate rates are enough for our queueing model. Therefore, it does not introduce

any substantial cost to use our queueing model in DSMSs. DSMSs only needs to monitor

the input rate of an input stream periodically and the length of the periods varies as the

system load changes.

The rest of the chapter is organized as follows. Section 3.1 provides an overview

of our queueing model. We formalize our problems in Section 3.2. In Section 3.3, we

discuss how to model an individual operator in a DSMS, and provide tuple latency and

memory requirement of an individual operator in detail. We further extend our modeling

work to an individual query plan in a general DSMS, and provide closed-form solution

to estimate QoS metrics (i.e., the overall tuple latency and memory requirement) of

the output tuples of a query in Section 3.4. Section 3.5 further presents a set of our

quantitative experimental results. The conclusion is presented in Section 3.6.

3.1 Continuous Query Processing

Query processing in a DSMS can be handled using two approaches: a multiple

threads approach and a single thread approach. In a multiple threads approach, each
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Figure 3.1 Modeling of Continuous Query Processing System.

operator runs as a thread, and the operating system determines which thread to run

in any time slot. However, it is hard to control the resource management/allocation in

this approach, and the context switch cost can be considerably high. In a single thread

approach, all the query plans are registered to a single thread. Various strategies could

be used to determine how to allocate system resources, and to schedule which operator or

plan to run. The system behavior in a single thread approach is more controllable, and

the context switch cost is minimized. For a single thread approach in a multi-processor

architecture, the whole set of query plans is partitioned into subsets; each subset of query

plans runs on a particular processor as a single thread. Some sharing and interdependent

relationships may exist between any two subsets.

We have employed the second approach in this thesis, which enables us to control

the various aspects of the system and to manage the QoS requirements associated with

each query plan in the best possible way. Furthermore, we have only considered a subset

of query plans scheduled on a single processor. A query processing system running on

a multi-processor architecture is considered as a set of such independent subsets, where

the relationship between any two subsets were ignored in this chapter, which are actually

part of our future work.
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3.1.1 Modeling

A queueing system is widely used to model various software and hardware systems

[92][81]. In our approach, each operator in a given query plan is modeled as the service

facility of a queueing system [75], and its input buffer(s) are modeled as a logical input

queue with different classes of input tuples if it has more than one input stream. The

relationship between two operators is modeled as a data flow between two queueing

systems. Eventually, a query plan is modeled as a network of queueing systems as

illustrated in Figure 3.1. A multiple continuous query processing system is modeled as a

network of queueing systems, which consists of the network of queueing systems for each

query plan.

In this queueing model, We call the queueing system whose inputs are the output

of another queueing system the parent queueing system of its input queueing systems,

and the input queueing system as its children queueing systems. For each external input

stream, there exists an operator path from the bottom operator to the top operator; we

call this path in our queueing network model as queueing path.

Given a subset of query plans scheduled in one processor, at most one operator in

this subset query plans is served at any instant of time. Therefore, a scheduling algorithm

is necessary to choose an operator to process at each time instant (or time slot), leaving all

other operators in the system idle. For an operator in the system, we describe the period

when the processor is not available as the vacation time for the operator. Furthermore,

after the operator gains the processor, it needs some time to setup the environment or

to do the initialization (i.e., context switch, scheduling, and so on); we call this period

the setup time. Therefore, an operator in a multiple query processing system is further

modeled as a queueing system with vacation time and setup time. The time period when

the operator is being served is called its busy period.
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In summary, an operator in our queueing model works as follows: once the operator

gains the processor, if its input queue is empty, the operator goes to vacation immediately.

Otherwise, the processor needs a setup time and then serves a certain number of tuples

determined by a specific service discipline using a first-come-first-served order, and the

service of a tuple is non-preemptive. After that, the operator goes to vacation, and the

processor goes to serve the other operators or to handle other tasks during its vacation

time and then returns for further service. Once again, each operator is modeled as a

queueing system with vacation time and setup time, and a multiple query processing

system is modeled as a network of such queueing systems.

3.1.2 Scheduling and Service Discipline

In our proposed queueing model, the vacation time and busy periods are mainly

determined by the scheduling algorithm and the service discipline employed in a DSMS,

respectively. The scheduling algorithm determines how often an operator is scheduled

statistically and how many other operators or non-query processing tasks are scheduled

between its two consecutive schedules. Once a scheduling algorithm is employed in a

DSMS, we are able to find how many other operators or non-query processing tasks are

scheduled between its two consecutive schedules, which also implicitly determines how

often we schedule an operator. We can analyze the scheduling algorithm to find these

two items. For example, if round Robin (RR) scheduling algorithm is employed in a

DSMS with n operators and each operator is scheduled for two time slots once it gains

processor, we know that we will schedule one operator again every 2(n − 1) time slots.

Therefore, the vacation time of each operator in such a DSMS is 2(n − 1) time slots.

However, if a non-deterministic scheduling algorithm (in such a scheduling algorithm, an

object is scheduled based on run-time information in the system), for example, operator

path scheduling [77], Chain [21], and so on, is employed, we collect run-time information
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to statistically determine how many other operators or non-query processing tasks are

scheduled between two consecutive schedules of an operator. For example, we can obtain

a distribution of the number of operators or tasks scheduled between two consecutive

schedules of an operator.

Just as a scheduling algorithm controls the execution order of the operators in

a DSMS, a service discipline controls the number of tuples being served when it gains

control of the processor. Takagi [111], [113] gives an overview of various service disciplines.

In general, service disciplines can be categorized into two classes: gated-type discipline

and exhaustive-type discipline. In the case of the gated-service discipline (GSD), once

an operator gains the processor, all tuples waiting in its input queue are served. The

tuples which have arrived during the service period are processed in the next round. In

the case of exhaustive-service discipline (ESD), once the operator gets the processor, the

processor serves all waiting tuples in its input queue as well as the tuples arriving during

its service period until its input queue becomes empty. Both service disciplines will be

considered in this chapter. Therefore, once the service discipline is employed in a DSMS,

given the input characteristics (i.e., input rate) of data streams and the service time of

one tuple, we can determine the busy period of an operator.

In summary, the service discipline determines the busy period of an operator and

the scheduling algorithm determines the number of operators scheduled between two

consecutive schedules of an operator. The service discipline and scheduling algorithm

together determine the length of the vacation of an operator. In Section 3.4.4, we discuss

in detail how to determine the length of the vacation time for an operator.

3.2 Problem Definition

Tuple latency and the memory requirement of a CQ plan are two fundamental QoS

metrics used by most stream-based applications. The problem of estimating both tuple
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latency and the memory requirement of a CQ plan in this chapter is formally defined as

following:

Problem Definition 1. Given a continuous query plan consisting of m operators {O1, O2, · · · , Om}

and m queues 1 {Q1, Q2, · · · , Qm} over k data streams {S1, S2, · · · , Sk}, a scheduling al-

gorithm, and a service discipline in a continuous query processing system in a single

processor system, determine:

1. the total memory M(t) required by this query in terms of the number of the tuples

at time instant t, and

2. the tuple latency R(t)at time instant t.

Both tuple latency and the number of tuples in the above problem are random

variables with a continuous parameter (time). It is extremely hard to find the probability

distribution function (PDF) for the number of tuples and cumulative distribution function

(CDF) for tuple latency in the system. Even if we can find them, the overhead to

continuously calculate their values are considerably large. Therefore, we attempt to find

approximate mean values of these two performance metrics, which we believe provide

sufficient information to manage the QoS requirements of a DSMS. Our experiments

show that our approximate solution provides results that are close to what we get from

an actual system. Hence, the above problem can be simplified as the following problem

that determines mean values.

Problem Definition 2 (Revised Problem). For the same conditions given in problem

1, determine:

1. the total mean memory E[M ] required/consumed by this query in terms of the

number of tuples, and

2. the mean tuple latency E[R] of tuples from this query.

1For those operators that have two or more input queues, we consider all its input queues as one

logical queue with different kinds of tuples.
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Intuitively, the total mean memory size required by this query plan is the sum of

the memory required by each operator in the query plan. So E[M ] =
∑m

i=1 E[Qs
i ] +

∑m
j=1 E[Os

j ], where E[Qs
i ] is the mean number of tuples in the queue Qi, and E[Os

j ] is the

mean number of tuples maintained by the operator Oj in order to compute the operator

over a stream. For non-blocking operators such as SELECT, PROJECT2, E[Os
j ] = 0.

For MAX, MIN, E[Os
j ] = 1, which is the biggest or smallest value it has seen so far. For

a window based symmetric JOIN operator [122], and window based aggregate operators,

E[Os
j ] is a constant3, which is the number of tuples in its window(s) under steady state.

Therefore,
∑m

j=1 E[Os
j ] is a constant C. The total memory is reduced to

E[M ] =
∑m

i=1
E[Qs

i ] + C (3.1)

To solve the total memory consumed by this query, it is sufficient to find the first com-

ponent of equation (3.1).

Similarly, the mean tuple latency of an output tuple is the sum of the waiting times

at all queues plus the sum of the service times at all operators along its queueing path.

The overall tuple latency of a query plan E[R] is the weighted sum of the mean tuple

latencies of all queueing paths E[Ri]. For a query plan over k data streams, it has k

queueing paths or more (e.g., self-join). Therefore,











E[R] =
∑k

i=1(ϕiE[Ri])

E[Ri] =
∑m̄

i=1 E[Wi] +
∑m̄

j=1 E[Sj]
(3.2)

where ϕi is the queueing path weight, which is the ratio of the number of output tuples

from that path to the total number of output tuples from that query plan. E[Wi] is the

mean waiting time of a tuple in the queue Qi, and E[Sj] is the mean processing time of

a tuple at the operator Oj. Fortunately, both queueing path weight and processing time

2No elimination of duplicated tuples is considered here.
3Most cases, its window size is big enough so that a burst in its inputs can be absorbed.
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can be learned during query execution by gathering statistics over a period of time. If

we expect these values to change over time, we could collect statistics periodically. As a

result, we only need to find a solution for the mean waiting time of a tuple in the queues

along its path.

3.2.1 Notations and Assumptions

In this chapter, we use the following notations (variables):

λ: finite mean arrival rate of an external input.

U, V, B, S: setup time, vacation time, busy period, and service time distributions,

respectively, with their first and second moments (.)(1), (.)(2), where (.) can be

U, V, B, S.

ρ: traffic intensity or utilization with ρ = λS(1).

W : tuple waiting time in the input queue with its first and second moments

W (1), W (2).

C: a cycle which is defined as the period between two successive vacation endings

with its first and second moments C(1), C(2).

Qs
n: queue length at the end of service of the customer (operator).

Qv
n: queue length at the end of vacation.

N (.): the number of tuples arriving during the period of (.), where (.) can be

U, V, B, C.

A∗(s): the Laplace Stieltjes Transformation (LST) of a distribution A with A∗(s) =

E[e(−sA)]

A(z): the probability generation function (PGF) of a discrete distribution A with

A(z) = E[zA].

µ: the time of an operator taken to process a tuple.

In our queueing model, we make the following assumptions:
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1. The arrival times of tuples from an external input form a Poisson process. Although

some reports from the network community show that a self-similar traffic model

[109] is closer to the real network traffic data than a Poisson model, a Poisson

process is still a good approximation for most applications. As most applications

over stream data only require approximate results, the results based on a Poisson

process provide sufficient information to manage both QoS and resources.

2. The input queue of an operator has an infinite capacity. Therefore, no tuple is

discarded.

3. The setup time U and selectivity σ of an operator are known or can be learned by

collecting run-time statistics in a DSMS periodically.

3.2.2 Stability and Performance Metrics

In order to solve problem 2, we are interested in the mean queue size and the

mean tuple latency. In addition, we need mean cycle time, mean service period, and

the mean total number of tuples served during a cycle in order to decide vacation time

of an operator. To derive these metrics, we need the whole query processing system in

a steady state. As pointed out in [34], the sufficient condition for stability for a single

server queue is:

ρ +
λ

N (1)
(U (1) + V (1)) < 1

where N (1) is the mean number of tuples served in a cycle. For a gated- and exhaustive-

discipline, we have N (1) = ∞. Hence, ρ < 1 is a necessary and sufficient condition for

stability.
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Figure 3.2 Model of Select Operator.

3.3 Modeling Relational Operators

Before we derive a closed form solution for tuple latency and memory requirement

of a continuous query in a DSMS, it is necessary to identify some characteristics (i.e.,

waiting time and memory requirement) of an individual operator that encompossed in

of a continuous query to determine what factors affect the end-to-end tuple latency and

memory requirement of a query. In this section, each operator is modeled as a stand

alone queueing system in order to study its characteristics.

In data management systems, select, project, and join are the most frequently used

operators. Once we get the detailed performance metrics of these operators, we will

be able to compute the detailed performance metrics of a query, or of an entire query

processing system. Some aggregate operators such as sum and average over a sliding

window can be modeled in a similar way.

3.3.1 Modeling SELECT and PROJECT

Both select and project are single stream processing operators, which have one

input and one output queue. The select operator works as a filter and evaluates the

select condition, which can be either a primitive or a composite condition, over all the

input tuples.
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3.3.1.1 Select Operator with a Primitive Condition

In this case, every tuple is evaluated by one unique condition, and hence the service

time is a constant. So selection over one primitive condition is modeled as a M/D/1

queuing system as shown in Figure 3.2.

Given a select operator that takes 1/µ time to process a tuple over a data stream

with a mean input rate λ, the mean and variance of the number of tuples in the select

subsystem are, respectively,

E[q̄] = ρ +
ρ2

2(1− ρ)
; Where ρ =

λ

µ
(3.3a)

V ar[q̄] =
1

(1− ρ)2
(ρ−

3

2
ρ2 +

5

6
ρ3 −

1

12
ρ4) (3.3b)

Similarly, the mean and variance of the waiting time W of a tuple (waiting time in the

queue plus service time) are, respectively

E[W ] =
1

µ
+

ρ

2µ(1− ρ)
; Where ρ =

λ

µ
(3.4a)

V ar[W ] =
1

µ2(1− ρ)2
(
ρ

3
−

ρ2

12
) (3.4b)

Note that the second component in (3.4a) is the mean waiting time of the tuple in the

queue.

3.3.1.2 Select Operator with a Composite Condition

A composite condition consists of several primitive conditions (a conjunction of

disjuncts is assumed). In the worst case, the select operator needs to evaluate all of the

primitive conditions to determine whether a tuple is output or not. On the other hand,

it is also possible to make a decision by evaluating just one of the conditions, in the

best case scenario. Therefore, the service time is not a constant, and it depends on the

selectivity of each condition.
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In an optimized query processing system, the first primitive condition has a rela-

tively small selectivity, and the rest have the same order of selectivity. Thereby, only a

small portion of tuples are needed to evaluate more than one condition. The service time

can be considered as an exponential distribution because every tuple must be evaluated

using the first conjunct, and if it is not applicable, the second conjunct will be used and

so on. Apparently, the number of tuples to be evaluated by each successive conjunct

decreases exponentially.

THEOREM 1. Service time of an operator with a composite condition obeys an expo-

nential distribution

Proof sketch. Without of loss generality, consider a composite condition consisting of n,

where n ≥ 2, primitive conditions σ0, σ1, · · · , σn−1 and service times for primitive con-

ditions are 1/µ0, 1/µ1, · · · , 1/µn−1 respectively. A query processing engine decomposes

the composite condition during query optimization phase and processes these primitive

conditions in an increasing order of selectivity. Without loss of generality, we assume

that σ0 ≤ σ1 ≤ · · · ≤ σn−1. Therefore, σ0 portion of tuples need a service time of

1/µ0, (1 − σ0)σ1 (for n > 2) portion of tuples need a service time of (1/µ0 + 1/µ1),

1/
∏k−1

i=0 (1−σi)σk (for 1 < k < (n−1)) portion of tuples need a service time of
∑k

i=0 1/µi,

and 1/
∏n−2

i=0 (1 − σi) portion of tuples need a service time of
∑n−1

i=0 1/µi. The number

of tuples need more service time decreases exponentially ( a factor of 1 − σi). As a re-

sult, we can safely model the service time of an operator with composite condition as an

exponential distribution.

Hence, the select operator with a composite condition is modeled a simple M/M/1

queueing system. For the given situation described in Section 3.3.1.1, the mean and
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variance of the number of tuples in the select subsystem with a composite condition are,

respectively,

E[q̄] =
ρ

1− ρ
; V ar[q̄] =

ρ

(1− ρ)2
where ρ =

λ

µ
(3.5)

The mean and variance of the waiting time are, respectively,

E[W ] =
1

µ(1− ρ)
; V ar[W ] =

1

µ2(1− ρ)2
(3.6)

3.3.1.3 Project operator

A project operator works on a tuple to extract a subset of all the attributes of the

tuple. In a traditional DBMS, the project operator may also be required to eliminate

duplicates. Duplicate elimination, however, may not be applicable to a data stream

environment because the output of the project operator is another data stream. Also,

elimination of duplicates 4 will introduce blocking, which is undesirable in a stream data

environment. Hence this operator is modeled without taking duplicate elimination into

consideration, and it works very much like a select operator with a primitive condition,

and hence is modeled as a M/D/1 system, where the constant service time is the time

for extracting the specified subset of attributes of a tuple, and the relative performance

metrics for a M/D/1 queueing system as summarized in Section §3.3.1.1.

3.3.2 Modeling Window-based Hash Join

A window-based symmetric hash join algorithm is based on the architecture where

an infinite queue is attached to each data stream as illustrated in Figure 3.3. Let Q1, Q2

denote the queues attached to left data stream 1 and right data stream 2 respectively,

and the output queue QO is used to store the results. Typically the size of the reference

of a tuple is much smaller than the size of the tuple itself, and hence using references

4The duplicate tuples can be eliminated locally by maintaining a hash table based on a time-window.
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Figure 3.3 Window-based Symmetric Hash Join.

avoids duplicate storage of tuples. Based on this observation, we use a thread to maintain

the global tuple pool in a DSMS, including adding new tuples to the pool, passing the

reference of the new tuple to the corresponding queue, and deleting an expired tuple and

its references in the queues. A tuple expires and is deleted when the difference between

its arrival time stamp and current time stamp is greater than the largest time-window

required by any operator in the system. For the purpose of this analysis, we define two

phases for the above join algorithm: a transition phase and a steady state phase. The

transition phase is defined as the period before the first tuple is removed from the last

hash table due to its expiration. After the transition phase, the system enters a steady

state phase because the mean of the number of tuples in the system fluctuates slightly

around a constant if the input rates obey a Poisson distribution and the window size is

big enough. Since transition phase is very short in terms of the lifetime of a continuous

query, we only analyze the steady state phase in this chapter.

3.3.3 Processing Cost of a Tuple in Steady State

To analyze the computation cost required for processing a new tuple in the steady

state, we find that the average number of tuples in each hash table Hi(n) is stable and

is given by: Hi(n) = λiIi, i = 1, 2, where Ii is the predefined time-window for the join
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operator illustrated in Figure 3.3, where the time-window is the largest time span for a

newly arrived tuple to find its match in the corresponding stream. To process one new

tuple from stream 1, the join operator needs to do the following operations:

1. insert the tuple into the hash table Hash1;

2. hash the tuple into the hash table Hash2 to find the corresponding bucket;

3. search the corresponding bucket with the join condition;

4. output the matching tuples to the output queue if any.

Mathematically, the total cost for processing one tuple:

Di = 2CH + CO + CE

(

Hj(n)

mj

)











j = 2 if i = 1

j = 1 if i = 2
(3.7)

where CH is the cost of hashing, which is a function call in the system, and it is a

constant; CE is the cost of evaluation of the join condition; mj is the number of buckets

in the corresponding hash table. CO is the cost of output, which is the cost of passing

the reference of the matched tuple to the upstream operators or applications for further

processing. The output cost is negligible compared to the cost of condition evaluation.

Consequently, the total cost Di of processing a tuple from left data stream is a constant.

This holds true for the tuple from data stream 2 as well, though these two costs may be

different.

We have not considered the cost of accepting newly arrived tuples and deleting

expired tuples so far. It is useful to take a look at how a new tuple is added to the

system and an expired tuple is located and deleted before we model the costs of the

addition and deletion. In a general query processing system, it is natural to order tuples

in a global buffer along a time axis because tuples arrive in an increasing time-stamp

order. In our system, a dirty link list maintains the references of all active tuples by

adding a newly arrived tuple to its head, a free list links all unused tuples together.

Therefore, deleting can be done through periodically checking and truncating the tail of
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the dirty list. Those expired tuples are linked back to the free list. The cost of both

accepting tuples and deleting tuples is a very small portion, say α%, of the system load,

and therefore the cost is taken into consideration by multiplying a factor of 1/(1− α) to

the service time in equation (3.7).

The hash join sub-system can be considered as a typical queuing system with two

input queues and a single server that provides the join service. First, we consider the

join operator as a service facility with two input queues. Then, we combine those two

input queues into a single logical virtual queue with two different classes of tuples, and

the service facility provides a constant service time to each class of tuples based on our

analysis in Section §3.3.3. Under a steady state, the constant service times may be

different for different classes of tuples. Therefore, we model the join subsystem as a

M/(D1, D2)/1 model as illustrated in Figure 3.4, where the logical virtual input queue

has a mean arrival rate (λ1 + λ2), and D1, D2 are the service times to process a tuple

coming from data stream 1, 2 respectively.

3.3.3.1 Steady State Analysis

Based on above queueing system model, the service times are deterministic for

each type of tuple. The queueing system is not a simple Markov chain system because

the service time does not obey an exponential distribution and does not satisfy the

memoryless property. To fully describe the queue state, we need not only the number

of tuples in the queue, but also the service time for which a tuple has already been in

the service facility (or the remaining service time prior to its departure from the join

service facility). This two-dimensional state system makes queueing analysis much more

complicated than for a one-dimensional state system.

The method we present here for finding the mean number of tuples and the mean

waiting time in the join subsystem is based on an embedded Markov chain approach [80].



58

Figure 3.4 Queueing Model of Window-based Symmetric Hash Join Operators.

The basic idea behind this method is to simplify the description of the state from a two-

dimensional description to a one-dimensional description. The usual way is to sample

the two-dimension state information into a special discrete-time point, which explicitly

describes the number of tuples in the system, and implicitly contains information about

the time spent by a tuple in the join service facility. Usually we select those points at

the instant when a tuple in the service facility departs the system. When we specify

the number of tuples in the system, we also know that the service time spent for the

tuple that just enters the join service facility at that instant is zero. By only considering

the point when the tuples leave the join service facility, the state transitions take place

only at these points and form a discrete time space. Fortunately, the solution at these

embedded Markov points happens to provide a solution for all points in time as well.

In this section, we define the following random variables.

• Cn represents the nth tuple to enter the system.

• τn represents the arrival time of Cn.

• tn = τn − τn−1 represents the interarrival time between Cn and Cn−1.

• Xn represents the service time for tuple Cn.

• qn represents the number of tuples left behind by the departure of Cn from the

service.

• νn represents the number of tuples arrives during service time (of Cn).
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THEOREM 2. Given a window-based hash join system over two data streams with

input mean rate λ1, λ2, and service times D1, D2 for the tuples from left stream 1 and

right stream 2 respectively, the mean queue size under the steady state is given by:

E[q̄] = λ1D1 + λ2D2 +
(λ1 + λ2)(λ1D

2
1 + λ2D

2
2)

2(1− (λ1D1 + λ2D2))
(3.8)

Proof. Considering the time point when Cn−1 left the system, there are two cases:

(1) There are no more tuples (qn = 0) in the queue. In this case, the number of tu-

ples in the queue is the number of tuples arriving during the service period Xn−1 (of

Cn−1); (2) There are qn tuples (qn > 0) in the queue. Therefore, the number of tuples left

in the queue is the number of tuples that arrive during the service period of time Xn−1

(of Cn−1) plus the number of tuples left behind when tuple Cn left the system minus 1.

Based on the above analysis,











qn+1 = qn + vn+1 − 1 if qn > 0

qn+1 = vn+1 if qn = 0
(3.9)

We define the following step function

δk =











1 if k = 1, 2, · · ·

0 if k ≤ 0
(3.10)

we can rewrite (3.9) as

qn+1 = qn − δn + vn+1 (3.11)

If the system is an ergodic one, and when n → ∞, we have E[δ] = E[v̄], where E[δ] =

P (system busy) = ρ. So

E[v̄] = ρ (3.12)

Since random variables v and q are independent, E[vnqn] = E[vn]E[qn], also E[qnδn] =

E[qn]. Take square and then expectation on both sides of equation (3.11), when n→∞,
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E[q̄2
n+1] = E[q̄2

n] + E[v̄2
n+1] + E[δ̄2

n] + 2E[q̄n]E[v̄n+1]− 2E[q̄n]E[δ̄n]− 2E[v̄n+1]E[δ̄n]. Here

E[δ̄2] = E[δ̄] because δ2 = δ. Then we get

E[q̄] = E[δ̄] +
E[v̄2] + E[δ̄]

2(1− E[v̄])
(3.13)

The only term unknown in (3.13) is E[v̄2]. From the properties of Z-transform, we can

get the kth moments easily if we can find the Z-transform function of random variable v.

By definition of Z-transform, we have

V [z] =
∞
∑

k=0

P (v̄ = k)zk

=

∞
∑

k=0

(
(λD1)

k

k!
e−λD1 +

(λD2)
k

k!
e−λD2)zk

= P (D1)e
−λD1(1−z) + P (D2)e

−λD2(1−z)

(3.14)

where P (D1) = λ1
λ1+λ2

and P (D2) = λ2
λ1+λ2

; taking the first derivative of (3.14), dv(z)
dz
‖z=1=

P (D1)λD1 + P (D2)λD2 = λ1D1 + λ2D2 = ρ = E[v̄], and taking the second derivative of

(3.14), d2v(z)
d2

z
‖z=1= P (D1)(λD1)

2 + P (D2)(λD2)
2 We find E[v̄] = E[v̄] + λ(λ1D

2
1 +λ2D

2
2),

substituting it into (3.13), which yields

E[q̄] = λ1D1 + λ2D2 +
(λ1 + λ2)(λ1D

2
1) + λ2D

2
2

2(1− (λ1D1 + λ2D2))
(3.15)

Remark 1. : 1). The first part (first two items) of the above equation is the mean

number of tuples arrived during the service time of one tuple. The second part is the

mean number of tuples that are left in the queue before the tuple that is in service has

entered the service facility.

2). The mean queue size is invariant when both the processing ability and the input rate

are increased to k times, namely λ
′

1 = kλ1, λ
′

2 = kλ2 and D
′

1 = D1

k
, D

′

2 = D2

k
. This can

be shown by substituting them into equation (3.8). So the utilization ρ = λ1D1 + λ2D2

is the only factor that affects E[q̄] in the system.
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THEOREM 3. Given a window-based hash join system described in Theorem 2, the

probability distribution of the number of tuples in such a system under the steady state is

given by

P (N = k) = (1− ρ)dk (3.16)

where dk =











ak −
∑k

j=1 bjdk−jif k = 1, 2, · · ·

1 if k = 0

ak = ck

c0k!
− ck−1

c0(k−1)!
for k = 1, 2, · · · ;

b1 = c1−1
c0

; and bk = ck

c0k!
for k = 2, 3, · · · ;

ck = λ1

λ
e−λD1(λD1)

k + λ2

λ
e−λD2(λD2)

k for k = 0, 1, · · · ;

λ = λ1 + λ2

Proof. Take Z-transform on both sides of (3.11),

Zqn+1 = Zqn−δn+vn+1 (3.17)

According to the Z-transform property, the Z-transform of the sum two random variables

equals the product of those two random variables’ Z transform.

Zqn+1 = Zqn−δnZvn+1 (3.18)

Where Zqn+1 =
∑

∞

k=0 P (qn+1 = k)Zk−1 and Zqn−δn = P (qn = 0) + 1
z
(
∑

∞

k=0 P (qn =

k)zk − P (qn = 0)). SinceP (qn = 0) = 1− ρ,

Zqn−δn = 1− ρ +
1

z
(Zqn − (1− ρ)) (3.19)

We denote the Z-transform of random variable qn, vn by Q(z), V(z) respectively, and

simplify (3.18),

Q(z) = V (z)
(1− ρ)(1− z)

V (z)− z
(3.20)
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Substituting (3.14) and ρ = λ1D1+λ2D2

λ
into (3.20),

Q(z) =
(1− ρ)(1 +

∑

∞

k=1(
ck

c0k!
− ck−1

c0(k−1)!
)zk)

1 + c1−1
c0

z +
∑

∞

k=2
zk

c0k!

(3.21)

where ck = (λD1)k

k!
e−λD1 + (λD2)k

k!
e−λD2; Furthermore, we can rewrite the (3.21) as

Q(z) = (1− ρ)
1 +

∑

∞

k=1 akz
k

1 +
∑

∞

k=1 bkzk
= (1− ρ)

∞
∑

k=1

dkz
k (3.22)

where

ak = ck

c0k!
− ck−1

c0(k−1)!

b1 = c1−1
c0

; and bk = ck

c0(k−1)!

dk =











ak −
∑k

j=1 bjdk−1 if k = 1, 2, · · ·

1 if k = 0

From Theorem 3, it follows that

P (N = 0) = 1− ρ

P (N = 1) = (1− ρ)( 1
λ1
λ

e−λD1+
λ2
λ

e−λD2
− 1)

P (N = 2) = (1− ρ)( c2
2c0
−

c1+
3
2
c0−1

c20
)

Corollary 1. The variance of the number of tuples in such a join subsystem is given by

V ar[q̄] = (1− ρ)
∑∞

k=2
k(k − 1)dk + E[q̄]− E[q̄]2

Proof. It follows from Theorem 3 by taking Z-transform, Q(z) = (1− ρ)
∑

∞

k=0 dkz
k, and

then taking the second derivative, d2Q(z)
d2

z
‖z=1= (1−ρ)

∑

∞

k=2 k(k−1)dk = E[q̄2]−E[q̄]. So

the variance of number of tuples in the system V ar[q̄] = E[q̄2]−E[q̄]2 = (1−ρ)
∑

∞

k=2 k(k−

1)dk + E[q̄]− E[q̄]2.
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THEOREM 4. Given a window-based hash join system described in Theorem 2, the

mean waiting time of tuples in the join subsystem and in the queue under the steady state

are given by, respectively,

W =
λ1D1 + λ2D2

λ1 + λ2
+

λ1D
2
1 + λ2D

2
2

2(1− (λ1D1 + λ2D2))
(3.23a)

Wq =
λ1D

2
1 + λ2D

2
2

2(1− (λ1D1 + λ2D2))
(3.23b)

Proof. According to the Little’s result, the waiting time of the tuples in the system

W = N̄
λ

= E[q̄]
λ

. Substituting (3.8) into the above equation, we get (3.23a). And the

second part of (3.23a) is the mean waiting time in the queue.

Remark 2. : If we increase, at the same time, the processing ability and the input

rate k times, as we did earlier, the mean waiting times of the tuples in both the system

and the queue decrease to 1/k of the original mean waiting time. This can be shown by

substituting the changed factors into the equations (3.23a) and (3.23b).

From Remark 1 and 2, we clearly show that a bigger system with n units processing

power and n units input rate is better than n small systems with 1 unit processing power

and 1 unit input rate. Although both the bigger system and all small systems require

the same amount of memory, the tuple latency in the bigger system is one nth of that in

a small system. Therefore, to process data streams, clustering multiple smaller systems

into a bigger system is better than multiple standalone small systems.

Corollary 2. The variance of waiting time of tuples in such a join subsystem is give by

V ar(W ) =
1− ρ)

λ2

∞
∑

k=2

k(k − 1)dk −W 2.

Proof. From the generalized Little’s formula [92], we know dkQ(z)
dk

z
‖z=1= λW

k , where Wk

is the kth moment of the waiting time of tuples in the system. The variance of W

V ar(W ) = W2 − W 2 = 1−ρ

λ2

∑

∞

k=2 k(k − 1)dk − W 2, where W can be obtained from

(3.23a), dk is given in (3.16).
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THEOREM 5. Given a window-based hash join system described in Theorem 2, the

probability distribution of the waiting time of tuples in the queue under the steady state

is given by

W (t) = 1− (λ1D1 + λ2D2)e
(s0t) (3.24)

where s0 is its negative root of equation (3.29)

Proof. For our M/(D1, D2)/1 queueing model, we have the Cumulative Distribution

Function (CDF) of service time

B(s) =























0 if s < D1

λ1

λ1+λ2
if D1 ≤ s < D2

1 if s ≥ D2

(3.25)

and its probability density function is

b(t) = λ1

λ1+λ2
δ(t)(t−D1) + λ2

λ1+λ2
δ(t)(t−D2)

where δ(t) =











1 t ≥ 0

0 t < 0
. Then, computing its LST B*(s)

B∗(s) =
λ1

λ1 + λ2
esD1 +

λ2

λ1 + λ2
esD2 (3.26)

Also, the LST of the interarrival probability distribution function is given by

A∗(s) =
λ1 + λ2

(λ1 + λ2) + s
(3.27)

By substituting (3.26) and (3.27) into the characteristic equation A∗(−s)B∗(s) = −1,

defined in Lindley’s equation [92], we have

λ1e
−sD1 + λ2e

−sD2 − (λ1 + λ2) + s = 0 (3.28)

Obviously, zero is one of its roots. We can also easily find a numerical solution for the

above equation by MatLab or any other mathematical tool. The CDF of the waiting-time

for our model

W (t) = 1− (λ1D1 + λ2D2)e
(s0t) (3.29)
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The distribution of the waiting time in the system is the same as that in the queue except

we need to add the constant service time D to the above equation.

3.3.4 Extensions

The approach presented so far is generally true for any window-based symmetric

join operator, with the only difference being the value of the service time. If a stream

data processing system also accesses a stored database, we may need to join the tuples

from a data stream with a data set stored on a disk. On the other hand, the input process

may not be a Poisson process; we briefly discuss the impact of more bursty inputs on the

performance of these models.

3.3.4.1 One Relation on Local Disks

If the entire relation on local disks can fit in main memory, we can load all the

tuples into memory before we start the join algorithm. There is only one input data

stream for this case. The join operator works as a single stream processing operator and

hence the system can be modeled as a M/D/1 queue with the mean arrival rate λ1 and

constant service time D1, which is the cost for a tuple from input stream to join with all

tuples in the relation. If all the tuples of the relation on local disks cannot fit in memory,

the cost of processing a tuple not only includes those costs listed in Section §3.3.3, but

also the extra cost of loading tuples from disks and paging out the probed tuples to the

disks. However, the service time is still a constant because for each input tuple from

input stream, the cost of loading tuples from disks and paging out the probed tuples to

disks is the same. Therefore, the system can again be modeled as a M/D/1 queue with

a larger service time.
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Corollary 3. The mean number of tuples in such a join system when one relation is on

local disks is

E[q̄] = λ1D1 +
λ2

1D
2
1

2(1− λ1D1)
.

It follows from (3.8) by setting D2 = 0 and λ2 = 0.

Corollary 4. the mean waiting time of tuples in such a system and in the queue are

W = D1 +
λ1D2

1

2(1−λ1D1)
and W̄q =

λ1D2
1

2(1−λ1D1)
and respectively.

Similarly, the above results can be derived by setting D2 = 0 and λ2 = 0 in (3.23a)

and (3.23b).

The queue size in Corollary 3 and the mean waiting time in Corollary 4 have the

same forms as the results of a standard M/D/1 presented in Section §3.3.1.1. This verifies

the correctness of our analysis in Section §3.3.3.1.

3.3.4.2 Impact of Bursty Inputs

Although many data streams can be approximately modeled as a Poisson input

model, many researchers have recently shown that a class of input data streams are

much more bursty than Poisson inputs. This class of input data streams exhibits a so-

called self-similar [85] property over a wide range of time scale. Partial explanation of this

property is that the input data stream itself is a superimposition of many (theoretically,

infinite) ON/OFF sub-streams, the distributions of the length of ON/OFF periods are a

heavy tailed distribution. The input data streams of a sensor database may demonstrate

the self-similar property because thousands of sensors send data during ON periods, and

they are in OFF (or in sleep mode) in order to save energy; more investigation is needed

to prove this.

Due to the modeling difficulties of queueing systems fed by self-similar data streams,

we do not intend to do an exact analysis. Instead, we highlight here a few key points of
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the impact of a bursty input data stream on queueing performance. Under the steady

state,

1. Both queue size and tuple latency in the queue have a heavy-tailed distribution, but

with different power. The larger queue size and longer tuple latency do not decrease

exponentially as they do in a Poisson model; instead, the tails of the distribution

are much longer than those in standard Poisson model.

2. The more bursty the input data streams, the longer are both the queue size and

tuple latency. The bursty property of the input data streams is mainly dominated

by the distribution of the ON periods, not by the departure distribution of the

tuples within ON periods.

3. The queueing metrics obtained from a Poisson input process are similar to those

obtained from self-similar input streams when the system load is not high. How-

ever, as the system load increases, the difference based on these two inputs increases

dramatically.

3.4 Modeling Continuous Queries

In the previous section, we analyzed the performance metrics of each operator that

is used in a query plan based on a single-server queueing model. However, in a multiple

query processing system, there is only one server (processor) available for all operators in

the system. And the input process of some operators does not form a Poisson distribution

because those operators get their inputs from the outputs of other operators. Even if

the input process of an operator forms a Poisson distribution, its output does not form a

Poisson distribution. Therefore, the end-to-end tuple latency or memory requirement of

query plan is not simply the sum of its corresponding parts in those standard queueing

systems presented in previous section where each of them requires a dedicated server.



68

6
�
�

�
�Oi

6

6
λ
a

6�
�

�
�Oi

6

6�
�

�
�Oj

6

6
b

6�
�

�
�Oi

6

666�
�

�
�Oj

6

6 λ
c

Figure 3.5 Three Classes Of Queueing Models.

In a multiple query processing system, some operators have an Exponential ser-

vice time while others have a deterministic service time or a more general service time.

Therefore, all operators with only external inputs in a general DSMS are modeled as an

M/G/1 queueing system with a vacation time V and a setup time U as we discussed in

§3.1.1, and those queueing systems form a network of queueing systems. In this queue-

ing network, the queueing system for individual operators can be categorized into three

classes based on their inputs, as illustrated in Figure 3.5.

1. Queueing system with external input(s) (Figure 3.5-a). This class has only external

input(s) from continuous data streams. Whether it is in a vacation period or in a

serving period, the input tuple is inserted into its input queue immediately when

it arrives.

2. Queueing system with internal input(s)(Figure 3.5-b). This class of queueing sys-

tem only has input(s) from the output of another operator in the system. The

arrival time of an input tuple is the departure time of the output process of an-

other operator. Therefore, this class only has inputs during its vacation period,

and no input during its setup time and serve time.

3. Queueing system with external input and internal input( Figure 3.5-c). This class

has both internal input and external input, and its inputs are a combination of the

above two classes.
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The above three classes capture all the alternatives possible for a query plan. In

the rest of this section, we will derive the mean queue size and the mean waiting time of

each class of queueing model under both gated-service and exhaustive-service disciplines.

Additionally, to decide the vacation time and the internal input rate(s) of the queueing

models, we have to derive the busy period and the total number of tuples served during

a cycle as well. In this section, we assume that the vacation period V of an operator is

known. We will discuss how to determine vacation period of each operator in Section

§3.4.4.

3.4.1 Queueing Model with External Input(s)

In the model illustrated in Figure 3.5-a, each external input has a dedicated thread

in the system which accepts input tuples whenever they arrive. The prototype of the

queueing model can be a SELECT or a PROJECT or aggregate operator over a continu-

ous data stream, or a JOIN operator over one (self-join) or two continuous data streams.

If the operator has two or more external inputs, we consider the inputs as one logical

external input with different class of input tuples and with a mean arrival rate which is

the sum of all mean arrival input rates of all inputs of the operator.

3.4.1.1 Exhaustive-service discipline

First of all, we need to compute the length of a busy period of an operator under

an exhaustive-service discipline. Using that we can derive the number of tuples it served

during its busy period, the output rate, and the cycle time.

Corollary 5. Given a queueing system with external input(s) and its vacation time V ,

its setup time U , its mean input rate λ, and service time (to serve one tuple) S, the mean
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busy period at each round this queueing system with an exhaustive-service discipline under

the steady state is given by,

B(1) =
ρ

1− ρ

(

(1− q0) U (1) + V (1)
)

(3.30)

Proof. Let N be the random variable representing the total number of tuples arrived

during vacation and setup time. We have

N =
{

NU + NV
}

‖Qv>0 (3.31)

taking Z transform on both sides

N(z) = U∗(λ− λz)V ∗(λ− λz) + q0(1− U∗(λ− λz)) (3.32)

where q0 = V ∗(λ) is the probability of an empty queue after one vacation time. Then

the busy period B in our M/G/1 queueing system with setup time and vacation time

consists of N standard busy periods in a standard M/G/1 system.

B =
∑N

i=1
B̄i (3.33)

where B̄i is the standard busy period introduced by ith tuple. Taking LST on both sides

of (3.33),

B∗(s) =N(B̄∗(s))

=U∗(λ− λB̄∗(s))V ∗(λ− λB̄∗(s))

+ q0

(

1− U∗(λ− λB̄∗(s))
)

(3.34)

According to the relationship of the LST of the standard busy period and the LST

of service time distribution,

S∗(s) = B̄∗(s + λ− λS∗(s)) (3.35)
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From (3.34) and (3.35), we have

B(1) =
ρ

1− ρ

(

(1− q0) U (1) + V (1)
)

Remark 3. By taking the nth derivative from equation (3.34) and (3.35), we can get the

nth moment of the busy period. In this chapter, as we are only interested in mean values,

no higher moment is given. The interested reader can take it further.

Corollary 6. Given a queueing system with external input(s) described in Corollary 5,

its mean cycle time at each round of this queueing system with an exhaustive-service

discipline under the steady state is given by,

C(1) =

(

1− ρq0

1− ρ

)(

U (1) +
1

1− q0

V (1)

)

(3.36)

Proof. A cycle consists of a busy period, a setup period, and one or more vacation periods.

It has m vacation periods only if the queue is empty after the first m− 1 vacations, and

there is at least one tuple arrival during the mth vacation period. Therefore,

C(1) = U (1) + B(1) + E
[

∑∞

m=1

(

mV (1)P (m)
)

]

(3.37)

where P (m) is the probability of that a cycle includes m vacations and P (m) = (1 −

q0)q
(m−1)
0 . The mean length of vacation time E[

∑

∞

m=1(mV (1)P (m))] = 1
1−q0

V (1). Plug it

into (3.37), we have (3.36).

Corollary 7. Given a queueing system with external input(s) described in Corollary 5,

the mean number of tuples served during each round is given by:

NC(1)

=
λ

1− ρ

(

(1− q0)U
(1) + V (1)

)

(3.38)
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Proof. number of tuples NC served during one cycle under the exhaustive-service dis-

cipline is the total number of tuples N that have arrived during the vacation time and

setup time, plus the number of tuples arrived during the busy period. Therefore,

NC =
∑N

i=1
Fi (3.39)

where Fi is the total number of tuples introduced by the ith tuple in the input queue

during a standard busy period in a standard M/G/1 queue. Taking Z transform on both

sides of (3.39), we have

NC(z) =N (F (z))

=U∗ (λ− λF (z)) V ∗ (λ− λF (z))

(3.40)

In a standard M/G/1 queue, the Z transform of the number of tuples during a standard

busy period has the following relationship with the Z transform of the service time,

F (z) = zS∗ (λ− λF (z)) (3.41)

From (3.40) and (3.41), we get (3.38) by taking derivative.

THEOREM 6. Given a queueing system with external input(s) described in Corollary

5, the mean queue size and mean waiting time of tuples in this queueing system with an

exhaustive-service discipline under the steady state are given by, respectively,

Q(1) =ρ + λW (1)

W (1)
q =

λS(2)

2(1− ρ)
+

U (2) + 2U (1)V (1) + V (2) − q0U
(2)

2(1− q0)U (1) + V (1)

W (1) =S(1) + W (1)
q

(3.42)

where q0 = V ∗(λ) is the probability of an empty queue after one vacation time.

Proof sketch. According to the decomposition property of M/G/1 queue with vacation

time [113], and considering the vacation period termination points, we derive the mean

queue size Q(1), and waiting time in the queue and in the queueing system.
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With the increase in system load, we can see that the vacation period increases

because the busy periods of other operators in the system increase. As a result, both the

waiting time in the queue and queue size increase.

3.4.1.2 Gated-service discipline

For a gated-service discipline, the processor only serves the tuples that have arrived

before the busy period, while the tuples arriving during the busy period will be processed

in the next round.

THEOREM 7. Given a queueing system with external input(s) and its vacation time

V , its setup time U , its mean input rate λ, and service time (to serve one tuple) S,

the mean queue size and mean waiting time of tuples in this queueing system with an

gated-service discipline under the steady state are given by, respectively,

Q(1) =ρ + λW (1)

W (1)
q =

λS(2) + 2U (1) + 2ρV (1)

2(1− ρ)
+

(1− q0)(U
(2) + 2U (1)V (1) + V (2))

2((1− q0)U (1) + V (1))

(3.43)

where q0 has a different value from that under an exhaustive-service discipline, and

q0 =
1

D

∏∞

j=0
U∗(λ− ληj(0))V ∗(λ− ληj(0)) (3.44)

with denominator D = 1−V ∗(λ)(1−U∗(λ))−
∞
∑

k=1

(V ∗(λ−ληk(0))(1−U∗(λ−ληk(0)))
k−1
∏

j=0

U∗(λ−

ληj(0))V ∗(λ− ληj(0))), where ηj(0) is given recursively by










η0(z) = z

ηj+1(z) = S ∗ (λ− ληj(z))j = 0, 1, · · ·

For the moments of the queue length/waiting time, we use the same approach as

in [27]. The results are derived by analyzing the departure point of the nth customer in

a service period.
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Corollary 8. Given a queueing system with external input(s) described in Theorem 7,

its mean busy period at each round in this queueing system with a gated-service discipline

under the steady state is given by,

B(1) =
ρ

1− ρ

(

(1− q0)U
(1) + V (1)

)

(3.45)

Proof. The number of tuples served during a cycle consists of the tuples arrived during

last setup period, the tuples arrived during last busy period and the tuples arrived during

this vacation period(s). Considering the tuples that are served during busy period, when

n→∞,

NC = (NU + NB)‖QV >0+NV (3.46)

Therefore, the busy period is the total service time of those NC tuples. As a result, we

have (3.45).

Although the mean number of tuples under both exhaustive-service and gated-

service disciplines are the same, they have different higher moments.

Corollary 9. Given a queueing system with external input(s) described in Theorem 7, its

mean number of tuples served at each round in this queueing system with an gated-service

discipline under the steady state is given by,

NC(1) = λ(U (1) +
1

1− q0
V (1) + B(1))

=
λ(1− ρq0)

1− ρ

(

U (1) +
1

1− q0
V (1)

) (3.47)

By taking the derivative of both sides of (3.46), we get the above result.

Corollary 10. Given a queueing system with external input(s) described in Theorem 7,

its mean cycle time in this queueing system under gated-service discipline is the same as

under an exhaustive service discipline under the steady state, which is given in Corollary

7.
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Proof sketch. As we mentioned earlier, one cycle includes one busy period, one setup

period, and one or more vacation times. The number of vacation times are only related to

the q0, therefore, the lengths of vacation times under both gated-service and exhaustive-

service are the same. This applies to the mean busy period and consequently holds

true for the cycle time, while higher moments are different due to the difference in high

moments of the busy periods under these two service disciplines.

3.4.2 Queueing Model with Internal Input(s)

In this model, the queueing system has only internal input, which is the output

of processes of its children queueing systems. Therefore, the input process is neither a

Poisson process nor a continuous stream. An operator has outputs, if any, only during

its busy period. The number of tuples outputted from an operator is decided by both

the total number of tuples N processed during one cycle and the selectivity σ of its

child operator. For the SELECT operator, the selectivity σ ≤ 1; for the PROJECT

operator, σ = 1. If the operator is a JOIN operator, its selectivity may be greater than

1, which is decided by the selectivities of its two SEMI-JOIN operators σL, σR. We

assume that selectivity of an operator is known; otherwise, it can be learned through

collecting run-time statistic information in a DSMS.

To derive similar performance metrics as those in §3.4.1.1, we use the following

approximate method: consider the operator, such as SELECT or PROJECT, which has

only one internal input as illustrated in Figure 3.5-b. In the steady state, we assume that

the operator j runs once after its child operator i runs k times, which is called the weight

ratio of operator i in terms of operator j hereafter. Here, k ≥ 1 because operator j can

only enter its busy period with at least one output tuple from its child operator i. The

value k is determined by the scheduling strategy. An example well be given in Section

3.4.4 to demonstrate how to determine k.
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Figure 3.6 Input Process Of Operator (Internal Input).

For this queueing model, there is no input during its busy periods (since all other

operators are idle). Therefore, an exhaustive-service discipline behaves exactly like a

gated-service discipline. The input process of the operator j is shown in Figure 3.6.

After a busy period is over, the operator j waits for a random period V
′

j , called pre-input

vacation period during which time some other operators, if the system does not serve

its child operator i immediately after it has served operator j, can be served. It then

receives its first batch of inputs from its child operator i during its child operator i’s

busy period. After waiting another cycle time of its child operator i, it receives another

batch of inputs. k rounds later, it waits another random time V
′′

j called the post-input

vacation period during which time some other operators except its child operators can

be served; it finally begins its own service cycle, consisting of its own setup time Uj and

busy period Bj to serve all the tuples in its input queue. We consider the input of an

operator under this model as a discrete batch of inputs and use the following method to

approximate the performance metrics.

Corollary 11. Given a queueing system with internal input(s) and its vacation time V ,

its setup time U , its mean input rate λ, and service time (to serve one tuple) S, the mean

number of tuples served during one cycle under both gated-service and exhaustive-service

discipline is given by:

For single-input operators,

N
C(1)
j = k(1)N

C(1)
i σi
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For two-input operators,

N
C(1)
j = k

(1)
i N

C(1)
i σi + k

(1)
i+1N

C(1)
i+1 σi+1

Proof sketch. The total number of tuples served during a cycle is the sum of k batch

inputs. Therefore,

N
C(1)
j = k(1)N

C(1)
i σi (3.48)

where N
C(1)
i is the number of tuples at one batch input, which is given in Corollary 7

if the operator i has only external input(s). Otherwise, we have to first compute the

number of tuples served during one cycle at its child operator, or its grandchild operator

until we reach the bottom operator that only has external input(s).

If the operator j has two internal inputs - one is from its left operator ith and

another from its right child operator (i+1)th, the total number of tuples served during a

cycle time is the sum of the number of tuples from its left child and from its right child.

N
C(1)
j = k

(1)
i N

C(1)
i σi + k

(1)
i+1N

C(1)
i+1 σi+1 (3.49)

where ki, ki+1 are the weight ratios of operator i, i+1 in terms of operator j respectively.

Corollary 12. Given a queueing system with internal input(s) described in Corollary

11, the mean busy period at each round under both gated-service and exhaustive service

disciple is given by

B
(1)
j = N

C(1)
j S

(1)
j (3.50)

The busy period is simply the sum of the service times to serve these N
C(1)
j tuples.

B
(1)
j = N

C(1)
j S

(1)
j (3.51)
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Corollary 13. Given a queueing system with internal input(s) described in Corollary 7,

the mean cycle time at each round under both gated-service and exhaustive service disciple

is given by

C
(1)
j = U

(1)
j + B

(1)
j +

1

1− q0

V
(1)
j

where q0 = P (Nj = 0).

Clearly, the cycle time in this model has the same form as in the previous model,

except the q0 and B
(1)
j have different values.

THEOREM 8. Given a queueing system with internal input(s) and its vacation time V ,

its setup time U , its mean input rate λ, and service time (to serve one tuple) S, the mean

waiting time of tuples at this queueing system under both gated-service and exhaustive

service disciple is given by

W (1)
q =

kNC
i σi − 1

2
Sj +

(2− σi)N
C
i − 1

2
Si

+
(k

(1)
i − 1)

2
C

(1)
i + (V

′′(1)
j + U

(1)
j )

(3.52)

Proof. Considering the pth tuple arriving during the lth batch (busy period of its child

operator) shown in Figure 3.6, the waiting time wp
l of this tuple at operator j consists

of:

1. the sum of service times to serve all the arrived tuples in first l − 1 batch inputs,

and the first p − 1 tuples in the lthbatch. The number of tuples output from its

child operator during each batch NO
i = NC

i σi.

2. the time for its child operator i to output(serve) the rest NC
i −

p

σi
tuples in lth

batch;

3. k − l cycle periods because the operator j will be served after its child operator i

has been served k times;

4. the post-input vacation period and itself setup time.
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In summary,

wp
l =(l − 1)NO

i Sj + (p− 1)Sj+

(NC
i −

p

σi

)Si + (k − l)Ci + V
′′

j + Uj

The total waiting time W total of all tuples arriving in one cycle time of operator

j is W total =
∫ k

l=1

∫ NC
i

p=1
wp

l dldp. The mean waiting time of a tuple at the operator j is

derived by dividing the total waiting time by the total number of tuples,

W (1)
q =

kNC
i σi − 1

2
Sj +

(2− σi)N
C
i − 1

2
Si

+
(k

(1)
i − 1)

2
C

(1)
i + (V

′′(1)
j + U

(1)
j )

(3.53)

Remark 4. 1) For two internal inputs, the operator j has inputs from both the left child

operator i and the right child operator i+1. Then we have W
(1)
j = ϕiW

i(1)
j +ϕi+1W

i+1(1)
j ;

where ϕi, ϕi+1 are the weight of the left input and right input respectively, ϕi = 1−ϕi+1 =

σiN
(1)
i

σiN
(1)
i +σi+1N

(1)
i+1

. 2) The mean tuple latency in above Theorem 8 can be decreased if

we decrease the post-input vacation period. This tells us that we need to schedule an

operator immediately after its child operators are scheduled in order to decrease the tuple

latency in a DSMS.

Queue size: According to the Little’s formula Q(1) = λjW
(1)
q , we have the mean

queue size Q(1) in a system described in Theorem 8 as follows:

Q(1) =
N

(1)
j

C
(1)
j

W
(1)
j (3.54)

3.4.3 Queueing Model with External and Internal Inputs

In this model, the queueing system has at least one internal input and at least

one external input. The internal input is neither a Poisson process nor a continuous

stream as explained in Section 3.4.2. The prototype of this queueing model is a JOIN
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operator with two inputs; one is the output of an operator, another is an external data

stream. We decompose such a queueing system into two sub-queueing systems: (a) the

queueing system that only has an internal input, which is modeled in Section 3.4.2; and

(b) the queueing system that only has an external input, which is modeled in Section

3.4.1. Under both exhaustive-service and gated-service disciplines, the total number of

tuples served during one cycle time is the sum of total number of tuples served during

one cycle time in each of the decomposed queueing systems, therefore,

N
C(1)
j = N

′C(1)
j + N

′′C(1)
j (3.55)

Since the busy period is the time to serve those N
C(1)
j , it has the same form as

(3.51). Similarly, the cycle time has the same form as in previous two models. The

mean waiting time is the weighted sum of the mean waiting times of the tuples from the

two sub-models. Again the weight is the ratio of the number of tuples output from a

sub-model to the total number of tuples outputted from the model. The mean queue size

can also be derived from mean waiting time through Little’s formula.

3.4.4 Scheduling Strategy and Vacation Period

In this section we further discuss how to decide the weight ratio k of an operator

in terms of its parent operator, and the lengths of both vacation period V and post-input

vacation period V
′′

of an operator given a scheduling strategy.

In a multiple query processing system, various scheduling strategies have been

proposed. They can be broadly classified into two categories: hierarchical scheduling

and global scheduling. In hierarchical scheduling, the scheduling is done in a hierarchical

way. At the top level, a system only needs to schedule the top-level objects such as a query

plan, an operator path [77] and so on. Once a top-level object is scheduled, a lower-level

scheduling strategy is employed to schedule the objects within a top-level object such as
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Figure 3.7 Push Up Operator Scheduling.

an operator. In global scheduling, only one scheduling strategy is needed, which schedules

all the elementary objects and no composite object that consists of multiple elementary

objects can be scheduled. For example, the Chain scheduling algorithm employs a global

scheduling approach. Here we use the push up scheduling strategy and the weighted

round robin scheduling strategy as examples to show how to derive the vacation periods.

Push up operator scheduling strategy: A push up operator scheduling strat-

egy is a hierarchical scheduling strategy. From Remark 4, we found that the mean tuple

latency can be decreased if we can schedule an operator as close as possible to its child

operators. Based on this principle, a push up operator scheduling strategy employs a

round robin strategy at the top level to schedule the query plans registered in the sys-

tem. Therefore, the number of operators scheduled between an operator and its child

operators is limited the number of operators in a query plan. To further limit the number

of operators scheduled between the child operators of an operator and the operator itself,

It employs a bottom-up approach to schedule all the operators of a query plan during

each round. The operators at the bottom are scheduled first, followed by its parent op-

erators. For a query plan with multiple operator paths, the operators at the same level

are scheduled from right to left.

For example, the execution order of the operators of the query plan Ψ in Figure 3.7

is {O1, O2, O3, O4, O5, O6, O7, O8}. The weight ratio k is 1 under the scheduling strategy,
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and the vacation time for the jth operator in the system, which is dedicated to query

processing, is

V
(1)
j =

∑m

i=1
(U

(1)
i + B

(1)
i )− (U

(1)
j + B

(1)
j ) (3.56)

where m is the total number of query plans registered in the system. From Section §3.4,

we know that B
(1)
j in all cases is a function of V

(1)
j , and we have m such equations with

m unknown variables V
(1)
j ; j = 1, 2, · · · , m. These m equations are linearly independent,

so we can simultaneously solve this set of equations to find V
(1)
j s.

Similarly, the post-input vacation V
′′(1)
j of an operator can be derived from (3.56),

except that m is the total number of operators served during the period between the end

point of the last input batch and the starting point to serve its tuples. In some scenarios,

a processor has to take α percent5 of its time to do non-query processing tasks, such as

scheduling or system maintenance routines, so we have to multiply the equation (3.56)

by a factor 1
1−α

.

Weighted Round Robin scheduling strategy: A weighted round robin schedul-

ing strategy is considered as a global scheduling strategy. The whole query processing

system is treated as a pool of individual operators, and a weight is assigned to each op-

erator to decide how often the operator is scheduled in the system compared with other

operators. By considering a query processing system with m operators along with their

weights6 β1, β2, · · · , βm respectively, statistically, we can infer that the operator j, which

has its child operator i in the system, will be scheduled once whenever the operator i is

5which is not negligible. Only if a system is a dedicated query processing system, this α percents is

very small and is negligible.
6The weight of each operator can be learned from the system through analyzing the scheduling

strategy or collecting statistics from an actual system.
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scheduled βi

βj
times, which is equivalent to the weight ratio kj of operator j. The mean

vacation time of the operator Oj is

V
(1)
j =

m
∑

k=1

βk

βj

(U
(1)
i + B

(1)
i )− (U

(1)
j + B

(1)
j ) (3.57)

There are m equations with m unknown variables, and the same approach used

earlier to solve the equations defined by (3.56) can be used here. The approach is also

applicable to find post-input vacation time V
′′(1)
j of the operator j.

The analysis that we have presented so far is generally applicable for a large family

of scheduling strategies, such as Chain scheduling strategy, Path capacity strategy, round

robin Operator strategy, and so on. The weight ratio k can be learned through collecting

statistics or through analyzing the scheduling strategy.

3.4.5 Total Mean Queue Size and Total Mean Response Time

Once we find the vacation time and the post-input vacation time of each operator

in a query plan, we are able to compute the mean queue size of each queue, and the

mean tuple latency of each queueing path of each query execution plan in the system.

Substituting these values into (3.1) and (3.2), the total memory requirement and the

mean tuple latency of a query plan are obtained.

3.4.6 Discussion

We highlight some intuitive aspects of our observations below.

Tuple latency: There are two ways to decrease the tuple latency in a DSMS

without changing configuration of the system:

1) clustering n, where n > 1, small systems into one larger system;

2) decreasing the number of operators scheduled between the child operators of an operator

and the operator itself.
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Although it can not decrease the memory requirement by clustering n smaller

systems into one bigger system for stream processing, the mean tuple latency in the

bigger system is only one nth of that in small systems as shown in Remark 2. Remark 4

shows that the mean tuple latency decreases as the post-input vacation time decreases.

One way to decrease post-input vacation time is to decrease the number of operators

scheduled between the child operators of an operator and the operator itself.

Service discipline: By using an exhaustive-service discipline, the query can achieve

a better tuple latency than using a gated-service discipline under the non-null vacation

queue situations.

From our analysis of both the exhaustive-service discipline and the gated-service

discipline in Section §3.4.2, we found that the queueing system has the same cycle time

and the same number of tuples on average are served for these two service disciplines, but

the tuple latencies under these disciplines are different. Under the non-null vacation queue

situation7 where q0 = 0, the mean tuple latency of an operator under the exhaustive-

service disciplines is U(1)+ρV (1)

1−ρ
less than that under the gated service discipline. It is a

positive value, and the difference increases dramatically when the system load increases

or its vacation time increases.

Similarly, a service discipline in which the larger number of tuples is processed in

busy period, the less of tuple latency is. It is also means that for a N-limited service

discipline, a limit of processing 100 tuples in its busy period introduces a better tuple

latency than a limit of processing 50 tuples in each busy period.

In general, an exhaustive-service discipline is better than any kind of gated-service

discipline such as N-limited service discipline in terms of mean tuple latency. However,

in some cases, an exhaustive-service discipline may introduce a long cycle time, which

7In a moderately loaded query processing system, the probability that the input queue of an operator

is empty after it returns from vacation is very small, and can be ignored.
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causes a long vacation time for some query plans. To solve this problem, we need to

assign a weight to each query, and a N-limited service discipline is used for a query plan

which has a long cycle time. Although the tuple latencies of the other query plans de-

crease, the mean tuple latency of the query plan with long cycle time increases.

Scheduling Algorithm: The hierarchical scheduling approach with a push up

operator strategy is better than any global scheduling approach under the exhaustive- or

gated-service discipline.

Consider the ith query plan in a total of m query plans processing system. The

total service time of all query plans except the ith query plan is S during the steady state,

and the total service time of all the operators in ith query plan is Si. In general, S � Si.

If a hierarchical scheduling approach (a query plan, or an operator path is treated as a

schedulable object) with a push up operator strategy is used, the implication is that no

operator from other query plans is interleaved with any operator in ith query plan. (a) If

the operator k has only one child operator, it is scheduled right after its child operator

j is served. Therefore the post-input vacation time of the operator k is zero. (b) If an

operator has two child operators, the post-input vacation time of one of its sub queueing

system is not zero because only one operator can be scheduled at one time. However,

the post-input vacation time is minimized. If a global scheduling approach (that is, an

operator is a schedulable object) is used, it is highly possible that some operators, say p

operators, are served between the service periods of two consecutive operators j, k of a

queueing path of the ith query plan. Consequently, the post-input vacation time of the

operator k is the total service time of those p operators, which is larger than zero or at

least equals to the service time of one of its child operators for an operator with two

children. The vacation times under these two service disciplines are same. From (3.2),

we can conclude that the overall tuple latency of the ith query plan is larger under the
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global scheduling approach than under the hierarchical scheduling approach with a push

up operator scheduling strategy.

In general, any operator path or query plan based scheduling strategy can achieve a

better tuple latency than any scheduling strategy which uses an operator as a schedulable

object.

Query Plan: Among all the different implementations of a general query, the query

plan which has a minimal total service time is better than the one which has minimal peak

memory requirement but longer total service time in a multiple query processing system.

If a query plan with a longer service time but a minimal peak memory requirement

is chosen, all the other query plans in the system will have a longer vacation time due

to its longer service time. The longer vacation time causes a longer tuple latency and

increases the backlog of the tuples of all query plans registered in the system. The total

increase of the backlog of all the query plans in the system may significantly larger than

the memory size it saves.

Input Rate: Linear increase of all the input rates in a query processing system

can decrease the overall performance of the system dramatically (faster than a linear

decrease).

From §3.4, we know that with a linear increase in input rate of a queueing path,

the service times of all the operators along that path increase linearly, which causes the

vacation time of all the other query plans in the system to increase. As a result the

service times of those operator paths increase due to a higher number of tuples arriving

during their vacation periods. Consequently, the vacation time of the queueing path that

increased its input rate rises, which causes its service time to rise further. Therefore, the
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overall tuple latency increases with a rate faster than linear, and the same is true for the

queue size.

Similarly, the above statement holds for both selectivity and the number of query

plans (system load) as well. Linearly increasing these factors causes the overall perfor-

mance of the query processing system to decrease at a speed faster than the linear speed.

Our experiments in the following section clearly testify to these statements.

3.5 Experiments

We conducted two sets of experiments to validate our theoretical analysis of both

relational operators and continuous queries presented in this chapter. All experiments

were run on an alpha-based dual-processor computer with an OFS1 (Tru Unix) V5.1

operating system, and 2Gb RAM. We were able to keep the tuples within the predefined

window completely in main memory. Also there are no other user applications in the

system when performing these experiments.

Input data streams: All data streams used in our experiments are synthetic

network traffic data streams and consist of 7-field tuples : (int sequenceId, int hostAdd,

int networkAdd, int portNumber, int packSize, int protocolId, int serviceType).

Once a tuple enters our system, a stream identifier, an arrival time-stamp, a depar-

ture time-stamp, and expired time-stamp are added for each tuple and the reference of

the tuple is passed to the input queues of operators in the system for further processing.

The arrival time stamp is the time of the tuple entering the system; the departure time-

stamp is assigned when the tuple is outputted from the system; and the expired time

stamp is assigned when the tuple enters the system based on the largest time window of

all queries registered in the system.
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The input data streams that we used are either a bursty data stream generated

from a Poisson distribution or a more bursty stream that has so called self-similarity

property. All data streams have a different mean input rate.

The input data streams with self-similarity property are highly bursty streams,

which we believe resembles the situation in real-world applications. Each input stream

is a super imposition of 64 or 128 flows. Each flow alternates ON/OFF periods, and it

only sends tuples during its ON periods. The tuple inter-arrival time follows an expo-

nential distribution during its ON periods. The lengths of both the ON and the OFF

periods are generated from a Pareto distribution which has a probability mass function

P (x) = abax−(a+1), x ≥ b. We use a = 1.4 for the ON period and a = 1.2 for the OFF

period. For more detailed information about self-similar traffic, please refer to [85]. In

our experiments for validating query plans, we use 5 such self-similar input data streams

with different mean input rates.

Experimental operators and query plans: The operator used in validating

our operator models is a symmetric hash-join operator. All of our queries used for

validating query plan models are CQs consisting of select, project, and symmetric hash

join operators. To be more close to a real application, we run 16 actual CQs with 116

operators over 5 different data streams in our system. The selectivity of each operator is

widely distributed ranging from 0 to 1. Both the selectivity and the processing capacity

of each operator are determined by collecting statistical information periodically during

run time. This set of queries and their detailed properties are presented in Appendix A.

Tuple latency is measured by computing the difference between the arrival time

stamp and the departure time stamp from either a queue for validating operator models

or the DSMS system for validating query plan models. A large window size in our

experiments is used in order to accurately measure tuple latency of a tuple in a DSMS.

In OFS and most of current operating systems, the finest level of time unit is 10−3seconds
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Table 3.1 Delay & queue size (same window size)

Item Exp1 Exp2
Input Rate(#/sec) 100 100

Utilization 0.9551 0.8595
Mean Delay(Theory) 0.05080 0.01257

Mean Delay(Exp) 0.05867 0.01539
Mean QueueSize(Theory) 10.6380 2.6313

Mean QueueSize(Exp) 10.6385 2.9399

or higher. If the actual tuple latency is less than one 10−3seconds due to a small window

size (also means small service time), the underlying operating system provide us nothing

to measure the tuple latency and we will get a 0ms tuple latency. However, this limitation

does not affect our analysis and our validation of our analysis.

3.5.1 Experiments for validating operator models

We conduct our first set of experiments to verify the theoretical analysis of hash-

join operators presented in this chapter. In this set of experiments, the delay of a tuple,

shown in Tables and Figures, is equivalent to the delay of tuples in the queue. We have

conducted a wide range of experiments by varying the processing rates, window sizes,

and input rates.

Same window size for two streams: This set of experiments measures the mean

and CDF of the waiting time of a tuple in the queue under the same data stream input

rates, and the mean number of tuples in the queue. In this case, we used two stream

generators that send tuples to the system using the Poisson distribution with the same

mean value. The window sizes for two data streams are one million tuples (about 10000

seconds), and the processing rates for both data streams are 209.4 tuples per second.

The results presented here are obtained from the log file by deleting the first 2M records

because the first 2M records are logged during the transition phase.
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Figure 3.8 CDF Of Delay In Queue (Same Window Size).

Table 3.1 shows that the mean queue sizes from our experiments are very close

to the theoretical results obtained from the second part of the equation (3.8) in Section

§3.3.3.1. The mean delays are a little larger than the result calculated from equation

(3.23b) because of the overhead associated with the recording of the departure time, and

passing the reference to the hash join facility after dequeueing from the input queue.

Figure 3.8 shows that the CDF of tuple latency in the queue is very close to our analysis

results that were obtained from equation (3.24). The 3 digit numbers in the legend

represent the total input rates (number of tuples per second), and the graphs with a

3 digit number following a letter ’T’ represent the results of our theoretical analysis;

otherwise they represent our experimental results.

Different window size for two streams: The following sets of experiments

are done with different window sizes. We have 0.8 million tuples in hash table 1, and

0.4 million tuples in hash table 2. So the service time for a tuple that comes from the

right stream is twice of the service time for a tuple that comes from the left stream.

Specifically, the processing rates are 440 tuples and 220 tuples per second for left steam

and right stream respectively.
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Table 3.2 Delay & queue size (different window size)

Item Exp1 Exp2 Exp3
Input Rate1(#/sec) 200 180 150
Input Rate2(#/sec) 100 90 75

Utilization 0.9091 0.8182 0.6812
Mean Delay(Theory) 0.01549 0.06276 0.00249

Mean Delay(Exp) 0.01931 0.00781 0.00291
Mean QueueSize(Theory) 5.1130 2.0710 0.8217

Mean QueueSize(Exp) 5.3817 2.1054 0.8438
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Figure 3.9 CDF Of Delay In Queue (Different Window Size).

Table 3.2 shows that the mean queue size as well as the mean delay is decreasing

when the system utilization decreases. Also, the mean delay decreases when the ser-

vice decreases with the same utilization. This indicates that we can either increase the

processing ability of the system or decrease the input rates in order to achieve a better

tuple latency. In our experiments, the longest delay of a tuple in the input queue can be

more than 7 seconds if the utilization is very high and the service time is as low as 1/400

second. Another observation is that the delay of a tuple in the system primarily depends

on the waiting time in the input queue if the utilization is high, and it depends on the

service time of one tuple in the service facility under low utilization. Figure 3.9 shows

the CDF of delay of tuples in the input queue under different window sizes as well as
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different input rates. The results show that there is a small probability for a tuple to wait

in queue for as long as 10 times the mean waiting time. So it may not be difficult to meet

the tuple latency for most tuples, but it is hard to achieve a 99% or higher confidence

interval.

From our analysis and experimental results, we believe that to design a data stream

processing system - especially for those that have a response time requirement - accurate

estimation of the waiting time in the queue and service time is very important to deter-

mine the computational capability and the system capacity. The numbers of tuples in

the input queue and in the service facility are negligible in terms of the number of tuples

in the hash table, and the memory size mainly depends on the sliding time-window size.

3.5.2 Experiments for validating query plan models

In this set of experiments, we run an actual continuous query processing system,

which consists of 16 actual queries with 116 operators over 5 different data streams on a

dual-processor Alpha machine, where one processor is used exclusively for query process-

ing and another is used for collecting data. Each experiment is started with a 3 hours

transition phase8, following a parameter collection phase in which we collect the various

parameters for each operator such as processing rate, selectivity, setup time, weight ratio

and so on. After that, the experiment enters a normal query processing phase which lasts

about 5 to 8 hours. The results showed in this section are the mean values of various

performance metrics we measured under a gated-service discipline. The results under an

exhaustive-service discipline are slightly less than those under a gated-service discipline

in terms of overall tuple latency of the whole query processing system. However, it does

8During a transition phase, the number of tuples in the window increases until the window is full,

which causes the service time of a tuple increases; therefore, its processing rate is decreasing as the

increase in the number of tuples in its buffers.
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Figure 3.10 Target Query Plan.

Table 3.3 Parameters for Target Query Plan

Operator Processing Left Right Setup
name rate(#/s) selectivity selectivity time

O5 5894.1 0.308514 0.307712 7.4224E-4
O4 28461.9 0.36534 - 1.1502E-5
O3 5285.81 0.30703 0.300177 6.9477E-4
O2 21861 0.487534 - 1.9599E-5
O1 41684.7 0.24288 - 4.8044E-5

not give the system any choice to determine how many tuples it serves each round. In

most query processing system, we have to control the service time allocated to each query

or operator, therefore, a gated-based service discipline is employed in most of continuous

query processing system, and the results under an exhaustive-based service discipline

have a similar tendency as those under a gate-based service discipline presented in this

subsection. And all results reported in this section are collected from our target query

plan illustrated in Figure 3.10, through 16 CQs are active in the system. The results for

other query plans share a similar tendency as those from our target query plan. From

Little’s formula, the number of tuples in a queueing system has a linear relationship

with the mean tuple latency. Therefore, we only need to validate the tuple latency. The

related parameters about this query plan are listed in Table 3.3.
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Scheduling approach: Our first group of experimental results not only validates

our analytical results, but also compares the performance of two different scheduling

approaches in a multiple query processing system. The results presented in Table 3.4

are for a hierarchical scheduling strategy where we schedule all the queries in the system

in a round-robin manner, and a push-up strategy is employed to schedule the operators

of a chosen query plan. The results presented in Table 3.5 are for a global scheduling

strategy in which we schedule one operator from our target query plan, and then schedule

3 other query plans. Both Table 3.4 and Table 3.5 present the theoretical results for our

target query plan and the two sets of experimental results that we chosen from a set of

experiments under different scheduling strategies. One represents the best results that we

got, another represents the worst results. The theoretical results are derived by solving

116 linear equations that we get from Section §3.4.4.

The system loads in the experiments that presented in both tables are about 90%

of its maximal capacity. First, these results show that our experimental results are close

to our theoretical results because the difference is less than 0.00016
0.1527

= 0.1% in the best

case, and no more than 0.04093
0.19204

= 21.3% in the worst case under a hierarchical scheduling

strategy. The difference under a global scheduling strategy is less than 0.038356
0.285155

= 13.5%

in the worst case. The average difference for all our experiments is less than 9.5%.

When system load is less than 85% of its maximal capacity, the differences from these

experiments are much better and are less than 3%. Second, the overall tuple latency in

a hierarchical scheduling strategy is much less than that in a global scheduling strategy

though the service times of one cycle under both strategies are same(they process the

same number of tuples). The reason for that is the operators in our target query plan are

scheduled in an interleaved manner, which causes all operators in our target query plan

have a much larger post-input vacation time. However, the tuple latency for other query

plans should be the same because all the other query plans are scheduled in a hierarchical
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Table 3.4 Tuple Latency (seconds) Under Hierarchical Scheduling Strategy

OperatorName O1 O2 O3(10−3) O4 O5(10−3) Query Plan
Latency(s)

Theoretical 0.14690 0.147114 2.3277 0.146988 2.64285 0.15111

Experiment A 0.14868 0.149151 2.4561 0.14665 2.5963 0.15127
Difference 0.00178 0.002037 0.1284 -0.000338 0.1284 0.00016

Experiment B 0.18849 0.188792 3.18175 0.186408 3.2960 0.19204
Difference 0.0019 0.041678 0.85405 0.03942 0.65315 0.04093

Table 3.5 Tuple Latency (seconds) Under Global Scheduling Strategy

OperatorName O1 O2 O3 O4 O5 Query Plan
Latency(s)

Theoretical 0.147114 0.146114 0.079383 0.14690 0.075269 0.246832

Experiment A 0.152936 0.149876 0.083768 0.15308 0.076646 0.257601
Difference 0.005822 0.003762 0.004385 0.00618 0.001377 0.010769

Experiment B 0.169569 0.162786 0.092675 0.169223 0.084885 0.285188
Difference 0.022455 0.016672 0.013292 0.02233 0.009616 0.038356

scheduling strategy. Therefore, a hierarchical scheduling strategy is generally better than

any kind of global scheduling strategy in which operators are scheduled in an interleaved

manner.

System load: This group of experimental results shows how system load impacts

the overall performance of a query plan. The system load can be increased by either

increasing the number of queries in the system or increasing input rates of data streams.

In this set of experiments, we increase our system load by increasing mean input rates

of all data streams. The maximal capacity of the system is to process 485 tuples/per

second on average. The system load is considered as totalinputrates

maximalcapacity
. From Figure 3.11,

we can see that the tuple latency of our target query plan increases slowly when system

load is small. However, when system load reaches 95% of its maximal capacity, the tuple
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Figure 3.11 Tuple Latency vs System Load.

latency increases sharply as the increase in input rates of all data streams. As the system

load approaches to 1, the tuple latency increases to infinity.

Bursty input data: This set of experiments are conducted to show how bursty

input streams impact the system performance (tuple latency). The bursty input streams

we used are self-similar input streams.

In this set of experiments, we use 5 self-similar input data streams with different

mean input rates. The results in Figure 3.11 show that the difference between the tuple

latencies from our Poisson input streams and the tuple latencies for self-similar input

streams are very small when the system load (measured by input rates) is not too high

(less than 95% of its maximal capacity). The results showed here are mean values.

However, the maximal tuple latency and the variance of the tuple latency from self-

similar inputs are much higher than those from our Poisson input streams. Only when

the system load closes to its maximal capacity, the tuple latency that we get from our

Poisson model is optimistic for a highly bursty input such as a self-similar input.

3.6 Summary

In this chapter, we addressed the problem of prediction of QoS metrics of contin-

uous queries in a general DSMS. Those QoS metrics provide fundamental quantitative
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information and basis for a DSMS to manage, control, and deliver its QoS requirements.

For example, the predicted QoS metrics can be used to assist a DSMS to determine when

to activate or deactivate different QoS delivery mechanisms. Also the model and results

presented in this chapter are general and are useful for any DSMS. Although our model-

ing and analysis work are based on relational operators in a DSMS, our approach can be

extended to any user-defined operators as long as we can learn the processing capacity

and selectivity of those user-defined operators. We can always learn these parameters

through collecting run-time statistics.

By modeling individual operators on a dedicated server, we analyzed, in detail, the

mean number of tuples, the mean waiting time of tuples in the queue and the distribu-

tion of the number of tuples, the distribution of waiting time of tuples at that operator.

Furthermore, by modeling a general Select-Project-Join query over streaming data using

a queueing network, we analyzed both memory requirement and tuple latency in the

system under both gated- and exhaustive-service disciplines. We further discussed how

the scheduling strategy, system load, operator selectivity, and input rates impact the

performance of a general query processing system. The experiments based on our imple-

mentation of a query processing system clearly validate the accuracy and effectiveness of

our analysis.

As part of our QoS management framework, we are investigating how the estimation

techniques presented in this chapter can be combined with scheduling strategies and

approximation techniques to guarantee the predefined QoS requirements in the system.

In addition, we are extending our analysis to bursty input rates such as Long-Range

Dependence (LRD) process to see how bursty input impacts the performance of query

plans. Other problems that are currently under investigation include optimizing the

overall performance of multiple queries, and system capacity planning and provisioning.



CHAPTER 4

SCHEDULING STRATEGIES

In this chapter, we focus on run-time resource allocation (i.e., scheduling strategy)

problem for stream data processing, which determines the order in which operators or

operator paths are scheduled at each time slot in a multiple CQ processing system.

The long-running characteristic of CQs, in contrast to one-time ad-hoc queries in

DBMSs, makes resource allocation – especially scheduling – necessary in a multiple CQ

processing system over data streams. The infinite input-size characteristic of input data

streams further makes the resource allocation problem in DSMSs an on-line problem since

it has to make decisions before seeing all of its inputs. The irregular and bursty input

characteristics of data streams and the near real-time response requirements from stream-

based applications further require DSMSs to carefully allocate the limited resources in

the system. Improper resource allocation can cause DSMSs o fail in handling temporal

bursty inputs in data streams and in providing on-time responses. As we will show in

this chapter, improper resource allocation can cause delayed responses which are not

acceptable for some applications, and cause the required maximal memory in a DSMS

to exceed its physical available amount of memory, which can cause a system crash in

the worst case. However, these failures can be avoided with proper resource allocation

mechanisms. It is clear that the resource allocation mechanisms – one of which is judicial

scheduling – is necessary in DSMSs and it is critical for the successful application of a

DSMS.

The scheduling problem in a DSMS is as complicated as it is important. First, it

has significant impact on the performance metrics of the system, such as tuple latency,

98
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maximal memory requirement, and system throughput. We will define these performance

metrics in the next section. Second, although the resources such as memory size and

CPU speed are fixed, scheduling can be highly dynamic. Third, various predefined QoS

requirements for a query add additional constraints to an already complex problem.

Finally, the issue is a complicated one because the problem of finding the schedule that

only minimizes the memory required is NP-complete as shown in [21]. On the other hand,

a desirable scheduling strategy in a DSMS should be able to: 1) achieve the maximal

performance within the fixed amount of resources; 2) be aware of the unexpected overload

situations, and take corresponding actions in a timely manner; 3) guarantee user- or

application-specified QoS requirements for a query, if any; and 4) be implemented easily,

and run efficiently with a low overhead.

A single scheduling strategy may not be able to satisfy all of the above properties,

as there are trade-offs among these performance metrics and usages of the limited re-

sources. Several scheduling strategies have been proposed for minimizing the maximal

memory requirements in the literature. For stream applications, tuple latency is another

important measure that is used in QoS (Quality of Service) specifications. In this chapter,

we develop several scheduling strategies: 1) the path capacity (PC) strategy to achieve

the best overall tuple latency; 2) the segment strategy to achieve lower maximal memory

requirement than the PC strategy and better overall tuple latency than all operator-

based strategies, such as an operator-level Round Robin strategy, the Chain strategy

[21], and others; 3) the memory optimal segment (MOS) strategy, which achieves the

optimal memory requirement and improves upon the memory requirement of the Chain

strategy, which has a near-optimal memory requirement; 4) the simplified segment (SS)

strategy, which requires slightly more memory but much smaller tuple latency than the

segment strategy; 5) the threshold strategy, which is a hybrid of the PC strategy and

the MOS strategy. These suite of strategies provides sufficient choices to allow one to



100

choose a strategy that is appropriate for an application. They provide reasonable overall

performance although they do not meet all the desirable properties. The predefined QoS

requirements of a query have not been incorporated into these strategies, which is part

of our future work.

The rest of the chapter is organized as follows. Section 4.1 provides a detailed

discussion of our scheduling model, and a summary of notations used in this chapter

and remaining chapters. Section 4.2 introduces some preliminary scheduling strategies

and shows the impact of a scheduling strategy on performance (i.e., maximal memory

requirement, tuple latency, throughput, and so on) of a DSMS. In Section 4.3, we first

propose the PC strategy, and then compare the PC strategy with the Chain strategy. We

then discuss the segment strategy, its variants (the MOS strategy and the SS strategy),

and the threshold strategy. Section 4.4 provides discussion related to the introduced

strategies. Section 4.5 presents our quantitative experimental results, detailed analysis,

and comparison with theoretical results. We summarize our scheduling work in Section

4.6.

4.1 Scheduling Model, Assumptions, and Notations

In a DSMS, a CQ plan is decomposed into a set of operators (as in a traditional

DBMS) such as project, select, join, and other aggregate operators and a sequence of

those operators form operator paths or segments. Therefore, from a scheduling point of

view, a query processing system over data streams consists of a set of basic operators,

or operator segments, or operator paths. Detailed algorithms are introduced in Section

4.3.3 to partition an operator path (OP) into operator segments based on a set of given

criteria.
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Figure 4.1 Scheduling Model.

4.1.1 Scheduling Model

As mentioned earlier, a multiple query processing system consists of a set of

schedulable objects, which can be query plans, operator paths, operator segments, op-

erators, and others, a scheduling function, and a set of job executors (i.e., proces-

sors/processes/threads), as illustrated in Figure 4.1, from a scheduling point of view.

In order to minimize the overhead introduced by scheduling itself, we employ an

event-driven and preemptable scheduling model. In this scheduling model, we try to

minimize the frequency of calls to the scheduling function. Although the cost of calling

the scheduling function is small, frequent calls of the scheduling function can introduce

considerable overhead in a DSMS. This is because: 1) the total cost of frequent calls

to the scheduling function can be high; 2) the context switching cost can also be high

due to instruction cache miss [126]. For example, if an operator only processes one tuple

each time it is invoked, many instruction cache miss will occur, which results in high

context-switching overhead [126, 46].

A schedulable object is initially in the waiting queue and it is moved to the eligible

queue only when some events occur (i.e., the number of waiting tuples in the input queues

of an object in the waiting queue exceeds a predefined threshold value, an object in the

waiting queue has been waiting longer than a predefined threshold value, the eligible

queue is empty and one processor is idle, or others). The scheduling function schedules
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only the objects in the eligible queue and it is called to determine next executable job

when either of the following events occurs:

1. when a new eligible job is inserted into the eligible queue from the waiting queue.

In this case, the scheduling function selects one object to execute among all objects

in the eligible queue and the running objects such that the selected object has

the lowest property (i.e., priority, processing capacity, and others). If the selected

object is the current running one, no change is made; otherwise, the selected object

is scheduled and the running object is preempted. The preempted object is placed

back to the eligible queue and the scheduling function is not called to select an

object to execute only if the left unprocessed job in the input queue satisfies the

criteria of moving an object from the waiting queue to the eligible queue; otherwise,

it is placed back to the waiting queue. Notice that an object can be preempted only

when the current processing tuple is processed completely by the running object,

it cannot be preempted in the middle of processing a tuple.

2. when a processor finishes processing all inputs of its job and the eligible queue is

not empty; In this case, the finished object is placed back to the waiting queue

and the scheduling function is called to select one object to execute. If the eligible

queue is empty and no objects in the waiting queue satisfy the criteria of moving

an object from the waiting queue to the eligible queue, some objects in the waiting

queue (i.e., the objects with largest number of tuples waiting in the input queues,

the objects with oldest age in the waiting queue, or others) are moved to the eligible

queue directly without checking moving criteria.

Even in a multiple processor architecture, no more than one processor will call the

scheduling function to request the next executable object at the same instant. If more

than one processor calls the scheduling function simultaneously, we process them serially
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in an arbitrary order. This can be done through a lock mechanism on the scheduling

function.

Once an operator within the scheduled object is scheduled, the tuples waiting in its

input queues can be processed in a different order. There is a need for another scheduling

strategy to determine which tuple is processed first, we refer this scheduling strategy

within an operator as operator-inner-scheduling strategy. If the operator is computed

over a tuple-based window, the operator-inner-scheduling strategy does not affect the

amount of memory needed to maintain synopsis of an operator in order to compute

the operator correctly. However, if the operator is computed over a time-based window

or semantic window, the operator-inner-scheduling strategy does affect the amount of

memory needed for synopsis.

For a two or multiple-way join operator, a different order to process the input

queues can cause different memory requirement to maintain synopsis information. For

example, considering a join operator over a 5-minute sliding window over streams A and

B. Suppose there is a burst of tuples that arrive on stream B. Then the synopsis of B that

is needed to compute the join with A will be large, until A tuples that arrive 5 minuets

after the burst has passed the join operator. A scheduling that chooses to schedule the

join of A with B as early as possible will free up memory from B’s synopsis as early as

possible, whereas a strategy that choose to delay scheduling the join will result in the

large synopsis staying around for a longer period of time, which possibly cause a larger

maximal memory requirement.

In our model, we employ a First-In-First-Out (FIFO) scheduling strategy for operator-

inner-scheduling strategy1 since we would like to preserve the order of tuples during the

processing. For an object with one input stream, this is straightforward. For an object

1How different operator-inner- scheduling-strategy affect the maximal memory requirement and other

metrics is beyond the scope of this work.
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with two or more input streams, we maintain one input queue with different classes of

tuples and tuples from different input streams are placed in the input queue based on

their arrival time stamps. When the object is scheduled, the tuples in its input queue

are processed based on their orders in the queue and the time stamp of an output tuple

is the time stamp of the tuple from the input queue, not the tuple from synopsis.

Based on our FIFO operator-inner-scheduling strategy and the same assumption

in [21], we can assume that the runtime state or synopsis information stored by each

operator is fixed in size and, therefore, the variable portion of the maximal memory

requirement is derived from the sizes of the input queues to operators. We also assume

that the root node consumes its inputs immediately after they enter queues. Therefore,

there is no tuple waiting in the input queues of the root node, and the root node is simply

treated as a sink in this chapter.

4.1.2 Notations

To facilitate our analysis, we use the following notations.

• Maximal memory requirement: the maximal amount of memory consumed by the

tuples waiting in the input queues of all operators at any time instant in the system.

The memory requirement in this chapter means the maximal memory requirement

unless specified.

• Tuple latency: the length of time an output tuple stays in the CQ processing system

after it enters the system. The tuple latency for an output tuple that only involves

unary operators is straightforward. For a join operator or multiple-way operator, as

we mentioned earlier, such an operator is computed by getting a tuple from its input

queue and then computing the operator with the stored synopsis information. The

arrival time stamp of an output tuple from such an operator is derived as the arrival

time stamp of the tuple from the input queue. Since we maintain a virtual queue
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for a join operator or multiple-way join and employ a FIFO scheduling strategy

for the operator-inner-scheduling strategy, the time stamp of the tuple from the

queue is also the latest time stamp comparing with those in the stored synopsis.

The tuple latency is computed as the difference between the departure time stamp

of an output tuple and its arrival time stamp. Although different systems may

use different ways to compute the tuple latency, the scheduling strategies proposed

in this thesis do not depend on the way of computing tuple latency. The overall

tuple latency is the weighted average of the tuple latency of all output tuples in the

system. The tuple latency in this chapter means the overall tuple latency unless

specified otherwise.

• Throughput: the number of final tuples output from the query processing system

per time unit.

• Operator processing capacity CP
Oi

: the number of tuples that can be processed

within one time unit at operator Oi. Inversely, the operator service time is the

number of time units needed to process one tuple at this operator. A join operator

or k-way operator is considered as two or k semi-operators. Each of them has its

own processing capacity, selectivity, and memory release capacity.

• Operator selectivity σi: it is the same as in a DBMS except that the selectivity of

a join operator is considered as two semi- join selectivities.

• Operator memory release capacity CM
Oi

: the number of memory units such as bytes,

pages that can be released within one time unit by operator Oi.

CM
Oi

= CP
Oi

(InputTupleSize− Tiσi) (4.1)

where Ti is the size of the tuple output from operator Oi; the input tuple size from

each input stream of a join or k-way operator is considered as the input tuple size

of its corresponding semi- operator.
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• Operator path processing capacity CP
Pi

: the number of tuples that can be processed

within one time unit by the operator path Pi. Therefore, the operator path process-

ing capacity depends not only on the processing capacity of an individual operator,

but also on the selectivity of these operators and the number of operators in the

path.

For a simple operator path Pi with k operators, its processing capacity can be

derived from the processing capacities of the operators that are along its path, as

follows:

CP
Pi

=
1

1
CP

O1

+ σ1

CP
O2

+ σ1σ2

CP
O3

+ · · ·+
Qk−1

j=1 σj

CP
Ok

(4.2)

where Ol, 1 ≤ l ≤ k is the lth operator along Pi starting from the leaf node. The

denominator in (4.2) is the total service time for the path Pi to serve one tuple.

The general item (
∏h

j=1 σj)/C
P
Ok

is the service time at the (h + 1)th operator to

serve the output part of the tuple from the hth operator along the path, where

1 ≤ h ≤ k − 1.

For a complex operator path Pi with k operators along its shared segment and

with m branches with mk operators along its branches as illustrated in Figure 4.2,

its processing capacity can be derived from the processing capacity of the shared

segment and the processing capacities of its m branches. The processing capacity
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of the branch Bi with ik operators and its sharing segment can be computed from

(4.2) by considering each of them as a simple path as follows:

CB
i =

1

1
CP

O1

+ σ1

CP
O2

+ σ1σ2

CP
O3

+ · · ·+
Qik−1

j=1 σj

CP
Oik

(4.3)

Therefore, the processing capacity of the complex operator path Pi is derived as

follows:

CP
Pi

=
1

1
CSharingSegment +

(

∏k−1
j=1 σj

)

∗
∑i<=m

i=1
1

CB
i

(4.4)

In above equation, the 1
CSharingSegment part is the total processing time needed by

the sharing segment to process one input tuple and the part
(

∏k−1
j=1 σj

)

∗ 1
CB

i

is the

total processing time needed by branch Bi to process what the sharing segment

outputs by processing one input tuple.

Recursively, for a complex operator path with branches and branches having their

own sub-branches, we first compute the processing capacity of any sub-branch, and

then compute the processing capacity of each branch as (4.4) by considering each

branch as a complex operator path, and finally compute the processing capacity of

the complex operator path as (4.4).

• Path memory release capacity CM
Pi

: the number of memory units that can be re-

leased within one time unit by the path Pi. Again, in this chapter, we assume that

all the output tuples from a query are consumed immediately by its applications.

Therefore, no memory is required to buffer the final output results and the memory

release capacity is simply what the operator path consumes per time unit, which

is shown in (4.5).

CM
Pi

= CP
Pi
∗ InputTupleSize (4.5)

From equation (4.5), we know that the processing capacity and the memory release

capacity of an operator path differs with only a constant factor, which is the input tuple
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size. Therefore, we assume that the partial order between the processing capacities of

two paths is the same as the partial order between their memory release capacities. We

believe that this assumption is reasonable under a data stream processing environment.

For instance, a CQ processing system that is used to analyze Internet traffic has the same

tuple input size, where the tuples are the header of the Internet IP packets. Although

the sizes of all input tuples from some applications may not be exactly the same, their

differences are not large enough to change the relative partial orders of their operator

paths. Hereafter, we use the path capacity to refer to both the processing capacity and

the memory release capacity.

• Segment Processing Capacity CP
Si

: the number of tuples that can be processed

within one time unit by the operator segment Si. And the processing capacity of

a simple segment or a complex segment, illustrated in Figure 4.2, has the same

definition as that given in (4.2) or (4.4) respectively.

• Segment Memory Release Capacity CM
Si

: the number of memory units can be re-

leased within one time unit by the segment Si.

For a simple segment, its memory release capacity CM
Si

is defined as:

CM
Si

= CP
Si

(

InputTupleSize− So ∗
k
∏

i=1

σi

)

(4.6)

where So is the size of the output tuple from segment Si. For the last segment, the

size of the output tuple is zero because of the assumption that the output can be

consumed by its applications immediately.

For a complex operator segment Si with k operators along its shared segment and

with m branches with mk operators along its branches as illustrated in Figure 4.2,

its memory release capacity is derived as:

CM
Si

= CP
Si

(

InputTupleSize−

(

k
∏

i=1

σi

)

∗

j<=m
∑

j=1

(

Sj
o ∗

i<=jk
∏

i=j1

σi

))

(4.7)
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In the above equation (4.7), the item
(

∏k

i=1 σi

)

is the portion of one tuple output

by the shared segment with m operators in Figure 4.2 by processing one input tuple;

the item
(

Sj
o ∗
∏i<=jk

i=j1
σi

)

is the total output size outputted by the jth branch by

processing one tuple waiting at the beginning of the branch. Therefore, the product

of these two items is the total output size outputted by each branch by processing

one input tuple. Similarly, the memory release capacity of a complex segment with

branches and some branches have their sub-branches can be computed recursively.

4.2 Preliminary Scheduling Strategies

A DSMS has multiple input streams and if the input rate of each stream is trackable

(i.e., it is known as to how many tuples will be arriving in future time slots), we can

find an optimal scheduling strategy that can achieve the best performance with respect

to a metric2 by using the minimal resources. However, in most cases, the input of a

data stream is unpredictable, and highly bursty, which makes it hard, or even impossible

to find such a feasible, optimal scheduling strategy. In practice, heuristics-based or

near-optimal strategies are usually used. And these strategies have different impact on

the performance and the usages of the system resources. The Chain strategy [21] is a

near optimal scheduling strategy in terms of total internal queue size. In addition to

the memory requirement, tuple latency is another important metric for a stream query

processing system. Both are especially important for a DSMS where its applications have

to respond to an event in a near real-time manner. In the rest of this section, we use the

FIFO strategy described below and the Chain strategy to show how a strategy impacts

2We mean tuple latency, throughput, etc in this chapter.
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Figure 4.3 A Query Execution Plan.

Table 4.1 Operator Properties

Operator Id 1 2 3

Selectivity 0.2 0.2 0.8
Processing capacity 1 1 0.2

the internal queue size (memory requirement), the tuple latency, and the throughput of

a CQ processing system.

FIFO Strategy: Tuples are processed in the order of their arrival. Once a tuple is

scheduled, it is processed by the operators along its operator path until it is consumed

by an intermediate operator or output to the root node. Then the next oldest tuple is

scheduled.

Chain Strategy: At any time, consider all tuples that are currently in the system; of

these, schedule a single time unit for the tuple that lies on the segment with the steepest

slope in its lowest envelope simulation. If there are multiple such tuples, select the tuple

which has the earliest arrival time.

The slope of a segment in the Chain strategy is the ratio of the time it spends to

process one tuple to the memory size changed of that tuple. The tuple in the Chain

strategy refers to a batch of tuples, instead of an individual tuple. For further details,

refer to [21].
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Table 4.2 Performance (F:FIFO, C:Chain)

Input Queue Size Tuple Latency Throughput
Time 1 2 F C F C F C

1 1 0 1.0 1.0 - - 0 0
2 0 1 1.2 1.2 - - 0.0 0
3 1 1 3.0 2.4 2 - 0.16 0
4 0 0 2.2 1.6 - - 0 0
5 0 0 2.0 0.8 3 - 0.16 0
6 0 0 1.2 0.6 - 5 0 0.16
7 0 0 1.0 0.4 4 5 0.16 0.16
8 0 0 0.2 0.2 - 5 0 0.16
9 0 0 0 0 6 6 0.16 0.16
10 1 0 1.0 1.0 - - 0 0

Let us consider a simple query plan illustrated in Figure 4.3, which is a common

query plan that contains both select and join operators. The processing capacity and

selectivity of the operators are listed in Table 4.1. The input streams are assumed to be

highly bursty to accurately model stream query processing systems. Table 4.2 shows the

total internal queue size, tuple latency, and throughput of the query plan under both the

FIFO strategy and the Chain strategy for the given input patterns.

The results clearly show that the Chain strategy performs much better than the

FIFO strategy for the total internal queue size. However, it performs much worse than

the FIFO strategy in terms of tuple latency and produces a much bursty and irregular

throughput than the FIFO. Clearly, The FIFO strategy maintains its entire backlog of

unprocessed tuples at the beginning of each operator path. It does not take the inherent

properties of an operator into consideration such as selectivity, processing rate, which

causes the total internal queue size to be larger under the FIFO strategy than under the

Chain strategy. In contrast, as the Chain strategy pushes the tuples from the bottom,

it inherits the bursty property of the input streams. If the input streams are highly
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bursty in nature, the output of the CQ processing system under the Chain strategy

demonstrates highly bursty property too, but the bursty input property in its output is

partially determined by the selectivity of the operators and the system load. Therefore,

FIFO has a smoother throughput and a better tuple latency than the Chain strategy.

Considering an input stream with a bursty period of 1M tuples and its input rate

faster than the processing rate, how long do we have to wait to get the first result in a

CQ processing system which has the maximal ability to completely process3 10000 input

tuples per second? Under the Chain strategy, it is almost 100 seconds! Of course, the

total internal queue size is much less than 1M tuples, which is the difference between the

input rate and processing rate times the length of the bursty period without considering

the changes of tuple size in the system. Based on this observation, we develop the PC

strategy, which takes the tuple latency and the throughput as its primary priorities, the

total internal queue size as its secondary priority.

4.3 New Scheduling Strategies

In this section, we first present the PC strategy, and then provide a thorough

comparison with the Chain strategy. To overcome the non-optimal memory requirement

of the PC strategy and to preserve its minimization of tuple latency property, we further

propose the segment strategy and its variants – the MOS strategy and the SS strategy.

Finally, we discuss the threshold strategy, which is a hybrid of the PC strategy and the

MOS strategy.

4.3.1 Path Capacity Strategy

From 4.2, we observe that the FIFO strategy has two promising properties: rea-

sonable tuple latency and throughput. But it does not consider the characteristics of an

3We mean the computation from reading in the input tuples to output the final results.
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Figure 4.4 Bottom-up Scheduling Strategy.

operator path such as processing capacity and memory release capacity. Also as it sched-

ules one tuple each time, the scheduling overhead is considerably high. This motivates

us to develop the PC strategy which improves upon the high memory requirement of the

FIFO strategy, and has better tuple latency and smoother throughput than the FIFO

strategy.

Path Capacity Strategy: At any time instant, consider all the operator paths that

have input tuples waiting in their queues in the system, schedule a single time unit for

the operator path with largest processing capacity to serve until its input queue is empty

or there exists an operator path which has a non-null input queue and a larger processing

capacity than the currently scheduled one. If there are multiple such paths, select the one

with the largest processing capacity. If there are multiple paths with the largest processing

capacity, select one arbitrarily 4. The following bottom-up operator scheduling strategy is

used to schedule the operators of the chosen path.

Bottom-up operator scheduling strategy: Once an operator path is chosen, a bot-

tom up approach 5 is employed to schedule all the operators along the chosen path. For

4Due to the high cost to keep track of the oldest tuple in the queues, we do not schedule the operator

path with the oldest tuple in its input queue when there exists multiple operator paths with the largest

processing capacity.
5this thesis only discusses bottom-up scheduling strategies. Work on pipelined strategies is being

investigated.
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a simple operator path, the order of operators scheduled by this bottom up scheduling

strategy is straightforward. For a complex operator, illustrated in Figure 4.4, in a multi-

ple query processing system, the order of the operators along the sharing segment of the

complex OP is scheduled from bottom to up. For the operators along the branches of

the complex OP, those operators are categorized into layers based on their distances to

the topmost shared operator as illustrated in Figure 4.4. The operators on a lower layer

are scheduled earlier than those in a higher layer. For the operators in the same layer,

the operator with largest processing capacity is scheduled first and an arbitrary one is

scheduled if two operators have the same processing capacity.

Once an operator path (OP) is scheduled, it will finish processing all tuples in its

input queue or be preempted by another OP with larger capacity. The PC strategy is

a static priority scheduling strategy. The priority of an operator path is its processing

capacity, which is completely determined by the number of operators along its path, and

the selectivity and the processing capacity of each individual operator. The priority of

an operator path does not change over time until we revise the selectivity of operators.

Therefore, the scheduling cost is minimized and can be negligible. Most importantly, the

PC strategy has the following two optimal properties that are critical for a multiple CQ

processing system.

THEOREM 1. The path capacity strategy is an optimal one in terms of the total tuple

latency or the average tuple latency among all scheduling strategies.

Proof. First, operator path-based scheduling strategies, where an operator path is the

finest schedulable object (for example, operator path- based round robin strategy) have

a better tuple latency than those which do not use an operator path as a scheduling

unit. In [73], we showed that if the operators of two query plans or operator paths

are scheduled in an interleaved manner, the overall tuple latency becomes worse. The
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operators of two operator paths under the path-based strategy are never scheduled in an

interleaved manner, therefore, the PC strategy has a better tuple latency than any non-

path based scheduling strategy. Second, the PC strategy has a minimized tuple latency

among all path-based scheduling strategies. At any time instant, consider k operator

paths p1, p2, · · · , pk , which have Ni ≥ 1, i = 1, 2, 3, · · · , k tuples in their input queues in

the system, with their capacities C1, C2, · · · , Ck respectively. Without loss of generality,

we assume that C1 ≥ C2 ≥ · · · ≥ Ck. The PC strategy has a schedule of p1, p2, · · · , pk

, that is to serve the N1 tuples of operator path p1, following the N2 tuples of operator

path p2 , and so on. In the simplest case where Ni = 1, i = 1, 2, 3, · · · , k, the total tuple

latency T = k 1
C1

+ (k − 1) 1
C2

+ · · · + (k − g + 1) 1
Cg

+ · · · + (k − h + 1) 1
Ch

+ · · · + 1
Ck

,

where (k − i) 1
Ci

, i = 0, 1, · · · , k − 1 is the total waiting time of all the tuples in the

system due to processing the tuple at operator Oi. If we switch any two tuples (two

paths), say g, h, where g < h , in the PC strategy, then the total tuple latency T ′ =

k 1
C1

+ (k− 1) 1
C2

+ · · ·+ (k− g + 1) 1
Ch

+ · · ·+ (k− h + 1) 1
Cg

+ · · ·+ 1
Ck

. The difference of

two tuple latency∆ = T − T ′ = (h − g)
(

1
Cg
− 1

Ch

)

≤ 0 because of g < h and Cg ≥ Ch.

Similarly, for the general case, by switching any two tuples in two input queues of these

k operator paths, we still have ∆ ≤ 0. Therefore, any other scheduling strategy causes

at least the same total tuple latency or mean delay as the PC strategy causes.

THEOREM 2. Any other path-based scheduling strategy requires at least as much mem-

ory as that required by the PC strategy at any time instant in the system.

Proof. At any time instant, the PC strategy schedules the tuples waiting in the input

queue of the operator path which has the largest capacity among all the paths with non-

empty input queues in the system. Within one time unit, the path scheduled by the PC

strategy consumes the maximal number of tuples because it has the largest capacity. Any

other path based scheduling strategies (for example, path-based round robin) which do
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not schedule the tuples waiting in the input queue of the operator path with the largest

capacity at that time instant consume less number of tuples. Therefore, any other path

based scheduling strategy requires at least the same amount of memory required by the

PC strategy.

Theorem 1 clearly shows that the PC strategy is the optimal one in terms of

total tuple latency and it performs much better than the FIFO strategy and the Chain

strategy for tuple latency. Theorem 2 shows that the PC strategy performs better than

any other path-based strategy, but not as well as the Chain strategy in terms of the

memory requirement.

4.3.2 Analysis of Scheduling Strategies

Both the PC strategy and the Chain strategy have their optimal properties as well

as shortcomings. In this section, we will present a comprehensive comparison and show

how these two scheduling strategies impact the various performance metrics of a CQ

processing system. A quantitative experimental study for these two scheduling strategies

will be presented in section 4.5.

Tuple latency & throughput : The PC strategy can achieve the optimal tuple

latency as compared to any other scheduling strategy and it also has a much smoother

output rate than other strategies. The main reason for the large tuple latency in the

Chain strategy is that the leaf nodes usually have a much larger capacity than other

nodes of a query plan, which causes the Chain strategy gradually to push all the tuples

from the leaf nodes toward the root node, and a large number of tuples are buffered along

an operator path. This situation becomes even worse during a temporary overload period

in which the input rates temporarily exceed the processing capacity of the system. All the

computational resources are allocated to these operators at the bottom of a query plan
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during the bursty input periods6 and there is almost no throughput from the system. On

the other hand, the throughput is surprisingly high immediately after the highly bursty

period because there are not too many tuples waiting at leaf nodes, and most of the

computation resources is available for the operators in the upper part of the query plans

where a large number of partially processed tuples wait. As a result, the Chain strategy

not only has a bad tuple latency, but also a bursty output rate if the input streams

are bursty. The bursty output rates may negate part of its saved memory because the

consumed rates of applications cannot keep up with the bursty output rates, which causes

portion of the results to backlog in the query processing system for a while.

Memory requirement : Both strategies have an optimal property in terms of the

memory requirement. But the optimal property of the PC strategy is a relative one among

all path-based scheduling strategies, while the near optimal property of the Chain strategy

is a global optimal property. Under non-overload conditions, the amount of memory

required by these two strategies is similar, and there are not too many tuples buffered in

the queues. However, during bursty input periods, the Chain strategy performs better

than the PC strategy because the PC strategy buffers the unprocessed tuples at the

beginning of an operator path.

Starvation : Both strategies have the starvation problem in which some operators

or operator paths may never be served because both of them depend on a set of static pri-

orities. Under heavy load situations, the Chain strategy spends most of its computation

resources on the bottom- side operators of an operator path; as most of operators in the

upper side of an operator path (closer to the root) have lesser capacity, they are likely to

starve. On the other hand, as the PC strategy spends most of its computation resources

on the operator paths with a larger path processing capacity, the operator paths with

less capacity are likely to starve. One significant difference is that during heavy load

6Especially, the bursty period is relatively long if the input streams have self similar property.
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situations, the Chain strategy has very small or even no throughput at all , whereas the

PC strategy still has reasonable throughput. The starvation problem in the Chain has

been overcome in its improved version, called Chain-Flush strategy [21], with the cost

of introducing a possible larger maximal memory requirement and larger overhead. The

technique introduced in the Chain-Flush can be applied to the PC strategy as well as

other strategies with the starvation problem. In addition, we also proposed techniques

to overcome the starvation problem, which will be discussed in §4.4.

Scheduling overhead : Clearly, both strategies have very small scheduling over-

head because both are static priority strategies. But the scheduling overhead incurred by

the PC strategy is less than that incurred by the Chain strategy because the number of

operator paths in a system is less than the number of operators. In our query processing

model, the number of OPs is equal to the number of input data streams. Although the

cost of scheduling one operator or operator path is very small, the cost to process one

tuple is even smaller than that. Therefore, the number of tuples served by each schedule

has significant impact on the performance of a CQ processing system as we discussed

in Section §4.1.1. If a small number of tuples is processed when an operator is invoked,

(1) the ratio of the scheduling cost to the cost of processing actual tuples can be large,

which causes the system to spend considerable portion of resources on scheduling; (2) the

context switch cost can also be high due to many cache instructions miss as reported in

[126].

To overcome the overhead introduced by scheduling itself, a number of techniques

are proposed in the literature and can be applied to the scheduling strategies proposed

in this thesis. (1) Considering a tuple as a fixed memory unit such as page, rather than

an individual tuple as proposed in [21]; (2) An event-driven scheduling model as we

discussed in Section §4.1.1 is used, instead of making a scheduling decision at every time

unit. In addition, we are studying a non-preemptive scheduling model to further decrease
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the need for making a scheduling decision and to increase the number of tuples processed

once an operator is invoked. In this non-preempted scheduling model, an object is eligible

to be scheduled/invoked only when the number of tuples exceeds a predefined minimal

value, say its processing capacity. Once the object is scheduled/invoked, the object is

non-preempted until all jobs have been processed or the time units used have exceeded

a predefined maximal number of time units. In a practical system, we can either an

exhaustive service discipline [73] or a gated service discipline in order to further decrease

the overall scheduling overhead.

Context switching overhead : When each operator is implemented as a single

thread, the context switching cost incurred by a scheduling algorithm is considerably high.

The performance of the system will degrade dramatically as the number of operators

increases. It is beneficial to implement the entire query processing as a single thread or

as a few threads over a multiple-processor system to keep the switching overload low.

Indeed we have implemented the whole query processing system as a single thread, and

hence the cost of switching from one operator path to another is just a function call,

which is quite low in a modern processor architecture. As a batch of tuples, rather than

one tuple, is scheduled for each scheduling round, the cost of making a function call is

negligible as compared with the cost of processing a batch of tuples.

4.3.3 Segment strategy and its variants

Although the PC strategy has optimal memory requirement among all path- based

scheduling strategies, it still buffers all unprocessed tuples at the beginning of an operator

path. In a CQ processing system with a shortage of main memory, a trade-off exists

between the tuple latency and the total internal queue size. Therefore, we develop

the segment strategy which has a much smaller total internal queue size requirement

as compared to the PC strategy, and a smaller tuple latency than the Chain strategy.
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Furthermore, we introduce two variants of the segment strategy: the MOS strategy, which

achieves the strict minimization of maximal memory requirement theoretically comparing

with the near-optimal memory requirement property of the Chain strategy, and the SS

strategy (a special case of the segment strategy) which further improves tuple latency

with a slightly larger memory requirement than the segment strategy.

The segment strategy and its variants employ an idea that allows us to improve

upon the PC strategy in terms of maximal memory requirement. Operator scheduling

and path scheduling can be seen as two extremes of the spectrum, whereas segment

strategies cover the points in between. Instead of buffering the unprocessed tuples at

the beginning of an operator path, we partition an operator path into a few segments,

so that some partially processed tuples can be buffered at the beginning of a segment.

This allows the system to take advantage of the lower selectivity and fast service rate

of bottom side operators of a query execution plan. The processing capacity and the

memory release capacity for a segment are defined in Section §4.1.2.

The segment strategy employs the same scheduling model as the PC strategy. It

schedules an operator segment, rather than an operator path like the PC strategy.

Segment Scheduling Strategy: At any time instant, consider all the operator seg-

ments that have input tuples waiting in their input queues. Schedule a single time unit

for the operator segment which has the maximal memory release capacity to serve until

its input queue is empty or there exists another operator segment which has a non-null

input queue and a larger memory release capacity than the currently scheduled one. If

there are multiple such segments, select the one with the largest memory release capacity.

If there are multiple segments with the largest memory release capacity, select one arbi-

trarily. The bottom-up operator scheduling strategy (described earlier) is used to schedule

the operators of the chose segment.



121

The key component of the segment strategy and its variants is the algorithm to

partition an operator path into segments. We proposed three algorithms to partition an

OP into segments. Those algorithms work for both simple operator paths and complex

operator paths. We focus on discussing the details of our segment construction algorithms

when we present our segment strategy and its variants in the following subsections.

4.3.3.1 Segment Strategy

The segment strategy, also termed greedy segment strategy, is a static priority

driven strategy and it employs the following greedy segment construction algorithm to

partition an OP into segments.

The construction algorithm shown in Algorithm 1 consists of two main steps. First,

it partitions an operator path into a few segments in the first 14 lines of the algorithm.

Second, it prunes the global segment link list, which is initially empty, due to the join

or multiple-way operators and the sharing of two or more query plans and then adds the

new segments into the list.

For each operator path in the system, we repeat the following procedure: Con-

sider an operator path with m operators O1, O2, · · · , Om from leaf to root. Starting

from O1, a segment of the operator path is defined as a set of consecutive operators

{Ok, Ok+1, · · · , Ok+i} where k ≥ 1, such that ∀j, k ≤ j < k + i, CM
Oj
≤ CM

Oj+1
. Once such

a segment is constructed, we start the construction procedure again from Ok+i+1 until all

the operators along the operator path have been processed. In the pruning procedure,

a new segment is added to the segment link list only if: i) any of its subset has already

been in the list, then we remove all its subsets from the segment list and then add the

new segment into the list; ii) none of its supersets has been in the list, then we add it to

the list; otherwise, the new segment is discarded.
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Algorithm 1: Greedy Segment Construction Algorithm

INPUT: the operator path p, the global operator segment link GSL
OUTPUT: the updated global operator segment link

/*p consists of a list of operator references along the path from left to root */
tempListS ← NULL;1

seg ← NULL;2

while p 6= NULL do3

if seg == NULL then append p−>operator to seg else4

if the processing capacity of p−>operator is no less than that of the last5

operator of the segment seg then append p−>operator to seg;
else6

add seg to tempListS;7

seg ← NULL;8

append p−>operator to seg9

end10

end11

p← p−>next12

end13

if seg 6= NULL then add seg to tempListS;14

/*the pruning procedure; */
foreach segment s in tempListS do15

needAdd ← TRUE;16

foreach segment s0 in global segment list GSL do17

if s is a subset of s0 or s == s0 then18

/*no need to add s to the global segment list; continue to process next
segment in tempList */

needAdd ← FALSE;19

break;20

else21

if s is a superset of s0 then delete s0 from GSL;22

end23

end24

if (needAdd == TRUE) then add segment s to GSL25

end26
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For a simple operator path, the above greedy segment construction is straightfor-

ward. However, for a complex operator path with branches, as shown in Figure 4.2,

the algorithm can not be applied directly due to the branches of the operator path. In

the bottom-up operator scheduling strategy, proposed as an internal scheduling strategy

within the PC strategy, the operators in the shared segment of a complex operator path

is scheduled from bottom to up. The operators along the branches are scheduled from

a low layer to a high layer and for the operators in the same layer, those with larger

processing capacity are scheduled first. Based on their execution order, we transform a

complex operator path into a simple operator path, then apply the above algorithm to

partition a complex operator path into segments.

The order in which we partition an operator path does not matter because the

final segment list is the same for a given query plan, and the order of a segment in the

segment list does not affect its priority. We only need to execute the above algorithm

once in order to construct the segment list. Later on, when a new query plan is registered

into the system, we need to execute the algorithm for the operator paths of the newly

registered query plan. When a query plan is unregistered from the system, we have to

delete all the segments belonging to that query plan. In a multiple query processing

system, as one segment may be shared by two or more query plans, we have to add a

count field to each operator of a segment to indicate how many query plans are using it.

Once a segment is deleted from the system, we decrease the value in the count field by

one for each operator that belongs to the segment. When the count value of an operator

reaches zero, it is deleted from the segment.

Since CQ plans in a stream processing system are long-running queries, the number

of queries that will be registered with a system or unregistered from a system is not

likely to be too large (typically no more than a few per hour). Therefore, the cost of the

algorithm has very little impact on system performance.
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The segment strategy shares the same operator segment concept used by the Chain

strategy [21] and the Train strategy [33] in Aurora. However, it is unclear how a segment

(superbox) is constructed in [33]. On the other hand, the segment strategy is different

from the Chain strategy in that: i) the segments used in these two strategies are different.

The segments used in the Chain strategy have steepest slope in its lower envelope, while

the segments used in the segment strategy consist of a consecutive operators that have

an increasing memory release capacity. Therefore, the Chain strategy can achieve the

near optimal internal queue size requirement, while the segment strategy has a slightly

larger internal queue size requirement, but it achieves better tuple latency, ii) it clusters

a set of operators as a scheduling unit, and hence there are no partially processed tuples

buffered in the middle of an operator segment at the end of each time unit as in the

Chain strategy, and iii) it has a smaller scheduling overhead than the Chain strategy.

The Chain strategy is an operator-based strategy where all the operators along a segment

have the same priority, while the segment strategy is a segment- based strategy. In a

general query processing system, as the number of segments is less than the number of

operators, the scheduling overhead is lower for the segment strategy.

4.3.3.2 The MOS Segment Strategy

In order to achieve the optimal memory requirement, we propose the MOS strat-

egy, which achieves the optimal memory requirement by employing the memory-optimal

segment construction algorithms illustrated in Algorithm 2 for a simple operator path

and Algorithm 3 for a complex operator path.

For a simple operator path, the Algorithm 2 works perfectly. It partitions a simple

OP into segments through finding the segment with the largest memory release capacity

among all possible segments that begin with the leaf operator of an OP or the remaining

of an OP.
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Algorithm 2: Memory-Optimal Segment Construction Algorithm For A Simple
Operator Path

INPUT: the simple operator path p, the global operator segment link GSL
OUTPUT: the updated global operator segment link

tempListS ← NULL;1

seg ← NULL;2

startOpOfSeg ← p−>operator;3

endOpOfSeg← NULL;4

while startOpOfSeg 6= NULL do5

potentialEndOp← startOpOfSeg;6

maxCapacity ← 0;7

while potentialEndOp 6= NULL do8

form the segment seg by all operators from startOpOfSeg to9

potentialEndOp;
tempCapacity ← compute the processing capacity of the segment seg;10

if maxCapacity ≤ tempCapacity then11

maxCapacity ← tempCapacity ;12

endOpOfSeg← potentialEndOp;13

end14

potentialEndOp← potentialEndOp−>next;15

end16

form the segment seg by all operators from startOpOfSeg to17

endOpOfSeg;
add seg to tempListS;18

startOpOfSeg← endOpOfSeg−>next;19

end20

/*the pruning procedure is the same as in the Algorithm 1; */

For a complex operator path, the approach used in the greedy segment construction

algorithm can not achieve the optimal memory requirement. Instead, we introduced the

Algorithm 3 to partition a complex operator path into segments. There are three main

steps in this algorithm: (1) transform a complex operator path into a list of possible

simple operator paths; (2) apply Algorithm 2 to each simple operator path constructed in

the first step and then select the segment with the largest processing capacity; (3) for the

remaining part of the complex operator path (excluding those in the segment constructed

in second step), recursively apply the step 1 and 2 until there is no operator left.
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The first step is to transform a complex operator path to a list of possible simple

paths (Line 3 in Algorithm 3). The main idea behind this step is to enumerate all

possible execution orders, but preserving their orders along the path, of the operators

along a complex operator path. The operator A that takes the direct or indirect outputs

of another operator B can not be scheduled before B is scheduled. For example, the

operators along the shared segment must scheduled according to their order along the

segment, and the operators along a branch must scheduled according to their order along

the branch too, but not necessarily in a consecutively order, the operators from other

branches can be scheduled between two operators. For example, for the complex operator

illustrated in Figure 4.5-a, we list some possible execution orders in Figure 4.5- b. The

second step is to find the segment with the largest processing capacity among all segments

from all possible simple operator path constructed in first step (from Line 4 to Line 26

in Algorithm 3). Notes: Only the first segment ( Line 7 to Line 21 in Algorithm 3) is

constructed from a simple path because the second one has less processing capacity than

the first one; If it is not, we can reconstruct the first segment by combining the first and

the second segment into a new segment which must have a bigger processing capacity

than the first one. The third step is to repeat the step 2 for the remaining part of the

simple operator path that is used in step 2.

The difference between the MOS segment construction algorithms and the Greedy

segment construction algorithm lies in the way segments are constructed. The segments

constructed by the Algorithm 1 consist of consecutive operators as long as the processing

capacity of an operator in the segment is no larger than that of its next operator. On the

other hand, the segments constructed by the Algorithm 2 consist of a list of consecutive

operators as long as the processing capacity of the segment formed by the list of operators

is no less than that of any segment formed by the first operator in the list to each upstream

operator along the operator path, instead of operator segment. An example is shown in
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Algorithm 3: MOS Construction Algorithm For A Complex Operator Path
INPUT: the complex operator path p, the global operator segment link GSL
OUTPUT : the updated global operator segment link GSL

TempList← NULL;1

while p 6= NULL do2

/*STEP ONE: emulatePossibleSimpleOperatorPaths(p) list all possible
execution orders of the operators along the complex operator path p and those
execution orders do not violate their order along the path. */

EmulationListE ← EmulatePossibleSimpleOperatorPaths(p);3

/*STEP TWO: find the segment with the largest processing capacity among all
segments from any simple path in EmulationListE . */

OptimalSegS ← NULL;4

SimplePath← NULL;5

foreach SP in EmulationListE do6

/*find the segment with the largest processing capacity among all segments
starting from the first operator of the simple path SP. */

seg ← NULL;7

startOpOfSeg← SP−>operator;8

endOpOfSeg ← NULL;9

potentialEndOp← startOpOfSeg;10

maxCapacity ← 0;11

while potentialEndOp 6= NULL do12

form the segment seg by all operators from startOpOfSeg to13

potentialEndOp;
tempCapacity ← compute the processing capacity of the segment seg;14

if maxCapacity ≤ tempCapacity then15

maxCapacity ← tempCapacity ;16

endOpOfSeg ← potentialEndOp;17

end18

potentialEndOp← potentialEndOp−>next;19

end20

form the segment seg by all operators from startOpOfSeg to endOpOfSeg;21

/*Select the segment with the largest processing capacity and the simple
path to which it belongs; */

if (OptimalSeg == NULL) OR (OptimalSeg−>processingCapacity <22

seg−>processingCapacity) then

optimalSeg = seg;23

SimplePath = SP;24

end25

end26

/*STEP THREE: remove all operators on the seg from the SimplePath and
repeat STEP ONE and STEP TWO; */

TempList← {TempList + optimalSeg};27

p ← {SimplePath - seg};28

end29

/*STEP FOUR: add all segments in TempList to global list GSL by starting the
pruning procedure in the Algorithm 1; */
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Figure 4.5 a) A Complex OP; b) Some Execution Orders of The Complex OP.
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Figure 4.6 Example of Segmentation.

Figure 4.6 in which the Algorithm 1 partitions the path into 2 segments, which are ABC

and DE, while the Algorithm 2 partitions the path into 1 segment, which is ABCDE.

In our segment strategy, the memory requirement (internal queue size) of the query

processing is minimized by using the segments constructed by Algorithm 2 and 3. The

segment strategy that employs the MOS construction algorithms are termed as MOS

strategy. The MOS strategy has a number of advantages over the Chain strategy although

both use the similar algorithm to construct the segments in the system (Notes: the

progress chart construction in the Chain strategy is only for simple operator paths. We

extend it to the complex operator paths in this thesis). First, it works under both single

query (no sharing computation) and multiple query (with sharing) processing systems.

Second, it achieves the strictly optimal memory requirement theoretically, instead of the
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near optimal memory requirement as in the Chain strategy. Third, it achieves better

tuple latency and smoother throughput than the Chain strategy. Finally, it has lower

overhead than the Chain strategy.

THEOREM 3. The MOS strategy minimizes the memory requirement of a CQ process-

ing system with multiple queries. It achieves the optimal memory requirement.

Proof. We assume that there exists an optimal algorithm ALGopt, which always schedules

the object that could be an operator, an operator segment, an operator path or a bigger

schedulable object (i.e., a query plan) to minimize the memory requirement in the system

at any time point. Considering each of these three cases: an operator, an operator

segment, an operator path or bigger object, we prove the memory required by the MOS

strategy is no more than that required by the ALGopt.
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Case one (operator): at the time slot ti, the ALGopt schedules an operator for

one time unit and achieves the minimal memory requirement so far. Without loss its

generality, we can assume that the operator is the Oi along a k-operator segment Sk,

which consists of < O1, O2, · · · , Oi, Oi+1, · · · , Ok >. There are two subcases: one is

shown in Figure 4.7-a where the memory release capacity of the operator Oi is no larger

than that of the segment Sk; another is shown in Figure 4.7-b where the memory release
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capacity of the operator Oi larger than that of the segment Sk. For either case, the inputs

of the operator Oi are the outputs of the operator Oi−1. Therefore, the ALGopt must have

scheduled the operators from O1 to Oi−1 along that segment at least once so far in order to

be able to schedule the operator Oi. At each time, when the ALGopt schedules one of these

operator, we have an algorithm ALGseg to schedule the segment Sj once. The segment

Sj consists of the operators < O1, O2, · · · , Oj > along the segment Sk and its the memory

release capacity is no less than that of the segment consisting of < O1, O2, · · · , Oi >. In

the worst case, we have a segment consisting of < O1, O2, · · · , Oi >. The total amount

of memory released by ALGopt is AB shown in Figure 4.7. The amount of memory

released by ALGseg is AC shown in Figure 4.7. It clearly shows that the amount of

memory released by ALGseg is no less than that released by ALGopt. According to the

definition of MOS strategy, we know that MOS always schedules the segment with the

largest memory release capacity. Therefore, the amount of memory released at each time

unit by MOS strategy is no less than that released by ALGseg. In general, the amount

of memory released by the MOS strategy is no less than that released by ALGopt if it

schedules an operator at any time slot in the system. In other words, the MOS strategy

requires no larger amount of memory than the ALGopt.

Case two (segment): at any time slot, if the ALGopt schedules the operator segment

Sopt for one time unit and achieves the minimal memory requirement in the system, the

amount of memory required by Sopt within one time unit is its memory release capacity

CM
Sopt

. Since the segment scheduled by MOS strategy has the largest memory release

capacity in the system and has a memory release capacity no less than CM
Sopt

. We can

conclude that the MOS strategy requires no more than the amount of memory needed

by the ALGopt for this case.

Case three (operator path): at the time slot ti, the ALGopt schedules an operator

path or a bigger object (i.e., query pan) for one time unit and achieves the minimal
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memory requirement in the system. Since the memory release capacity of an object (i.e.,

a query plan) that is larger than an operator path is no larger than the largest memory

release capacity of all operator paths encompassed in the object, if the ALGopt can achieve

the minimal memory requirement by scheduling an object bigger than operator path for

one time unit, we can always construct an algorithm ALGpath to schedule the operator

path that has the largest memory release capacity among all operator paths encompassed

in the object for one time unit. The amount of memory required by ALGpath is no less

than that released by ALGopt. Similarly, the memory release capacity of an operator path

is no larger than the largest memory release capacity of all segments encompasses that

operator path. If ALGpath can achieve the minimal memory requirement by scheduling

an operator path one time unit in the system, we could construct an algorithm ALG ¯seg

to schedule the segment with the largest memory release capacity among all segments

encompasses in that operator path. The memory required by ALG ¯seg is no more than

that required by ALGpath. Since the MOS strategy schedules the segment with the

largest memory release capacity the system, the memory release capacity of the segment

scheduled by the MOS strategy is no less than that of the segment scheduled by ALG ¯seg.

Therefore, the memory required by the MOS strategy is no more than that required by

ALGopt for this case.

In conclusion, the MOS strategy requires no more memory required by the ALGopt

for any of the cases. It is an optimal strategy in terms of memory requirement.

The advantages of the MOS strategy as compared to the Chain strategy are due

to the following facts:

• The segment construction algorithms used in MOS strategy work for query process-

ing systems with simple operator paths, but they also work in multiple query pro-

cessing systems with computation sharing (i.e., sharing sub-common expressions)
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where one input tuple can output multiple tuples from different paths. However,

the progress chart in the Chain strategy only works for query plans without any

computation sharing (i.e, only for simple paths). Our segment construction algo-

rithm for a complex operator path can also be applied to extend the progress chart

in the Chain strategy to work in a multiple query processing system. The proof

of minimization of memory requirement in [21] is only for the query plans without

join or multiple-way operators and without computation sharing through sharing

sub-common expression. In this chapter, we proved that the MOS strategy mini-

mizes the memory requirement for a multiple CQ processing system with general

query plans.

• There is one tuple buffered in the middle of the segment for the Chain strategy and

no tuple buffered in the middle of a segment for the MOS strategy. That is the

reason for the Chain to be near optimal strategy in terms of memory requirement

and the MOS strategy to be an optimal one. Although both of them partition an

operator path into a set of segments, the Chain assigns the same priority to all the

operators in that segment and then it schedules operators based on priority. For the

operators with the same priority, it schedules the operator with the oldest tuples,

which also cause higher overhead due to keep tracking of the oldest tuple. The

MOS strategy, on the other hand, schedules the whole segment as one object and

for segments with the same priority, the MOS strategy schedules one arbitrarily. At

any time instant, the Chain schedules the operator with the highest priority for one

time unit (or one tuple) while the MOS strategy schedules the operator segment

on which the operator scheduled by the Chain lies, one time unit (or one tuple).

• The MOS strategy preserves the order of the operators with the same priority by

placing them along a segment. Therefore, no other operators can be scheduled in

an interleaved manner with those operators along one segment. The Chain strategy
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may schedule the operators of these segments in an interleaved manner if two or

more segments in the system have the same priority (memory release capacity) and

the tuples with these segments have the same age. This, in turn, would cause longer

overall tuple latency. For example, given two segments ABCD and EFGH, the

Chain strategy may schedule those operators in the order AEBFCGDH (one of the

interleavings), while MOS strategy schedules operators in order of segment ABCD

and segment EFGH or vice versa. In either case, the MOS strategy achieves

a better tuple latency than the Chain strategy and the same or better memory

requirement.

• As we discussed earlier, the PC strategy has a smoother throughput than the Chain

strategy. For the same reasons, the MOS strategy has a smoother throughput than

the Chain strategy, but is a little bit more bursty in throughput than the PC

strategy.

• The MOS strategy has a lower overhead than the Chain strategy. This is because

i) the number of segments in the system is less than the number of operators; ii) for

the operators with the same priority, the Chain strategy needs to keep track of the

ages of the tuples. Due to the highly dynamic input characteristics of data streams

and the frequent calls to the scheduling function, the overhead can be high even

though the number of operators with the same priority is small. The MOS strategy

schedules the segments with the same priority arbitrarily, it does not have this

overhead.

4.3.3.3 Simplified Segment Strategy

The (greedy) segment strategy and the MOS strategy decrease the memory require-

ment as compared to the PC strategy, but they still cause longer tuple latency than the

PC strategy because they separate one operator path into multiple segments. Chapter
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3 shows that the overall tuple latency of the tuples from an operator path increases sig-

nificantly if other operators are scheduled in an interleaved manner with the operators

along the operator path. In order to decrease the interleaving of the operators of two

segments, we propose the SS strategy by partitioning an OP into at most two segments.

The SS strategy differs from the segment strategy and the MOS strategy in that

it employs a simplified MOS segment construction algorithm. In a practical multiple

CQ processing system, we observe that: i) the number of segments constructed by the

segment construction algorithm is not significantly less than the number of operators

presented in the query processing system and ii) the leaf nodes are the operators that have

faster processing capacities and less selectivity in the system; all the other operators in a

query plan have a much slower processing rate than the leaf nodes. Based on these facts,

we partition an operator path into at most two segments, rather than a few segments.

The first segment includes the leaf node and its consecutive operators that come from

the operator path by using the MOS construction algorithm (Alg. 2). The remaining

operators along that operator path, if any, forms the second segment.

Although the memory requirement of the SS strategy is only slightly larger than

the segment strategy because the first segment of an operator path releases the maximum

amount of memory that can be released by the operator path, it has the following advan-

tages: i) the tuple latency significantly decreases because the number of times a tuple is

buffered along an operator path is at most two, ii) the scheduling overhead significantly

decreases as well due to the decrease in the number of segments, and finally iii) it is less

sensitive to the selectivity and service time of an operator because there exist at most

two segments for an operator path, which makes it more useful.
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4.3.4 Threshold Strategy

The threshold strategy is a dynamic strategy and is a hybrid of the PC strategy and

the MOS strategy. The principle behind it is that the PC strategy is used to minimize the

tuple latency when the memory is not a bottleneck; otherwise, the MOS strategy is used

to decrease the total memory requirement. Therefore, this one combines the properties

of these two strategies, which makes it more appropriate for a DSMS.

Threshold Strategy: Given a CQ processing system with a maximal available queue

memory7M, the maximal threshold Tmax and the minimal threshold Tmin, where Tmin <

Tmax <M, at any time instant, when the current total queue memory consumed Mc ≥

Tmax, the system enters its memory saving mode in which the MOS strategy is employed.

The system transits from the saving mode to the normal mode in which the PC strategy

is employed when Mc ≤ Tmin.

The values of the maximal threshold Tmax and the minimal threshold Tmin mainly

depend on the load of the system and the length of the bursty periods; and they can

be obtained heuristically or experimentally. Given that the mean total queue memory

consumed by a CQ processing system is M̄ memory units, we define the values of these

threshold parameters in our system as











Tmax = min
(

1+α
2
M, βM

)

; α = M̄

M

Tmin = min
(

M̄, βTmax

)

; 0.5 < β < 1

(4.8)

In (4.8), β is a safety factor that guarantees a minimal memory buffer zone between the

normal mode and the saving mode, which prevents a system from frequently oscillating

between the memory saving mode and the normal mode. A smaller value of β causes a

longer tuple latency. Therefore, its value need to be in the range of 0.5 to 1.0. α is used

7The queue memory here refers to the memory available for input queues, not including the memory

consumed for maintaining the status information of an operator.
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to adjust the threshold values as the system load changes. The mean total queue size

increases as the system load increases, which causes α increases. When α approaches 1,

the 1+α
2
M factor approaches the maximal available queue memory M. That is why we

need βM to guarantee that there is a minimal buffer between the Tmax andM. We use

β = 0.9 in our system. Our experiments show these parameters work well in general.

In a practical system, we have to monitor the current queue memory in order to

determine when to switch the mode. But the cost to this is small because: 1) each

queue in our system maintains its current queue size and the tuple size, and the current

queue memory is the sum of the queue memory occupied by each queue; 2) instead of

computing the current queue memory by the end of each time, we compute it by the end

of each time interval. The length of time interval is dynamically determined based on

current queue memory. If the current total queue memory size is far away from the total

available memory size, a long time interval is used. Otherwise, a shorter interval is used.

Therefore, the overall overhead incurred by the threshold strategy has very little impact

on the system performance. As the mean load of the system increases, the period for

which the system stays under the saving mode increases and the overall tuple latency

becomes worse. When there is no more memory available for the internal queues under

the saving mode, the load shedding techniques have to be used to relieve the system from

suffering from a shortage of memory.

4.4 Discussion

In this section, we briefly discuss how different execution plans of a CQ impact the

performance of a system under the proposed scheduling strategies, and then discuss how

to avoid the starvation problem while using these scheduling strategies.



137

4.4.1 Continuous Query Execution Plan

A logical CQ can be implemented as different physical query execution plans. Based

on our analysis of the scheduling strategies, we find that the following points are helpful

for choosing the right physical execution plan in order to improve the system performance.

Push the select and the project operators down: Both the PC strategy

and the segment strategy can benefit from the lower selectivity of a leaf operator and

from the earlier project operator. From (4.2), we know that: i) the lower selectivity of

a leaf operator dramatically increases the processing capacity and the memory release

capacity of an operator path or segment; ii) the down-side project operators can decrease

the output size of the tuples earlier and the released memory can be quickly reused.

Therefore, both tuple latency and memory requirements of an operator path or segment

can be optimized by pushing the selection and the project as far down as possible in a

physical query plan.

Make the operator path short: The processing capacity of an operator path or

segment depends not only on the selectivity of the individual operator, but also on the

number of the operators. It may not increase the processing capacity of an operator path

or segment to make the operator path short because the service time of an individual

operator may increase. For instance, by incorporating a project operator into a select

operator, we can shorten the operator path, but this does not increase the processing rate

of the path. However, the number of times an output tuple is buffered decreases, which

can decrease the tuple latency and the scheduling overhead of a scheduling strategy as

well. In addition, fewer number of operators in a path makes it much easier to control

or estimate the tuple latency.
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4.4.2 Starvation Free Scheduling Strategy

All the scheduling strategies discussed so far are priority driven strategies. Under

an overloaded system some paths/segments may have to wait for a long period to be

scheduled or even not scheduled at all theoretically. To overcome the starvation problem,

we discuses two simple solutions here, and we are still investigating other solutions for

this problem.

The solutions we present here are applicable to all strategies discussed in this chap-

ter. Furthermore, an operator path and an operator segment are used interchangeably

in this subsection.

Periodically schedule the path with the oldest tuple in its input queue:

A straight-forward solution to the starvation problem is to periodically schedule the path

with the oldest tuple in its input queues in our proposed strategies. The length of the

period to schedule the oldest operator path depends on the load of a system and the QoS

requirement of its applications.

Dynamic Priority: Another solution is to change the priority of the strategies

periodically. The total waiting queue size and the age of the oldest tuple of an operator

path characterize its activities, such as the mean input rate, schedule frequency, and so

on. In order to avoid the starvation problem, we consider the total waiting queue size

and age of the oldest tuple as two additional factors of the priority of an operator path.

And we define the priority factor fi of the operator path i as:

fi = τiQi

where τi is the normalized waiting time of the oldest tuple in the input queue of the path

i; Qi is the normalized total current queue size of that operator path. Therefore, the

new capacity of an operator path ĈP
i = CP

i fi. Evidently, as the age increases, the queue

size increases as well, which makes the priority factor fi increase exponentially. During a
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highly bursty input period, its priority factor increases too. Eventually, the oldest path

will be scheduled.

Although the above solutions can solve the starvation or long waiting problem due

to the temporary overload (the overall input rate of the system is greater than its overall

processing rate), they cannot reduce the system load. Once the load of a system is beyond

its maximal capacity it can handle, load shedding [114, 74] or sampling techniques have

to be used to relieve the load, which is beyond the capability of a scheduling strategy.

However, a scheduling strategy can be aware when these techniques have to be used. We

are currently investigating this problem.

4.5 Experimental Validation

We have implemented the proposed scheduling strategies as part of the prototype

of a QoS aware DSMS – MavStream [76, 75]. In this section, we discuss the results

of various experiments that we have conducted in order to compare the performance of

these scheduling strategies.

4.5.1 Setup

We begin with a brief description of our experimental setup. The scheduling strate-

gies we have implemented in MavStream include: the PC strategy, the Chain strategy, the

MOS strategy, the SS strategy, the Threshold strategy, and various round-robin strate-

gies. We use the following data streams and CQs in our experiments. The scheduling

model used for the experiments is the model discussed in §4.1.1. An object is moved

from the waiting queue to the eligible queue if the number of waiting tuples exceeds a

threshold value which is the number of operators in that object times 100.

We only need the strategies that do a better job during high-load situations in

the system. A strategy that can do a much better job during light-load periods is not
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useful if it can not do a better job during high- load periods. Therefore, the performance

reported in this chapter is the performance of each strategy from the same periods and

during those periods, the system is overloaded at least for a periods of time.

Input data streams: The input data streams we used are highly bursty streams

and the input rate of each stream is controlled by a global bursty factor and a local

bursty factor. We think only the strategies that do a better job during heavy load

periods are useful since nobody cares the performance of a strategy during light load

periods. Therefore, only the performance data during the heavy load periods, which is

defined, in this chapter, the system is overloaded during the high-input phase of our 3-

phase periods discussed in the following, are reported and compared.

The global burst factor is a 3-phase period. Each stream is generated by repeating

the 3-phase period with an increasing standard mean rate. Each phase lasts about 20

minutes. In the first phase, the mean input rate is 2 times of the standard mean rate.

In the second phase, the standard mean rate is used. In the last phase, a much lower

input rate is used, which is one quarter of the standard mean rate. In order to test how

strategies react to the overload situations, we continuously increase, by 5 percent or so,

the standard mean input rate each time when we repeat the 3-phase pattern until the

system is overloaded ( When the maximal memory requirement is larger than 2M bytes,

we regard the system is overloaded).

The local burst factor is a so called self-similarity factor. Given the mean input

rate of each phase of each period, at each time unit (second in this thesis), the input rate

is controlled by the so called self-similarity property of each stream. This self-similarity

property is due to that each input stream is a superposition of 64 or 128 flows. Each flow

alternates ON/OFF periods, and it only sends tuples during its ON periods. The tuple

inter-arrival time follows an exponential distribution during its ON periods. The lengths

of both the ON and the OFF periods are generated from a Pareto distribution which has
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a probability mass function P (x) = abax−(a+1), x ≥ b. We use a = 1.4 for the ON period

and a = 1.2 for the OFF period. For more detailed information about self-similar traffic,

please refer to [85]. In our experiment, we use 5 such self-similar input data streams with

different mean input rates.

Experimental query plans: All of our queries are CQs that consist of select,

project, and symmetric hash join operators. To be more close to a real application, we

ran 16 actual CQs with 116 operators over 5 different data streams in our system. The

selectivity of each operator is widely distributed ranging from 0 to 1. Both the selectivity

and the processing capacity of each operator can be determined by collecting statistical

information periodically during run time. The details of the list of queries and their

properties are presented in Appendix A.

The prototype is implemented in C++, and all the experiments were run on a

dedicated dual processor Alpha machine with 2GB of RAM. One of the processors was

used to collect experiment results while another processor was used for query processing.

4.5.2 Performance Evaluation

Due to the fact that the CQs are also long running queries and that the scheduling

strategies demonstrate different performance during different system load periods, we ran

each experiment for more than 24 hours (including the statistics collection period), and

each experiment consists of multiple phases. In each phase, we intentionally increased

the average input rates of data streams in order to study and validate the performance

characteristics of a scheduling strategy under different system loads. We only present a

portion of our experimental data (from a few phases), rather than a full range of results

due to limited space. For threshold strategy, we set the maximal threshold Tmax to

10M bytes, which means it employs the PC strategy when its total queue size is less
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Figure 4.8 Tuple Latency vs. Time.

than 10Mbytes. Otherwise, it employs the MOS strategy to decrease total queue size

requirement.

Tuple latency: The tuple latency of an output tuple is computed by taking the

difference of its arrival time-stamp and its departure time- stamp when it leaves the query

processing system. We presented two sets of our experiments for the proposed scheduling

strategies in Figure 4.8 and 4.9 respectively. The tuple latencies shown in both figures

are the average tuple latency of all output tuples within every 1 second.

From the results in Figure 4.8, we observe that the overall tuple latency is much

better under the PC strategy than under the SS strategy and the Chain strategy. The

Chain strategy performs worst among them. Furthermore, the overall tuple latency

increases as the system load increases, but the difference among them becomes much

sharper as the system load increases. The threshold strategy has a tuple latency as good

as the PC strategy when total queue size is less than 10M bytes (i.e., from 33200 to

33300). However it performs as bad as the MOS strategy during heavy bursty periods

(i.e., from 33600 to 33800). It is worth noting that during light load periods (i.e., the

first 200 seconds), all of them have a reasonable tuple latency except that the Chain has

a few spikes. When the system load increases, the tuple latency increases sharply during
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Figure 4.9 Tuple Latency vs. Time.

the highly bursty input periods for both the SS strategy and the Chain strategy. As we

explained earlier, the high tuple latency under the Chain strategy and the SS strategy

contributes to their buffered tuples in the middle of an operator path. The SS strategy

performs better than the Chain strategy because it buffers less number of times of a tuple

along an operator path than the Chain strategy.

The tuple latency shown in Figure 4.9 further confirms the conclusions that we

derived from the first set of experiments: the PC strategy achieves a much better tuple

latency than the Chain strategy. The figure also shows that the MOS strategy achieves

a better tuple latency than the Chain strategy, but a longer tuple latency than the PC

strategy. This is due to the fact that MOS is a kind of segment strategy.

Throughput: The total throughput of a CQ processing system under any schedul-

ing strategy should be the same because it should output the same number of output

tuples no matter what scheduling strategy it employs. However, the output patterns are

likely to be dramatically different under different scheduling strategies. Figure 4.10 and

4.11 show the output patterns under different strategies. In order to clearly show the

difference, we use the logarithm scale in y axis in Figure 4.11.
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Figure 4.10 Throughput vs. Time.

In Figure 4.10, the PC strategy and the SS strategy have a much smoother output

rate than the Chain strategy, and the threshold strategy has the metrics of both the PC

strategy and the MOS strategy. The PC strategy performs best among them in terms

of the bursty output. The output rate under all four strategies increases as the input

rates increase when the system load is moderate, which is the first 300 seconds, and their

output patterns do not differ with each other too much. After the system enters the high

load periods, the PC strategy and the SS strategy have a much smoother throughput

than the other two during the high bursty input periods which are the periods of the

10400 second to 11000 second and from the 12400 second to 12800 second. In contrast,

the Chain strategy has a very low throughput, even no throughput during heavy load

periods. On the other hand, it has a surprisingly high throughput immediately when

system load decreases. Its highest output rate is almost 4 times its average output rate.

The situation becomes worse when the system load or the length of the highly bursty

input periods increases. This highly bursty output rate is not desirable because of the

amount of partial results that have to be buffered in the system temporarily, which

consumes unnecessary memory.
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The throughput patterns shown in Figure 4.11 further confirm that the PC strategy

has a much smoother throughput pattern than the Chain strategy. The figure also shows

that the MOS strategy has a smoother throughput than the Chain strategy during the

high load periods. During the low load periods, all strategies have similar throughput

patterns.

Memory requirement: We study the total memory requirement of a CQ pro-

cessing system under different scheduling strategies given an input pattern. The amount

of memory consumed by the query processing system is measured by calculating the

memory consumed by all input queues every one second. The memory consumed by each

input queue is the total number of tuples waiting in the queue times the size of the tuple.

The amount of memory consumed by the scheduling strategies proposed in this chapter

is presented in Figure 4.12 and 4.13. The y axis in Figure 4.13 is the logarithm of the

amount of memory consumed by the query processing system.

From the results presented in Figure 4.12, we observe that the Chain strategy

performs better than the others. The Chain strategy and the SS strategy can absorb the

extra memory requirement during the bursty input periods when system load is not high.

Although the PC strategy has the capability to absorb the temporary high bursty input,
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its ability is much less than the other two strategies. The reason, as we mentioned earlier,

is that the leaf nodes have a much larger memory release capacity than the other nodes of

a query plan and that the memory release capacity of an operator path is much less than

that of a leaf node. As the system load or the length of a bursty period increases, the PC

strategy requires much more memory to temporarily buffer the unprocessed tuples than

the other two strategies. The SS strategy requires a little bit more memory than the

Chain strategy during the highly bursty periods. This is because it only takes benefit of

the larger memory release capacities of the leaf nodes that are major part of the operators

with a larger memory release capacity in a CQ processing system, but not all of them

behave like the Chain strategy. The threshold strategy has a similar memory requirement

as the PC strategy during the first 300 seconds. It then switches to the Chain strategy

and maintains its total memory requirement around 10M bytes, which is similar to the

Chain strategy.

From the results shown in Figure 4.13, we can see that the MOS strategy has a

smaller memory requirement than the Chain strategy and the PC strategy has the largest

memory requirement. This is due to that i) the MOS strategy does not buffer tuples in

the middle of a segment, which is unavoidable for the Chain strategy; ii) the overhead
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introduced by MOS strategy is smaller than the Chain strategy. The PC strategy requires

much more memory than the MOS and Chain strategy because it does not take advantage

of the higher memory release capacity of the operators at the bottom side of an operator

path.

4.6 Summary

In this chapter, we have proposed a family of scheduling strategies for a DSMS

and investigated them both theoretically and experimentally. We showed how a schedul-

ing strategy impacts/affects the performance metrics such as tuple latency, throughput,

and memory requirement of a CQ processing system. We proved that the PC strategy

can achieve the overall minimal tuple latency. We also proved that the MOS strategy

has the strictly optimal memory requirement, which further improves the near optimal

memory requirement of the Chain strategy. Both the MOS strategy and the SS strategy

demonstrate a much better tuple latency and throughput than the Chain strategy. The

theoretical results were validated by an implementation where we performed experiments

on all the strategies. The experimental results clearly validate our theoretical conclusions.
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Furthermore, the threshold strategy inherits the properties of both the PC strategy and

the MOS strategy, which makes it more applicable to a DSMS.

As part of ongoing work, we are considering to extend both the PC strategy and

the MOS strategy to incorporate the predefined QoS specifications of the applications.

Another problem we are investigating is the effective system capacity estimation of a CQ

processing system over data streams, and how to use the estimation to guide a scheduling

strategy to be aware of the overload situations and to further take effective actions such

as load shedding and sampling to bring the system back to a normal state.



CHAPTER 5

LOAD SHEDDING

In this chapter, we focus on a fundamental problem that is central to a DSMS.

Namely, we investigate the problem of load shedding during a temporary overload

period. The load shedding is not a problem in a traditional DBMS because: (1) its

queries are one-time queries; (2) its data sources are static data sets; (3) there is no

support for QoS requirements for query processing. However, multiple CQs in a DSMS

are active simultaneously for long periods of time. Theoretically, a CQ can be active in

the system for ever. The input rates of streams are typically uncontrollable and highly

dynamic in most stream-based applications. This highly dynamic input rate can prevent

the system from keeping up with the tuple processing rate during a high input rate

(or bursty) period. As a result, a large amount of unprocessed or partially processed

tuples can be backlogged in the system, and tuple latency can increase and may not

be bounded. Due to the predefined QoS requirements of a CQ, the query results that

violate their QoS requirements are useless or even cause major problems. Therefore,

we have to limit the number of tuples buffered in the system so that all final query

results satisfy their predefined QoS requirements. A feasible and a viable solution to

limit the number of buffered tuples in the system is to gracefully drop a portion of its

unprocessed or partially processed tuples during high input periods, which consequently

relieves system load, and makes it possible to satisfy all predefined QoS requirements.

This graceful dropping process is called load shedding. It should also be noted that

the accuracy of final query results is degraded as well due to the loss of tuples in a

load shedding process. Fortunately, most stream-based applications can tolerate some

149
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inaccuracy in final query results if we are able to guarantee an upper-bound on the

inaccuracy. Generally speaking, the load shedding problem is a problem of preventing

final query results from violating predefined QoS requirements by discarding a portion of

unprocessed or partially processed tuples gracefully. The predefined QoS requirements

considered in this chapter mainly include the most-tolerable tuple latency (MTTL) and

the most-tolerable relative error (MTRE) of a CQ in its final query results.

In this chapter, we propose a framework, and techniques for a general load shedding

strategy by dynamically activating load shedders in query plans or deactivating exist-

ing load shedders based on the estimation of current system load. These load shedders

drop tuples in either a randomized manner or using user-specified application semantics.

Specifically, 1) we exploit the optimal physical implementation of shedders in DSMSs

with a goal of minimization of computation overhead and memory-consumption of a

shedder. 2) We then develop techniques to estimate the system load which implicitly

determines when load shedding is needed and how much to shed. 3) We develop algo-

rithms to compute the optimal placement of a load shedder in a query plan. 4) We also

develop algorithm to determine how to distribute the total number of tuples (in terms of

percentage) to be dropped among all load shedders with the goal of minimizing the total

relative errors in the final query results due to load shedding. Finally, 5) we conduct

extensive experiments to validate the effectiveness and the efficiency of proposed load

shedding techniques.

The rest of the chapter is organized as follows. Section 5.1 provides a formal

definition of the load shedding problem. Section 5.2 discusses the detailed physical im-

plementation of shedders. Section 5.3 describes our load estimation and load shedding

algorithms. Section 5.4 presents a prototype implementation and the experimental re-

sults. Section 5.5 summarizes the chapter.
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5.1 Problem Definitions

In a multiple query processing system over streaming data, various scheduling

strategies have been proposed either to minimize the maximum memory requirement

[29, 77] and tuple latency [77] or to maximize the throughput [119]. A scheduling strategy

can improve the usage of the limited resources in such a system. However, it can never

improve the maximal computational capacity of a system, which is inherently determined

by its fixed amount of resources such as CPU cycles, size of RAM, and so on. When

total load of active queries in a system exceeds the maximal computation capacity of the

system, the query processing system has to either temporarily backlog some unprocessed

or partial processed tuples that cannot be processed immediately in queues (or buffers) or

discard them immediately. However, if the tuples are temporarily backlogged in queues, it

causes a longer tuple latency, which is theoretically unbounded (as the queue size can grow

indefinitely). This longer tuple latency is unacceptable in many stream applications where

a near real-time response time requirement is critical. Fortunately, they can tolerate

approximate results. Therefore, discarding extra tuples in the system is a natural choice

to avoid a longer tuple latency.

In this thesis, we specifically address how to limit the number of tuples that can be

backlogged in the system to satisfy both tuple latency and approximation requirements of

final query results based on predefined QoS specifications. We call the scenario in which

the system has to discard the tuples in order to prevent the system from violating the pre-

defined QoS requirements of its queries as query processing congestion. The query

processing congestion problem is very similar to the concept of network congestion

used in the network community. The network congestion problem has been extensively

researched in the computer network field. The techniques used to deal with the network

congestion problem can be classified into two categories: (a) congestion avoidance

techniques [102], which are used to prevent the system from entering a congestion situa-
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tion and (b) congestion control techniques [123][70], which are used to bring a system

back from a congestion situation once the system enters the congestion situation. These

two techniques are complementary and are usually used together.

In this chapter, we present a general approach to query processing congestion

avoidance for a DSMS to prevent the system from entering query processing congestion

through dynamic activation of load shedders. This approach is different from those query

congestion control techniques, which drop tuples only after they find the predefined QoS

requirements have been violated through monitoring final query results. Specifically, we

formulate the load shedding problem as follows:

Problem Definition 1. Given a multiple query processing system with k active queries

Q = {Q1, Q2, · · · , Qk} over n streams I = {I1, I2, · · · , In}, and each query with its pre-

defined QoS requirement specified in terms of its most-tolerance tuple latency and its

most-tolerance relative error of query results, the load shedding problem is to guaran-

tee minimal computation resources, which make it possible to satisfy all predefined QoS

requirements in the system by gracefully dropping some tuples, and at the same time,

minimizing the relative errors in the system introduced by dropping tuples.

The load shedding problem is an optimization problem, and consists of three sub

problems, namely: (1) how to efficiently and effectively estimate the current system load,

which implicitly determines when we have to do load shedding in order to avoid a query

processing congestion. It also implicitly determines how much load we have to shed in

order not to violate the predefined QoS requirements in the system; (2) how to find

the best position for a potential load shedder (or shedders) that we have to insert into

queries so that the introduced relative error in final query results can be minimized and

at the same time the load saved can be maximized by discarding one tuple; (3) how

to find an optimal allocation strategy for allocating the total shedding load among all

non-active load shedders with a goal of minimizing the overall relative errors among all
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queries.Additionally, the problem of how to implement shedders so that the overhead

introduced by the shedders themselves is minimized is also very important to minimize

the impact of the load shedding process on system performance. We will first discuss

what a shedder should be in order to minimize the overhead introduced by itself and

then present our algorithms for the subproblems of the load shedding problem.

5.2 Load Shedders

Load shedders are fundamental elements in any load shedding system. Their main

task is to shed load by discarding a number of tuples from the system. However, a load

shedder itself has a significant impact on both system performance and consequently the

accuracy of final query results. It affects system performance mainly because: a) the

system load is very high when a system activates the load shedding mechanism. Any

additional overhead introduced at this time affects both tuple latency and peak memory

requirement. b) the actual load is shed through a number of load shedders collaboratively.

The total load (or overhead) introduced by the load shedders can be substantial. By

decreasing the overhead introduced by a load shedder itself, it is not only possible to

increase effective system usage, but also improve the accuracy of final query results (less

number of tuples will be discarded). Also different tuples may have different contribution

to the final query results. It introduces more errors in final query results if it discards

more important tuples. Therefore, it is desirable for a load shedder to shed as few tuples

as possible which in turn reduces the errors in final query results. In the following, we

discuss how a load shedder itself can achieve this desirable property. We will discuss

how a load shedder can benefit from its placement along an operator path to achieve its

desirable property in Section 5.3.2.

A load shedder can save more tuples by decreasing the additional overhead intro-

duced by itself. Currently, a load shedder is considered as a drop operator in many
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Figure 5.1 Load Shedders.

DSMSs. It is inserted into the current query network and deleted from the network dy-

namically according to the system load. This case is illustrated in Figure 5.1-a or 5.1-c.

In case (a), the drop operator is considered a normal operator, its functionality is to

determine whether to drop a tuple or not; its input queue is used to buffer its inputs

because of bursty input modes in data streams. In this case, for each input tuple, we

have to make a function call to determine whether to drop it or not. First, the total cost

of hundreds (or thousands) of such function calls is likely to be high although the cost of

each function call in itself is very small in current operating systems. Second, the extra

memory required by its input queue increases the peak memory requirement. Finally,

the scheduling cost increases as well because of the increase in the number of operators.

In case (c), the drop operator is considered as a special operator. Since it does not have

its own input queue, it cannot be scheduled as a normal object. It has to process its

inputs whenever the inputs arrive, which means it has to be run as a thread. Although

it does not require any extra memory, its processing cost increases due to the context

switch cost of a thread. Therefore, it may not be a good choice to shed load by inserting

a drop operator into the query network dynamically.
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We consider shedding as one of functions of a normal operator in the system. There

are two places where we can incorporate the shedding function into a normal operator:

the operator and its input queue as illustrated in Figure 5.1-b and 5.1-d respectively. In

Figure 5.1-b, the shedding function determines whether the input tuple needs to be passed

to its operator. In this case, the processing cost is the same as that of case (a) and case

(c). However, it does not introduce any additional overhead cost for scheduling because

it is considered as part of a normal operator. In Figure 5.1-d, the shedding function is

incorporated into its input queue. When its input queue receives a tuple, it accepts it only

when the tuple passes the shedding function and the load shedding function is enabled.

This case decreases the processing cost by incorporating the shedding function as part

of enqueue function of its input queue. It also decreases the peak memory requirement

because it discards the tuples immediately if those tuples will not be processed further.

It does not incur any additional scheduling overhead either. Therefore, we argue that,

of the four choices presented, the last case (Figure 5.1-d) is the best one to perform the

actual load shedding.

A load shedder can introduce less error in final query results by discarding less

important tuples. Two kinds of load shedders are proposed in the literature [114]: random

shedders and semantic shedders. A random shedder is implemented as a p gate function;

for a tuple, it generates a random value ṕ. The tuple passes to the next operator if ṕ ≥ p;

otherwise, it is discarded. A semantic shedder discards tuples that are less important

to final query results. For example, in a continuous query for detecting fire alarm over

a temperature stream, the lower values in that temperature stream are less important

than higher values. Therefor, it is natural to drop lower values first in order to get less

errors in final query results. A semantic shedder acts functionally as a select operator,

which drops less important tuples based on a condition that has selectivity of 1 − p in

order to drop p percent of its tuples. A discarded tuple by a semantic shedder introduces
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less error in final query results. However, it requires specific information from a query

and its application domain in order to determine the relative importance of a tuple in a

stream.

We propose four kinds of semantic shedders over a numerical attribute in our

system: smallest-first shedders, largest-first shedders, center-first shedders, and outlier-

first shedders. A smallest-first shedder discards the tuples with smallest values first;

while a largest-first shedder discards the tuples with largest values first. The center-

first shedder discards the tuples nearest to a user-specified center; while an outlier-first

shedder discards the tuples that are farthest away from a user-specified center. When

users submit queries, they can specify different load shedders based on their applications.

We support both types of shedders in our load shedding system. If a semantic

shedder is applicable, we assume that there exists a function between the selectivity of

the shedder and the relative error in the final query results. For all the other cases, we

assume that all tuples in the same data stream have equal importance to the accuracy

of the final results of a query.

5.3 Load Shedding Techniques

The query processing congestion avoidance techniques that we propose consist of

two components: system load estimation component and load shedding component.

The system load estimation component is used to estimate the actual computation load

based on current input rates of input data streams and characteristics of active contin-

uous queries registered in the system. This estimated load is used to determine when

to activate the load shedding mechanism and how much load to shed once it detects a

query processing congestion. The load shedding component is used to execute the actual

load shedding, which includes compute the optimal location of load shedders in order

to minimize error introduced and how to allocate the total load shedding requirement
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among non-active load shedders. The system load estimation component proposed is

independent of the load shedding component, and can be used in conjunction with any

load shedding approaches (e.g., the load shedding techniques proposed for aggregation

queries [30]).

5.3.1 Prediction of Query Processing Congestion

Consider a general query processing system with m active queries in the system

over n data streams (denoted by I1, I2, · · · , In). Each query Qi has its predefined QoS

requirements specified by its maximal tolerant tuple latency Li and its maximal tolerable

relative error Ei in final query results. The actual computation load of such a system at

a time instant is completely determined by the input characteristics of its data streams

and the characteristics of the queries at that time instant in the system. Let us assume

that we know1 the current input rates vi of input stream Ii. Then we can estimate its

actual computation load for such a given query processing system as follows.

Without loss of generality, m active queries in the system can be further decom-

posed into k operator paths 2 P = {p1, p1, · · · , pk}. To prevent a query from violating

its predefined QoS requirements (i.e., Li and Ei), we have to guarantee that the output

results from each of its operator paths do not violate its QoS requirements. Therefore, we

push the QoS requirements of a query down to each operator path that is encompassed

in this query. As a result, each operator path has QoS requirements for the final results

from this path. These QoS requirements are the same as those of its query. For operator

path pi, the query processing system has to process all the tuples that arrived during the

1Actually, we can measure them directly, which will be discussed in Section 5.3.1.2.
2In this chapter, an operator path means a simple operator path and a complex operator path is

partitioned into multiple simple operator paths. Each simple path is defined as a unique path from the

leaf node to root node.
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last Li time units in order not to violate the MTTL Li no matter what the scheduling

strategy is. It may schedule the operators along the path multiple times within that Li

time units, or schedule some operators of that path more often than others, but the age

of the oldest unprocessed or partially processed tuple left in the queues along that oper-

ator path must be less than Li. Therefore, without considering the cost of scheduling,

its minimal computation time Ti required for the operator path to process all the tuples

arrived within Li time units is

Ti =

∫ t

t−Li
vk(t)dt

Ci
; 1 ≤ i ≤ k (5.1)

where vk(t) is the input rate of its input stream at time instant t, and Ci is the pro-

cessing capacity of the operator path, as defined in (4.2). The equation (5.1) gives the

minimal absolute computation time units the operator path pi requires within its MTTL.

Furthermore, the percentage of computation time units φi it requires is,

φi =
Ti

Li

(5.2)

Equation (5.2) shows that the query processing system has to spend at least φi

portion of its CPU cycles to process the tuples along the operator path pi within every

MTTL time units in order to guarantee that the query results do not violate its MTTL

Li.

Without considering shared segments among operator paths in the system, the total

percentage of computation time units Φ for a query processing system with k operator

paths is:

Φ =
k
∑

i=1

φi (5.3)

by plugging (5.1) and (5.2) into (5.3), it is easy to see that

Φ =

k
∑

i=1

∫ t

t−Li
vk(t)dt

CiLi

(5.4)
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Due to the fact that the MTTL of a query ranges over no more than a few seconds, we

can expect that the input rate during a MTTL period of time can be captured by its

mean input rate. Then equation (5.3) can be approximated as:

Φ ≈
k
∑

i=1

v̄kLi

CiLi

=

k
∑

i=1

v̄k

Ci

(5.5)

where v̄k is the mean input rate of the input stream of the operator path pk within a period

of time of its MTTL. It is also worth noting that the length of MTTL of an operator

path does not have a direct relationship with the minimal percentage of computation time

units it requires in order not to violate its MTTL requirements. Therefore, when two or

more operator paths share a shared segment, we do not need to deal with the problem of

which MTTLs we have to use to compute the minimal percentage of computation time

units it requires.

If the estimated total percentage of computation time units is greater than 1.0, the

system will definitely experience a query processing congestion and the tuple latencies

of some or all query results will be longer than those specified in their predefined QoS

requirements. In order to avoid such a query processing congestion, we have to drop

some tuples so that the total percentage of computation load is always less than 1.0. The

total load ∆ we have to shed is given as follows:

∆ =











Φ− 1.0 ; if Φ > 1.0

0 ; if Φ ≤ 1.0
(5.6)

For example, if the estimated total percentage of computation time units requires

Φ = 1.25, this means the system is short of 25% of computation time units. We have

to shed enough tuples so that we can release at least 25% of computation time units in

order to avoid a query processing congestion.
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Figure 5.2 A shared Segment.

In (5.5), we have not considered sharing of segments by two or more operator

paths. In a full-fledged DSMS, a shared segment introduced by a common subexpression

between two queries is a common way of performance optimization. For example, when

two operator paths ABC, ABD share a shared segment AB illustrated in Figure 5.2–a,

the total percentage of processing time units that we computed into (5.5) for the shared

segment {AB} is P (AB) given by

P (AB) =
lABC v̄AB

CS
ABlABC

+
lABD v̄AB

CS
ABlABD

= 2
v̄AB

CS
AB

where CS
AB is the processing capacity of the shared segment AB. But the system actually

spends only v̄AB

CS
AB

portion of its computation time on the segment. Another v̄AB

CS
AB

portion

of computation time is over estimated.

Similarly, if k operator paths share a shared segment, we have counted the pro-

cessing time spent on that shared segment k, k ≥ 2 times in (5.5), but the system only

spends that processing time once, so we have over estimated it k − 1 times.

Assume that there are g shared segments in the system, and that each of them is

shared fi times, where fi ≥ 2 and 1 ≤ i ≤ g, the total percentage of computation time

units over estimated due to those g shared segments is D, where
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D =

g
∑

i=1

(fi − 1)
v̄i

CS
i

(5.7)

and CS
i is the processing capacity of the shared segment which can be computed from

(4.2), and v̄i is the mean input rate of the shared segment.

Therefore, by taking the shared segments into consideration, from (5.5) and (5.7),

the total percentage of computation time units Φ:

Φ ≈
k
∑

i=1

v̄k

Ci
−

g
∑

i=1

(fi − 1)
v̄i

CS
i

(5.8)

Equation (5.8) gives the approximate total percentage of the computation time

units a query processing system requires given the input rates of its input data streams.

From (5.6), we know that the system will experience a query processing congestion if

the estimated total percentage of computation time units is larger than 100%. The

portion of the percentage of the computation time units exceeding 1.0 is what we have

to shed in order to avoid a query processing congestion. Note that the total percentage

of computation time units estimated here is the minimal total percentage needed by

the system. The overhead incurred by other tasks in the system such as scheduling,

monitoring or estimating the input rates of data streams, and so on, are not explicitly

considered here. However, those costs actually are taken into consideration when we

compute the processing capacity of an operator. The more time a system spends on

processing other tasks, the less is the process rate of an operator.

5.3.1.1 Algorithm For Finding A Shared Segment

Each operator is identified by a unique label in a query processing system. As a

result, an operator path is labeled by a sequence of operator labels X = {x1, x2, · · · , xn},

where xi, 1 ≤ i ≤ n, is the label of ith operator along the path from the leaf node.
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Figure 5.3 The Global Operator Path.

Hereafter, we call X the path string of the operator path. In a general continuous query

processing system over streaming data, the shared segment between two or more operator

paths exits due to query optimization through shared a common query expression among

multiple queries. However, the shared relationship between two or more operator paths

may change dynamically or periodically in a DSMS because of (a) addition of newly

registered query plans or deletion of currently active query plans; (b) periodic revision

of an active query plan in order to adapt to the changes of input characteristics of input

data streams, which further causes deletion and addition of a shared segment. In order

to handle the changes of the shared segments, we have developed an algorithm illustrated

in Algorithm 4 which incrementally finds the shared segments and the number of times

a shared segment is shared in the system. We first present the data structure used in the

algorithm and then present our algorithm.

Data Structure: Each operator has two attributes (label, frequency). The label

attribute has its unique label in the system, and the frequency attribute maintains the

number of times this operator is shared, which is initialized to zero. An operator path

is represented as a linked list of its operator pointers starting from its leaf node. All

operator paths are linked to a global doubly-linked path list illustrated in Figure 5.3

according to its path string. The operator paths in the global path link are sorted by the

first label of its path string in order to find or delete an operator path efficiently. Once
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a new query plan is registered into the system, all its operator paths are inserted into

the linked-list based on the first label of their path strings. For each operator path, if its

first element does not exist in the list, all elements of that path are linked to the global

list, and the frequency value of each operator along that path is set to one. If its first

element is already in the list, it just increases the frequency value of the element by one,

and then searches its second element along that branch, if found, increases its frequency

value by one. Otherwise, its second element is linked to the global link list by creating

another branch in the list. Its frequency value is set to one. Similarly, when an active

query plan is deactivated, we have to delete the operator paths that is encompassed in

it. To delete an operator path, we decrease the frequency value by one for each operator

along that path. Whenever the value of frequency number of an operator is decreased

to zero, the operator is deleted. Therefore, this global linked-list maintains all operator

paths and all operators of all active query plans in the system.

Algorithm 4: Shared Segment Search Algorithm

INPUT: PCLL – the global doubly linked list of operator path cluster;
OUTPUT: SSLL – a set of shared segments with their frequency value;

SSLL = NULL;1

/*the following algorithm to maintain all shared segments and their
frequencies. */

foreach (operator path cluster PC in PCLL) do2

if (the frequency value of the first operator > 1) then3

SSLL = SSLL UNION SEARCH(PC)4

end5

end6

return SSLL;7

The algorithm traverses the global doubly linked list and for each operator path

cluster. It calls procedure SEARCH(PC) to find all shared segments of the operator path

cluster PC. If there exists shared segments in an operator path cluster, the frequency
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Algorithm 5: SEARCH(PC)

INPUT: PC – the global doubly linked list of operator path cluster;
OUTPUT: C – a set of shared segments;

/*create a new set container for shared segments; */
C = NULL;1

if (PC− >FirstOperator− >Frequency > 1) then2

/* Create a new shared segment S which consists of all elements before a
fan-out element, including the fan-out element. The frequency value of
the shared segment is the frequency value of the elements. */

Operator = PC− >FirstOperator;3

while ((Operator != NULL)&&(Operator− >numberOfChildren > 1)) do4

S = S + Operator;5

Operator = Operator− >next;6

end7

/* Add the shared segment S with its frequency value to the shared
segment set C. */
C = C + S;8

end9

foreach (branch B of the fan-out element) do10

/*recursively CALL the search procedure SEARCH(B) and add the results
to the set C. */
C = C UNION SEARCH(B);11

end12

return the shared segment set C.13

value of the first operator of the operator cluster must greater than one since the shared

common subexpressions of two queries must start from the leaf operator of an operator

path. The procedure SEARCH(PC) finds shared segments from a particular operator

path cluster.

The cost of our algorithm is very compact. First, the algorithm has a linear time

complexity of O(n), where n is the number of active operators in the system. Second, the

system does not need to execute the algorithm again until the global linked list is changed.

In a continuous query system, it is unlikely that query plans are changed (addition,

deletion, re-optimization) frequently due to the continuous computation requirement.
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Finally, we only need to execute the algorithm for changed path clusters, and not for all

path clusters in the system, when a query addition or deletion happens.

5.3.1.2 Predicting the Input Rate of Each Input Stream

In order to estimate system load, we have to know the input rates of all input

streams. Therefore, we design a stream property monitor to monitor not only the arrival

characteristics, but also the data properties of a data stream. By monitoring those

properties in our system, we are able to: i) choose the most suitable scheduling algorithm,

ii) optimize a continuous query plan adaptively, and iii) predict the system load and to

shed partial load when a system is overloaded in order to satisfy the predefined QoS

requirements. Here we only discuss related techniques that we use to monitor input rate

of an input stream.

The characteristics such as the input rate of a data stream are highly dynamic.

Some of them change regularly while others change irregularly. Typically, sensors that

monitor the temperature send data periodically; while the robot which is in charge of

house cleaning emits data whenever it detects that the floor is dirty and when it has done

the house cleaning. To monitor3 the input rate of an input stream efficiently, we sample

a series of time points over the time axis. If the input rates at the last n points have

not changed too much (the change is measured by the variance of those input rates), we

decrease the sample rate; otherwise, we increase the sample rate. This adaptive algorithm

makes it possible to monitor hundreds of data streams efficiently and effectively.

3Due to the high cost of continuous and precise monitoring of the properties of a data stream, we

monitor the properties periodically and approximately which is sufficient to make a decision in most

cases.
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5.3.2 Placement of Load Shedders

As discussed in 5.2, a load shedder is considered as part of the input queue of

a normal operator in order to minimize the overhead introduced by itself. Since each

active load shedder incurs more or less extra load on a system, it is natural to decrease

the number of load shedders in the system. For each operator path, at most one potential

load shedder can be placed on it, which motivates us to find its optimal place among

each operator path in the system. Once a query processing congestion occurs, it is

desirable to activate as few of load shedders as possible, which motivates us to allocate

the required shedding load among as few load shedders as possible. In the following

section, the placement of a load shedder corresponds to the input queue of an operator.

The loss/gain concept used in the following section shares some common characteristics

as those introduced in [114] and in [30]. However, the methods used to calculate the

gain and loss differ. Also our shedders have a maximal capacity, which is used to prevent

too many tuples from violate the MMRE requirement of each operator path and this

maximal capacity of a shedder is not present in any of them. Finally, we minimize the

number of load shedders in the system through merging multiple shedders in query plans,

which is not discussed in any of them either.

A load shedder can be placed at any location along an operator path. However, its

location has a different impact on the accuracy of the final results, and on the amount

of computation time units it releases. Specifically, placing a load shedder earlier in the

query plan (i.e., before the leaf operator) is most effective in decreasing the amount of

computation time units when a tuple is dropped, but its effect on the accuracy may not

be most effective. On the other hand, placing a load shedder after the operator which

has biggest output rate in the query plan has the lowest impact on the accuracy when

a tuple is dropped, but the amount of computation time units released may not be the

largest. Therefore, the best candidate location for a load shedder along an operator path
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is the place where the shedder is capable of releasing maximal computational time units

while introducing minimal relative errors in final query results by dropping one tuple.

Without considering the shared segment among multiple operator paths, there are

k candidate places to place a load shedder on an operator path X with k operators. Let

{x1, x2, . . . , xk} be its path label string, and v be the input rate of the data stream for

this operator path. Let b1, b2, · · · , bk be its k candidate places, where bi, 1 ≤ i ≤ k is the

place right before the operator xi.

We define the place weight W of a candidate place as the ratio of the amount of

saved percentage of computation time units α to the relative error ε in its final results

introduced by a load shedder at that place by discarding one tuple. The place weight W

of a shedder at a particular location of an operator path with its QoS requirements as

(MTTL = Li) and (MTRE = Ei) is defined as:

W =
α

ε
(5.9)

α = v(d)
CS −

vshedder

CO
shedder

ε =











v(d)
vshedder

for a random shedder;

f
(

v(d)
vshedder

)

for a semantic shedder;

v(d) =











Ei ∗ vshedder for a random shedder;

Ei ∗ f( 1
vshedder

) for a semantic shedder;

vshedder = v
∏xn

i=x1
(σi), x1 to xnare operators before the shedder

where CS is the processing capacity of the segment staring from the operator right after

the load shedder until the root node (excluding the root node) along the operator path.

If there is no operator after the shedder, CS is defined as infinity and ( v(d)
CS = 0). The

computation time units can be saved is zero and the shedder itself also introduces extra

overhead by vshedder

CO
shedder

. v(d) is the maximal drop rate by a shedder at this place without
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violating the MTRE Ei defined for the operator path. v(d)
CS is the total computation time

units it saves by dropping tuples at a rate of v(d). However, a shedder also introduces

additional overhead, which is vshedder

CO
shedder

, to the system because it needs to determine whether

a tuple should be dropped or not. vshedder is the input rate of the load shedder, and

x1 to xn are the operators before the load shedder starting from leaf operator, and σi

is the selectivity of the operator xi. If there is no operator before the shedder, then

vshedder = v and v is the input rate of the stream for the operator path X . CO
shedder is the

processing capacity of the load shedder. If the load shedder is a semantic one, f(.) is a

function from selectivity of the shedder to the relative error in final query results.

In (5.9), the input rate of an input stream is the only item that changes over time.

All the other items4 do not change over time until we revise the query plan. Therefore,

for the operator path X , it has k candidate places for a load shedder. We compute the

place weight for each of those k candidate places. And their partial orders do not change

as input rate changes because all of them have the same input rate of the input stream

at any time instant. The place where the load shedder has the biggest place weight is

the most effective one. We only need to compute the weights of places once to find the

best place of a load shedder for an operator path. Let W(pi) be the weight of the place

that a load shedder locates along the operator path pi,

W(pi) = max{W(b1),W(b2), · · ·W(bk), 0} (5.10)

where b1, b2, · · · , bk are k candidate places along the path pi. To prevent the case that

a shedder introduces more overhead than it saves by dropping tuples at its maximal

capacity, we add zero item in (5.10). If zero is the maximal place weight along the

4Selectivity of an operator may be revised periodically. However, it is assumed that it does not change

over a long period of time.
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operator path, it indicates that we cannot place a load shedder along this path because

the additional overhead it introduces is bigger than what it saves.
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Figure 5.4 Locations Of Load Shedders.

For an operator path which shares a shared segment with other operator paths,

placing a load shedder before or along the shared segment will not only impact the

accuracy of the results of more than one query plan, but also has a different impact on

them. For operator paths illustrated in Figure 5.4, the operator paths {ABDF},which

belongs to the query Q1, {ABCEH}, which belongs to the query Q2, and {ABCEG},

which belongs to the query Q3, share the segment {AB}, and the last two operator paths

further share the segment {ABCE}. Placing a load shedder anywhere along the segment

{AB} will impact all three query plans, and placing a load shedder anywhere along the

segment {CE} will impact query plans Q2, Q3, but not Q1.

We consider all operator paths that are connected with each other through fan-out

operators such as operator B, E as an operator path cluster. To determine the lo-

cation of a load shedder in such an operator path cluster, we partition each operator

path in this cluster into a set of operator segments. For each path, the first segment

consists of all operators from its leaf operator to its first fan-out operator. Any other

segments consist of all the operators between two fan-out operators plus the later fan-

out operator. For example, the path cluster illustrated in Figure 5.4 is partitioned into

a set of 5 segments {AB, CE, DF, G, H}. We compute the most effective position of a
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load shedder along each individual segment in the operator path cluster through (5.9)

respectively. When we compute the most effective position of a load shedder along a

shared segment such as {AB}, {CE}, the amount of percentage of computation time

units saved is the sum of actual percentage of computation time units released by each

segment starting from the operator right after the load shedder until the root operator.

Similarly, the relative error introduced by the shedder is the sum of actual relative er-

rors introduced in final query results of each path. For example, by placing a random

shedder right before the operator A, the amount of percentage of computation time units

released α = v(d)

CS
ABDF

+ v(d)

CS
ABCEG

+ v(d)

CS
ABCDH

− 2 v(d)

CS
AB

− vshedder

CO
shedder

and ε = 3 v(d)
vshedder

. Similarly,

α = v(d)

CS
CEG

+ v(d)

CS
CEH

− v(d)

CS
CE

− vshedder

CO
shedder

and ε = fCEG( vd

vshedder
) + fCEH( vd

vshedder
) if a semantic

shedder is placed right before the operator C.

We have to merge two or more load shedders along an operator path cluster into

one. The reasons for merging are: a) the most effective position of a load shedder along

a segment does not mean the most effective position in its path cluster; b) different

queries have different most-tolerant relative errors, which implies that different paths in

an operator path cluster have different most-tolerant relative errors, therefore a shedder

in a shared segment has different maximal capacity in terms of different paths; c) the

overhead introduced by shedders can be decreased by decreasing the number of shedders.

We consider three load shedders S2, S4, S5 along the segments connected directly to the

first fan-out operator E in Figure 5.4. If the place weight of the load shedder S2 is the

biggest one among them, the load we have to shed can be moved forward to the load

shedder S2 from load shedders S4 and S5. However, the maximal load that the load

shedder S4, and S5 can shed respectively are different if the queries to which the segment

{G}, and {H} belong have a different most-tolerant relative error.

We define the drop capacity of load shedder si as v(d) = Di(ei) such that v(d) is

maximized without violating its maximal tolerant relative error ei. Before we merge load
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shedders of a path cluster, we have to initialize their maximal tolerant relative errors as

follows. The load shedder among the segment, which outputs final query results, has its

maximal tolerant relative error and this error is equal to the maximal tolerant relative

error Ei of the query plan to which it belongs. All the other load shedders of this path

cluster has a drop capacity of zero.

We start the merge procedure backward. We first process the fan-out operators

closest to the root node, then process the fan-out operators closer to any of those pro-

cessed fan-out operators. For a fan-out operator with m (m ≥ 2) fans, let W (SMain)

be the place weight of the load shedder along the segment on which the fan-out opera-

tor lies, and this load shedder is termed main-shedder. Let S1, S2, · · · , Sk be the place

weights of its k load shedders, which are the first load shedders along all the segments

originating from the fan-out operator to root operator. Note that there are k, instead

of m, load shedders along its m branches because some branches may not have a shed-

der, i.e, its place weight is zero, or some branches have more than one shedders at its

branches or the shedders on some branches are eliminated as a result of merging process.

Those shedders are termed branch-shedders. Let Si be the place weight of the branch-

shedder with the smallest most-tolerant relative error ei among k branch-shedders. If

k ∗ W (SMain) <=
∑k

i=1 W (Si), we eliminate the main-shedder since the total place

weight that we gain at the Main shedders is no more than what we can get from branch

shedders. Otherwise, considering each ej of those k relative errors e1, e2, · · · , ek associ-

ated with each branch-shedder, we maximize the drop rate v(d)j at the main-shedder

such that the error introduced in final query results of the operator path at which Si

is located is no more than ej. This maximized drop rate is limited such that the rela-

tive error introduced in final query results from each branch path does not more than

the MTRE ej of the branch. Notice, a drop rate at a main-shedder introduces a differ-

ent relative error to each of its branch if some or all its branch-shedders are semantic
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shedders. Let v(d)s be the smallest one of the maximal drop rate v(d)1, v(d)2, · · · , v(d)k

and é1, é2, · · · , ék be the relative errors introduced by v(d)s on the paths on which its k

branch-shedders lie. For each branch-shedder Si, we shift éi of its load shedding capacity

to the main-shedder, and the corresponding capacity of a branch-shedder Si decreases

to ei − éi. If ei − éi = 0, its corresponding branch-shedder is deleted. After merging,

one operator path cluster may have more than one shedder, each of them has a different

load shedding capacity. This capacity implicitly determines its maximal drop rate there,

which consequently determines the maximal load it can save.

Once the best location of a load shedder is determined, the load shedder function

is incorporated into the input queue of an operator before we start to do load shedding.

The shedder stays in non-active mode initially. All tuples bypass the shedder when it is

in a non-active model, and there is no overhead during its non-active periods. Once it

is activated, a tuple has to pass through the shedder before it can be processed by the

next operator.

5.3.3 Allocation of Shedding Load Among Non-active Shedders

From the equation (5.6) in Section 5.3.1, we know when to shed load, and the total

load we have to shed is ∆ in order not to violate the predefined QoS requirements of

active queries in the system. The algorithms presented in Section 5.3.2 gives a list of

non-active load shedders and their load shedding capacities. Now, the problem is how to

allocate the total shedding load among all or some of these load shedders by activating

them with a goal of minimizing the maximum total relative error introduced by load

shedding.
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Let S = {S1, S2, · · · , Sm} be the set of non-active shedders in the system. The

allocation of shedding load problem is formalized to find a subset of shedders Ś, where

Ś ⊆ S, and to activate them such that

∀i, Si ∈ Ś and











∑k

i=1 αi = ∆

∑k

i=1 εi is minimized, and εi ≤ ei

where αi is the percentage of computation time units released by the load shedder Si

with a dropping rate of v(d)i, and εi is the relative error it introduces by that dropping

rate. Both of them are defined in (5.9).

The allocation problem is the well known knapsack problem by considering the

total shedding percentage of computation time units ∆ as the total capacity of a ship,

and εi as the weight of the item, and αi as the total value of the item. Although the

0-1 knapsack problem is a NP-hard problem, the fractional knapsack problem is solvable

by a greedy strategy in O(n lgn) time. For the allocation problem, a load shedder does

not have to shed load at its maximal dropping rate, but it can just shed part of its total

capacity. Therefore, the allocation of shedding load problem can be solved in O(n lg n),

where n is the total number of non-active shedders in the system.

To solve the problem of allocation of shedding load among the shedders when we

detect a query processing congestion, we first sort all non-active shedders in the system

by their place weights W (Si). Without loss of generality, we assume that W (S1) ≥

W (S2) ≥ · · · ≥ W (Sx) after sorting. Obeying a greedy strategy, we activate the shedder

with the greatest place weight, i.e., S1, and let it shed load at a drop rate such that

its saved load α = ∆ if ∆ ≤ α1, where α1 is its saved load when it operates at that

drop rate, then we stop the procedure. Otherwise, let it work at its maximal drop rate

without violating its capacity e1, and update the total shedding load to ∆ = ∆− α1. If

the updated total shedding load ∆ > 0, we then activate the non-active shedder with the

next greatest place weight. We repeat this procedure until the updated total shedding
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load becomes zero or there are no non-active shedders available in the system. If the

procedure ends with a non-zero ∆, it indicates that the load shedding cannot guarantee

minimal required computation resources to satisfy all predefined QoS requirements in the

system. In this case, we have to either violate some QoS requirements or choose some

victim query plans to deactivate them in order to meet QoS requirements of other query

plans.

5.3.4 Decreasing the Overhead of Load Shedding

The overhead introduced by load shedding mainly consists of two parts. One is

the overhead introduced by periodically estimating system load; another is the overhead

of allocation of total shedding among all non-active shedders in the system. In order

to decrease overhead introduced by estimating system load, we can increase the length

of period of estimating system load when the previous estimated system load is far

away from system capacity or the monitored input rates have not changed dramatically.

Therefore, the overhead due to estimation of system load is very small if the overall

system load is light and/or the input rates of all data streams changes gradually.

The second considerable overhead in load shedding problem is introduced by al-

location of total shedding load among all non-active shedders. From (5.9), we can see

that the place weight of a load shedder changes as the change of input rate of a data

stream. Although this change does not change the partial order of shedders along the

same operator path, it can change the partial order of shedders of two different operator

paths when the ratio of the current input rate to the input rate used to compute the

place weight changes dramatically. Therefore, we have to reorder the non-active shedders

in the system when we allocate the total shedding load among all non-active shedders.

In a heavy loaded system with dynamic input rates, we may have to frequently activate

non-active shedders or deactivate active shedders, and this overhead is not negligible. In
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order to decrease the overhead of the O(nlgn) solution of allocation problem, we have

to decrease the number of shedders in the system. Instead of maintaining all partial

orders of the whole list of shedders in the system, we partition n shedders into m groups,

where m � n, according to their place weights. One shedder may upgrade to its upper

level or degrade to its lower level group only when its input rate changes by a factor of

its standard input rate that was used to calculate the place weight. This factor can be

calculated in advance as a property of a shedder. Through maintaining those m groups

of shedders in the system, we decrease the computation complexity of allocation problem

to a constant. Namely, we activate the shedders in the first group and then shedders in

the second group until the total saved load no less than what is required. The shedders

within a group is selected based on their maximal drop capacity. The shedder with a

bigger drop capacity is activated first. To promote or degrade a shedder to/from a dif-

ferent group, we only need to compute the ratio of the input rate of an operator path to

its standard input rate if the load shedding mechanism is active.

5.4 Experimental Evaluation

5.4.1 Prototype Implementation

Currently, the load shedding techniques proposed in this chapter have been imple-

mented within our QoS framework of proposed QoS driven DSMS, MavStream [76, 59,

107].

For load shedding, we have implemented both random and semantic shedders.

Once a continuous query plan is registered with the system, the place weight of non-

active shedders along each operator path of this query plan are computed, and then

those shedders are classified into predefined groups according to their place weights in

order to decrease the overhead introduced by allocation of total load shedding. The
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performance estimation subsystem estimates system load according to the input rate of

each input stream from stream property monitor and then passes the estimated system

load to load shedding module. The load shedding module works in either shedding-active

mode, in which some shedders have been activated, or no-shedding-active mode, in which

there is no active shedder in the system. If it works in no-shedding-active mode, it enters

shedding-active mode once currently estimated load is bigger than system capacity. The

load shedding module in-turn enables non-active shedders in highest-level group and/or

next highest-level group until the total amount of saved percentages of computation time

units is no less than the required shedding part. All active shedders are linked into a

list according to their enabling orders. If it works in shedding-active mode and current

estimated system load is less than system capacity by a minimal threshold value, the

load shedding system deactivates an active shedder in the list in the reverse order of

enabling it until there are no more active shedders in the system. All deactivated shed-

ders are returned to their corresponding groups. Although our load shedding approach

guarantees the minimal computation of resources required to deliver predefined QoS re-

quirements, it is possible to violate a particular QoS requirement because of the shortage

of a QoS guaranteed scheduling strategy. The following scheduling strategies have been

implemented in the prototype to allocate all available resource among queries: the PC

capacity scheduling strategy [77], which minimizes total tuple latency, the Chain strat-

egy [29], which minimizes total queue size, and their hybrid – the threshold strategy [77],

and other general strategies such as various-level round-robin strategies. We also imple-

mented a QoS guaranteed scheduling strategy – Earliest Deadline First(EDF), which is

guaranteed to deliver QoS requirement given guaranteed total computation resources.
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5.4.2 Experiment Setup

In this section, we briefly discuss the results of various experiments that we have

carried out to validate our load shedding techniques, and to show how our load shedding

techniques along with our scheduling strategies satisfy the tuple latency requirement of

a query plan. The system consists of a source manager, a query processing engine, and

a run-time scheduling module, and a load shedding module. The source manager is in

charge of the meta information of the tuples from each data stream. It also monitors the

input characteristics and stream properties of an input stream. The query processing

engine is in charge of query plan generation and execution. A set of relational operators

such as Project, Select and Window-based Symmetric Hash Join have been imple-

mented in our query engine. The run-time scheduling model is used to determine which

operator or operator path to execute in any time slot. The load shedding module in our

proposed system consists of a load estimation subsystem and our load shedding allocation

subsystem. The load shedding module with our run-time scheduling model is capable of

delivering tuple latency requirements.

Input data streams: The input we have generated are highly bursty streams

that have the so-called self-similar property, which we believe resembles the situation in

real-life applications. Each input stream is a super imposition of 64 or 128 flows. Each

flow alternates ON/OFF periods, and it only sends tuples during its ON periods. The

tuple inter-arrival time follows an exponential distribution during its ON periods. The

lengths of both the ON and the OFF periods are generated from a Pareto distribution

which has a probability massive function P (x) = abax−(a+1), x ≥ b. We use a = 1.4 for

the ON period and a = 1.2 for the OFF period. For more detailed information about

self-similar traffic, please refer to [85, 25]. In our experiment, we use 5 such self-similar

input data streams with different mean input rates.
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Experimental query plans: All of our queries are continuous queries that

consist of select, project, and symmetric hash join operators. To be more close to

a real application, we run 16 actual continuous queries with 116 operators over 5 different

data streams in our system. The selectivity of each operator is widely distributed ranging

from 0 to 1. Both the selectivity and the processing capacity of each operator can be

determined by collecting statistics periodically during run time. The list of queries used

for the experiments is presented in Appendix A. We group 16 queries into 3 groups

with different QoS requirements in terms of maximal tolerant tuple latency and maximal

tolerant relative error. The first group has QoS requirement of (tuple latency ≤ 0.6,

relative error ≤ 0.15); the second and third group have a QoS requirement of (1.0, 0.25)

and (1.5,0.5) respectively. All the experiments were run on a dedicated dual processor

Alpha machine with 2GB of RAM. One of the processors was used to collect experiment

results while another processor was used for query processing.

5.4.3 Experimental Results
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Figure 5.5 Cost of Load Shedders.



179

Cost of load shedders: Our first experimental results compare the cost of four

different load shedders discussed in Section 5.2. Figure 5.5 shows the processing rate of

a select operator with or without a load shedder as the drop probability of the shed-

der changes. Case-{a,b,c,d} in Figure 5.5 corresponds to the select operator with four

(a,b,c,d) different implementation of a shedder discussed earlier in Figure 5.1. Case-e

corresponds to the cost of the select operator without a load shedder. The processing

rate is the number of tuples consumed by both shedder and select operator per millisec-

ond. This graph shows that case-d performs much better than all the other cases. As

drop probability of the shedder increases, the processing rate in case-d increases much

faster than other cases. This is mainly because of the lower cost of discarding a tuple in

this case as compared to the others. The processing rate of case-e remains flat because

it does not have a load shedding function. All other cases (a,b,c) shows that the cost of

the shedder is much bigger than that of a select operator. and Those implementations

do not release any load for a select operator, instead of introducing extra overhead and

errors.

Load Shedding with Path capacity strategy: This set of experiments
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Figure 5.7 Tuple Latency Under Path (group3).

shows the performance of system under our load shedding techniques with the PC schedul-

ing strategy. Figures 5.6 and 5.7 show the tuple latency of all output tuples of a query

in group 1 and group 3 respectively. The tuple latencies are larger than the maximal

tolerant tuple latency requirement in group 1; while those in Figure 5.7 are less than

their maximal tolerant tuple latency requirement in group 3. This is because the path

scheduling strategy is not a QoS guaranteed scheduling strategy though there are enough

resources for all queries. However, the maximal tuple latencies under the PC strategy

with load shedding are less than those without load shedding.

Figures 5.8 and 5.9 show the moving average of all tuples from a query in group

and the total internal queue size respectively in order to see the impacts on accuracy of

final query results by load shedding. From both figures, we can see that the peak values

of both the average value and the total memory requirement under load shedding are

decreased when system experiences a query processing congestion. This shows our load

shedding techniques detect congestion correctly and shed corresponding load effectively.

Load Shedding with EDF scheduling strategy:
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This group of experiments show the performance of our load shedding technique

with Earliest Deadline First strategy. The EDF schedules the operator path with earliest

deadline, the deadline of an operator path is defined as the age of the load tuple along the

path plus its maximal tolerant tuple latency. The EDF is a QoS guaranteed scheduling

strategy in terms of tuple latency. Figure 5.10 clearly shows that the tuple latencies under

EDF with load shedding do not violate the predefined maximal tolerant tuple latency, and

those latencies are less than those under EDF without load shedding. Figure 5.11 shows

that the total internal queue size under EDF scheduling with/without load shedding.

Both figures show that the query processing congestions under EDF come earlier than

under PC strategy. This is because the overhead introduced by EDF itself is much bigger

than that introduced by Path. This means the system capacity decreases under EDF,

and the number of tuples it can backlog without violating predefined QoS decreases as

well.
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Figure 5.9 Total Internal Queue Size Under Path.

5.5 Summary

In this chapter, we have proposed a general purpose query processing congestion

avoidance framework and load shedding techniques for a DSMS in order to meet all QoS

requirements. We first presented our system load estimation technique, which can be

coupled with any other load shedding techniques, based on input rate of data streams.

The estimated system load provides sufficient information to determine when to shed

load and how much to shed. Second, we discussed how to allocate total load shedding

to shedders. Specifically, we provide solution to the following problems: where a load

shedder should be placed in a query plan, and how to allocate total shedding load among

those load shedders with a goal of minimizing total relative errors introduced into the final

query results. Finally, we implemented a prototype of our proposed load shedding ap-

proach within our data stream management system, and conducted various experiments

to evaluate our load shedding techniques.

We are continuing work on QoS guaranteed scheduling strategies to provide a com-

plete QoS delivery framework for a general-purpose data stream management system.

We are also exploiting the techniques to guarantee QoS delivery of various ECA rules.
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One of main functions of a DSMS is to provide enhanced active capability, which not

only requires the processing of continuous queries with QoS requirements, but also needs

to detect various complex events and trigger corresponding actions with predefined QoS

requirements.
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CHAPTER 6

EVENT AND RULE PROCESSING

Event processing in the form of ECA rules has been researched extensively from

the situation monitoring viewpoint to detect changes in a timely manner and to take

appropriate actions. Several event specification languages and processing models have

been developed, analyzed, and implemented. More recently, data stream processing has

been receiving a lot of attention to deal with applications that generate large amount of

data in real-time at varying input rates and to compute functions over multiple streams

that satisfy QoS requirements. A few systems based on the data stream processing model

have been proposed to deal with change detection and situation monitoring. However,

current data stream processing models lack the notion of composite event specification

and computation, and they cannot be readily combined with event detection and rule

specification, which are necessary and important for many applications.

Although research seems to address these two as separate topics, there are a number

of similarities and differences between the two models. We argue that for many of the

applications considered for stream processing, event and rule processing are needed and

are not currently supported. On the contrary, event processing systems concentrate

on complex event and rule processing in a DBMS environment and do not consider

complex stream processing. By synthesizing these two and combining their strengths,

we argue that the integrated model will be better than the sum of its parts. In this

chapter, we first summarize the characteristics of both threads of work to set the stage

for understanding the differences and similarities. We then propose an integrated model

that combines the two using a uniform computation model. We also introduce the notion

185
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of a semantic window, which significantly extends the current window concept for CQs,

and stream modifiers in order to extend current stream computation model for complex

change detection. We further discuss the extension of event specification to include

CQs. Finally, we discuss our integrated model and its implementation. The extensions

proposed in this chapter are critical for integrating the two computation models in a

seamless manner. The ability to use CQs as events and the extended specification of

CQs and events are also needed for the integration of the two.

The rest of the chapter is organized as follows. Section 6.1 discusses the necessary

and importance of an integrated model for event and rules processing over data streams.

Event processing model is explained in Section 6.2. Detailed comparisons of event pro-

cessing and data stream processing models are presented in Section 6.3. Integrated model

is presented in Section 6.4. Finally, we summarize out work in event and rule processing

under the context of data stream processing and future directions in Section 6.5.

6.1 Introduction

Event processing [45, 105, 47, 56, 53, 82, 31, 37, 63, 87, 106, 50, 48] and lately

data stream processing [24, 32, 41, 89, 76, 95] have evolved independently based on

situation monitoring application needs. Several event specification languages [57, 58,

53, 54, 38, 103, 9, 10] for specifying composite events have been proposed and triggers

have been successfully incorporated into relational databases. Different computation

models [55, 87, 52, 53, 50, 31, 37, 48] for processing events, such as Petri nets [52, 53],

extended automata [55, 87, 58], and event graphs [31, 37, 50] – have been proposed

and implemented. Various event consumption modes [31, 52, 53, 37, 38] (or parameter

contexts) have been explored. Similarly, data stream processing has received a lot of

attention lately, and a number of issues – from architecture [32, 89, 76, 41, 98] to Quality-

Of-Service (QoS) [114, 20, 44, 77, 29, 33] – have been explored. Although both of these
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topics seem different on the face of it, we argue that there are more similarities than

differences between them. Not surprisingly, the computation model used for data stream

processing is not very dissimilar from some of the event processing models (e.g., event

graph), but used with a different emphasis.

As many of the stream applications are based on sensor data, they invariably

give rise to events on which some actions need to be taken. In other words, many

stream applications seem to not only need computations on streams, but also these

computations generate interesting events (e.g., car accident detection and notification,

network congestion control, network fault management [78], and intrusion detection)

and several such events may have to be composed, detected and monitored for taking

appropriate actions. Currently, to the best of our knowledge, none of the work addresses

the specification and computation of the above two threads of work. Our premise for this

chapter is that although each one is useful in its own right, their combined expressiveness

and computation power are critical for many applications of data stream processing.

Hence there is a need for synthesizing the two into a more expressive and more powerful

model that combines the strengths of each one.

We use the following running example to explain the current limitations of each

model, and the need for the integrated model. Consider the following car accident detec-

tion scenario that is slightly different, but more effective, from the linear road benchmark

[15].

Example 1 (Car ADN). In a car accident detection and notification system, each

express way in an urban area is modeled as a linear road, and is further divided into equal-

length segments (e.g., 5 miles). Each registered vehicle on an express way is equipped

with a sensor and reports its location periodically (say, every 30 seconds). Based on

this location stream data, we can detect a car accident in a near-real time manner. If

a car reports the same location (or with speed zero mph) for four consecutive times,
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FOLLOWED BY at least one car in the same segment with a decrease in its speed by

30% during its four consecutive reports, then it is considered as a potential accident. Once

an accident is detected, the following life saving actions may have to be taken immediately:

i) notify the nearest police/ambulance control room about the car accident, ii) notify all

the cars in 5 upstream segments about the accident, and iii) notify the toll station so that

all cars that are blocked in the upstream for up to 20 minutes by the accident will not be

tolled.

Every car in the express way is assumed to report its location every 30 seconds

forming the primary input data for the above example. The format of car location data

stream (i.e., CarLocStr) is given below:
CarLocStr(

timestamp, /* time stamp of this record */

car_id, /* unique car identifier */

speed, /* speed of the car */

exp_way, /* expressway: 0..10 */

lane, /* lane: 0, 1, 2, 3 */

dir, /* direction: 0(east), 1(west) */

x-pos); /* coordinates in express way */

CarSegStr is the car segment stream (or the input CarLocStr stream), but with

the location of the car replaced by the segment corresponding to the location. The query

shown below produces the CarSegStr from the CarLocStr stream.

SELECT timestamp, car id, speed, exp way, lane, dir,

(x-pos/5 miles) as seg FROM CarLocStr;

Detecting an accident in the above Car ADN example has three requirements,

and they are (1) IMMOBILITY: checking whether a car is at the same location for four

consecutive time units i.e., over a 2 minutes window, in our example, as the car reports

its location every 30 seconds. (2) SPEED REDUCTION: finding whether there is at least

one car that has reduced its speed by 30% or more during four consecutive time units.
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and (3) SAME SEGMENT: determining whether the car that has reduced its speed (i.e.,

car identified in (2)) is in the same segment and it follows the car that is immobile (i.e.,

car identified in (1)). Immobility of a car can be computed using CQs that are supported

by the current data stream processing systems as shown below:

SELECT car id, AVG(speed) as avg speed

FROM CarLocStr [2 minutes sliding window]

GROUP BY car id

HAVING avg speed = 0;

With the current event and stream processing models, using a declarative lan-

guage1, it is difficult or impossible to efficiently compute the speed reduction. Whether

the cars that are found in requirements (1) and (2) are from the same segment can be

readily determined in an event processing model using a sequence operator [53, 31, 9].

Notifications or life saving actions have to be taken once the cars are identified, which is

not supported by current stream processing model as well. As the cars that are identified

in requirement (3) can be separated by more than 4 time units, it requires an efficient,

meaningful and less redundant manner for notifications. In other words, number of times

the accident is reported should be kept to a minimum. The above can be done efficiently

using the current event processing models, but not the current stream processing model.

Although a JOIN operator can be used to compute it, the number of reports is not

minimized.

As shown, all the above requirements strongly call for an integrated model. Further-

more, the second and third requirements pose challenges for synthesizing an integrated

model. We will later illustrate how the above can be specified elegantly and be computed

efficiently using the integrated model proposed in this chapter. Some of the earlier work

1Models that are based on procedures may compute this, but they are more difficult to use than

those models that are based on non-procedural (e.g., SQL) or declarative languages. In this chapter, we

consider the latter one.
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on sequence processing [106], temporal aggregation [97], and trigger processing in Ariel

[63] address some computational and performance aspects that may be relevant to the

extensions proposed in this chapter. However, they were not in the context of streams

and they addressed processing from event logs in the relational context without the no-

tion of a window. In addition, performance work did not address either the real-time

aspects or the QoS constraints.

6.2 Event Processing Model

Event-Condition-Action (ECA) rules are used to process event sequences and to

make the underlying system active for applications such as situation monitoring, ac-

cess control, and change detection. They consist of three components and they are

1) Event: occurrence of interest such as data-manipulation-events, clock-events, and

external-notification-events, 2) Condition: can be a simple or a complex query, and 3)

Action: specifies the operations that are to be performed when an event occurs and the

corresponding condition evaluates to be true. ECA rules can be defined either at appli-

cation level or at system level. A number of event processing systems using ECA rules

have been proposed and implemented in the literature ACOOD [50], ADAM [47], Alert

[105], Ariel [63, 64], COMPOSE [56], Hipac [45], ODE [55, 87], REACH [31], Rock &

Roll [48], SAMOS [52, 53], Sentinel [37, 38], SEQ [106], UBILAB [82], and [96, 97]. A

comprehensive introduction and description about most of these systems can be found

in [121, 101].

Primitive or simple events are specific to a domain and are predefined. On the

other hand, composite or complex events are composed of more than one primitive or

composite event forming an event expression using event operators. Event operators

[57, 58, 53, 54, 38, 103, 9, 10] are used to compose events and can be unary, binary, or

ternary based on the number of operands.
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Primitive events are detected by the underlying system at the time of occurrence.

For example, the time of occurrence of an event can be the time at which a method

is invoked by an object. Composite events are detected based on the event operator

semantics when all of its constituent events occur. The time of occurrence of a composite

event depends on the event operator semantics and detection semantics [51].

Consider two primitive events DS1 (Data from sensor 1) and DS2 (Data from sensor

2), a composite event DS1 AND DS2, along with the event occurrences of DS1 at 10 a.m.

and DS2 at 11 a.m. This composite event is detected when event DS2 occurs (i.e., at 11

a.m.], since event DS1 has started the AND event occurrence, but the time of occurrence

of the composite will be a time point 11 a.m. in detection-based semantics, and will be

an interval [10 a.m. - 11 a.m.] in interval-based semantics.

Several approaches have been proposed for the detection of composite events in

the literature and they are: event detection graphs (EDGs) [50, 31, 38], extended finite

state automaton [55, 87], colored Petri nets [54, 52, 53], and event algebra [82]. EDGs

have been shown to be based on operators rather than instances and hence are efficient

as compared to other approaches based on the computation and storage requirements for

detecting events.

In this chapter, we draw upon EDGs for our integrated model as it corresponds

to operator trees and has similarities with respect to query processing over data streams

whereas the other representations do not share these characteristics with query process-

ing. We also use the masking capability introduced in ODE [58] to filter events on

arbitrary conditions.

Event Detection Graphs: In an EDG, leaf nodes represent primitive events

and internal nodes represent composite events (or event operators) and event occurrences

flow in a bottom-up fashion. Figure 6.1-b shows a composite event AND with two events

E1 and E2. Whenever there is an occurrence of event E1 or E2, it is propagated to the
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Figure 6.1 a) EDG without Masks; b) EDG with Masks.

AND node. An AND event is detected whenever both its constituent events occur, and

it intuitively represents the Cartesian product (or JOIN) operation in a DSMS with a

window size of one tuple. In addition, as shown in Figure 6.1-b EDGs can also support

masks (to filter event occurrences) while events are propagated. For example, there

can be a mask on event E1 such that it only propagates events from 11 a.m. to 1

p.m. Masks/predicates from conditions can also be pushed into events thereby saving

propagation of unnecessary events up to the event graph.

Event Consumption Modes: The AND event shown in Figure 6.1-b is detected

when both the events E1 and E2 occur. All event occurrences of event E1 and E2

are combined, and none of them are removed after they have been taken part in event

detection.

Unconstrained event operator semantics correspond to the unrestricted (or general)

context. This means events, once they occur, cannot be discarded at all. For a sequence

event operator [53, 31, 36], all event occurrences that occur after a particular event will

get paired with that event as per the unrestricted context semantics. In the absence of

any mechanism for restricting event usage (or consumption), events need to be detected

and parameters for those composite events need to be computed using the unrestricted

context definitions of the event operators. However, the number of events produced (with
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unrestricted context) can be large and not all event occurrences may be meaningful for

an application. In addition, detection of these events has substantial computation and

space overhead that may become a problem for situation monitoring applications. Event

consumption modes (or contexts) are supported by several active database systems, such

as ACOOD, SAMOS, Sentinel, and REACH for restricting the unnecessary events from

being detected.

Consider the application in which the Texas Department of Transportation wants

to monitor “Whether there is a traffic block involving Interstate 30 and traffic block

involving Interstate 35E in Dallas”. This requirement can be mapped to a complex

event expression using an AND operator (i.e., “I30 block in Dallas (TB I30)” AND

“I35E block in Dallas (TB I35E)”). EDG for the above example is shown in Figure 6.1-

a. Whenever there is a traffic block in I30 or I35E it is propagated to the AND node.

Complex event AND is detected at the internal node whenever both the child nodes

propagate the corresponding events. Since an AND event is detected whenever both its

constituent events occur, it intuitively represents the Cartesian product (normal JOIN)

operation in a DSMS with a window size of 1 tuple.

As shown in Figure 6.1-b, EDGs can also support masks (to filter event occurrences)

while events are propagated. For example, Texas Department of Transportation wants to

monitor “Whether there is a traffic block in Interstate 30 and traffic block in Interstate

35E in Dallas from 6.30 a.m. to 9 a.m., from 11 a.m. to 1 p.m., and from 4 p.m. to 6

p.m.”. This can be done using the event mask which can filter out the events that does

not occur over those time intervals. Masks can also be optimized by pushing them into

the events thereby saving propagation of unnecessary events up the event graph.

In real-world applications, all these combinations (i.e., unrestricted) of events may

not be interesting and in order to restrict the detection to meaningful composite events,

event detection (or consumption) modes were introduced. Event detection modes place
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restrictions on the pairing of events to detect a composite event. For example, Sentinel

supports the following event consumption modes (also known as parameter contexts):

Recent, Proximal-Unique [49], Chronicle, Continuous, and Cumulative.

Event Detection Stages: Typically composite event detection is done in two stages:

i) Merging of events in composite event nodes, and ii) Applying conditions on detected

events. In the first stage of event detection, events are merged based on the event operator

semantics that is in turn based on the time of occurrence of its constituent events. In

the second stage detected events are checked for conditions that are specified in an ECA

rule and the corresponding actions are taken. Conditions can be function (or method)

calls with all the event properties as parameters.

6.3 Analysis of Event Vs. Stream Processing

Processing of events using event detection graphs (analogous to a query tree) and

a data flow architecture, is similar to the processing of data streams. In this section, we

analyze the relationship between event processing and data stream processing models.

This forms the basis of our integrated model that combines the strengths of both.

6.3.1 Inputs and Outputs

Inputs (or data sources) to an event processing model are a stream of events (or

event histories). Event streams are considered as a sequence of events that are ordered by

their time of occurrence. Most of event streams considered by event processing models are

generated internally by the underlying system such as the data manipulation operations

(i.e., INSERT, UPDATE, and DELETE) in RDBMSs, system clock, etc. The input

rate of an event stream is not assumed to be very high and highly bursty as they are

generated by the underlying system. Also the event items of an event stream are well-

defined tuples and have a simply data structure, which usually consists of primitive data
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types. The outputs of event operators also form event streams, which are ordered by their

occurrence timestamps (may be an interval for composite events). Once the events are

detected, they are used to trigger a set of ECA rules. Once the ECA rules are triggered,

necessary conditions are checked and predefined actions are taken.

Main inputs to a data stream processing model are data streams. Input tuples

in a data stream can be ordered by any attribute and not always by the timestamp

(e.g., sequence id of a TCP packet in a TCP packet stream) as in the case of event

sequences. In addition to streams, a data stream processing model can also include

processing of static relations, which are not typically supported in an event processing

model (although conditions and actions can access stored relations). Furthermore, the

input characteristics of data streams are highly unpredictable and dynamic (e.g., bursty).

The data items from a data stream can be as complex as an unstructured message or

document. The main output of a data stream processing model, if one of its inputs is

a data stream, is a data stream too. Thus, conceptually, both the models have similar

inputs and outputs. However, the data sources in data stream processing model are

mostly external sources with high input rates and highly bursty input model, where as

the data sources in event processing model are mainly internal ones with relatively low

input rates.

6.3.2 Consumption Modes Vs. Windows

Event consumption modes or contexts were introduced primarily to determine how

many events from the same event sequence should be kept for the purpose of detecting

composite events. The number of events to be kept depended solely on the context of

the operator and the semantics of the operator. For example, for the sequence operator,

one could not drop any event from the past if no context was associated (i.e., use of

general context). On the other hand, for the OR operator, that is not the case. Event
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contexts indirectly keep a small portion of (the head of) an event sequence based solely

on the value of timestamp and the context. Also, the set of event instances retained

at a binary operator depend upon the dynamics of both event streams. For instance, if

the completing/terminating event did not occur, event instances for the other operator

would accumulate for some contexts such as chronicle and continuous.

In contrast, the notion of a window in stream processing is defined on each stream

and does not depend upon the operator semantics. Also, the window need not be defined

only in terms of either time or physical number of tuples, although that is typical in most

of the applications. The objectives of defining a window in stream processing are 1) to

convert blocking operators into a non-blocking computation, and 2) to produce output

in a continuous manner. Hence, the window generated by a context is not the same as

the window concept in streams.

6.3.3 Event Operators Vs. CQ Operators

Event operators are quite different from the operators supported by current stream

processing model. Event operators are mainly used to express and define the computation

on event (tuple) level and to reduce the number of output events through consumption

modes or profiles, and they solely use the timestamp of an event for detecting composite

events. For example, AND operator in the event processing model is used to express

and compute the occurrence (appearance) of two events (tuples) from its two input event

streams. Thus, event operators do not perform any computation over the attributes

of these events (tuples). On the other hand, current stream processing operators are

mostly modified relational operators 2, which focus on how to express and define the

computation at the attribute level, rather than the tuple level. Additionally, stream

2The blocking operators have been converted as non-blocking in data stream model for properly

computing CQs.
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processing operators have input queues and internal windows in order to deal with highly

bursty inputs and to convert blocking operators to non-blocking operators.

Both relational or event operators do not have input queues and internal windows,

as relational operators perform computations over static relations and event operators

perform computations over low input-rate event streams. This is also because of the

underlying assumption that query or event processing systems have sufficient processing

capacity and resources to handle their data sources.

6.3.4 Computation Model

Computations in event processing models are decomposed into three main compo-

nents, which correspond to each component of an Event-Condition-Action rule: 1) com-

putations performed at the tuple level, which are carried out by the event operators,

2) computations performed at the attribute level, which are carried out by the condi-

tion checks, and 3) computations for processing rules (triggering actions). In some event

processing systems, a smaller part of the computations that are carried out at the at-

tribute level are moved to the event detection component (i.e., the mask proposed in

[57, 58]), improving the performance. Computations in stream processing models are not

clearly partitioned into different components as in the case of event processing. How-

ever, considering the functionalities, computations in stream processing models can be

viewed as two components: operator computation and window computation. The former

involves complicated condition checking and attribute level manipulations, and the latter

is required to maintain a snapshot of tuples or status information for blocking operator

computations.

Thus, computations that are performed at the tuple level and the computations for

rule processing in the event processing models are absent in the stream processing model.

On the other hand, window computations in the stream processing model do not appear
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in the event processing model. Even though both of them operate at the attribute level,

operator computation in the stream processing model is more expressive and powerful

than the computation performed for condition checking in the event processing model.

From the above it is clear that the computations in both models have different emphasis

and different purposes, and they are for different applications. Thus, an integration of

these two computation models is needed in order to support the applications that need

both stream and event processing and such an integrated model is more powerful and

useful and can support larger class of applications.

6.3.5 Best-Effort Vs. QoS

The notion of QoS is not present in the event processing literature. Although,

there is some work on real-time events and event showers [26], event processing models

do not support any specific QoS requirements. Typically, in the event processing model,

whenever an event occurs, it is detected or propagated to form a composite event as soon

as possible. Thus, events are detected based on the best-effort method. On the other

hand, QoS support in a stream processing model is necessary and critical to the success

of data stream management systems (DSMSs) for the following reasons: 1) the input

of a stream processing system is highly dynamic and unpredictable in contrast to its

fixed computation resources. During overload periods, some queries cannot get sufficient

resources to compute their results, which can cause unexpectedly long delays for the

final output results. 2) many stream-based applications require real-time responses from

underlying stream processing system. A delayed response may not be useful, and may

even cause serious problems. Different applications can tolerate different response times

or inaccuracy in the final query results, and 3) queries with different QoS requirements

must be treated differently with a goal to minimize the overall violation of predefined QoS
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specifications. A number of QoS delivery mechanisms have been explored and proposed

[114, 20, 44, 74] in the literature for stream processing systems.

6.3.6 Optimization and Scheduling

Event expressions are represented as event graphs for detection. There has been

some work carried out in rewriting event expressions, so that event detection can be made

efficient by constructing optimal event detection graphs. Common event sub-expressions

are grouped in order to reduce the overall response time and computation effort. In

general, event processing does not deal with runtime optimizations. On the other hand,

efficient approaches for processing CQs are important to a DSMS. The concept of queues

and windows in a DSMS introduce even more challenges and opportunities for query

optimization. Optimizations in stream processing model include 1) sharing of queues

(inputs) among multiple operators, 2) sharing of windows (synopsis), 3) sharing of oper-

ator computations, and 4) sharing of common sub-expressions. The notion of scheduling

is also absent from event processing systems. Typically a data-flow architecture (implic-

itly, a First-In-First-Out scheduling strategy is employed in event processing models) is

assumed as indicated earlier and memory usage or event-latency has not been addressed

in the literature. On the other hand, optimizing memory capacity, tuple latency, and

the combination of these two have prompted many scheduling algorithms [29, 33, 77] in

stream processing.

6.3.7 Buffer Manager and Load Shedding

None of the event processing systems assume the presence of queues between event

operators. Events were assumed to be processed as soon as they are detected (not nec-

essarily occurred) and partial results are maintained in event nodes. Most of the event

processing models assume that the incoming events are not bursty and hence do not pro-
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vide any kind of buffer management or explicit load shedding strategies. Event consump-

tion modes can be loosely interpreted as load shedding, used from a semantics viewpoint

rather than QoS viewpoint. On the other hand, load shedding is extremely important in

a stream processing environment. Even with the choice of the best scheduling strategy,

it is imperative to have load shedding strategies as the input rates can vary dynamically.

Several load shedding strategies, placement of load shedders, and the amount of tuples to

be shed (possibly limiting the error in query results) have been proposed [114, 20, 44, 74].

6.3.8 High-Level Rule Processing

ECA Rules describe how the underlying system should respond when an event

occurs, making the system reactive. Rules are either used to extend the range of appli-

cations that can be supported by the underlying system or to change the way in which

new applications are developed. Rules are considered important as they allow users to

specify predefined actions that need to be taken when an event occurs and the corre-

sponding conditions are satisfied. Existing event processing systems support dynamic

enabling and disabling of rules. On the other hand, rule execution semantics specify how

the set of rules should behave in the systems once they have been defined. A rich set of

rule execution semantics [121, 35] has been proposed to accurately define and efficiently

execute various rules in the literature for event processing models. Those semantics

include rule processing granularity, instance/set oriented execution, iterative/recursive

execution, conflict resolution, sequential/concurrent execution, coupling modes, and ter-

mination. Stream processing systems do not support high-level rule specification and

processing, which are critical to many real-world applications.
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6.3.9 Summary

Similarities and differences between event and stream processing models have been

discussed above. Both models employ a similar data-flow architecture as their com-

putation model over streaming data. However, both models have their limitations for

handling applications that require stream processing followed by event processing, and

most of the functionalities provided by these two models are complementary to each

other. The stream processing model focuses on providing a set of functionalities similar

to those provided by DBMSs to process and manage data streams. As a result, a gen-

eral framework and a set of comprehensive techniques such as the notion of a window,

optimization techniques, scheduling strategies, load shedding, and others, have been pro-

posed and are being developed. On the other hand, the event processing models focus

on detecting composite events and rule processing under the assumption that event se-

quences are generated (mostly) within the underlying systems with relatively low input

rate. Consequently, scheduling strategies, load shedding techniques, QoS support, and so

on were not explored for that model. However, the three component computation model

(i.e., event processing, condition checking, and rule processing) developed in the event

processing are specialized for event detection and rule processing. In contrast, event

computation at tuple level and rule processing are absent in the data stream processing

model. Although CQs consisting of modified relational operators and aggregation oper-

ators can be used in situation monitoring, its expressiveness and computation capability

of complicated events are limited and it is also not well-suited for detecting composite

events and applying contexts to reduce the number of meaningful events compared with

the techniques provided by the event processing models.

Clearly, it is desirable and natural to combine the strengths of both models into

an integrated model with a general framework and a set of comprehensive techniques of

stream processing model plus the event computation model (i.e., computation at tuple
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level, consumption modes, and so on) and sophisticated rule processing capabilities. This

integrated model will be much stronger and can serve a larger class of applications than

what are currently supported by both the models individually.

6.4 EStreams: An Integrated Model

The proposed integrated model, termed EStreams (for Event and Stream process-

ing system) is shown in Figure 6.2 and it consists of three stages: 1) CQ processing stage

used for computing CQs over data streams, 2) event processing stage that is used for

detecting events with/without masks, and 3) rule processing stage that is used to check

conditions, and to trigger predefined actions once events are detected.
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Figure 6.2 EStreams: Three Stage Integration Model.
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The seamless nature of our integrated model is due the compatibility of the chosen

event processing model (i.e., an event detection graph) with the structure used for stream

processing. Based on our analysis, synthesizing both the processing models requires the

following issues to be addressed: 1) handling highly bursty event streams (generated by

the CQ processing stage) in event processing, 2) processing of events streams based on

attributes and not solely on timestamp, 3) specification of events/event expressions, rules

and CQs. We have enhanced both the models, as described below, to address the above

mentioned issues: 1) Outputs of CQs have to be fed as primitive inputs to event operators

in the event processing stage. We have named the continuous queries, so that in the event

processing stage the outputs of CQs can be used for detecting events directly. 2) We

have introduced stream modifiers that can detect complex changes between tuples in a

stream. 3) We have also introduced the semantic window to enhance the expressiveness

and computation efficiency of CQs, and to allow creation of more meaningful windows.

For the event processing model, 4) We have enhanced the event operators by introducing

input queue(s) for each event operator, which makes it possible to handle highly bursty

outputs from CQ processing stage and to integrate event operators with stream processing

operators seamlessly through the inter-queue and to take advantages of the techniques

(i.e., scheduling strategies, load shedding) developed for stream processing model. 5) We

have enhanced the event expressions in such a way that primitive events can be the

outputs of continuous queries over event streams based on event attributes, and not

only on timestamp. 6) We have also enhanced the event consumption modes to support

more meaningful windows. Finally, 7) We have extended SQL allowing user to specify

events/event expressions, rules and CQs together.
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6.4.1 Continuous Query (CQ) Processing Stage

This stage processes normal CQs where it takes streams as inputs, and outputs

computed continuous streams. The scheduling algorithms and QoS delivery mechanisms

(i.e., load shedding techniques) along with other techniques developed for stream process-

ing model can be applied directly. In many cases, final results of stream computations

need to be viewed as events for defining situations that use multiple streams and com-

posite events: 1) A large group of stream applications are interested in not only the

normal computations introduced by CQs with Select-Join-Project and aggregation oper-

ators, but also in the changes to one or more attributes of a monitored object over time,

and 2) current windows based on size (i.e., in terms of time, number of tuples, values of

attribute) are somewhat restrictive (refer to Section 6.4.1.2).

To overcome the above shortcomings, we enhance CQs in the following aspects to

support more complicated computations required by many stream applications: 1) Abil-

ity to name the CQs is needed so that they can be used to define primitive events, and

can be used in defining other CQs. 2) We introduce a family of operators, which can

be used to compute the changes of one or more attributes over a data stream. These

operators are termed as stream modifiers in this thesis. 3) Finally, we extend the current

window concepts to a semantic window in order to express and compute more meaning-

ful and complicated windows in an accurate and efficient way. These enhancements not

only greatly improve the ability of stream processing model to express more complicated

computation requirements through semantic windows and named CQs, but also improve

the ability to compute more accurate final results in a more efficient way through stream

modifiers and semantic windows. However, none of the enhancements affect the opera-

tor semantics, scheduling algorithms, QoS delivery mechanisms, and other components

proposed for stream data processing.
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6.4.1.1 Named Continuous Queries

Many computations over streaming data are difficult to express and to be computed

as a single CQ. In order to express computations more clearly, CQs are named. The name

of a CQ is analogous to the name of a table in a DBMS and it has the same scope and

usage as that of a table. The queue (buffer) associated with each operator in a CQ

supports the output of a named CQ to be fed directly into the input queue of another

named CQ. A named CQ is defined by using the following CREATE CQ statement.

CREATE CQ CQ Name AS (Normal CQ statements)

However, the FROM clause in a named CQ can use any previously defined CQs

through their unique names. The meta information of a named CQ is maintained in a

CQ dictionary in the system. The meta information includes the query name, its input

sources, all output attributes ordered by their order in final output tuples, and its output

destination(s). If the output destination is to an application, it can be in the form of a

named pipe, socket, or an output queue/buffer. A default output destination is defined

in the system simply as a sink if there is no destination associated with this CQ. A CQ

with a sink as its destination can be disabled in the system until a meaningful destination

is associated to it (usually for test purpose). For example, you can define a named CQ

and register it with the system, and then register another CQ that refers to this CQ.

Once a named CQ is registered to the system, if it refers to any other named CQ, the

system will automatically associate it to the destination of its referred CQs. A named

CQ can output its final results to multiple destinations.

6.4.1.2 Semantic Window

In current stream processing models, all blocking operators are supported through

the concept of a window, which defines a historical snapshot of a finite portion of a
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stream at any time point. This window defines the meaningful set of data used by an

operator. Accurate window definition not only impacts the accuracy of final results, but

also has a significant impact on system performance. However, the current window types

either Size-based (Time-based, Tuple-based) or Attribute-based windows are not very

meaningful and they are the only window types that are defined and supported by cur-

rent stream processing models. A Time-based widow can be simply expressed by [Range

N time units] and a Tuple-based window can be expressed by [Row N tuples], where N

specifies the length of the window. Attribute-based is introduced in [32] and can be ex-

pressed by Size s, Advance i along with a user-defined or predefined procedure-based

function/operator, where s is the size of the window in terms of values of an attribute and

i is an integer or predicate that specifies how to advance the window when it slides. In

addition, a partitioned sliding window [14] is defined as [PartitionByA1, · · · , AkRowsN ].

It logically partitions input stream into different sub-streams based on the equality of

attributes A1, · · · , Ak and the computations (i.e., aggregation) are performed over each

sub-stream. The outputs from all sub-streams are merged into one single output stream.

Although the basic window types3 are useful for many applications, they are still

limited by their inability to express more meaningful windows (i.e., based on semantic

information) required by applications. The functionality of a stream operator does not

change when it is applied to different applications. On the contrary, its window spec-

ification changes as the applications change in order to compute results correctly and

efficiently. We call the functionality of an operator as its global property and the

window property of an operator as its local property. Expressing a meaningful and

accurate window under different application domains is complicated, and it requires a

general-purpose format to express the window concept and a more efficient way to com-

3From now, all the above mentioned 4 types of windows are referred as basic windows.
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pute the defined window than what is currently available 4. The window itself can be

based on a computation, which is used to determine a meaningful snapshot of a portion

of an input stream for its respective operator. The semantic window, introduced in

this chapter, can express more complicated and meaningful windows required by different

applications than the basic windows and the computations can be carried out through

well-developed and highly optimized SQL query processing engines, which is more effi-

cient.

The main function of a semantic window is to determine which tuples in the current

window should be deleted 5 after it adds a new tuple 6 into the current window. Before

defining a semantic window, we have to identify the scope of data that it can access to

perform computations. Clearly, all tuples in the current window and the new tuple that

needs to be added to the current window are fully accessible by that window. Therefore,

it is natural to express a semantic window based on the semantic information provided

by current window and the new tuple. Each semantic window specifications uses a CW

reference and a NT reference. Through the CW , a semantic window can access any tuple

in the current window. Similarly, all the attributes of the new tuple that needs to be

added to the current window can be accessed through NT .

Instead of introducing new operations for a semantic window in current SQL, we

claim that a semantic window can be expressed using current SQL statements (i.e.,

4The computation required to maintain a window is not discussed in detail in the literature, not

mentioning the optimization of window computation.
5Since the oldest tuple in a window is the least useful for most applications, in this chapter, we

concentrate on windows that delete the oldest tuple (like basic windows). Deletion of other tuples (i.e.,

every nth tuple) can also be achieved when procedures are used, rather than SQL, for the semantic

window.
6Similarly, instead of a single tuple, a batch of new tuples can be merged into the window for

performance reasons.
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SELECT-FROM-WHERE statement) over CW and NT with little effort needed for its

implementation. We also can take advantage of the well-developed SQL query processing

engine and its optimization techniques provided in stream processing model to efficiently

compute semantic windows with little effort to modify current data stream systems.

A semantic window defines a finite portion of historical tuples seen so far from a

data stream through the condition SWC (semantic window condition), over CW andNT .

Each NT is appended to CW by continuously evaluating the SWC through Algorithm

6.

Algorithm 6: Add New Tuple Algorithm

INPUT: (CW , NT );
OUTPUT: Modified CW ;

if CW is empty or not initialized then
// append the new tuple to current window Appended Window
AW ← NT + CW ;
return AW as the new CW ;

else
Appended Window AW ← NT + CW ;
while ((the condition SWC over the AW is not TRUE) AND (AW is
NOT empty)) do

Delete the oldest tuple in the AW;
end
return AW as the new CW ;

end

The SWC can be any arbitrary condition over CW and NT . However, to simplify

the way to express a SWC, we use the CHECK statement shown below where NT is

considered as a one tuple relation.
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Stream [ CHECK logical Expression

SELECT a 1, a 2, . . . , a n

FROM CW , NT

WHERE Conditions

GROUP BY Attributes

HAVING Conditions ]

All the clauses used in the above statement (i.e., SELECT, FROM, WHERE,

GROUP BY, and HAVING) have the same semantics and usage as in the standard

SQL. However, only CW and NT can appear in FROM clause. a1, a2, . . . , an are the

attribute names (or alias after applying aggregate functions) from either CW or NT .

The CHECK clause is a logical expression which consists of the attribute names used in

the SELECT statement, relational and logical operators, and parentheses. The CHECK

clause is evaluated and a Boolean value is returned once the SELECT clause is evaluated.

The CHECK clause requires only one row from the FROM clause after applying other

clauses. If more than one row is returned, only the oldest one in current window is used

to evaluate the CHECK clause.

Based on the definition of SWC and named CQs we provide few examples to

demonstrate the use of semantic window to support some of the basic windows as well

as other more meaningful ones.

Example 2 (Similar with @ Row 50, 000 A). The average speed of each car over a

50,000-tuple sliding window on stream CarLocStr can be computed using the following

CQ with a regular row window and a semantic window respectively. (Note: the SWC is

evaluated after we append the NT to CW).
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CREATE CQ AvgSpeedTuple AS

SELECT car id, AVG (speed)

FROM CarLocStr [Row 50,000]

GROUP BY car id

CREATE CQ AvgSpeedTuple AS

SELECT car id, AVG(speed)

FROM CarLocStr [ CHECK CWCount <= 50,000

SELECT COUNT(*) AS CWCount FROM CW ]

GROUP BY car id

It is worth noting that windows based on the number of tuples, irrespective of

the kind of definition (i.e., Range or semantic) used, are not commutative [14]. From

the above example we had clearly shown that semantic windows can be used to express

and compute the common Tuple-based windows. Similarly we can represent other types

of windows. However, a semantic window can be used to express and compute more

meaningful windows, as discussed below.

Example 3 (Disjoint Window). Compute the moving average speed of the car with

car id 100 within each segment.

CREATE CQ AvgSpeedOfCar100 Wrong AS

SELECT AVG(speed)

FROM CarSegStr [ CHECK CWSeg = NTSeg

SELECT CW .seg AS CWSeg, NT .seg AS NTSeg

FROM CW , NT

WHERE (CW .timestamp =

(SELECT MIN(CW .timestamp) FROM CW)) ]

WHERE CW .car id = 100



211

The above CQ AvgSpeedOfCar100 Wrong does not compute the average speed of

the car with car id 100 since the window is computed before the outer WHERE clause is

evaluated. The window will change whenever a report from a car from different segment

is received. Instead of specifying all the computations in one CQ, we can take advantage

of the named CQs proposed in this chapter and use the following two CQs to accurately

and efficiently compute the Example 3. Similarly, we can also compute Example 3 in

one CQ by using the semantic window with GROUP BY, which will be discussed later.

However, it is not efficient since a sub-window should be maintained for each car.

CREATE CQ FilterForCar100 AS

SELECT *

FROM CarSegStr

WHERE CW .car id = 100

CREATE CQ AvgSpeedOfCar100 AS

SELECT AVG(speed)

FROM FilterForCar100 [ CHECK CWSeg = NTSeg

SELECT CW .seg AS CWSeg, NT .seg AS NTSeg

FROM CW ,NT

WHERE (CW .timestamp =

(SELECT MIN(CW .timestamp) FROM CW)) ]

Example 4. Consider a network traffic stream NTStr consisting of timestamp, pkg id,

pkg size, source IP , dest IP , source port, and dest port. We want to compute the

number of flows determined by the unique combination of (source IP , dest IP ) over a

window in which the total number of bytes transferred does not exceed 100 MB and the

number of time units spanning the window does not exceed 10 seconds.(Note: Below “+”

indicates concatenation)
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CREATE CQ NumberOfFlows AS

SELECT COUNT(distinct source IP + dest IP)

FROM NTStr [ CHECK ((CW S <= 100M) AND

(NT TS - CW TS < 10Sec))

SELECT SUM (CW .pkg size) AS CW S,

MIN(CW .timestamp) AS CW TS,

MIN(NT .timestamp) AS NT TS

FROM CW , NT

GROUP BY NT .timestamp ]

AsNT is a one tuple relation, the GROUP BY clause in SWC in the above example

outputs only one tuple. Otherwise, GROUP BY will partition the window into multiple

sub-windows, which will be discussed below.

Before we discuss the GROUP BY clause used in SWC, we will give an example

to show that GROUP BY is necessary and cannot be replaced by moving it to the CQ.

Example 5. Compute the moving average speed of each car on its current segment. Two

CQs are provided, the first one gives what is required, and the second one does different

computation.

CREATE CQ CarMovingAvgSpeed AS

SELECT AVG (speed), car id

FROM CarSegStr [ CHECK CWSeg = NTSeg

SELECT CW .seg AS CWSeg, NT .seg AS NTSeg

FROM CW, NT

WHERE (CW .timestamp =

(SELECT MIN(CW .timestamp) FROM CW))

GROUP BY CW .car id ]
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In the above CQ, we partition the input stream into multiple sub-streams based

on car id, apply the window computation (i.e., a window formed by the tuples from the

same segment for a particular car) to form a correct window, and then compute the

moving average speed of the car based on the tuples in its window. Finally, the outputs

from all sub-streams are merged into an output stream. As shown below, if the GROUP

BY is moved down to the CQ, the query just forms one semantic window from the input

stream, applies the GROUP BY and finally output the results.

CREATE CQ CarMovingAvgSpeed AS

SELECT AVG (speed), car id

FROM CarSegStr [ CHECK CWSeg = NTSeg

SELECT CW .seg AS CWSeg, NT .seg AS NTSeg

FROM CW , NT

WHERE (CW .timestamp =

(SELECT MIN(CW .timestamp) FROM CW)) ]

GROUP BY car id

Clearly, the window formed by the latter case (i.e., GROUP BY statement is part

of the CQ) is based on the input tuple without considering the car id. If two consecutive

tuples are from two different cars that are on the different segments, the query always

outputs the current speed of each car as the window is a one tuple window. But, if the

two consecutive tuples are from two different cars that are on the same segment, then

the query computes the average speed of these two cars, rather than the average speed

of a particular car. Therefore, the GROUP BY in SWC is necessary.

The semantic window expressed using a GROUP BY is similar to the partitioned

window type introduced in [14]. However, the condition that maintains each logical sub-

window is more meaningful and powerful than a simple condition on the number of rows.

When a GROUP BY clause is used in the SWC definition, a semantic window is logically
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split into a number of sub-windows based on the attributes in the GROUP BY clause,

and the SWC is applied to each sub-window. Each logical sub-window is labeled by the

value(s) of GROUP BY attributes. The new tuple is added only to the logical sub-window

whose label matches the corresponding values of GROUP BY attributes in the new tuple.

Since a new tuple is only added to one logical sub-window, only that logical sub-window

is evaluated (actually, evaluation results for all the other sub-windows are always TRUE

because they are not changed). When a stream operator computes over its semantic

window, the computation is only on the sub-windows that have been changed (after

adding the new tuple). If the computation is applied to other sub-windows, duplicated

results will be generated.

Example 6. Considering the network traffic stream NTStr in Example 4, we want to

monitor the number of sessions of each host connected to the SIGMOD web server, which

has its IP addresses as 199.222.69.250 and 199.222.69.251, over a sliding window of last

10,000 packets of each host or 5 minutes (300 seconds).
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CREATE CQ SIGMODTraffic AS

SELECT *

FROM NTStr

WHERE dest IP = 199.222.69.250 OR dest IP = 199.222.69.251

CREATE CQ NumberOfSessions AS

SELECT source IP, count(distinct source port) as sessions

FROM SIGMODTraffic [ CHECK ((NPack <= 10,000) OR

(( NT TS - CW TS) <= 300Sec))

SELECT count(*) AS NPack,

min(CW .timestamp) AS CW TS,

min(NT .timestamp) AS NT TS

FROM CW, NT

GROUP BY CW .source IP ]

The semantic window concept introduced above greatly enhances the expressiveness

power of CQs as it allows accurate and meaningful ways of expressing a window for

stream-based applications, and it also provides an efficient way of computing semantic

windows through highly optimized SQL engines. Further, the adaptation of SQL for

expressing semantic windows makes it even more useful as it avoids introducing new

language constructs and defining its semantics and can be easily integrated into current

stream processing model.

The computation introduced by maintaining a semantic window is necessary for

window-based operators and its computation overhead is less than those introduced by

basic window types. This is due to the fact that 1) accurate definition of a window

reduces the computation overhead required to compute the operator as the number of
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tuples decreases in its window, 2) well-developed optimization techniques and the well-

optimized SQL engine can be used to process SQL-based semantic window efficiently.

More important, 3) more meaningful and accurate window definition and computation

can be supported only by our semantic window and not by current window definitions

and computations. Many critical stream-based applications need accurate results that

can only be obtained through accurate definition of windows, which cannot be achieved

through basic window types.

Therefore, the semantic window introduced in this chapter is necessary, critical,

and efficient for data stream processing model and our integration model. The detailed

computation overhead and optimizations of semantic windows are an interesting problem

and will be part of our future work.

6.4.1.3 Stream Modifiers

The stream modifiers are introduced for CQs in order to extend the computation

of current stream processing to capture the changes of interest in an input data stream.

Before we introduce the detailed semantics of a stream modifier, we define the state in

an input stream as follows:

Definition 1 (State). A state in a data stream is defined as a tuple in that stream. An n-

state in a stream is denoted by s =< v1, v2, · · · , vn >, where vi is the value corresponding

to attribute Ai defined in the stream schema.

Definition 2 (Stream Modifier). A stream modifier is defined as a function to compute

the changes (i.e., relative change of an attribute) between two consecutive states of its

input stream. A stream modifier is denoted by M(< s1, s2, · · · , si > [, P < pseudo >

][, O|N < v1, v2, · · · , vj >]), where M is called the modifier function that computes a

particular kind of change. The i-tuple < s1, s2, · · · , si > is the parameter required by

the modifier function M . The following P < pseudo > defines a pseudo value for the
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M function in order to prevent underflow. The following j-tuple element is called the

untouched attribute that needs to be output without any change. The O|N part is called

modifier profile, which determines whether the oldest values or the latest values of the

j-tuple that needs to be output. If O is specified, the oldest values are output or the latest

values are output if N is specified. Both untouched attributes and modifier profile are

optional.

A family of stream modifiers could be defined using the above definitions. Cur-

rently, we have implemented the following three commonly used stream modifiers in our

system. In the following definitions, xi and xi+1 are the values of attribute x from state

i and i + 1 respectively, and anything in between “[ ]” is optional.

ADiff() is used to detect absolute changes over two consecutive states. It returns

absolute change of the values of attribute s1, and the values of a subset of attributes

given in O|N <> profile. It is formally defined for case O as follows:

ADiff(< s1 > [, N < v1, v2, · · · , vj >]) =<
si+1
1 −si

1

si
1

[, vi+1
1 , vi+1

2 , · · · , vi+1
j ] >

ADiff(< s1 > [, O < v1, v2, · · · , vj >]) =<
si+1
1 −si

1

si
1

[, vi
1, v

i
2, · · · , v

i
j] >

RDiff() is used to detect the relative changes over two consecutive states. It

returns relative change of the values of attribute s1, s2, and the values of a subset of

attributes given in O|N <> profile. It is formally defined for case N as follows:

RDiff(< s1 >, P < pseudo > [, N < v1, v2, · · · , vj >])

=<
si+1
1 −si

1+pseudo

si
1+pseudo

[, vi+1
1 , vi+1

2 , · · · , vi+1
j ] >

RDiff(< s1 > [, P < pseudo >][, O < v1, v2, · · · , vj >])

=<
si+1
1 −si

1+pseudo

si
1+pseudo

[, vi
1, v

i
2, · · · , v

i
j] >
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ASlope() is used to compute the slope ratio of two attributes over two consecutive

states. It returns the slope ratio of the values of attributes s1, s2, and the values of a

subset of attributes given in O|N <> profile. It is formally defined for case O as follows:

ASlope(< s1, s2 >, P < pseudo > [, N < v1, · · · , vj >])

=<
si+1
1 −si

1+pseudo

si+1
2 −si

2+pseudo
[, vi+1

1 , vi+1
2 , · · · , vi+1

j ] >

ASlope(< s1, s2 > [, P < pseudo >][, O < v1, · · · , vj >])

=<
si+1
1 −si

1+pseudo

si+1
2 −si

2+pseudo
[, vi

1, v
i
2, · · · , v

i
j] >

A stream modifier can only be used in a SELECT clause and is shown in the

example in Section 6.4.1.4.

Similarly, any aggregation operator can be used inside a stream modifier. The

output of an aggregation operator is considered a normal attribute in a stream modifier.

For example we can use ADiff(< AV G(speed) >, N < car id, location, timestamp >)

in an SQL statement.

Since we already have a window concept in current CQs, we can further extend

the computation of a stream modifier within a window. When a window is specified, a

stream modifier can be used to compute the changes between the oldest tuple and the

latest tuple, instead of the two consecutive tuples.

6.4.1.4 CQ for CAR ADN Example

The following IMMOBILE and DECREASE queries can be used to find all cars that stay

at the same location and the cars whose speed has decreased by 30% within the last 2

minutes using the extensions described so far.
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CREATE CQ DECREASE AS

SELECT RDiff(<speed> as C speed, p<0.01>,

N<car id, location, timestamp>)

FROM CarLocStr [ CHECK CWtime - NTtime <= 2

SELECT MIN(CW .timestamp) AS CWtime,

MIN(NT .timestamp) AS NTtime

FROM CW , NT

GROUP BY CW .car id ]

WHERE C speed <= -30%

CREATE CQ IMMOBILE AS

SELECT RDiff(<speed> as C speed, p <0.01>,

N<car id, location, timestamp>)

FROM CarLocStr [ CHECK CWtime - NTtime <= 2

SELECT MIN(CW .timestamp) AS CWtime,

MIN(NT .timestamp) AS NTtime

FROM CW , NT

GROUP BY CW .car id ]

WHERE C speed = 0.0

6.4.2 Event Processing

In this section we will discuss the enhanced event expression computations, event

specification using the extended SQL, and event node inputs and outputs.

Enhanced Event Operators and Event Expressions: EDGs in the current

event processing systems do not have input queues/buffers for event operators as the input
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rate of an event stream is not assumed to be very high and highly bursty and events are

processed from bottom to up based on their arrival timestamp (similar to a tuple-based

FIFO scheduling strategy). Thus, in our integrated model, input queues/buffers are

added to event operator nodes to handle the highly bursty input generated by the CQs

from the CQ processing stage. In a traditional event processing system, primitive events

can be of either class level or instance level, but both are based on timestamps. Instance

level events play an important role for events generated by stream processing, but with

the dynamic nature of incoming streams it is difficult or impossible to determine the

instance level events ahead of time. Example discussed below reveals the limitations of

the current event operators that operate based on timestamp.

Let us take the Car ADN example that has three requirements. Let us assume

that event Eimmobile represents IMMOBILITY (requirement 1) and event Edecrease

represents SPEED REDUCTION (requirement 2). An accident is represented as event

Eaccident and is detected when an event Eimmobile happens before (i.e., followed by)

event Edecrease. In addition, both the cars that are detected should be in the same

segment for the event Eaccident to happen. Let us assume that stream CarSegStr (refer

to Section 6.1) sends inputs to the named continuous queries CQ1 and CQ2. CQ1 checks

the car for immobility and CQ2 checks for speed reduction. CQ1 inputs to the event

node Eimmobile and CQ2 inputs to event Edecrease with the following formats

CQ1: (timestamp, car id, speed, exp way, lane, dir, segment id)

CQ2: (timestamp, car id, speed, exp way, lane, dir, segment id, decrease in speed)

Let us assume that Eimmobile occurs at 10.00 a.m. with tuple (10.00 a.m, 1, 0

mph, EW123, 3, NW, 104), and event Edecrease occurs at 10.03 a.m. and 10.04 a.m.

with tuples

(10.03 a.m, 2, 40mph, EW123, 1, NW, 109, 45%), (10.04 a.m, 5, 20mph, EW123,

4, NW, 104, 40%).
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Two events are said to be in sequence if the first event proceeds the second event

either in time or a monotonically increasing number. Thus, tuples with car id 1 (i.e.,

Eimmobile) and car id 2 (i.e., Edecrease) trigger the event Eaccident. Similarly tuples

with car id 1 and car id 3 triggers the event Eaccident. From above it is evident

that in current event processing systems (with or without event masks), the important

condition that both the cars should be from the same segment is checked only after the

event Eaccident is detected. This introduces a high overhead on the event computation

as there can be many unnecessary detection of event Eaccident. The above example

can be modeled using instance level events, but all the instances of a class should be

predefined (or known previously). This may be impossible in a system where the data

streams’ attribute values are dynamic. In addition, they require lot of event nodes, and

introduce a high overhead for computation. Hence, event detection computation has to

be enhanced to support efficient detection of events. In our integrated model this is

achieved by enhancing event expression computation by pushing the event masks into

the event operator node, so that attribute conditions are checked before the events are

detected.

Inputs to Event Processing Stage: CQs output data streams in the form of

tuples. These tuples are fed as input event streams to the event processing stage. We

assume that each tuple in a data stream that enters the system is time stamped or has

an ordering attribute (i.e., has a monotonically increasing sequence attribute) and can be

used in the event processing stage. With enhanced event expression computations any

attribute of an event (tuple) can be used in the event processing stage for 1) checking

conditions, 2) masking the inputs to the event nodes, and 3) merging event streams.

Event Specification using Extended SQL: CQ processing is compatible with

the event graph processing approach used by the event processing model. Thus, by

suitably extending queries over event streams and processing them using a push model,
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users can monitor diverse event stream combinations in a timely and meaningful manner.

Users can specify events based on CQs using the CREATE EVENT statement shown

below:

CREATE EVENT Ename

SELECT A1, A2, ..., An

MASK AC1, AC2, ..., ACn

FROM ES | EX

CREATE EVENT creates a named event Ename, SELECT selects the attributes

A1, A2, . . . , An from either the event stream ES or the event expression EX , MASK

applies conditions on the attributes AC1, AC2, . . . , ACn of those events that enter the

event operator node in the event detection graph. ES is a named CQ or a CREATE CQ

statement and EX is an event expression that combines more than one event using event

operators, and event attributes. Below shown is the CREATE EVENT statement for

a primitive event Eprim that selects all the cars that have segment id “<15” from the

event stream E1 produced by CarLocStr. As shown, MASK applies attribute condition

AC1 (i.e., seg id<15), and SELECT selects the car id and seg id FROM E1.

CREATE EVENT prim

SELECT stream.car id, E1.seg id

MASK stream.seg id < 15

FROM (CREATE CQ E1 as ...);

Creation of Events for CAR ADN Example: Section 6.4.1.4 provides the

CQs for the Car ADN example. Eimmobile is the event created from the CQ IMMOBILE

and Edecrease is the event created from the CQ DECREASE. Event Eaccident repre-

sents an accident and is detected when an event Eimmobile happens before Edecrease,

and both the seg ids are same. Event expression EX for the accident is Eaccident =
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Eimmobile SEQUENCE Edecrease where SEQUENCE is an event operator. CREATE

EVENT for the same is shown below:

CREATE EVENT Eaccident

SELECT Eimmobile.car id as EIcar id, Edecrease.car id as EDcar id,

Eimmobile.seg id, Eimmobile.timestamp

MASK Eimmobile.seg id = Edecrease.seg id

FROM (CREATE EVENT Eimmobile

SELECT IMMOBILE.car id, IMMOBILE.seg id

FROM IMMOBILE)

SEQUENCE

(CREATE EVENT Edecrease

SELECT DECREASE car id, DECREASE.seg id

FROM DECREASE)

Event nodes are created in the EDGs based on the CREATE EVENT specifications.

Output from the CQ is fed as inputs to the event nodes in the EDGs as event streams.

In the integrated model, input to the event nodes can be created in many ways (i.e., for

the FROM clause) and they are: (1) from the CQ, (2) from the underlying system, and

(3) from an external source. Once Eaccident is detected, it is propagated to the rule

processing stage.

6.4.3 Rule Processing

The rule system is responsible for triggering predefined actions. A rule is used to

trigger predefined actions once its associated event is detected. In our integrated model

rules can be specified and created using the CREATE RULE statement as shown below.
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CREATE RULE Rname [, CM, CT , P]

ON Ename

R CONDITION Begin; (Simple or Complex Condition); End;

R ACTION Begin; (Simple or Complex Action); End;

As shown above, CREATE RULE creates the rule Rname along with its properties

such as coupling mode CM (e.g., immediate, deferred), consumption mode or context

CT (e.g., recent, continuous) and priority P (e.g., 1, 2 where 1 is the highest) a positive

integer used to set rule priority. ON specifies the event Ename associated with the rule and

it can be replaced by the CREATE EVENT statement. In addition, a rule also contains

conditions associated with the rule and actions to be performed when conditions results

are true. Conditions on attributes act as event mask. Other conditions that are pertinent

to the rule, and those that are complex (i.e., any arbitrary condition such as average,

standard deviations, PL/SQL code etc.,) are specified in the rule condition.

Enhanced Event Consumption Modes: Analogous to the event operator se-

mantics, current event consumption modes are also based on time and have similar draw-

backs. In order to make the consumption modes more meaningful and consistent with

stream processing, we introduce semantic windows and attribute based event consump-

tion. For example, the recent mode from [36] can be viewed as a single tuple window

and is used by applications where the events are happening at a fast rate and multiple

occurrences of the same type of event only refine the previous data value.

We will explain the limitation of the current consumption modes based on the

recent consumption mode. Let us assume that event Eimmobile occurs at 10.00 a.m.

with tuple (car id 1, Time 10.00 a.m, seg id 1, Speed 0). It is propagated to the

SEQUENCE node and it waits in the composite event node for the event Edecrease to

occur, in order to detect Eaccident. When the next instance of event Eimmobile occurs

at 10.01 a.m. with the tuple (car id 4, Time 10.01 a.m, seg id 3, Speed 0), it
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replaces the previous instance with “car id 1” even though both have different car ids.

This is because recent mode is based on a single tuple window, and the computation

is based only on the timestamp where the instance with a latest timestamp replaces

the previous instance. In order to detect the event occurrences without losing potential

events, events can be replaced based on some attributes forming a set or partition. Thus,

in the above example only event instance of “car id 1” that occurs at a later point in time

can replace “car id 1” that occurred at 10.00 a.m., and not “car id 4” that had occurred

at 10.01 a.m.

Currently, there is no notion of windows and all the events are kept in the event

node until a new instance occurs or until it is consumed. As the input rate is likely to

be bursty in the integrated EStreams model (as it is fed by streams), there is a need for

associating a window with each event node. Thus, by introducing windows along with

the event consumption modes, the event processing system will be able to handle bursty

event streams.

Event consumption modes are specified as an option along with the CREATE

RULE statement. In our integrated model event consumption modes are enhanced to

support attribute and window based computations. As mentioned previously, events can

be unary, binary or ternary. Thus, specifying consumption modes in event expressions re-

quires the attributes/windows for all the operators. Enhanced event consumption modes

are specified as shown below, where CT represents the context, L, M and R represents

the left, middle, and right events. Attributes (A), number of events (E), and time units

(T) are optional. When an operator is binary only L and R are specified. Similarly A is

specified when attribute based partition is required and E/T is specified when the events

(tuples) have to be maintained in an event node at a point in time.

CT [ L[A, E/T], M[A, E/T], R[A, E/T] ]
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Let us create a rule Rsample for an event Esample. This event selects the cars

with id “>1000” from the named CQ Estream. In addition we want to partition the

window based on the attribute car id. This rule should have immediate as CM, recent

as CT (including the attribute as a left event as Esample is a primitive event) and with

highest priority P (i.e., 1). There are no conditions/actions associated. CREATE RULE

statement for this rule is shown below:

CREATE RULE Rsample, IMMEDIATE, RECENT L[Esample.car id], 1

ON (CREATE EVENT Esample

SELECT Estream.car id, Estream.timestamp

MASK Estream.car id > 1000

FROM (CREATE CQ as Estream ...))

Rule Creation for CAR ADN Example: When an event corresponding to

an accident Eaccident is detected, various types of life saving actions are required to be

performed. Creation of event Eaccident is shown in Section 6.4.2. Rule corresponding

to the Car ADN example is shown below.
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CREATE RULE AccidentNotify, IMMEDIATE,

RECENT L[Eimmobile.car id], R[Edecrease.car id], 1

ON EVENT Eaccident

R CONDITION Begin; (true); End;

R ACTION Begin;

//INDICATE POLICE CONTROL ROOM

PCR(Eaccident.seg id, Eaccident.EIcar id,

Eaccident.EDcar id, Eaccident.timestamp);

//INDICATE AMBULANCE CONTROL ROOM

ACR(Eaccident.seg id, Eaccident.timestamp

Eaccident.EIcar id, Eaccident.EDcar id);

//INDICATE UPSTREAM CARS

UpSSeg(Eaccident.seg id, Eaccident.timestamp);

//INDICATE TOLL STATION

TollSt(Eaccident.seg id, Eaccident.timestamp);

End;

6.5 Summary

In this chapter, we first discussed the necessity and importance of event and rule

processing under the context of data stream processing and then analyzed the similari-

ties and differences between the stream processing model and the event processing model

developed separately. Based on the sophisticated requirements of advanced stream appli-

cations and our analysis, we have proposed EStream, an integrated model that combine

their strengths through the techniques and enhancements proposed in this chapter. Those

techniques and enhancements include:
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1. named CQs to support association of primitive events with continuous queries;

2. stream modifiers to detect more complicated changes in a stream;

3. semantic windows to enhance the expressiveness and computation efficiency of

CQs and to allow creation of more meaningful windows apart from the basic win-

dows;

4. extension of event operators to handle highly bursty inputs from stream pro-

cessing by introducing input queues/buffers;

5. extended event expressions in such a way that primitive events can be the

outputs of continuous queries over event streams based on event attributes;

6. extended event consumption modes through semantic windows and attribute

based event consumption so that they can be more meaningful and consistent with

stream processing;

7. we have extended SQL to support combined specification of events and CQs.

By using the above techniques and enhancements, our integrated model not only supports

a larger class of applications, but also provides more accurate and efficient ways for

processing CQs and event expressions. All the enhancements proposed in this chapter

do not affect any current stream processing technique and can be easily integrated into

any current data stream management systems. Finally, a prototype of the proposed

integrated model is underway.
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CONCLUSIONS AND FUTURE WORK

In this thesis, we discussed problems and issues related to QoS support in a general

DSMS. Those problems include system capacity planning, QoS parameter verification,

run-time resource allocation, load shedding, and event and rule processing. We developed

comprehensive solutions and algorithms for these problems. Although each component

developed can be used individually to assist QoS support in DSMSs, the more important

contribution of this thesis is that it presented algorithms and solutions for various phases

of QoS support in DSMSs, starting from system capacity planning to a set of compre-

hensive QoS deliver mechanisms after systems are deployed and to verify and conforming

QoS requirements. These algorithms and solutions form a framework for a DSMS to

manage, control, deliver, and verify QoS requirements in a general DSMS. There is no

doubt that lot more work can be done for the framework and the problems discussed in

this thesis. In the rest of the chapter, we summarize each component of the framework

and provide some further work.

7.1 Modeling Continuous Queries

The continuous query modeling work forms the basis of our QoS framework for

DSMSs. It provides a closed-form solution to estimate various QoS parameters through

our queueing model. The queueing model provides a formal way for system capacity

planning before deploying a DSMS for a specific application. On the other hand, the

estimated QoS parameters provide sufficient quantitative information to integrate vari-

ous run-time QoS management mechanisms, such as run-time scheduling strategies, load

229
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shedding, admission control, and others, into our framework. Those quantitative infor-

mation makes it possible for DSMSs to dynamically choose suitable QoS deliver mecha-

nisms, such as switching from a memory-favorable scheduling strategy to a tuple-latency

favorable scheduling strategy, dynamically activating and deactivating load shedding,

and admission control. Additionally, the estimated QoS parameters provide an effective

way to verify whether defined QoS requirements of a continuous query have been indeed

satisfied.

There are at least two ways to further extend our modeling work to a more general

system.

1. In this thesis, all our analysis work are based on Poisson input data streams. Al-

though the results of our analysis based on this class of input streams are sufficient

for most applications, it would be more accurate and general if we can extend

our analysis to more general data streams, such as self-similar data streams with

Long-Range Dependence (LRD) process. It would also be interesting to study how

bursty behavior in input data streams impacts the performance of different query

plans of a query and the performance of a DSMS.

2. Our queueing model is a one-server queueing model. However, in a multiple-

processor architecture, there are multiple servers to serve the input tuples. Ex-

tending our analysis to a multiple-server queueing model would be more useful and

can support larger group of applications.

7.2 Scheduling Strategies

The family of scheduling strategies proposed in this thesis satisfies requirements of

a DSMS for many stream-based applications that have different QoS requirements. The

PC strategy is developed for those applications that consider tuple latency as the most

critical requirement. The MOS strategy is useful for those applications that are in favor
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of minimization of the total memory requirement. The greedy segment strategy and the

simplified segment strategy provide trades-off between the tuple latency and the total

memory requirement for those applications that are sensitive to both tuple latency and

the total memory requirement. More practically, the threshold strategy – the dynamical

hybrid of the PC and MOS strategy, makes it more practical for a large group of stream-

based applications since it inheritances the advantages of both strategies.

A list of open problems and further work in scheduling strategies include:

1. All scheduling strategies proposed in this thesis and in the literature so far have

not fully taken QoS requirements into consideration. One possible reason for that

is the high-overhead introduced by scheduling itself since a QoS-aware scheduling

strategy has to do scheduling at the granularity of tuple if we need each output

tuple to satisfy defined QoS requirements. However, the cost of processing one

tuple is low as compared with the cost of scheduling it. To schedule a batch of

tuples during each run, the tuple latency requirement and the bursty input mode

make it difficult to optimally determine the size of a batch.

2. In this thesis, we developed an event-driven preemptive scheduling model. It would

be useful to develop different scheduling models such as a non-preemptive one,

CPU-limited preemptive scheduling model, and others, and to compare and con-

trast those models for developing various run-time scheduling strategies.

3. Further study of the size of a batch (either in terms of CPU time or the number of

tuples) for scheduling is important and necessary to decrease the overhead intro-

duced by scheduling itself and to be adaptive to different scenarios (i.e., different

input modes, different applications).

4. Operator internal scheduling has not been studied in the literature so far for binary

or multiple-way operators. As we have shown in Section 4.1.1, different operator-

internal-scheduling strategies have different impact on the total memory require-
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ment of a DSMS. Choosing the right operator-internal-scheduling strategy can fur-

ther decrease the total memory requirement of a DSMS.

7.3 Load Shedding

The set of comprehensive load shedding techniques makes sure that a query process-

ing system has sufficient resources to compute registered queries in the system without

violating their QoS requirements. The technique we have developed for estimating sys-

tem load is a closed-form solution and can be efficiently computed based on current input

rates and characteristics of continuous queries. The system load estimation component

does not depend on the load shedding component or other components in our QoS frame-

work and can be integrated into other load shedding mechanisms. The algorithms for

load shedding and load distribution are optimal ones and are generally applicable for

DSMSs. Some open problems for further work in load shedding include:

1. High-overhead problem in load shedding. A shedder, either a random or seman-

tic one, introduces at least as much cost as a predict operator. In a DSMS with

hundreds of continuous queries, it has to introduce hundreds or even thousands

of shedders. The total cost of shedders can be high. The load shedding mecha-

nisms based on dropping tuples through shedder have their limitations in practical

DSMSs. It is necessary and important to exploit other load shedding mechanisms

(see below).

2. Approximation algorithms. As we discussed above, it is more appropriate to develop

approximation algorithms for expensive operators such as two or multiple-way join

operators. There has been some initial work in the literature; however, further

development in this direction is necessary to make it practically useful.

3. Anytime (contract) algorithms [127, 83, 68]. Anytime algorithms are extensively

studied in real-time systems and artificial intelligence systems. An anytime algo-
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rithm is an algorithm that can be interrupted at any time and still produces results

of a certain quality and the quality of results of an anytime algorithm is a function

of allocated computation time. Therefore, anytime algorithms are ideal choices for

load shedding in DSMSs if each operator (at least each of expensive operators) can

be implemented as an anytime algorithm. Once the system is short of resources,

it can limit the computation time allocated for each operator that is implemented

as anytime algorithm and the algorithms internally determine the optimal results

based on allocated computation time. However, how to implement an operator as

an efficient anytime algorithm at this point is unclear.

4. Admission control. Rather than dropping tuples, it is more efficient and effective

to temporarily suspend some continuous queries in the system to shed load.

7.4 Event and Rule Processing

The EStream, an integrated model of data stream processing and event and rule

processing, has strengths of both models and is better than the sum of its parts. The

integrated model can satisfy a larger group of data stream applications that need to

not only perform efficient continuous query processing but also complicated event and

rule processing. The enhancements proposed for the integrated model improve upon

both computation and expressive power of DSMSs. Especially, the concept of semantic

window greatly enhances the computation and expressive power of continuous queries

from different application domains.

A list of open problems for further work in event and rule processing are:

1. Rule processing in the context of data stream processing needs further investigation.

In this thesis, we mainly focus on the complex event processing rather than event

processing.
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2. Batch processing for semantic window. In this thesis, the semantic window is

maintained through inserting one tuple each time. To further decrease overhead,

it would be more efficient to admit a batch of tuples, rather than one individual

tuple.

3. Load shedding mechanism through shrinking the window. It is more useful for

many applications to discard the older tuples than newly arrived tuples. Current

load shedding mechanisms discard tuples from incoming data streams or partially

processing tuples in the input queues of an operator. Since most of operators do

their computation over a window of tuples that are a snapshot of most recent inputs,

it is natural and useful to drop the oldest tuple or least used tuple in the windows

of an operator, rather than newer tuples in input queues of an operator.

Data stream processing along with the solutions and algorithms developed in this

thesis satisfies the needs of a large group of applications and will be widely accepted

and used by applications from different domains and emerging applications as the cost

of collecting data becomes cheaper. We believe that data stream processing has a bright

future.



APPENDIX A

List of Experimental Query Plans
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In this appendix, we list the continuous queries that we used in our experiments

and their properties such as selectivity, processing capacity, and so on. For each query,

we list the following details of the query:

1. C-SQL statement;

2. Query Plan;

3. Operator Properties Table;

A.1 Query T5 a

The SQL statement of the CQ T5 a is given in C-SQL Statement. Its physical

query plan and the properties of each operator in the query plan are given in Figure A.1

and in Table A.1 respectively.

C-SQL Statement:
SELECT S0.networkAdd, S0.hostAdd, S0.port, S0.serviceType

FROM S0 JOIN (S1 JOIN S2 ON

(S1.protocolId == S2.protocolId) [ Tuple 20000])

ON (S0.protocolId == S1.protocolId) [ Tuple 20000]

WHERE stream0 AS S0 [(S0.hostAdd > 100 )&&(S0.serviceType >= 5)],

stream1 AS S1 [(S1.hostAdd > 100 )&&(S1.serviceType <= 3)],

stream2 AS S2 [(S2.hostAdd > 100 )&&(S2.serviceType >= 6)]
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Figure A.1 Query Plans of T5 a.
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Table A.1 Properties of Operators

operatorName selectivity right selectivity pro rate
selectivity (if pliable) #tuples/second

T5 a1J1 0.076489 0.076426 12932.3
T5 a1J3 0.076436 0.075448 12904.5
T5 a1S6 0.365376 N/A 288706
T5 a1S7 0.487451 N/A 286432
T5 a1S8 0.244045 N/A 304208

A.2 Query T5 b

The SQL statement of the CQ T5 b is given in C-SQL Statement. Its physical

query plan and the properties of each operator in the query plan are given in Figure A.2

and in Table A.2 respectively.

C-SQL Statement
SELECT S0.networkAdd, S0.hostAdd, S0.port, S0.serviceType

FROM (S0 JOIN S1 ON (S0.protocolId == S1.protocolId) [ Tuple 20000])

JOIN S2 ON (S1.protocolId == S2.protocolId) [ Tuple 20000]

WHERE stream0 AS S0 [(S0.hostAdd > 100 )&&(S0.serviceType >= 5)],

stream1 AS S1 [(S1.hostAdd > 100 )&&(S1.serviceType <= 3)],

stream2 AS S2 [(S2.hostAdd > 100 )&&(S2.serviceType >= 6)]
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Figure A.2 Query Plans of T5 b.
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Table A.2 Properties of Operators

operatorName selectivity right selectivity pro rate
selectivity (if applicable) #tuples/second

T5 b1J1 0.074753 0.075361 13099.5
T5 b1J2 0.07697 0.075538 13069.9
T5 b1S6 0.365373 N/A 287880
T5 b1S7 0.487542 N/A 284132
T5 b1S8 0.24403 N/A 289945

A.3 Query T5 c

The SQL statement of the CQ T5 c is given in C-SQL Statement. Its physical

query plan and the properties of each operator in the query plan are given in Figure A.3

and in Table A.3 respectively.

C-SQL Statement
SELECT S0.networkAdd, S0.hostAdd, S0.port, S0.serviceType

FROM (S0 JOIN S2 ON (S0.protocolId == S2.protocolId) [ Tuple 20000])

JOIN S1 ON (S0.protocolId == S1.protocolId) [ Tuple 20000]

WHERE stream0 AS S0 [(S0.hostAdd > 100 )&&(S0.serviceType <= 3)],

stream1 AS S1 [(S1.hostAdd > 100 )&&(S1.serviceType >= 5)],

stream2 AS S2 [(S2.hostAdd > 100 )&&(S2.serviceType >= 6)]
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Figure A.3 Query Plans of T5 c.
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Table A.3 Properties of Operators

operatorName selectivity right selectivity pro rate
selectivity (if applicable) #tuples/second

T5 c1J1 0.074699 0.07544 13258.6
T5 c1J2 0.076502 0.076579 12922.6
T5 c1S6 0.487642 N/A 280660
T5 c1S7 0.36548 N/A 295909
T5 c1S8 0.244029 N/A 307833

A.4 Query T7 a

The SQL statement of the CQ T7 a is given in C-SQL Statement. Its physical

query plan and the properties of each operator in the query plan are given in Figure A.4

and in Table A.4 respectively.

C-SQL Statement
SELECT S0.networkAdd, S0.hostAdd, S0.port, S0.serviceType

FROM (S0 JOIN S1 ON (S0.protocolId == S1.protocolId) [ Tuple 20000])

JOIN (S2 JOIN S3 ON (S2.protocolId == S3.protocolId) [ Tuple 20000])

ON (S0.protocolId == S2.protocolId) [ Tuple 20000]

WHERE stream0 AS S0 [(S0.hostAdd > 100 )&&(S0.serviceType <= 6)],

stream1 AS S1 [(S1.hostAdd > 500 )&&(S1.serviceType >= 3)],

stream2 AS S2 [(S2.hostAdd < 1000 )&&(S2.serviceType <= 5)],

stream3 AS S3 [(S3.hostAdd > 100 )&&(S3.serviceType >= 5)]
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Figure A.4 Query Plans of T7 a.
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Table A.4 Properties of Operators

operatorName selectivity right selectivity pro rate
selectivity (if applicable) #tuples/second

T7 a1J1 0.0767896 0.0765271 14666.9
T7 a1J2 0.0765741 0.0760241 15356.5
T7 a1J5 0.0764634 0.0765628 14842.6
T7 a1S10 0.182757 N/A 332017
T7 a1S11 0.397383 N/A 319262
T7 a1S8 0.841642 N/A 292415
T7 a1S9 0.548975 N/A 311973

A.5 Query T7 b

The SQL statement of the CQ T7 b is given in C-SQL Statement. Its physical

query plan and the properties of each operator in the query plan are given in Figure A.5

and in Table A.5 respectively.

C-SQL Statement
SELECT S0.networkAdd, S0.hostAdd, S0.port, S0.serviceType

FROM (S0 JOIN S2 ON (S0.protocolId == S2.protocolId) [ Tuple 20000])

JOIN

(S1 JOIN S3 ON (S1.protocolId == S3.protocolId) [ Tuple 20000])

ON (S0.protocolId == S1.protocolId) [ Tuple 20000]

WHERE stream0 AS S0 [(S0.hostAdd > 100 )&&(S0.serviceType >= 5)],

stream1 AS S1 [(S1.hostAdd > 100 )&&(S1.serviceType <= 6)],

stream2 AS S2 [(S2.hostAdd > 100 )&&(S2.serviceType >= 2)],

stream3 AS S3 [(S3.hostAdd > 500 )&&(S3.serviceType <= 5)]
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Figure A.5 Query Plans of T7 b.

Table A.5 Properties of Operators

operatorName selectivity right selectivity pro rate
selectivity (if applicable) #tuples/second

T7 b1J1 0.076977 0.0759418 14733.3
T7 b1J2 0.0767028 0.0762223 15392.9
T7 b1J5 0.0770829 0.0758878 15480.5
T7 b1S10 0.665078 N/A 306234
T7 b1S11 0.629823 N/A 308307
T7 b1S8 0.451377 N/A 313630
T7 b1S9 0.81704 N/A 298194

A.6 Query T7 c

The SQL statement of the CQ T7 c is given in C-SQL Statement. Its physical

query plan and the properties of each operator in the query plan are given in Figure A.6

and in Table A.6 respectively.

C-SQL Statement
SELECT S0.networkAdd, S0.hostAdd, S0.port, S0.serviceType

FROM (S0 JOIN S3 ON (S0.protocolId == S3.protocolId) [ Tuple 20000])

JOIN

(S2 JOIN S1 ON (S2.protocolId == S1.protocolId) [ Tuple 20000])

ON (S0.protocolId == S2.protocolId) [ Tuple 20000]

WHERE stream0 AS S0 [(S0.hostAdd > 100 )&&(S0.serviceType >= 5)],

stream1 AS S1 [(S1.hostAdd > 100 )&&(S1.serviceType <= 5)],

stream2 AS S2 [(S2.hostAdd > 100 )&&(S2.serviceType >= 4)],

stream3 AS S3 [(S3.hostAdd > 100 )&&(S3.serviceType <= 4)]
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Figure A.6 Query Plans of T7 c.

Table A.6 Properties of Operators

operatorName selectivity right selectivity pro rate
selectivity (if applicable) #tuples/second

T7 c1J1 0.0769256 0.0761092 14529.2
T7 c1J2 0.0768249 0.0766272 15399.4
T7 c1J5 0.075977 0.0767645 15287.4
T7 c1S10 0.458319 N/A 317689
T7 c1S11 0.579149 N/A 311219
T7 c1S8 0.438759 N/A 312566
T7 c1S9 0.703679 N/A 308879

A.7 Query T7 d

The SQL statement of the CQ T7 d is given in C-SQL Statement. Its physical

query plan and the properties of each operator in the query plan are given in Figure A.7

and in Table A.7 respectively.

C-SQL Statement
SELECT S0.networkAdd, S0.hostAdd, S0.port, S0.serviceType

FROM (((S0 JOIN S1 ON (S0.protocolId == S1.protocolId) [ Tuple 20000])

JOIN S2 ON (S0.protocolId == S2.protocolId) [ Tuple 20000])

JOIN S3 ON (S0.protocolId == S3.protocolId) [ Tuple 20000])

WHERE stream0 AS S0 [(S0.hostAdd > 100 )&&(S0.serviceType >= 5)],

stream1 AS S1 [(S1.hostAdd > 100 )&&(S1.serviceType <= 5)],

stream2 AS S2 [(S2.hostAdd > 100 )&&(S2.serviceType >= 3)],

stream3 AS S3 [(S3.hostAdd > 100 )&&(S3.serviceType <= 3)]
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Figure A.7 Query Plans of T7 d.

Table A.7 Properties of Operators

operatorName selectivity right selectivity pro rate
selectivity (if applicable) #tuples/second

T7 d1J1 0.076389 0.07623 13278.9
T7 d1J2 0.074184 0.076177 13315.3
T7 d1J3 0.0768 0.075839 13161.8
T7 d1S10 0.609688 N/A 278320
T7 d1S11 0.487402 N/A 278166
T7 d1S8 0.365409 N/A 285997
T7 d1S9 0.732454 N/A 271739

A.8 Query T7 e

The SQL statement of the CQ T7 e is given in C-SQL Statement. Its physical

query plan and the properties of each operator in the query plan are given in Figure A.8

and in Table A.8 respectively.

C-SQL Statement
SELECT S0.networkAdd, S0.hostAdd, S0.port, S0.serviceType

FROM (((S0 JOIN S2 ON (S0.protocolId == S2.protocolId) [ Tuple 20000])

JOIN S1 ON (S0.protocolId == S1.protocolId) [ Tuple 20000])

JOIN S3 ON (S0.protocolId == S3.protocolId) [ Tuple 20000])

WHERE stream0 AS S0 [(S0.hostAdd > 100 )&&(S0.serviceType <= 3)],

stream1 AS S1 [(S1.hostAdd > 100 )&&(S1.serviceType >= 5)],

stream2 AS S2 [(S2.hostAdd > 100 )&&(S2.serviceType <= 2)],

stream3 AS S3 [(S3.hostAdd > 100 )&&(S3.serviceType >= 6)]
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Figure A.8 Query Plans of T7 e.

Table A.8 Properties of Operators

operatorName selectivity right selectivity pro rate
selectivity (if applicable) #tuples/second

T7 e1J1 0.076266 0.077657 13254.3
T7 e1J2 0.077361 0.076291 13101.6
T7 e1J3 0.075317 0.07654 12952.1
T7 e1S10 0.365653 N/A 292407
T7 e1S11 0.244382 N/A 296613
T7 e1S8 0.487598 N/A 276466
T7 e1S9 0.365661 N/A 297120

A.9 Query T7 f

The SQL statement of the CQ T7 f is given in C-SQL Statement. Its physical

query plan and the properties of each operator in the query plan are given in Figure A.9

and in Table A.9 respectively.

C-SQL Statement
SELECT S0.networkAdd, S0.hostAdd, S0.port, S0.serviceType

FROM (((S0 JOIN S3 ON (S0.protocolId == S3.protocolId) [ Tuple 20000])

JOIN S1 ON (S0.protocolId == S1.protocolId) [ Tuple 20000])

JOIN S2 ON (S0.protocolId == S2.protocolId) [ Tuple 20000])

WHERE stream0 AS S0 [(S0.hostAdd > 100 )&&(S0.serviceType <= 2)],

stream1 AS S1 [(S1.hostAdd > 100 )&&(S1.serviceType >= 5)],

stream2 AS S2 [(S2.hostAdd > 100 )&&(S2.serviceType <= 3)],

stream3 AS S3 [(S3.hostAdd > 100 )&&(S3.serviceType >= 6)]
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Figure A.9 Query Plans of T7 f.

Table A.9 Properties of Operators

operatorName selectivity right selectivity pro rate
selectivity (if applicable) #tuples/second

T7 f1J1 0.072118 0.075375 13498.3
T7 f1J2 0.075059 0.075855 13125.6
T7 f1J3 0.076446 0.075717 12789.3
T7 f1S10 0.48775 N/A 282689
T7 f1S11 0.244381 N/A 296837
T7 f1S8 0.365629 N/A 282628
T7 f1S9 0.365629 N/A 291977

A.10 Query T7 g

The SQL statement of the CQ T7 g is given in C-SQL Statement. Its physical

query plan and the properties of each operator in the query plan are given in Figure A.10

and in Table A.10 respectively.

C-SQL Statement
SELECT S0.networkAdd, S0.hostAdd, S0.port, S0.serviceType

FROM S0 JOIN

(S1 JOIN

(S2 JOIN S3 ON (S2.protocolId == S3.protocolId) [ Tuple 20000])

ON (S1.protocolId == S2.protocolId) [ Tuple 20000])

ON (S0.protocolId == S1.protocolId) [ Tuple 20000]

WHERE stream0 AS S0 [(S0.hostAdd > 100 )&&(S0.serviceType >= 5)],

stream1 AS S1 [(S1.hostAdd > 100 )&&(S1.serviceType <= 2)],

stream2 AS S2 [(S2.hostAdd > 100 )&&(S2.serviceType >= 6)],

stream3 AS S3 [(S3.hostAdd > 100 )&&(S3.serviceType <= 3)]
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Figure A.10 Query Plans of T7 g.

Table A.10 Properties of Operators

operatorName selectivity right selectivity pro rate
selectivity (if applicable) #tuples/second

T7 g1J1 0.0762252 0.0772773 15422.7
T7 g1J3 0.0763198 0.0762073 15072
T7 g1J5 0.0760592 0.0769382 15017.7
T7 g1S10 0.243878 N/A 327713
T7 g1S11 0.458441 N/A 316283
T7 g1S8 0.463258 N/A 317088
T7 g1S9 0.365881 N/A 322708
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A.11 Query T7 h

The SQL statement of the CQ T7 h is given in C-SQL Statement. Its physical

query plan and the properties of each operator in the query plan are given in Figure A.11

and in Table A.11 respectively.

C-SQL Statement
SELECT S0.networkAdd, S0.hostAdd, S0.port, S0.serviceType

FROM S0 JOIN

(S3 JOIN

(S1 JOIN S2 ON (S1.protocolId == S2.protocolId) [ Tuple 20000])

ON (S3.protocolId == S1.protocolId) [ Tuple 20000])

ON (S0.protocolId == S3.protocolId) [ Tuple 20000]

WHERE stream0 AS S0 [(S0.hostAdd > 100 )&&(S0.serviceType <= 2)],

stream1 AS S1 [(S1.hostAdd > 100 )&&(S1.serviceType >= 5)],

stream2 AS S2 [(S2.hostAdd > 100 )&&(S2.serviceType <= 3)],

stream3 AS S3 [(S3.hostAdd > 100 )&&(S3.serviceType >= 6)]
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Figure A.11 Query Plans of T7 h.
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Table A.11 Properties of Operators

operatorName selectivity right selectivity pro rate
selectivity (if applicable) #tuples/second

T7 h1J1 0.0767856 0.0768352 15206.2
T7 h1J3 0.0805319 0.0790611 14356.1
T7 h1J5 0.0763591 0.0764978 15113.2
T7 h1S10 0.463546 N/A 315839
T7 h1S11 0.244232 N/A 325491
T7 h1S8 0.438139 N/A 314613
T7 h1S9 0.365712 N/A 321142

A.12 Query T9 a

The SQL statement of the CQ T9 a is given in C-SQL Statement. Its physical

query plan and the properties of each operator in the query plan are given in Figure A.12

and in Table A.12 respectively.

C-SQL Statement
SELECT S0.networkAdd, S0.hostAdd, S0.port, S0.serviceType

FROM ((((S4 JOIN S1 ON (S4.protocolId == S1.protocolId) [ Tuple 20000])

JOIN S2 ON (S4.protocolId == S2.protocolId) [ Tuple 20000])

JOIN S3 ON (S4.protocolId == S3.protocolId) [ Tuple 20000])

JOIN S0 ON (S4.protocolId == S0.protocolId) [ Tuple 30000])

WHERE stream0 AS S0 [(S0.hostAdd > 100 )&&(S0.serviceType >= 5)],

stream1 AS S1 [(S1.hostAdd > 100 )&&(S1.serviceType <= 5)],

stream2 AS S2 [(S2.hostAdd > 100 )&&(S2.serviceType >= 3)],

stream3 AS S3 [(S3.hostAdd > 100 )&&(S3.serviceType <= 3)],

stream4 AS S4 [(S4.hostAdd > 100 )&&(S4.serviceType >= 2)]
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Figure A.12 Query Plans of T9 a.

Table A.12 Properties of Operators

operatorName selectivity right selectivity pro rate
selectivity (if applicable) #tuples/second

T9 a1J1 0.105475 0.105671 11478.6
T9 a1J2 0.0760633 0.0766489 15399
T9 a1J3 0.0760277 0.0764726 15610.7
T9 a1J4 0.0767913 0.0765642 15336.3
T9 a1S10 0.45101 N/A 310669
T9 a1S11 0.716014 N/A 305312
T9 a1S12 0.565805 N/A 309834
T9 a1S13 0.475302 N/A 311873
T9 a1S14 0.719599 N/A 302650

A.13 Query T9 b

The SQL statement of the CQ T9 b is given in C-SQL Statement. Its physical

query plan and the properties of each operator in the query plan are given in Figure A.13

and in Table A.13 respectively.

C-SQL Statement
SELECT S0.networkAdd, S0.hostAdd, S0.port, S0.serviceType

FROM S0 JOIN (S1 JOIN (S2 JOIN (S3 JOIN S4

ON (S3.protocolId == S4.protocolId) [ Tuple 20000])

ON (S2.protocolId == S3.protocolId) [ Tuple 20000])

ON (S1.protocolId == S2.protocolId) [ Tuple 20000])

ON (S0.protocolId == S1.protocolId) [ Tuple 30000]
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WHERE stream0 AS S0 [(S0.hostAdd > 100 )&&(S0.serviceType <= 5)],

stream1 AS S1 [(S1.hostAdd > 100 )&&(S1.serviceType >= 5)],

stream2 AS S2 [(S2.hostAdd > 100 )&&(S2.serviceType <= 3)],

stream3 AS S3 [(S3.hostAdd > 100 )&&(S3.serviceType >= 4)],

stream4 AS S4 [(S4.hostAdd > 100 )&&(S4.serviceType <= 5)]
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Figure A.13 Query Plans of T9 b.

Table A.13 Properties of Operators

operatorName selectivity right selectivity pro rate
selectivity (if applicable) #tuples/second

T9 b1J1 0.107301 0.107323 11475.7
T9 b1J3 0.0766401 0.0757045 15379
T9 b1J5 0.0761899 0.0770867 15217.7
T9 b1J7 0.0766296 0.076385 15226.4
T9 b1S10 0.743672 N/A 292693
T9 b1S11 0.372883 N/A 320399
T9 b1S12 0.487549 N/A 313245
T9 b1S13 0.475848 N/A 315099
T9 b1S14 0.701362 N/A 304616



251

A.14 Query T9 c

The SQL statement of the CQ T9 c is given in C-SQL Statement. Its physical

query plan and the properties of each operator in the query plan are given in Figure A.14

and in Table A.14 respectively.

C-SQL Statement
SELECT S0.networkAdd, S0.hostAdd, S0.port, S0.serviceType

FROM (S0 JOIN S1 ON (S0.protocolId == S1.protocolId) [ Tuple 20000])

JOIN ((S2 JOIN S3 ON (S2.protocolId == S3.protocolId) [ Tuple 20000])

JOIN S4 ON (S2.protocolId == S4.protocolId) [ Tuple 20000])

ON (S0.protocolId == S2.protocolId) [ Tuple 20000]

WHERE stream0 AS S0 [(S0.hostAdd > 100 )&&(S0.serviceType <= 5)],

stream1 AS S1 [(S1.hostAdd > 100 )&&(S1.serviceType >= 4)],

stream2 AS S2 [(S2.hostAdd > 100 )&&(S2.serviceType <= 3)],

stream3 AS S3 [(S3.hostAdd > 100 )&&(S3.serviceType >= 3)],

stream4 AS S4 [(S4.hostAdd > 100 )&&(S4.serviceType <= 6)]
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Figure A.14 Query Plans of T9 c.
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Table A.14 Properties of Operators

operatorName selectivity right selectivity pro rate
selectivity (if applicable) #tuples/second

T9 c1J1 0.0793667 0.0757112 14879.9
T9 c1J2 0.084171 0.0837157 14323
T9 c1J5 0.0759827 0.0764632 15474.5
T9 c1J6 0.0763753 0.0767848 15077
T9 c1S10 0.755938 N/A 297103
T9 c1S11 0.475429 N/A 314064
T9 c1S12 0.470528 N/A 317018
T9 c1S13 0.579459 N/A 310279
T9 c1S14 0.780705 N/A 300406

A.15 Query T9 d

The SQL statement of the CQ T9 d is given in C-SQL Statement. Its physical

query plan and the properties of each operator in the query plan are given in Figure A.15

and in Table A.15 respectively.

C-SQL Statement
SELECT S0.networkAdd, S0.hostAdd, S0.port, S0.serviceType

FROM ((S0 JOIN S1 ON (S0.protocolId == S1.protocolId) [ Tuple 20000])

JOIN S2 ON (S0.protocolId == S2.protocolId) [ Tuple 20000])

JOIN (S3 JOIN S4 ON (S3.protocolId == S4.protocolId) [ Tuple 20000])

ON (S0.protocolId == S3.protocolId) [ Tuple 20000]

WHERE stream0 AS S0 [(S0.hostAdd > 100 )&&(S0.serviceType >= 5)],

stream1 AS S1 [(S1.hostAdd > 100 )&&(S1.serviceType <= 5)],

stream2 AS S2 [(S2.hostAdd > 100 )&&(S2.serviceType >= 4)],

stream3 AS S3 [(S3.hostAdd > 100 )&&(S3.serviceType >= 3)],

stream4 AS S4 [(S4.hostAdd > 100 )&&(S4.serviceType <= 6)]
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Figure A.15 Query Plans of T9 d.

Table A.15 Properties of Operators

operatorName selectivity right selectivity pro rate
selectivity (if applicable) #tuples/second

T9 d1J1 0.0814745 0.0781117 14851.3
T9 d1J2 0.0763706 0.0762074 15216.2
T9 d1J3 0.0841094 0.0843216 14385.6
T9 d1J7 0.0760247 0.0762887 15515.4
T9 d1S10 0.437332 N/A 316206
T9 d1S11 0.753574 N/A 300337
T9 d1S12 0.423588 N/A 318579
T9 d1S13 0.600737 N/A 308715
T9 d1S14 0.829362 N/A 296772

A.16 Query T9 e

The SQL statement of the CQ T9 e is given in C-SQL Statement. Its physical

query plan and the properties of each operator in the query plan are given in Figure A.16

and in Table A.16 respectively.

C-SQL Statement
SELECT S0.networkAdd, S0.hostAdd, S0.port, S0.serviceType

FROM S0 JOIN (

(S1 JOIN S2 ON (S1.protocolId == S2.protocolId) [Tuple 20000])

JOIN

(S3 JOIN S4 ON (S3.protocolId == S4.protocolId) [Tuple 20000])

ON (S1.protocolId == S3.protocolId) [ Tuple 20000])
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ON (S0.protocolId == S1.protocolId) [ Tuple 30000]

WHERE stream0 AS S0 [(S0.hostAdd > 128 )&&(S0.serviceType >= 5)],

stream1 AS S1 [(S1.hostAdd > 200 )&&(S1.serviceType <= 5)],

stream2 AS S2 [(S2.hostAdd > 100 )&&(S2.serviceType >= 3)],

stream3 AS S3 [(S3.hostAdd > 500 )&&(S3.serviceType <= 3)],

stream4 AS S4 [(S4.hostAdd > 100 )&&(S4.serviceType >= 2)]

T9 e1Sk0
g

6T9 e1J1
g

��������:

T9 e1S10
g

6

stream0

XXXXXXXXy

T9 e1J3
g

������1
T9 e1J4

g

����*
T9 e1S11

g

6

stream1

HHHHY
T9 e1S12

g

6

stream2

PPPPPPi
T9 e1J7

g

����*
T9 e1S13

g

6

stream3

HHHHY
T9 e1S14

g

6

stream4

Figure A.16 Query Plans of T9 e.

Table A.16 Properties of Operators

operatorName selectivity right selectivity pro rate
selectivity (if applicable) #tuples/second

T9 e1J1 0.107645 0.107062 11373.1
T9 e1J3 0.0768394 0.0771324 14703.9
T9 e1J4 0.0764475 0.0762762 15393.1
T9 e1J7 0.0761344 0.0762441 15269.7
T9 e1S10 0.438456 N/A 318381
T9 e1S11 0.68573 N/A 306286
T9 e1S12 0.597537 N/A 308851
T9 e1S13 0.465752 N/A 317484
T9 e1S14 0.730004 N/A 303850
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