
AN EXTENSIBLE APPROACH TO REALIZING EXTENDED TRANSACTION
MODELS

By

EMAN ANWAR

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

1996

ACKNOWLEDGEMENTS

I am deeply indebted to my advisor Dr. Sharma Chakravarthy for providing me the

opportunity to work on this challenging topic and for providing continuous guidance, advice,

and support throughout the course of this research work. I thank Dr. Stanley Su, Dr. Eric

Hanson, Dr. Li-Min Fu and Dr. Suleyman Tufekci for serving on my supervisory committee

and for their careful perusal of this dissertation. I would like to thank Sharon Grant for

maintaining a well administered research environment and for the great laughs we had

together. I also thank many of my friends for making my stay in Gainesville memorable.

On a more personal note, I would like to dedicate this dissertation to my father, Dr. Sami

Anwar and my mother, Mrs. Afaf Anwar, who have always encouraged my academic inter-

ests. I would also like to thank my two wonderful sisters, Hanan and Nahla, and my cute

little nephew, Tamer. Without their love, support, and constant encouragement this work

would not have been possible.

ii

TABLE OF CONTENTS

page

ACKNOWLEDGEMENTS : ii

LIST OF FIGURES : v

ABSTRACT : vi

CHAPTERS : 1

1 INTRODUCTION : 1
1.1 Need for Atomicity : 2
1.2 Need for Consistency : 3
1.3 Need for Isolation : 4
1.4 Need for Durability : 7
1.5 Limitations of the Traditional Transaction Model : : : : : : : : : : : : : : : 8
1.6 Applications Not Served by ACID Transactions : : : : : : : : : : : : : : : : 10

2 PROBLEM STATEMENT AND MOTIVATION : : : : : : : : : : : : : : : : : : 14

3 ADVANCED TRANSACTION MODELS : 18
3.1 Nested Transactions : 18
3.2 Sagas : 20
3.3 Split Transactions : 21
3.4 Cooperative Transaction Hierarchy : 21
3.5 Cooperative SEE Transactions : 22
3.6 ConTract Model : 23
3.7 Flex Transaction Model : 25
3.8 Polytransactions : 27
3.9 S Transaction Model : 29

4 RELATED WORK : 32

5 RULE-BASED APPROACH TO SUPPORTING EXTENDED TRANSACTIONS 45
5.1 Active Databases : 47
5.2 Our Approach : 51

5.2.1 Alternatives for Supporting Extended Transaction Models : : : : : : 52
5.2.2 Bene�ts of Our Approach : 58
5.2.3 Contributions : 59

iii

6 DESIGN DETAILS : 61
6.1 Zeitgeist : 61
6.2 Overview of Sentinel : 71
6.3 Adequacy of Sentinel for Supporting Transaction Models : : : : : : : : : : : 75

7 IMPLEMENTATION DETAILS : 79
7.1 Modeling Nested Transactions : 79
7.2 Split Transactions : 89
7.3 Sagas : 92

8 EXTENSIBILITY : 94

9 CONCLUSIONS AND FUTURE WORK : 97

REFERENCES : 99

BIOGRAPHICAL SKETCH : 103

iv

LIST OF FIGURES

Figure page

1.1 Transaction Dependencies caused by Concurrent Transaction Execution. : : 6

3.1 Structure of Nested Transactions. : 18

3.2 Characteristics of Advanced Transaction Models. : : : : : : : : : : : : : : : 31

5.1 Condition Action Pairs : 47

5.2 Active DBMS Architecture. : 50

5.3 Rule Composition : 57

6.1 Zeitgeist Modules. : 62

6.2 The structure showing the locks held by a transaction. : : : : : : : : : : : : 64

6.3 The Hash Table Class. : 65

6.4 The Transaction Class. : 66

6.5 The Zeitgeist Class. : 67

6.6 Architecture of Zeitgeist's Transaction Manager. : : : : : : : : : : : : : : : 72

6.7 Sentinel class hierarchy : 73

6.8 Sentinel class hierarchy at the System Level : : : : : : : : : : : : : : : : : : 75

6.9 Transaction class hierarchy. : 78

v

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Ful�llment of the
Requirements for the Degree of Doctor of Philosophy

AN EXTENSIBLE APPROACH TO REALIZING EXTENDED TRANSACTION
MODELS

By

Eman Anwar

May, 1996

Chairman: Dr. Sharma Chakravarthy
Major Department: Computer and Information Science and Engineering

Use of databases for non-traditional applications has prompted the development of an

array of new transaction models whose semantics vary from the traditional model as well

as from each other. The implementation details of most of the proposed models have been

sketchy at best. Furthermore, current architectures of most DBMSs do not lend themselves

to supporting more than one built-in transaction model. As a result, despite the presence

of rich transaction models, applications cannot realize semantics other than that provided

by the traditional transaction model.

In this dissertation, we propose a framework for supporting various transaction models

in an extensible manner. We demonstrate how ECA (event-condition-action) rules, de�ned

at the system level on signi�cant operations of a transaction and/or data structures such as

a lock table, allow the database implementor/customizer to support: i) currently proposed

extended transaction models, and ii) newer transaction models as they become available.

Most importantly, this framework allows one to customize transaction (or application)

semantics in arbitrary ways using the same underlying mechanism. Sentinel, an active

object-oriented database system developed at UF, is used for demonstrating our approach

for implementing extended transaction models.

CHAPTER 1
INTRODUCTION

Database systems allow for the storage, management and manipulation of large volumes

of data. Users interact with the database system by executing applications, where each

application consists of a set of operations to be performed on the stored data. These sets

of operations carry out a desired function on behalf of the user, e.g., debiting or crediting

a bank account. An application's execution yields a partially ordered set of read and write

operations. In other words, an application interacts with the database only through the

read and write operations. These latter operations respectively denote the reading and

writing of a data item's value.

As stated above, an application's execution produces a partially ordered set of read and

write operations. This partially ordered set is referred to as a transaction. Conventional

database management systems (DBMSs) guarantee four properties for each transaction,

namely, atomicity, consistency, isolation and durability (commonly referred to as the ACID

properties) [25, 26, 39]. These four properties are associated with transactions in order to

preserve the correctness of the database as well as allow certain database system features

to be provided. For instance, in order to allow users to concurrently access the database,

a mechanism for regulating and governing the execution of their transactions needs to be

employed. This mechanism is required since these concurrent transactions access a shared

database. The isolation property was associated with transactions in order to achieve that

precise goal, namely, the correct execution of concurrent transactions. These four properties

evolved the �rst and simplest transaction model, namely, the traditional transaction model.

A transaction model is basically a set of rules which govern the execution and properties

of transactions. Below, we give a detailed discussion of the need for associating these

1

2

properties with transactions. In addition, examples of bad scenarios which arise when

these properties are not enforced are given.

1.1 Need for Atomicity

A transaction is a linear sequence of operations against the database. During the

course of a transaction's execution, one of these operations may fail or a system failure

may occur thereby preventing the transaction from continuing its execution. The problem

with failures can be demonstrated by considering a transaction which transfers $200 from

a person's savings account to the person's checking account. A transaction which performs

this transfer of funds can be modeled as follows:

Line 1 temp = read(savings); /* read savings balance into variable */

Line 2 temp = temp - 200;

Line 3 write(temp,savings); /* decrement the savings bank balance */

Line 4 temp = read(checking); /* read checking balance into variable */

Line 5 temp = temp + 200;

Line 6 write(temp,checking); /* increment the checking bank balance */

Assume a system failure occurs after execution of line 3 above, speci�cally, after decre-

menting the savings account but before incrementing the checking account. In this scenario,

the database does not re
ect a correct transfer of funds; rather, the funds are lost and not

placed into the checking account. This is caused because only a subset of the operations

(instead of all) of the transaction is executed. Therefore, it is necessary to ensure that all

of the operations of a transaction are executed. Furthermore, in the event of failures it

must appear that none of the operations have taken place. In other words, a transaction

must appear to be one atomic logical unit; either all or none of the operations are executed.

Thus, a transaction must take the database from one initial database state to a result state

3

without any observable intermediate states. Furthermore, in the event of errors, the trans-

action must appear to have not changed the initial database state. A transaction which

performs all or none of its operations is termed atomic.

1.2 Need for Consistency

A database consists of a collection of data items which satisfy a set of integrity con-

straints. For example, a possible integrity constraint on a bank balance is that it's value

should always be greater than or equal to zero. Another integrity constraint may specify

that all employees should have a salary greater than or equal to the minimum wage. The

notion of integrity constraints raises an important issue, in particular, how to ensure the

preservation of integrity constraints despite the continual modi�cation of data by transac-

tions.

Two schools of thought exist for the above mentioned problem. The �rst method

places the burden on the application programmer; speci�cally, the application programmer

must be aware of all integrity constraints that exist in the database and write application

programs which preserve them. On the other hand, the second method removes the burden

from the application programmer and places it with the database system. In particular,

after each transaction completes, the database system is responsible for checking that no

integrity constraints are violated. This is by no means an easy task since the database

needs to be quiescent while the integrity constraints are checked. This in turn reduces

the availability of the database to the users. Moreover, a substantial overhead is incurred;

the database system must check that all integrity constraints are not violated after each

transaction completes. The disadvantages of the latter approach outweigh the advantage

of removing the burden of integrity constraint preservation from the user. Consequently,

the traditional transaction model dictates that each transaction, written by an application

programmer, is correct. A transaction is deemed correct if it takes the database from a

state, in which the integrity constraints are satis�ed, to another state where the integrity

4

constraints are also preserved. This correctness property of transactions is referred to

as consistency. It is important to note that although consistency is preserved once a

transaction successfully terminates, consistency may be violated during the intermediate

steps of a transaction.

1.3 Need for Isolation

Another property which a transaction must possess is the isolation property. Trans-

actions consist of a collection of read and write operations which respectively retrieve and

update the data. One of the primary goals of a database system is to allow for the simul-

taneous execution of several transactions against a database, either by the same user or

by multiple di�erent users. However, the execution of concurrent transactions needs to be

controlled and coordinated since they are accessing a shared database and may potentially

interfere with one another. In other words, these concurrent transactions must be executed

while preserving the illusion that each transaction is executing in isolation. In order to show

the need for this property, consider two identical banking applications which withdraw the

sum of $100 from the same bank account. Furthermore, assume that the initial balance

is $500 and that each transaction must �rst retrieve the bank balance before updating it.

Therefore, each transaction is structured as follows:

Line 1 temp = read(balance); /* read bank balance into variable */

Line 2 temp = temp - 100;

Line 3 write(temp,balance); /* update the bank balance */

Now consider the following interleaved execution of the above transaction:

Transaction One Transaction Two

temp = read(balance);

temp = read(balance);

5

temp = temp - 100;

temp = temp - 100;

write(temp,balance);

write(temp,balance);

In the above interleaved execution, both transactions read the initial bank balance of

$500 and decrement it by $100 and then both write the bank balance as $400, i.e., only a

withdrawal of $100 rather than $200 is re
ected in the database. This problem is referred

to as the lost update or missing update problem.

Another problem which may potentially arise when concurrent transactions execute is

known as the dirty read problem. This problem arises when a transaction T1 reads the

value of a data item X which was previously written by a transaction T2. Subsequently, T2

makes additional modi�cations to that same object X. Consequently, transaction T1 has

read an intermediate rather than a �nal value of object X. To given an example of when

the dirty read problem arises, consider the following scenario. Assume an employer is to

be given a 10% raise and a bonus in the amount of $300. A transaction performing this

salary increase can be structured as follows :

temp = read(salary); /* read salary into temporary variable */

temp = temp + temp * 0.1;

write(temp,salary); /* update the salary */

temp = temp + 300;

write(temp,salary); /* update the salary with the bonus*/

6

Assume another transaction reads the employer's salary after execution of line 3. In

this case the incorrect �nal salary will be read thus introducing a dirty read.

The last problem which may arise when transactions execute concurrently is termed

the unrepeatable read problem. This problem arises when a transaction T1 reads an object

X once before transaction T2 modi�es it, and once after transaction T2 modi�es it and

commits. In this scenario, the reads made by transaction T1 produce di�erent results.

Consequently, the �rst read made by transaction T1 is termed unrepeatable since its value

cannot be repeated since a new value of object X is returned. The problems associated

with concurrent execution of transactions are depicted in Figure 1.1. <O,V> denotes the

reading of object O and the return of value V or updating object O's value to V.

<O,1>

<O,2>

<O,3>

T2

T2

T1 WRITE

WRITE

READ T2

T2

T1

WRITE

T2

T2

T1 WRITE

READ

<O,2>

<O,3>

<O,1>

<O,2>

WRITE

READ

READ

<O,2>

<O,2>

Lost Update Dirty Read Unrepeatable Read

T1 and T2. The WRITE-WRITE dependency can cause lost updates, the WRITE-READ dependency

can cause dirty reads, and the READ-WRITE dependency can cause unrepeatable reads.

Versions of an object O are shown to be read and written, in an interleaved fashion, by two tranasactions,

Figure 1.1. Transaction Dependencies caused by Concurrent Transaction Execution.

From the above discussion, it is necessary to either execute only one transaction at

a time or allow multiple transactions to execute concurrently but create the illusion that

each transaction executes in isolation from other transactions. The former approach has

two main disadvantages. First, the performance of the database system, in terms of trans-

action throughput, is severely compromised since only one transaction is allowed to execute

at a time. Second, many transactions may be independent from each other, speci�cally,

7

the transactions may access disjoint sets of data items. When transactions are indepen-

dent, their concurrent executions do not interfere with each other. Due to these two main

disadvantages, it is more advantageous to allow the concurrent execution of transactions,

but regulate it in such a manner such that each transaction appears to execute in isolation

from other transactions. The property of creating the illusion that concurrent transactions

execute in isolation from one another is termed isolation.

1.4 Need for Durability

The last property of traditional transactions is durability. This property ensures that all

updates made by a committed transaction survive any subsequent failures. This property

is necessary since it is impossible to build a perfect system that never fails. Even if we are

to assume that such a system can be built, the system will still fail occasionally. Failures

will occur due to users making application programming errors as well as the people oper-

ating the system making some procedural or data entry errors causing the system to fail.

Consequently, since an error free system is infeasible, durability is required to ensure that

when a transaction commits, all updates survive any subsequent failures.

Below, we summarize the ACID properties of transactions in the traditional transaction

model:

� Atomicity. This property refers to the fact that all or none of the operations of a

transaction are executed. In other words, the transaction is an atomic unit of work.

� Consistency. This property ensures that a transaction preserves the consistency

of the database, i.e., the transaction takes the database from one consistent state to

another. Note, however, that the database may be inconsistent at intermediate points

within a transaction.

� Isolation. This property ensures that concurrent transactions are isolated from one

another. In other words, the partial results of a transaction T1 are hidden from all

8

other concurrent transactions that interfere with T1, until transaction T1 commits.

Consequently, from the perspective of a transaction, its execution behaves exactly as

it would in single-user mode as it does in multi-user mode.

� Durability. This property ensures that the updates made by a committed transac-

tion survive subsequent failures. In other words, the results of a committed trans-

action can be reestablished despite any subsequent user, environment or hardware

component failure. This property also implies that there is no automatic function for

revoking the e�ects of a completed and committed transaction. These e�ects can only

be revoked by executing a counter-algorithm which is referred to as a compensating

transaction. Compensating transactions will be discussed in later sections.

Although database systems encompass a large range of applications, they were origi-

nally developed for business oriented database applications such as banking systems, airline

reservation systems, and organizational systems. These applications are well-served by the

properties of the traditional transaction model. However, as the scope of databases extends

to a large variety of applications, it is important to reevaluate the assumptions and proper-

ties of the traditional model of transactions. These newer and non-traditional applications

expose some limitations of the traditional transaction model. It must be emphasized that

although the traditional transaction model has some limitations, it has many virtues as

well. One of the primary advantages of the traditional transaction model is its simplicity

which makes transactions with ACID properties e�ective in isolating the application from

failures and faults. In the following section we examine the limitations of the traditional

transaction model. Speci�c applications which make these limitations apparent are also

discussed.

1.5 Limitations of the Traditional Transaction Model

Conventional database management systems (DBMSs) guarantee atomicity, consistency,

isolation and durability (commonly referred to as the ACID properties) [25, 26, 39] for each

9

transaction. This traditional transaction model is ideal for applications in areas such as

airline reservations, electronic funds transfer and banking applications. Transactions for

these applications are typically simple in nature and have very short duration. However, the

emergence of non-traditional applications, such as work
owmanagement, cooperative tasks,

and computer integrated manufacturing (CIM), has made it increasingly apparent that

this traditional transaction model is too restrictive for modeling these newer applications.

Transactions in these newer applications di�er considerably from transactions in areas such

as banking applications; speci�cally, transactions are usually very complex, access many

data items during the course of their execution and have long duration. Transactions having

long duration are referred to as long-lived transactions.

The traditional transaction model is inadequate for serving the requirements of long-

lived transactions. First, long-lived transactions are more prone to failures due to their long

duration. The failure atomicity requirement of the traditional transaction model dictates

that all work must be rolled back in the event of failures. This requirement is unsuitable

for long-lived transactions due to the fact that much work might have been done and will

be lost in the event of a failure. In addition, long-lived transactions typically access many

data items during the course of its execution. Due to the isolation requirement of the

traditional transaction model, these data items cannot be released until the transaction

commits. Long-lived transactions run for hours and sometimes days thus causing short

transactions to wait for long periods of time to access those data items accessed by long-

lived transactions.

Another limitation of the traditional transaction model is that it does not allow much

cooperation among activities. Many applications require cooperation among activities. For

example, in CAD environments several people may be jointly working on a project where

each person is responsible for part of the design project. Thus cooperation is needed in

order to complete the project and is usually achieved through shared data items; speci�cally,

10

the data items are accessed alternately by the people working on the design project. This

form of cooperation is prohibited in the traditional transaction model due to the isolation

requirement of uncommitted transaction results.

Another problem with the traditional transaction model is that it may be too strict for

certain environments. As an example, in a work
ow application, some of the (sub)tasks

that deal with invoices may have to satisfy the ACID properties (on a small portion of

the database) whereas other tasks may work on their own copy of the data objects and

only require synchronization. As another example, in design environments, compensating

actions (or even partial rollbacks) may be more appropriate when a long running design

activity reaches an undesirable point than aborting or rolling back a transaction to its

starting point.

In the following section we give two examples of applications not well-served by the

ACID properties provided by the traditional transaction model. These examples are in-

cluded to better illustrate the limitations of the traditional transaction model.

1.6 Applications Not Served by ACID Transactions

Let us consider two applications which are not well-served by the traditional transac-

tion model, speci�cally, a trip planning application and bulk updates (as an example of a

long-lived application). Details of these two applications along with how the traditional

transaction model does not adequately serve their requirements, are given below.

Trip planning. Assume one needs to travel from Orlando, Florida, to Alexandria,

Egypt. Since there are no direct
ights between these two cities, several connecting
ights

need to be booked along with possible car rental reservations, train or bus reservations,

or hotel room reservations for overnight stays. Furthermore, assume that the traveler

has certain preferences regarding the trip; speci�cally, the traveler does not prefer driving

during the night and would rather stay overnight at a hotel. In addition, the traveler

prefers to book as many
ights on the same day as possible. Given this information the

11

travel agent comes up with an itinerary for the trip. The travel agent, using a transaction-

based reservation system which gives access to all the required airline databases, train and

bus companies, and hotel databases, comes up with the following itinerary:

STEP 1: book
ight from Orlando, Florida, to Detroit, Michigan

STEP 2: book
ight from Detroit, Michigan, to Amsterdam, Netherlands

STEP 3: book
ight from Amsterdam, Netherlands, to Cairo, Egypt

Assume that after completing step three, the travel agent realizes that the only method

to get from Cairo to Alexandria is by renting a car. Now, this poses a problem since the

traveler does not prefer to drive during the night. What can the travel agent do in this

situation? One solution may be to book a
ight from Detroit to Mansoura, Egypt, and then

reserve a train from Mansoura to Alexandria. Another solution is to book a
ight from

Detroit, Michigan, to New York and then take a direct
ight from New York to Alexandria.

Therefore, given the
at structure of the traditional transaction model, the travel agent has

only two choices: i) issue a rollback operation after execution of step 3. This unnecessarily

wastes a lot of previous work since there is no need to cancel the reservation from Orlando

to Detroit, or ii) explicitly cancel those reservations that are no longer useful and keep

those reservations which can still be used. This latter approach may be cumbersome if the

amount of work to be undone is much larger than that shown in the example above (e.g.,

if a group of people were traveling on the same trip together).

From the above example, it is apparent that rather than only having the total rollback

provided by the traditional transaction model, a transaction model should also provide

a selective rollback. In other words, rather than aborting the entire transaction and los-

ing some useful work, the user should be able to rollback to a particular position in the

transaction body, in this case to step 2.

12

Bulk updates. Another example which illustrates the limitations of the traditional

transaction model is bulk updates. Assume that the same operation is to be performed

repeatedly on di�erent data items. In addition assume that the number of data items is

very large. A typical example of this is in credit card agencies where the accumulated

interest is computed at the end of each month. Let us assume that there are a million

credit card accounts which need to be updated.

STEP 1: read credit card balance

STEP 2: balance = balance * (1 + interest rate)

STEP 3: Total-Credit-Balance = Total-Credit-Balance + balance

Let us assume that the above transaction begins execution, and after the successful up-

date of 955,843 credit card balances, a failure occurs. Now, since the traditional transaction

model dictates that a transaction should be one atomic unit, all these accounts need to be

changed to their original values. This wastes a very large amount of work in terms of both

updating the accounts, to re
ect the interest incurred, as well as reversing the accounts

back to their original value. It may be argued that instead of creating only one transaction

to update all accounts, each account should be updated by a stand-alone transaction. This

argument aims at reducing the amount of work lost when a crash occurs since at most

only one account balance needs to be reversed. This solution however is incorrect since the

semantics of the operation is to update all accounts at the end of the month. By adopting

this solution the system will be unable to update all accounts in the event of a crash simply

due to the fact that it will have no information about which account was last updated.

Consequently, the system will be unable to pick up the work after recovery.

This dissertation is structured as follows. Chapter 2 presents the current solution

adopted by the database community for overcoming the limitations of the traditional trans-

action model. The solution basically proposes extended or advanced transaction models

13

that better serve the requirements of non-traditional applications. Chapter 2 also describes

the problem which we address in this dissertation, namely, how to provide an extensible

transaction management facility, speci�cally, how to support di�erent transaction models

on the same underlying DBMS. Motivation for this work is also given is chapter 2. Chapter

3 describes a number of extended transaction models. A table summarizing the structure

and correctness of these advanced transaction models is also included in chapter 3. A de-

tailed survey of related work, namely, di�erent approaches to supporting various transaction

models is presented in chapter 4. Chapter 5 then describes the notion of the active database

paradigm and examines its adequacy for realizing the semantics of various transaction mod-

els. Chapter 6 then outlines our approach based on the active database paradigm as well

as presents details of several alternative ways for supporting extended transaction models.

The implementation of our approach uses Sentinel, an active OODBMS developed at UF,

as the underlying platform. A brief overview of Sentinel and its adequacy for supporting

various transaction models is given in chapter 6 as well. In addition, the alternatives for

supporting transaction models in an OO environment are given. Our implementation de-

tails along with the ECA rules which formulate the semantics of nested transactions, Split

transactions and Sagas are presented in chapter 7. Chapter 8 discusses the extensibility of

our approach while our conclusions and future directions are given in chapter 9.

CHAPTER 2
PROBLEM STATEMENT AND MOTIVATION

The current solution to meeting the diverse requirements of non-traditional applications

has been the proposal of a number of advanced or extended transaction models such as

nested transactions, Sagas, ConTract model, and Flex transaction model [35, 23, 41, 21].

These transaction models relax the ACID properties in various ways to better model the

parallelism, consistency, and serializability requirements of non-traditional applications.

Proponents of advanced transaction models primarily start from a speci�c application. An

application's dynamic behavior is analyzed, a fault model is speci�ed, and features are

either added or modi�ed to the classical ACID transaction model aiming at supporting the

requirements of that application. For instance, enforcing the isolation and failure atomicity

properties may be inadequate for long-running transactions; short transactions may be

forced to wait for long periods due to the isolation property, and failure atomicity dictates

rolling back large amounts of work in the event of failures. Sagas [23] relax the isolation

and consistency properties of the traditional transaction model thereby better modeling

long-lived transactions.

The approach of rolling new variants of transactions as applications emerge is unlikely to

provide a realistic solution to the general problem primarily for three reasons: i) an increase

in the number of new applications having varying transaction requirements leads to a

proliferation of transaction models which are required for their support, ii) this proliferation

increases the di�culty of determining whether an application's processing requirements are

served by extant transaction models, and iii) this proliferation increases the di�culty of

integrating the various models in a uniform manner into a DBMS.

14

15

Currently, a transaction model (traditional or otherwise) is typically hardwired into

a DBMS. Since no one transaction model satis�es the requirements of all classes of ap-

plications, choosing a transaction model at system implementation time clearly limits the

applications that can be supported. Several approaches to overcome this problem have

been proposed:

� Object services architecture (OSA) is a software architecture consisting of a collec-

tion of independent (orthogonal) software services, all of which operate via a software

backplane or message passing bus [10]. TI's Open OODB prototype has taken this ap-

proach for supporting various services [47, 37] but have not addressed the transaction

model issues.

� Carnot [3] has taken the approach of providing a general speci�cation facility that

enables the formalization of most of the proposed transaction models that can be

stated in terms of dependencies amongst signi�cant events in di�erent subtransac-

tions. CTL (Computational Tree Logic) is used for the speci�cation and an actor

based implementation has been used for implementing task dependencies.

� ASSET [6] identi�es a set of primitives using which a number of extended transaction

models can be realized. Implementation of the primitives has only been sketched.

� ACTA [18] proposed a framework for specifying, analyzing, and synthesizing extended

transaction models using dependencies.

� A proposal for supporting advanced transaction models by extending current trans-

action monitors' capability [33].

The approaches taken so far for supporting extended transaction models can be broadly

classi�ed into i) identifying a set of primitives with which a number of extended transac-

tion models can be realized, and ii) providing a general speci�cation language which allows

16

the speci�cation of dependencies among transactions. The �rst approach examines extant

transaction models and identi�es a set of transaction primitives{such as begin, commit,

abort, delegate{capable of expressing these transaction models. The drawbacks of this ap-

proach are the following: i) lacks extensibility as it is highly likely that with the emergence

of newer transaction models the semantics of existing primitives may need to be modi�ed

or new primitives introduced,1 ii) adopts a procedural approach for specifying transaction

models thereby embedding transaction semantics inside applications. This poses two main

problems, namely, it requires existing applications to be rewritten to achieve the desired

transaction semantics and it increases the di�culty of changing the transaction semantics of

applications. More importantly, embedding transaction semantics in applications renders

it impossible to dynamically modify the control
ow. Dynamic modi�cation of control
ow

is necessary in many work
ow applications, and iii) o�ers coarse-grained control since a

user can express transaction semantics at high levels such as begin and commit; the user

cannot express semantics at low levels such as the object level, transaction table level and

log level. The second approach takes the view that various dependencies (such as commit

and abort dependencies) exist between transactions and that providing a framework for ex-

pressing and enforcing dependencies is su�cient for describing any transaction model. The

primary limitation of this approach is in providing a framework general enough to express

existing as well as new types of dependencies (as they become available). Furthermore,

little attention has been paid to allowing transaction dependencies to be modi�ed, added,

or deleted dynamically.

We take the view that the two approaches outlined above do not o�er the
exibility

and expressive power for modeling existing extended transaction models, newer transaction

models as they become available, and arbitrary transaction semantics. This is primarily

because the approaches only o�er coarse-grained control; transaction semantics can only be

1As an example, to model the Split transaction model, the split and join transaction primitives are
required.

17

expressed in terms of high-level operations (such as commit and abort) and dependencies

among transactions (such as commit dependencies). Furthermore, the transaction seman-

tics are embedded within application code making it di�cult to change as well as impossible

to modify dynamically. Our research was prompted by the limitations of extant approaches,

namely,

� Current approaches support extended transaction models by examining the require-

ments of existing transaction models. This produces an inextensible system as new

transaction models or variations of existing transaction models are likely to emerge.

� Existing approaches embed the transaction semantics in the application code itself.

This does not o�er a clean separation between transaction semantics and the appli-

cation code, a feature necessary for easily modifying the transaction semantics and

application code independently of each other.

� Very little attention has been paid to understanding the interactions of applications

whose transaction semantics di�er; speci�cally, can applications using di�erent trans-

action models run concurrently on a DBMS? What properties (e.g., serializability)

must be enforced between these transactions? What are the implications of run-

ning di�erent transaction models concurrently on performance, deadlock detection

algorithms, recovery etc.?

� Although several e�orts for supporting transaction models have been proposed, the

implementation details for supporting multiple transaction models have been sketched;

even concrete prototypes are lacking.

CHAPTER 3
ADVANCED TRANSACTION MODELS

In this chapter we give a detailed survey of a number of proposed advanced transac-

tion models. The transaction models which are described here include nested transactions,

Sagas, ConTract, Flex, Cooperative Transaction Hierarchy and Cooperative Software En-

gineering Environments. The characteristics and advantages of each transaction model are

given along with the application domains they serve. Furthermore, a table, taken from

[22], summarizing the characteristics of these transaction models is given at the end of the

chapter.

3.1 Nested Transactions

Invoke subtransaction

.

.

.

BEGIN WORK

.

.

COMMIT TRANSACTION

BEGIN TRANSACTION

COMMIT TRANSACTION

.

.

.

Invoke subtransaction

.

.

.

Invoke subtransaction

.

.

.

.

.

BEGIN TRANSACTION

Invoke subtransaction

BEGIN TRANSACTION

Invoke subtransaction

Invoke subtransaction

BEGIN TRANSACTION

Invoke subtransaction

Invoke subtransaction

BEGIN WORK

.

.

ROLLBACK WORK

BEGIN WORK

Invoke subtransaction

BEGIN WORK

.

.

COMMIT TRANSACTION

COMMIT TRANSACTION

COMMIT TRANSACTION

COMMIT TRANSACTION

COMMIT TRANSACTION

SubtransactionsSubtransactions SubtransactionsTop-level Transaction

.

.

.

.

.

Figure 3.1. Structure of Nested Transactions.

The traditional transaction model is found to be inadequate when serving the require-

ments of complex applications such as object oriented systems, long-lived transactions, or

18

19

distributed systems. Nested transactions [35] were proposed to overcome these limitations

and better serve the requirements of such systems. In the nested transaction model, the

notion that transactions have a
at structure is extended; speci�cally a transaction may

contain any number of subtransactions, and each subtransaction, in turn, may contain any

number of subtransactions. Hence, the entire transaction forms a hierarchy of transactions

the root of which is called the root or top-level transaction. An example of the structure of

nested transactions is depicted in Figure 3.1. Transactions that have subtransactions are

called parents, and their subtransactions are termed their children. The transactions on

the path from a transaction to the root of the transaction tree are called the superiors of

the transaction.

With respect to transaction semantics, top-level transactions have all the properties of

traditional transactions; that is, they preserve the ACID properties. Nested transactions

preserve serializability among subtransactions; therefore, subtransactions cannot cooperate

or share data. The commit of a subtransaction is conditionally subject to the commit of its

superiors. Hence, a subtransaction's updates become permanent only when the enclosing

top-level transaction commits. Upon commit of a subtransaction, all locks held are inherited

by the parent transaction. A parent transaction does not interfere with its children (in

sibling concurrency); a transaction is allowed to hold a lock if the con
icting transaction is

one of its superiors.

There are two main advantages of the nested transaction model over traditional trans-

actions, namely increase potential for parallelism and �ner control over failures. Since the

nested transaction model allows subtransactions within a top-level transaction to execute

concurrently, intra-parallelism is achieved. Moreover, since subtransactions belonging to

di�erent top-level transactions may also execute in parallel, inter-transaction parallelism is

also achieved. In the traditional transaction model, if a failure occurs, the entire transaction

is rolled back to ensure failure atomicity. This is in contrast to the nested transaction model

20

where, if a subtransaction fails, the user has the
exibility to retry the subtransaction or

abort the entire transaction. The �ner control over failures is the property which makes

the nested transaction model highly desirable for distributed applications and applications

with long-running activities where the probability of failures and faults is high.

3.2 Sagas

Sagas [25] is a transaction model introduced to adequately serve the requirements of

long-lived transactions. The concept of Sagas is based on the notion of compensating

transactions. A Saga consists of a set of independent component transactions T1; T2; :::; Tn

where each component transaction Ti (except transaction Tn) has an associated compen-

sating transaction CTi. Compensating transactions semantically undo the e�ects of their

respective component transaction.

The transactions T1; T2; :::; Tn execute serially in a prede�ned order and may interleave

arbitrarily with the component transactions of other sagas. If a component transaction

aborts, then the entire Saga aborts by executing the compensating transactions in reverse

order to the order of the commitment of the component transactions. Since the component

transactions of a saga may arbitrarily interleave with the component transactions of other

sagas, consistency is compromised. Furthermore, once a component transaction completes

execution, it is allowed to commit and release its partial results to other transactions thereby

relaxing the isolation property. However, Sagas preserve both the atomicity and durability

properties.

Several variants of Sagas have been proposed. One variant requires serial execution

of component transactions while other variants allow concurrent execution of component

transactions. Other variants adopt a forward recovery policy where the remaining compo-

nent transactions are executed in the event of a component transaction aborting while other

variants adopt a backward recovery policy of executing the compensating transactions of

all the already committed transactions.

21

3.3 Split Transactions

Split transactions [40] were proposed mainly for supporting open-ended applications.

In this transaction model, a transaction can execute the operation split-transaction which

basically creates a new top-level transaction. The original transaction and the new transac-

tion are serializable. When the original transaction executes the operation split-transaction,

it can delegate responsibility of uncommitted operations on a particular set of objects to

the newly created transaction. After the split occurs, the two transactions continue exe-

cution and commit or abort independently. Similarly, a transaction can also execute the

operation join-transaction which essentially combines two active serializable transactions

into one transaction. The main advantage of split transactions is relaxing isolation, which

is achieved when either the original or new transaction commits and releases its results.

3.4 Cooperative Transaction Hierarchy

The cooperative transaction hierarchy [36] concept was introduced to overcome the strict

correctness criteria dictated by the serializability requirement of the traditional transaction

model. In this transaction model, cooperation among transactions is allowed and is achieved

by allowing the substitution of user-de�ned correctness for the notion of correctness de�ned

by serializability. Basically, a cooperative application is structured as a rooted tree referred

to as a cooperative transaction hierarchy where the external nodes (leaf nodes) represent the

transactions associated with the individual designers. An internal node (a node which has at

least one child) is referred to as a transaction group while all nodes having the same parent

are referred to as cooperative transactions. The execution of cooperative transactions need

not be serializable; rather, the transaction group (i.e., the parent) de�nes a set of rules

that regulate interactions among the children, i.e., the cooperative transactions. Finite-

state automata is used to specify the rules, where each �nite-state automata de�nes, for

a particular set of objects, the operations allowable for each cooperative transaction on

22

that set of objects and the valid ways of interleaving the operations of related cooperative

transactions.

In summary, the main contribution of the cooperative transaction hierarchy concept is

the relaxation of the strict serializability requirement of the traditional transaction model.

In this model, it is possible for the user to de�ne his/her own notion of correctness and

thus allow cooperation among tasks. The allowance of user-de�ned correctness relaxes

the isolation requirement thereby helping in alleviating the problems caused by long-lived

transactions.

3.5 Cooperative SEE Transactions

Cooperative SEE transactions [27] were proposed to support the transaction require-

ments needed in software engineering environments. In such environments, support for

long-lived transactions, cooperative transactions, as well various levels of cooperation, is

needed. The
exibility of supporting various degrees of cooperation is needed since the

level of cooperation is typically dependent on the particular application or environment.

In this transaction model, there is no concept of the transaction manager having a single

built-in notion of correctness; rather, this transaction model supports a transaction manager

which is programmed to accept application-speci�c protocols, where these protocols enforce

the appropriate correctness required by the SEE. The protocols can be used to describe:

� Con
icts. Operations that are not allowed to execute concurrently. For example,

no member of group G1 may edit a piece of code which is currently being edited by

a member of group G2.

� Patterns. Sequences of requests which must occur before a transaction can commit

or a request accepted for execution. This can be viewed as a predicate which must

be satis�ed before a transaction can commit. For example, after linking the system,

a set of test suites needs to be executed before releasing the new version of the code.

23

Therefore, after linking the system, all execution requests should be rejected until the

test suites have been executed and yield favorable results.

� Triggers. Actions that are taken when a request begins or ends. For instance, it is

necessary to make a copy of a system module prior to updating it. This is necessary

in order to isolate the released version from the experimental version.

� Commit or abort semantics. Actions to be taken when a transaction ends. For

example, after updating a system module and testing its correctness, it is necessary

to release the new version for public access.

3.6 ConTract Model

The ConTract transaction model [42] was proposed to provide a generalized control

mechanism for long-lived activities. Transactions in the traditional transaction model per-

form small units of work, access a few data items and thus have a short duration. Fur-

thermore, transactions in the traditional transaction model are viewed as concurrent and

completely unrelated units of work. Consequently, existing interrelations between individ-

ual transactions, like control
ow dependencies and other semantic connections, cannot be

implemented by the system. Rather, these dependencies and other connections need to be

handled by the application. For example, consider the following speci�cation of a simple

transaction sequence: Execute transaction T1. Upon successful completion of transaction

T1, execute transactions T2, T3 and T4 concurrently. After transactions T2, T3 and T4

commit, start execution of transaction T5. In the event of the abort of any one of transac-

tions T2, T3 and T4, abort the other two transactions as well as rolling back transaction

T1.

The above speci�cation cannot be modeled in the context of the traditional transaction

model without the introduction of further application programming. The basic idea be-

hind the ConTract model is to build large applications from short ACID transactions and

24

to provide an application independent system service, which exercises control over them.

Therefore, the burden of tasks such as controlling parallel or concurrent computations and

scheduling distributed or non-distributed executions are removed from the application pro-

grammer.

A ConTract is basically a consistent and fault tolerant execution of an arbitrary sequence

of prede�ned actions referred to as steps according to an explicitly speci�ed control
ow

description referred to as a script. Steps are the elementary units of work in the ConTract

model where each step implements one basic computation of an application, e.g., debiting

a bank account, booking a
ight or reserving a hotel room. No internal parallelism exists

within a step and thus each step can be coded in an arbitrary sequential programming

language. With regard to the size of a step, it is determined by the amount of work an

application can tolerate to be lost after a system failure. A script, on the other hand

describes the control
ow and all other execution dependencies of a long-lived activity.

Control
ow can be modeled by sequence, branch, loop and some parallel constructors.

Therefore, a ConTract is a program which has control
ow like any other programming

environment, that has persistent local variables, accesses shared objects with application

oriented synchronization mechanisms, and which has precise error semantics.

As previously mentioned, scripts describe the structure or the control
ow of a complex

activity while the steps implement the algorithmic parts. A ConTract Manager is intro-

duced to handle all aspects concerning execution control at run time. Basically, a ConTract

manager uses a predicate transaction to specify activation and termination conditions for a

step. A step is executed if the predicate for its activation evaluates to true and the required

execution resources are available. Similarly, after each step terminates a set of conditions

are evaluated. Each condition which evaluates to true triggers the execution of one or more

steps.

25

3.7 Flex Transaction Model

The Flex transaction model [20] was proposed to allow more
exibility in transaction

processing. In this transaction model, a transaction is viewed as a set of tasks and the user

is allowed to specify, for each task, a set of functionally equivalent subtransactions, each

of which when completed will accomplish the task. The execution of a Flex transaction

succeeds if all of its tasks are accomplished. The failure property of the traditional trans-

action model is relaxed since a Flex transaction may proceed and commit even if some of

its subtransactions fail. Furthermore, dependencies such as failure dependencies, success-

dependencies and external-dependencies can be speci�ed on the subtransactions of a Flex

transaction. Failure dependencies and success dependencies de�ne the execution order on

the subtransactions. On the other hand, external-dependencies de�ne the dependencies of

the subtransaction execution on the events that do not belong to the transaction. The

isolation requirement of the traditional transaction model is relaxed in the Flex transaction

model. This is accomplished by allowing the user to de�ne and use compensating transac-

tions. All of the above-listed features contribute to the
exibility of the Flex transaction

model, which is useful for transaction processing in multidatabase systems. In summary, the

Flex transaction model is a generalization of traditional transactions and has the following

features:

� Function replication. Certain tasks may be accomplished by more than one local

system. For example, on a trip, the automobile rental agency where the car is rented

from may be unimportant. Therefore, the transaction programmer may leave the

system the choice of renting from Budget, Hertz, National etc. This property is

referred to as function replication and is incorporated in Flex transactions to allow

exible composition of global transactions.

� Mixed transaction. Some transactions can be semantically undone even after they

are completed. For example, consider booking a seat on a
ight from New York to

26

California. After a subtransaction reserves the seat on this
ight it can be compen-

sated by another subtransaction which cancels this reservation. The fact that some

transactions can be semantically undone allows subtransactions to commit before the

corresponding global transaction has committed. Global transactions consisting of

both compensatable and non-compensatable subtransactions are referred to as mixed

transactions.

� Value function. In the Flex transaction model, each subtransaction and global

transaction may have associated with it a value function. A value function denotes

the time of completion of each transaction and is used to ensure order correctness.

For example, the reservation of a seat for a
ight is made before the trip.

The formal de�nition of Flex transactions is [22]

A Flex transaction T is a 5-tuple (B, S, F,�, f) where

� B = t1(type1); t2(type2); :::; tn(typen) is a set of typed subtransactions. In particular,

B speci�es whether a transaction ti is compensatable (typei = \C") or not (typei =

\NC"). A compensatable transaction may commit earlier, but its e�ects may be later

\semantically undone".

� S is a partial order of B, called the success order of T. ti < tj 2 S means that

transaction ti has to be successfully executed before transaction tj may be started. S

describes internal dependencies.

� F is a partial order of B, called the failure order of T. F is analogously de�ned to S.

If ti < tj 2 F, then transaction tj depends on the failure of transaction ti. F also

describes internal dependencies.

� � is a set of external predicates on B. � may contain cost functions, time constraints

(e.g., when a local transaction may be scheduled), etc.

27

� f is an n-ary boolean function and is called the acceptability function of T. f describes

all acceptable states. For example, f(x1; x2; x3; x4) = (x1 ^ x3) _ (x2 ^ x4) is de�ned

over 4 transactions on local databases and states that the Flex transaction can be

accepted when either transactions 1 and 3 or transactions 2 and 4 are a success.

x1; :::; x4 are the execution states of t1; :::; t4. The subset C � B of all subtransactions

which �nally are committed is called the commit-set of T. C corresponds to one

acceptable state.

3.8 Polytransactions

Multiple databases in large companies are required to serve the needs of various applica-

tion systems. A major concern in such environments is the management of these databases,

speci�cally, maintaining the consistency of inter-related data. The term interdependent data

is used to denote the existence of an integrity constraint between two or more data items re-

siding in di�erent databases. The integrity constraint speci�es the data dependency and the

consistency requirements between these data items. Management of such data implies that

a certain degree of mutual consistency among interdependent data is maintained. There-

fore, the manipulation, including concurrent updates, of the interdependent data must be

controlled.

Polytransactions [43] were developed with the goal of �nding a transaction model that

would facilitate the support of interdependent data in mulitdatabase environments. Two

important features of this model are i) declarative speci�cation of interdependent data and

their mutual consistency requirements, and ii) use of the speci�cation to automatically gen-

erate related update transactions that manage interdependent data. The separation of the

constraints from the application programs facilitates the maintenance of data consistency

requirements and allows
exibility in their implementation. It also allows investigation of

various mechanisms for enforcing constraints, independently of the application programs.

Thus, changes in the application programs can be made independently of the constraints,

28

and vice versa. By grouping the constraints together, we can check their correctness and

discover possible contradictions among them.

In this model, Data Dependency Descriptors (D3) are used to specify interdatabase

dependencies. Each D3 is a 5-tuple:

D3 = < S, U, P, C, A> where

� S is the set of source data objects

� U is the target data object

� P is a boolean valued predicate called interdatabase dependency predicate (dependency

component). It speci�es a relationship between the source and target data objects,

and evaluates to true if this relationship is satis�ed.

� C is a boolean-valued predicate, called mutually consistency predicate (consistency

component). It speci�es consistency requirements and de�nes when P must be satis-

�ed.

� A is a collection of consistency restoration procedures (action component). Each

procedure, speci�es actions that must be taken to restore consistency and to ensure

that P is satis�ed.

A polytransaction (T+) is a transitive closure of a transaction T submitted to an in-

terdependent data management system. A ploytransaction can be represented by a tree in

which the nodes correspond to its component transactions and the edges de�ne the coupling

between the parent and children transactions. Given a transaction T, the tree representing

its polytransaction T+ can be determined as follows. For every data dependency descriptor

D3, such that the data item being updated by T is among the source objects of the D3, we

look at the dependency and consistency predicates P and C. If they are satis�ed, no further

transactions will be scheduled. If they are violated, we create a new node corresponding

29

to a system generated new transaction T
0

(child of T) to update the target object of the

D3. T
0

will restore the consistency of the target object, so that the P and C predicates will

be satis�ed. Speci�cation of weaker mutual consistency criteria will result in infrequent

violations of C. Hence the restoration procedures (and the corresponding child transaction)

will be scheduled less often.

3.9 S Transaction Model

The semantic transaction model [19], commonly referred to as the S transaction model,

evolved from the hierarchical transaction models. It was �rst developed for a large-scale

inter-organizational autonomous environment, international banking. In this environment

cooperation and local autonomy are of a major concern.

S transactions basically have the same structure as nested transactions; i.e., they also

form a hierarchy of transactions. However, the semantics of S transactions di�er con-

siderably from that of nested transactions, primarily in three ways. First, the recovery

mechanism adopted in the nested transaction model is based on the concept of rolling back

the work when a failure occurs. In the S transaction model, however, recovery is based on

the notion of compensating transactions; speci�cally, each transaction can be undone by

executing a corresponding compensating transaction which semantically undoes the trans-

action. The second di�erence between these two models is related to the isolation property.

In the nested transaction model, when a subtransaction completes its execution, it does not

commit and release its results to the outside world. Instead, the results are released only

to the superiors of the subtransaction. This di�ers from the S transaction model where

when a subtransaction completes its execution, it commits thereby releasing its results to

the outside world. Therefore, in the S transaction model isolation is preserved only at

the subtransaction level. Third, due to the local autonomy requirement in the S transac-

tion model, a component system issuing an S transaction cannot impose on other systems

which additional systems should participate in the execution of the S transaction. Each

30

component system may execute a subtransaction any way it chooses. Upon failure of a

subtransaction, the component system may issue a request to another system to execute

that subtransaction. This feature naturally causes the execution tree of an S transaction

to be indeterminate and therefore may vary from one execution to the other.

Finally, in S transactions, the local transactions are the concurrency control units, and

the recovery unit can be dynamically chosen to be any sub-S-transaction. Both backward

and forward recovery are supported where backward recovery is based on the conventional

abort mechanism or semantically undone using compensating transactions.

31

Transaction
Structure

ACIDC

Dynamic

Restructuring

(Split and Join)

Original

Semantics

Preserved

ACIDC
Compensating,

Contingency,

Non-Vital

Supports long-lived

and cooperating

transactions

ConTract Subtransactions

ACIDC
Compensating,

Contingency,

Non-Vital

Supports long-lived

and cooperating

transactions

Compensating,

Contingency,

Non-Vital ACACID

C For transactions where subtransactions are compensatable.

A Depending on the degree of component system autonomy.

Supports long-lived

and cooperating

transactions

Model Subtransaction
Types

Transaction
Correctness

Comments

ACIDNested Hierarchy
Subtransaction Contingency,

Non-Vital

Sagas Subtransactions Compensating

Split

Flex Subtransaction

S Subtransaction
For international

banking and

general MDBSs

Hierarchy

Hierarchy
to
CD

Traditional - - ACID

-

For cooperative

Subtransaction
Hierarchy

Cooperative User-Defined

SEE

Trigger
Cooperative work,

environments

e.g., engineering

Hierarchy
User-DefinedPolytrans. Transaction

Dynamic Supports

interdependent data-

Subtransaction
Hierarchy

Cooperative User-DefinedCompensating environments, e.g.

design databases

Figure 3.2. Characteristics of Advanced Transaction Models.

CHAPTER 4
RELATED WORK

Several e�orts [5, 24] have proposed approaches for supporting extended transaction

models. In this section we provide a detailed examination of these e�orts with special

emphasis on the speci�cation of extended transaction models and their support, the ex-

pressiveness of the system in terms of transaction models supported, and the extensibility

of the system.

ASSET [5] provide a
exible transaction facility that allows users to de�ne customized

transaction semantics in applications. ASSET consists of a set of transaction primitives

which are classi�ed into basic and new primitives. Basic primitives are similar to those found

in most transaction processing systems and are initiate(f, args), begin(t), commit(t), wait(t),

abort(t), self() and parent(). The new primitives, delegate(ti, tj , ob-set), permit(ti, tj , ob-

set, operations) and form-dependency(type, ti, tj), permit the construction of arbitrary

transaction models and the realization of relaxed correctness criteria. It is important to

note that these transaction primitives are not expected to be directly used by the user.

Rather a high-level description of the required transaction model is speci�ed by the user

which is subsequently translated into code which uses these primitives. Below, we provide

a brief description of these primitives.

Brie
y, initiate(f, args) registers a new transaction that executes the function f with the

arguments args. The primitives begin(t), commit(t) and abort(t) respectively start, commit

and abort the transaction whose tid is t. The commit primitive is a blocking primitive in

the sense that if it is issued before a transaction completes execution, it will wait until

the execution completes. The self() and parent() primitives each return a transaction

tid; the former returns the tid of the executing transaction and the latter the tid of the

32

33

executing transaction's parent. Waiting for a transaction t to complete is accomplished

by using wait(t) which returns the value 1 when transaction t commits and returns the

value 0 if t aborts. The primitive delegate(ti, tj , ob-set) transfers the responsibility of

operations performed on ob-set by transaction ti to transaction tj , i.e., these operations

are committed only if transaction tj commits (unless transaction tj delegates them to

another transaction). Cooperation amongst transactions is achieved by using the permit

primitive; permit(ti, tj , ob-set, operations) means that transaction ti permits transaction

tj to perform con
icting operations on objects in ob-set without conceptually creating a

con
ict edge in the serialization graph from ti to tj . The semantics of this operation is i) tj

is now allowed to execute operations on objects in ob-set without having to wait, ii) only one

transaction, i.e., ti or tj , can perform an update operation at any given time on the same

object, and ii) once transaction ti permits tj to perform an operation on an object, tj can

permit other transactions to perform operations on that object. The last primitive form-

dependency(type, ti, tj) establishes a dependency of the speci�ed type between ti and tj ,

where type includes commit, abort and group commit dependencies. A commit dependency

(CD) between transactions ti and tj , denoted by form-dependency(CD, ti, tj), implies that

if both ti and tj commit, then tj cannot commit before ti commits. However, if ti aborts,

then tj can still commit. The abort dependency (AD), denoted by form-dependency(AD,

ti; tj), implies that if ti aborts then tj must also abort. The group commit dependency

(GC), denoted by form-dependency(GC, ti; tj), means an all or nothing option, i.e., either

both ti and tj commit or neither commit.

To illustrate how these primitives are used assume that trip arrangements are being

made and it involves reserving both an airline ticket and a hotel room. If either of these

reservations cannot be made, then the trip should be canceled. This can be easily speci�ed

using the nested transaction model. First, the user de�nes a high-level speci�cation of the

nested transaction which is:

34

tid t;

t = trans fg

trans f make-airline-reservation();g

trans f make-hotel-reservation();g

The above speci�cation is then translated by a compiler into :

tid t;

t = initiate(trip);

begin (t);

commit(t);

where function trip is synthesized as follows:

void trip()

{

tid t1;

t1 = initiate(make-airline-reservation);

permit(self(), t1); /* transaction t allows t1 to access it's objects */

begin(t1);

if(!wait(t1))

abort(self());

delegate(t1,self());

commit(t1);

35

tid t2;

t2 = initiate(make-hotel-reservation);

permit(self(), t2); /* transaction t allows t1 to access it's objects */

begin(t2);

if(!wait(t2))

abort(self());

delegate(t2, self());

commit(t2);

}

The data structures and the algorithms used to implement these primitives were de-

scribed in a modi�ed version of the EOS storage manager. The main data structures used

are a transaction descriptor table, an object description table and a transaction dependency

graph. The transaction descriptor table is a hash table where each entry is a transaction

descriptor which maintains information about a transaction.

The transaction dependency graph is a directed graph where the nodes represent trans-

actions and the arcs represent the type of dependency between two nodes. For example,

an arc of type commit from transaction ti to transaction tj denotes a commit dependency

between the two transactions. For a detailed discussion of how the primitives and these

data structures interact we refer the reader to ASSET [5].

Comments

1. The high-level language constructs provided for specifying transaction models are

not su�cient for de�ning all transaction models. Constructs for popular transac-

tion models like cooperative, nested and sagas are provided. However, no constructs

are provided for transaction models such as nested transactions with only sibling

concurrency and nested transactions with parent and child concurrency only1. This

1These are variations of the nested transaction model

36

compromises system extensibility since the introduction of newer transaction models

or proposal of variations of existing ones requires changing or adding constructs. In

addition, there might be even a need to change or add transaction primitives.

2. A procedural approach is taken for supporting extended transaction models. The

primary disadvantage of this is the need for developing a language which is general

enough to specify existing as well as new transaction models. Furthermore, a compiler

for the language needs to be developed and possibly modi�ed as new constructs are

added to the language.

3. The above approach has the disadvantage of limiting concurrency, thereby decreasing

transaction throughput. To see this, consider modeling the nested transaction model

where only sibling concurrency is allowed, i.e., the parent must suspend its execution

until its children complete execution. Using the trip example mentioned above, the

code (using the primitives provided) accomplishing that is

tid t;

t = initiate(trip);

begin (t);

commit(t);

where function trip is synthesized as follows:

void trip()

{

tid t1, t2;

t1 = initiate(make-airline-reservation);

t2 = initiate(make-hotel-reservation);

permit(self(), t1); /* transaction t allows t1 to access it's objects */

37

permit(self(), t2); /* transaction t allows t1 to access it's objects */

begin(t1);

begin(t2);

/* now the siblings t1 and t2 are executing concurrently */

if(!wait(t1)) /* LINE 12 */

abort(self());

delegate(t1,self());

commit(t1);

if(!wait(t2))

abort(self());

delegate(t2, self());

commit(t2);

}

4. In the section describing the data structures necessary for implementing ASSET, they

refer to a pending lock list which never seems to be used.

Now, at the 12th line transaction t is waiting for t1 to complete. While t is waiting,

it is possible that transaction t2 aborts in which case, the entire nested transac-

tion should be rolled back and the resources released. However, since a program-

matic/procedural approach is adopted, transaction t will remain waiting for transac-

tion t1's outcome, possibly unnecessarily.

5. They claim that they introduce the three primitives delegate, permit and form-

dependency. However, these were previously introduced in ACTA.

38

TSME [24] provide a transaction processing system toolkit, referred to as a Transaction

Speci�cation and Management Environment (TSME), which supports the de�nition and

construction of application-speci�c extended transaction models (ETMs). The TSME is

discussed in the context of a Distributed Object Management System (DOMS) which is

an object-oriented environment allowing the integration of autonomous and heterogeneous

local systems and the development of non-traditional applications.

The three main components of the TSME are a transaction speci�cation language, a

Transaction Dependency Speci�cation Facility (TDSF), and a programmable transaction

management mechanism (PTMM). The transaction speci�cation language is used by trans-

action model designers for writing implementation-independent speci�cations of extended

transactions. These speci�cations are subsequently submitted to the TDSF for acceptance

or rejection. Once an ETM speci�cation is accepted by the TDSF, it is stored in the TDSF

repository and the corresponding ETM is supported by the TSME. The last component

of the TSME, the PTMM, supports the implementation of ETMs by con�guring a run-

time transaction management mechanism (TMM) to ensure the preservation of transaction

dependencies.

In TSME [24] extended transactions are viewed as complex transactions; complex trans-

actions consist of a set of constituent transactions and a set of dependencies between them.

Each constituent transaction can in turn be either simple or complex. A complex trans-

action T is denoted by T = (TT , TD) where TT is the set of constituent transactions and

TD are the set of dependencies between them. Each complex transaction T that is not a

constituent transaction of any other transaction has the following two kinds of transaction

dependencies:

� intra-transaction dependencies{these de�ne the relationships between the constituent

transaction of T

39

� Inter-transaction dependencies{these de�ne the relationships between T and all trans-

actions that are not constituent transactions of T

Transaction dependencies are speci�ed using 5 tuple elements of the form (Ti, � , O, En,

Post), where Ti is the dependent transaction, � is the set of transactions that Ti depends

on, O is the set of objects that the dependency must consider, and En and Post are logical

predicates representing the enabling condition and the postcondition, respectively. En

denotes when the postcondition must be evaluated while evaluation of the postcondition

determines whether the dependency is satis�ed or not.

Intra-transaction dependencies are further classi�ed into transaction state dependen-

cies and correctness dependencies. Transaction state dependencies express relationships

between the states of transactions where a transaction can be in either the begin, prepare,

commit or abort state. Three kinds of state dependencies: backward, forward and strong

are supported. A backward state dependency between a pair of transactions Ti and Tj,

denoted by (Ti, Tj, O, Ti.state = X, Y(Tj) < X(Ti)), means that Ti cannot enter state X

before Tj has entered state Y. A forward state dependency denoted by (Ti, Tj, O, Ti.state

= X, :(Y (Tj) < X(Ti))), means that Ti cannot enter state X after Tj has entered state

Y. A strong dependency, denoted by (Ti, Tj , O, Tj .state = Y, X(Ti)), means that Ti must

enter state X if Tj has entered state Y.

State dependencies are implemented by translating them into ECA rules. The run-time

TMM supports ECA rules triggered by transaction events, i.e., occurrences of operations

that change the state of transactions. For example, the execution of the Commit(T1) op-

eration causes the run-time TMM to create a commit event that may trigger an ECA

rule. The TMM assembler identi�es the type of each state dependency (backward, for-

ward or strong) based on the syntax of the enabling and postconditions. Implementation

40

of state dependencies is determined by their type. Let us assume that there is a com-

mit dependency between transactions T1 and T2 such that transaction T1 should com-

mit only after transaction T2 commits. This backward state dependency, expressed as

(T1; T2; O; T1:state = Commit; Commit(T2) < Commit(T1)), is implemented by �rst dis-

abling operation Commit(T1) then de�ning a rule that enables Commit(T1) when the event

Commit(T2) occurs. If Commit(T1) is issued before it is enabled, the run-time TMM traps

Commit(T1) and delays it until it becomes enabled. The disableOp(Commit(T1)) is per-

formed when T1 is submitted for execution. Therefore, this backward state dependency is

translated to

do disableOp(Commit(T1))

if event Commit(T2) occurs, then do enableOp(Commit(T1))

Speci�cations of popular ETMs may be provided in the TSME as templates, and trans-

action model designers can combine components of di�erent ETMs to form new ETMs.

DOMS application programmers can write and submit extended transactions that behave

according to an ETM supported by the TSME. If no such transaction model exists, the

designers de�ne a new ETM. The TSME also supports ETM evolution and integration, i.e.,

a TSME supported ETM can be extended to include new dependencies and we can inte-

grate existing ETMs to produce more powerful transaction models, e.g., integrating nested

transactions and sagas may result in a new transaction model such as the multi-transaction

model.

Correctness dependencies include serializability, quasi-serializability, cooperative and

temporal. To illustrate how they specify correctness dependencies, consider serializability

(SR) dependencies. Speci�cation of this dependency is based on transaction precedence

relations de�ned in terms of direct and indirect con
icts. Let H be a history over a set

41

of transactions � = fT1; T2; � � �; Tkg, �c denote the set of committed transactions, and

TiSR
�

(�c;O)
Tj denote that Ti SR-precedes (directly or indirectly) Tj in H. Therefore, in

order to ensure serializability, every transaction must not directly or indirectly precede

itself. This can be speci�ed by the following dependency:

8Ti(Ti; �c � Ti; O; Ti:state = Commit;:[TiSR
�

(�c;O)
Ti])

In contrast to transaction state dependencies, ECA rules are not used for implementing

correctness criteria. They argue that it is di�cult to express the complex, transitive rela-

tionships between objects (inherent in correctness dependencies) using rules. Instead, they

opt for using traditional scheduler technology for ensuring correctness criteria dependencies.

Comments

1. When dependencies are translated into ECA rules, the condition component is im-

plicitly taken to be true. Therefore, it is not clear how the user can specify complex

condition checking since he/she does not write the ECA rules.

2. They do not specify how events representing transaction states are detected, i.e., how

the TMM actually traps the execution of operations such as begin and commit by

transactions. Thus, although they have proposed using the active database paradigm

as a mechanism for supporting transaction models, details such as how transactions

are implemented, how transaction state changes are detected and how rules are en-

abled/disabled have not been addressed.

3. A non-uniform approach for enforcing dependencies is used, speci�cally, ECA rules

are used for enforcing transaction state dependencies while traditional scheduler tech-

nology is used to enforce correctness dependencies.

4. Complex dependencies cannot be expressed due to the limited operators provided in

the transaction speci�cation language (the language used for specifying the enabling

42

and post conditions). Currently, only the conjunction ^, disjunction _ and the nega-

tion : operators are provided. These are adequate for expressing simple transaction

dependencies such as i) transaction T1 cannot commit before transaction T2 com-

mits, ii) transaction T1 cannot commit before transactions T2 and T3 commit, and ii)

transaction T1 cannot commit before either transaction T2 or T3 commit. These are

respectively expressed by

� (T 1, fT 2g, O, T 2.state = Commit, Commit(T 2) < Commit(T 1))

� (T 1, fT 2, T 3g, O, T 2.state = Commit ^ T 3.state = Commit,

(Commit(T 2) < Commit(T 1)) ^ (Commit(T 3) < Commit(T 1)))

� (T 1, fT 2, T 3g, O, T 2.state = Commit _ T 3.state = Commit,

(Commit(T 2) < Commit(T 1)) _ (Commit(T 3) < Commit(T 1)))

However, consider process control environments where a dependency might state that

transaction T1 cannot begin execution until three hours after transaction T2 commits.

To model this, it is necessary to trap the event T2 committing as well as provide some

operator for monitoring time. Furthermore, some dependencies may be tedious to

express given the limited number of operators provided. For example, consider a de-

pendency stating that transaction T1 cannot begin before any two of transactions T2,

T3, T4 and T5 commit. Using the disjunction _ operator provided, this dependency

can be expressed as

43

(T1; fT2; T3; T4; T5g; O; (T2:state = Commit ^ T3:state = Commit) _ (T2:state =

Commit ^ T4:state = Commit) _ (T2:state = Commit ^ T5:state = Commit) _

(T3:state = Commit ^ T4:state = Commit) _ (T3:state = Commit ^ T5:state =

Commit)_(T4:state = Commit^T5:state = Commit); ((Commit(T2) < Commit(T1))^

(Commit(T3) < Commit(T1))) _ ((Commit(T2) < Commit(T1)) ^ (Commit(T4) <

Commit(T1))) _ ((Commit(T2) < Commit(T1)) ^ (Commit(T5) < Commit(T1))) _

((Commit(T3) < Commit(T1)) ^ (Commit(T4) < Commit(T1))) _ ((Commit(T3) <

Commit(T1)) ^ (Commit(T5) < Commit(T1))) _ ((Commit(T4) < Commit(T1)) ^

(Commit(T5) < Commit(T1))))

5. The fact that operations have a duration (i.e., are not instantaneous) is not taken

into account. Each transaction operation like begin, commit etc. consists of a set of

statements and it is not clear when (with respect to these statements) does an event

take place. To clarify, consider the backward state dependency stating that transac-

tion T1 cannot begin execution before T2 has begun execution. This will be expressed

by (T1; T2; O; T2:state = Begin;Begin(T2) < Begin(T1)). The implementation of this

dependency �rst issues disableOp(Begin(T1)) and then when operation Begin(T2) is

issued it will be enabled again. However, it is not clear when Begin(T1) is enabled

with respect to the statements constituting Begin(T2); is it enabled immediately after

T2 issues Begin but before execution of the constituent statements or is it enabled

after execution of the constituent statements? This is an important issue in various

transaction models such as the nested transaction model where parent and child con-

currency is allowed. Here, in order to maximize concurrency, the child transaction

should be enabled immediately after the parent transaction invokes the operation Be-

gin but before execution of any of its constituent statements. For other transaction

models, it is necessary to enable an operation after execution of all the constituent

statements.

44

6. A prevention mechanism is utilized for enforcing dependencies.

7. Only three types of dependencies are supported : backward, forward and strong.

CHAPTER 5
RULE-BASED APPROACH TO SUPPORTING EXTENDED TRANSACTIONS

A transaction performs a number of operations during the course of its execution{some

speci�ed by the user and some performed by the system to guarantee certain properties. It

is important to observe that the semantics of these operations di�er from one transaction

model to the other. For instance, the semantics of the commit operation in the traditional

transaction model entails updating the log, making all updates permanent in the database,

and releasing all locks held. This is in contrast to the commit of a subtransaction (in the

nested transaction model), where all locks are inherited by the parent and the updates not

made permanent until all superior transactions commit. As another example, consider the

lock-acquisition operation in the traditional transaction model versus the nested transaction

model. In the traditional model, a transaction can acquire an exclusive-lock on an object

only if no other transaction holds any lock on that object. This is di�erent from the nested

transaction model where a subtransaction may acquire an exclusive-lock on an object even

if one of its ancestor transactions holds a lock on that object. Moreover, some transactions

perform operations which are very speci�c to that transaction model and not shared by

other transaction models. As an example, the Split transaction model provides the split

operation which when invoked causes the instantiation of a new top-level transaction and

the delegation of some uncommitted operations to it. This split operation is not supported

in other transaction models.

It is apparent that in order to support di�erent transaction models in the same DBMS,

one should not hardwire the semantics of operations such as commit, abort, read and write

precisely because the semantics of these operations di�er from one transaction model to

the other. An obvious solution in an object-oriented environment is to create a transaction

45

46

hierarchy and overload these operations or methods. Although this accomplishes the task

of supporting di�erent transaction models, it has a primary drawback, namely, it does not

provide a general solution. In particular, the solution is speci�c to the object-oriented

model rather than the system and thus cannot be readily applied to other DBMSs (e.g.,

relational). Another drawback of this approach is the performance penalty incurred as

a result of resolving which method or operation needs to be executed1. Rather what is

required is a
exible solution where it is possible to associate computations with operations

(such as commit, abort, read and write) where these computations determine the semantics

of the operation itself. Furthermore, for this mechanism to be e�ective and extensible,

it should be independent of the programming model and the environment. And this is

precisely what active capability supported at the system level o�ers.

Brie
y, active capability allows for the trapping of particular operations, evaluation of

a condition when the operation is trapped, and execution of an action if the condition

evaluates to true. Therefore, by providing active behavior at the system level, it is possible

to trap operations such as acquire-lock and associate with this operation a set of condition-

action pairs, where each condition-action pair implements the semantics of this operation

in a particular transaction model. For example, assume the traditional and nested trans-

action models are to be supported, then two condition-action pairs C1A1 and C2A2 will

be associated with the operation acquire-exclusive-lock, where the former condition-action

pair implements the semantics of this operation in the traditional transaction model and

the latter condition-action pair implements the semantics of this operation in the nested

transaction model. C1A1 checks to see that no other transaction holds any lock on the

object in question and if this evaluates to true it grants the lock to the requesting transac-

tion, otherwise it blocks the transaction on a semaphore. On the other hand, C2A2 checks

to see if all the transactions which hold any lock on the object in question are superiors

of the requesting transaction, and if this evaluates to true the lock is granted, otherwise

1Notice that no room for optimization exists at this level since this is a language dependent issue.

47

the transaction is blocked on a semaphore. The association of condition-action pairs with

operations is depicted in Figure 5.1.

Condition-Action for cooperative transactions

Condition-Action for Split transactions

Operation Semantics

Acquire-Exclusive-Lock

Condition-Action for nested transactions

Figure 5.1. Condition Action Pairs

This chapter is organized as follows. Section 5.1 begins by de�ning the notion of active

behavior in the context of DBMSs. Section 5.2 then follows by presenting our approach to

realizing an extensible transaction management facility using the active database paradigm;

speci�cally, we show how it is possible to utilize the active database paradigm at the system

level to achieve the semantics of various transaction models in the same underlying DBMS.

5.1 Active Databases

During the past years DBMSs have undergone dramatic changes as a result of the

increasing requirements of newer applications. Conventional record-oriented database sys-

tems are subject to the limitations of a �nite set of data types and the need to normalize

data. These limitations have led to the evolution of a new paradigm, namely object-oriented

databases (OODBMS), which o�er increased modeling power,
exible abstract data-typing

facilities and the ability to encapsulate data and operations via the message metaphor. De-

spite the ability to model complex objects and relationships, these OODBMSs lack some of

the requirements of a large class of new applications, speci�cally those requiring monitoring

of situations and responding to them automatically, possibly subject to timing constraints.

48

Active databases have been proposed to meet some of the requirements of non-traditional

applications. Active OODBMSs extend the normal functionality of OODBMSs with sup-

port for monitoring user-de�ned situations and reacting to them without user or application

intervention. These DBMSs continuously monitor situations to initiate appropriate actions

in response to database updates, occurrence of particular states or transition between states,

possibly within a response time window. The emergence of this trend of active OODBMSs

serves a large variety of applications such as computer integrated manufacturing (CIM), pro-

cess control, battle management, and network management. Furthermore, active databases

provide an elegant means for supporting integrity constraints, access control, maintenance

of derived data, and materialized views and snapshots.

Active behavior has been used to connote di�erent behavior in various contexts in di-

verse areas of computer science. Morgenstern [34] used the term active database, perhaps

for the �rst time, to describe a system that supports automatic update of views, and de-

rived data as base data are updated. In AI community the term active object is used either

for active knowledge representation and inference mechanism or for achieving intelligent

behavior and concurrent computation. The programming language community uses the

term active object in order to structure concurrent applications in object-oriented program-

ming languages. Ishikawa [28] used the term active object to distinguish real-time objects

from others which have timing constraints. Osterbye [38] used the term active object to

represent objects with two types of demons which are executed when the object is accessed.

It resulted from the generalization of access-oriented programming.

The key distinction between an active and a passive object, as conveyed in the database

literature, lies in an active object's ability to initiate asynchronous actions, as a separate

thread of execution, without necessarily receiving messages. Typically, \passive" objects

respond to messages through a synchronous interface; they receive a message and based on

its interpretation then perform some operations and return a result.

49

In summary, the term active has been used to convey concurrency, asynchronous be-

havior, and parallelism of active objects, intelligent behavior of agents/actors, or active

capability of a system. In other literature similar notions are elaborated without using the

term active explicitly. Rules, also referred to as triggers and alerters, have been proposed

to provide active functionality in OODBMSs. Rules, in the context of an active DBMS,

consist primarily of three components: an event, a condition, and an action. An event

is an indicator of a happening (either simple or complex). Events are recognized by the

system or signalled by the user. For example, database events such as insert, delete, and

update are detected by the OODBMS. The condition speci�es an optional predicate over

the database state which is evaluated when its corresponding event occurs. The conditions

to be monitored may be arbitrarily complex and may be de�ned not only on single data

values or individual database states, but also on sets of data objects, transitions between

states of materialized/derived objects, trends and historical data. Actions are the opera-

tions to be performed when an event occurs and its associated condition evaluates to true.

Actions may be programs which may in turn cause the occurrence of other events. Once

rules are speci�ed declaratively to the system, it is the system's responsibility to monitor

the situations (event-condition pairs) and execute the corresponding action when the con-

dition is satis�ed without any user or application intervention. Figure 5.2 depicts how an

application interacts with an active DBMS. Basically, an application still interacts with

the database by executing operations which are ultimately translated into read and write

operations against the database. In addition, the application can de�ne a set of rules which

are given to an activity management module which is responsible for keeping a watchful

eye on the database in order to detect the occurrence of events, and then to evaluate the

conditions and possibly execute the actions. The advantage of using rules as a means of

providing active behavior is the freedom from explicitly hard-wiring code which checks the

situations being monitored into each program that updates the database.

Figure 5.2. Active DBMS Architecture.

51

5.2 Our Approach

Our approach for supporting extended transaction models is based on the observation

that the added functionality provided by the active database paradigm (in the form of

event-based or ECA rules) cannot only be used by applications to achieve application level

functionality such as constraint management, but also for supporting system functionality.

Up to this point, most of the e�orts on active database support have considered usage of

ECA rules for user-de�ned event-condition-action rules that can be speci�ed to augment

application code (e.g., for expressing integrity constraints). As the active database tech-

nology is maturing (as evidenced by a number of research prototypes), there is clearer

understanding of the implementation techniques, data structures required, and optimiza-

tion techniques. This knowledge is essential for using this capability at the systems level.

We propose to use active databases as a mechanism for specifying and enforcing the

behavior of di�erent transaction models. In particular, we provide the user with the ability

to construct the required transaction semantics on an application by application basis;

speci�cally, we show how each transaction model can be translated into a set of ECA

rules which can be activated or deactivated by users. For example, consider the nested

transaction model where the commit of a top-level transaction can occur only after the

termination of all of its subtransactions. In this case, the event component of the rule

corresponds to the detection of a request to commit by a top-level transaction. When this

event is detected, the condition checks whether the children of the transaction requesting to

commit are still active, i.e., have not yet committed or aborted. If the condition evaluates to

true (i.e., at least one child has not yet terminated), the action will postpone the commit of

the top-level transaction until its children have terminated thereby enforcing the behavior of

the nested transaction model. For concreteness, we show how di�erent transaction models

can be speci�ed in the context of Sentinel, an active OODBMS developed at UF. However,

our approach is general enough to be applied by any active DBMS.

52

Active database paradigm can be used in a number of ways to support
exible transac-

tion models. Below, we examine these alternatives and discuss the merits of each approach,

ease of its implementation, and the extent to which it can support extended transaction

models.

5.2.1 Alternatives for Supporting Extended Transaction Models

The alternatives for supporting di�erent transaction models given an active DBMS can

be broadly classi�ed into the following approaches:

1. Provide a set of rules that the user can use from within applications to get the desired

transaction semantics. This approach assumes that the underlying DBMS supports

some transaction model. In this approach the rules are de�ned on the operations pro-

vided by the built-in transaction model, e.g., commit, abort etc. Consequently, the

semantics of only those transaction models which are very similar to the the built-in

transaction model can be expressed in this approach. The desired transaction se-

mantics is obtained by the user by enabling any one of the rule sets provided. For

example, we assume that there is a set of rules for nested transactions that can be

enabled by a command giving the user the semantics of nested transactions. Minimal

user commands such as begin- and end-subtransaction are assumed. Similarly, an-

other set of rules will provide the semantics of Sagas. Without any loss of generality

we shall assume that rules are in the form of ECA rules, i.e., event, condition and

action rules (along with coupling modes, event contexts, priority etc).

One advantage of this approach is that new rule sets can be de�ned (of course by a

DBA or a DBC) and added to the system. It may also be possible for the educated

user to add additional rules to slightly tweak the semantics of a transaction model.

A limitation of this approach is that the set of rules de�ned are over the events of the

conventional transaction model supported by the system, e.g., commit, abort, etc.,

53

and thus limits the number of transaction models which can be expressed using these

events.

2. Identify a set of critical events on the underlying data structures used by a DBMS

(such as the operations on the lock table, the log, and deadlock and con
ict reso-

lution primitives) and write rules on these events. This approach does not assume

any underlying transaction model. This approach can be used to support di�erent

transaction models including the traditional transaction model. In this approach,

system level ECA rules are de�ned on data structure interfaces to support
exible

transactions.

A distinct advantage of this approach is that it will be possible to support work
ow

and newer transaction models irrespective of whether they are extensions of the tradi-

tional transaction model. To elaborate, the rules are now de�ned on low-level events

which act on the data structures directly thereby providing �ner control for de�ning

transaction semantics. For instance, a rule can be de�ned on lock table events such as

acquire-lock and release-lock. This is in contrast to de�ning rules on high-level events

such as commit, abort etc. Another advantage is that a DBMS can be con�gured

using a subset of the transaction models available at the system generation time. This

approach may be able to o�set the performance disadvantage currently observed in

active database systems. The system designer will be in a better position (relatively)

to support or extend transaction models2.

This approach is similar to the one taken in Wells et al. [46]. They introduce a
exible

and adaptable tool kit approach for transaction management. This tool kit enables a

database implementor or applications designer to assemble application-speci�c trans-

action types. Such transaction types can be constructed by selecting a meaningful

2We would like to point out that the use of ECA rules by themselves will not make the system completely

exible. However, we do believe the process of identifying primitive events, details of conditions/actions
and writing these rules will make us reexamine the current architecture and the data structures to progress
towards a modular systems architecture.

54

subset from a starter set of basic constituents. This starter set provides, among other

things, basic components for concurrency control, recovery, and transaction process-

ing control.

3. This is a generator approach using either the �rst or the second alternative. In this

approach a high-level speci�cation of a transaction model (either by the user or by

the person who con�gures the system) is accepted and automatically translated into

a set of rules. The speci�cation is assumed at compile time so that either rules or

optimized versions of code corresponding to the rules are generated. The advantage

of this approach is that the burden of writing rules is no longer on users of the system.

We propose to adopt the second approach outlined above as a mechanism for specifying

and enforcing extended transaction models. The rationale for adopting this alternative is

that this approach o�ers �ne-grained control. This control provides the necessary
exibility

for specifying existing transaction models, newer transaction models as they become avail-

able and arbitrary transaction semantics thereby resulting in a highly extensible system.

Before, we give details of the second alternative outlined above, it is �rst necessary to iden-

tify the advantages of using the active database paradigm as a mechanism for expressing

and enforcing the semantics of various transaction models. This is important since many

other alternatives may exist for solving this problem and thus these advantages helps in

providing metrics for comparing di�erent viable solutions. The advantages of using this

paradigm for supporting di�erent transaction models are summarized below:

� Provides a model and environment independent mechanism for supporting various

transaction models.

� Provides a uniform mechanism for achieving system extensibility. The utility of active

behavior at the systems level can also be applied to achieve additional functionality

such as load balancing.

55

� It is a well understood and established paradigm and thus can be implemented, ana-

lyzed, and optimized with relative ease. The utility of this paradigm can be observed

by the presence of this capability in almost all commercial models, its introduction

into SQL3, and the number of research prototypes being developed.

� The availability of expressive event speci�cation languages like Snoop, Samos, Ode,

and Reach that allow sequence, conjunction and time related events can be bene-

�cial for modeling interdependencies amongst transactions. For example, complex

dependencies such as transaction T1 cannot begin execution until any of transac-

tions T2, T3 or T4 commit, followed by the commit of transactions T5 and T6, can

be expressed using the expressive event speci�cation languages mentioned above. In

addition, these languages can be bene�cial for modeling some of the synchronization

aspects of work
ow applications.

Our approach for supporting a given transaction model Tx using active capability is

essentially a three step process :

1. Identify the set of operations executed by transactions in the model under consider-

ation. Both application visible and internal operations are taken into account. For

example, application visible operations such as begin transaction and internal oper-

ations such as acquire lock are considered. Some of these operations are treated as

events, i.e., their execution is trapped by the active DBMS. It should be emphasized

that not all events detected are associated with operations implemented in the system.

Rather, these events can be abstract or external events.

2. The second step involves identifying the condition which needs to be evaluated when

an event occurs (e.g., checking for con
icts at lock request time) and the action to be

performed if the condition evaluates to true (e.g., granting the lock to the requesting

transaction). The events, conditions and actions yield pools of events, conditions,

56

and actions, respectively, which are stored in the DBMS. These pools, depicted in

Figure 5.3, form the building blocks from which rules are constructed.

3. The �nal step involves combining an event, a condition and an action to compose an

ECA rule. Each ECA rule de�nes the semantics of a smaller unit of the transaction

model under consideration. For instance, an ECA rule may de�ne the semantics of

the acquire lock operation. This process is repeated until a rule set de�ning the entire

semantics of a transaction model is built. We allow for the cascading of rule execution.

This occurs when the action component of a rule raises event(s) which may trigger

other rule(s). Cascading of rules is utilized for implementing nested transactions and

is shown in chapter 7.

This approach allows sharing of the building blocks in several ways. Events, conditions,

and actions are shared across rules sets composed for di�erent transaction models. In ad-

dition, intermediate rules can also be shared by other rules. Although Figure 5.3 shows

a single level for clarity, a hierarchy of rules is constructed from the building blocks. The

overlap of events, conditions and actions for di�erent rule sets clearly indicates the modu-

larity and reusability aspect of our approach. This is further substantiated in the section

on implementation details.

To summarize, our approach encapsulates the semantics of a transaction model into

ECA rules. These rules are derived from the analysis of each transaction model as well as

examination of their similarities and di�erences. This encapsulation is done at the level

of signi�cant operations (e.g., begin-transaction, commit) that can be treated as events

and/or at the level of internal operations on data structures (e.g., lock-table). Once the

semantics of a transaction model is composed in terms of these building blocks, rules are

written for each block. The availability of begin and end events are useful to model the

semantics without having to introduce additional events. Also, the availability of coupling

modes and composite events are used to avoid explicit coding of control as much as possible.

57

Rule Set for Nested
Transactions

Condition Set for
Nested Transactions

Action Set for
Nested Transactions

Condition Pool Action PoolEvent Pool

An event
A condition

Legend :

An action
An ECA ruleRule Set for Sagas

Rule Pool

Event Set for
Nested Transactions

Figure 5.3. Rule Composition

The mechanism described above can also be applied for customizing auxiliary behavior.

By trapping the operations that are executed by applications, it is possible to perform aux-

iliary actions as required by the user/system designer (i.e., other than those de�ning the

transaction semantics). A good example of this is in systems where optimal performance is

achieved when the number of transactions in the system does not exceed a particular thresh-

old (e.g., load balancing and bu�er sizes). Therefore, it is necessary to check the number

of transactions and not allow the threshold to be exceeded. This can be accomplished by

trapping the operation begin transaction and checking the number of active transactions at

that point. If the number is found to be less than the threshold, then allow the transaction

to continue execution, otherwise either abort the transaction or make it wait. Similarly, in

banking applications there may be a limit on the number or amount of withdrawals in a

day. By de�ning a rule which is triggered upon detection of the begin operation, it is pos-

sible to check the number or amount of withdrawals appropriately and either continue or

abort the transaction. To summarize, not only does the active database paradigm allow for

the speci�cation of transaction semantics but arbitrary semantics as well in an extensible

manner.

58

5.2.2 Bene�ts of Our Approach

Our approach, which is essentially use of the active database paradigm at the system

level and the rule composition process, provides the following bene�ts:

� Applications can avail the semantics of a particular transaction model Tx by enabling

the rule set de�ning the semantics of Tx. Disabling a rule set will eliminate runtime

overhead associated with the �ring of rules in that rule set.

� Using the proposed approach, di�erent applications can realize desired transaction

semantics by choosing the appropriate rule set. It is also possible to make individual

rules available to applications by the DBC in an appropriate manner. This usage

requires a good understanding of the internals and hence needs to be used cautiously.

� More importantly, realizing the semantics of a particular transaction model entails

de�ning a rule set to be used by transactions adhering to this model. As reusability

of rule sets among di�erent transaction models is a key aspect of this approach, it

may be possible to de�ne a new rule set using existing rules.

� Rule sets to support various transaction models can be provided by the DBC. The

number of transaction models supported can be controlled by the number of rule sets

currently available to applications. Application speci�c auxiliary semantics can be

provided by the DBC by writing rules speci�c to an application class/environment.

� It is possible to con�gure a DBMS with one or more rule sets and optimize the rule

sets for e�ciency. In other words, e�ciency need not necessarily be sacri�ced if only

one or a small set of transaction models are desired. This can be achieved by using

the subscribe/unsubscribe functionality, or by compiling desired rules at con�guration

time [31]. Subscribe and unsubscribe allows us to decouple rules (condition-action

pairs) from events, thereby reducing runtime overhead.

59

� When a new event, such as delegate, is introduced for modeling the semantics of

new transaction models, multiple rules can be associated with that event to provide

di�erent semantics. These set of rules become part of the pool of rules available for

grouping.

5.2.3 Contributions

Before presenting the details of our research results, we �rst list the contributions of

our work:

� We propose the use of ECA rules for obtaining the semantics of transaction models.

Rule sets on signi�cant events specify a transaction model. Both events and rules can

be added without changing the semantics of currently supported transaction models.

� We allow the user to de�ne ECA rules on the underlying data structures in the DBMS

(such as the transaction table, object table and log) thereby providing �ne-grained

control to the user. This provides a powerful facility since the user can build or equiv-

alently construct arbitrary transaction semantics rather than being restricted to those

transaction models which can be expressed using high-level transaction primitives and

dependencies.

� We provide a framework which separates the de�nition of rules (which de�ne the

transaction semantics) from the application code itself. This permits applications

and transaction semantics to be modi�ed independently of each other as well as use

of existing applications without major modi�cations.

� Rules de�ning transaction semantics can be activated and deactivated dynamically

thereby enabling the transaction semantics to be modi�ed dynamically. This is an

important requirement for testing the applicability of di�erent transaction models for

the same application.

60

� We show how various transaction models can be translated into a set of ECA rules in

the context of Sentinel, an active OODBMS developed at UF. However, our approach

is general enough to be applied to any active DBMS (relational or otherwise).

CHAPTER 6
DESIGN DETAILS

Sentinel, an active OODBMS developed at UF was used as the underlying DBMS for

implementing the traditional transaction model, nested transactions and Sagas using ECA

rules. Sentinel was developed by incorporating active capability into Zeitgeist, an OODBMS

developed at Texas Instruments. In the following sections, we �rst begin by describing Zeit-

geist with special emphasis given to its transaction manager (TM) architecture. We then

proceed by explaining how active behavior was incorporated into Zeitgeist thereby produc-

ing Sentinel. A discussion of the adequacy of Sentinel for supporting various transaction

models is then given followed by examination of the alternatives for supporting extended

transaction models in an object-oriented environment.

6.1 Zeitgeist

The OODBMS Zeitgeist consists of the following components: i) Persistent Object Store

(POS), ii) Object Management System (OMS), ii) Primitive Object Query Language (OQL)

and iv) Flat or traditional Transaction Manager (TM). Figure 6.1 depicts the Zeitgeist

modules. Zeitgeist uses the C++ language to de�ne the OO conceptual schema as well as

to manipulate the internal object structure. Below, we describe the components pertinent

to our implementation, namely, the POS, OMS and TM components.

� Persistent object store. Zeitgeist provides two methods for achieving persistence,

namely, using a �le-based structure on the Unix platform or using an underlying

storage manager for persistence. The �le-based version of Zeitgeist neither supports

concurrency control nor recovery. Therefore, all transactions must be executed se-

quentially and no provision for recovery when faults occur is given. The other method

61

62

Change Extended

Transactions

Hypermedia

User Interface
Object Query

 Management

Type Manager Object Manager

Persistant Object

Store

Object

Communications

Object

Translation

Transactional Store

Figure 6.1. Zeitgeist Modules.

for achieving persistence is by translating C++ objects into record format and stor-

ing them in an underlying storage manager. Although, Zeitgeist originally only used

Oracle as an underlying storage manager, interfaces for using both Ingres and Sybase

were developed at UF. In our implementation we used Ingres as the underlying stor-

age manager. However, this is not a limitation since it can be easily ported to other

storage managers, e.g., Oracle. Concurrency is provided by maintaining a multi-

level transaction manager where the bottom-level transaction manager belongs to

the underlying storage manager and the top-level transaction manager is maintained

in a shared memory segment at the client level. The top-level transaction manager

provides concurrency control only while recovery is provided by the lower-level trans-

action manager, namely, Ingres's transaction manager.

Object persistence is achieved by using three relations in Ingres viz. Groups, Value

and Refto. These three tables are created and initialized by executing scripts at the

unix command line. These scripts connect to Ingres and execute SQL statements.

63

Note that these tables can be directly accessed for debugging purposes. The Groups

table controls the allocation of object numbers as well as contains the information

for each storage group and the time when it was last modi�ed. This relation consists

of the attributes SGNO, NEXTNO, LOC, and USER COMMENT. This table has a

unique ascending index on SGNO. The next table, Value, holds object values, i.e., this

is where the translated C++ form of the object is stored. The Value table consists of

the attributes SGNO, OBNO, TIME, SEQNO, OBJSIZE, ASGNO, AOBNO, ATIME,

DSGNO, DOBNO, DTIME, SACNT, UACNT, XCNT, and VALUE. The last table,

Refto, holds externally referenced OIDs, i.e., it maintains the external references of

an object. The attributes of this table are SGNO, OBNO, TIME, SEQNO, XSGNO,

and XOBNO.

� Object manager. The object manager is responsible for acquiring locks on an object

as well as fetching an object from the POS and installing it in process memory. The

object manager maintains a data structure referred to as the encapsulated object

(EO). This data structure keeps track of the lock mode in which each object is held

as well as which transaction holds the lock. When a transaction requests an object

for the �rst time, the object manager fetches the object from the POS and installs it

in main memory. All subsequent requests for that object (by the same transaction)

result in the object manager �rst checking for the presence of the object in the EO

data structure followed by it deciding whether the request should be granted or the

lock upgraded etc.

� Transaction manager. Zeitgeist's TM is implemented using three main classes,

namely, the zgt ht class, the zgt tx class, and the zeitgeist class. Figures 6.3, 6.4 and

6.5 respectively show the class de�nitions of each of the above mentioned classes.

The entire TM's data structures are maintained in a shared memory segment thereby

allowing it to be accessed by multiple clients. Access to the TM's data structures by

64

static struct zgt_hlink

{

char lockmode; // the lockmode in which the object is held

long sgno; // the storage group number in which the object is stored

long obno; // the object identification number of the object held

long tid; // the transaction identifier number of the transaction holding the object

zgt_hlink * next; // links nodes hashed to the same bucket

zgt_hlink *nextp; // links nodes of the same transaction, i.e., all locks held by transaction

}

int pid; // the process identification number of the transaction holding the object

Figure 6.2. The structure showing the locks held by a transaction.

clients is regulated using a speci�c semaphore. First, the user executes the program

zgt init which is responsible for creating and attaching the shared memory segment,

for allocating and initializing a speci�c number of semaphores, and for creating and

initializing the TM's data structures. The semaphores are used to regulate access

to the TM's data structures (since this is a critical section) as well as for transac-

tions to block on when their requests cannot be granted. The zgt init program takes

four parameters at the command line: the user identi�cation number, the number of

semaphores, the size of the shared memory segment, and the number of seconds de-

noting the time interval between checking for deadlocks. With respect to the number

of semaphores, the lower bound is 3 and the upper bound is 64. If the user speci�es

the number of semaphores to lie outside the latter range, then the default number

of 16 semaphores is allocated. The lower bound on the shared segment size is 65536

bytes while the upper bound is 1048576 bytes. If the user speci�es a shared memory

segment size which does not lie within this range, then the default size of 655360

bytes is used.

Figure 6.3 contains the class de�nition for the zgt ht class. The data members are sm,

lastid, lastr, head, size and mask. The �rst data member, sm, points to the start of

the shared memory segment. Lastid is the value of the last transaction identi�er which

65

// methods

zgt_hlink * find (long, long);

zgt_hlink * findt (long, long, long);

int add (zgt_tx *, long, long, char);

int remove (zgt_tx *, long, long); // remove a lock entry

// constructors and destructors

zgt_ht (int ht_size = ZGT_DEFAULT_HASH_TABLE_SIZE, zgt_shmem *shm = NULL);

~zgt_ht();

int hashing (long sgno, long obno) {return ((++sgno)*obno)&mask;};

class zgt_ht

{

public:

friend class zgt_tx;

// state

long lastid; // value of last transaction identifier assigned

char *lastr; // pointer to the first transaction object in the hash table

zgt_hlink ** head; // origin of has table

int size; // length of hash table array

int mask; // bit mask used in hash function

}

char *sm; // pointer to the start of the shared memory segment

friend class wait_for;

Figure 6.3. The Hash Table Class.

was assigned to a transaction. This data member ensures that each transaction is

assigned a unique transaction identi�er. Lastid is simply incremented to assign a new

transaction identi�er. The lastr data member points to a chained list of transaction

objects where the structure of each transaction object is given in Figure 6.4. The

head data member points to the start of a lock hash table. The lock hash table

consists of a number of buckets where each bucket maintains a linked list of locks

held by transactions. To elaborate, each item in the linked list contains information

regarding which object is held by which transaction as well as the lock mode in which

it is held. The size data member contains the value of the size of the lock hash table,

speci�cally the number of buckets assigned. Finally, the mask data member contains

a bit value used to determine where an object stored in a particular storage group

should hash to in the lock hash table.

66

{

public:

friend class zgt_ht;

friend class wait_for;

int pid; // the process identification number of the transaction

long tid; // the transaction identifier

long sgo; // the storage group number where the object on which the transaction is blocked is stored

long obno; // the object number of the object on which the transaction is blocked

char status; // the current status of the transaction

char lockmode; // the lockmode requested for the object on which the transaction is blocked

int semno; // the semaphore number on which the transaction is queued

zgt_hlink * head; // this points to a linked list of the locks currently held by the transaction

zgt_tx * nextr; // this points to the next transaction hashed to this same bucket

// methods

zgt_hlink *others_lock(zgt_hlink *, lonh, long);

int free_locks();

int remove_tx(zgt_shmem *);

long get_tid() {return tid;}

long set_tid(long t){tid = t; return tid;}

char get_status() {return status;}

int set_lock(long, long, char);

int set_lock_no_wait(long,long, char);

int upgrade_lock_no_wait(long, long, char);

int end_tx();

int cleanup();

zgt_tx(zgt_shmem *);

~zgt_tx(){};
}

class zgt_tx

Figure 6.4. The Transaction Class.

With respect to the methods of the zgt ht class the methods are �nd, �ndt, add and

remove. The �nd method takes two arguments as its parameters, namely, a storage

group number and an object number. This method �rst hashes the storage group

number and the object number to determine which bucket in the lock hash table this

object should reside. It then performs a linear sequential search in that bucket to �nd

the �rst occurrence of that object and storage group number in the linked list. If one

is found, a pointer to that zgt hlink element is returned, otherwise a null pointer is

returned. This method basically determines whether any transaction holds any lock

on that particular object. The next method, �ndt, takes three arguments, speci�cally,

a transaction identi�er, a storage group number and an object identi�er. This method

�rst hashes on the storage group number and the object number to determine the

67

{

public :

// methods

int abort_transaction();

int begin_transaction();

int commit_transaction();

int shutdown();

int startup();

.

.

.

}

class zeitgeist

Figure 6.5. The Zeitgeist Class.

bucket in the lock hash table. It then performs a sequential search in the bucket to

determine whether the speci�ed transaction (given as an argument to this method)

holds any lock on the given object and storage group. If a zgt hlink is found, then

a pointer to it is returned, otherwise a null pointer is returned. The next method

add takes three arguments, namely, a pointer to a transaction object, a storage group

number, an object number and a lock mode. This method �rst acquires a piece of

memory from the shared memory segment. The structure of this piece of memory

is a zgt hlink object. It �rst hashes on the storage group number and the object

identi�er to determine which bucket the object is to reside in and then adds it at

the top of the linked list of zgt hlink objects in the bucket. Subsequently, it updates

the linked list of locks held by the transaction object to re
ect the acquisition of

this lock. To summarize, this method updates the TM's data structures to re
ect

the acquisition of a lock by a transaction. The last method, remove, takes three

parameters, namely, a transaction object, a storage group number and an object

identi�er. This method basically removes a zgt hlink from the linked list of locks

held by a transaction. Therefore, this method essentially performs the lock release

operation by a transaction. Note that all methods which update the TM's data

68

structures must �rst acquire an exclusive semaphore so as to avoid simultaneous

access to these shared data structures.

The zgt tx class is used to represent all transactions in the system. The class de�nition

is given in Figure 6.4. The data members of this class are tid, pid, sgno, obno, status,

lockmode, semno, head, and nextr. The tid and pid respectively denote the transaction

identi�er and the process identi�er of the transaction. The sgno and obno denote the

storage group number and the object identi�er for which the transaction is currently

waiting. This implies that the transaction is currently blocked. The status data

member maintains the transaction state information which can be any one of the

following four states:

1. Active. This implies that the transaction is currently executing. This state is

denoted by the character P.

2. Wait. This state implies that the transaction has been initiated and has actually

started execution but is currently in a wait state. This state arises when a trans-

action requests a particular lock on an object and this lock cannot be granted

due to a con
ict. In this state, the transaction is blocked on a semaphore. This

state is denoted by the character W.

3. Abort. This state implies that the transaction has aborted. This arises when

a failure occurs or due to deadlock resolution. In this state, all the operations

performed by the transaction are rolled back. This state is denoted by the

character A.

4. End. This state denotes that the transaction has successfully completed all of

its operations. This state is denoted by the character E.

The head data member points to a linked list of zgt hlink objects. Each zgt hlink

object maintains information about a lock held on an particular object. Therefore,

69

the head data member points to a linear list of all the locks held by a transaction.

The last data member, nextr, points to the next transaction object. Therefore, all

transaction objects are maintained as a linear list.

The methods of this class are others lock, free locks, remove tx, get tid, set tid, set lock,

get status, set lock no wait, upgrade lock no wait, end tx, cleanup, zgt tx and �zgt tx.

The �rst method, others lock, takes three parameters, basically a pointer to a bucket

in the lock hash table, a storage group number and an object identi�er. This method

determines whether any other transaction holds any lock on the object in question.

The method free locks frees all locks held by a transaction. While traversing sequen-

tially through the locks held by the transaction, any transaction which is blocked

because it needs the just released object is unblocked and allowed to proceed. The

method remove tx �rst checks that no locks are held by a transaction and if this is

found to be true, the transaction object is removed from the linked list of transactions

and the memory it utilized is returned to the free list of shared memory available. The

methods get tid, set tid and get status return the transaction identi�er, set the trans-

action identi�er, and return the status of the transaction, respectively. The methods

set lock and set lock no wait both take three parameters, namely, the storage group

number, an object identi�er and a lock mode. The former method attempts to ac-

quire the speci�ed lock on the given object and if it is unable to do so, it returns an

error. The latter method behaves similarly except if it is unable to acquire the lock

on the object, the transaction is blocked on a semaphore and its status is changed to

the wait state. The method upgrade lock no wait takes three parameters, namely, a

storage group number, an object identi�er and a lock mode. This method attempts to

upgrade the lock held by a transaction and if it is unable to do so, it returns an error

message. The method end tx �rst frees all locks held by a transaction, removes the

transaction object from the linked list of transactions and returns all released memory

70

to the free list of shared memory available. The cleanup method kills all transactions

in the linked list while releasing and returning all memory to the free list of shared

memory available. The constructor zgt tx takes as a parameter a pointer to the shared

memory segment and acquires a piece of memory for creating and initializing a new

transaction object. Finally, �zgt tx is the class destructor. Notice that this class only

implements the operations associated with locks, i.e., lock acquisition, lock release,

lock upgrade etc. Other operations associated with a transaction like begin, commit

and abort are not implemented here but rather implemented in the Zeitgeist class.

The structure zgt hlink is depicted in Figure 6.2 and is used for representing the locks

held by a transaction. This structure consists of the data members lockmode, sgno,

obno, tid and pid. The lockmode is a character denoting the mode in which the object

is held. Zeitgeist supports three locks modes:

{ Read only (RO). This lock mode is not upgradable. A transaction is not

required to acquire a lock on an object if the lock mode requested is read only.

{ Shared (S). This lock mode implies that the transaction wants to read the

object. More than one transaction can have a shared lock on the same object at

the same point in time. This lock is upgradable. This lock can be upgraded to

an exclusive lock provided no other transaction holds a shared or exclusive lock

on that object.

{ Exclusive (X). This lock mode implies that a transaction has both read and

write access on an object. Only one transaction may hold an object in exclusive

mode at a time.

The Zeitgeist class is partially shown in Figure 6.5. The methods of this class per-

tinent to transaction processing are abort transaction, begin transaction and com-

mit transaction. The �rst method, abort transaction, rolls back all the updates made

71

by a transaction. This takes place when a failure occurs. The begin transaction

method performs all initialization procedures so as a transaction may subsequently

begin execution. Finally, the commit transaction method makes all updates per-

formed by a transaction permanent in the database.

The relationship between the above mentioned three classes is illustrated in Figure 6.6.

6.2 Overview of Sentinel

Sentinel [11, 12, 16, 17, 13, 44, 2, 4, 14, 15, 29, 45] is an active object-oriented DBMS

that seamlessly integrates ECA rules into the object-oriented paradigm. The Sentinel

architecture is an extension of the passive Zeitgeist architecture [37]. The Zeitgeist class

hierarchy was augmented with new class de�nitions which are necessary for supporting

active capability. Figure 6.7 depicts the class hierarchy of Sentinel; speci�cally, the classes

introduced are the Reactive, Noti�able, Event, Rule and Event Detector classes.

In Sentinel, objects are classi�ed into three categories: passive, reactive and noti�able.

Passive objects. These are conventional objects which receive messages, perform some

operations and then return results. They do not generate events. An object that needs to

be monitored (by informing other objects of its state changes) cannot be passive. Reactive

objects, on the other hand, are objects that need to be monitored (i.e., on which rules

will be de�ned). A reactive object can declare any, possibly all, of its methods as an event

generator. All methods declared as event generators constitute a reactive object's event

interface. Once a method is declared as an event generator, its invocation will generate a

primitive event. The primitive event can be generated either before or after the execution

of the method depending on which event modi�er was speci�ed by the user. The event will

be generated before execution and after execution if the user speci�es the begin and end

modi�er, respectively. In addition, if the user speci�es both modi�ers then two primitive

events will be generated, one before execution and one after execution of the respective

method. Lastly, Noti�able objects are those objects that are capable of being informed

72

ne
xt

r
tid

pi
d

ob
no

sg
no

st
at

us

 lo
ck

m
od

e
he

ad
se

m
no

ne
xt

r
tid

pi
d

ob
no

sg
no

st
at

us

 lo
ck

m
od

e
he

ad
se

m
no

lo
ck

m
od

e
ne

xt
sg

no
ob

no
tid

pi
d

ne
xt

p
lo

ck
m

od
e

ne
xt

sg
no

ob
no

tid
pi

d
ne

xt
p

lo
ck

m
od

e
ne

xt
sg

no
ob

no
tid

pi
d

ne
xt

p

lo
ck

m
od

e
ne

xt
sg

no
ob

no
tid

pi
d

ne
xt

p
lo

ck
m

od
e

ne
xt

sg
no

ob
no

tid
pi

d
ne

xt
p

sm la
st

id

la
st

r

he
ad

si
ze

m
as

k

Sh
ar

ed
 M

em
or

y
Se

gm
en

t

L
in

ke
d

L
is

t
of

 T
ra

ns
ac

ti
on

s

L
oc

k
H

as
h

T
ab

le

Sh
ar

ed
 M

em
or

y

Figure 6.6. Architecture of Zeitgeist's Transaction Manager.

73

of the events produced by reactive objects. Therefore, noti�able objects become aware of

a reactive object's state changes and take appropriate measures (by evaluating conditions

and executing actions) in response to those state changes. Noti�able objects subscribe to

the primitive events generated by reactive objects. After subscription, the reactive objects

propagate their generated primitive events to the noti�able objects. Events and rules

are examples of noti�able objects. Rules receive events from reactive objects, send them to

their local event detector, and take appropriate actions. Event detectors receive events from

reactive objects, store them along with their parameters, and use them to detect primitive

and complex events. In the following paragraphs we brie
y outline the implementation of

the Reactive, Noti�able, Event and Rule classes. The reader is referred to Anwar et al. [2]

for a detailed implementation of these classes.

Sentinel Class Hierarchy

Reactive

Derived class Friend class

Event Detector

Rule Event

Notifiable

Application Level Classes

Figure 6.7. Sentinel class hierarchy

Reactive class. The public interface of the Reactive class consists of methods by which

objects acquire reactive capabilities. For an object to be reactive, i.e., have the ability

to generate primitive events when methods in its event interface are invoked, it must be

74

an instance of a class derived from the Reactive class1. Subclasses of the Reactive class

will inherit several methods the most important of which is the Subscribe method. This

method allows Noti�able objects to subscribe to the primitive events generated by instances

of subclasses of the Reactive class. Once this subscription takes place, the noti�able object

will be informed of the primitive events generated by the Reactive object. For example, if

X is a Reactive object and Y is a Noti�able object, then Y will be informed of the primitive

events generated by X after the statement X.Subscribe(Y) is executed.

Noti�able class. Similarly, the public interface of the Noti�able class consists of methods

which allow objects to receive and record primitive events generated by reactive objects.

For an object to be noti�able it must be an instance of a class derived from the Noti�able

class, i.e., an instance of a subclass of the Noti�able class. The method Record de�ned in

this class documents the parameters computed when an event is raised, namely, the oid

of the reactive object generating the event, the event generated, the time-stamp of when

the event was generated, and the number and actual values of the parameters sent to the

reactive object.

Event class hierarchy. The Event class is the superclass of an event class hierarchy which

de�nes the common structure and behavior shared by all event types. Each event type is

a subclass of the Event class. The event types that are supported are primitive as well

as complex. The Primitive subclass is for modeling primitive events which are basically

method invocations. Creation of a primitive event object requires indicating the method

which raises the event and when the event should be raised, i.e., before or after execution

of the method.

Rule class. The primary structure de�ning a rule is the event which triggers the rule, the

condition which is evaluated when the rule is triggered, and the action which is executed

when the rule is triggered. Therefore, creation of a rule object X is accomplished by

executing the statement Rule X(eventid, Condition, Action), where eventid is the oid

1Another way a class can become a reactive class is if it is a friend class of another reactive class.

75

of the event object representing the event that triggers the rule X, Condition is a function

that is to be executed when the event is triggered and Action is a function to be executed

if the Condition function returns true.

6.3 Adequacy of Sentinel for Supporting Transaction Models

zgt_hlink

Sentinel Class Hierarchy

Reactive

Derived class Friend class

Event Detector

Rule Event

Notifiable

Zeitgeist

zgt_tx zgt_ht

Zeitgeist

Figure 6.8. Sentinel class hierarchy at the System Level

While �rst incorporating active behavior into Zeitgeist we aimed at achieving two pri-

mary goals. The �rst goal was to provide a seamless incorporation of ECA rules into the

OO paradigm while the second was use of this active capability at the application level

to enforce integrity constraints as well as achieve additional application level functionality.

These two main goals were met by treating events and rules as �rst class objects as well

as creating a class hierarchy which provided active functionality. As the main intent for

using active capability was to enforce application level constraints and integrity constraints,

active behavior was incorporated only at the application level. In other words, only ap-

plication level classes were derived or alternately made subclasses of the Reactive class as

76

shown in Figure 6.7. Now, however, we require the trapping of system level operations as

opposed to application level operations. This is easily achieved in Sentinel due to the ver-

satility of its design. In particular, due to Sentinel providing the ability to trap operations

in one centralized place, namely, the Reactive class, all that is required to trap system level

operations is to derive the pertinent classes from the Reactive class. Consequently, since we

are only interested in the operations pertinent to transactions and the TM, we derived the

zeitgeist class and the zgt tx class from the Reactive class. This automatically now allows

one to de�ne rules to be executed when methods of these classes are invoked. Thus we

modi�ed the Zeitgeist class hierarchy as illustrated in Figure 6.8.

Alternatives for Supporting Transactions in the OO Paradigm

In this section we examine the alternatives for supporting various transaction models

on the same DBMS and provide the rationale for our design choices. This discussion is in

the context of the object-oriented paradigm. Before we begin, it is necessary to point out

that we treat transactions as �rst class objects. The rationale for this design choice is that

transactions exhibit the same properties as other objects, namely, transactions have a state

(e.g., running, suspended, aborting), a structure (e.g., statements constituting transaction

body, transaction identi�er etc.), and behavior (a set of methods such as begin, commit

de�ning its interface). The two main alternatives for supporting various transaction models

are:

1. Create a transaction hierarchy (or alternatively a class hierarchy) where each class

de�nition in the hierarchy models the required semantics of a particular transaction

model. A sketch of a possible class hierarchy is depicted in Figure 6.9. This approach

is motivated by runtime processing gains, since the semantics of a transaction is hard-

wired into the DBMS and no additional processing at runtime is required. Although

this approach naturally �ts into the object-oriented paradigm, it su�ers from several

77

limitations, primarily inextensibility. More speci�cally, supporting newer transaction

models warrants modi�cation of the existing transaction hierarchy and thus recompi-

lation of the system. This requires the end user to be familiar with the code pertaining

to the transactional system as well as wasting time while it is being recompiled. More

importantly, once a transaction is created, its transaction semantics is determined

(depending on the class it is an instance of) and cannot be changed. This may be

a severe limitation when the user is unsure about which transaction model most ad-

equately suits an application's semantics or when the user wants to perform some

experimentation with di�erent transaction models.

2. Create only one transaction class, as opposed to a class hierarchy, which contains all

the methods such as begin, commit and abort that are necessary for modeling the

di�erent transaction models. However, since the semantics of these methods di�er

from one transaction model to the other, these methods should serve no purpose other

than notifying when these methods are executed by transactions, i.e., invocation of

these methods generate events. These generated events are subsequently propagated

to the set of rules associated with a transaction and the condition and action exe-

cuted for those rules which are triggered. This approach clearly introduces a runtime

performance penalty incurred as a result of event trapping, condition evaluation and

possible action execution. However, the advantages of this approach, namely, the

ability to model existing, newer and arbitrary transaction semantics without modify-

ing the underlying DBMS, outweigh this performance penalty. This is the approach

adopted in our implementation.

78

}{

Jo

in
()

;

Sp
lit

()
;

cl
as

s
Sp

lit

D
er

iv
ed

 c
la

ss

lo

ng
 ti

d;

lo

ck
s*

 p
en

di
ng

_l
oc

ks
;

}

ac

qu
ir

e_
lo

ck
(O

ID
 o

bj
ec

t,
M

O
D

E
 m

od
e)

;
/*

 a
cq

ui
re

 a
 lo

ck
 o

n
a

ob
je

ct
 in

 r
ea

d/
w

ri
te

 m
od

e
*/

C

om
m

it(
);

 /*
 th

is
 m

et
ho

d
di

st
in

gu
is

he
s

be
tw

ee
n

th
e

co
m

m
it

of
 a

 to
p

le
ve

l v
er

su
s

a
su

bt
ra

ns
ac

tio
n

*/

A
bo

rt
()

; /
*

th
is

 m
et

ho
d

di
st

in
gu

is
he

s
be

w
te

en
 th

e
ab

or
t o

f
a

to
p

le
ve

l a
nd

 s
ub

tr
an

sa
ct

io
n

*/

 }
lo

ng
 p

tid
;

 /*
 th

e
pa

re
nt

 tr
an

sa
ct

io
n

id
en

tif
ie

r
*/

in

t c
hi

ld
re

n;
 /

*
nu

m
be

r
of

 s
ub

tr
an

sa
ct

io
ns

 a
 tr

an
sa

ct
io

n
ha

s
*/

 p
ub

lic
 :

cl
as

s
N

es
te

d
{

C

om
m

it(
);

B

eg
in

(P
F*

 b
od

y)
;

A

bo
rt

()
;

ac

qu
ir

e-
lo

ck
(O

ID
 o

bj
ec

t,
M

O
D

E
 m

od
e)

;

lo

ck
s*

ac

qu
ir

ed
_l

oc
ks

;

st

at
us

 t
ra

n_
st

at
us

;

 p
ub

lic
 :

{cl
as

s
T

ra
ns

ac
tio

n

cl
as

s
Sa

ga
s

{ p
ub

lic
 :

PF
*

lis
t-

of
-c

om
pe

ns
at

in
g-

tx
;

/*
 li

st
 o

f
co

m
pe

ns
at

in
g

tr
an

sa
ct

io
ns

 *
/;

PF
*

lis
t-

of
-c

om
po

ne
nt

-t
x;

 /
*

lis
t o

f
co

m
po

ne
nt

 tr
an

sa
ct

io
ns

 *
/;

A
bo

rt
()

; /
*

th
is

 m
et

ho
d

im
pl

em
en

ts
 th

e
ab

or
t s

em
an

tic
s

of
 S

ag
as

 *
/

C
om

m
it(

);
 /*

 th
is

 m
et

ho
d

up
da

te
s

da
ta

ba
se

 w
he

n
la

st
 c

om
po

ne
nt

 tr
an

sa
ct

io
n

co
m

m
its

 *
/

}

 p
ub

lic
 :

 P
F*

 t

ra
n_

bo
dy

;
/*

 p
oi

nt
er

 to
 a

 f
un

ct
io

n
re

pr
es

en
tin

g
tr

an
sa

ct
io

n
bo

dy
 *

/

Figure 6.9. Transaction class hierarchy.

CHAPTER 7
IMPLEMENTATION DETAILS

In this chapter we give the details of implementing nested transaction, Split transactions

and Sagas using the active database paradigm. ECA rules which formulate the semantics

of the above mentioned transaction models are given in following sections.

7.1 Modeling Nested Transactions

In the nested transaction model [35], a transaction may contain any number of sub-

transactions, and each subtransaction, in turn, may contain any number of subtransac-

tions. Hence, the entire transaction forms a hierarchy of transactions the root of which

is called the root or top-level transaction. Transactions having subtransactions are called

parents, and their subtransactions are their children. The transactions on the path from a

transaction to the root of the transaction tree are called the superiors of the transaction.

The nested transaction model allows several types of concurrency: sibling concurrency,

parent/child concurrency, and the most general case { complete concurrency. We focus on

sibling concurrency as it is the most widely used nested transaction model.

With respect to transaction semantics, top-level transactions have all the properties

of traditional transactions. That is, top-level transactions preserve the ACID properties.

Nested transactions preserve serializability among subtransactions; therefore, subtransac-

tions cannot cooperate or share data. The commit of a subtransaction is conditionally

subject to the commit of its superiors. Hence, a subtransaction's updates become perma-

nent only when the enclosing top-level transaction commits. Upon commit, all locks held

by a subtransaction are inherited by the parent transaction. A parent transaction does not

79

80

interfere with its children (in sibling concurrency); a transaction is allowed to hold a lock

if the con
icting transaction is one of its superiors.

The following rule, Tx initiate, initiates both top-level and nested transactions by

placing them on the scheduler queue. This rule is triggered when the begin method is

invoked, i.e., when the begin event is raised.

Rule: Tx initiate

On T1->Transaction Descriptor::begin() // detecting invocation of begin method

Condition True // no condition checking necessary

Action sched->Scheduler::Insert(T1->tid) // Place transaction on scheduler queue

The next rule, Tx Release All Locks, releases all locks held by a transaction. The

chained list of locks held is traversed and each lock released to the outside world, i.e., a

conventional release. This rule is triggered by the execution of other rules, speci�cally,

Tx commit TopLevel and Tx abort TopLevel. This exhibits how it is possible to exploit the

cascading of rule execution to modularize rules. In other words, it is possible to create rules

which perform common operations and use these rules in more than one transaction model.

Rule: Tx Release All Locks

On T1->Transaction Descriptor::release locks() // detecting release locks method

Condition True // no condition checking necessary

Action // start releasing all locks held

trav = T1->locks; // point to head of lock list held by T1

while(trav != NULL) f

get exclusive sem(); // get exclusive semaphore to access shared data

trav->ODO->counter��; // decrement no. of transactions pointing to ODO

temp = trav->ODO; // make a temporary variable point to ODO

trav = trav->next obj desc; // traverse to next lock held by transaction

81

if(temp->counter == 0) // check if no transactions pointing to ODO

free(temp); // release memory used by ODO

release exclusive sem(); // release exclusive semaphore

g

T1->locks = NULL; // set T1's lock list to NULL

Rules Tx commit TopLevel and Tx commit Child, de�ned below, are triggered

by the same event, namely, commit of a transaction. These two rules capture the di�er-

ence in commit semantics between top-level and nested transactions. Note that the rules

Tx commit TopLevel and Tx commit Child can be further simpli�ed by introducing

a new event such as delegate which will delegate the locks to the enclosing transaction. In

the case of the top-level transaction, the enclosing transaction will be the outside world

(i.e., a regular release) and for nested transactions the release will be to the immediate su-

perior. Also note that rule Tx commit TopLevel triggers rule Tx Release All Locks

given above.

Rule: Tx commit TopLevel

On T1->Transaction Descriptor::commit() // detecting invocation of method commit

Condition T1->transaction type == TOPLEVEL // T1 is a top-level transaction

Action

Make updates permanent //based on recovery method used

Raise release locks event //this triggers rule Tx Release All Locks

Rule: Tx commit Child

On T1->Transaction Descriptor::commit() //detecting invocation of method commit

82

Condition T1->transaction type == CHILD // T1 is not a top-level transaction

Action

// delegate operations on shared objects to parent as well as release locks to parent

trav = T1->locks; // point to head of lock list held by T1

while(trav != NULL)

f

delegate operations performed on this object to Parent(T1);

// T1's parent is now responsible for these operations

if(trav->ODO->oid 2 list of objects held by Parent(T1)) // check if lock

also held by parent

f

get exclusive sem(); // get an exclusive semaphore to access shared data

set parent's lock to most exclusive lock held by parent & child

release exclusive sem(); // release exclusive semaphore

g

else

f

get exclusive sem(); // get an exclusive semaphore

change lock-mode to RETAINED // for parent to inherit lock

add this ODO to parent(T1)'s list // Parent(T1) now points to this object

release exclusive sem(); // release exclusive semaphore

g

g

T1->locks = NULL; // set T1's lock list to NULL

83

Similarly, rules Tx abort TopLevel and Tx abort Child describe the semantics of

abort for top-level and nested transactions. Again, they are triggered by the raising of the

same event, namely, abort.

Rule: Tx abort TopLevel

On T1->Transaction Descriptor::abort() // detecting invocation of method abort

Condition T1->transaction type == TOPLEVEL // T1 is a top-level transaction

Action

Flush buffers // discard all changes made to objects

Raise release locks event //this triggers rule Tx Release All Locks

Rule: Tx abort Child

On T1->Transaction Descriptor::abort() // detecting invocation of method abort

Condition T1->transaction type == CHILD // T1 is a child transaction

Action

Flush buffers // discard all changes made to objects

Raise release locks event //this triggers rule Tx Release All Locks

In the rest of this section, we show rules de�ning lock acquisition semantics for top-

level and child transactions. These rules are Tx acquire exclusive lock TopLevel and

Tx acquire lock Child. Both these rules use the Tx grant lock rule which basically

updates the transaction and lock table to re
ect lock acquisition. Rules for acquiring

shared and exclusive locks for top-level transactions are also given below.

Rule Tx grant lock creates a new entry in the object hash table when a transaction

acquires a lock on an object. All necessary updates to the transaction and object table are

performed by this rule.

84

Rule: Tx grant lock

On T1->Transaction Descriptor::acquire lock(oid,mode) // detecting add lock method

Condition True // no condition checking necessary

Action

// Create a new ODO, insert it in object hash table, & add it to list of locks held by T1

Object Descriptor* ODO(oid,mode); // create new ODO

i = hash(oid); // �nd bucket to insert new ODO

get exclusive sem(); // get an exclusive semaphore to modify object hash table

object table[i].insert(ODO); // insert ODO in bucket

Make T1 point to new ODO in bucket // insert ODO at end of lock list held by T1

release exclusive sem(); // release exclusive semaphore

Rule Tx acquire exclusive lock TopLevel de�nes the semantics of exclusive lock ac-

quisition for top-level transactions. Once Tx acquire exclusive lock TopLevel is trig-

gered, we �rst check whether the transaction already holds the lock in the requested mode.

If this is the case, then no action is performed and the transaction simply proceeds with

its execution. Otherwise, we check whether the lock is held in a con
icting mode. If this is

found to be true, then the transaction is blocked on a semaphore until the lock is released.

If the lock is available, it is granted and the transaction proceeds with its execution.

Rule: Tx acquire exclusive lock TopLevel

On T1->Transaction Descriptor::acquire lock(oid,mode) // detecting invocation of

method acquire lock

Condition

// TOPLEVEL & lockmode is X-mode & no transaction holds lock in X- or S-mode

if(T1->transaction type != TOPLEVEL jj mode != EXCLUSIVE)

return(0);

85

if T1 already holds lock in EXCLUSIVE mode

f

found = 1; //
ag indicating that transaction already holds lock

return(1);

g

i = hash(oid); // hash object wanted to �nd bucket

trav = object table[i]; // point to head of list of bucket

while(trav != NULL) // start looping through objects in bucket

f

if(trav->oid != oid) // check if object is in hash table

f

trav = trav->next in bucket; // move to next object in bucket

continue; // go to top of while loop

g

Block transaction on semaphore // object is in hash table, i.e., held in

X- or S-mode and transaction must wait

break; // break out of loop and acquire lock once transaction is unblocked

g

return(1);

Action

if(!found) // if transaction does not already hold the lock

Raise grant lock event // this triggers rule Tx grant lock

86

Rule Tx acquire lock Child de�nes the semantics of lock acquisition in all modes

for nested transactions. A transaction is allowed to proceed if it already holds the lock in

the requested mode or the transaction holding the lock in con
icting mode is an ancestor

transaction. Otherwise, the subtransaction is blocked on a semaphore until it can acquire

the lock.

Rule: Tx acquire lock Child

On T1->Transaction Descriptor::acquire lock(oid,mode) // detecting invocation of

method acquire lock

Condition // check transaction type & locking rules

if(T1->transaction type != CHILD) // T1 is a child transaction

return(0);

if T1 already holds the lock in required mode

f

found = 1; //
ag indicating that transaction already holds lock

return(1);

g

SUPERIORS = T1's superior transactions;

if(mode == EXCLUSIVE) jj mode == READONLY)) // mode is X- or RO-mode

TS = set of transactions holding either an X- or S-lock on oid

else // requested mode is S-mode

TS = set of transactions holding an X-lock on oid

8 ti such that ti 2 TS

if ti 62 SUPERIORS

block transaction on semaphore;

87

return(1)

Action

if(!found) // if transaction does not already hold the lock

Raise grant lock event // this triggers rule Tx grant lock

Tx acquire shared lock TopLevel and Tx acquire readonly lock TopLevel are

two additional rules given below. These rules complete the semantics of lock acquisition

for top-level transactions. Tx acquire shared lock TopLevel de�nes the semantics of

shared lock acquisition while Tx acquire readonly lock TopLevel de�nes the semantics

of read-only acquisition. These rules allow a transaction to continue executing if it already

holds the lock or if no transaction holds the lock in a con
icting mode. If the lock is held

in a con
icting mode, then the transaction is blocked until it can be granted the lock.

Rule: Tx acquire shared lock TopLevel

On T1->Transaction Descriptor::acquire lock(oid,mode) // detecting invocation of

method acquire lock

Condition // TOPLEVEL & lockmode is S-mode & no transaction holds lock in X-mode

if(T1->transaction type != TOPLEVEL jj mode != SHARED)

return(0);

if T1 already holds lock in SHARED mode f

found = 1; //
ag indicating that transaction already holds lock

return(1);

g

i = hash(oid); // hash object wanted to �nd bucket

trav = object table[i]; // point to head of list of bucket

while(trav != NULL) f // start looping through objects in bucket

// check if object is in hash table

88

if((trav->oid != oid) ||

(trav->oid == oid && trav->lock mode != EXCLUSIVE)) f

trav = trav->next in bucket; // move to next object in bucket

continue; // go to top of while loop

g

Block transaction on semaphore; // object is held in X-mode

break; // break out of loop & acquire lock once transaction is unblocked

g

return(1)

Action

if(!found) // if transaction does not already hold the lock

Raise grant lock event // trigger rule Tx grant lock

Rule: Tx acquire readonly lock TopLevel

On T1->Transaction Descriptor::acquire lock(oid,mode) // detecting invocation of

method acquire lock

Condition

// TOPLEVEL & lockmode is RO-mode & no transaction holds lock in X- or S-mode

if(T1->transaction type != TOPLEVEL jj mode != READONLY)

return(0);

if T1 already holds lock in READONLY mode

f

89

found = 1; //
ag indicating that transaction already holds lock

return(1);

g

i = hash(oid); // hash object wanted to �nd bucket

trav = object table[i]; // point to head of list of bucket

while(trav != NULL) // start looping through objects in bucket

f

if(trav->oid != oid) // check if object is in hash table

f

trav = trav->next in bucket; // move to next object in bucket

continue; // go to top of while loop

g

Block transaction on semaphore // object already held in X- or S-mode

break; // break out of loop & acquire lock once transaction is unblocked

g

return(1);

Action

if(!found) // if transaction does not already hold the lock

Raise grant lock event // trigger rule Tx grant lock

7.2 Split Transactions

Split transactions [40] were proposed mainly for supporting open-ended applications.

In this transaction model, a transaction can execute the operation split-transaction which

basically creates a new top-level transaction. The original transaction and the new transac-

tion are serialized as if they are two independent transactions. However, when the original

90

transaction executes the operation split-transaction, it can delegate responsibility of uncom-

mitted operations on a speci�c subset of objects to the newly created transaction. After the

split occurs, the two transactions continue execution and commit or abort independently.

Similarly, a transaction can also execute the operation join-transaction which essentially

combines two active serializable transactions into one transaction. The main advantage of

split transactions is relaxing isolation which is achieved when either the original or new

transaction commits and releases its results.

One approach for supporting split transactions is to write ECA rules expressing their

semantics using the three step process described in section 5.2.1. That is, identify the

events, write new sets of conditions/actions, and combine them into rules. Although this

approach yields a correct solution, it does not exploit reusability of rules among transaction

models. A more bene�cial approach is to examine currently de�ned ECA rules (i.e., events,

conditions and actions de�ned for supporting various transaction models) and determine

their reuse (either entire rules or components thereof) for expressing the new transaction

model at hand. This allows one to understand the similarities as well as di�erences among

transaction models, expedite the de�nition of the semantics of a transaction model (as rules

may no longer need to be written from scratch), reduce the number of rules in the system,

and most importantly provide extensibility.

The latter approach was adopted for de�ning the rules necessary for supporting split

transactions. Transactions belonging to this model are essentially top-level transactions

exhibiting the same semantics as top-level transactions in the nested transaction model.

Therefore, the semantics of begin, commit, abort and acquire lock are identical to the se-

mantics of these operations in top-level transactions of the nested transaction model. Con-

sequently, the rules de�ned for these methods, given in section 7.1, are also applicable to

this transaction model. The operations split-transaction and join-transaction are speci�c

91

to this model and thus ECA rules realizing their semantics need to be de�ned. These rules

are given below.

Rule Tx split is triggered when a transaction invokes the split operation. This rule

creates a new top-level transaction and delegates the locks and uncommitted operations on

the indicated objects to the new transaction.

Rule: Tx split

On T1->Transaction Descriptor::split(obj set, tx body) // detecting invocation

of split method

Condition True // no condition checking necessary

Action

Transaction Descriptor *New Tx; // create new transaction descriptor object

tid = New Tx->Create Descriptor(tx body, TOPLEVEL); // initialize & get tid of

new toplevel transaction

8 oi such that oi 2 obj set

delegate(oi, tid); // delegate all locks & uncommitted

operations on oi to tid

sched->Scheduler::Insert(T1->tid) // Place new transaction on scheduler queue

Rule Tx join is triggered when a transaction invokes the join operation. This rule �rst

checks that the transaction to be joined with is active. If this is found to be true both

transactions are combined into one top-level transaction.

Rule: Tx join

On T1->Transaction Descriptor::join(Tx) // detecting invocation of join method

Condition Tx->transaction status == ACTIVE // transaction to join with is active

Action

92

// Delegate objects to the transaction to be joined with

OBJECTS = set of objects held by T1

8 oi such that oi 2 OBJECTS

delegate(oi, Tx->tid); // delegate all locks & uncommitted operations

on oi to Tx

T1->� Transaction Descriptor(); // remove transaction issuing join

operation from transaction table

7.3 Sagas

Sagas [23] is a transaction model introduced to more adequately serve the requirements

of long-lived transactions. A Saga consists of a set of independent component transactions

T1; T2; :::; Tn where each component transaction Ti (except transaction Tn) has an asso-

ciated compensating transaction CTi. Compensating transactions semantically undo the

e�ects of their respective component transaction. The component transactions T1; T2; :::; Tn

execute serially in a prede�ned order and may interleave arbitrarily with the component

transactions of other sagas. If a component transaction aborts, then the entire Saga aborts

by executing the compensating transactions in reverse order to the order of the commit-

ment of the component transactions. Here, we do not show the ECA rules which de�ne

the semantics of this transaction, but rather discuss how to modify the ECA rules de�ning

nested transactions to achieve the semantics of this model.

Component and compensating transactions are top-level transactions whose semantics

for begin, commit, abort and acquire lock are very similar to those of top-level transactions

belonging to the nested transaction model. To elaborate, the semantics of commit in a top-

level component transaction is to make all updates permanent to the database and release

all locks held. This is precisely the semantics of commit by a top-level transaction in the

nested transaction model. In addition, the commit of a component transaction should also

begin executing the next component transaction in the series. Therefore, the action part

93

of rule Tx commit TopLevel should be modi�ed to include starting the execution of the

next component in the saga series. Similarly, the abort of a component transaction performs

the same operations as the abort of a top-level transaction in the nested transaction model.

In addition, it also starts execution of the appropriate compensating transaction in order

to start the rollback process. Thus the action part of rule Tx abort TopLevel, given in

section 7.1, should be modi�ed to re
ect this di�erence.

Likewise, the commit of a compensating transaction performs all operations carried out

by the commit of a top-level transaction in the nested transaction model. In addition, it

should also start the execution of the next compensating transaction in the rollback process.

Similarly, the abort of a compensating transaction performs all operations executed when a

top-level transaction aborts. However, it also restarts the compensating transaction again,

i.e., the aborted compensating transaction is retried until it successfully commits.

CHAPTER 8
EXTENSIBILITY

In this chapter we discuss the extensibility aspects of our approach. There are two

distinct aspects of extensibility that need to be addressed: i) extensibility of ECA rules

as compared to other approaches (object-oriented and tool-kit) to extensibility and ii)

extensibility in modeling newer transaction models. Below, we address each of the above.

We believe that ECA rules at the system level provide yet another, but more powerful

form of extensibility. In contrast to the other two approaches (object-oriented and tool-

kit), this approach provides greater control at runtime (with respect to the object-oriented

approach) and allows one to rede�ne semantics dynamically. In a sense, the binding of

rules can be controlled by other rules instead of overloading which provides a �xed form of

dynamic association.

In contrast to the tool-kit approach, use of rules allows one to support both application-

level and system-level modi�cation of behavior in a uniform manner. Further, our approach

does not preclude the inline incorporation/compilation of rules to avoid the performance

overhead that is associated with rule processing. However, the use of rules allows one to

modularize and prototype systems relatively easily.

So far we have used ECA rules de�ned at the system level to achieve the semantics

of various transaction models. The rule sets de�ned for the various transaction models

focus on the concurrency control aspect of transaction models. Since Zeitgeist uses a lock

based method for achieving concurrency control, we also adopted this method in our rules.

In particular, we de�ned events for the operations such as lock-acquisition, lock-release

and upgrade-lock. Another reason which prompted our use of a lock-based mechanism for

concurrency control, is that it is used in most commercial DBMSs, is well understood and is

94

95

perhaps the most popular of the concurrency control mechanisms. However, it is important

to realize that our approach to realizing transaction models is not limited to a particular

concurrency control method. Rather, our approach is extensible enough to be applied to

other concurrency control mechanisms, e.g., optimistic concurrency control (OCC).

To show the extensibility of our approach let us assume that OCC using timestamp

ordering is preferred over a lock based method. The basic notion behind OCC is to allow

transactions to read, compute, and update local copies freely without updating the actual

database. Some information is maintained with each data item to ensure serializability of

committed transactions. Once a transaction completes, it enters a validation phase which

consists of checking if the updates maintain the consistency of the database (i.e., the commit

of the transaction is serializable). If the answer is a�rmative, then the updates are made

persistent in the database, otherwise the transaction is aborted.

The three rules of the OCC algorithm [30] using read and write sets can be translated

into ECA rules when the commit is issued by a transaction. In Zeitgeist, only the object-id

is kept in the shared memory data structures (along with some other information, but not

the value). Local copies of the objects are maintained in the application/client address

space. By modifying the tables in the shared memory to keep the timestamp information,

it is relatively easy to implement the OCC algorithm based on timestamp order by writing

rules on the commit and disabling rules on acquire lock etc. The list of objects accessed

by a transaction is already maintained (although there is no distinction between read and

write objects) in shared memory.

As previously mentioned, we have concentrated on using ECA rules for the concurrency

aspects of transaction models. This, however, does not prohibit its utilization to other

aspects of transaction management. Consequently, our approach can also be used for the

recovery aspects of transaction management as well as other aspects such as deadlock de-

tection and deadlock resolution. Usage of this paradigm in these other areas of transaction

96

management entails identifying the data structures and operations that need to be detected

or trapped as well as de�ning the semantics of the operations using ECA rules. Therefore,

the exact same process used for supporting the concurrency control aspects is utilized to

other aspects of transaction management.

CHAPTER 9
CONCLUSIONS AND FUTURE WORK

Although database systems encompass a large range of applications, they were origi-

nally developed for business oriented database applications such as banking systems, airline

reservation systems, and organizational systems. These applications are well-served by the

properties of the traditional transaction model, primarily due to the fact that these ap-

plications are simple in nature and have very short duration. However, as the scope of

databases extends to a large variety of applications, such as work
ow management, coop-

erative tasks, and computer integrated manufacturing (CIM), it is important to reevaluate

the assumptions and properties of the traditional model of transactions. These applications

expose the inadequacy of the traditional transaction model in meeting the requirements of

these non-traditional applications. For instance, the failure atomicity requirement of the

traditional transaction model dictates that all work must be rolled back in the event of

failures. This requirement is unsuitable for long-lived transactions due to the fact that

much work might have been done and will be lost in the event of a failure. In addition, the

traditional transaction model does not allow much cooperation among activities. Cooper-

ation is required in CAD environments where several people may be jointly working on a

project where each person is responsible for part of the design project.

The current solution to meeting the diverse requirements of non-traditional applica-

tions has been the proposal of a number of advanced or extended transaction models such

as nested transactions, Sagas, ConTract model, and Flex transaction model. These trans-

action models relax the ACID properties in various ways to better model the parallelism,

consistency, and serializability requirements of non-traditional applications. Proposals of

advanced transaction models primarily start from a speci�c application. To elaborate, an

97

98

application's dynamic behavior is analyzed, a fault model is speci�ed, and features are

either added or modi�ed to the classical ACID transaction model aiming at supporting

the requirements of that application. Although a large number of transaction models have

been proposed, little e�ort has been made in implementing them and understanding the

interaction among di�erent transaction models.

The goal of this research is to provide a framework which allows for the speci�cation and

enforcement of di�erent transaction models on any one given DBMS. We have proposed

to use the active database paradigm as a mechanism for the speci�cation and enforcement

of extended transaction models on a DBMS. We �rst identi�ed the main alternatives for

supporting various transaction models given a DBMS and examined the advantages and

disadvantages of each. Next, we examined the semantics of various transaction models and

translated them into high-level speci�cations using ECA rules. We then chose to specify

and enforce various transaction models using ECA rules de�ned on system level events

such as operations on the transaction table, the lock table and the log. We identi�ed

the main data structures and operations on them that need to be implemented in order

to support extended transactions. The class de�nitions (in C++) were written to de�ne

these data structures and operations. We then examined the adequacy of Sentinel, an ac-

tive OODBMS, for supporting extended transactions and showed how to modify its class

hierarchy to achieve this. Several extended transaction models were examined and their se-

mantics translated into ECA rules de�ned on the data structures mentioned above. We also

implemented the traditional transaction model as well as Sagas using the active database

paradigm. Sentinel is the active OODBMS used for our implementation.

REFERENCES

[1] E. Anwar. Supporting complex events and rules in an oodbms: A seamless ap-
proach. Master's thesis, Database Systems R&D Center, CIS Department, University
of Florida, E470-CSE, Gainesville, FL 32611, November 1992.

[2] E. Anwar, L. Maugis, and S. Chakravarthy. A New Perspective on Rule Support for
Object-Oriented Databases. In Proceedings, International Conference on Management
of Data, pages 99{108, Washington, D.C., May 1993.

[3] P. Attie, M. Singh, M. Rusinkiewicz, and A. Sheth. Specifying and enforcing intertask
dependencies. Technical Report MCC Report: Carnot-245-92, Microelectronica and
Computer Technology Corporation, November 1992.

[4] R. Badani. Nested Transactions for Concurrent Execution of Rules: Design and Im-
plementation. Master's thesis, Database Systems R&D Center, CIS Department, Uni-
versity of Florida, Gainesville, FL 32611, October 1993.

[5] A. Biliris, S. Dar, N. Gehani, H.V.Jagadish, and K. Ramamritham. ASSET: A System
for Supporting Extended Transactions. In Proceedings, International Conference on
Management of Data, May 1994.

[6] A. Biliris, S. Dar, N. Gehani, H. V. Jagadish, and K. Ramamritham. ASSET: A System
for Supporting Extended Transactions. In Proceedings, International Conference on
Management of Data, pages 44{54, Minneapolis, Minnesota, May 1994.

[7] J. A. Blakeley, C. W. Thompson, and A. M. Alashqur. Oql[x] : Extending a pro-
gramming language x with a query capability. Technical Report TR 90-07-01, Texas
Instruments, July 1990.

[8] J. A. Blakeley, C. W. Thompson, and A. M. Alashqur. Strawman reference for object
query languages. Proceedings of the First OODB Standardization Workshop, May
1990.

[9] J. A. Blakeley, C. W. Thompson, and A. M. Alashqur. Zeitgest query language (zql).
Technical Report TR-90-03-01, Texas Instruments, March 1990.

[10] Jose A. Blakeley. Open Object Database Management Systems. In Proceedings, In-
ternational Conference on Management of Data, page 520, Minneapolis, Minnesota,
May 1994.

[11] S. Chakravarthy. Active Database Management Systems: Requirements, State-Of-
The-Art, and an Evaluation. In H. Kangassalo, editor, Entity-Relationship Approach:
The Core of Conceptual Modeling, pages 461{473. Elsevier Science Publishers, North-
Holland, 1991.

99

100

[12] S. Chakravarthy and R. Blanco-Mora. Supporting very large production systems using
active dbms abstraction. Technical Report UF-CIS TR-91-25, Database Systems R&D
Center, CIS Department, University of Florida, E470-CSE, Gainesville, FL 32611, Sep.
1991.

[13] S. Chakravarthy and S. Garg. Extended relational algebra (era): for optimizing situa-
tions in active databases. Technical Report UF-CIS TR-91-24, Database Systems R&D
Center, CIS Department, University of Florida, E470-CSE, Gainesville, FL 32611, Nov.
1991.

[14] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite Events for
Active Databases: Semantics, Contexts, and Detection. In Proceedings, International
Conference on Very Large Data Bases, pages 606{617, August 1994.

[15] S. Chakravarthy, V. Krishnaprasad, Z. Tamizuddin, and R. Badani. ECA Rule Inte-
gration into an OODBMS: Architecture and Implementation. Technical Report UF-
CIS-TR-94-023, University of Florida, E470-CSE, Gainesville, FL 32611, Feb. 1994.
(In ICDE-95, Taiwan, March 1995.).

[16] S. Chakravarthy and D. Mishra. An event speci�cation language (snoop) for active
databases and its detection. Technical Report UF-CIS TR-91-23, University of Florida,
E470-CSE, Gainesville, FL 32611, Sep. 1991.

[17] S. Chakravarthy and D. Mishra. Snoop: An Expressive Event Speci�cation Language
for Active Databases. Data and Knowledge Engineering, 14(10):1{26, October 1994.

[18] P. K. Chrysanthis and K. Ramamtitham. Acta: A framework for specifying and
reasoning about transaction structure and behavior. In Proceedings, International
Conference on Management of Data, pages 194{203, 1990.

[19] F. Eliassen, J. Veijalainen, , and H Tirri. Aspects of transaction modelling for inter-
operable information systems. in interim report of the cost 11ter project,, 1988.

[20] A. Elmagarmid, Y. Leu, W. Litwin, , and M. Rusinkiewicz. A multidatabase trans-
action model for interbase. In Proceedings, International Conference on Very Large
Data Bases, Brisbane,Australia, 1990.

[21] A. Elmagarmid, Y. Leu, W. Litwin, and M. Rusinkiewicz. A multidatabase transaction
model for Interbase. In Proceedings of International Conference of Very Large Data
Bases, August 1990.

[22] A.K. Elmagarmid, editor. Database Transaction Models for Advanced Applications.
Morgan Kaufmann Publishers, San mateo, CA, 1992.

[23] H. Garcia-Molina and K. Salem. Sagas. In Proceedings of the Conference on Database
Systems in O�ce, Technique and Science, pages 249{259, May 1987.

[24] D. Georgakopoulos, M. Hornick, P. Krychniak, and F. Manola. Speci�cation and
management of extended transactions in a programmable transaction environment. In
Proceedings IEEE Conference on Data Engineering, February 1994.

[25] Jim Gray. The transaction concept: Virtues and limitations. In Proceedings, Interna-
tional Conference on Very Large Data Bases, Cannes, France, 1981.

[26] T. Haerder and A. Reuter. Principles of transaction-oriented database recovery. ACM
Computing Surveys, 1983.

101

[27] Sandra Heiler, Sara Haradhvala, Zdonik, Barbara Blaustein, and Aron Rosenthal.
A
exible framework for transaction management in engineering environments. in
database trasaction models for advanced applications, edited by a. elmagarmid,.

[28] Ishikawa. Object-Oriented Real-Time Language Design: Constructs for Timing Con-
straints. In OOPSLA '90 proceedings, pages 289{298, 1990.

[29] V. Krishnaprasad. Event Detection for Supporting Active Capability in an OODBMS:
Semantics, Architecture, and Implementation. Master's thesis, Database Systems
R&D Center, CIS Department, University of Florida, Gainesville, FL 32611, March
1994.

[30] H.T. Kung and J.T. Robinson. On optimistic methods for concurrency control. ACM
Transactions on Database Systems, 6(2):213{226, 1981.

[31] F. Llirbat and E. Simon. Optimizing active database transactions: A new perspective.
In proc. of the 1st Int'l Workshop on Active and Real-Time Database Systems, Skovde,
Sweden, June 1995.

[32] L. Maugis. Adequacy of active oodbms to
ight data processing servers. Master's the-
sis, National School of Civil Aviation / University of Florida, E470-CSE, Gainesville,
FL 32611, August 1992.

[33] C. Mohan. Tutorial: A Survey and Critique of Advanced Transaction Models. In Pro-
ceedings, International Conference on Management of Data, page 521, Minneapolis,
Minnesota, May 1994.

[34] M. Morgenstern. Active Databases as a Paradigm for Enhanced Computing Environ-
ments. In Proceedings 9th International Conference on Very Large Data Bases, pages
34{42, 1983.

[35] J. E. Moss. Nested Transactions: An Approach to Reliable Distributed Computing.
PhD thesis, Department of Electrical Engineering and Computer Science, MIT, 1981.

[36] M. Nodine and S. Zdonik. Cooperative transaction hierarchies: A transaction model to
support design applications. In Proceedings, International Conference on Very Large
Data Bases, pages 83{94, 1984.

[37] OODB. Open OODB Toolkit, Release 0.2 (Alpha) Document. Texas Instruments,
Dallas, September 1993.

[38] K. Osterbye. Active Objects: An Access Oriented Framework for Object Oriented
Language. In JOOP, pages 6{10, June/July 1988.

[39] M. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice-
Hall International, Inc., Englewood Cli�s, N.J., 1991.

[40] C. Pu, G. Kaiser, and N. Hutchinson. Split-transactions for open-ended activities. In
Proceedings, International Conference on Very Large Data Bases, 1988.

[41] A. Reuter. Contract: A means for extending control beyond transaction boundaries.
In Proceedings of the 2nd International Workshop on High Performance Transaction
Systems, September 1989.

[42] A. Reuter. Contracts: A means for extending control beyond transaction boundaries.
3rd INt'l Workshop on High Performance Transaction processing, September 1989.

102

[43] Marek Rusinkiewicz and Amit Sheth. Polytransactions for managing interdependent
data. ieee data engineering bulletin,, March 1991.

[44] A. Sharma. On extensions to a passive dbms to support active and multi-media capa-
bilities. Master's thesis, CIS Department, University of Florida, Gainesville, 1992.

[45] Z. Tamizuddin. Rule Execution and Visualization in Active OODBMS. Mas-
ter's thesis, Database Systems R&D Center, CIS Department, University of Florida,
Gainesville, FL 32611, May 1994.

[46] Rainer Unland and Gunter Schlageter. A Transaction Manager Development Facility
for Non Standard Database Systems.

[47] D. Wells, J. A. Blakeley, and C. W. Thompson. Architecture of an Open Object-
Oriented Database Management System. IEEE Computer, 25(10):74{81, October
1992.

BIOGRAPHICAL SKETCH

Eman Anwar was born on April 25, 1969, in Cairo, Egypt. She received a Bachelor

of Science in Computer Science degree from Kuwait University, Kuwait in January 1989.

After her graduation, she worked as a computer programmer at the Institute of Banking

Studies, Kuwait.

She joined the Department of Computer and Information Science and Engineering at

the University of Florida in January 1991 to pursue a master's degree, and since then has

worked as a research assistant in the Database Systems Research and Development Center

of the department. She has also worked as a teaching assistant in the Computer and

Information Science and Engineering Department of the university. Her research interests

include computer networks, distributed operating systems, active database systems, and

transaction processing.

103

