
REAL-TIME TRANSACTION SCHEDULING:
A COST-CONSCIOUS APPROACH

By

DONG-KWEON HONG

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

1992

ACKNOWLEDGEMENTS

First, I would like to thank myadvisors, Dr. Sharma Chakravarthy and Dr. Theodore

Johnson, for showing me the path of research, and for providing me with constant

encouragement throughout my work. I would also like to thank the other member of

my supervisory committee, Dr. Ravi Varadarajan, for willingly agreeing to serve on

my committee.

Next I would like to thank Dr. Paul Fishwick for providing me SIMPACK simu-

laton package. Without this great package, my work would have been delayed.

Finally, I would like to thank all the student at the Data Base System Research

and Development Center for their help and friendship.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS : ii

LIST OF TABLES : v

LIST OF FIGURES : vi

ABSTRACT : viii

CHAPTERS : 1

1 INTRODUCTION : 1

1.1 Real-Time Operating System : 2
1.2 Real-Time Database System : 3

1.2.1 Priority Assignment : 4
1.2.2 Concurrency Control : 4

1.3 Problem Statement : 5
1.4 Thesis Organization : 5

2 SURVEY OF RELATED WORKS : 7

2.1 Time Constraints : 7
2.2 Task Scheduling : 8

2.2.1 Static Approach : 10
2.2.2 Dynamic Approach : 10

2.3 Transaction scheduling : 11
2.3.1 Approaches with 2-phase Locking : : : : : : : : : : : : : : : : 13
2.3.2 Approaches with Optimistic Algorithm : : : : : : : : : : : : : 16
2.3.3 Approaches with Transaction Pre-analysis : : : : : : : : : : : 17
2.3.4 Lock Type : 18
2.3.5 IO Scheduling : 19

3 COST-CONSCIOUS APPROACH : 21

3.1 Motivation : 21
3.2 Transaction Response Time : 22

3.2.1 Dynamic Cost : 23
3.3 Assumptions : 23
3.4 Transaction Pre-analysis : 23
3.5 Scheduling Algorithm : 28

3.5.1 Priority Assignment : 28
3.5.2 High Priority Preference Conict Resolution : : : : : : : : : : 30

iii

4 ANALYSIS : 36

5 COST CONSCIOUS FOR MAIN MEMORY DATABASE : : : : : : : : : 43

5.1 Simulation Result : 43
5.1.1 E�ect of Arrival Rate : 45
5.1.2 E�ect of Variation of Update Time : : : : : : : : : : : : : : : 47
5.1.3 E�ect of Database Size : 47
5.1.4 E�ect of Penalty-Weight : 48

6 COST CONSCIOUS FOR DISK RESIDENT DATABASE : : : : : : : : : 58

6.1 Simulation Result : 58
6.1.1 E�ect of Arrival Rate : 59
6.1.2 E�ect of Disk Access : 60
6.1.3 E�ect of Penalty-Weight : 61

7 COST CONSCIOUS FOR MULTIPLE EXIT TRANSACTION : : : : : : 64

8 CONCLUSION AND FUTURE WORK : : : : : : : : : : : : : : : : : : : 67

REFERENCES : 70

BIOGRAPHICAL SKETCH : 72

iv

LIST OF TABLES

2.1 Condition of conict : 19

4.1 Characteristics of new scheduling method : : : : : : : : : : : : : : : : 36

5.1 Base parameters : 45

5.2 EDF, CC with base parameters : 49

5.3 Improvement of CC over EDF : 50

5.4 CC with penalty-weight=150, Dbsize=30 : : : : : : : : : : : : : : : : 51

5.5 EDF,CC with variation of update time : : : : : : : : : : : : : : : : : 52

5.6 E�ect of DB size(Arrival Rate=5) : 54

5.7 E�ect of DB size(Arrival rate=10) : 54

5.8 Number of miss with the changes of penalty-weight(DBsize=30) : : : 56

5.9 Number of miss with the changes of penalty-weight(DBsize=1000) : : 56

6.1 Base parameters : 59

6.2 EDF and CC with base parameters : : : : : : : : : : : : : : : : : : : 61

6.3 EDF,CC with high probability disk IO : : : : : : : : : : : : : : : : : 61

6.4 Number of miss with the changes of penalty-weight : : : : : : : : : : 62

7.1 E�ect of unsafe out of not safe : 66

v

LIST OF FIGURES

1.1 Taxonomy of real-time scheduling : 2

2.1 Value function of hard deadline : 8

2.2 Value function of soft deadline : 8

2.3 Taxonomy of real-time transaction scheduling : : : : : : : : : : : : : 12

3.1 Transaction programs : 24

3.2 Transaction access tree : 25

3.3 Auxiliary transaction access tree : 27

4.1 Valid schedules : 39

4.2 Output of Example 1 : 41

4.3 Output of Example 2 : 42

4.4 Output of Example 3 : 42

5.1 Flow of simulation program : 43

5.2 The plot of EDF, CC with base parameters : : : : : : : : : : : : : : 49

5.3 The plot of improvement : 50

5.4 The plot of restart : 51

5.5 E�ect of variation of update time : 53

5.6 Number of restart with variation of update time : : : : : : : : : : : : 53

5.7 E�ect of DB size (Arrival Rate=5) : : : : : : : : : : : : : : : : : : : 55

5.8 E�ect of DB size(Arrival Rate=10) : : : : : : : : : : : : : : : : : : : 55

vi

5.9 E�ect of penalty-weight : 57

5.10 Stability of penalty-weight : 57

6.1 Flow of simulation program : 58

6.2 Stability of penalty-weight : 62

6.3 E�ect of penalty-weight : 63

7.1 E�ect of % of unsafe : 66

vii

Abstract of Thesis
Presented to the Graduate School of the University of Florida

in Partial Ful�llment of the Requirements for the
Degree of Master of Science

REAL-TIME TRANSACTION SCHEDULING:
A COST-CONSCIOUS APPROACH

By

DONG-KWEON HONG

DECEMBER, 1992

Chairman: Dr. Sharma Chakravarthy
Cochairman: Dr. Theodore Johnson
Major Department: Computer and Information Sciences

Real-time databases are an increasingly important component of embedded real-

time systems. In a real-time database context, transactions must not only maintain

the consistency constraints of the database but also satisfy the timing constraints

speci�ed for each transaction. Although several approaches have been proposed to

integrate real-time scheduling and database concurrency control methods, none of

them take into account the dynamic cost of scheduling a transaction as proposed in

this thesis. In this thesis, we propose a new cost-conscious pre-analysis based real-

time transaction scheduling algorithm which considers dynamic costs associated with

a transaction. Our dynamic priority assignment algorithm adapts to changes in the

system load without causing excessive numbers of transaction restarts.

CHAPTER 1
INTRODUCTION

People can share much more information with the help of computers and

database technology. The main purpose of a database system is to allow people to

save, share and �nd necessary information easily in the computer. With the rapid

changes of computer technologies, the expectations of people have greatly increased.

For data-intensive real-time applications, the ability of database system to satisfy the

timing constraint of a transaction (a basic unit of work that should be done completely

or not at all in the context of database) becomes a key factor in determining the

feasibility of the application.

Real-time systems which manipulate real-time data (any data that must be ma-

nipulated in some way subject to a timing constraint) are characterized by the fact

that severe consequences will result if the timing as well as the logical correctness

properties of the system are not satis�ed.

Examples of real-time systems are command and control systems, process control

systems, ight control systems, the space shuttle avionics systems, future systems

such as the space station and the space-based defense system. Most of the real-

time computer systems are special-purpose and complex, requiring a high degree

of fault tolerance, and are typically embedded in a large system. Also, real-time

systems have substantial amounts of knowledge concerning the characteristics of the

application and the environment built into the system. Thus database systems which

are embedded in real-time systems also have much knowledge of the application and

the knowledge should be used as much as possible.

1

2

Static

System
Centralized

System
Distributed

System
Distributed

System
Centralized

Dynamic

SoftFirmHard

DatabaseOperating System

Real-Time Scheduling

Figure 1.1. Taxonomy of real-time scheduling

One of the most important research area in the real-time system is in real-time

scheduling theory and much research is being done by the operating system and

database system groups. Taxonomy of the real-time scheduling is illustrated in Fig-

ure 1.1 where thick lines indicate active areas of research.

1.1 Real-Time Operating System

Real-time operating systems play a key role in most real-time systems. Scheduling

theory in this area is usually based on task that have a time constraint. A task is a

software module that can be invoked to perform a particular function and it is the

scheduling entity in an operating system. Some important operating system research

issues are [20]:

Time-driven resource management Traditionally, when many tasks are waiting for

access to a shared resource, the allocation policy is to provide access in First

In First Out (FIFO) order. However, this policy totally ignores task's timing

constraints. Time-driven allocation policies must be developed that can meet

the real-time scheduling requirements. Such management policies should be

3

applied not only for processor but also for memory, I/O and communication

resources.

Problem speci�c OS facilities A real-time operating system's functions should be able

to adapt to a variety of user and system needs. Thus, a user can choose or the

system can select the time-driven resource management algorithmmost suitable

for a particular application or situation.

Integrated system-wide scheduling support Real-time scheduling principles must be

applied to system resources, application tasks, and operating system's over-

all design. In particular, a focussed e�ort is necessary to integrate real-time

communication with real-time CPU scheduling, and with real-time database

support for a large, complex real-time computer system.

1.2 Real-Time Database System

Usually Real-time Database System (RTDBS) is part of a large, complex real-

time systems. The basic unit of scheduling in RTDBS is a real-time transaction

and most important research area is how to combine the priority assignment and

concurrency control protocols. Generally, a real-time transaction can be classi�ed as

a hard-deadline, soft-deadline and �rm-deadline, and most research in this area is for

scheduling soft or �rm transactions.

Hard real-time transaction If these transactions miss their deadlines, there are catas-

trophic consequences.

Soft real-time transaction These transactions have timing constraints, but there may

still be some bene�t for completing the transactions after its deadline, and

catastrophic result do not occur if these transactions miss their deadlines.

4

Firm real-time transaction These transactions have timing constraints, and there is

no value for completing the transactions after its deadline, and catastrophic

result do not occur if these transactions miss their deadlines.

In this thesis, we view a RTDBS as a transaction processing system whose work-

load is composed of transactions with individual timing constraints. A timing con-

straint is expressed in the form of a deadline.

1.2.1 Priority Assignment

The performance goal of conventional Database Management System (DBMS) is

usually expressed in terms of average response times rather than meeting the timing

requirement of the transaction. Thus improving the response time of one transaction

at the expense of another is not considered as improvement. In an RTDBS, the

objective is to reduce the number of transactions that have missed their deadlines

or total lateness. Let's consider two scenarios here: If the transactions share the

system resources on an equal basis, the transactions that have tight deadlines miss

their deadlines while the transactions that have loose deadlines are likely to meet

their deadlines. Alternatively, if the transactions that have urgent deadlines execute

at the expense of the transaction that have loose deadlines, they can complete before

its deadline. After that the other transactions execute and still complete in time

due to their loose deadlines. From these two scenarios, we can see that the service

precedence which is decided by priority assignment policy a�ects the performance of

RTDBS.

1.2.2 Concurrency Control

The usual correctness criteria of database transactions is serializability. A se-

rial schedule has no concurrency, but it is of interest since it preserves database

consistency. We are interested in the large class of schedules, which may exhibit

5

consistency and which are equivalent to some serial schedule. Such schedule are said

to be serializable. Widely used serialization mechanism are locking, validation and

timestamping. Each mechanism takes a di�erent approach to achieve serializabil-

ity. Whenever a data conict occurs, concurrency control protocols use blocking, or

transaction restarts or combination of methods. In RTDBS the decision of blocking

or transaction restarts should include transaction priorities.

1.3 Problem Statement

The primary focus of attention in the real-time systems area has been the prob-

lem of scheduling tasks with time constraints, while the active area of research in

databases has been concurrency control and recovery to guarantee database consis-

tency. In designing a transaction scheduling policy for a real-time database system,

an integrated approach is required to maintain the consistency constraints and at the

same time satisfy transaction timing constraints. This dual requirement makes real-

time transaction scheduling more di�cult than task scheduling in real-time systems or

transaction scheduling in database systems. Scheduling algorithms [4, 16, 21, 23, 22]

used in current real-time systems assume a priori knowledge of tasks (arrival time,

deadline, resource requirement, worst case execution time). For database applica-

tions, however, only part of such knowledge (arrival time, deadline, conservative data

access pattern) is available. As a result, transaction scheduling in real-time database

systems needs a di�erent approach than that used in scheduling tasks in real-time

systems.

1.4 Thesis Organization

The organization of the thesis is as follows. Chapter 2 discusses previous related

work on time constraint, real-time task scheduling, real-time transaction schedul-

ing and the e�ect of lock types in RTDBS. In Chapter 3 we explain the motivation

6

and basic idea of a Cost Conscious (CC) approach. In Chapter 4, we analyze the

characteristics of CC approach and shows the e�ect of CC approach compared with

Earliest Deadline First (EDF) using illustrative examples. In Chapter 5, we present

the performance evaluation of our approach on main memory resident database with

simulation. In Chapter 6, we present the performance evaluation again on disk resi-

dent database. Chapter 7 discusses the e�ect of multiple exit point in the transaction

program. Chapter 8 concludes the thesis with the future works and the contribution

of this thesis.

CHAPTER 2
SURVEY OF RELATED WORKS

Satisfying the timing requirements of real-time systems demands the schedul-

ing of system resources according to some well understood algorithms so that the

timing behavior of the system is understandable, predictable, and maintainable. In

real-time computing systems, there is no advantage to minimize the response times

other than meeting the deadlines. The real-time system is often highly dynamic re-

quiring on-line, adaptive scheduling algorithms. Such algorithms must be based on

heuristics since the scheduling problems are usually NP-hard [7, 19]. The RTDBS

which is an important component of embedded real-time system is also very dynamic

in nature. Thus all dynamic real-time transaction scheduling algorithms are also

based on heuristics.

Many real-time scheduling algorithms can be integrated with database concur-

rency control algorithms. In this chapter we will survey previous works on time

constraint, real-time task scheduling, and real-time transaction scheduling.

2.1 Time Constraints

In order to represent time constraints for real-time tasks the value function model

was developed [8, 14]. The completion of a task has a value to the application that

can be expressed as a function of the task completion time. A task with a hard

deadline is modeled by a step function. This is illustrated in Figure 2.1. The value

functions are more expressive than deadlines that represent only a single instant of

time.

7

8

dr

V

Figure 2.1. Value function of hard deadline

dr

V

Figure 2.2. Value function of soft deadline

Abbot and Garcia-Molina [1] used the value function as a way to express the

time requirement of a real-time transaction. Figure 2.2 shows how we can use value

functions to model soft real-time transactions. Completion of the transaction before

time d which is started at time r yield a value V. The value of completing the task

after time d decreases.

2.2 Task Scheduling

The timing constraints of a task are speci�ed in terms of one or more of the

following parameters:

Arrival time The time at which a task is submitted to the system.

9

Ready time The earliest time at which a task can begin execution. The ready time

of a task is equal to or greater than its arrival time.

Worst case execution time The execution time of a task is always less than this

amount of time.

Deadline The time by which a task must �nish.

There are two approaches to task scheduling with the above information: static

and dynamic scheduling. All the static scheduling algorithm for real-time systems

assume they know the arrival times of the tasks. But, except for a periodic tasks,

most of the tasks are aperiodic. Furthermore, because run-time cost is an important

factor for dynamic task scheduling, most static algorithms are not appropriate for

dynamic scheduling. Because of these reasons, heuristic algorithms became important

to dynamic scheduling problem.

There exists many heuristic real-time task scheduling algorithms that are not

suitable for RTDBS. Zhao, Ramamritham, and Stankovic [23] developed a heuristic

function and an e�cient backtracking scheme for scheduling nonpreemptable tasks

with resource constraints. They found that with a limited number of backtracking,

the success ratio of their search algorithm for scheduling tasks can be as high as

99.5% of that of an exhaustive search algorithm. Their approach was extended to

preemptive tasks [22]. The improved performance that results from the use of complex

mechanisms, such as backtracking, may be o�set by the computational overheads

introduced by such mechanisms. But they said that such overhead may not be of

concern if a separate specially designed coprocessor is used for scheduling.

Among many real-time task scheduling algorithms, just few of them are used on

RTDBS and integrated with concurrency control algorithms. In the following section

we will look at task scheduling algorithms that are used on RTDBS.

10

A scheduling algorithm is said to be static if priorities are assigned to tasks once

and for all. A static scheduling algorithm is also called a �xed priority scheduling

algorithm. A scheduling algorithm is said to be dynamic if priorities of tasks might

change from request to request.

2.2.1 Static Approach

Liu and Layland [13] developed a rate-monotonic static priority assignment scheme

to determine the schedulability of a set of periodic tasks. Their approach assigns

higher priorities to tasks with higher request rate. They showed that the scheme

is optimal among static priority assignment scheme for mutually independent tasks.

The deadline of a request for periodic task is de�ned to be the time of the next

request for same task.

Theorem 2.2.1 A set of n periodic tasks scheduled by the rate-monotonic algorithm

can always meet their deadlines if

C1

T1

+ � � � +
Cn

Tn
� n(21=n � 1)

where Ci and Ti are the execution time and period of task �i respectively

Above theorem o�ers a su�cient (worst-case) condition that characterizes the rate-

monotonic schedulability of a given periodic task set. Following theorem shows that

a rate-monotonic scheme is optimal among static priority scheme.

Theorem 2.2.2 If a feasible (all tasks are able to meet their deadlines) priority as-

signment exists for some task set, rate-monotonic priority assignment is feasible for

that task set.

2.2.2 Dynamic Approach

EDF (Earliest Deadline First) is a deadline driven dynamic scheduling algorithm.

Using this algorithm, priorities are assigned to tasks according to the deadlines of

11

their current requests. A task will be assigned the highest priority if the deadline of its

current request is the nearest and will be assigned the lowest priority if the deadline

of its current request is the furthest. EDF is optimal for completely preemptable

periodic task set with hard deadlines executing on a single processor. It is optimal in

the sense that if a set of tasks can be successfully scheduled by some priority policy,

then this task set is guaranteed to be successfully scheduled by EDF as well [13].

In Least Slack First(LSF) policy tasks with less slack time will have higher pri-

orities. In LSF with �xed evaluation policy slack time S = d - (t + C), where d

is deadline, t is current time and C is worst case execution time and in LSF with

continuous evaluation policy slack time S = d - (t + C -P)) where P is e�ective ser-

vice time. Recently Locke, Tokuda, and Jensen [8] compared a number of dynamic

scheduling policies and they found that the LSF and EDF are two good heuristics

for task scheduling.

2.3 Transaction scheduling

There are several classes of real-time database (time-critical database) scheduling

algorithms in which various properties of time-critical schedulers are combined with

properties of concurrency control algorithms [1, 2, 3, 5, 6, 12, 11, 15, 17, 18, 19].

Priority scheduling without knowing the data access pattern is presented as a rep-

resentative of algorithms with incomplete knowledge of resource requirements. The

recent works [1, 2, 3, 12, 11, 18, 19] falls into this category. They are combined with

2-phase locking or optimistic concurrency control algorithms. In Figure 2.3 we can

see the representative approaches for real-time transaction scheduling.

2-phase locking 2-phase locking algorithm execute transactions in two phases. Each

transaction has a growing phase, where it obtains locks and accesses data items,

12

Concurrency Control

LSFLSFEDF

Wait-X

Approaches

Avoiding
Conflict

Sacrifice
Opt

Abort
PriorityCommit

Optimistic

Function
Value
Pairwise

Clock
Virtual

Restart
Conditional

Ceiling
Priority

Hybrid
Promote
Wait

Priority
High

locking
2phase

Evaluation
Continuous

Evaluation
Fixed

Monotonic
Rate

DynamicStatic

Assignment
Priority

Figure 2.3. Taxonomy of real-time transaction scheduling

and a shrinking phase, during which it releases locks. No transaction should re-

quest a lock after it release one of its lock. It is well known that any concurrency

control algorithm that obeys the 2-phase locking rule is serializable.

optimistic concurrency control Some concurrency control algorithms based on lock-

ing or time stamp are pessimistic in nature. They assume that the conicts

between transactions are quite frequent and do not permit a transaction to

access a data item if there is a conicting transaction that accesses that data

item. Thus the execution of any operation of a transaction follows the sequence

of phase: validation, read, computation, write. Optimistic algorithms, on the

other hand, delay the validation phase until just before the write phase. Thus

an operation submitted to an optimistic scheduler is never delayed. Each trans-

action initially makes its updates on local copies of data items. The validation

phase consists of checking if these updates would maintain the consistency of

the database. If the answer is a�rmative, the changes are written into the

actual database. Otherwise, the transaction is aborted and has to restart.

13

2.3.1 Approaches with 2-phase Locking

Abbot and Garcia-Molina [1, 2] proposed the following algorithms: EDF-HP

(High Priority), LSF-HP, EDF-CR (Conditional Restart) and LSF-CR. These al-

gorithms are based on 2-phase locking.

HP conict resolution method is the same as priority-based wound wait conict

resolution method (In the priority-based wound-wait protocol, transaction Ti can wait

for a conicting transaction Tj if Ti has a lower priority. Otherwise, Tj is aborted

(wounded)). The idea of this method is to resolve a conict in favor of the transaction

with the highest priority. The favored transaction gets the resources, both data lock

and the processor, that it needs to proceed. The loser of the conict relinquishes the

control of any resources that are used by itself.

Sometimes HP may be too conservative. Let TR be a transaction requesting a lock

held by TH. We would like to avoid aborting TH because we lose all the service time

that it has received. The idea of CR conict resolution method is to estimate if TH

can be �nished within the amount of time that TR can a�ord to wait. Let SR be the

slack of TR and let EH - PH be the estimated remaining time of TH, where EH and

PH are estimated execution time and the amount of service time of TH respectively.

If SR � EH � PH then we estimate that TH can �nish within the slack of TR. If so

then we let TH proceed to completion, release its locks and then let TR execute. This

policy saves us from aborting and restarting TH. If TH cannot be �nished in the slack

time of TR then we abort and restart TH and run TR. However there exist deadlock

problem in CR.

There are several problems with HP and CR if LSF is used to assign priorities,

and priorities are assigned continuously [2].

Circular abort Rolling back a transaction to its beginning reduces its e�ective service

time to 0 and raise its priority under the LSF policy. Let Tr be a transaction

14

requesting a lock held by Th. A transaction Th, which loses a conict and is

aborted to allow a higher priority transaction Tr to proceed, can have a higher

priority than Tr immediately after the abort. The next time the scheduler is

invoked, Tr will be preempted by Th. Th may again conict with Tr initiating

another abort and rollback [2].

Priority Reversal Under the LSF policy, a transaction's priority depends on the

amount of service time that it has received. The slack time of a transaction

which is not executing decreases. Hence the priority of that transaction in-

creases. Even if we use HP conict resolution method [2], a deadlock is possi-

ble. Let's consider following scenario: Let TR be a transaction requesting a lock

held by TH. When data conict occurred the priority of TR is lower than that

of TH and TR is blocked. After executing some time TH is requesting a lock

held by TR. During this time the priorities of TR and TH are reversed. Because

the priority of TH is lower than that of TR, TH is also blocked and deadlock

occurs. Priority reversal occurs if we use di�erent priority assignment policy at

the CPU conict and data conict.

With VCAP (Virtual Clock Access Protocol) [19], transactions are statically cat-

egorized into n classes according to their criticalness. The criticalness of a task is

indicative of the level of importance that is attached to that task relative to the other

task. Depending on the functionality of a task, meeting the deadline of one task

may be considered more critical than another. The smaller the class number of a

transaction, the less critical it is. Each transaction has a virtual clock associated

with it. Let V T (Ti) the virtual clock value for transaction Ti. When transaction Ti

starts, V T (Ti) is set to the current real time, tsi, i.e, the start time of transaction

Ti. The virtual clock then starts to run at rate �k, where k is transaction Ti's class

15

number. The more critical a transaction is, the faster its virtual clock runs. If t is

the current time, then at any time

V T (Ti) = tsi + �k(t� tsi)

If the deadline of requesting transaction Tj is earlier than that of lock holding

transaction Ti and VT(Ti) is less than Ti's deadline, Tj aborts Ti. This protocol

synthesizes elapsed time of a transaction, relative deadline and criticalness of running

transaction in the preemption decision.

In the same paper [19] Stankovic and Zhao suggested another protocol, PVF

(Pairwise Value Function Access Control Protocol) that considers the criticalness of

the requesting transaction also. Transactions are categorized into n classes according

to their criticalness. Each transaction Ti has a value function associated with it. Let

V U(Ti) denote the value function for transaction Ti. Let k denote the criticalness

of a transaction where k is transaction Ti's class number. Then

V U(Ti) = k(!1(t� tsi)� !2di + !3Ci � !4li)

where the !'s are weighting factors and di is deadline, Ci is computation time con-

sumed by the transaction and li is the laxity approximation (i.e, slack time) of trans-

action Ti.

While transaction Ti is accessing data item, D, another transaction Tj may request

access to D. If the value of the function VU(Tj) is less than or equal to the value

of the function VU(Ti), Tj waits, and otherwise Tj aborts Ti. The main problem

of VCAP, PVF are deadlock due to priority reversal. In these algorithms they used

di�erent priorities on CPU and data conict that easily make deadlock. Let's consider

following scenario: Let TR be a transaction requesting a lock held by TH. When data

conict occurred the value of V U(TR) is smaller than that of V U(TH) and TR is

blocked. After executing some time TH is requesting a lock held by TR. During this

16

time the VU value of of TR and TH are reversed due to di�erent criticalness. Because

the value of V U(TH) is smaller than that of V U(TR), TH is also blocked and deadlock

occurs.

Another problem is they did not suggest any way that can adjust the weighting

factor ! for better performance.

2.3.2 Approaches with Optimistic Algorithm

An OCC (Optimistic Concurrency Control scheme) with a deadline and trans-

action length based priority assignment scheme [12] and an OCC with Adaptive

Earliest Deadline have also been proposed [11]. Ideally OCC has the properties of

being non-blocking and of freedom of deadlock. Due to its potential for a high de-

gree of parallelism, optimistic concurrency control is expected to perform better than

two-phase locking when integrated with priority-driven CPU scheduling in real-time

database systems [11]. With OCC, an algorithm is needed to resolve the access

conicts during the validation phase. Some resolution policies are:

Commit Always let the validating transaction commit and abort all the conicting

transactions. This strategy guarantees that if a transaction reaches its valida-

tion phase, it will always �nish.

Priority abort Abort the validating transaction only if its priority is less than that

of all the conicting transactions. This strategy takes transaction priority into

account, but still favors the validating transaction.

Priority Wait If the priority of the validating transaction is not the highest among

the conicting transactions, wait for the conicting transactions with higher

priority to complete. In some cases, the strategy of aborting conicting trans-

actions appears too conservative, causing unnecessary transaction abort.

17

Opt-Sacri�ce If conicts are detected and at least one of the transactions in the

conict set has a higher priority over validating transaction, then the validating

transaction is restarted.

Among these resolution policies Priority Wait is most promising. In some cases,

the strategy of aborting transactions appears too conservative because it causes un-

necessary transaction aborts. Wait-50, the version of Priority Wait strategy where

a validating transaction will wait if at least 50% of the conicting transaction have

a higher priority over the validating transaction, is commonly used as a real-time

optimistic concurrency control resolution method [11, 12].

2.3.3 Approaches with Transaction Pre-analysis

Priority scheduling with transaction pre-analysis is an approach that makes more

use of the available knowledge of the resource requirements [5, 15, 17]. A. Buchmann

[5] proposed two transaction pre-analysis based algorithms: conict avoiding non-

preemptive method and Hybrid algorithms which use conict avoiding scheme in the

non-overload case and CR conict resolution method in the overload (we say that the

system is in overload situation if we cannot �nd a schedule in which every transaction

can �nish within its deadline for hard real-time transactions) case.

Priority Inheritance In a priority-inheritance scheme, a low priority transaction in-

herits the priority of the high priority transaction that it blocks.

Priority Inversion Priority inversion is said to occur when a high priority transac-

tion is blocked by lower priority transaction. Priority inversion is inevitable

phenomenon in non-abortive priority-driven system.

Priority Ceiling The priority ceiling of a data object is the priority of the highest

priority task that may lock this object.

18

Priority-ceiling protocol A transaction J requesting to lock a data item S is granted

the lock only if p(J) > c(K), where K is the data item with the highest priority

ceiling among all data items currently locked by transactions other than J, p(J)

is the priority of transaction J and c(K) is the priority ceiling of K. If J cannot

lock S, J is blocked and the transaction holding the lock on K inherits the

priority p(J) until K is unlocked.

Lui Sha [15, 17] proposed static priority assignment based Priority Ceiling pro-

tocol using priority inheritance with exclusive lock and read/write Priority Ceiling

protocol. These protocols are transaction pre-analysis based nonabortive methods

using priority inheritance to prevent priority inversion and inde�nite blocking. It is

important to note that the concept of priority ceiling assumes that we know a lot

about transactions that will access the database. This is a reasonable assumption for

dedicated real-time application such as tracking.

Although the priority ceiling protocol introduces unnecessary blocking, the worst

case blocking for any task is reduced to the duration of at most one low priority

transaction to �nish in one critical section, and no deadlock will ever occur. The

critical problem of this protocol is that it is not appropriate for disk resident database

because a lower priority transaction is unnecessarily blocked during IO wait time of

a higher priority transaction.

2.3.4 Lock Type

Many previous works didn't consider the e�ect of shared locks in real-time database.

With exclusive locks only [15], conicts always involve a pair of transactions: the

holder and the requester. With shared locks [3, 17, 12], the holder can be a set of

concurrently reading transactions, each with a di�erent deadline. If we change all

shared locks in transaction into exclusive locks, the opportunities of data conict will

be increased greatly.

19

Tr(arriving transaction) Th(holding transaction)
S lock X lock
X lock X lock
X lock S(single) lock
X lock S(multiple) lock
S lock S lock(with waiting X)

Table 2.1. Condition of conict

A reader can join a read group only if it has a higher priority then all waiting

writers. Otherwise, the reader must wait [3]. The most interesting case occurs when

a transaction TR requests an exclusive lock on a data item when transactions TH1,

: : : , THn already hold shared locks on the data item. There are three possibilities:

1. Priorities of transactions TH1 through THn are greater than that of TR.

2. Priorities of TR is greater than or equal to THj and less than or equal to that

of THj+1.

Pr(THj) � Pr(TR) � Pr(THj+1) 1 � j � n

3. Priorities of transactions TH1 through THn are less than that of TR.

In case 1, it is intuitively simple, TR waits. In case 2 and 3, however, only a

few methods have been proposed and one of them is the percentage related decision

methods with OCC [12]. Much research is needed to �nd proper method in case 2

and case 3. Abbot and Garcia-Molina [3] proposed that in case 3 Th1 through THn

are aborted. However, if all priority of transactions aborted are slightly less than

that of priority of TR, aborting TH1 through THn is not the best choice.

2.3.5 IO Scheduling

In conventional systems the goal of IO scheduling is to maximize the throughput

of the IO system. One way to do this is by using disk scheduling algorithm to order

20

the sequence of IO request so that the mean seek time is minimized. However the

goal of the RTDBS is di�erent from conventional system.

There have been suggested two ways to schedule the IO queue for RTDBS [2].

FIFO When FIFO is used to schedule the IO queue, requests are serviced in the

order in which they are generated. This service order is somewhat related to

transaction priorities because IO requests are generated by the CPU, which is

selected by priority.

Priority Under this policy each IO request has a priority which is equal to the priority

of the transaction which issued the request.

CHAPTER 3
COST-CONSCIOUS APPROACH

Static priority assignment in a real-time transaction processing system is not

adequate because it cannot consider the urgency of deadline. The transaction pre-

analysis method which has been considered until now is not adequate either because

it is considered too pessimistic to use in real-time systems. EDF and LSF priority

assignment policy are restrictive for real-time transaction scheduling because they

ignore the transaction relationships and the rollback and restart e�ects. To the best

of our knowledge, the e�ects of transaction rollback and restart overhead has not

been used in real-time transaction scheduling.

3.1 Motivation

Consider the well known real-time priority assignment policies, EDF and LSF. In

the context of real-time task scheduling, these policies are known to be acceptable

[21, 23, 22]. However, these policies are not acceptable in the context of real-time

transaction scheduling.

LSF is not appropriate for RTDBS because the worst case estimated execution

time of a transaction is not easy to get due to the existence of disk IO and the

branches in the transaction programs.

The weakness of EDF under high level of resource and data contention is that

this policy causes most transactions to miss their deadlines since they receive high

priority only when they are close to missing their deadline [11]. If EDF is combined

with HP conict resolution method, the transaction restart and rollback easily makes

the system heavily loaded. Thus EDF-HP causes too many transaction aborts.

21

22

In order to solve the problem of too many transaction aborts of EDF-HP, EDF-

WP has been proposed. However, EDF-WP has too much wait due to its nonabortive

conict resolution method and has deadlock problem.

Several hybrid methods that are using the combination of abortive and non-

abortive method has been proposed [1, 19]. These methods make decisions about

transaction blocking and rollback using additional information like slack time or es-

timated execution time. However, they still have deadlock problem.

In this thesis, we suggest a new cost conscious dynamic priority assignment policy

with continuous priority evaluation that solves the problem of EDF-HP which causes

too many transaction aborts and the deadlock problem of Hybrid methods.

3.2 Transaction Response Time

It is di�cult to anticipate the �nishing time of a real-time transaction due to

transaction blocking, restarts and disk IO. The transaction response time consists

of the time needed to execute a transaction in an isolated environment, Tstatic, and

blocking and restart overhead, Tdynamic
1. Tstatic is dependent on the semantics (data

value and branches) in the transaction application program. Tdynamic, as it is com-

puted continuously, take the current state of the transaction and the status of the

system. The total execution time is

Ttotal = Tstatic + Tdynamic

In the real-time database context, Tdynamic is very di�cult to compute because

we don't know the future events. Even if we consider the transaction in an isolated

environment, static transaction response time, Tstatic, is also di�cult to compute

due to the existence of branches in the transaction program. Thus task scheduling

algorithms that are usually based on worst case execution time, and the transaction

1Perhaps Tdynamic can be broken into TIO, Tblocking, Trestart. In this thesis, we group them into

one component for the sake of simplicity

23

scheduling algorithms that use estimated execution times for wait and abort decision

are very restrictive.

3.2.1 Dynamic Cost

The dynamic portion of transaction processing cost (Tdynamic) in the RTDBS

depends on the current status of the system and future arrivals. If a newly arrived

transaction, Ta, has earlier deadline than that of the currently running transaction,

Tr, and does not cause rollback (and restart) of partially executed transactions, then

the newly arrived transaction is a good choice for immediate execution. If Ta has

earlier deadline than that of the running transaction and conicts with some or all of

the partially executed transactions, then: (i) If we use Earliest Deadline First priority

assignment policy, several partially executed transactions that conict with Ta might

have to be rolled back. (ii) If we consider dynamic cost, we might �nd that we lose

too much time for the execution of the highest priority transaction.

3.3 Assumptions

We assume that our system contains a single CPU that manages the data, which

can be disk-resident. All transactions that the system executes are instances of

one of a number of transaction types. We assume that we know the programs of

these transactions and have analyzed them. We allow only write locks in our current

analysis. If we allow shared locks, dynamic cost will be an even more important factor

than that of exclusive lock only system due to the increased number of concurrently

running transactions in real-time transaction scheduling decision. When a transaction

arrives, we assume that we know its deadline.

3.4 Transaction Pre-analysis

The set of data items that a transaction of some transaction type might access is

called its data set. A particular execution of a transaction is likely to actually access

24

only a small fraction of its data set. If we have no information about a transaction's

execution, we must make the pessimistic assumption that it will access all items

in its data set. In order to make a �ner analysis of the conict relations between

transactions, we assume that as the transaction executes, it makes decisions that

restricts the set of data items that it will access. Consider, for example, the two

transaction programs in Figure 3.1:

T1 T2

...

access w

If(w > 100)

access I1, I2, I3 access I1, I2, I3

else

access I4, I5, I6

....

Figure 3.1. Transaction programs

Suppose that Tr1 executes program T1 and Tr2 executes program T2. If Tr1

executes the If statement and �nds w > 100, Tr1 and Tr2 conict. Otherwise, Tr1

�nds that w <= 100, and Tr1 and Tr2 don't conict. Before Tr1 executes the If

statement, Tr1 and Tr2 might conict, so we must make the pessimistic assumption

that they do conict. We call the statements in the transaction program where

the transaction commits itself (by executing a conditional statement) to accessing

a subset of its data set the decision points. We can model each transaction as a

tree2, (i.e, the transaction tree) with the root labeled by the name of the transaction

program. At each decision point, the tree branches, and those nodes are given unique

labels related to the program name. These nodes represent re�nements of what

2Although, a loop-free program is a directed acyclic graph, we use a tree representation for the

sake of simplicity

25

we know about the transaction's execution, and in particular about the data set it

accesses. The decision points in a program can be identi�ed by the programmer, or

by a compiler. In Figure 3.2, we show the transaction trees of transaction programs

T1 and T2. T1's decision point splits the transaction tree into T1a and T1b, which

have di�erent data sets. Since T2 contains no decision points, its transaction tree

consists of a single vertex. When we analyze the transaction programs, we �nd that

T1 conicts with T2, T1a conicts with T2, but that T1b doesn't conict with T2.

{I4, I5, I6}{I1, I2, I3}

{I1, I2, I3, I4, I5, I6} {I1, I2, I3}Tr2

Tr1a Tr1b

Tr1

Figure 3.2. Transaction access tree

In the Figure 3.2, before Tr1 reaches the decision point, it might conict with

Tr2, since Tr1 might take the branch to Tr1a, or it might not conict with Tr2, if

Tr1 takes the other branch. Suppose Tr1 makes the branch to Tr1a. At this point

we are certain that Tr1 conicts with Tr2. So, our pre-analysis system has several

di�erent avors of data conict. We say that two transactions don't conict if, given

their current state, they won't access overlapping data sets for all possible execution

paths. Two transactions conict if, no matter what their execution paths, they will

access overlapping datasets.

Suppose that transaction Tr1 conicts with transaction Tr2, and Tr1 is scheduled

to execute. If Tr2 has not yet accessed any data items that Tr1 might access, then

there is no need to roll back Tr2, we only need to block it. In this case, we say that

Tr2 is safe with Tr1. If Tr2 has accessed a data item that Tr1 will access, then Tr2 is

unsafe with Tr1 and need to be rolled back. Finally, Tr2 is conditionally unsafe with

26

Tr1 if Tr2 might be safe or unsafe with Tr1, depending on Tr1's execution. We will

soon de�ne these concepts rigorously.

If we know what data items a transaction accesses between decision points, we

can calculate the conict and safety relations in a straightforward manner. Towards

this end, we de�ne:

Leaf transaction A transaction that will execute no further decision points.

accesses(T) Set of data items that a transaction of type T accesses before it reaches

its next decision point.

hasaccessed(T) Set of data items that a transaction of type T has accessed up to this

point.

mightaccess(T) Set of data items that a transaction of type T might access.

leaves(T) The leaves in the subtree rooted at T.

We now give precise de�nitions of the conict and safety relationships, which also

provide a method to calculate the relations. Suppose we are given accesses(T) for

every node T in the transaction tree. If P is the set of nodes on the path from the

root to T, inclusive, then

hasaccessed(T) = [p2P accesses(p)

mightaccess(T) = hasaccessed(T) T a leaf transaction

= [C a child of T mightaccess(C) T not a leaf transaction

With mightaccess and hasaccessed calculated at every node, we can calculate the

conict and safety relations:

� Leaf transactions P, Q conict i� mightaccess(P) \ mightaccess(Q) 6= �

27

mightaccesshasaccessed

accesses
{D}{C}{D}{C}

{B}{A}

{}

BBAA DCDC

B DCDCA

BB C DDC AA

BA

DCBA

T27T26T25T24

T23T22

T21

Figure 3.3. Auxiliary transaction access tree

� Transactions P, Q conict i� 8p 2 leaves(P) 8q 2 leaves(Q), mightaccess(p) \

mightaccess(q) 6= �.

� Transactions P, Q conditionally conict i� 9i;j 2 leaves(P), 9m;n 2 leaves(Q)

such that mightaccess(i) \ mightaccess(m) 6= � and mightaccess(j) \ mightac-

cess(n) = �.

� Transactions P, Q don't conict i� they neither conict nor conditionally con-

ict.

� Transaction P is safe wrt Q i� hasaccessed(P) \ mightaccess(Q) = �.

� Transaction P is unsafe wrt Q i� 8q 2 leaves(Q), hasaccessed(P) \ mightac-

cess(q) 6= �.

� Transaction P is conditionally unsafe wrt Q i� hasaccessed(P) \mightaccess(Q)

6= �, and 9q 2 leaves(Q) such that hasaccessed(P) \ mightaccess(q) = �.

These transaction relationships will be used to calculate transaction priorities

more accurately. Maintaining the access lists is not much overhead to our approach

28

because almost every transaction processing systems maintain access lists of each

transaction for concurrency control and recovery.

3.5 Scheduling Algorithm

A real-time transaction scheduling algorithm consists of the priority assignment

and concurrency control module.

3.5.1 Priority Assignment

A priority assignment policy is classi�ed as being a static assignment policy if

it is based on static information (e.g, estimated execution time) or as a dynamic

assignment policy if it is based on dynamic information (e.g, relative deadline, e�ec-

tive service time). A dynamic priority assignment policy can use a static evaluation

method which evaluates the priority only once (e.g. Earliest Deadline First), or a

continuous evaluation method which evaluates the priority several times (e.g, Least

Slack First) during the execution of a transaction. Even though several static priority

assignment policies have been proposed [13], they do not capture all the dynamic fea-

tures of database transactions. The dynamic, on-line assignment policies that have

been proposed can be described with the following priority formula [19].

Pr(Ti) = i(!1t� !2ri � !3di + !4Ci + !5Ui � !6Ei)

Pr(Ti): Priority of transaction Ti

i: Criticalness of transaction Ti

t: Current time

ri: release time of transaction Ti

di: deadline of transaction Ti

Ci: E�ective service time of transaction Ti

Ui: Elapsed Service time of transaction Ti

29

Ei: Estimated execution time of transaction Ti

With the appropriate setting of the !j parameters, this priority formula produces

the FCFS, EDF, LSF, or any combination of them. Our Cost Conscious priority

assignment policy, however, cannot be produced from the above formula. If the

transaction Ta which is selected to be run next conicts with m transactions that are

unsafe with Ta, we might lose

Tlost = �t2M (rollbackt + exect) where

M = ftransaction t j t is unsafe with Tag

where exect is the e�ective service time of Tt and rollbackt is the time required to

roll back Tt. If the value of Tlost is large, it waste system resources. We characterize

the time lost as the Penalty of Conict.

Penalty of Conict is the value Tlost which is the sum of the e�ective service time

and rollback time of the transactions that must be rolled back to execute Ta to

Ta's commit point without interruption.

The notion of Penalty of Conict, described above, can be introduced into the

earlier dynamic priority computation formula as follows:

Pr(Ti) = i(!1t� !2ri � !3di + !4Ci + !5Ui � !6Ni), where

Ni: �t2M (rollbackt + exect),

M = ftransaction t j t is unsafe with Tig

In our approach we assigned the value 1 to !1, !3 and !6 and we did not use

the other terms. The value of !6 will be readjusted accordingly to get the best

performance.

30

3.5.2 High Priority Preference Conict Resolution

There are 3 types of resources in the system: CPU, disk and data. The main

active resources in real-time database systems are the CPU and disk, and the passive

resource is the data. They require di�erent scheduling disciplines because of their

di�erent restrictions [11].

Data conict If there is a data conict between two transactions, a priority-based

wound-wait strategy [5] is the simplest to implement. The Conditional Restart

algorithm with the estimated execution time [1] has been proposed to avoid

needless aborts and rollback. The algorithm, however, has unpredictable block-

ing of high priority transactions due to deadlock, arrival of intermediate priority

transactions, and chain blocking. The problem of unpredictable blocking due

to arrival of intermediate priority transaction and chain blocking can be solved

with priority inheritance [15]. But if a set of transactions are deadlocked (they

access the same data items in di�erent order), the CR method can degrade

performance. The idea of HP [2, 3], which is the same as priority-based wound-

wait strategy [5], is to resolve a conict in favor of the transaction with the

higher priority. In our approach, whenever a data conict occurs, the running

transaction aborts the conicting transactions. The priority of the running

transaction is always higher than that of the conicting transactions because

only the highest priority transaction (or a transaction that doesn't have the

highest priority but has a zero Penalty of Conict) gets the CPU.

CPU conict If we assume that we have a single CPU system, there are many oppor-

tunities for CPU scheduling. Whenever a new transaction arrives or a running

transaction �nishes, the scheduler is invoked. If the scheduler cannot be in-

voked immediately for several reasons (e.g Real-time UNIX [10]), the highest

priority transaction can be selected from among transactions that are in the

31

ready queue or are currently running. When a running transaction �nishes, all

transactions blocked by the resources that currently running transaction hold

wake up and move to ready queue. Then, the highest priority transaction is

chosen as the next one for execution.

I/O conict If the real-time database contains disk resident data, a transaction might

perform many I/O waits during its execution. Several real-time I/O scheduling

methods have been proposed [3, 6] in order to reduce I/O wait. There is an

I/O wait related CPU scheduling problem in real-time transaction scheduling.

Consider the following scenario: Transaction T1 is blocked and is waiting for an

I/O completion. The next highest priority transaction in the ready queue, T2

gets the CPU and starts executing so as not to waste the CPU during the I/O

waiting time of T1. If T2 conicts with T1, then T2 performs a noncontributing

execution because it must be rolled back when T1 unblocks. This situation is

worse than the situation in which no transaction is selected to execute during

T1's I/O wait time, because of the cost incurred in rolling T2 back. If the third

highest priority transaction T3 accesses a data set disjoint with that of T1 and

T2, then T3 is the better choice.

The following is the pseudo code for the scheduling algorithm proposed in this

thesis and is based on the notion of cost incurred due to conicts. The procedure

\IOwait-schedule" is invoked whenever a transaction blocks waiting for I/O comple-

tion. This function reduces the noncontributing execution and hence avoids rollback

by using transaction conict relations. The procedure \tr-arrival-schedule" is called

whenever a new transactions arrives and the procedure \tr-�nish-schedule" is invoked

whenever the running transaction �nishes. These two functions use the dynamic cost

of transactions in order to minimize number of missed deadlines. In this algorithm

the ready queue is assumed to be sorted by Earliest Deadline First policy. The sleep

32

queue holds transactions that are blocked and the partially executed transaction list

(P list) links all transactions that are executed partially.

penaltyofconflict(Tx)

Tx is a candidate for execution;

{

sum = 0;

for all Ti in P list

{

if (checkunsafe(Ti, Tx))

sum = sum + effective service time

and rollback time of Ti;

}

return(sum);

}

checkunsafe(t1, t2)

{

if t1 is unsafe with t2

return(true);

else

return(false);

}

IOwait-schedule()

{

if ready queue is empty return(NIL);

else

33

{

best = the highest priority transaction

from the ready queue

which doesn't conflict with

partially executed transactions

or null if none exists;

return(best);

}

}

prd(t)

t is a transaction;

{ /* We assume the value of deadline as the absolute value */

return (negative value of deadline of transaction t);

}

We introduce a parameter penalty-weight (i.e, !6 in our priority formula) that

can be used to weight the contribution of Penalty of Conict on the value of the

priority value computed. By assigning di�erent values to penalty-weight, di�erent

scheduling policies can be obtained. For instance, if the parameter penalty-weight is

assigned 0, it produces the EDF-HP. If penalty-weight is 1 (i.e a value large enough

that all decisions are based on the Penalty of Conict), it produces the EDF-Wait.

We use a value of penalty-weight between 0 and 1 for our algorithm.

pr(t)

t is a transaction;

{

34

return(prd(t)-penalty_weight * penaltyofconflict(t));

}

tr-arrival-schedule(Th)

Th is running transaction;

{

Ta = choose first one in the ready queue;

if prd(Ta) <= pr(Th)

return(Th); /* If prd(Ta) is less than pr(Th) */

else /* pr(Ta) also less than pr(Th) */

{ /* and no one in the ready queue */

/* can be higher than Th */

put Th in the ready queue;

best = choose first one in the ready queue;

Ti = choose second one in the ready queue;

while(pr(best) < prd(Ti))/* If pr(best) >= prd(Ti) then */

{ /* no one in the ready Q after */

if (pr(best) < pr(Ti)) /* Ti can be higher than best */

best = Ti;

Ti = Next(Ti); /* next one in the ready queue */

}

return(best);

}

}/* end of schedule */

tr-finish-schedule()

{

best = choose first one in the ready queue;

35

Ti = choose second one in the ready queue;

while(pr(best) < prd(Ti))

{

if (pr(best) < pr(Ti))

best = Ti;

Ti = Next(Ti); /* next one in the ready queue */

}

return(best);

}/* end of schedule */

CHAPTER 4
ANALYSIS

In order to reduce the scheduling overhead incurred from the calculation of

Penalty of Conict, we propose that priority calculation be done only whenever a

transaction arrives or when a running transaction �nishes. This is signi�cantly dif-

ferent from previously proposed dynamic priority assignment policies with continuous

evaluation, in which new priorities are calculated whenever a transaction arrives or

when a running transaction �nishes, or when data conict occurs. Also note that our

approach does not have any deadlock detection overhead, which is severe problem in

real-time systems.

We summarize the characteristics of the proposed Cost Conscious approach in

Table 4.1 which was made by using the framework that had been proposed to compare

several real-time transaction scheduling in [5].

Timing Information Arrival time
Deadline

Resource requirement Transaction access pattern
Performance metric(time) minimize number of missed deadlines
Performance metric(consistency) strict serializability
On-line/O�-line scheduling O�-line transaction access pattern

On-line penalty of Conict
conict management policy high priority resolution
conict resolution(active resource) preemption
conict resolution(data resource) rollback
overload management -

Table 4.1. Characteristics of new scheduling method

36

37

In order to analyze the e�ects of Penalty of Conict on transaction scheduling,

we did schedulability test based on strict 2-phase locking. Real-time transaction

scheduling requires the transaction be preemptable, so rollback and restart are needed

to keep the database consistent. We modi�ed the following terminology from [21] for

a real-time transaction context.

� s[i]: execution start time of a transaction i.

� r[i]: release time (arrival time) of a transaction i.

� e[i]: completion time of a transaction i.

� d[i]: deadline of a transaction i.

� datasetit: data set which has been accessed by transaction i up to time t.

Valid schedule A valid schedule of a set of transactions T is a schedule of T satisfying

the following properties:

8i where i 2 T,

1. s[i] � r[i]. This condition states that each transaction can only start

execution after its release time.

2. 8j CONFLICT i and j UNSAFE with i dataset
i
t \ datasetjt = �. This condition

states that transactions which conict and are not safe with can not access

shared data simultaneously.

Lateness The lateness of a schedule of T is de�ned by �(e[i] � d[i]) where d[i] is

deadline of transaction i and i 2 T .

Feasible schedule A feasible schedule of a set of transactions T is a valid schedule of

T such that its lateness is less than or equal to zero.

38

The schedulability test of real-time transactions is based on the assumption that

we already know the worst case execution time, the deadline, the release time (arrival

time), and the conict relationship which is calculated o�-line with a transaction pre-

analysis. Schedulability assumptions of real-time transactions can be so pessimistic

(especially, the execution time and the conict relation assumptions) that it may

be unrealistic. However, it can give us predictable, general behavior of real-time

transaction scheduling and can be a good guideline for periodic real-time transaction

systems. In Figure 4.1, we assumed that data conict between transactions that have

CONFLICT relation occurred at the beginning of a transaction.

Three of the possible valid schedules (including one feasible schedule) in Figure 4.1

are instances of scheduling according to EDF-HP, Cost Conscious (EDF with Penalty

of Conict) with HP, EDF-Wait [3]. To show the performance of our approach, we

illustrate the e�ect of Penalty of Conict in a few examples. If we set the value of

penalty-weight in the \pr" function of the scheduling algorithm to 0, 1 and1, we get

3 di�erent algorithms respectively: EDF-HP, CC and EDF-Wait. In the following

examples we assumed all data were memory resident and data conict occurred at

the beginning of transactions.

Let's explain the Example 1 in Figure 4. At time 0 transaction D arrives and it

is the only transaction that can be executed. At time 20 transaction D �nishes its

execution and no schedule happened during its execution. At time 40 transaction

A arrives and it is the only candidate. At time 50 transaction C arrives and C

has earlier deadline than currently executing transaction A. According to previous

priority calculation of CC approach the priority of A is -110 and the priority of C is

-101 (-91-10) because A is partially executed transaction and A CONFLICT with B.

Thus higher priority transaction C is executed and A is aborted. Until this point,

The CC scheduling is the same as the EDF scheduling.

39

With the following data we can derive several valid schedules.

r[A]=40 r[B]=60 r[C]=50 r[D]=0 A CONFLICT B

c[A]=20 c[B]=20 c[C]=20 c[D]=20 A CONFLICT C

d[A]=110 d[B]=90 d[C]=91 d[D]=120 B CONFLICT C

r[i]: release time

c[i]: worst case execution time

d[i]: deadline

CONFLICT relation is symmetric.

EDF

Non-preemptive

FCFS

Cost Conscious

Remarks

(19)

(19)

(39)

(39)

(20)

(0)

(10)

(9)

lateness

11010090403020

B

C

C

C

C

C

C

C

B

B

B

B

B

B

A

A

A

A

A

AD

1208070605010

Figure 4.1. Valid schedules

At time 60 transaction B arrives and B,C and A are in the ready queue in the

increasing order of deadline, and transaction C is partially executed. The priority

of B is -100 (-90-10), the priority of C is -91 and the priority of A is -120 (-110-10).

Thus the highest priority transaction C is executed in the CC scheduling. However

transaction C is aborted at time 60, as B has the earliest deadline. This is what our

approach di�ers from EDF-HP.

40

At time 70 transaction C �nishes and B,A is in the ready queue. The priority of

B is -90 and the priority of A is -110 here. Thus B is executed. After B �nishes A is

executed in the CC scheduling.

From the following 2 examples in Figure 4.3 and Figure 4, at time 10 transaction

A and B is possible candidates. The priority of A is -110 and the priority of B is

-111 (-101-10) because A is partially executed transaction. Thus A is not aborted by

transaction A which has earlier deadline.

In Example 3 we changed the CONFLICT relationship to make high data con-

tention. In this case the load of the system is increased by transaction abort and

restart not by transaction arrival rate. Thus the total lateness of EDF approach is

increased to 30.

The data in Example 1 is borrowed from [21]. Here we can see that CC approach

performs better than the others.

Why the CC scheduling is better than EDF-HP? In this example the number of

transaction restart in EDF-HP is 2 and the CC scheduling is 1. The CC scheduling

reduced the number of transaction restart using Penalty of Conict. Thus the CC

scheduling tried to solve the problem of EDF-HP which has too many transaction

aborts.

Why the CC scheduling is better than EDF-Wait? The problem of EDF-Wait is

too many transaction blocking. The CC scheduling tried to solve this problem with

well decided transaction restart.

In Example 3 we can see also the same result. The CC scheduling is better

than EDF-HP and EDF-Wait. The reason for better performance is that the CC

scheduling did more clever decision on blocking and restart.

From the Example 2 and Example 3, we can see that the change of transaction

relationship easily make the system heavily loaded and EDF-HP could not adapt to

41

the change. But our CC scheduling shows very stable performance and ability of

adaptation.

These examples show us great possibility of CC approach. In the following chap-

ters we do performance comparison and present the e�ect of penalty-weight using the

RTDBS simulation program.

Example 1:

r[A]=40 r[B]=60 r[C]=50 r[D]=0 A CONFLICT B

c[A]=20 c[B]=20 c[C]=20 c[D]=20 A CONFLICT C

d[A]=110 d[B]=90 d[C]=91 d[D]=120 B CONFLICT C

(penalty-weight=1)

Total lateness=19

(penalty-weight=large value)

(penalty-weight=0)

0

0

Earliest Deadline First and Wait Promote

Cost Conscious priority assignment and High Priority

Earliest Deadline First and High Priority

Total lateness = 9

Total lateness = 0

10080604020

1109070

AB
C

A

D

C
BA

time

time

time20 40 50 60 80 100 120

A
C

B
CAD

D

5040200

Figure 4.2. Output of Example 1

42

Example 2:

r[A]=0 r[B]=10 r[C]=60 A CONFLICT B

c[A]=50 c[B]=20 c[C]=30 B CONFLICT C

d[A]=110 d[B]=101 d[C]=90

(penalty-weight=1)

(penalty-weight= large value)

(penalty-weight=0)

Earliest Deadline First and Wait Promote

Cost Conscious priority assignment and High Priority

Earliest Deadline First and High Priority

total lateness = 20

total lateness = 9

total lateness = 0

70 11050

C BB

C

110906050

BA

A

110903010

A

AB
C

A

600

Figure 4.3. Output of Example 2

Example 3: The same as Example 2 except transaction relationship

r[A]=0 r[B]=10 r[C]=60 A CONFLICT B

c[A]=50 c[B]=20 c[C]=30 B CONFLICT C

d[A]=110 d[B]=101 d[C]=90 A CONFLICT C

(penalty-weight=large vlaue)

(penalty-weight=1)

(peanlty-weight=0)

Earliest Deadline First and Wait Promote

Cost Conscious priority assignment and High Priority

Earliest Deadline First and High Priority

70

9060

Total lateness = 20

Total lateness = 9

C
BA

B
C

BA

total lateness = 30

AC
AB

500

500

140

110

110

110903010

A

600

Figure 4.4. Output of Example 3

CHAPTER 5
COST CONSCIOUS FOR MAIN MEMORY DATABASE

5.1 Simulation Result

In order to evaluate the performance of the CC algorithm we wrote a simulation of

real-time transaction scheduler using C language and SIMPACK simulation package

[9]. The discrete events and actions of the simulation program are illustrated in the

Figure 5.1.

Action

suspension

data_conflict

Finish-schedule

Action flow

Arrival-schedule

Make event

Cancel event

Abort

Event flow

Event

Termination

Finish

Arrival

Figure 5.1. Flow of simulation program

In this simulation we have single processor, memory resident database and single

entry and exit points in the transaction program. Thus there is no I/O wait and no

condition in transaction programs.

Transactions enter the system with exponentially distributed inter-arrival times

and they are ready to execute when they enter the system (i.e., release time equals

43

44

arrival time). Every transaction is one instance of 50 transaction types and the trans-

action type for arriving transaction is chosen uniformly from the range of types. The

number of objects updated by a transaction type is chosen from a normal distribution

and the actual database items are chosen uniformly from the range of database size.

These items and the number are regenerated at each runs and the time to access data

item is always the same. The assignment of a deadline is controlled by the execution

time of a transaction and two parameters Min-slack and Max-slack which set a lower

and upper bound of percentage of slack time compared to the execution time respec-

tively. A deadline is calculated by summing execution time and slack time which is

calculated by multiplying slack percent and execution time. Slack percent is chosen

uniformly from the range of Min-slack and Max-slack.

Deadline = arrival time+ execution time� (1 + slack percent)

We ran the simulation with the same parameter for 10 di�erent random number

seeds and 1000 transactions are executed at each run. For each algorithm the result

were collected and averaged over the 10 runs. We varied following parameters in

Table 5.1 in order to see the behavior of CC method on various environment.

Arrival-rate The average arrival rate of new transactions entering the system.

Update-time The variation of time needed to update one item.

DBsize The number of objects in the database.

Penalty-weight The portion of penalty of conict compared to that of deadline in

priority calculation.

The simulation results shows that CC performs better than EDF in the wide

range of arrival rate and in the situation where many transaction aborts are occurred

45

due to heavy data contention among transactions. Thus we can see that CC can

adapt to changes on the system load caused not by transaction arrival rate but by

data contention among transactions.

Parameter Value
Transaction type 50
Update per transaction(mean, std) (20, 10)
Computation/update(ms) 4
Database size 30
Min slack as fraction of total runtime 20(%)
Max slack as fraction of total runtime 800(%)
abort cost(ms) 4
weight of penalty of conict 1

Table 5.1. Base parameters

5.1.1 E�ect of Arrival Rate

In this experiment, we varied arrival rate from 1 trs/sec to 20 trs/sec with the

base parameters shown in Table 5.1. With this base parameters the capacity of the

system is:

4 ms

update
�

20 update

transaction
=

80 ms

transaction
= 12:5 transactions=second

Thus we are interested in the range from 1 trs/sec to 13 trs/sec because past

this we are on overload (it's di�erent from overload in hard real-time system) and

we need a special mechanism that works well on this situation. This calculation is

very optimistic because it doesn't include abort cost nor the cost of re-executing

transactions. Table 5.2 shows the behavior of CC and EDF on the range from 1 to

20 of arrival rate and we can see that more than 90 % of the transactions are missed

from the arrival rate 14. From now on we are focusing the simulation on the range

from 1 to 15 and Figure 5.2 plotted Table 5.2 on the range 1 to 15.

46

Table 5.3 and Figure 5.3 show the improvement of CC over EDF in term of lateness

and the number of transactions that have missed their deadlines. The improvement

of CC over EDF is calculated like below:

n =
EDF � CC

EDF
� 100

It means that the miss rate or total lateness of CC is n% of the miss rate or total

lateness of the EDF.

We observe that with the base parameters in Table 5.1 the number of restarts

climbs steeply up to arrival rate 8 and then declines sharply from the peak point in

Figure 5.4. The reason for sharp decline is that when the arrival rate is high it is less

likely that an arriving transaction will have an earlier deadline than the currently

running transaction after peak point. After peak point, it is usually the case that

the currently running transaction arrived a long time ago, but could not get system

services due to heavy load of the system. Thus fewer transactions are preempted

and there are fewer opportunities for restarts [1]. The improvement graph of CC

over EDF is almost the same shape as the graph of transaction abort. Before this

peak point, better decisions about transaction aborts and restarts help to improve

performance.

After this peak point, however,an abortive scheduling algorithm cannot contribute

much to the performance of the system. Instead nonabortive method like CC with

large penalty-weight shows great performance in Table 5.4.

The number of partially executed transactions in the experiment with base pa-

rameters is 1 to 2 with the changes of arrival rate from 1 trs/sec to 15 trs/sec. Thus

scheduling overhead of the CC scheduling will not make problem.

47

5.1.2 E�ect of Variation of Update Time

In this experiment, we classi�ed the 50 transaction types into 3 classes and as-

signed the computation time per update as 0.4, 4 and 40 according to their classes.

The capacity of the system is:

0:4+4+40

3

update
�

20

transaction
=

296 ms

transaction
= 3:37transaction=second

The variation of update time create a lot of variance in the transaction execution

time. The execution time of transaction varies from 4 ms to 1200 ms. So there

will be more chances for transaction preemption. Table 5.5 and Figure 5.5 show the

results of the experiment. With the variation of update time there is higher possibility

that an arriving transaction will have an earlier deadline than the currently executing

transaction. Thus more transactions are preempted and there are more opportunities

for restart. In Figure 5.6 we can see that there are more restarts than in the previous

experiment. In addition the improvement of CC over EDF is a little higher in term

of miss rate and total lateness. In table 5.5 the improvement is calculated in terms

of transaction miss rate.

5.1.3 E�ect of Database Size

In this experiment, we �xed every parameter except database size. When the

database size increases, system load decreases. We selected 2 values of arrival rate

one before and one after the peak point to see the e�ect of database size on the

di�erent load situation. Table 5.6 and Figure 5.7 show the e�ect of DB size on

arrival rate 5. Table 5.7 and Figure 5.8 show the e�ect of DB size on arrival rate 10.

On these 2 di�erent load situation CC shows better performance and atter curve

than EDF when database size is smaller.

48

5.1.4 E�ect of Penalty-Weight

With the environment of base parameters the peak point of the system is around

value 8 of arrival rate. This value is largely dependent on the lengths of transactions

that are run on the system. After the peak point, Table 5.4 shows that CC performs

better with large penalty-weight.

We can see that the best value of penalty-weight slightly increase with the changes

of arrival rate up to the peak point and the rate of increase is not much dependent

on the data contention in Table 5.8 and Table 5.9. With the information in Table 5.8

and Table 5.9 the value 3 is the best for penalty-weight because CC shows best

performance in the range of 1 trs/sec to 8 trs/sec with this value of penalty-weight.

Figure 5.10 shows the stability of penalty-weight. This is desirable property be-

cause the performance of the system is not sensitive to the selection of penalty-weight

within some range.

49

Arrival EDF Cost Conscious
Rate(n/sec) Miss Restart lateness Miss Restart lateness

1 11.4 39.4 420.6 11.1 36.0 401.0

2 20.9 81.7 1445.1 20.2 74.5 1419.9

3 12.9 116.5 527.1 11.1 104.9 402.0

4 22.6 160.2 1143.9 18.7 143.7 970.8

5 34.8 190.7 2170.6 27.3 168.4 1601.7

6 47.4 224.4 4456.9 39.2 202.1 3500.5

7 60.5 235.8 4876.5 46.6 212.7 3308.2

8 113.3 246.5 10834.2 86.7 224.0 7248.0

9 192.3 235.7 29078.7 157.0 214.4 22834.9

10 407.2 170.1 126201.4 350.9 159.3 106718.6

11 579.2 119.1 293405.2 536.9 112.3 272081.5

12 661.9 96.2 675215.1 624.4 90.1 649990.5

13 887.7 30.7 2279295.6 865.5 28.9 2213611.4

14 953.8 13.9 4882713.6 942.5 14.4 4813463.6

15 949.7 12.5 5906608.0 940.2 13.0 5875306.4

16 970.5 7.9 7319176.0 964.6 7.9 7275576.0

17 988.5 5.0 9830349.6 986.2 4.5 9763058.4

18 988.8 3.7 12152108.8 988.1 3.2 12136897.6

19 988.1 4.4 11439751.2 986.7 3.1 11384251.2

20 987.8 3.8 13984155.2 987.3 3.5 13970342.4

Table 5.2. EDF, CC with base parameters

0

20

40

60

80

100

2 4 6 8 10 12 14

%

M
i
s
s
e
d

D
e
a
d
l
i
n
e
s

Arrival Rate(trs/sec)

EDF, CC with base parameters

"EDF"

0

20

40

60

80

100

2 4 6 8 10 12 14

%

M
i
s
s
e
d

D
e
a
d
l
i
n
e
s

Arrival Rate(trs/sec)

EDF, CC with base parameters

"EDF"
"CC"

Figure 5.2. The plot of EDF, CC with base parameters

50

Arrival Rate Improvement(%)
(n/sec) Miss Lateness

1.0 2.6 4.7

2.0 3.4 1.7

3.0 14.0 23.7

4.0 17.3 15.1

5.0 21.6 26.2

6.0 17.3 21.5

7.0 23.0 32.2

8.0 23.5 33.1

9.0 18.4 21.5

10.0 13.8 15.4

11.0 7.3 7.3

12.0 5.7 3.7

13.0 2.5 2.9

14.0 1.2 1.4

15.0 1.0 0.5

Table 5.3. Improvement of CC over EDF

0

5

10

15

20

25

30

35

2 4 6 8 10 12 14

P
e
r
c
e
n
t
a
g
e

o
f

i
m
p
r
o
v
e
m
e
n
t
(
%
)

Arrival Rate(trs/sec)

Improvement of Cost Conscious method compared to EDF(DBsize=30)

"Miss"

0

5

10

15

20

25

30

35

2 4 6 8 10 12 14

P
e
r
c
e
n
t
a
g
e

o
f

i
m
p
r
o
v
e
m
e
n
t
(
%
)

Arrival Rate(trs/sec)

Improvement of Cost Conscious method compared to EDF(DBsize=30)

"Miss"
"Lateness"

Figure 5.3. The plot of improvement

51

0

50

100

150

200

250

2 4 6 8 10 12 14

N
u
m
b
e
r

o
f

r
e
s
t
a
r
t
s

Arrival Rate(trs/sec)

The number of restart in EDF, CC method(DBsize=30)

"EDF"

0

50

100

150

200

250

2 4 6 8 10 12 14

N
u
m
b
e
r

o
f

r
e
s
t
a
r
t
s

Arrival Rate(trs/sec)

The number of restart in EDF, CC method(DBsize=30)

"EDF"
"CC"

Figure 5.4. The plot of restart

Arrival Rate CC(penalty-weight=150)
(n/sec) Miss Restart Lateness

1.0 16.9 2.9 576.8

2.0 30.6 6.1 1774.1

3.0 25.7 9.9 904.8

4.0 36.2 12.0 1615.5

5.0 47.8 14.2 2341.3

6.0 57.8 16.9 3631.5

7.0 57.8 18.6 2939.1

8.0 86.3 21.0 4196.6

9.0 130.1 23.1 11728.5

10.0 270.3 18.8 63055.4

11.0 429.2 15.8 206092.3

12.0 515.7 15.8 556632.7

13.0 798.2 6.6 2124728.8

14.0 918.0 2.4 4648724.8

15.0 922.7 3.6 5756830.8

Table 5.4. CC with penalty-weight=150, Dbsize=30

52

Arrival EDF Cost Conscious %
Rate Miss Restart lateness Miss Restart lateness Improvement

0.1 6.8 19.7 1964.1 6.6 19.1 1896.8 3.0

0.2 21.0 45.7 2539.7 20.3 43.1 2160.4 3.3

0.3 10.8 67.8 1793.4 10.3 65.3 1367.8 4.6

0.4 13.0 98.2 5812.8 11.1 92.8 4799.3 14.6

0.5 20.2 126.2 2804.1 18.8 119.9 1725.4 6.9

0.6 28.0 174.6 11073.1 26.2 164.1 7711.3 6.4

0.7 24.2 174.1 5645.8 21.4 165.2 3284.8 11.6

0.8 35.2 197.9 11083.9 30.5 187.5 6916.6 13.4

0.9 45.6 245.3 11724.4 42.4 231.6 7625.6 7.0

1.0 51.9 310.1 28814.0 42.5 292.1 16033.8 18.1

1.1 58.8 317.6 36333.7 44.7 301.1 20636.8 24.0

1.2 78.6 337.6 48822.1 61.9 319.4 27246.1 21.2

1.3 94.0 376.5 54429.3 73.1 357.3 25645.9 22.2

1.4 115.4 395.5 84087.4 87.5 371.0 49457.8 24.2

1.5 160.9 404.2 136465.1 128.4 383.7 83283.7 20.2

1.6 153.0 411.7 113285.9 120.1 389.2 65795.6 21.5

1.7 186.9 421.4 177602.0 154.8 404.1 111429.5 17.2

1.8 284.0 433.2 287929.5 228.3 424.5 187944.2 19.6

1.9 264.7 408.9 258739.9 227.7 393.9 179705.5 14.0

2.0 326.1 400.0 364927.7 255.5 397.6 232006.3 21.6

2.1 394.2 386.1 523226.4 337.9 382.4 361329.8 14.3

2.2 443.6 368.2 582882.0 364.5 371.8 385641.7 17.8

2.3 504.2 316.8 935464.7 434.2 323.9 725028.9 13.9

2.4 507.7 333.2 836843.5 439.6 346.7 633239.6 13.4

2.5 519.0 306.3 1046373.2 461.7 306.6 865621.1 11.0

2.6 648.8 234.3 1822628.6 592.1 243.5 1550638.4 8.7

2.7 675.0 222.4 2224897.2 614.7 232.8 1985902.8 8.9

2.8 609.2 253.5 2053094.2 549.2 260.1 1834712.8 9.8

2.9 704.8 197.3 2486331.2 654.4 207.2 2155261.6 7.1

3.0 790.0 146.3 4737714.0 742.8 160.5 4320996.8 6.0

3.1 809.8 131.0 4954517.6 768.6 140.8 4605974.4 5.1

3.2 773.9 154.7 3146292.0 742.0 157.7 2954192.0 4.1

3.3 836.0 108.7 5283436.0 804.2 116.1 4925655.2 3.8

3.4 880.1 83.4 12420894.4 857.5 88.0 12167400.0 2.6

3.5 898.6 68.4 11563330.4 877.5 72.4 11169936.8 2.3

3.6 885.8 79.2 12664900.0 867.7 82.1 12426168.8 2.0

3.7 902.1 71.1 11365877.6 876.5 77.4 10935632.8 2.8

3.8 935.2 45.8 16432209.6 923.9 46.3 15940080.0 1.2

3.9 942.4 41.2 18107593.6 934.3 41.7 17596182.4 0.8

4.0 960.7 28.3 23524508.8 953.0 29.2 23225604.8 0.1

Table 5.5. EDF,CC with variation of update time

53

0

20

40

60

80

100

0.5 1 1.5 2 2.5 3 3.5 4

%

M
i
s
s
e
d

D
e
a
d
l
i
n
e
s

Arrival Rate

EDF and Cost Conscious method(DBsize=30,etime= 0.4, 4, 40)

"EDF"

0

20

40

60

80

100

0.5 1 1.5 2 2.5 3 3.5 4

%

M
i
s
s
e
d

D
e
a
d
l
i
n
e
s

Arrival Rate

EDF and Cost Conscious method(DBsize=30,etime= 0.4, 4, 40)

"EDF"
"CC"

Figure 5.5. E�ect of variation of update time

0

50

100

150

200

250

300

350

400

450

0.5 1 1.5 2 2.5 3 3.5 4

N
u
m
b
e
r

o
f

r
e
s
t
a
r
t
s

Arrival Rate(trs/sec)

The number of restarts in EDF,CC method(DBsize=30)

"EDF"

0

50

100

150

200

250

300

350

400

450

0.5 1 1.5 2 2.5 3 3.5 4

N
u
m
b
e
r

o
f

r
e
s
t
a
r
t
s

Arrival Rate(trs/sec)

The number of restarts in EDF,CC method(DBsize=30)

"EDF"
"CC"

Figure 5.6. Number of restart with variation of update time

54

DBsize Number of miss % of improvement
E D F Cost Conscious (Miss)

30.0 34.8 27.3 21.6
50.0 34.8 26.8 23.0
100.0 33.0 26.6 19.4
200.0 30.1 25.1 16.6
300.0 28.5 24.7 13.3
400.0 27.1 24.5 9.6
500.0 27.2 24.0 11.8
800.0 25.1 22.9 8.8
1000.0 24.4 22.7 6.9

Table 5.6. E�ect of DB size(Arrival Rate=5)

DBsize Number of miss % of improvement
E D F Cost Conscious (Miss)

30.0 407.2 350.9 13.8
50.0 397.0 343.7 13.4
100.0 371.2 329.6 11.2
200.0 343.8 315.3 8.3
300.0 326.6 303.0 7.2
400.0 318.6 296.3 7.0
500.0 305.3 288.0 5.7
800.0 289.9 279.1 3.7
1000.0 285.5 274.0 4.0

Table 5.7. E�ect of DB size(Arrival rate=10)

55

0

0.5

1

1.5

2

2.5

3

3.5

4

100 200 300 400 500 600 700 800 900 1000

%

M
i
s
s
e
d

D
e
a
d
l
i
n
e
s

DBsize

EDF and Cost Conscious method(Arrival rate=5)

"EDF"

0

0.5

1

1.5

2

2.5

3

3.5

4

100 200 300 400 500 600 700 800 900 1000

%

M
i
s
s
e
d

D
e
a
d
l
i
n
e
s

DBsize

EDF and Cost Conscious method(Arrival rate=5)

"EDF"
"CC"

Figure 5.7. E�ect of DB size (Arrival Rate=5)

0

5

10

15

20

25

30

35

40

100 200 300 400 500 600 700 800 900 1000

%

M
I
s
s
e
d

D
e
a
d
l
i
n
e
s

DBsize

EDF and Cost Conscious method(Arrival rate=10)

"EDF"

0

5

10

15

20

25

30

35

40

100 200 300 400 500 600 700 800 900 1000

%

M
I
s
s
e
d

D
e
a
d
l
i
n
e
s

DBsize

EDF and Cost Conscious method(Arrival rate=10)

"EDF"
"CC"

Figure 5.8. E�ect of DB size(Arrival Rate=10)

56

Arrival Penalty-weight
rate 0 1 2 3 4 5

1 11.4 11.1 11.4 11.5 12.1 12.2
2 20.9 20.2 20.1 20.6 21.1 21.5
3 12.9 11.1 11.7 12.4 12.6 13.1
4 22.6 18.7 18.0 17.8 18.4 19.2
5 34.8 27.3 26.7 27.1 27.5 28.5
6 47.4 39.2 35.6 32.4 33.0 34.2
7 60.5 46.6 39.2 38.0 38.2 38.2
8 111.3 86.7 76.5 68.8 64.6 65.4

Table 5.8. Number of miss with the changes of penalty-weight(DBsize=30)

Arrival Penalty-weight
rate 0 1 2 3 4 5

1 10.5 10.5 10.5 10.5 10.6 10.6
2 19.9 20.0 20.1 20.3 20.6 20.6
3 10.0 9.8 10.0 10.0 10.0 10.2
4 16.0 15.6 15.8 16.1 16.2 16.8
5 24.4 22.7 23.0 23.1 23.5 23.6
6 27.7 27.2 27.8 27.6 28.3 28.4
7 31.7 30.5 30.4 29.7 30.1 30.8
8 58.6 52.9 51.3 50.3 50.5 50.1

Table 5.9. Number of miss with the changes of penalty-weight(DBsize=1000)

57

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

%

M
i
s
s
e
d

D
e
a
d
l
i
n
e
s

Arrival Rate(trs/sec)

Effect of penalty-weight

"p0"

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

%

M
i
s
s
e
d

D
e
a
d
l
i
n
e
s

Arrival Rate(trs/sec)

Effect of penalty-weight

"p0"
"p1"

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

%

M
i
s
s
e
d

D
e
a
d
l
i
n
e
s

Arrival Rate(trs/sec)

Effect of penalty-weight

"p0"
"p1"
"p3"

Figure 5.9. E�ect of penalty-weight

0

2

4

6

8

10

12

0 1 2 3 4 5

%

M
i
s
s
e
d

D
e
a
d
l
i
n
e
s

Penalty-Weight

Effect of penalty-weight

"ar=5"

0

2

4

6

8

10

12

0 1 2 3 4 5

%

M
i
s
s
e
d

D
e
a
d
l
i
n
e
s

Penalty-Weight

Effect of penalty-weight

"ar=5"
"ar=8"

Figure 5.10. Stability of penalty-weight

CHAPTER 6
COST CONSCIOUS FOR DISK RESIDENT DATABASE

6.1 Simulation Result

In order to see the performance of our algorithm on disk resident database we

extended the simulation program of real-time database system. The event and action

ow of the simulation program are illustrated in Figure 6.1. In this simulation we

assumed that we have single processor, single disk, FCFS I/O scheduling and 1 enter

and 1 exit point in transaction programs.

IOwait-schedule

rel-disk

req-disk

lock-check

Action

suspension

data_conflict

Finish-schedule

Action flow

Arrival-schedule

Make event

Cancel event

Abort

Event flow

Event

Termination

Finish

Arrival

Figure 6.1. Flow of simulation program

The environment of this experiment is the same as previous simulation on main

memory database. We ran the simulation with the same parameter for 10 di�erent

random number seeds and 500 transactions are executed at each run. For each

algorithm the result were collected and averaged over the 10 runs.

If a transaction is aborted during its wait on the disk queue, the transaction is

deleted from the disk queue immediately. However, if a transaction is aborted during

its IO access it is not deleted until it release the disk.

58

59

Parameter Value
Transaction type 50
Update per transaction(mean, std) (20, 10)
Database size 100
Min slack as fraction of total runtime 20(%)
Max slack as fraction of total runtime 800(%)
abort cost(ms) 5
weight of penalty of conict 1
Computation/Update time(ms) 4
Disk access time(ms) 25
Disk access probability 1/10

Table 6.1. Base parameters

The base parameters in this simulation program was selected to avoid the bottle-

neck at the disk access. With the base parameters in the Table 6.1 the capacity of

the system is:

20 items

transaction
�

4

item
=

80 ms

transaction
= 12:5 trs=second

This calculation is very optimistic because it doesn't include abort cost nor the

cost of re-executing transactions. When the load of the system reaches its capacity

the utilization of the disk is:

12:5 � 20=10 � 25

1000 ms
� 100 = 62:5%

The number of partially executed transactions is from 1.2 to 2.7 with the changes

of arrival rate from 1 tr/sec to 6 trs/sec. This value is just a little larger than that

of previous simulation on main memory database. Thus the transaction scheduling

overhead will not make problem either.

6.1.1 E�ect of Arrival Rate

In this experiment, we varied arrival rate from 1 trs/sec to 6 trs/sec with the base

parameters shown in Table 6.1. Table 6.2 shows the improvement of CC over EDF.

60

The improvement is better than that of main memory resident case. The reason for

better result is that CC not only do better decision about transaction blocking and

restart but also prevent noncontributing execution.

With the increase of arrival rate the number of transaction restarts are also in-

creased. This phenomenon is di�erent from previous simulation on main memory

database.

The reason for continuous increase in our CC approach is that when the arrival

rate is high the possibility of restart of the partially executed transactions which are

picked by \IOwait-schedule" is very high while the possibility of restart of partially ex-

ecuted transactions which are selected by \tr-arrival-schedule" or \tr-�nish-schedule"

is very low.

The improvement over EDF in terms of the number of transactions that have

missed their deadlines increase to certain point and then decrease sharply. However

the total lateness improvement do not decrease sharply in Table 6.2,Table 6.3. The

reason for this phenomenon is that when the arrival rate is high \IOwait-schedule"

function in CC approach prevent noncontributing execution e�ectively.

6.1.2 E�ect of Disk Access

In this experiment we changed computation time per update as 1 and probability

of disk access as 1/3. With this parameters the capacity of the system is dependent

on the disk capacity. The capacity of the system is:

20=3 items

transaction
�

25

item
=

166:7 ms

transaction
= 6:0 trs=second

When the load of the system reaches its disk capacity the utilization of the CPU

is:

6:0 � 20 � 2=3 � 1

1000 ms
� 100 = 12:5%

61

In Table 6.3 we can see that the performance is dominated by the disk IO and

noncontributing execution. In this situation, the CC scheduling shows great perfor-

mance.

6.1.3 E�ect of Penalty-Weight

In this experiment with base parameters in Table 6.1 the best value of penalty-

weight is 8. Figure 6.2 shows the stability of penalty-weight and Figure 6.3 represent

the e�ect of penalty-weight with the changes of arrival rate. The performance of the

system is not sensitive to the selection of penalty-weight within some range also in

this experiment.

Arrival EDF Cost Conscious % improve
Rate Miss Restart lateness Miss Restart lateness Miss Late

1.0 81.3 99.4 11432.5 73.1 31.5 6412.4 10.0 43.9

2.0 175.1 396.4 117192.0 128.0 59.0 24578.8 26.9 79.0

3.0 392.5 8826.9 28565517.6 245.9 56.0 126220.7 37.4 99.6

4.0 486.8 15429.0 70993739.8 396.5 54.4 611048.4 18.5 99.1

5.0 494.5 23187.2 113379641.2 477.4 120.0 5002427.6 3.5 95.6

6.0 494.9 20348.1 115349316.2 488.8 153.7 8510464.8 1.2 92.6

Table 6.2. EDF and CC with base parameters

Arrival EDF Cost Conscious % improve
Rate Miss Restart lateness Miss Restart lateness Miss Late

1.0 12.3 81.2 2518.2 6.8 32.5 971.8 44.7 61.4

2.0 52.8 324.1 33680.4 13.4 68.6 3294.6 74.6 90.2

3.0 340.3 7273.8 23623866.3 29.3 96.0 4201.4 91.4 99.9

4.0 474.8 14306.9 65226303.9 83.4 87.8 37055.6 82.4 99.9

5.0 485.9 14910.3 75612101.0 261.6 85.8 420432.2 46.2 99.4

6.0 488.7 18702.4 101851721.8 427.5 108.9 2333854.8 12.5 97.7

Table 6.3. EDF,CC with high probability disk IO

62

Arrival Penalty-weight
rate 0 1 3 5 8 10 10000

1 81.3 73.1 70.3 69.6 68.5 70.0 74.2
2 175.1 128.0 116.7 114.3 115.2 119.0 126.3
3 392.5 245.9 237.0 211.6 197.3 195.8 201.1
4 486.8 396.5 417.0 360.0 405.5 369.8 356.7
5 494.5 477.4 470.9 482.8 462.7 465.2 458.4
6 494.9 488.8 481.6 482.1 482.4 480.6 481.1

Table 6.4. Number of miss with the changes of penalty-weight

0

20

40

60

80

100

0 2 4 6 8 10

%

M
i
s
s
e
d

D
e
a
d
l
i
n
e
s

penalty-weight

Stability of penalty-weight

"5"

0

20

40

60

80

100

0 2 4 6 8 10

%

M
i
s
s
e
d

D
e
a
d
l
i
n
e
s

penalty-weight

Stability of penalty-weight

"5"
"2"

Figure 6.2. Stability of penalty-weight

63

0

20

40

60

80

100

1 2 3 4 5 6

%

M
i
s
s
e
d

D
e
a
d
l
i
n
e
s

Arrival Rate(trs/sec)

Effect of penalty-weight

"0"

0

20

40

60

80

100

1 2 3 4 5 6

%

M
i
s
s
e
d

D
e
a
d
l
i
n
e
s

Arrival Rate(trs/sec)

Effect of penalty-weight

"0"
"1"

0

20

40

60

80

100

1 2 3 4 5 6

%

M
i
s
s
e
d

D
e
a
d
l
i
n
e
s

Arrival Rate(trs/sec)

Effect of penalty-weight

"0"
"1"
"8"

0

20

40

60

80

100

1 2 3 4 5 6

%

M
i
s
s
e
d

D
e
a
d
l
i
n
e
s

Arrival Rate(trs/sec)

Effect of penalty-weight

"0"
"1"
"8"
"10"

Figure 6.3. E�ect of penalty-weight

CHAPTER 7
COST CONSCIOUS FOR MULTIPLE EXIT TRANSACTION

In the previous 2 chapters, all transactions have only single exit point in

their programs. Thus, there is no decision point in the program. These transaction

programs can be represented by transaction trees that have only one vertex.

Previous studies which are based on transaction pre-analysis [15],[5] made very

simple assumption about the transaction access pattern. The weakness of transaction

pre-analysis based approaches is that they have severe performance degradation for

multiple exit point transactions. They might be worse than EDF-HP when dealing

with complex multiple exit point transactions.

Abbot and Garcia-Molina [2] showed that EDF-CR which uses an estimated exe-

cution time for wait and abort decision might be worse than EDF-HP if the estimated

execution time of a transaction is more than 120 % of real execution time of the trans-

action. If we consider a multiple exit point program which can be represented as a

transaction tree that has variable length of paths, statically estimated execution time

of a transaction is not appropriate.

A Priority Ceiling Protocol [15] that assigns a priority ceiling to each data item

statically has severe problems handling multiple exit point transaction. A worst case

static assignment of priority ceilings to data itemsmakes the Priority Ceiling Protocol

resemble to nonpreemptive method. It's an undesirable situation.

In the following experiment, we will look at the e�ect of multiple exit points

in our approach, using the base parameters in chapter 5. In this case often we

cannot decide whether two transactions are safe or unsafe which means we have a

conditionally unsafe. We can deal with this in 3 ways:

64

65

1. Consider conditionally unsafe as safe.

2. Consider conditionally unsafe as unsafe.

3. Consider conditionally unsafe as unsafe and use only half of Penalty of Conict.

In this experiment we selected the �rst method because the worst case bound on

its performance is the same as that of EDF-HP. Whenever we decide the relationship

to calculate the Penalty of Conict the relationship is whether it is safe or not safe.

Not safe can be unsafe or conditionally unsafe due to the existence of branches in a

transaction program. The total number of decision minus the number of safe case is

the number of not safe case. If we assume that m % out of the number of not safe

case are unsafe and the others are conditionally unsafe and we consider conditionally

unsafe as safe according to �rst method whenever we make a decision and our guess is

completely wrong. It means all conditionally unsafe turn into unsafe. This situation

is very unrealistic but it could happen. If m have value 100 it is the same as 1 exit

point case.

In Table 7.1 and Figure 7.1 we can see that even if we assume worst situation

the bound on performance of CC in terms of miss rate is the same as that of EDF-

HP when we ignore the scheduling overhead. Additionally dynamically changing

mightaccess will help to improve % of unsafe out of not safe. Thus CC approach is

more promising than previous transaction pre-analysis based approaches that only

use statically estimated information.

66

Arrival % of unsafe
Rate 0 25 50 75 90 100

5 0 0 1.4 4.5 19.0 21.6
8 0 0 0 5.9 12.9 23.5
12 0 0 0.3 1.2 3.7 5.7

Table 7.1. E�ect of unsafe out of not safe

0

5

10

15

20

25

0 20 40 60 80 100

%

I
m
p
r
o
v
e
m
e
n
t

% of unsafe

Effect of Unsafe

"5"

0

5

10

15

20

25

0 20 40 60 80 100

%

I
m
p
r
o
v
e
m
e
n
t

% of unsafe

Effect of Unsafe

"5"
"8"

0

5

10

15

20

25

0 20 40 60 80 100

%

I
m
p
r
o
v
e
m
e
n
t

% of unsafe

Effect of Unsafe

"5"
"8"
"12"

Figure 7.1. E�ect of % of unsafe

CHAPTER 8
CONCLUSION AND FUTURE WORK

To the best of our knowledge, all previous abortive methods of real-time

transaction scheduling have not considered the dynamic cost, i.e, the cost of rolling

back and restarting transactions. This perhaps is not a key consideration in real-time

task scheduling that only consider timing correctness. But in real-time transaction

scheduling, the cost incurred at run time to keep the database consistent should be

considered as a key factor.

EDF-HP and Priority Ceiling Protocol are the extreme methods of abortive and

nonabortive approach respectively. Even though CR method and Stankovic's two

protocols have been suggested to compromise abortive and nonabortive method, they

all have deadlock problem.

In this thesis, we have proposed a new real-time transaction scheduling algorithm

that has a cost conscious dynamic priority assignment policy. Our approach uses

dynamic priority assignment with continuous evaluation method to adapt system to

the changes of load e�ectively and resolves the problem of EDF-HP encounters in

heavily loaded situations.

The distinctive features of our approach are:

First, our dynamic priority assignment policy synthesizes deadline and Penalty of

Conict together. The amount of e�ective service time of a transaction is implicitly

taken into account as it is a part of the Penalty of Conict computed for conicting

transactions.

67

68

Second, our approach is deadlock free. Whenever data conict occurs, running

transaction gets the CPU and abort conicting transaction. It is the same as the well

known priority-based wound-wait scheme which is a deadlock avoidance scheme.

Third, to the best of our knowledge no research has mentioned the fact that the

arrival of conicting transactions easily make the systems heavily loaded. Our priority

assignment policy easily adapts to the changes of data contention using Penalty of

Conict and works well in an high data contention.

Fourth, no starvation in our approach. If we consider the deadline of a transaction

when calculating the transaction priority (i.e, penalty�weight <1), then we avoid

starvation.

When all transactions access disjoint data sets or when system is lightly loaded,

there is no starvation problem because the priority assignment policy proposed here

is the same as EDF.

When the system is heavily loaded, transactions that have large penalty of conict

usually are delayed because of their low priority. But the e�ect of deadline prevent

those transactions from going into starvation when the urgency of deadlines of the

transactions compensate the e�ect of their penalties, those transactions get high

priority.

Fifth, no priority reversal in our approach. The only thing that changes relative

priorities is the partially executed transactions in the system and only the running

transaction can abort partially executed transactions. Thus the transactions in the

ready queue which are already compared the priority with the running transaction

cannot have higher priorities than that of running transaction.

In this thesis we assumed that we only have exclusive lock and same criticalness

in the system. The e�ect of shared lock in transactions and multiple criticalness will

69

a�ect the performance of whole system. Much more work is needed to include these

factors.

Our approach is more computationally expensive than EDF-HP. However current

trend of real-time system is tightly or loosely coupled multiprocessor which have

more computational power and reliability and parallelism. Extending our approach

to multiprocessor environment is more promising than simple EDF approach because

our approach shows better performance than EDF-HP when data contention is high.

REFERENCES

[1] Robert Abbott and Hector Garcia-Molina. Scheduling real-time transactions.
SIGMOD RECORD, 17(1):71{81, 1988.

[2] Robert Abbott and Hector Garcia-Molina. Scheduling real-time transactions: a
performance evaluation. In Proceedings of the 14th VLDB, pages 1{12. ACM,
1988.

[3] Robert Abbott and Hector Garcia-Molina. Scheduling real-time transactions
with disk resident data. In Proceedings of the 15th VLDB, pages 385{396. ACM,
1989.

[4] T.P. Baker. A stack-based resource allocation policy for real-time process. In
Proceedings of Real-Time Systems Symposium, pages 191{200, Dec 1990.

[5] A. Buchmann, D.R. McCarthy, and M. Hsu. Time-critical database scheduling:
A framework for integrating real-time scheduling and concurrency control. In
Proceedings of the Fifth Conference on Data Engineering, pages 470{480, Feb
1989.

[6] S. Chakravarthy, B. Blaustein, A. Buchmann, M. Carey, U. Dayal, D. Gold-
hirsch, M. Hsu, R. Jauhari, R. Ladin, M. Livny, D. McCarthy, R. McKee, and
A. Rosenthal. HiPAC: A research project in active, time-constrained database
management. Technical report XAIT-89-02, XEROX, July 1989.

[7] E.G. Co�man. Computer and Job-Shop Scheduling theory. Wiley, New York,
1976.

[8] Jensen E. Douglas, C. Douglass Locke, and Hideyuki Tokuda. A time-driven
scheduler for real-time operating systems. In Proceedings of the IEEE Real-Time
Systems Symposium, pages 112{122. IEEE, 1985.

[9] Paul A. Fishwick. SIMPACK:C-based Simulation Tool Package Version 2. Uni-
versity of Florida, 1992.

[10] Borko Furht and Borivoje Furht. Real-time UNIX systems: design and applica-
tion guide. Kluwer Academic, Boston, 1991.

[11] Jayant R. Haritsa, Miron Livny, and Michael J. Carey. Earliest deadline schedul-
ing for real-time database systems. In Proceedings of Real-Time System Sympo-
sium, pages 232{242. IEEE, 1991.

[12] Jiandong Huang, John A. Stankovic, Krithi Ramamritham, and Don Towsley.
Experimental evaluation of real-time optimistic concurrency control schemes. In
Proceedings of the 17th VLDB, pages 35{46. ACM, 1991.

70

71

[13] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a
hard real-time environment. Journal of ACM, 20:46{61, 1973.

[14] C. Douglass Locke. Best-e�ort decision making for real-time scheduling. Tech-
nical Report CMU-CS-86-134, Carnegie-Mellon University, 1986.

[15] Lui Sha. Concurrency control for distributed real-time databases. SIGMOD
RECORD, 17(1):82{98, 1988.

[16] Lui Sha, Ragunathan Rajkumar, and J.P. Lehoczky. Priority inheritance pro-
tocols: An approach to real-time synchronization. IEEE Transactions on Com-
puters, 39:1175{1185, 1990.

[17] Lui Sha, Ragunathan Rajkumar, Sang Hyuk Son, and Chun-Hyun Chang. A
real-time locking protocol. IEEE Transactions on Computers, 40(7):793{800,
1991.

[18] Sang H. Son, Seog Park, and Yi Lin. An integrated real-time locking protocols.
In Proceedings of the 8th Conference on Data Engineering, pages 527{534, Feb
1992.

[19] John A. Stankovic and Wei Zhao. On real-time transactions. SIGMOD
RECORD, 17(1):4{18, 1988.

[20] John A. Stankovic and Wei Zhao. Real-time computing systems: The next
generation. Tutorial of Hard Real-time systems, pages 14{37, 1988.

[21] Jia Xu and David R. Parnas. Scheduling processes with release times, deadlines,
precedence, and exclusion relations. IEEE Transactions on Software Engineer-
ing, 16(3):360{369, 1990.

[22] Wei Zhao, Krithi Ramamritham, and John A. Stankovic. Preemptive schedul-
ing under time and resource constraints. IEEE Transactions on Computers,
36(8):949{960, 1987.

[23] Wei Zhao, Krithi Ramamritham, and John A. Stankovic. Scheduling tasks with
requirement in hard real-time systems. IEEE Transactions on Software Engi-
neering, 13(5):225{236, 1987.

BIOGRAPHICAL SKETCH

Dong-kweon Hong was born on June 11, 1960 in Taegu, South Korea. He re-

ceived his Bachelor of Engineering degree in computer sciences from the Kyung-Pook

National University, South Korea. After �nishing his undergraduate degree in 1985,

he worked as an Research Engineer at Electronics and Telecommunications Research

Institute at Taejeon, South Korea. In the Fall of '90, he started his graduate studies

with a major in computer and information sciences at the University of Florida. He

will receive his Master of Science degree in computer and information sciences from

the University of Florida, Gainesville in August, 1992.

72

