
A HOLISTIC, SIMILARITY-BASED APPROACH FOR PERSONALIZED

RANKING IN WEB DATABASES

by

ADITYA TELANG

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2011

Copyright c© by ADITYA TELANG 2011

All Rights Reserved

To my parents who set the example and who made me who I am.

ACKNOWLEDGEMENTS

I would like to express sincere gratitude to my advisor Sharma Chakravarthy for con-

stantly motivating and encouraging me as well as providing valuable guidance and support

during the course of my doctoral work. More importantly, his keen interest and enthusiasm

in teaching and his pedagogical methods truly inspired me. It is the same type of enthusi-

asm that he devoted into advising that helped in making me a true researcher. He has spent a

tremendous amount of time training me in research, writing, and giving professional talks.

He has been brilliant and insightful in research discussions. His dedication, persistence,

and sincerity in research deeply impressed me and have set up the high standards that I

want to maintain in my future career.

I am also extremely grateful to Chengkai Li. It has been a great experience to col-

laborate with him during the last three years. Besides, as a recent graduate who has made

a successful start to his career, he also becomes an immediate role model for me.

I want to thank my thesis committee members Gautam Das and Leonidas Fegaras

for their interest in my research, for taking time to serve in my dissertation committee

and for their comments, suggestions, guidance and help at the time of need. I would also

like to thank Ramez Elmasri and Bahram Khalili for all their support, encouragement and

guidance during the years I have been in UTA as a graduate teaching assistant and an

assistant instructor. In addition, I would like to acknowledge the assistance I received,

from Pamela McBride as well as the entire staff of the Computer Science and Engineering

Department at UTA, during the course of my doctoral work.

I wish to thank all my colleagues (past and present) at Information Technology Lab

(ITLab) for their support and encouragement and for making the stay at ITLab over the

iv

last five years thoroughly exciting. I am also grateful to my friends for their interest in my

research and for their helpful discussions and invaluable comments. My appreciation espe-

cially goes to Rohan Prabhu, Jaydeep Inamdar, Apurv Dhadphale, Rushikesh Khasgiwale,

Akshay Joshi, Kailas Inamdar and Vaibhav Landage for providing me with generous sup-

port and countless fun throughout the five years at UTA. I am grateful to all the professors

and mentors who have helped me throughout my career, both in India and United States.

Finally, I am grateful to my parents Pratibha and Dilip Telang, my late uncle Pradeep

Telang as well as other family members for their endless love and support. Without their

encouragement and endurance, this work would not have been possible. Last but not the

least, I express my appreciation for the goodness of an overriding Providence in my life.

July 6, 2011

v

ABSTRACT

A HOLISTIC, SIMILARITY-BASED APPROACH FOR PERSONALIZED

RANKING IN WEB DATABASES

ADITYA TELANG, Ph.D.

The University of Texas at Arlington, 2011

Supervising Professor: Sharma Chakravarthy, Chengkai Li

With the advent of the Web, the notion of “information retrieval” has acquired a

completely new connotation and currently encompasses several disciplines ranging from

traditional forms of text and data retrieval in unstructured and structured repositories to

retrieval of static and dynamic information from the contents of the surface and deep Web.

From the point of view of the end user, a common thread that binds all these areas is

to support appropriate alternatives for allowing users to specify their intent (i.e., the user

input) and displaying the resulting output ranked in an order relevant to the users.

In the context of specifying an user’s intent, the paradigms of querying as well as

searching have served well, as the staple mechanisms in the process of information retrieval

over structured and unstructured repositories. Processing queries over known, structured

repositories (e.g., traditional and Web databases) has been well-understood, and search

has become ubiquitous when it comes to unstructured repositories (e.g., document collec-

tions and the surface Web). Furthermore, searching structured repositories has also been

explored to a limited extent. However, there is not much work in querying unstructured

sources which, we believe is the next step in performing focused retrievals.

vi

Correspondingly, one of the contributions of this dissertation is a novel semantic-

guided approach, termed Query-By-Keywords (or QBK), to generate queries from search-

like inputs for unstructured repositories. Instead of burdening the user with schema details,

this approach utilizes pre-discovered semantic information in the form of – taxonomies,

relationship of keywords based on context, and attribute & operator compatibility amongst

Web sources, to generate query skeletons that are subsequently transformed into queries.

Additionally, progressive feedback from users is used to further improve the accuracy of

these query skeletons. The overall focus thus, is to propose an alternative paradigm for the

generation of queries on unstructured repositories using as little information from the user

as possible.

Irrespective of the template for intent specification (i.e., either a search or a query

request), the number of results typically returned in response to such intents are, often, ex-

tremely large. This is particularly true in the context of the deep Web where a large number

of results are returned for queries on Web databases and choosing the most useful answer(s)

becomes a tedious and time-consuming task. Most of the time the user is not interested in

all answers; instead s/he would prefer those results, that are ranked based on her/his in-

terests, characteristics, and past usage, to be displayed before the rest. Furthermore, these

preferences vary as users and queries change.

Accordingly, in this dissertation, we propose a novel similarity-based framework for

supporting user- and query-dependent ranking of query results in Web databases. This

framework is based on the intuition that – for the results of a given query, similar users

display comparable ranking preferences, and a user displays similar ranking preferences

over results of analogous queries. Fittingly, this framework is supported by two novel and

comprehensive models of – 1) Query Similarity, and 2) User Similarity, proposed as part

of this work. In addition, this ranking framework relies on the availability of a small yet

representative set of ranking functions collected across several user-query pairs, in order to

vii

rank the results of a given user query at runtime. Appropriately, we address the subsequent

problem i.e., establishing a relevant workload of ranking functions that assists the similarity

model in the best possible way to achieve the goal of user- and query-dependent ranking.

Furthermore, we advance a novel probabilistic learning model that infers individual rank-

ing functions (for this workload) based on the implicit browsing behavior displayed by

users. We establish the effectiveness of this holistic ranking framework by experimentally

evaluating it on Google Base’s vehicle and real estate databases with the aid of Amazon’s

Mechanical Turk users.

viii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . vi

LIST OF FIGURES . xiii

LIST OF TABLES . xv

Chapter Page

1. INTRODUCTION . 1

1.1 Specification Of User Intent . 1

1.1.1 Querying The Web Using Keywords 4

1.2 Relevant Ranking Of Retrieved Information 5

1.2.1 A Holistic Approach For Ranking In The Deep Web 8

1.3 Contributions . 10

1.4 Roadmap . 13

2. THE QBK APPROACH FOR QUERYING THE WEB 14

2.1 Motivation . 15

2.1.1 Contributions And Roadmap . 19

2.2 The Query-By-Keywords Approach: An Overview 19

2.2.1 QBK Versus Other Specification Mechanisms 22

2.3 The Query-By-Keywords Framework . 23

2.3.1 Knowledge Base . 24

2.3.2 Keyword Resolution . 28

2.3.3 Rank Model . 29

2.3.4 Query Completion . 37

ix

2.4 Conclusion . 38

3. A SIMILARITY-BASED RANKING FRAMEWORK 40

3.1 Introduction . 40

3.2 Problem Definition And Architecture . 44

3.2.1 Problem Definition . 44

3.2.2 Ranking Architecture . 46

3.3 Query Similarity . 48

3.3.1 Query-Condition Similarity . 49

3.3.2 Query-Result Similarity . 52

3.3.3 Analysis Of The Proposed Query Similarity Models 54

3.4 User Similarity . 56

3.4.1 Query-Independent User Similarity 59

3.4.2 Cluster-Based User Similarity . 60

3.4.3 Top-K User Similarity . 61

3.4.4 Summary Of User Similarity Models 62

3.5 The Holistic Similarity Model . 63

3.6 Experimental Evaluation . 66

3.6.1 Setup . 67

3.6.2 Workload Generation And User Studies 67

3.6.3 Quality Evaluation . 69

3.6.4 Efficiency Evaluation . 77

3.7 Deriving Individual Ranking Functions For The Workload 80

3.7.1 Alternatives For Obtaining A Ranking Function 80

3.7.2 A Probabilistic Learning Model 81

3.7.3 Learning Model Evaluation . 83

3.8 Conclusion . 86

x

4. ESTABLISHING A WORKLOAD FOR SIMILARITY RANKING 88

4.1 Introduction . 88

4.2 Problem Statement . 93

4.2.1 The Workload Goodness Metric 94

4.2.2 The Workload Filling Problem . 96

4.2.3 Generating Q, U , and Subsequent Similarities 97

4.3 Heuristic Solution To The Workload Filling Problem 98

4.3.1 Independent Rank-Based Selection 99

4.3.2 Independent High Rank-Based Selection 101

4.3.3 Cumulative Selection . 104

4.4 Experimental Evaluation . 107

4.4.1 Setup . 107

4.4.2 Quality Evaluation . 108

4.4.3 Efficiency Evaluation . 113

4.5 Conclusion . 115

5. AN EXTENDED MODEL OF QUERY- AND USER-SIMILARITY 117

5.1 Introduction . 117

5.2 An Extended Model Of Query Similarity 120

5.2.1 Preliminaries . 121

5.2.2 Query Re-writing . 123

5.2.3 Projection Similarity . 125

5.2.4 Selection Condition Similarity . 126

5.2.5 Join Condition Similarity . 131

5.2.6 Incorporating Correlations & Dependencies 133

5.2.7 The Complete Query Condition Similarity Model 136

5.3 An Extended Model Of User Similarity 136

xi

5.3.1 Combined User Similarity . 137

5.4 Experimental Evaluation . 139

5.4.1 Setup and Workload Generation 140

5.4.2 Query Similarity Evaluation . 142

5.4.3 User Similarity Evaluation . 145

5.5 Conclusion . 147

6. RELATED WORK . 149

6.1 Intent Specification . 149

6.1.1 Query/Search Formulation . 149

6.1.2 Mapping Intent into Queries . 152

6.1.3 Domain Discovery And Source Identification 153

6.2 Ranking Relevant Information . 156

6.2.1 Ranking In Recommendation Systems 156

6.2.2 Ranking In Database Systems . 158

6.2.3 Ranking In Information Retrieval 159

6.2.4 Inferring Functions Via Relevance Feedback 159

6.2.5 Workloads For Ranking Frameworks 160

7. CONCLUSIONS AND FUTURE DIRECTIONS 161

7.1 Contributions . 161

7.2 Future Work . 163

REFERENCES . 166

BIOGRAPHICAL STATEMENT . 179

xii

LIST OF FIGURES

Figure Page

1.1 Querying The Web: Current Scene And Our Contribution 11

1.2 Ranking On The Deep Web: Current Scene And Our Contribution 12

2.1 Comparison Of Query & Search Paradigms 17

2.2 The QBK Approach: From Keywords To A Complete Query 24

2.3 Sample Taxonomy For The Travel Domain 26

2.4 Keyword Resolution Outcome: Query 1K1 30

2.5 The Notion Of Join Compatibility For Entity Sets E1, E2, E3 34

2.6 Sample Template For QBK Framework . 39

3.1 Architecture Of Similarity-based Ranking Framework 46

3.2 High-level View For Establishing A Workload 46

3.3 Summarized View Of The Query Similarity Models 54

3.4 Quality Of Query Similarity: Single Ranking Function 71

3.5 Quality Of Query Similarity: Aggregate Ranking Function 72

3.6 Quality Of User Similarity . 74

3.7 Quality Of User Similarity For An Individual User 75

3.8 Number Of Functions Available For User Similarity Models 75

3.9 Ranking Quality of Holistic Similarity Model: Vehicle Database 76

3.10 Ranking Quality of Holistic Similarity Model: Real Estate Database 77

3.11 Ranking Efficiency Of Combined Similarity Model 79

3.12 Probability Distribution Difference: Retrieved v/s Selected Results 82

3.13 Ranking Quality Evaluation Of Learning Models: Top-25 Selection 85

xiii

3.14 Ranking Quality Evaluation Of Learning Models: Top-10 Selection 86

3.15 Ranking Quality Evaluation Using Power-Law Sampling Schemes 86

4.1 Sample Queries Q, Users U , Pairs P & Workload 89

4.2 Example-3: Sample Workload . 99

4.3 Evaluation For Static Filling: Vehicle Database 110

4.4 Evaluation For Static Filling: Real Estate Database 111

4.5 Evaluation For Dynamic Filling: Vehicle Database 113

4.6 Evaluation For Dynamic Filling: Real Estate Database 114

4.7 Static v/s Dynamic Workload Filling: Vehicle Database 115

4.8 Static v/s Dynamic Workload Filling: Real Estate Database 116

5.1 Quality Of Extended Query Similarity: Vehicle DB 143

5.2 Quality Of Extended Query Similarity: Real Estate DB 144

5.3 Evaluation Of Query Similarity Values: Vehicle DB 145

5.4 Evaluation Of Query Similarity Values: Real Estate DB 146

5.5 Quality Of Combined User Similarity: Vehice DB 147

5.6 Quality Of Combined User Similarity: Real Estate DB 148

xiv

LIST OF TABLES

Table Page

2.1 Comparison of Current Intent Specification Mechanisms 23

2.2 Input Keywords & Their Taxonomical Associations 28

3.1 Sample Workload-A . 48

3.2 Sample Workload-B . 48

3.3 Input query (Q1) and U1’s Workload . 49

3.4 Sample Results (NH) For Query “Make = Honda” 51

3.5 Sample Results (NT) For Query “Make = Toyota” 51

3.6 Sample Results (NL) For Query “Make = Lexus” 51

3.7 Sample Results Of Q1: “Make=Honda AND Location = Dallas,TX” 53

3.8 Sample Results Of Q2: “Make=Toyota AND Location = Atlanta,GA” 53

3.9 Sample Results Of Q5: “Make=Lexus AND Location = Basin,MT” 53

3.10 Drawbacks Of Query-Independent User Similarity 59

3.11 Sample Experimental Queries: Vehicle Database 68

3.12 Sample Experimental Queries: Real Estate Database 68

4.1 Sample Rank Matrix For Set P . 91

4.2 Impact Of |WK | On Optimal Goodness . 96

4.3 Example-3: Ranked Ordering Of User Query Pairs 99

4.4 Example-3: Independent Rank-based Selection Results 100

4.5 Example-3: Individual & Overall Goodness of W = {P1, P3} 100

4.6 Example-3: Independent High Rank-based Selection 103

4.7 Example-3: Cumulative Selection Process 106

xv

4.8 Vehicle Database: % Improvement With Dynamic Filling 115

4.9 Real Estate Database: % Improvement With Dynamic Filling 116

5.1 Sample Experimental Queries: Vehicle Database 141

5.2 Sample Experimental Queries: Real Estate Database 141

xvi

CHAPTER 1

INTRODUCTION

Today, the term “information retrieval” has assumed a completely different connota-

tion and encompasses several disciplines such as – text retrieval from unstructured docu-

ment repositories, data retrieval from structured database systems, and retrieval of informa-

tion from the Web in the form of – static Web pages from the surface Web and individual

data records from the Web databases spread over the deep Web. From the point of view of

the end user, a common thread that binds all these areas is to support appropriate alterna-

tives for allowing user input and displaying the result output. Specifically, since both these

aspects are significant from the point of view of utility of the system, almost all retrieval

frameworks need to concentrate on concocting –

1. An appropriate mechanism for the users to specify their desired intent in a clear and

simple manner, and

2. A suitable technique for presenting a subset of the most relevant results (amongst all

the results retrieved in response to the specified intent) to the user.

1.1 Specification Of User Intent

The paradigms of query and search have served well, as the staple mechanisms for

specifying user intent in the process of information retrieval over structured and unstruc-

tured repositories. A search request, typically expressed in the form of one or more key-

words has been extensively used for retrieving –

• Textual data from large document collections using various techniques [1] [2] [3] [4],

1

2

• Individual Web pages from the surface Web using retrieval mechanisms namely

search engines such as Google (www.google.com), meta-search engines like Clusty

(www.clusty.com), and faceted search engines for instance, DBLP ((www.dblp.

l3s.de),

• Natural language extracts from Question-Answering frameworks like START [5] and

Yahoo! Answers (www.answers.yahoo.com), and

• Data records from structured repositories representing traditional databases (using

techniques such as DBExplorer [6] and BANKS [7]) as well as Web databases like

NetFlix (www.netflix.com), Travelocity (www.travelocity.com), Google

Base (www.base.google.com) and so on.

Given the lack of a learning curve associated in expressing one’s intent as a set of

keywords, the search paradigm has become extremely popular across a large class of users

and is extensively used by almost all retrieval frameworks.

In contrast, a query, conventionally specified using a language such as SQL [8] (or

its variant such as OOQL [9], SemQL [10] and others) has been extensively used for re-

trieving data records from traditional database systems. Although precise and expressive

in nature, specifying one’s intent through a query language requires prior knowledge of the

data sources, the data model, the operators of the data model, and the syntax and semantics

of the query language. As a result, querying is the proclivity of those who are willing to

spend time learning the intricacies of correct specification.

The advent of the deep Web [11] [12] led to the proliferation of a large number of

Web databases and their corresponding applications (such as airline reservations on Trav-

elocity (www.travelocity.com), vehicle search on Yahoo! Autos (www.autos.

yahoo.com), and real estate scouting on Realtor (www.realtor.com). Due to the

difficulties in specifying one’s intent through a query language, most Web applications re-

sorted to the use of template-based or form-based menus (loosely adapted from the Query-

3

By-Example (or QBE) paradigm [13] [14]). The users express their intent by entering

keywords in the different field of these menus, and the system internally translates this

input into a (SQL or similar) query for further processing.

In spite of the advances in the use of templates and menus as well as the enhance-

ments to the expressive power of query languages, the notion of querying (unlike search)

has been restricted to only structured repositories i.e., traditional and Web databases. It can

be argued, based on the following example, that expanding the scope of the query paradigm

to encompass both structured and unstructured repositories is the next step in performing

focused retrievals.

Motivating Example-1: Consider a business executive (U1) who is on a vacation to

United Kingdom. Let us presume that s/he is interested in seeking answers to the intent:

“Determine a list of castles near London that can be reached in 2 hours by train”.

Although all the information for answering the above request is available on the

Web, it is currently not possible to frame it as a single query/search and get meaningful

results. The current process for identifying answers to the above query essentially involves

the following manual steps: i) get a list of cities in UK having castles from a static Web

source (e.g., Google search on “castles in UK” followed by a link traversal), ii) check train

connectivity with a specific city by using a deep Web source that provides train schedules

in UK (e.g., Google search on “train schedules in UK” followed by a query on the deep

Web application such as London Rail (www.tfl.gov.uk)), and iii) retrieve the time for

the travel and the amount of time at the destination. In addition, if multiple cities/castles

satisfy the request, they can be ranked based upon some meaningful criteria, such as age

of the castle, amount of time available at the destination, and so on.

Thus, the answer to the above request can be manually put together with con-

siderable effort by searching/querying for different pieces of information from diverse

Web sources, keeping relevant information, and combining the information in a meaning-

4

ful/intelligent manner. Since the above, and similar such requests (illustrated in Chapter 2)

span across several types of Web sources (i.e., both static pages on the surface Web and

the data hidden behind forms on the deep Web), and require combining and presenting an

integrated view of the information (instead of simple list of URLs pointing to Web pages)

as output, search is not likely to be a preferred alternative.

Although there exist a number of systems, such as HAVASU [15], WHIRL [16],

MetaQuerier [17], Ariadne [18] and DBLife [19], that allow queries to be expressed (in

the form of filling keywords in templates or menus) across several sources, most of the

techniques, to date, are restricted only to databases associated with deep Web sources in

a single domain or a set of pre-defined domains1. In contrast, techniques proposed for

querying unstructured repositories have taken the approach of converting the unstructured

data into a structured form and then querying the structured data (e.g., DBPedia [20]).

Thus, to the best of our knowledge, formulating queries spanning several types of sources

(in terms of static Web pages as well as dynamic Web applications) spread across multiple

domains has not received sufficient attention.

1.1.1 Querying The Web Using Keywords

One of the goals of this dissertation is to address the problems associated with spec-

ifying an intent (such as the one in Example-1) that spans multiple Web sources in several

domains in order to obtain chunks of relevant information from each source, and com-

bine them to form an answer. Specifically, we propose a technique termed as Query-By-

Keywords [21] [22] (or QBK) for formulating a complete query from search-like keywords

input that can be processed over sources in multiple domains to retrieve useful answers.

1The notion of a domain is subjective. In the context of this dissertation, a domain indicates a collection

of Web sources providing specific information associated with individual concepts such as travel, books,

literature, and so on.

5

As most of the users are familiar and comfortable with the concept of searching, our

approach starts with a set of keywords as input and expands it to a complete query using dif-

ferent types of semantic information and minimal user feedback/interaction. The semantic

knowledge-base employed by this approach involves – taxonomies (for context informa-

tion such as travel in the above example), attributes associated with concept nodes in the

taxonomy, their types, and whether they can participate in join, spatial or temporal condi-

tions, alternative meanings of words as they appear in multiple taxonomies, compatibility

of attributes across concept meanings, dictionary meaning and priority of word semantics

from the dictionary to the extent possible, and finally user feedback on past interactions.

For instance, in the case of the Example-1, one user may provide his input as a set of the

following keywords: “castle, train, London” in any order. For the same query,

another user may input: “train, 2 hours, London, castle”. The semantic in-

formation (that is assumed to be separately discovered and collected for this purpose) will

assist in formulating the correct complete query with minimal interactions with the user.

We elaborate on the details of this Query-By-Keywords approach in Chapter 2.

1.2 Relevant Ranking Of Retrieved Information

Whether a search or a query, the number of results obtained in response to an intent

is, often, extremely large. Most of the time the user is not interested in all answers; instead

s/he would prefer those results, that are ranked based on her/his interests, characteristics,

and past usage, to be displayed before the rest. Hence, ranking emerged as an important

aspect of information retrieval since before the Internet. Its utility has been recognized for

traditional databases as well.

In the field of retrieval from unstructured collections (such as traditional document

repositories or the surface Web), intent-specific ranking (based on the similarity between

6

the input keywords with the resulting documents/pages) has been extensively studied. The

emergence of the vector-space model [23], the probabilistic model [24] and other deriva-

tives [25] of these models have been elaborately used by a number of frameworks. Fur-

thermore, sophisticated algorithms such as PageRank [26] and SimRank[27] have been

specifically developed to rank the large number of Web pages returned in response to

a search request on the surface Web. In addition, the emergence of recommender (i.e.,

collaborative [28] [29] [30] [31] as well as content filtering [32] [33] [34]) and user-

personalization systems [35] [36] led to the rapid development of techniques to support

user-dependent ranking. Currently, most applications built over the surface Web (e.g.,

Amazon www.amazon.com), aim towards utilizing the proposed models listed above for

providing a combined i.e., intent- as well as user-specific ranking of the results.

In contrast, a database system follows a Boolean model wherein every tuple returned

in response to a query has an equal significance to the conditions specified in the query.

Consequently, in traditional databases, the concept of ranking was restricted to simply, a

user-specified ordering of the tuples based on the values of a single (or multiple) attributes.

Although acceptable in traditional systems, the emergence of the deep Web exposed sig-

nificant drawbacks associated with this ordering mechanism adopted in database systems.

For instance, when a large number of results are returned for queries on Web databases

that span a small number of the schema attributes, choosing the most useful answer(s) by

browsing through this large result set becomes a tedious and time-consuming task.

Currently, Web applications built over these databases simplify this task by adopting

the existing ordering mechanism in databases and display the query results sorted on the

values of a single popular attribute (such as Price, Rating, etc.). However, as the following

example illustrates, most Web users would prefer to see only a relevant set of results derived

using multiple attribute values, instead of viewing all retrieved results displayed in a pre-

7

determined order. In addition these preferences tend to vary as users and their queries

change over time.

Motivating Example-2: Consider Google Base’s Vehicle database that comprises of a

table with attributes Make, Price, Mileage, Location, Color, and so on, where each tuple

represents a vehicle for sale.

Two users – a business executive (U1) and a student (U2), seek answers to the same

query (Q1): “Make = Honda AND Location = Dallas, TX”. In response to this query,

more than 18,000 tuples are returned. Intuitively, U1 would typically search for new vehi-

cles with specific color choices (e.g., only red colored vehicles), and hence would prefer

vehicles with “Condition = New AND Color = Red” to be ranked and displayed higher

than the others. In contrast, U2 would most likely search for used vehicles priced under a

specific amount (e.g., “Price < 5,000$”); hence, for U2, the results should be ordered such

that vehicles with “Condition = Used AND Price < 5,000$” are displayed before the rest.

The same student user (U2) now moves to Mountain View, CA as an intern with

Google and asks a different query: “Make = Pontiac AND Location = Mountain View,

CA”. We can presume (since he has procured an internship) that he may be willing to pay a

slightly higher price for a lesser mileage vehicle (e.g., “Mileage < 100,000”), although he

may still be searching for used vehicles. His preferences for this query would then require

vehicles with “Condition = Used AND Price < 10,000$ AND Mileage < 100,000” to be

ranked higher than others.

The above scenario illustrates that different Web users may have contrasting ranking

preferences over the results of the same query. It further emphasizes that the same user

can display different ranking preferences over the results of different queries (at different

points in time). Thus, it is evident that in the setting of Web databases, where a large set of

queries given by varied classes of users is involved, the corresponding results are likely to

be better received when ranked and displayed in a user- and query-dependent manner.

8

In order to support such an integrated ranking scheme over Web databases, rank-

ing preferences/functions for every possible user-query pair need to be acquired a priori

(in order to rank the results at query time) – an impossible task. Certain extensions to

SQL [37] [38] [39] [40] [41] have allowed the manual specification of ranking preferences

(or functions) at query time; however, this approach is baffling for most Web users.

Although automated ranking of query results has been proposed for Web (as well as

some traditional) databases, current techniques either perform only query-dependent rank-

ing [42] [43] [44] [45] based on the frequency of attribute values in the database or query

logs, or support only user-dependent ranking by building extensive user profiles [46] [36]

and/or requiring users to individually order all tuples within the database [47] [48].

1.2.1 A Holistic Approach For Ranking In The Deep Web

The primary contribution of this dissertation is the advancement of a holistic frame-

work for enabling user- and query-dependent ranking of query results in Web databases.

Since obtaining the ranking preferences, in advance, for every user over the results of each

query is inconceivable, we put forward a novel Similarity Model [49] [50] for supporting

such a ranking scheme. The intuition behind this model is: for the results of a given query,

similar users display comparable ranking preferences, and a user displays analogous rank-

ing preferences over results of similar queries. Consequently, this ranking framework is

supported by two novel and comprehensive models, namely – i) Query Similarity, and ii)

User Similarity, that we formalize as part of this work.

The notion of query similarity is based on a formal model [51] that computes similar-

ity between any given pair of arbitrary Select-Project-Join (SPJ) queries. A straightforward

approach for defining such similarity would be to compare the results (tuples) generated

for the given queries; we term this the query-result similarity. However, this definition

forces the computation of results at the time of query submission and keeping track of the

9

similarity for a large number of queries requires that the results of each query be stored.

More importantly, this approach does not make use of the query components (i.e., selec-

tions, joins, projections) associated with a query, which we believe can be beneficially used

for determining similarity between two queries. Therefore, we advance an alternative ap-

proach – query-condition similarity that compares query components along with the meta

information that can be extracted a priori from the database.

On the other hand, the metric of user similarity is formally based on a combined

model that encompasses – a static, and a dynamic user similarity model. The former es-

tablishes similarity between a pair of users by comparing the information in the profiles

associated with these users, and is based on the current paradigm of user similarity adopted

by collaborative filtering systems [28] [29] [30] [31] as well as others [46] [36] in the do-

main of ranking. In contrast, the latter model departs from this notion of static user similar-

ity, and instead, determines similarity by analyzing the relationship between the browsing

choices adopted by the users. As the browsing behavior of users vary over time, their cor-

responding similarities will also vary; thus, rendering this model to be dynamic in nature.

The combined model, thus ensures, a consistent computation of similarities between any

pair of users by using – the static component if browsing choices are limited and/or not

available, and the dynamic component if elaborate browsing choices are present.

In addition to the similarity model, another important component of the ranking

framework is a workload of ranking functions collected across several user-query pairs,

where each function represents an individual user’s preferences towards the results of a

specific query. At the time of answering a query for which no prior ranking function exists,

the similarity model can ensure a good quality of ranking only if a ranking function for a

very similar user-query pair exists in this workload.

Accordingly, we address the problem of determining an appropriate set of user-query

pairs to form a Workload [52] [53] of ranking functions. Specifically, we present a novel

10

metric, termed workload goodness, that quantifies the notion of a “good” workload into an

absolute value. The process of finding such a workload of optimal goodness is a combi-

natorially explosive problem; therefore, we propose a heuristic solution, and advance three

approaches for determining an acceptable workload.

The workload employed by the similarity model, in turn represents a number of rank-

ing functions (each of which depict the preferences of a specific user towards the results of

a distinct query). Capturing these user preferences over query results becomes a pertinent

challenge. Unlike relational databases, the nature of Web database applications allow users

to browse and select the results that match their preferences (through an interaction with the

Web pages containing the result records). Hence, although an user’s explicit ranking pref-

erences over the results of a query are not available, we believe that the results chosen by

an user aid in implicitly indicating his/her ranking preferences. However, these preferences

need to be somehow translated into formal ranking functions that can be subsequently em-

ployed by the similarity model. In this work, we cast the task of translating user preferences

into a formal ranking function as a learning problem, and propose a novel technique called

Probabilistic Data Distribution Difference [49] [50] for the same.

Finally, we establish the effectiveness of this holistic ranking framework and demon-

strate its applicability to real Web databases (in terms of efficiency) by presenting the results

of an extensive experimental evaluation performed with the aid of Amazon’s Mechanical

Turk (www.mturk.com) users and Google Base’s (www.base.google.com) vehicle

and real estate databases.

1.3 Contributions

The overall goal of this dissertation is to build a general framework for processing an

user intent spread across several domains on the Web and representing the returned pieces

11

Figure 1.1. Querying The Web: Current Scene And Our Contribution.

of data in a user- and intent-specific order. Specifically, it should allow the users to ex-

press their desired intent in an appropriate and easy-to-understand manner. The underlying

framework should then be able to – i) translate the intent into a query, ii) process this query

over a multitude of disparate Web sources in an efficient manner, iii) integrate the corre-

sponding results from different sources in an elegant manner, and iv) display the results

ranked in a user- and query-dependent environment. It is obvious, that the problem is diffi-

cult to address in its entirety in a single dissertation. Hence, we limit the scope of our work

to the following two topics:

Querying The Web: We formalize a Query-By-Keywords approach [21] [22] that trans-

lates an user intent expressed as a collection of keywords, to a structured query, that

can be processed over disparate Web sources.

Ranking On The Deep Web: As part of this work, we present a similarity-based ranking

framework [49] [50] for addressing the task of performing user- and query-dependent

ranking over Web databases. Specifically, we advance two elaborate models – Query

12

Figure 1.2. Ranking On The Deep Web: Current Scene And Our Contribution.

Similarity and User Similarity, and integrate them into a unified framework for per-

forming subsequent ranking. Further, we formalize a novel approach for forming

an appropriate workload [52] [53] of ranking functions, and present a novel learn-

ing technique [49] [50] to infer individual ranking functions based on the browsing

choices of an user over the results of a query. In addition, we extend the models of

user and query similarity into a generic framework [51] for establishing similarity

between any pair of users (new and/or experienced) as well as any pair of arbitrary

SPJ queries that can be employed by other applications (besides ranking).

The salient contributions of this dissertation to the areas of intent specification and

ranking are further illustrated in Figures 1.1 and 1.2. As discussed in Sections 1.1 and 1.2

respectively, and highlighted by the figures, querying the Web for focussed retrieval of

information, and ranking in a user- and query-dependent manner on the deep Web has not

received sufficient attention. We hope this dissertation contributes in spawning new threads

13

in these areas of research towards building the next generation of retrieval frameworks on

the Web.

1.4 Roadmap

The rest of the dissertation is organized as follows:

• Chapter 2 presents the Query-By-Keywords approach for intent specification over

unstructured sources.

• In Chapter 3, we elaborate the details of the similarity-based ranking framework,

present the details of a learning technique for deriving individual ranking functions

from implicit user behavior, and discuss the results of the experimental evaluation

with respect to the same.

• Chapter 4 describes our approach for establishing an appropriate workload of rank-

ing functions. Specifically, we define the proposed metric of workload goodness,

elaborate on the heuristic solution, discuss the details of the algorithms, and present

experimental results in terms of quality and efficiency of this approach.

• In Chapter 5, we extend the notion of query similarity into a generic model for es-

tablishing similarity between any arbitrary SPJ queries on databases (both traditional

and Web), discuss its applicability across multiple applications (besides ranking) and

experimentally validate its effectiveness. Likewise, we extend the proposed user sim-

ilarity model that unifies a dynamic model based on users’ browsing behavior with a

static model based on their profiles.

• Chapter 6 surveys the related work with respect to the motivation of this dissertation,

and Section 7 concludes the dissertation with directions for future work.

CHAPTER 2

THE QBK APPROACH FOR QUERYING THE WEB

The staples of information retrieval have been querying and search, respectively,

for structured and unstructured repositories. Processing queries over known, structured

repositories (such as traditional and Web databases) has been well-understood, and search

has become ubiquitous when it comes to structured as well as unstructured repositories

(either traditional document collections or the surface Web). However, the challenge of

querying unstructured sources has not received significant attention.

As part of this dissertation, we advance the proposal that querying unstructured

sources is the next step in performing focused retrievals. Specifically, this Chapter proposes

a new approach (termed Query-By-Keywords (or QBK) [21] [22]) to generate queries from

search-like inputs for unstructured repositories. Instead of burdening the user with schema

details, we believe that pre-discovered semantic information in the form of taxonomies, re-

lationship of keywords based on context, and attribute & operator compatibility can be used

to generate query skeletons. Furthermore, progressive feedback from users can be used to

improve the accuracy of query skeletons generated. The overall focus of this work is to

propose an alternative paradigm for the generation of queries using as little information,

initially, from the user as possible. Given that the ultimate goal is to make querying over

unstructured data repositories as easy as search, we present our current work on semantics-

guided query formulation.

14

15

2.1 Motivation

The paradigms of query and search have served well, respectively, as mechanisms for

retrieving desired information from structured and unstructured repositories. A query (e.g.,

SQL) is typically quite precise in expressing what information is desired and is usually

formed with the prior knowledge of the data sources, the data model, and the operators of

the data model. On the other hand, a search request (typically, in the form of keywords)

is on text repositories (including HTML and XML) and does not assume the knowledge

of sources or the structure of data. A search is likely to generate a large number of results

(especially when the search corpus is large and the input, by definition, is imprecise with

respect to the intent) and hence ranking or ordering the results to indicate their relevance

or usefulness has received considerable attention.

One of the significant differences between querying and searching is that some forms

of querying require training – in the query language, the data model on which the query is

being expressed, and the syntax of the query language. It also requires an understanding

of the sources or schema. As a result, querying is the proclivity of those who are willing

to spend time learning the intricacies of correct specification. In contrast, searching is

straightforward and easy, and as a result, has become extremely popular with the advent

of the Web. The lack of a learning curve associated with the notion of searching makes

it useful to a large class of users. The proliferation of search and its popularity has lead

researchers to apply it to structured corpus as well (e.g., DBExplorer [6] and BANKS [7]).

Consider Motivating Example-1 (provided in Chapter 1) where the user wants to –

“Retrieve castles near London that can be reached in 2 hours by train”. Although all the

information for answering the above request is available on the web, it is currently not pos-

sible to frame it as a single query/search and get meaningful results. Since this and similar

queries (Section 2.2 provides additional examples of such queries) require combining in-

formation from multiple sources, search is not likely to be a preferred alternative. Although

16

there are a number of systems (e.g., HAVASU [15], WHIRL [16], MetaQuerier [57], etc.)

that combine information from multiple sources belonging to the same domain such as

literature, airline reservations and so on, they cannot answer the above class of queries.

More recently, there is a body of work that has applied keyword searching to struc-

tured repositories so that the data can be retrieved in multiple ways and without the need

for specifying a query. However, most of the work, to date, is restricted to querying sources

in a single domain (for instance, Web applications such as Yahoo! Autos (www.autos.

yahoo.com or NetFlix (www.netflix.com) or a set of pre-defined domains (as done

in frameworks like HAVASU [17], Ariadne [18] or WHIRL [16]). Additionally, techniques

proposed for querying unstructured repositories have taken the approach of converting the

unstructured data into a structured form and then querying the structured data (e.g., DB-

Pedia [20]). However, to the best of our knowledge, there has been no work in trying to

formulate or generate queries directly over a combination of structured as well as unstruc-

tured corpus. Furthermore, different repositories relevant to the same domain may provide

different sets of attribute and their values, and the number of attributes and characteris-

tics of these repositories may vary drastically from each other. Hence, a framework for

formulating queries over these repositories would be desirable, although it is a challenge.

The body of work on querying and search as it pertains to structured and unstructured

corpus is characterized in Figure 2.1. As the figure indicates, the lower left and upper

right quadrants are well understood1. It is certainly difficult to query something where the

equivalent of source characteristics (source type, data model, and operators) are not known.

Hence developing a framework for formulating a complete query, from an intent and a few

keywords that correspond to the intent, over unstructured corpus is very much needed.

1Structured corpus also includes semi-structured repositories, such as XML databases, for which query

languages and processing have been developed.

17

Figure 2.1. Comparison Of Query & Search Paradigms.

The focus of this Chapter is to address the problems associated with querying un-

structured data sources, especially the Web. The InfoMosaic project [54] is investigating

the integration of results from multiple heterogeneous Web sources to form meaningful

answers to queries (such as the one shown above) that span multiple domains. As part

of this project, we are investigating a mechanism for formulating a complete query from

search-like keywords input (to avoid a learning curve) that can be processed over multiple

unstructured domains to retrieve useful answers. Additionally, we are also investigating the

generation and optimization of a query plan to answer the formulated structured query over

the Web. More recently, this problem has received attention in literature [19] [58].

An intuitive approach to both, searching and querying, would be to use natural lan-

guage to express the query. This is certainly a preferred alternative as it frees the user from

the data model and other considerations needed for expressing a structured query. How-

ever, the general capability to accept arbitrary natural language queries and convert them

to structured queries is still not mature. We view structured queries being at one end of the

spectrum and natural language queries being at the other end. The goal of our proposed

approach (that lies somewhere in-between the two and even easier than a natural language)

is thus, to provide a mechanism for querying unstructured repositories with intuitive inputs

and minimal user interaction.

Consequently we advance the thesis that a query is essential to extract useful and

relevant information from the Web – especially when it involves integrating information

18

that spans multiple domains and hence multiple disparate repositories. However, if only

search is used or available, the burden of obtaining (through individual searches) and inte-

grating information from multiple sources falls squarely on the user. As most of the users

are familiar and comfortable with search, we want to start with a search-like input and

expand it to a complete query using different types of semantic information and minimal

user feedback/interaction. For instance, in the case of the above query example, a user may

provide his input as a set of the following keywords: “castle, train, London” in

any order. For the same query, another user may input: “train, 2 hours, London,

castle”. These list of words may mean several different things to different users. For

example, the user may be looking for a “castle in London” or a “book written by an author

named London with its titles containing words Castle and Train”. The semantic informa-

tion (that is assumed to be separately discovered and collected for this purpose) will assist

in formulating the correct complete query with minimal interactions with the user.

As alluded to above, our proposed approach uses different types of semantic infor-

mation such as: taxonomies (for context information such as travel or publishing in the

above example), attributes associated with concept nodes in the taxonomy, their types, and

whether they can participate in join, spatial or temporal conditions, alternative meanings

of words as they appear in multiple taxonomies, compatibility of attributes across concept

meanings, dictionary meaning and priority of word semantics from the dictionary to the

extent possible, and finally user feedback on past interactions. It is also useful to identify

metrics for comparing the approaches used for this purpose.

The remainder of the Chapter will elaborate on the proposed Query-By-Keywords

(QBK) approach that uses different types of semantics and workload statistics to disam-

biguate and generate a partial query to capture the intent of the user.

19

2.1.1 Contributions And Roadmap

One of the contributions of this chapter is the novelty of the approach proposed

to generate a structured query from an input that is characteristic of search. Other im-

portant contributions include: the identification of appropriate semantic information (e.g.,

taxonomies and other associated data) for the transformation of keywords, algorithms for

generating alternative query skeletons and ranking them using compatibility and other met-

rics. Finally, the role and use of feedback, for improving the ranking and generating the

complete structured query, is also analyzed.

We would like to clarify that the scope of this work does not include the discovery (or

automatic acquisition) of semantic information described above. The thrust of this Chapter

is to identify what information is needed, establish the effectiveness of this information,

and an approach for transforming input keywords into a complete query. The discovery of

this information is an independent problem in itself; however, it is outside the scope of this

work and is not covered as part of this dissertation.

The rest of the Chapter is organized as follows. Section 2.2 provides an overview

of the proposed approach with motivating examples of user intent, keyword input, and

alternative queries that are generated by our approach. Section 2.3 discusses the details of

steps for transforming input keywords into a complete query including keyword resolution,

ranking, and query template generation. We conclude this work with directions for future

research in Section 2.4.

2.2 The Query-By-Keywords Approach: An Overview

User queries that span across multiple domains (such as Travel, Literature, Shopping,

Entertainment etc.) and involve different join conditions across sources in these domains

20

can be complex to specify. For example, consider some representative queries that users

would like to pose on the web:

Query 1: Retrieve castles near London that are reachable by train in less than 2 hours

Query 2: Retrieve lowest airfare for flights from Dallas to VLDB 2011 conference

Query 3: Retrieve French restaurants within 1 mile of a IMAX theaters in Dallas, Texas

Query 4: Retrieve a list of 3-bedroom houses in Houston within 2 miles of exemplary

schools and within 5 miles of a highway and priced under 250,000$

Query 5: Find a place to buy kitchen furniture within walking distance of a metro stop in

Washington DC area

Although all the information for answering the above (and similar) intents is avail-

able on the Web, it is currently not possible to pose such queries. Ideally, an appropriate

retrieval framework should be capable of accepting minimal input (e.g., in the form of

keywords) that characterizes the above queries from the user, and refine it into a complete

query (such as the one shown below in response to Query 1) to reflect the user intent.

/* Using The TRAVEL Domain */

SELECT *

FROM www.castles.org AS castle, www.national-rail.com AS train

WHERE

train.source = ’London’ AND

train.destination = castle.location AND

train.start_date = 06/19/2011 AND

train.return_date = 06/19/2011 AND

train.duration < 02 hours;

The approach we are proposing is to generate the above complete query by accepting

a set of keywords (can also be extracted using a natural language specification). It may be

possible to derive the above query completely from the keywords given for Query 1 by

21

making some minimal default assumptions about the dates based on the context. However,

if a set of keywords are input, the generation of a complete query may not always be

possible. Hence, we have introduced the notion of a query skeleton in this paper.

Web users are comfortable expressing queries through keywords rather than a query

language (as displayed by the popularity of search and meta-search engines). Furthermore,

current language processing techniques do not posses the ability to process and translate

any arbitrary natural language query into a structured query. Hence, it is preferable for the

user to express a query using a set of representative words than in natural language. For

instance, some of the possible keyword representations for Query 1 could be:

Query 1K1: castle, train, London

Query 1K2: train, from, London, to, castle

...

Query 1Kn: castle, train, from, London, less than, 2 hours

The above can also be extended to specify phrases/conditions instead of only key-

words. For example, “less than 2 hours” can be expressed together rather than

separately. The phrase needs to be parsed with respect to a context. Irrespective of how the

intent is mapped into keywords (e.g., alternatives Query 1K1, Query 1K2, ..., Query 1Kn

shown above), the final query formulated by the system in response to all these different

inputs should correspond to Query 1. Of course, this may not be possible without some

interaction with the user once the domains and potential query skeletons are identified and

generated by the system. On the other hand, it is also possible that different user intents

may result in the same set of keywords introducing ambiguity that needs to be identified

and resolved systematically in order to arrive at the final query intended by the user. As an

example, the following query intents can result in the same set of keywords from a user’s

perspective.

• Retrieve Castles near London that are reachable by Train

22

• Retrieve Hotels near London that are Castles and can be reached by a Train

• Retrieve Books whose title contain the words ‘Castle’ or ‘Train’ written by an author

whose name is ‘London’

Thus, for formulating query skeletons that converge to the actual user intent, it is

necessary for the underlying system to intelligently correlate the specified keywords and

generate alternative query skeletons based on the interpretation of the keywords in different

domains. It is also possible that, within the same domain, multiple query skeletons can be

generated by using alternative interpretations of keywords.

2.2.1 QBK Versus Other Specification Mechanisms

It is clear that there is a tradeoff between ease of query specification (or learning

effort), its precision, and utility of results. Search is easy to specify but inherently vague

and the result has to be sifted to obtain useful or meaningful answers (low utility). Although

ranking helps quite a bit, as ranking is not always completely customized to an individual

user, results need to be pruned by the user. On the other hand, a structured query is precise

and the user does not have to interact with the system for obtaining meaningful answers

(high utility). Of course, ranking can further help bring more meaningful answers to the

top (or even avoid computing others).

Table 2.2.1 shows a back-of-the-envelope comparison of various search/query spec-

ifications across the dimensions of learning effort, precision, utility, and knowledge of

schema/sources. The ultimate goal is to have a query specification mechanism that has low

learning effort, high precision, high utility, and does not require the knowledge of sources.

QBK is an attempt in that direction as shown in the bottom row. The purpose of the table

is to quickly understand a specification mechanism along a number of metrics and learn

how it stacks up against other mechanisms. The table does not include specifications such

as faceted search as it is navigational with results being refined at each step. The score of

23

Table 2.1. Comparison of Current Intent Specification Mechanisms

Specification Learning Curve Precision Utility Schema Knowledge
SQL High High Med-high High
QBE Low High Med-high Medium

Templates Low High Medium Low
Natural Language Low-Med Medium Med-high Low-Med

Search Low Low Low Low
QBK Low High High Low

“Medium-high” utility for SQL and QBE is based on whether ranking is used or not. The

Natural language (NL) row assumes ambiguities in the specification and hence the utility of

results may not be “High”. This table can be used as a starting point to to compare different

approaches used for search as well as for querying.

2.3 The Query-By-Keywords Framework

The high-level architecture of the QBK approach for completing multi-domain queries

is shown in Figure 2.2. The user provides keywords deemed significant (e.g., {castle,

train, London} for Query 1) instead of a full-fledged query. The Keyword Resolution

phase checks these keywords against the Knowledge Base for resolving each keyword to

entities, attributes, values, or operators. For a keyword that occurs as a heteronym (i.e.,

same entity representing multiple meanings/contexts) in the Knowledge Base, all possible

combinations for the different meanings of this keyword is generated. This occurs when

the keyword occurs in different taxonomies corresponding to different domains/context.

From these combinations, query skeletons and any other conditions (or attributes on which

conditions are possible) are generated.

These query skeletons are ranked by the Rank Model in the order of relevancy (to

the input and past usage) and shown to the user to choose one that corresponds to his/her

intent. Both keyword resolution and ranking is based on the information in the Knowl-

24

Figure 2.2. The QBK Approach: From Keywords To A Complete Query.

edge Base. Subsequently, a template is generated with all the details which can be fur-

ther filled with additional conditions. The list of entities that are of interest, the do-

main and sources to which they map, and the possible list of simple conditions (e.g.,

train.startT ime < relationaloperator > value) or attributes as well as join conditions

(e.g., castle.location < traditional/spatial/temporaloperator > train.startLocation)

are shown. Additionally, a list of attributes is displayed for the choice of result attributes.

The user fills/modifies the template in a manner similar to filling a Web query interface so

that an unambiguous and complete query can be generated for further processing. Although

this approach involves a minimum of three to four steps, we believe that such an approach

will be useful for a novice user in understanding and using the system.

2.3.1 Knowledge Base

The Knowledge Base consists of a Semantic Knowledge repository that contains

taxonomies organized by domains/context including meta-information about the entities,

sources, operators, attributes and values. This is used in the keyword resolution phase and

for constructing query skeletons. The Knowledge Base also consists of a Workload reposi-

25

tory that organizes the query skeletons selected by different users, in the past, with respect

to the specified keyword input.

Semantic Knowledge Repository: This repository contains pre-discovered semantic in-

formation in the form of a collection of taxonomies associated with domains and are pop-

ulated with appropriate types of meta-data. For instance, the domain of Travel can be

represented using taxonomies for – transportation, travel lodging, and tourist attractions.

Similarly, the domain for Literature may contain taxonomies such as journal, book, etc..

These represent the roots of different taxonomies within the given domain. Nodes in each

taxonomy represent entities (e.g., castle, museum, church, etc.) associated with the domain

corresponding to a is-a relationship2.

In addition to the is-a hierarchy, supplementary meta-data is associated with each

node in a taxonomy. For instance, an entity castle in the tourist attractions domain may

have several types of associated meta-data such as –

• Web sources (e.g., www.castles.org) from which attribute values relevant to this

entity can be extracted,

• Common attributes (e.g., name, age, country location) that are associated with the

entity, and

• Semantics representing linguistic meaning and semantic popularity.

Additionally, each attribute of a given entity could have several types of meta-data

associated with it such as – i) the data type of the attribute (e.g., string, numerics, etc.), ii)

its category (spatial, temporal, generic), iii) its domain, and iv) associated synonyms. For

leaf-level entities in a taxonomy, the values for certain categorical attributes are associated.

This is needed to resolve keywords that are values themselves (e.g., London) and infer

the entity for which it is a value (e.g., city). As this set can be arbitrarily large, a way to

2In this paper, we assume the availability of such taxonomies. Simple taxonomies can be generated using

a combination of Web directories (e.g., Yahoo Dictionary) and dictionaries (e.g., Webster).

26

Figure 2.3. Sample Taxonomy For The Travel Domain.

infer them (using a tool like WordNet [59]) instead of storing all the values is going to

be important. The list of relevant Web sources corresponding to an entity can be obtained

using search engines and the information associated with Web directories. Figure 2.3 shows

a snapshot of such semantic information associated with the entity – castle in the taxonomy

of – tourist attractions within the Travel domain.

In addition to meta-data, information about the compatibility between entities also

needs to be maintained. Two entities are said to be compatible if a meaningful join condi-

tion can be formulated between (one or more) attributes of the participating entities. For

instance, the entities castle and train are compatible since their respective attributes loca-

tion and source location can be compared. The join could result in traditional, spatial, or

temporal conditions based on the attribute types and the operators associated with them.

This compatibility across entities can be identified by matching the respective attribute

27

data types. A compatibility matrix can be used as the number of operators is not that large.

Compatibility information of successfully formulated past queries can also be used for this

purpose. Another component of this repository is a list of operators that are applicable to

attributes. We assume – relational operators (==, ! =, <, <=, >, >=), Boolean operators,

temporal operators (derived from Allen’s Algebra [60]), and a few spatial operators (such

as near, within, etc. [61]).

It is evident that building such a comprehensive repository of semantic information

is separate problem in itself and is beyond the scope of this dissertation. Given such a

repository, its completeness and algorithmic usage in formulating queries is of concern

here.

Workload Repository: Past statistics based on user interaction can play an important role

in the query formulation process as it indicates significance of user preferences. Hence,

we maintain a repository that is a collection of statistics and feedback associated with past

queries. Specifically, it comprises of the information associated with users’ preference of

the query skeletons from those generated by the Rank Model. Additionally, statistics of

the attributes of entities used for specifying conditions or output are also collected. This

information is used for choosing widely preferred attributes for an entity in the generation

of skeletons and templates. This repository is constructed using the feedback collected

as a by-product of the query formulation process. For every keyword, the following user

preferences are collected:

1. Context of the individual keyword (e.g., castle belonging to the travel domain fre-

quently chosen over others),

2. Frequency of the attributes used for specifying conditions or chosen for output, and

3. Interpretation of the desired query.

Subsequent statistics associated with selection of attributes while filling the query

template are also collected and stored.

28

Table 2.2. Input Keywords & Their Taxonomical Associations

Keyword Occurs As Taxonomy Domain Attribute Value Association
CASTLE Entity Tourist Attraction Travel -

Entity Travel Accomodation Travel -
Value Books Literature Book.title

TRAIN Entity Transport Mode Travel -
Value Books Literature Book.title
Value Movies Entertainment Movie.title

LONDON Value City Geography City.name
Value Books Literature Book.author
Value Business Industry Company.name
Value Movies Entertainment

2.3.2 Keyword Resolution

The purpose of this phase is to map specified keywords into the domains that are

stored as part of the Knowledge Base. Coverage of keywords in each domain is important

as it indicates the relevance of the domain to the input. This phase performs matching

for each of the input keywords with – entity names in the taxonomies, attribute names

associated with each node (entity) in the taxonomies, and values associated with leaf-level

entity attributes.

Since a domain comprises multiple taxonomies, it is possible (as shown in Table 2.3.2)

that the same keyword (castle) will belong to multiple taxonomies (Tourist Attractions and

Travel Accommodations) in a single domain (Travel). In such cases, determining which

intent the user has in mind is not possible. Hence, the resolution phase checks for multiple

instances of the same keyword in different taxonomies, each giving rise to a separate entity

set (and hence, separate query intents) for each occurrence of the entity.

Additionally, it is also possible for the same keyword to occur in taxonomies in multi-

ple domains (castle) occurs in the domains of Travel and Literature as shown in Table 2.3.2.

29

Hence, the resolution phase analyzes all the domains independently to get the list of entity

sets within each domain.

Further, it may so happen that the keyword may not always match to an entity in

the taxonomy i.e., it may match to an attribute of an entity or the value of an entity’s

attribute. In such cases, the immediate parent entity (to which the attribute/value belongs)

is chosen to represent the input keyword. Further, the keywords not finding a match to any

of these categories are compared against a set of operators to determine their occurrences

as a spatial, temporal, or generic operators and an operator-list. The keywords that do not

find any match to either entities, attributes or operators are ignored.

Thus, for a given set of input keyword, the resolution process generates a list of entity

sets belonging to the same or multiple domains where every set comprises of entities that

belong to the same domain (but might map to multiple taxonomies within that domain). For

instance, the outcome of the resolution process for intent Query 1K1 (for Query 1) (based

on the keyword matching results shown in Table 2.3.2) is shown in Figure 2.4. As the

figure indicates, it is possible that the given set of input keywords may generate multiple

combinations (of entities). This would make the task of separating the relevant intents

from the irrelevant ones extremely hard. Hence, in order to establish an order amongst

these combinations, the output generated by the resolution phase is fed to the Rank Model.

2.3.3 Rank Model

Consider an input set of keywords {K1, K2, ..., Kn}, and for the sake of simplicity,

let the outcome of the Keyword Resolution Process be L: {E1, E2,, Em}, where each

Ej ∈ L represents a set of “n” entities given byEj: {ej1 , ej2 , ..., ejn} such that eji represents

a distinct entity corresponding to input keyword Ki. Now, if the size of set L is large,

determining the most relevant combination (of entities) is important. Correspondingly, we

propose a ranking technique to order these combinations (in L) based on three different

30

Figure 2.4. Keyword Resolution Outcome: Query 1K1.

parameters, namely – i) linguistics, ii) statistics, and ii) join compatibility. In the rest of the

section, we elaborate on each of these parameters, and explain their importance in ranking

entity sets and discuss the mechanism to fuse them in a single ranking function.

2.3.3.1 Linguistics

It is a common observation [62] that linguistic meaning of a keyword plays an im-

portant role when users specify their input. For instance, as per WordNet [59], the two (of

the many) possible meanings associated with the keyword castle are: i) a large and stately

mansion, and ii) a piece in the game of chess. However, as pointed out by WordNet, users

generally adhere to an established language model [63] to formulate their natural language

queries as well as search queries. That is, they choose the meaning which is linguistically

more popular than the rest of the meanings for the same keyword (in this case the former

meaning of castle will be chosen over the latter in most cases). Thus, there is reason to

believe that when users express their keyword input to formulate queries over multiple do-

mains, they will use a similar language model of picking linguistically popular meanings

for an entity.

31

Based on this observation, consider an input keyword Ki and let {e1i , e2i , ..., emi
}

represent the distinct meanings associated with this keywords. Each meaning, in turn rep-

resents an entity within a specific taxonomy in the Knowledge Base. In order to clearly

distinguish and order these different entities (i.e., the meanings), we assign a linguistic

score to each entity eji corresponding to Ki. This score (represented as scoreL(eji)) is

determined as follows: Given an input Ki, WordNet returns the set of entities {e1i , e2i , ...,

emi
} wherein each entity has a rank associated to it (based on it’s linguistic popularity).

We normalize these ranks and translate them into linguistic score such that every entity

associated with any given keyword will be assigned a score in a fixed interval of (0.0, 0.1).

The reason for such a normalization is due to the fact that the number of entities (meanings)

associated with each input keyword may be different; thus, the ranges (within which the

ranks of entities corresponding to a keyword occur) will vary from one keyword to another.

Consequently, in order to establish a consistent scoring model for any keyword input, we

normalize the resulting ranks provided by WordNet. Formally, the linguistic score of a

specific entity eji associated with a given keyword Ki is computed as:

scoreL(eji) = 1− rank(eji)− 1

m− 1
(2.1)

where, rank(eji) represents the rank assigned by WordNet to this entity, and “m” is the

total number of entities corresponding to Ki.

Now, given an entity set Ej: {ej1 , ej2 , ..., ejn}, each entity eji receives a linguistic

score based on its association with keyword Ki. Since the overall goal is to order the

different combinations of entity sets in L, we need a mechanism to assign a global score

to Ej . Toward that, we rely on an independence assumption i.e., given that the entities

within a set Ej are not associated with each other in a linguistic context, we assign a

32

Global Linguistic Score to each entity set Ej ∈ L. This score, represented as ScoreL(Ej),

is computed as shown by Equation 2.2:

ScoreL(Ej) =
n∏

i=1

scoreL(eji) (2.2)

Thence, the set L can be ordered based on the score, computed by Equation 2.2) and

assigned to each of its element.

2.3.3.2 Statistics

The notion of applying a linguistic ordering is static in nature i.e., since the linguistic

meanings of a word never change, the ordering assigned to L will always remain the same.

However, based on browsing choices of users, it might be the case that certain combinations

of entities, that receive a lower rank based on linguistics, may in fact, be more frequently

selected by users. In order to accommodate users’ preferences towards specific sets of

entities, we include another parameter in the ranking model i.e., statistics, and rely on the

past user queries from the Workload Repository in our Knowledge Base for the same.

Accordingly, given L: {E1, E2,, Em}, we assign a Statistic Score to every ele-

ment of this set (given as scoreS(Ej)). This score is basically the frequency with which a

particular Ej is selected by the user whenever the input to the system is the set {K1, K2, ...,

Kn}. However, in the context of real Web applications, the probability that a large number

of users pose the exact same set of input keywords – {K1, K2, ..., Kn} is very less; thus, af-

fecting the computation of the Statistic Score for the elements in L. In contrast, the chances

of multiple users asking the same keyword (say K1) is much higher. Therefore, similar to

the linguistic model, we avail of the independence assumption, and associate a statistic

score to every distinct entity eji within Ej . Formally, the statistic score of a specific entity

eji associated with a given keyword Ki is computed as:

33

scoreS(eji) =
frequency(eji)

frequency(Ki)
(2.3)

The Global Statistic Score for a given Ej ∈ L is then given as:

ScoreS(Ej) =
n∏

i=1

scoreS(eji) (2.4)

Using Equation 2.4, the set L can thus, be ordered based on the notion of frequency.

2.3.3.3 Join Compatibility

Given any entity set Ej: {ej1 , ej2 , ..., ejn}, the user would most likely be interested in

formulating query conditions that involve joining the different entities based on the com-

monality of the attributes between these entities. Since, the exact query conditions at this

stage cannot be determined, we believe that an entity set that allows the flexibility to join

every entity to every other entity on some attribute is definitely desirable than a set that

offers very less combinations across entities. In addition, the flexibility to join any two

entities on a larger number of attributes (instead of just one or two) is definitely desirable.

Hence, for every set Ej ∈ L, we define a Join Compatibility Score.

Consider the entity set {castle, train, city} representing the input Query 1K1. It

is possible to join the entities castle and train based on an attribute (e.g., location), the

entities train and city based on an attribute (e.g., location) and the entities castle and city

based on an attribute (e.g., name, location). On the other hand, an entity set {book, city}

representing the input keywords (considering the keywords ‘castle’ and ‘train’ refer to the

name of a book i.e., its attribute value), will not allow any joins between the two entities

and restrict a number of query conditions the user would like to formulate. Thus, it is clear

that the first entity set should be ranked higher than the second.

For a given set of keywords {K1, K2, K3}, let {E1, E2, E3} represent the three

different entity sets within L. Now, let E1: {e1x , e1y , e1z}, and likewise for E2 and E3. In

34

Figure 2.5. The Notion Of Join Compatibility For Entity Sets E1, E2, E3.

order to estimate join compatibility, we represent each entity set as a graph (e.g., graph1

representing E1) whose vertices represent the entities ({e1x , e1y , e1z} in this case). If

any two entities in the set can be joined on an attribute, then an edge exists between the

corresponding two vertices (representing the entities). The edge weight is represented by

the total number of distinct attributes that can be used for the joining the two entities. A

sample instance of such graphs for the entity sets in L is shown in Figure 2.5.

In the case of graph1 (corresponding to E1) for instance, the edge weight (of 15)

between e1x and e1y indicates that these two entities can be joined on 15 different attributes.

However, it is also evident that no conditions can be formed between e1x and e1z (as well as

between e1y and e1z); thus, making it less applicable for the given input. In contrast, graph2

reveals that every entity can be joined with every other entity using two distinct attributes;

hence, making it a better choice over graph1 (as well as graph3 wherein all entities can be

joined with each other based on only a single attribute). Accordingly, we can surmise that

an entity set that allows the flexibility to form join conditions, using multiple attributes,

between any pair of entities within it would be definitely preferable to the user, and hence,

must receive a very high score in the overall ranked list of entity sets.

Formally, given an entity set Ej: {ej1 , ej2 , ..., ejn}, we determine a Join Compatibil-

ity Score for this set of entities by applying the Maximum Spanning Tree [64] algorithm

35

to every combination. It can be observed that, larger the number of spanning trees on a

combination, more is the flexibility of joining any entity pair. Similarly, greater the sum

of the weight produced by each Spanning Tree, the options for the user to join a given

entity pair increase. Thus, for a given Ej , if the total number of distinct maximum span-

ning trees (M.S.T.) is M and the weight of each tree Ti is Wi, the Join Compatibility Score

(Equation 2.5) for Ej is given as:

scoreJ(Ej) =
M

n
∗

n∑
i=1

Wi (2.5)

where “n” is the total number of distinct entities in a given Ej .

Thus, using Equation 2.5, all the elements of set L can be ordered based on their

ability to be involved in queries with sufficiently large and diverse join conditions.

2.3.3.4 Putting it all Together: A Single Ranking Model

We have discussed three distinct parameters that can play an important role in ranking

the outcome of the Keyword Resolution Process. Since they are derived from linguistics,

statistics as well as analyzing the nature of entities within a set (for ensuring query condi-

tions), we believe that when combined together, they form a comprehensive and suitable

model to order the set L.

However we need to determine a mechanism to translate these basic intuitions into

quantitatively describable ranking functions, and to combine these varied parameters into

a single ranking function. Typically, ranking functions are designed using a combination

of learning methods and statistical techniques. One of the popular, and in this case appli-

cable technique is the user of regression analysis. More specifically, we use the concept

of Logistic Regression [65] to model our ranking function since it is a well-established and

36

proven model used for predicting the outcome of an event when the parameters influencing

the event are diverse and unrelated to each other (as is the case with our parameters).

An important issue with regression analysis is to collect a training set to learn the

parameter weights used for ranking the combinations. However, as the issue at hand is to

rank query intents instead of results, coming up with an appropriate training set is an inde-

pendent problem that can be resolved using synthetic query generation and/or user studies.

Initially, we set uniform regression parameters i.e., equal weight to every parameter (lin-

guistics, statistics and join compatibility) to rank the elements of L. Accordingly, for each

element of this set, the ranking function assigns a score which is a sum of the three scores

described in the above sections. As more and more workload is collected, we believe it will

act as a major component in generating a significant training data to learn the parameter

weights.

Logistic regression is generally defined using a logistic ranking function given by:

f(z) =
1

1 + e−z
(2.6)

The input variable z, in our model represents the parameters – semantics, statistics

and join-compatibility, while the output f(z) represents the probability or score of every

element in L. The logit variable z is defined as:

z = β0 + β1x1 + β2x2 + β3x3 (2.7)

where β0 is the intercept, β1..3 represent the regression coefficients, and x1..3 represent the

predictor variables – linguistics, statistics and compatibility respectively.

The regression coefficients are weights that depict the importance of each parameter

and are learned through statistical learning methods (in this case, Maximum Likelihood

Estimation [66]). Once the scores for each parameter is generated, the total score for every

37

combination in the space is generated by the ranking function which establishes a ranking

order for the keyword combinations.

2.3.4 Query Completion

Based on the previous phases, our approach generates a template with a partially-

filled query. Each keyword in the input is accounted for. For an entity, the template is

populated by its corresponding domain and the underlying Web source to which it belongs.

For instance, for Query 1K1 if the user selected castle to represent a tourist attraction, train

to represent the transportation mode, and London is identified as a city, then the domains

(tourist attractions, transportation) and sources (www.castles.org, www.london-rail.com)

are obtained from the Knowledge Base and the template is appropriately populated.

For every entity, the list of mandatory attributes are obtained and the correspond-

ing partial conditions are formulated. A mandatory attribute represents the attribute for

which a data value must be provided by the user for querying the underlying Web source.

For instance, the mandatory attributes associated with train as a transportation mode are –

sourcelocation, destinationlocation, starttime, and returntime. Additionally, the at-

tributes associated for the entity which are popular and occur in a large number of similar

past queries are also used to formulate possible partial query conditions of interest to the

user. For instance, the workload repository may indicate that age is a popular attribute for

the castle entity and has featured in a large number of queries. In such a scenario, a generic

condition of the form – castle.age {relationalOperator} {value} could be generated.

Furthermore, popular attributes desired as output by users for the corresponding entities

may also be generated to fill the SELECT clause of the query template. If there exist mul-

tiple entities in the user intent, the possible integration conditions possible between them

are generated. For instance, castle.location {spatialOperator} {train.startLocation,

train.endLocation, city.Location} would be generated.

38

For an attribute, if the attribute has not been listed in the query template in the first

step, it is analyzed for its type (spatial, temporal, generic) and the entity associated with it is

obtained to formulate query conditions of the type: entity.attribute {operator} {value}.

If this attribute can be formulated as an integration condition, then the corresponding con-

ditions are formulated. Similarly, if the attribute is a popular choice for the output, then the

SELECT clause is populated with it. For a value (e.g., London), the corresponding attribute

and its parent entity are derived and condition of the type city.name = London is formed.

For operators, if they are not listed in the template in the above steps, the possible condi-

tions between the entities for which the operators are applicable are analyzed and modified

accordingly. For instance, if an operator “near” is specified for the above intent, then

the integration condition can be modified as: castle.location near {train.startLocation,

train.endLocation, city.Location}. As the last stage of user interaction, the template

is filled/modified by the user based on his/her preferences and the complete query is for-

mulated that captures the exact user intent in terms of constraints and conditions across

multiple domains. A sample query template, generated in response to the input Query 1K1

(i.e., “castle, train, London”) is shown in Figure 2.6.

2.4 Conclusion

In this Chapter, we have presented a novel semantic-based approach termed Query-

By-Keywords (or QBK) for query specification, and elaborated on it’s usefulness for Web

users who are familiar with the paradigm of keyword search. We have also demonstrated

how this approach can be carried out with the help of a Knowledge Base comprising of

various kinds of semantic and statistic information. We have detailed the steps involved in

the generation of a query skeleton, its ranking, and how a complete query can be generated

with meaningful user interaction.

39

Fi
gu

re
2.

6.
Sa

m
pl

e
Te

m
pl

at
e

Fo
rQ

B
K

Fr
am

ew
or

k

CHAPTER 3

A SIMILARITY-BASED RANKING FRAMEWORK

With the emergence of the deep Web, searching Web databases in domains such as

vehicles, real estate, flights and so on, has become a routine task. One of the problems in

this context is ranking the results of a user query. Earlier approaches for addressing this

problem have used frequencies of database values, query logs, and user profiles. However,

a common thread in most of these approaches is that ranking is done in either a user-

independent fashion and/or a query-independent manner.

In this Chapter, we elaborate on a novel query- and user-dependent approach for

ranking query results in Web databases. We present a ranking model, based on two com-

plementary notions of user and query similarity, to derive a ranking function for a given

user query. The model is based on the intuition that similar users display comparable rank-

ing preferences over the results of similar queries. The requisite ranking function is thus,

acquired from a sparse workload comprising of several such functions derived for various

user-query pairs. We define these similarities formally in alternative ways and discuss their

effectiveness analytically and experimentally over two distinct Web databases. We also ad-

vance a learning technique to derive individual ranking functions (for the workload) using

implicit browsing behavior of users, and experimentally validate its effectiveness.

3.1 Introduction

The emergence of the deep Web [11] [12] has led to the proliferation of a large

number of Web databases for a variety of applications (e.g., airline reservations, vehicle

search, real estate scouting). These databases are typically searched by formulating query

40

41

conditions on their schema attributes. When the number of results returned is large, it is

time-consuming to browse and choose the most useful answer(s) for further investigation.

Currently, Web databases simplify this task by displaying query results sorted on the values

of a single attribute (e.g., Price, Mileage, etc.). However, as alluded to by Example-2 (in

Chapter 1) most Web users would prefer an ordering derived using multiple attribute values,

which would be closer to their expectation. For the sake of clarity and to better understand

the problem at hand, we reproduce Example-2 for further analysis.

Motivating Example-2: Consider Google Base’s Vehicle database that comprises of a

table with attributes Make, Price, Mileage, Location, Color, and so on, where each tuple

represents a vehicle for sale.

Two users – a business executive (U1) and a student (U2), seek answers to the same

query (Q1): “Make = Honda AND Location = Dallas, TX”. In response to this query,

more than 18,000 tuples are returned. Intuitively, U1 would typically search for new vehi-

cles with specific color choices (e.g., only red colored vehicles), and hence would prefer

vehicles with “Condition = New AND Color = Red” to be ranked and displayed higher

than the others. In contrast, U2 would most likely search for used vehicles priced under a

specific amount (e.g., “Price< $ 5,000”); hence, for U2, the results should be ordered such

that vehicles with “Condition = Used AND Price < $ 5,000” are displayed before the rest.

The same student user (U2) now moves to Mountain View, CA as an intern with

Google and asks a different query: “Make = Pontiac AND Location = Mountain View,

CA”. We can presume (since he has procured an internship) that he may be willing to pay a

slightly higher price for a lesser mileage vehicle (e.g., “Mileage < 100,000”), although he

may still be searching for used vehicles. His preferences for this query would then require

vehicles with “Condition = Used AND Price < $ 10,000$ AND Mileage < 100,000” to

be ranked higher than others.

42

The above example illustrates that different Web users may have contrasting ranking

preferences towards the results of the same query. Furthermore, it emphasizes that the same

user may display different ranking preferences for the results of different queries. Thus, it

is evident that in the context of Web databases, where a large set of queries given by varied

classes of users is involved, the corresponding results are likely to be better received when

ranked in a user- and query-dependent manner.

The current sorting-based mechanisms used by Web databases do not perform such

sophisticated ranking. While some extensions to SQL allow manual specification of rank-

ing functions/preferences [38] [39] [40] [41], this approach is cumbersome for most Web

users. Automated ranking of database results has been studied in the context of rela-

tional databases, and although a number of techniques [67] [43][44] [45] perform query-

dependent ranking, they do not differentiate between users and hence, provide a single

ranking order for a given query across all users. In contrast, techniques for building exten-

sive user profiles [36] as well as requiring users to order data tuples [48], proposed for user-

dependent ranking, do not distinguish between queries and provide a single ranking order

for any query given by the same user. Recommender (i.e., collaborative [28] [29] [30] and

content filtering [32] [33] [34]) systems use the notions of user- and object/item-similarity

for recommending objects to users. Although our work is inspired by this idea, there are

differences that prevent its direct applicability to database ranking.

In this Chapter, we present a user- and query-dependent approach [49] [50] for rank-

ing the results of Web database queries. For a query Qj given by a user Ui, if the corre-

sponding ranking function (represented as FUi,Qj
) is not available, then a relevant ranking

function (say FUx,Qy) corresponding to Ux’s preferences towards the results of Qy (where

Ux and Qy are similar to Ui and Qj respectively), is identified from a workload of ranking

functions (inferred for a number of user-query pairs). This function is then used to rank

Qj’s results for Ui. This choice of an appropriate function is based on a novel similarity-

43

based ranking model proposed as part of this dissertation, and elaborated in this Chapter.

The intuition behind this approach is:

• For a given query’s results, similar users display comparable ranking preferences.

• A user displays similar ranking preferences over results of analogous queries.

Therefore, we decompose the notion of similarity into – 1) query similarity, and 2)

user similarity. The former is estimated using either of the two proposed metrics namely,

i) query-condition similarity, determined by comparing the conditions in these queries, or

ii) query-result similarity based on a comparison between actual query results. On the

other hand, the latter is calculated by comparing individual ranking functions over a set of

common queries between users. Although each model can be applied independently, we

also propose a holistic model to determine an improved ranking order. The ranking function

(defined formally in Section 3.2.2) in our framework is a linear weighted-sum function

comprising of: i) attribute-weights denoting the significance of individual attributes and ii)

value-weights representing the importance of attribute values.

In order to make our approach practically useful, a minimal workload is important.

Although we propose a heuristic approach for establishing such workloads later in this

dissertation (i.e., in Chapter 4), the focus of the current Chapter is on the usage, instead

of the acquisition of such workloads; therefore, for the rest of this Chapter, we assume the

availability of a workload of suitable ranking functions collected from several user-query

pairs. However, we do elaborate on a novel learning method that derives these individual

ranking functions for the workload.

Contributions: The primary contributions of this work are:

• Formulation of a user- and query-dependent approach for ranking query results of

Web databases.

44

• Proposal for a novel ranking model, based on two complementary measures of query

similarity and user similarity, to derive functions from a workload containing ranking

functions for several user-query pairs.

• Results of an extensive experimental evaluation using Amazon Mechanical Turk over

two Web databases supported by Google Base to validate our approach in terms of

efficiency as well as quality for real-world use.

• Elaboration of learning method for deriving ranking functions from implicit user

behavior and the results for its experimental evaluation.

Roadmap: Section 3.2 formally defines the ranking problem. In Sections 3.3 and 3.4,

we respectively elaborate the proposed models for query and user similarity. Section 3.5

explains the combined model of similarity, and Section 3.6 respectively details the exper-

imental results. In Section 3.7, we highlight the proposed learning method, along with its

experimental evaluation, for deriving a ranking function, and conclude in Section 3.8.

3.2 Problem Definition And Architecture

In this Section, we formally define the ranking problem for Web databases and

present a general architecture of our solution.

3.2.1 Problem Definition

Consider a Web database table D over a set of p attributes, A = {A1, A2, ..., Ap}.

A user Ui asks a query Qj of the form1: “SELECT * FROM D WHERE A1 = a1 AND

· · · AND Ak = ak”, where each Ai ∈ A and ai is a value in the domain of Ai. Let Nj =

1The specified query Qj is not a SPJ query since it does not contain projection and join predicates. Fur-

ther, it comprises of conjunctive point conditions in the selection predicates expressed over a single relation.

However, later in Chapter 5 of this dissertation, we generalize our framework to support arbitrary SPJ queries

comprising of range, IN, disjunction and negation conditions over multiple relations.

45

{t1, t2, ..., tn} be the set of result tuples for Qj . Further, let U = {U1, U2, ..., UM} and Q =

{Q1, Q2, ..., QN} respectively represent a large set of users and queries over D, and let W

represent the workload (refer to Tables 3.1 and 3.2 for an example) comprising of distinct

ranking functions collected across several user-query pairs (from U and Q).

The ranking problem can be stated as: “For the query Qj given by the user Ui,

determine a ranking function FUi,Qj
from W”. A ranking order can then be obtained by

applying FUi,Qj
to Nj . Given the scale of Web users and the large number of queries that

can be posed on D, W will not possess a function for every user-query pair; hence the need

for a similarity-based method to find a suitable function (FUx,Qy) in place of the missing

FUi,Qj
. The ranking problem, thus, can be decomposed into:

Sub-problem 1 – Identify a ranking function using the similarity model: Determine a

user Ux similar to Ui and a query Qy similar to Qj such that FUx,Qy ∈W.

Sub-problem 2 – Establish a workload of ranking functions: Determine a subset of users

(in U) and a subset of queries (in Q) to represent a workload W, such that for any

query Qi (∈ Q) asked by any user Uj (∈ U), there exists at least one pair (e.g.,

(Qx, Uy)) ∈ W such that the similarity between the queries Qx and Qi and/or the

similarity between users Uy and Uj , is very high.

Sub-problem 3 – Derive individual ranking functions for the pairs in W: For a userUx

and a query Qy belonging to W, based on Ux’s preferences towards Qy’s results, de-

termine, explicitly or implicitly, a ranking function FUxQy .

In this Chapter, we propose a solution to Sub-problems 1 and 3 listed above. The

solution to Sub-problem 2 is elaborated in Chapter 4. In addition, given that the similarity-

based ranking framework is proposed in the context of Web databases, the solution pre-

sented in this Chapter is addressed to cover only point queries with conjunctive conditions.

However, we propose a refined formal model to support generic SPJ queries comprising

of projections, joins, and selections (specifically IN/range condition, and different Boolean

46

Figure 3.1. Architecture Of Similarity-based Ranking Framework.

Figure 3.2. High-level View For Establishing A Workload.

operators like AND, NOT and OR) as well as to incorporate functional dependencies and

attribute correlations in Chapter 5.

3.2.2 Ranking Architecture

The similarity model (whose architecture is shown in Figure 3.1) forms the basis of

our ranking framework. When the user Ui poses the query Qj , the query-similarity model

orders the queries in Q based on their individual similarity with respect to Qj . Likewise,

the user-similarity model orders2 all users in U according to their similarity with Ui. Using

2For the sake of simplicity, we assume the orderings with respect to Qj and Ui to be {Qj , Q1, Q2, ..., QN}

and {Ui, U1, U2, ...UM} respectively; however, in practice, the individual queries and users may occur at

different positions in the ordered lists.

47

these two ordered sets of similar queries and users, it searches the workload to identify the

function FUx , Qy such that the combination of Ux and Qy is most similar to Ui and Qj .

FUx , Qy is then used to rank Qj’s results for Ui.

The workload used in our framework comprises of ranking functions for several user-

query pairs. Figure 3.2 shows the high level view of deriving an individual ranking function

for a user-query pair (Ux, Qy). By analyzing Ux’s preferences (in terms of a selected set

of tuples Rx,y) over the results (Ny), an approximate ranking function (FUx , Qy) can be

derived. As our ranking function is a linear weighted-sum function, it is important that the

mechanism used for deriving this function captures

1. the significance associated by the user to each attribute i.e., an attribute-weight, and

2. an user’s emphasis on individual values of an attribute i.e., a value-weight.

These weights can then be integrated into a ranking function Fx,y to assign a score

to every tuple t in Ny using Equation 3.1:

score(t) =

p∑
i=1

wi ∗ vi (3.1)

where wi: attribute-weight of Ai, and vi: value-weight for Ai’s value in tuple t.

The workload W is populated using such ranking functions. Tables 3.1 and 3.2 show

two instances of the workload3 (represented in the form of a matrix of users and queries).

Cell [x,y] in the workload, if defined, consists of the ranking function Fx,y for the user-

query pair Ux and Qy. We now elaborate on the proposed individual models of query and

user similarity, and then present the holisitic similarity model for ranking.

3For Web databases, although the workload matrix can be extremely large, it is very sparse as obtaining

preferences for large number of user-query pairs is practically difficult. We have purposely shown a dense

matrix to make our model easily understandable.

48

Table 3.1. Sample Workload-A

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

U1 ?? F1,2 – – F1,5 – F1,7 –
U2 F2,1 F2,2 – F2,4 – F2,6 F2,7 –
U3 F3,1 F3,2 F3,3 F34 – – F3,7 –

Table 3.2. Sample Workload-B

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

U1 ?? – F1,3 – F1,5 F1,6 F1,7 F1,8

U2 F2,1 F2,2 – F2,4 – – – F2,8

U3 F3,1 F3,2 – F3,4 – – F3,7 F3,8

3.3 Query Similarity

For the sample Workload-A shown in Table 3.1, a ranking function does not exist for

user U1 asking query Q1. However, it can be observed that ranking functions over queries

Q2, Q5, Q7 (the actual queries are shown in Table 3.3) have been derived; thus, forming

U1’s workload. It would be useful to analyze if any of F1,2, F1,5, or F1,7 can be used for

ranking Q1’s results for U1. However, we know (from Example-2) that a user is likely to

have displayed different ranking preferences for different query results. Consequently, a

randomly selected function from U1’s workload is not likely to give a desirable ranking

order over N1. On the other hand, the ranking functions are likely to be comparable for

queries similar to each other.

We advance the hypothesis that if Q1 is most similar to a query Qy (in U1’s work-

load), U1 would display similar ranking preferences over the results of both these queries;

thus, the ranking function (F1,y) derived for Qy can be used to rank N1. Similar to rec-

ommendation systems, our framework can utilize an aggregate function, composed from

the functions corresponding to the top-K most similar queries to Q1, to rank N1. Although

the results of our experiments showed that an aggregate function works well for certain

49

Table 3.3. Input query (Q1) and U1’s Workload

QUERY Make Location Price Mileage Color
Q1 Honda Dallas any any any
Q2 Toyota Atlanta any any any
Q5 Lexus Basin any any any
Q7 any Little Rock any any Grey

individual instances of users asking particular queries, on average, across all users asking a

number of queries, using an individual function proved better than an aggregate function.

Hence, for the reminder of the section, we only consider the most similar query (to Q1).

We translate this proposal of query similarity into a principled approach via two alternative

models: i) query-condition similarity, and ii) query-result similarity.

3.3.1 Query-Condition Similarity

In this model, the similarity between two queries is determined by comparing the at-

tribute values in the query conditions. Consider Example-2 and the queries from Table 3.3.

Intuitively, “Honda” and “Toyota” are vehicles with similar characteristics i.e., they have

similar prices, mileage ranges, and so on. In contrast, “Honda” is a very different vehicle

from “Lexus”. Similarly, “Dallas” and “Atlanta”, both being large metropolitan cities, are

more similar to each other than “Basin”, a small town in the state of Montana.

From the above analysis, Q1 appears more similar toQ2 thanQ5. In order to validate

this intuitive similarity, we examine the relationship between the different values for each

attribute in the query conditions. For this, we assume independence of schema attributes,

since, availability of appropriate knowledge of functional dependencies and/or attribute

correlations is not assumed4.
4However, as elaborated later in Chapter 5, we do avail of the knowledge of functional dependencies and

attribute correlations to further strengthen the similarity computations.

50

Definition Given two queries Q and Q′, each with the conjunctive selection conditions,

respectively of the form “WHERE A1=a1 AND · · · AND Ap=ap” and “WHERE A1=a′1

AND · · · AND Ap=a′p” (where ai or a′i is ‘any’5 if Ai is not specified), the query-condition

similarity between Q and Q′ is given as the conjunctive similarities between the values ai

and a′i for every attribute Ai (Equation 3.2).

similarity(Q,Q′) =

p∏
i=1

sim(Q[Ai = ai], Q
′[Ai = a′i]) (3.2)

In order to determine the right-hand-side (RHS) for the above equation, it is nec-

essary to translate the intuitive similarity between values (e.g., “Honda” is more similar

to “Toyota” than it is with “Lexus”) to a formal model. This is achieved by determining

the similarity between databases tuples corresponding to point queries with these attribute

values. For instance, consider the values “Honda”, “Toyota” and “Lexus” for the attribute

“Make”. The model generates three distinct queries (QH , QT and QL) with the condi-

tions: “Make = Honda”, “Make = Toyota” and “Make = Lexus” respectively, and obtains

the individual sets of results NH , NT and NL (shown6 in Tables 3.4, 3.5, and 3.6). It can

be observed that the tuples for “Toyota” and “Honda” display a high degree of similarity

over multiple attributes as compared to the tuples for “Lexus” indicating that the former

two attribute values are more similar to each other than the latter. The similarity between

each pair of query results (i.e., [NH , NT], [NH , NL], [NT , NL]) is then translated as the

similarity between the respective pairs of attribute values7.

5The value ‘any’ represents a union of all values for the domain of the particular attribute. For example,

a value of ‘any’ for the Transmission attribute retrieves cars with ‘manual’ as well as ‘auto’ transmission.
6For the sake of readability, we have displayed only the top-3 query results returned by Google Base.

Further, only five out of the eleven attributes from the Vehicle database schema are shown.
7The similarity between an attribute value (e.g., Honda) and the value ‘any’ is estimated as the average

similarity between Honda and every other value in the domain of the corresponding attribute.

51

Table 3.4. Sample Results (NH) For Query “Make = Honda”

TupleID Make Location Price (in $) Mileage Color
t1 Honda Dallas 20-25K 10-25K red
t2 Honda Atlanta 20-25K 25-50K red
t3 Honda Boston 25-30K 0-10K green
...

Table 3.5. Sample Results (NT) For Query “Make = Toyota”

TupleID Make Location Price (in $) Mileage Color
t1 Toyota Little Rock 5-10K 125-150K red
t2 Toyota Raleigh 15-20K 25-50K green
t3 Toyota Atlanta 20-25K 10-25K silver
...

Table 3.6. Sample Results (NL) For Query “Make = Lexus”

TupleID Make Location Price (in $) Mileage Color
t1 Lexus Boston 35-40K 0 silver
t2 Lexus Detroit 35-40K 0 black
t3 Lexus Urbana 30-35K 0-10K red
...

Formally, we define the similarity between any two values a1 and a2 for an attribute

Ai as follows. Two queriesQa1 andQa2 with the respective selection conditions: “WHERE

Ai = a1” and “WHERE Ai = a2” are generated. Let Na1 and Na2 be the set of results

obtained from the database for these two queries. The similarity between a1 and a2 is then

given as the similarity between Na1 and Na2 , and is determined using the variant of the

cosine-similarity model proposed in [42]. Formally, given two tuples T =< t1, t2, ..., tm >

in Na1 and T ′ =< t′1, t
′
2, ..., t

′
m > in Na2, the similarity between T and T ′ is:

sim(T, T ′) =

p∑
i=1

sim(ti, t
′
i) (3.3)

where,

52

sim(ti, t
′
i) =


1 if ti = t′i,

0 if ti 6= t′i.

(3.4)

It is obvious that Equation 3.4 will work improperly for numerical attributes where

exact matches are difficult to find across tuple comparisons. In this work, we assume that

numerical data has been discretized in the form of histograms (as done for query process-

ing) or other meaningful schemes (as done by Google Base; shown for the values of ‘price’

and ‘mileage’ in Tables 3.4, 3.5 and 3.6). The existence of a (reasonable) discretization is

needed for our model (instead of its justification).

Using Equation 3.3, the similarity between the two sets Na1 and Na2 (which in turn,

corresponds to the similarity between the values a1 and a2) is estimated as the average

pair-wise similarity between the tuples in Na1 and Na2 (Equation 3.5).

sim(Na1, Na2) =

∑|Na1|
i=1

∑|Na2|
j=1 sim(Ti, T

′
j)

|Na1| · |Na2|
(3.5)

These similarities between attribute values can then be substituted into Equation 3.2

to estimate query-condition similarity.

3.3.2 Query-Result Similarity

In this model, similarity between a pair of queries is evaluated as the similarity be-

tween the tuples in the respective query results. The intuition behind this model is that if

two queries are similar, the results are likely to exhibit greater similarity.

For the queries in Table 3.3, let the results shown in Tables 3.7, 3.8, and 3.9, respec-

tively, correspond to a sample set (again top-3 results and five attributes displayed) for Q1,

Q2 and Q5. We observe that there exists certain similarity between the results of Q1 and

Q2 for attributes such as ‘price’ and ‘mileage’ (and even ‘color’ to a certain extent). In

53

Table 3.7. Sample Results Of Q1: “Make=Honda AND Location = Dallas,TX”

TupleID Make Location Price (in $) Mileage Color
t1 Honda Dallas 15-20K 25-50K red
t2 Honda Dallas 15-20K 25-50K red
t3 Honda Dallas 20-25K 0-10K green
...

Table 3.8. Sample Results Of Q2: “Make=Toyota AND Location = Atlanta,GA”

TupleID Make Location Price (in $) Mileage Color
t1 Toyota Atlanta 15-20K 25-50K red
t2 Toyota Atlanta 15-20K 25-50K green
t3 Toyota Atlanta 20-25K 10-25K silver
...

Table 3.9. Sample Results Of Q5: “Make=Lexus AND Location = Basin,MT”

TupleID Make Location Price (in $) Mileage Color
t1 Lexus Basin 35-40K new silver
t2 Lexus Basin 35-40K new black
t3 Lexus Basin 30-35K 0-10K red
...

contrast, the results of Q5 are substantially different; thus, allowing us to infer that Q1 is

more similar to Q2 than Q5. Formally, we define query-result similarity below.

Definition Given two queries Q and Q′, let N and N ′ be their query results. The query-

result similarity between Q and Q′ is then computed as the similarity between the result

sets N and N ′, given by Equation 3.6.

similarity(Q,Q′) = sim(N,N ′) (3.6)

The similarity between the pair of results (N and N ′) is estimated using the Equa-

tions 3.3, 3.4 and 3.5 defined earlier.

54

Figure 3.3. Summarized View Of The Query Similarity Models.

3.3.3 Analysis Of The Proposed Query Similarity Models

The computation of similarity for the two models discussed above is summarized in

Figure 3.3. While the query-condition similarity uses the conjunctive equivalence between

individual attribute values, the query-result similarity performs a comparison between the

actual sets of query results. Below, we discuss the accuracy and computational efficiency

of these models.

Accuracy: Intuitively, similarity between queries depends on the proximity between their

respective query conditions. For instance, “Honda” and “Toyota” are cars with a lot of

common features which reflects in the tuples representing these values in the database,

and hence, queries that search for these vehicles are more similar than queries asking for

“Lexus”. In contrast, two queries may return very similar results although their conditions

could be quite dissimilar. For example, the following two queries on Google Base – “Make

= Mercedes AND Color = Lilac”, and “Location = Anaheim, CA AND Price > $ 35,000”,

end up returning exactly the same set of results. Although these are very similar from the

query-result similarity definition (a corresponding value of 1.000 is obtained by applying

Equation 3.6 over these two queries), the queries, in fact, are intuitively not similar (which

55

is vindicated by a value of 0.0031 yielded by applying Equation 3.2 i.e., the query-condition

similarity model over the same two queries).

In general, similar queries are likely to generate similar results; however, the con-

verse is not necessarily true. Hence the query-condition similarity model is expected to be

more accurate and consistent than the query-result similarity model which is also borne out

by the experiments.

Computational Efficiency: Both query similarities can be computed by applying queries

over the Web database i.e., direct access to the data is not needed, which can be difficult

for Web database such as Google Base (a collection of multiple databases). One alternative

toward efficiently implementing these similarities would be to pre-compute them and use

the respective values at query time8.

In order to distinguish the two models, consider the workload W and assume a

schema of p attributes. For the sake of simplicity, let the domain of each attribute have

n values. The query-condition model relies purely on the pairwise similarities between

attribute values, and hence can be independently pre-computed (generating p ∗ n queries,

one for each value of every attribute, and performing p ∗ n2 computations). At query-time,

the similarity between input (Qi) and every query in W can be estimated by a lookup of

the attribute-value similarities. In contrast, the query-result model requires a comparison

between the query results. Since an input query cannot be predicted, pre-computation is

not possible (unless every possible query on the database can be generated and compared –

a combinatorial explosion scenario). Even if we assume that a large set of potential queries

(instead of every possible query) can be generated, the query-result model requires that the

entire set of results for all these queries be stored, in order to establish similarity with the

8Pre-computation assumes that the underlying data does not change significantly over time. Consider-

ing the size of these databases, small percent of changes are unlikely to affect the similarity computations;

however it is possible to re-compute the similarities periodically.

56

results of an incoming query; thus, leading to a extremely large overhead in terms of stor-

age. In contrast, the query-condition model simply requires a singular value to be stored

for every pair of attribute values, and hence, incurs a significantly less cost of storage as

compared to its counterpart model.

Thus, intuitively, the query-condition model seems superior to the query-result model.

Also, computation of similarity by the query-condition model is tractable as compared to

the query-result model. Furthermore, both these observations are substantiated by our ex-

periments as well.

3.4 User Similarity

For the sample Workload-A shown in Table 3.1, a function (F1,1) is needed to rank

the results of Q1 for U1. Observing this workload, functions F2,1 and F3,1 have been

derived for users U2 and U3 with respect to Q1. It would be useful to determine if either of

these functions can be used in place of F1,1 to yield an acceptable ranking order of N1 for

U1. However, we know from Example-2 that different users may display different ranking

preferences towards the same query. Thus, we advance the notion of user similarity to

determine an appropriate ranking function; instead of randomly picking one from W.

We put forward the hypothesis that if U1 is similar to an existing user Ux, then, for the

results of a given query (say Q1), both users will show similar ranking preferences; there-

fore, Ux’s ranking function (Fx,1) can be used to rank Q1’s results for U1 as well. Again,

as alluded to in Section 3.3 for query similarity, instead of using a single most similar user

(to U1), our framework can be extended to determine the top-K set of most similar users

to establish user-similarity as well. However, like query-similarity, an aggregate ranking

function did not provide significant improvement in the ranking quality; hence, we only

consider the most similar user (to U1) in our discussion.

57

In order to translate the hypothesis of user-similarity into a model, we need to under-

stand how to compute similarity between a given pair of users. In this work, we propose a

novel methodology for determining this similarity by only considering the set of respective

ranking functions obtained over the common queries asked by these users.

We would also like to point out that since this framework is based on the notion of

similarity, we could have used the same notion of similarity employed in recommender

systems i.e., based on user profiles. However, our premise was that the profile-based sys-

tems provide static or context-independent similarity (i.e., a users behavior does not change

across all items/objects) whereas we believe that ranking of results (unlike recommending)

varies substantially for the same user based on the query type (i.e., is context-dependent)

and attributes specified (as elaborated by Example-2 in Section 3.1). This work can thus,

be treated as a generalization that uses information beyond profiles and seems appropriate

for the Web database context. Furthermore, in Chapter 5, we present a combined model

that combines the dynamic component presented here, with a static component based on

user profiles, to facilitate a comprehensive computation of user similarity between any pair

of arbitrary users. Formally,

Definition Given two users Ui and Uj having specified the same set of common9 queries:

{Q1, Q2, ..., Qr} over the Web database, for which ranking functions ({Fi,1, Fi,2, ..., Fi,r}

and {Fj,1, Fj,2, ..., Fj,r}) exist in W, the user similarity between Ui and Uj is computed as

the average similarity between their individual ranking functions for each common query

(and is shown in Equation 3.7):

similarity(Ui, Uj) =

∑r
p=1 sim(Fi,p,Fj,p)

r
(3.7)

9Without loss of generality, we assume {Q1, Q2, ..., Qr} are the common queries for Ui and Uj , although

they can be any queries.

58

In order to determine the right-hand-side of the Equation 3.7, it is necessary to quan-

tify a measure that establishes the similarity between a given pair of ranking functions.

We use the Spearman’s rank correlation coefficient (ρ) [68] to compute similarity between

the sets obtained by applying these ranking functions on the query results. We choose the

Spearman coefficient based on the observations of the survey conducted by [69] regarding

its usefulness, with respect to other metrics, in comparing ranked lists.

Accordingly, using the Spearman coefficient, we establish similarity between a pair

of ranking functions as follows: Consider two functions Fi,1 and Fj,1 respectively derived

for users Ui and Uj , for the same query Q1. We apply these two functions individually

on N1 (i.e., the results of Q1) to obtain two ranked sets of results – NRi1
and NRj1

. If the

number of tuples in the result sets is N, and di is the difference between the ranks of the

same tuple (ti) in NRi1
and NRj1

, then we express the similarity between Fi1 and Fj1 as the

Spearman’s rank correlation coefficient given by Equation 3.8:

sim(Fi1, Fj1) = 1 − 6 ∗
∑N

i=1 d
2
i

N ∗ (N2 − 1)
(3.8)

The right hand side of Equation 3.8 can then be plugged into Equation 3.7 to estimate

the overall similarity between the given pair of users.

So far in our method for estimating user similarity, we have considered all the queries

that are common to a given pair of users. This assumption forms one of our models for

user similarity termed query-independent user similarity. However, it might be useful to

estimate user similarity based on only those queries that are similar to the input query Q1.

In other words, in this hypothesis, two users who may not be very similar to each other

over the entire workload comprising of similar and dissimilar queries, may in fact, be very

similar to each other over a smaller set of similar queries. We formalize this hypothesis

59

Table 3.10. Drawbacks Of Query-Independent User Similarity

For Query User Similarity
Q2 sim(U1, U2) > sim(U1, U3)
Q7 sim(U1, U2) < sim(U1, U3)

Q2, Q7 sim(U1, U2) < sim(U1, U3)

using two different models – i) clustered, and ii) top-K – for determining user similarity.

We now elaborate these proposed models.

3.4.1 Query-Independent User Similarity

This model follows the simplest paradigm and estimates the similarity between a

pair of users based on all the queries common to them. For instance, given Workload-A

in Table 3.1, this model determines the similarity between U1 and U2 using the ranking

functions of Q2 and Q7. From the queries in Table 3.3, let the query-similarity model

indicate that Q2 is most similar to Q1 whereas Q7 is least similar to Q1, and let us consider

the user-similarity results be as shown in Table 3.10.

This model will pick U3 as the most similar user to U1. However, if only Q2 (which

is most similar to Q1) is used, U2 is more similar to U1. Based on our premise that similar

users display similar ranking preferences over the results of similar queries, it is reason-

able to assume that employing F2,1 to rank Q1’s results would lead to a better ranking

order (from U1’s viewpoint) than the one obtained using F3,1. The failure to distinguish

between similar and dissimilar queries is thus a potential drawback of this model, which

the following models aim to overcome.

60

3.4.2 Cluster-Based User Similarity

In order to meaningfully restrict the number of queries that are similar to each other,

one alternative is to cluster queries in the workload based on query similarity. This can be

done using a simple K-means clustering method [70]. Given the set Q: {Q1, Q2, QN},

each query (Qj) is represented as a N -dimensional vector of the form <sj,1,, sj,N>

where sj,p represents the query-condition similarity score between the queries Qj and Qp

(by Equation 3.2). Using K-means, we cluster these “N” queries into K clusters based on

a pre-defined K and a pre-determined number of iterations.

Consider Example-1 and the queries in Table 3.3. Assuming the similarities specified

in Section 3.4.1 (i.e., Q2 and Q7 are most and least similar to Q1 respectively), for a value

of K = 2, the simple K-means algorithm will generate two clusters – C1 containing Q1 and

Q2 (along with other similar queries), and C2 containing Q7 (in addition to other queries

not similar to Q1). We then estimate the similarity between U1 and every other user only

for the cluster C1 (since it contains queries most similar to the input query Q1). Using the

scenario from Table 3.10, U2 would be chosen as the most similar user and F2,1 would be

used to rank the corresponding query results.

The above model assumes that ranking functions are available for reasonable number

of queries in each cluster. However, as the workload is likely to be sparse for most Web

databases, it is possible that no ranking functions are available in the cluster most similar to

the incoming query. For example, considering the Workload-B in Table 3.2 and assuming a

cluster C1 of queries Q1, Q2, Q3 and Q4, due to the lack of ranking functions, no similarity

can be established between U1 and other users. Consequently, the similarities would then

be estimated in other clusters, thus hampering the quality of the ranking achieved due to

dissimilarity between the input query and the queries in the corresponding clusters.

A well-established drawback of using a cluster-based alternative is the choice of K.

In a Web database, a small value of K would lead to a large number of queries in every

61

cluster, some of which may not be very similar to the rest, thus, affecting the overall user

similarity. In contrast, a large value of K would generate clusters with few queries, and in

such cases, the probability that there exist no users with any function in the cluster increases

significantly. However, to use this model, approaches developed for finding an appropriate

K may be used (as this issue is common to most clustering approaches and has been studied

extensively in the literature).

3.4.3 Top-K User Similarity

Instead of finding a reasonable K for clustering, we propose a refinement, termed

top-K user similarity. We propose three measures to determine top-K queries that are most

similar to an input query (say Q1 from Example-1), and estimates the similarity between

the user (U1) and every other user.

Strict top-K user similarity: Given an input query Q1 by U1, only the top-K most similar

queries to Q1 are selected. However, the model does not check the presence (or absence) of

ranking functions in the workload for these K queries. For instance, based on assumption

in Section 3.4.2, and using K = 3, the three queries most similar to Q1 are Q2, Q3 and Q4,

and hence, would be selected by this model.

In the case of Workload-A, similarity between U1 and U2 as well as between U1 and

U3 will be estimated using Q2. However, in the case of Workload-B, similar to the problem

in the clustering alternative, there is no query common between U1 and U2 (as well as U3).

Consequently, similarity cannot be established and hence, no ranking is possible.

User-based top-K user similarity: In this model, we calculate user similarity for a given

queryQ1 by U1, by selecting top-K most similar queries toQ1, each of which has a ranking

function for U1. Consequently for Workload-A, using K = 3, the queries Q2, Q5 and Q7

would be selected. Likewise, in the case of Workload-B, this measure would select Q3, Q5

and Q6 using the ‘top-3’ selection. However, since there exist no function for users U2 and

62

U3 (in Workload-B) given these queries, no similarity can be determined, and consequently,

no ranking would be possible.

Workload-Based top-K user similarity: In order to address the problems in previous

two models, we propose a Workload-Based top-K model that provides the stability of the

query-independent model (in terms of ensuring that ranking is always possible, assuming

there is at least one non-empty cell in the workload for that user) and ensures that similarity

between users can be computed in a query-dependent manner.

Given a Q1 by U1, the top-K most similar queries to Q1 are selected such that for

each of these queries, there exists: i) a ranking function for U1 in the workload, and ii) a

ranking function for at least one other user (Ui) in the workload. Considering K = 3, this

model will select Q2, Q5 and Q7 in the case of Workload-A and the queries Q7 and Q8 for

Workload-B, and ensure a ranking of results in every case.

3.4.4 Summary Of User Similarity Models

Intuitively, query-dependent estimation of user similarity is likely to yield better

ranking as compared to the query-independent model. Also, barring the workload-based

top-K model, ranking may not always be possible in other query-dependent models. In

order to overcome this, the framework can always dynamically choose the top-K queries

at runtime in the following order: strict, user-based, and workload-based. The strict top-k

gives the best results as can be understood intuitively and has been ascertained experimen-

tally. The alternatives extend the availability of ranking functions with reduced accuracy.

Additionally, as our experiments show, the choice of K in top-K is not as critical as the se-

lection of K in K-means algorithm. Thus, the top-K model seems to be the best alternative

in a query-dependent environment.

Further, we would like to point out that either of the proposed models cannot be

applied in situations when the pair of users being compared have absolutely no queries

63

common between them – a realistic scenario in the context of Web database applications

involving new and/or infrequent users. Consequently, no ranking is possible in such cases.

In order to support a consistent model of user-dependent ranking uniformly across all types

of users (new, infrequent as well as frequent), we propose an extension that unifies the pro-

posed model, based on similarity of ranking functions, with a static model (that determines

similarity based on user profiles i.e., the ones adopted by recommender and other database

systems). We elaborate the details of such an unified model in Chapter 5.

3.5 The Holistic Similarity Model

In order to derive a user’s (Ui) ranking function for a query (Qj), we have proposed

two independent approaches based on user and query similarity. However, given the scale

of Web users and queries, and the sparseness of the workload, applying only one model

may not be the best choice at all times.

Considering Example-1 and Workload-B (Table 3.2), we want to identify a ranking

function to rank Q1’s results for U1. Using only the query-similarity model, F1,3 will be

selected since Q3 is most similar to Q1. In contrast, applying only user-similarity model

will yield F2,1 as U2 is most similar to U1. It would be meaningful to rank these functions

(F1,3 andF2,1) to choose the most appropriate one. Furthermore, in a more practical setting,

the workload is likely to have a ranking function for a similar query (to Q1) derived for a

similar user (to U1). For instance, the likelihood of F2,2 existing in the workload would

be higher than the occurrence of either F1,3 or F2,1. Hence, it would be meaningful to

combine the two measures into a single Similarity Model.

The goal of this composite model is to determine a ranking function (Fx,y) derived

for the most similar query (Qy) to Qj given by the most similar user (Ux) to Ui to rank Qj’s

results. The process is performed as shown in Algorithm 1.

64

Input: Ui, Qj , Q, U , W

Output: Fx,y ∈W

1 foreach Qa ∈ Q do

2 Calculate similarity(Qj, Qa)

3 end

4 QS: sort(Q) // based on similarity with Qj

5 foreach Ub ∈ U do

6 Calculate similarity(Ui, Ub)

7 end

8 US: sort(U) // based on similarity with Ui

9 foreach Qp ∈ QS do

10 foreach Uq ∈ US do

11 Rank(Uq,Qp) = Rank(Uq) + Rank(Qp)

12 end

13 end

14 Fx,y = Get-RankingFunction()

Algorithm 1: Deriving Ranking Functions From W

The input to the algorithm is a user (Ui) and a query (Qj) along with the set of queries

(Q), users (U) and the workload (U) comprising of ranking functions. The algorithm

begins by determining the query-condition similarity (using Equation 3.2) between Qj and

every query in Q (Steps 1–3). Likewise, it determines the top-K user similarity (using

Equation 3.7) between Ui and every user in U (Steps 5–7). The queries in Q and the users

in U are then sorted based on their similarities with respect toQj and Ui respectively (Steps

4 & 8). Correspondingly, each user-query pair (obtained from the two sorted lists) receives

65

a rank which is an aggregate of their respective ranks in the sorted lists (Steps 9–13). For

instance, if Uq and Qp occur as the qth and pth elements in the respective ordered lists,

the pair (Uq, Qp) are assigned an aggregate rank (in this case, a rank of “q + p” will be

assigned). The “Get-RankingFunction” method (Step 14) then selects a ranking function

Fx,y such that the following two conditions are satisfied:

1. Condition-1: Fx,y ∈W, and

2. Condition-2: rank(Ux) + rank(Qy) is minimum

The first condition determines that a ranking function does exist for a pair to be

selected, whereas the second condition ensures that the selected function belongs to the

most similar query (to Qj) and the most similar user (to Ui).

Algorithm 1 only displays a higher-level view of finding a suitable function using

the Similarity Model. However, the process of estimating query similarities, user similar-

ities as well as traversing the workload to select an appropriate ranking function can be

computationally costly. Applying appropriate indexing techniques where estimating query

similarity can be reduced to a simple lookup of similarities between attribute value-pairs,

pre-computation of user similarity to maintain an indexed list of similar users for every

user, and maintaining appropriate data structures to model the matrix traversal as a mere

lookup operation are some of the preliminary approaches that we adopted to establish a

workable ranking framework. We discuss some of the preliminary results of efficiently us-

ing our framework in Section 3.6. Although there is great scope for devising techniques to

make the system scalable and efficient, the focus of this work was to propose techniques to

establish good ranking quality.

66

3.6 Experimental Evaluation

We have evaluated each proposed model (query-similarity and user-similarity) in iso-

lation, and then compared both these models with the combined model for quality/accuracy.

We also evaluated the efficiency of our ranking framework.

Ideally, we would have preferred to compare our approach against existing rank-

ing schemes in databases. However, what has been addressed in literature is the use of

exclusive profiles for user-based ranking (the techniques for the same do not distinguish

between queries) or the analysis of the database in terms of frequencies of attribute values

for query-dependent ranking (which does not differentiate between users). In the context

of Web databases like Google Base, the data is obtained on-the-fly from a collection of

data sources; thus, obtaining the entire database for determining the individual ranking

functions, for comparing with query-dependent ranking techniques, is difficult. Even if we

obtain ranking functions for different queries, all users will see the same ranking order for

a given query. Thus, comparing such static ordering of tuples against our approach (that

determines distinct ranking of tuples for each user and query separately) would not be a

meaningful/fair comparison. Likewise, we felt that the comparing only static user profiles

(that ignore the different preferences of the same user for different queries) to our pro-

posed definition of user similarity, for user-dependent ranking will not be fair. Hence we

have tried to compare the proposed user, query, and combined similarities to indicate the

effectiveness of each model with respect to the other two models.

Further, the context of recommendation systems is different from the one considered

in this paper; hence, the direct application of these techniques for comparing against our

framework was not feasible. We would also like to point out that unlike information re-

trieval, there are no standard benchmarks available and hence, we had to rely on controlled

user studies for evaluating our framework.

67

3.6.1 Setup

We used two real Web databases provided by Google Base. The first is a vehicle

database comprising of 8 categorical/discretized attributes (Make, Vehicle-Type, Mileage,

Price, Color, etc.). Although Price and Mileage are numeric, they are discretized a priori

by Google into meaningful ranges. In addition, for every attribute, the domain of values

(e.g., ‘Chevrolet’, ‘Honda’, ‘Toyota’, ‘Volkswagen’, ... for the Make attribute) is provided.

The second is a real estate database with 12 categorical/discretized attributes (Location,

Price, House Area, Bedrooms, Bathrooms, etc.). Google provides APIs for querying its

databases, and returns a maximum of 5000 results for every API query. Our experiments

were performed on a Windows XP Machine with a 2.6 GHz Pentium 4 processor and 4 GB

RAM. All algorithms were implemented in Java.

3.6.2 Workload Generation And User Studies

Our framework utilizes a workload comprising of users, queries and ranking func-

tions (derived over a reasonable set of user queries). Currently, user and query statistics

are not publicly available for any existing Web databases. Furthermore, establishing a real

workload of users and queries for a Web database would require significant support from

portals supporting Web databases such as Yahoo or Google – a task beyond the scope of

this dissertation. Hence, to experimentally validate the quality of our framework, we had

to rely on controlled user studies for generating the workload. For each database, we ini-

tially generated a pool of 60 random queries (comprising of conditions based on randomly

selected attributes and their values), and manually selected 20 representative queries that

are likely to be formulated by real users. Tables 3.11 and 3.12 show three such queries

over each database. The users in these experiments comprised of a combination of – real

Web users from Amazon Mechanical Turk (www.mturk.com), and graduate students and

faculty members from the University of Texas at Arlington.

68

Table 3.11. Sample Experimental Queries: Vehicle Database

Q1 “Make = Honda AND Location = Dallas,TX AND Price < $ 10,000”
Q2 “Make = Toyota AND Location = Miami,FL AND Price < $ 8,000”
· · · · · ·
Q10 “Location = Chicago,IL AND Mileage < 100,500 AND Year > 2004”
· · · · · ·

Table 3.12. Sample Experimental Queries: Real Estate Database

Q1 “Location = Dallas,TX AND Beds = 3 AND To = Buy”
Q2 “Location = Houston, TX AND Beds = 2 AND Bath = 2 AND To = Buy”
· · · · · ·
Q16 “Location = Boston,MA AND Type = Townhouse AND To = Rent”
· · · · · ·

We then conducted two separate surveys (one for each database) where every user

was shown 20 queries (one-at-a-time) and asked to input, for each query, a ranking function

by assigning weights to the schema attributes (on a scale of 1 to 10). For aiding the user in

expressing these preferences, we also displayed the set of results returned for each query.

In reality, collecting functions explicitly from users for forming the workload is far from

ideal; however, the focus of this work was on using, instead of establishing, a workload

for performing similarity-based ranking. Although generating a larger set of queries would

have been ideal for testing the framework, asking users to interact with more than 20 queries

would have been difficult. We would also like to indicate that as is the case with most

user studies in the domain of databases, obtaining a large number of users and queries to

participate in the corresponding survey is difficult and hence, these numbers are typically

very small (as seen by the user surveys conducted for database ranking in [43] [44] [36]).

Each explicit ranking provided by a user for a particular query was then stored in

the associated workload W. The vehicle database survey was taken by 505 users (i.e., 450

69

Mechanical Turk users and 55 student/faculty members) whereas the real estate database

survey was taken by 525 users who provided ranking functions for all the queries dis-

played to them. Thus, we generated a workload of 10,100 ranking functions for the vehicle

database and 10,500 functions for the real estate database.

It is evident that more the number of functions in the workload, better will be the

quality of ranking achieved (since more similar queries and users would be found for whom

functions exist in the workload). This hypothesis was further validated when we achieved a

better ranking quality when 50% of the workload was filled (i.e., 50% of the functions were

masked out) as compared to the one achieved when the workload contains 25% and 10%

of the total ranking function. However, for most Web databases, the workloads would gen-

erally be very sparse since obtaining ranking functions across a large number of user-query

pairs would be practically difficult. In order to show the effectiveness of our model for such

scenarios, we present the results when ranking functions exist for only 5% workload (i.e.,

95% of the functions are masked out). Hence, for the rest of the section, we consider the

workload for the vehicle database consisting only 505 (5% of 10,100) ranking functions,

and the real estate database comprising 525 ranking functions.

3.6.3 Quality Evaluation

We first present the results for individual similarity models before explaining the

results for the combined model.

3.6.3.1 Evaluation Of Query Similarity

Based on the two proposed models of query similarity (Section 3.3.1 and 3.3.2), in

the absence of a function Fi,j for a user-query pair (Ui, Qj), the most similar query (Qc

and Qr using the query-condition and the query-result model respectively) asked by Ui,

70

for which a function (Fi,c and Fi,r respectively) exists in the workload, is selected and the

corresponding function is used to rank Qj’s results.

We test the quality of both query similarity models as follows: We rank Qj’s re-

sults (Nj) using Fi,c (obtained from the query-condition model) and Fi,r (derived using the

query-result model) respectively, and obtain two sets of ranked results (R′ and R′′). We

then use the original (masked) function Fi,j to rank Nj and obtain the set (R). Since R

represents the true ranking order provided by Ui for Qj , we determine the quality of these

models by computing the Spearman rank correlation coefficient (Equation 3.8) between

R and R′, and between R and R′′. If the coefficients obtained are high (nearing 1.0), it

validates our hypothesis (that for similar queries, the same user displays similar ranking

preferences). Furthermore, if the coefficient between R and R′ is greater than the one be-

tween R and R′′, our understanding that query-condition model performs better than the

query-result model is validated.

We performed the above process for each user asking every query. Figure 3.4 shows,

for both databases, the average query-condition similarity (as well as the average query-

result similarity) obtained across every query. The horizontal axis represents the queries;

whereas the vertical axis represents the average value of the resulting Spearman coefficient.

As the graph shows, over both the domains, the query-condition model outperforms the

query-result model.

The graphs indicate that the comparative loss of quality (highest value of Spearman

coefficient being 0.95 for query 5) is due to the restricted number of queries in the workload.

Although finding a similar query (for which a ranking function is available) for a workload

comprising of 20 queries and only 5% of ranking functions is difficult, the results are very

encouraging. Based on the results of these experiments, we believe that the query similarity

model would perform at an acceptable level of quality even for large, sparse workloads.

71

Figure 3.4. Quality Of Query Similarity: Single Ranking Function.

We further tested this model for comparing the quality produced by applying an

aggregate function (i.e., selecting the top-K similar queries and combining their respec-

tive functions) instead of using the function of the most similar query. Since the ranking

function in our framework is a linear-weighted sum function, the aggregate function is

represented using a combination of average attribute-weights and average value-weights

(wherein the average values are obtained by aggregating the respective weights over the

top-K most similar queries provided by either of the two models, and then, dividing each

of these values by K). In this set of experiments, we varied the values of K from 2, 4, 5

72

Figure 3.5. Quality Of Query Similarity: Aggregate Ranking Function.

and 10. For a value of K = 5, the query-condition-similarity model produced an overall

average value of 0.86 for the Spearman coefficient (versus the 0.91 obtained if a single

function of the most similar query is used) for the vehicle database. Similarly, a value of

0.83 was obtained for the query-result-similarity model (versus the 0.86 obtained for a sin-

gle function). A similar trend was observed for the real estate database as well. Figure 3.5

shows the results of applying such an aggregate function (over top-5 queries) for all users

asking every query over both databases.

73

3.6.3.2 Evaluation Of User Similarity

We validate the quality of all versions of the User Similarity models, described in

Section 3.4, as follows: Using the original function given by a user Ui for Qj , we obtain a

ranked set of results R. Then we determine, for all the proposed models, the corresponding

user Ul most similar to Ui having function Flj in the workload. Using the corresponding

function for each case, we get the ranked set of results (i.e., Ri for query-independent, Rc

for clustered, Rs for strict top-K, Ru for user-based top-K, and Rw for workload-based

top-K) and compute the Spearman coefficient between each of these ranked sets and R. In

our experiments, we set a value of K = 5 for the K-means algorithm, and a value of K = 2

was chosen for the top-K models as our workload (in the number of queries) is small.

Figure 3.6 shows the average ranking quality individually achieved for the vehicle as

well as real estate database, across all queries for all users taking the survey. Our results

clearly show that the strict top-K model performs consistently better than the rest.

However, as Figure 3.7 shows, the strict top-K (as well as the clustered and user

top-K) fail to find functions10 for several queries (shown for a randomly selected user U27).

Figure 3.8 further confirms this fact by comparing the different models, in terms of their

ability to determine ranking functions, across the entire workload. In spite of this, the

accuracy of the strict top-K model is superior to all other models when a ranking function

can be identified. Only when a ranking function cannot be found, using the strict top-

K model does not make sense. We have proposed a suit of models (such as clustered,

user top-k, workload-based top-k as well as query-independent) precisely for this reason

and together will cover all the scenarios encountered in a sparse workload to provide a

meaningful ranking function.

10In the graph shown in Figure 3.7, the user-based and workload-based top-K models produce identical

results since the number of queries in the workload is very small. Hence, the plots for these two models

overlap and hence, cannot be distinguished in the graph.

74

Figure 3.6. Quality Of User Similarity.

Similar to the Query Similarity model, using an aggregate function (i.e., derived by

combining functions of top-K most similar users) did not provide any improvement in the

quality of ranking than the one achieved by using a single function of the most similar user;

hence, we do not include the details of these experiments.

3.6.3.3 Evaluation Of The Holistic Similarity Model

Finally, we evaluated the quality of the holistic similarity model using the steps de-

scribed in Algorithm 1. Figures 3.9 and 3.10 show the average quality of this model for

75

Figure 3.7. Quality Of User Similarity For An Individual User.

Figure 3.8. Number Of Functions Available For User Similarity Models.

the vehicle and real estate database respectively. We observe that the effect of this model

is enhanced, compared to the individual models, when the sparseness of the workload in-

creases (i.e., the number of ranking functions decreases roughly from 500 to 100 for both

databases). However, the overall average value of the spearman coefficient, and hence, the

average ranking quality decreases with increasing workload sparseness. This matches the

intuition that with more ranking functions in the workload, one is likely to find a good

ranking function for a pair with better similarity value.

76

Figure 3.9. Ranking Quality of Holistic Similarity Model: Vehicle Database.

For instance, in the vehicle database, the composite model achieved an average

Spearman coefficient (across all users asking all queries) of 0.89 versus the 0.85 achieved

by the user similarity model and 0.82 achieved by the query similarity model when 95% of

the functions were masked (i.e., out of the 5000 results for the query, the combined simi-

larity model correctly ranked 4450 tuples versus the user and query similarity model that

correctly ranked 4250 and 41000 tuples respectively). However, when 99% of the func-

tions were masked, the composite model achieved a 0.77 Spearman coefficient versus the

0.72 and 0.71 achieved by the user and query similarity models respectively (i.e., the com-

bined model correctly ranked 3850 tuples whereas the user and query similarity models

correctly ranked 3600 and 3550 tuples respectively). A similar trend is seen for the real

77

Figure 3.10. Ranking Quality of Holistic Similarity Model: Real Estate Database.

estate database as well. Furthermore, user similarity shows a better quality than the query

similarity. Since the averages are presented, one reason for the user similarity to be better

is that in most cases a similar user is found due to the larger number of users than queries

in our experimental setting.

3.6.4 Efficiency Evaluation

The goal of this study was to determine whether our framework can be incorporated

into a real-world application. Rather than explore new indexing algorithms and/or data

structures, our focus was to use known indexing and hashing techniques to efficiently store

our workload, perform search and compute ranking. We believe this can be improved

78

further. We generated a workload comprising of 1 million queries and 1 million users, and

randomly masked out ranking functions such that only 0.001% of the workload was filled.

We then generated 20 additional queries and selected 50 random users from the workload.

We measure the efficiency of our system in terms of the average time, taken across all users,

to perform ranking over the results of these queries.

If we use main memory for storing the workload and not use any pre-computation and

indexing for retrieval, determining similarities are computational bottlenecks. In order to

reduce the time for estimating query similarities, we can pre-compute pairwise similarities

between all values of every attribute in the schema. Since most Web database have 10-

50 attributes, pre-computing these pairwise similarity values once, and storing them is

not a problem. Furthermore, in order to reduce the time to lookup every query in the

workload and then evaluate its similarity with the input query, we use a value-based hashing

technique [43] to store all the queries in the workload. Likewise, all users are stored using

a similar technique where the values corresponding to a user refer to various properties of

the user profile.

Figure 3.11 show the performance of our framework using naive (where all steps are

done in main memory at query time) and pre-computed/hash-based approaches (where sim-

ilarities are pre-computed and the values are stored using hashing) for both databases. As is

expected the naive approach is an order of magnitude slower than the other approach. For

the vehicle database, Google Base provides unranked results in approximately 1.5 seconds.

Our hash-based pre-computed system takes an average of 2.84 seconds (including Google

Base response time) to rank and return the results. Our system adds, on the average, 1.3

seconds to return results using query- and user-dependent ranking. Likewise, for the real

estate database, our system takes an average of 2.91 seconds (as compared to 2 seconds for

Google Base) adding less than a second for the improved ranking.

79

Figure 3.11. Ranking Efficiency Of Combined Similarity Model.

Although our system adds approximately a second over Google to display the results,

the user is getting a customized, ranked result as compared to a one-size-fits-all ranking.

We believe that if, the ranking produced is desirable to the users, the extra overhead added

would still be tolerable as compared to displaying unranked results. The fact is that over two

distinct databases having different schema, with a workload of 1 Million users and queries

each, the results show that this framework can be incorporated into a real-life application.

Finally, as we indicated earlier, the performance can be improved further.

80

3.7 Deriving Individual Ranking Functions For The Workload

Our proposed framework uses a workload of ranking functions derived across sev-

eral user-query pairs. Since a ranking function symbolizes an user’s specific preferences

towards individual query results, obtaining such a function (especially for queries returning

large number of results) is not a trivial task in the context of Web databases. Furthermore,

since obtaining ranking functions from users on the Web is difficult (given the effort and

time the user needs to spend in providing his/her preferences) determining the exact set

of ranking functions to be derived for establishing the workload is important. Although

we discuss the latter problem in the next Chapter, we present a learning technique for the

former in this Chapter. Prior to explaining the proposed technique, we briefly discuss the

possible alternatives in deriving individual ranking functions.

3.7.1 Alternatives For Obtaining A Ranking Function

Given a user U , a queryQ and its resultsN , the ranking function (FU ,Q) corresponds

to the preference associated to each tuple (inN) by U . A straightforward alternative for de-

rivingFU ,Q would be to ask U to manually specify the preferences as part ofQ; a technique

adapted in relational databases [37] [38] [39] [40] [41]. However, Web users are typically

unaware of the query language, the data model as well as the workings of a ranking mech-

anism; thus, rendering this solution unsuitable for Web databases.

Since Web applications allow users to select results of their choice by an interaction

(clicking, cursor placement, etc.) with the Web page, a feasible alternative for obtaining

FU ,Q would be to analyze U ’s interaction over N ; an approach similar to relevance feed-

back [71] in document retrieval systems. However, mandatorily asking U to iteratively

mark a set of tuples as relevant (and non-relevant) i.e., obtaining explicit feedback, may

be difficult since Web users are typically reluctant to indulge in a lengthy interactions.

Although providing various incentives to users (as done by routine surveys conducted by

81

portals such as Yahoo, Amazon, etc.) is possible, an explicit feedback approach appears

impractical in the domain of most Web databases.

In contrast, since most users voluntarily choose a few tuples for further investiga-

tion (typically by interacting with the database application via operations such as clicking,

cursor placement, etc.), applying implicit feedback (where these selected tuples can be

analyzed without U ’s knowledge) to obtain FU ,Q seems a more practical alternative. How-

ever, determining the number of tuples to be selected for generating an accurate function

is difficult. This problem is further compounded by the fact that most users typically se-

lect very few tuples from the displayed results. An alternative to this problem would be to

display an appropriately chosen sample, instead of the entire set of tuples, and determine

FU ,Q based on the tuples selected from this sample (and extrapolate it over the entire set

of results). Although determining an appropriate sample and validating the corresponding

function obtained is difficult, we believe that there is scope to further investigate this prob-

lem and derive relevant solutions. In this dissertation, we present a preliminary solution, in

the form of a learning model, to obtain the requisite function FU ,Q using one such implicit

technique.

3.7.2 A Probabilistic Learning Model

For a query Q given by user U , we have at our disposal the set of query results N

generated by the database. Let R (⊂ N) be the set of tuples selected implicitly by U . For

an attribute Ai, the relationship between its values in N and R can capture the significance

(or weight) associated by U for Ai. As discussed in Section 3.2, our ranking function

is a linear combination of attribute-weights and value-weights. We propose a learning

technique called the Probabilistic Data Distribution Difference method for estimating

these weights.

82

Figure 3.12. Probability Distribution Difference: Retrieved v/s Selected Results.

3.7.2.1 Learning Attribute-Weights

From Example-2, we know that U1 is interested in ‘red’ colored ‘Honda’ vehicles.

Correspondingly, let us consider U1’s preferences towards the “Color” and “Mileage” at-

tributes, and consider the individual probability distributions (shown in Figure 3.12) of their

respective values in sets N and R. Since the set R will contain only ‘red’ colored vehicles,

there is a significant difference between the distributions (for “Color”) in R and N . In

contrast, assuming that U1 is not interested in any particular mileage, the difference in the

distributions for “Mileage” over sets R (which will contain cars with different mileages)

and N is small.

Based on this observation, we can hypothesize that – for an attribute Ai, if the dif-

ference in the probability distributions between N and R is large, it indicates that Ai is

important to the user, and hence, will be assigned a higher weight, and vice versa. The

attribute weights are estimated formally, using the popular Bhattacharya distance (DB)

measure [72]. If the probability distributions for the values of attribute Ai in sets N and R

are Np and Rp respectively, the attribute-weight (WAi
) of Ai is given as:

WAi
= DB (Np, Rp) = −ln (BC(Np, Rp)) (3.9)

83

where BC (Bhattacharya coefficient) for categorical and numerical attributes is given in

Equations 3.10 and 3.11 as:

BC(Np, Rp) =
∑
x∈X

√
Nx, Rx (3.10)

BC(Np, Rp) =

∫ √
Nx, Rx dx (3.11)

3.7.2.2 Establishing Value-Weights

In order to rank the results of a query (using Equation 3.1), it is necessary that the

score associated with every tuple is on a canonical scale. Although the attribute-scores

estimated using the Bhattacharya Distance are between [0.0,1.0], the values in the tuples

may have different types and ranges. Hence, we need to normalize them to obtain the

necessary value-weights.

Since we have assumed that numerical attribute values are discretized using an ap-

propriate scheme (Section 3.3.1), we normalize only categorical attributes (e.g., “Make”,

“Color”, etc.) using a frequency-based approach. For the query Q by U , let a be the value

of a categorical attribute Ai. The value-weight (aweight) is given (by Equation 3.12) as the

ratio of the frequency of a in R (ar) with its frequency in N (an).

aweight =
ar/|R|
an/|N |

(3.12)

3.7.3 Learning Model Evaluation

We test the quality of our proposed learning method (Probabilistic Data Distribution

Difference) in deriving attribute-weights for a user query. In an ideal scenario, using the

feedback (i.e., tuples selected) provided by an user over a query’s results, a ranking function

84

would be deduced using the learning model. The quality of this function, however, can only

be evaluated the next time the same user asks the same query, and would be estimated in

terms of the percentage of the top-k results generated (by this function) that match the

user’s preferences. In an experimental setting, asking a user to select tuples (from a large

set) once, and then validate the function by asking the same query again would be difficult.

Consequently, we test the quality of the proposed learning model as follows: From

the workload in Section 3.6.2, we have at our disposal ranking functions provided by users

over 20 distinct queries on two databases. Consider query Q1 (with results N1) for which a

user U1 has provided a ranking function (F1,1). Using this function, we rank N1 to obtain

Nr1, and select a set of top-K tuples (from this ranked set) as the set (R1) chosen by U1.

Using our learning model, we derive a ranking function (F ′1,1) comparing N1 and R1. We

then use F ′1,1 to rank Q1’s results and obtain N ′r1. The quality of the learning model is

then estimated as the Spearman rank correlation coefficient (Equation 3.8) between Nr1

and N ′r1. Higher the value of this coefficient, better is the quality of the ranking function

(and the model), and vice-versa.

In our experiments, we chose an initial value of K = 25 i.e., we choose the top-25

tuples generated by the user’s original ranking function as the set R since a Web user, in

general, selects a very small percentage of the top-K tuples shown to him/her. The model

was also tested with R varying from 10 to 50 tuples. Below, we present the evaluation

when the set R contains 25 and 10 tuples respectively. We validate the ranking quality of

our proposed learning model to the quality achieved by using two established and widely-

used learning models – Linear Regression and Naive Bayesian classifier. Figures 3.13

and 3.14 compares the average ranking quality achieved by the models, for R = 25 and R

= 10 respectively, in deriving ranking functions for each individual query for all the users

in both databases. As the figure illustrates, for the vehicle database, our proposed model

attains an average value of 0.88 for the Spearman coefficient, as compared to the average

85

Figure 3.13. Ranking Quality Evaluation Of Learning Models: Top-25 Selection.

values obtained by Linear Regression (0.81) and Naive Bayesian classifier (0.66). These

values indicate that the proposed learning model derives a ranking function that yields a

ranking order that is very close to the order desired by the user, than the ones generated by

the other two learning models. Furthermore, it can be observed that the learning models

perform significantly better when the size of R increases (as seen when an average value of

0.82 is obtained whenR = 10 as compared to 0.88 produced whenR = 25); thus, indicating

that greater the number of interactions of the user with the query results, better will be the

quality of the eventual ranking function inferred from these interactions. A similar trend

can be observed for the real estate database as well.

In order to prove the generic effectiveness of our model, the R is now chosen using

different sampling techniques (instead of top-25). It is natural that based on users’ prefer-

ences, higher ranked tuples (from Nr1) should have a higher probability of being sampled

than the lower ranked ones. Hence, the sampling technique we choose selects the required

R = 25 tuples using following Power-Law [73] distributions: Zipf, Zeta, and Pareto. Fig-

ure 3.15 compares the quality of our learning model (shown by vertical bar in the graph)

with the other models across both databases using different sampling schemes. The results

clearly indicates that our proposed method performs significantly better than the popular

86

Figure 3.14. Ranking Quality Evaluation Of Learning Models: Top-10 Selection.

Figure 3.15. Ranking Quality Evaluation Using Power-Law Sampling Schemes.

learning models. These results also validate our claim of learning using feedback as a

suitable alternative to obtaining ranking functions for generating workloads.

3.8 Conclusion

In this Chapter, we proposed a user- and query-dependent solution for ranking query

results for Web databases. We formally defined the similarity models (user, query and

holistic) and presented experimental results over two Web databases to corroborate our

87

analysis. We demonstrated the practicality of our implementation for real-life databases.

Further, we presented a learning method for inferring individual ranking functions.

In the context of Web databases, an important challenge is the design and mainte-

nance of an appropriate workload that satisfies properties of similarity-based ranking. We

address this challenge and present a solution for the same in the next Chapter.

CHAPTER 4

ESTABLISHING A WORKLOAD FOR SIMILARITY RANKING

An important component of the similarity-based ranking framework [49] [50] (dis-

cussed in Chapter 3) is a workload of ranking functions, where each function represents an

individual user’s preferences towards the results of a specific query. At the time of answer-

ing a query for which no prior ranking function exists, the similarity model can ensure a

good quality of ranking only if a function for a very similar user-query pair exists in this

workload.

Accordingly, in this Chapter, we address the problem of determining an appropri-

ate set of user-query pairs to form a workload of ranking functions for supporting user-

and query-dependent ranking in Web databases. We propose a novel metric, termed work-

load goodness, that quantifies the notion of a “good” workload into an absolute value.

The process of finding such a workload of optimal goodness is a combinatorially explo-

sive problem; therefore, we propose a heuristic solution, and advance three approaches for

determining a workload with acceptable goodness, in a static as well as a dynamic environ-

ment. We discuss the effectiveness of our proposal analytically as well as experimentally

over two Web databases.

4.1 Introduction

In order to support a holistic scheme for user- and query-dependent ranking in Web

databases, we proposed a novel similarity-based framework in Chapter 3. This frame-

work selects a suitable ranking function from a workload comprising of a number of such

functions collected across several user-query pairs. Each ranking function in the work-

88

89

Figure 4.1. Sample Queries Q, Users U , Pairs P & Workload.

load represents the preferences of a distinct user over the results of a specific query, and is

selected on the assumptions that: i) for the results of a given query, similar users display

comparable ranking preferences, and ii) a user displays analogous ranking preferences over

results of similar queries. It is important to note that the concept of a workload used in the

context of similarity-based ranking is significantly different from the one used in traditional

databases. In the former, it represents a collection of user-query pairs along with individual

ranking functions associated with each of these pairs; in contrast, it pertains to a simple log

of queries for the latter’s context.

The notion of such a workload is further illustrated by Figure 4.1. Let Q = {Q1, Q2,

..., QN} and U = {U1, U2, ..., UM}, respectively, represent a large set of queries and users

over a Web database. The set P = {(U1, Q1), (U2, Q1), ..., (U1, Q1), ..., (UM , QN)} (of size

M ∗N) is the Cartesian product of the setsQ and U . Accordingly, the workload is defined

as a onto mapping between two sets – WK and FK , of size1 K, such that:

• WK = {(Ua1 , Qb1), (Ua2 , Qb2), ..., (UaK , QbK)} where WK $ P , and

• FK = {FUa1 ,Qb1
, FUa2 ,Qb2

, ..., FUaK
,QbK
} where each FUai ,Qbi

represents the ranking

function for the user-query pair (Uai , Qbi).

1The size of K can vary between 0 and M ∗N

90

At the time of answering a query Qj (∈ Q) asked by a user Ui (∈ U), if (Ui, Qj)

/∈WK , the similarity model employs Algorithm 1 (detailed in Section 3.5 of Chapter 3) and

orders all users in U based on their similarity with Ui. Likewise, based on their similarity

with Qj , it orders all queries in Q. Each user-query pair in P , then, receives a rank with

respect to the pair (Ui, Qj), that is computed using the individual ranking positions of the

query and user (within the pair) in the respective ordered lists of queries and users.

Given that every pair ∈ P receives a rank with respect to every other pair (∈ P),

these ranks can be represented in the form of a rank matrix R (of size M ∗ N X M ∗ N)

where the rows as well as columns represent each distinct pair from P . Table 4.1 shows

an example of such a matrix formed over the user-query pairs in P from Figure 4.1. Each

cell (e.g., R[2][1]) of this matrix represents the rank of the pair representing the column

(in this case, (U1, Q1)) with respect to the pair representing the row (i.e., (U1, Q2)) and is

represented asRank[(U1, Q2), (U1, Q1)]. Formally, given two pairs, (Ux, Qy) and (Ui, Qj),

the rank Rank[(Ui, Qj), (Ux, Qy)] is computed as shown in Equation 4.1.

Rank[(Ui, Qj), (Ux, Qy)] = RUx
Ui

+R
Qy

Qj
(4.1)

where, RUx
Ui

is the rank of Ux with respect to Ui in the ordered list of queries from U .

Likewise, RQy

Qj
is the rank of Qy with respect to Qj in the ordered list of queries from Q.

Thus, for a given pair (Ui, Qj) the similarity model selects, amongst the cells in the

row corresponding to (Ui, Qj), the cell (e.g., (Ux, Qy)) with the highest rank (with respect

to (Ui, Qj)) such that (Ux, Qy) ∈WK .

Based on the definition of the similarity model, if Ux and Qy have a very high sim-

ilarity with respect to Ui and Qj , the corresponding pair (Ux, Qy) will receive a very high

rank, and therefore, a good quality of ranking will be obtained after applying FUx,Qy to

the results of Ui. In contrast, if the similarity between Ux and Ui (and/or between Qy and

91

Table 4.1. Sample Rank Matrix For Set P

(U1, Q1) (U1, Q2) ... (U2, Q1) ... (Un, Qm)
(U1, Q1) 0 7 ... 21 ... 966
(U1, Q2) 81 0 ... 467 ... 45

...
(U2, Q1) 515 171 ... 0 ... 710

...
(Un, Qm) 981 771 ... 481 ... 0

Qj) is very low, the subsequent quality of ranking will be poor. Thus, we can informally

hypothesize that the workload is a good workload if, for any query Qj (∈ Q) asked by any

user Ui (∈ U), there exists at least one pair (e.g., (Ux, Qy)) ∈WK such that the similarity

between the queries Ux and Ui, and the similarity between users Qy and Qj , is very high.

The task of establishing such a good workload involves several challenges. For in-

stance, determining the appropriate WK i.e., the set of K user-query pairs from P is an

important problem. Likewise, we need to obtainK suitable ranking functions, one for each

distinct pair in this set WK , to form the set FK . Currently, the similarity model acquires

each ranking function via a learning model [49] (discussed in Chapter 3) that analyzes the

user’s interactions with the query results. Given the time and effort a user needs to spend

in selecting results of his/her choice, obtaining a large number of functions for various

user-query pairs is difficult. Hence, determining a pragmatic value for K i.e., the number

of functions that can be actually obtained, is vital. In addition, each ranking function is

derived based on the relationship between a sample of selected tuples and the entire set of

query results. Given that the similarity between users is computed based on these collected

ranking functions, evaluation of these functions becomes crucial. Furthermore, the above

discussion assumes a static collection of queries and users over the Web database. However,

in a real setting, the number of users and queries change over time; hence, incorporating

these changes while establishing the workload is important.

92

In this work, we concentrate on the problem of forming WK in a static as well

as dynamic environment i.e., given P , our task is to determine an appropriate set of K

user-query pairs such that whenever the corresponding functions are obtained for these

pairs, the result will be a good workload. We term this as the Workload Filling Problem.

The choice of an appropriate K (i.e., the size of the sets WK , and hence, FK) may be

determined based on the database and other pragmatic issues such as incentive mechanisms

used for that purpose. Further, we assume that for a given WK , the resulting FK can be

subsequently established (using the learning model given in Section 3.7.2); thereby yielding

the necessary workload2.

In order to formalize the Workload Filling problem, we need to translate the above

hypothesis, of determining a good set of K pairs, into a standard model. Toward that, we

propose a novel metric, termed the workload goodness metric, that assigns a value of good-

ness to a given WK . As elaborated later in Section 4.2, lower the estimated value of this

metric (represented as G(Q, U ,WK)), better is the quality of the corresponding workload

and vice-versa. Thus, our goal is to determine WK such that for this set of pairs, the value

of G(Q, U ,WK) is as low as possible. However, the process of determining a workload

that yields an optimal goodness value leads to a combinatorial explosion (elaborated in

Section 4.2.1) when the sizes of Q and U are very large3. Hence, we propose a heuristic

solution and advance three distinct approaches:

1. Independent Rank-based Selection,

2. Independent High Rank-based Selection, and

3. Cumulative Selection.
2Since the focus is on establishing WK , the terms workload and WK are used interchangeably.
3Typically, the number of users and queries on most real Web databases are extremely large, whereas the

value of K is typically much smaller than the number of users and/or queries.

93

Further, given that the queries and users on a Web database change frequently, the

proposed approaches can be adapted such that the set of K pairs can be determined in a

static as well as dynamic (or incremental) fashion.

Contributions: The contributions of this work are -

• Formulation of a workload model, as a set of user-query pairs (coupled with their

respective ranking functions), to support user- and query-dependent ranking using

the similarity model.

• A novel metric of Workload Goodness that translates the hypothesis behind a “good”

workload into an absolute value.

• Given the intractability in determining a WK of optimal goodness for a given K, a

heuristic solution to the Workload Filling Problem is proposed. Three approaches

based on different heuristics for determining WK in a static and dynamic environ-

ment are presented.

• An elaborate set of experimental results that establishes the quality and efficiency of

our proposal.

Roadmap: Section 4.2 formally defines the Workload Filling problem, and introduces the

metric of workload goodness. Section 4.3 elaborates on the proposed heuristic solution and

the details of the algorithms. The results of experimental evaluation in terms of quality and

efficiency are discussed in Section 4.4 and we conclude in Section 4.5.

4.2 Problem Statement

We begin by defining the workload goodness metric, and then provide a formal def-

inition for the Workload Filling Problem. Further, we explain the difficulty in determining

the set of user-query pairs that yield an optimal goodness, and motivate the need for heuris-

94

tic solutions to the problem. We also provide a brief discussion on the applicability of our

proposal for establishing a workload in static as well as dynamic environments.

4.2.1 The Workload Goodness Metric

Based on the explanation of the similarity model in Chapter 3, for a user Ui asking a

query Qj , the user-query pair (e.g., (Ux, Qy)) having the highest rank amongst all pairs in

WK is chosen. If the individual ranks of Ux (w.r.t. Ui) and Qy (w.r.t Qj) within the ordered

lists of queries and users in Q and U are very high, the resulting Rank[(Ui, Qj), (Ux, Qy)]

will be high; hence, applying the corresponding FUx,Qy to Ui’s results will yield a good

quality of ranking order. In contrast, if the ranks of Ux and/or Qy are very low, the subse-

quent quality of ranking will be poor.

Accordingly, we can assign a measure of goodness, in terms of the rank of the se-

lected user-query pair ((Ux, Qy) ∈WK), to the overall quality of ranking achieved. Higher

the rank of the selected pair, better is the goodness of the ranking order, and vice versa.

Thus, over the entire set P , we can associate a goodness to the WK based on the contribu-

tion of the pairs within WK toward the subsequent quality of ranking. We term this as the

workload goodness metric, represented as G(Q,U , WK). Without loss of generality and

for the sake of simplicity, if we represent WK as – {(Ux1 , Qy1), (Ux2 , Qy2), ..., (Uxk
, Qyk)},

then G(Q,U , WK) is computed as shown in Equation 4.2.

G(Q,U ,WK) =

∑|U|
a=1

∑|Q|
b=1Rank[(Ua, Qb),WK]

|U| ∗ |Q|
(4.2)

where, using Equation 4.1,

Rank[(Ua, Qb),WK] =MIN(Rank[(Ua, Qb), (Uxp , Qyp)] | (Uxp , Qyp) ∈WK) (4.3)

95

Intuitively, the workload goodness metric assigns a goodness value to each user-

query pair (e.g., (Ua, Qb) in P), that in turn, is the rank of user-query pair (e.g., (Uxi
, Qyi)

∈WK) that attains the highest rank, amongst all pairs in WK , with respect to (Ua, Qb).

Lower the value obtained for G(Q,U , WK), better is the goodness of the resulting work-

load, and vice-versa.

Bounds For G(Q,U , WK): Consider any arbitrary user-query pair (say Ui, Qj) in

P . The optimal value of the rank of this pair i.e., Rank[(Ui, Qj),WK] is derived from

Equation 4.3, and is computed as:

Rank[(Ui, Qj),WK] = 0 if (Ui, Qj) ∈WK (4.4)

= 1 otherwise4

Thus, over the entire set P (of size M ∗N), if each pair (e.g., Ui, Qj /∈WK) receives

an optimal value (from Equation 4.4) of 1 for Rank[(Ui, Qj),W], the resulting optimal

value (from Equation 4.2) for G(Q,U , WK) will be:

G(Q,U ,WK) =
M ∗N − |WK |

M ∗N
(4.5)

Consequently, Table 4.2 shows the resulting goodness values for different sizes of

WK computed from Equation 4.5. Based on this, it can be conclusively stated that the

bounds i.e., the best- and worst-case values for G(Q,U , WK) are 0 and (approximately)

M ∗ N respectively. It can be further observed that the (optimal value of) goodness de-

creases in a strictly monotonic manner. This further validates the hypothesis that the choice

of establishing an appropriate K is a pragmatic problem, instead of a theoretic problem.

4The highest rank of 0 is assigned to the pair itself, the next highest possible rank, computed by Equa-

tion 4.1, of a user-query pair with respect to a given pair is 1.

96

Table 4.2. Impact Of |WK | On Optimal Goodness

|WK | Optimal G(Q,U , WK)
1 (M * N-1)/M * N
K (M * N - K)/M * N

K+1 (M * N- K-1)/M * N
M * N 0

4.2.2 The Workload Filling Problem

Consider Q ={Q1, Q2, ..., QN} and U = {U1, U2, ..., UM} respectively representing

a large set of queries and users over a Web database D, and let K be the size of WK to be

established for assisting the similarity-based ranking framework.

Definition Given Q, U , P , and K, the Workload Filling Problem can be defined as the

task of determining, from the total of M ∗N user-query pairs, a set of K pairs to form WK

such that given any other W′
K of size K, G(Q,U , WK) ≤ G(Q,U , W′

K).

The above definition is based on the simplest case of the filling problem i.e., it con-

siders a pre-defined size for sets Q and U . Further, it presumes that once established, the

similarities between individual pairs of queries and users do not change. However, in the

case of real Web databases, users and queries keep changing. Further, as new queries are

added (to set Q), the orderings of queries with respect to each other are likely to change.

Similarly, as ranking functions are subsequently obtained for the pairs corresponding to

WK , similarities between users and hence, orderings of users are likely to change. Thus,

a solution to the Workload Filling problem should be able to determine the requisite set of

user-query pairs in a –

1. Static environment i.e., when users, queries and similarities do not change, and a,

2. Dynamic environment i.e., when users, queries and/or similarities change over time.

Brute-force solution: In order to determine a WK of size K that yields the lowest pos-

sible value for G(Q,U , WK), we need to generate a total of
(
M∗N
K

)
sets of user-query

97

pairs. The best WK will then be the one that yields the optimal value for G(Q,U , WK)

amongst all these configurations. However, in the case of most Web databases, the total

number of queries and users are typically very large in order of tens of thousands; hence,

the computation for finding the optimal WK will lead to a combinatorial explosion (since

it is exponential on K).

Thus, finding an optimal set WK for real Web databases is infeasible in practice.

Heuristic solution: In this paper, we propose a heuristic solution to the Workload Filling

Problem, and present three distinct approaches using different heuristics. Each of the three

solutions are capable of determining the set of K pairs in a static as well as dynamic

environment. As we shall observe in Section 4.3, the algorithmic model that determines

the requisite pairs is identical for both, the static as well as dynamic environment. Prior

to elaborating the solution, we provide a brief discussion on generating the initial set of

queries and users, and establishing the subsequent query and user similarities from which

an initial set of K pairs can be formed in a static environment.

4.2.3 Generating Q, U , and Subsequent Similarities

The schema used for querying Web databases typically represents a single table with

a small set of attributes. Barring a few (e.g., Location), the domain of each attribute is

typically small in size and does not change frequently. In addition, it is intuitive that the

queries asked by most Web users tend to be formed on a small subset of popular domain

attributes (e.g., price, mileage, model, etc. for a Vehicle database). Correspondingly, the

set Q can be generated such that it contains queries with varying number of attributes that

involve different combinations of these popular attributes and their corresponding values.

Further, using Equation 3.2, initial similarities between each pair of the generated queries

can be computed. From these similarities, we can determine, for each query, an ordering

of the remaining queries.

98

In contrast to query similarities, establishing pairwise similarities between users is

not straightforward. From Equation 3.7, pairwise similarities are calculated based on the

ranking functions associated with the corresponding users over the same set of queries.

Similar to the cold-start problem encountered in recommender systems [74], if there exist

no common queries between a given pair of users, computing similarity between them is

not possible. In the context of Web databases, this is a common problem since not all users

will have asked the same set of queries; thus, obtaining for any given user, an ordering of

all users in U may not be possible. We overcome this problem by assigning an equal and a

very small value of similarity to those users whose similarities with a given user cannot be

computed. Thus, these users will be assigned an equal but a very low rank in the ordered

list of users with respect to the given user.

4.3 Heuristic Solution To The Workload Filling Problem

In order to illustrate our proposed solution, we use the following scenario as a run-

ning example for this Section.

Example-3: Consider a sample setQ = {Q1, Q2, Q3} and a sample set U = {U1, U2}. The

resulting set, P (i.e., Q X U), of user-query pairs5 is shown in Figure 4.2. Table 4.3 shows

for each user-query pair, the ranks of the remaining pairs computed using Equation 4.1

(from Section 4.1). Our goal is to determine a set of K=2 user-query pairs to form the set

WK . Using a brute-force solution, Equation 4.2 will generate two configurations – W1
K =

{P1, P5}, and W2
K = {P1, P6} that both yield an optimal value of 0.83 for the Workload

Goodness metric. The objective of the heuristic solution thus, is to obtain a configuration

of pairs that returns a goodness value close to this optimal value.

5For the sake of simplicity, we assign an alias to each user-query pair (e.g., P2 for the pair U1, Q2).

99

Figure 4.2. Example-3: Sample Workload.

Table 4.3. Example-3: Ranked Ordering Of User Query Pairs

Ranks 0 1 2 3 4 5
P1 P1 P4 P2 P3 P6 P5

P2 P2 P1 P3 P4 P5 P6

P3 P3 P1 P2 P4 P6 P5

P4 P4 P3 P1 P2 P5 P6

P5 P5 P6 P1 P2 P3 P4

P6 P6 P5 P4 P3 P2 P1

4.3.1 Independent Rank-Based Selection

This approach avails of the fact that every user-query pair has a rank with respect to

every other pair in the set of P pairs. Further, it follows the underlying assumption of the

similarity model i.e., if a pair (say P1) is very similar, and thus, has a very high rank with

respect to a given user-query pair (say P2) applying the ranking function collected for P1,

to the query in P2, will yield a good quality of ranking.

Correspondingly, this approach uses the notion of an average rank to determine the

set of K pairs for representing WK . Given that a pair (e.g., Pi ∈ P) has a rank with respect

to every other pair (as shown in Equation 4.1), the average rank of pair Pi is computed as

shown in Equation 4.6.

Ravg(Pi) =

∑M∗N
r=1 Rank[Pr, Pi]

M ∗N
(4.6)

Thus, the average rank for every user-query pair in P will be computed, and the

top-K highest ranked pairs will be selected to represent the set WK . Since this method

100

Table 4.4. Example-3: Independent Rank-based Selection Results

User-query Pairs P1 P2 P3 P4 P5 P6

Average Rank-based Score 1.83 2.33 2.16 2.33 3.16 3.16

Table 4.5. Example-3: Individual & Overall Goodness of W = {P1, P3}

Configurations P1 P2 P3 P4 P5 P6 Overall
Resulting Goodness 0 1 0 1 2 3 1.16

chooses the K pairs in an independent manner, this is termed as the Independent Rank-

based Selection approach.

Considering the ranks for the pairs, shown in Table 4.3, for the scenario in Example-

3, the average ranks for each pair is computed using Equation 4.6 and is shown in Table 4.4.

The pairs P1 (average rank = 1.83) and P3 (average rank = 2.16) attain the highest average

ranks. Selecting these pairs to represent WK = {P1, P3}, the overall goodness can be

estimated across each individual pair {P1, P2, ..., P6} (as the highest rank of a pair in WK

with respect to a given pair) and is shown in Table 4.5. The overall goodness, derived

from Equation 4.2, will be 1.16 (computed as (0+1+0+1+2+3)/6). In contrast, choosing

an arbitrary set of pairs (say, P2 and P4) will generate a goodness of 1.33 which is farther

from the optimal value of 0.83. Thus, this approach yields an acceptable solution to the

Workload Filling problem.

Time Complexity: Consider a static environment wherein the users, queries and similari-

ties are established once (at the start of the Workload Filling process). We then have at our

disposal, via the similarity model, an ordering of users (with respect to every user in U),

queries (with respect to every query in Q) and user-query pairs (with respect to every pair

in P). Even in a naive setting, given that the rank of pair with respect to every other pair

is known, the average rank of a single pair can be pre-computed at the time of ordering

101

pairs with respect to each other6. The next step is to select the top-K pairs with the highest

average ranks. Using an implementation of the median-of-medians algorithm [75], this

step can be performed in linear time (i.e., O(|P|)). Thus, the worst-case time complexity to

determine WK will be O(|P|).

In a dynamic environment, users, queries or similarities may undergo changes. When-

ever a new user and/or query is added to U and Q respectively, the similarity model will

perform the necessary re-computations and modify the necessary entries in the matrix R.

Based on these changes, the average ranks of individual user-query pairs are likely to

change; hence, whenever, the similarity model perform re-ordering of users and/or queries,

re-computing the average ranks and obtaining a new workload of user-query pairs becomes

mandatory. As is the case in the static environment, determining the K pairs with the high-

est average ranks incurs the same cost7 in the dynamic environment (i.e., O(|Pnew|)).

4.3.2 Independent High Rank-Based Selection

Although the Independent Rank-based Selection approach is simplistic in nature, due

to the notion of average taken over the entire set P , those pairs which receive good ranks

with respect to certain pairs but poor ranks with remaining pairs may get omitted due to

their overall average ranks being very low. For instance, P5 from Example-3 does not

get selected since it’s average rank is low. However, based on the brute-force approach,

it is evident that P5 coupled with P1 produces a workload of optimal goodness. Hence,

instead of imposing the average rank estimated over the entire set P as the sole heuristic,

6This can be achieved by maintaining the average across every column in R to represent the average rank

for the pair corresponding to the respective column
7Where Pnew is the new set obtained following the cartesian product of the changed sets Q and/or U .

Therefore, there is an additional cost of re-ordering the queries and/or users apart from adjusting the ranks of

the pairs with respect to each other; however, once this is done, the cost of of determining WK remains the

same.

102

we propose a variant heuristic that determines the average rank of a pair over a subset of

P . The corresponding average rank computed for a pair, over the selected subset of pairs,

is termed as the high average rank of the pair.

The intuition behind this approach is that if a given pair (e.g., P1) occurs within a

certain threshold in the ordered list of certain pairs (i.e., it obtains a rank above a specified

threshold within the ordered list of each of these pairs), then a WK containing P1 is likely

to generate a desirable goodness across these pairs. For instance, considering the ordered

lists of pairs in Table 4.3 for Example-3, it can be observed that P1 occurs in the ordered

lists of most pairs within a threshold of size 3 i.e., P1 obtains a rank within the top-3 ranked

pairs for most pairs (barring P6 for which it receives a rank of ‘5’). Therefore, selecting P1

as one of the pairs for WK will yield a desirable goodness.

Correspondingly, this approach determines the set of K pairs whose average rank

within a specified threshold, termed as the high average rank, is the highest amongst all

pairs in P . Formally, given the set of M ∗N pairs and T represents the threshold, the high

average rank of a pair Pi is computed as shown in Equation 4.7.

Rhigh(Pi) =

∑M∗N
r=1 Rank[Pr, Pi]

M ∗N
(4.7)

where, given T as the threshold, we have

Rank[Pr, Pi] =


T + 1 if Rank[Pr, Pi] > T,

Rank[Pr, Pi] otherwise.
(4.8)

As shown in Equation 4.8, the high average rank is determined only within the spec-

ified threshold. If the rank of the pair Pi with respect to a given pair Pr is beyond the

specified threshold, we assign Rank[Pr, Pi] as the value T + 1. In contrast, Rank[Pr, Pi]

will be assigned the appropriate rank of Pi if it occurs within the threshold.

103

Table 4.6. Example-3: Independent High Rank-based Selection

P1 P2 P3 P4 P5 P6

P1 0 2 3+1=4 1 3+1=4 3+1=4
P2 1 0 2 3+1=4 3+1=4 3+1=4
P3 1 2 0 3+1=4 3+1=4 3+1=4
P4 2 3+1=4 1 0 3+1=4 3+1=4
P5 2 3+1=4 3+1=4 3+1=4 0 1
P6 3+1=4 3+1=4 3+1=4 2 1 0

High Average 1.66 2.66 2.5 2.5 2.83 2.83

Considering the pairs in Table 4.3 for instance, let the threshold be set to T = 3.

Table 4.6 shows, for each pairs Pi ∈ {P1, ..., P6}, the computed high average rank. Con-

sidering pair P1, it occurs beyond the top-3 ranked pairs in the ordered list of pairs for

P6; thus, from Equation 4.8, Rank[P6, P1] is assigned as 4 (i.e., threshold+1). In contrast,

since P1 occurs within the top-3 ranked pairs of P2, Rank[P2, P1] is assigned the actual

rank (i.e., 1) of P1 with respect to P2. The high average rank for P1 is then computed

using Equation 4.7, and is shown in Table 4.6. The computed high average ranks for the

remaining pairs are also shown in Table 4.6.

It can be observed that based on the computed ranks, two workload configurations

are possible – {P1, P3}, and {P1, P4} (since P1 has the highest high average rank, and

P3 and P4 both attain the next highest rank). From Equation 4.2, {P1, P3} will yield a

goodness of 1.16; in contrast, {P1, P4} generates a goodness of 1. Therefore, this approach

will select {P1, P4} as the desired set WK .

It can be observed that the threshold specified in Equation 4.7 is T . Determining

the exact threshold, within which the high average ranks of all pairs can be computed, is

not straightforward. For instance, when the sizes of Q and U are large, setting a threshold

of a small size may not be productive since there may not exist sufficient number of pairs

which occur more frequently within this threshold. Consequently, most pairs will attain

104

a high average rank of T + 1, and selecting an appropriate WK from these equal ranked

pairs will be difficult. In contrast, setting a threshold of very large sizes may produce

the same difficulties as seen in the Independent Rank-based Selection approach i.e., pairs

which receive good ranks for certain pairs but poor ranks for the remaining pairs will yield a

lower value for the corresponding high average ranks; thus, making it difficult to determine

an appropriate WK .

Therefore in this approach, we set the threshold T as the size of the set WK . As

pointed out in Section 4.2.1, K is chosen based on pragmatic constraints. Further, since K

is neither too small nor too large, we believe setting this value as the threshold can yield an

acceptable solution. This is further validated by our experiments.

Time Complexity: Like the previous approach, this technique also determines the requisite

ranks using the orderings provided by the similarity model; hence, the worst-case time

complexity to determine WK will be O(|P|) for both – static and dynamic environments.

4.3.3 Cumulative Selection

Based on the ranks of user-query pairs as shown in Table 4.3, it is evident that se-

lecting either {P1, P5} or {P1, P6} will give a workload with optimal goodness. However,

based on workloads using the average as well as the high average ranks from the Rank-

based Selection as well as the High Rank-based Selection approaches, neither P5 nor P6 is

selected due to their corresponding low ranks. However, considering pairs P1 and P5, it can

be observed that when the rank of P1 is poor (in the ranked list of pairs for P5 and P6), the

rank of P5 is good, and vice versa. In contrast, considering P1 and P3, it can be observed

that when the rank of one of them (say P1) is poor, the other pair (P3) does not receive a

particularly high rank; therefore the workload comprising of P1 and P3 does not produce a

goodness as good as the one produced when P1 and P5 are considered.

105

Input: Q, U , P , WK = �

Output: WK

1 G(Q ∗ U ,W) = |Q| ∗ |U| − 1

2 for k = 1 to K do

3 for i = 1 to |P| do

4 Determine G(Q,U ,WK ∪ Pi)

5 end

6 Select Px ∈ P −WK such that –

7 ∀Py∈P−WK
(G(Q,U ,WK ∪ Px) ≤ G(Q,U ,WK ∪ Py)

8 Add Px to WK

9 end

10 Return WK

Algorithm 2: Cumulative Selection Algorithm

The above discussion follows the notion that for determining WK of optimal good-

ness, we considered the pairs P1 and P5 together, instead of considering them individually

and measuring their effect on the goodness. This intuition forms the basis of our final

approach; termed as the Cumulative Selection approach. This approach too avails of the

ranked lists of pairs, and determines the necessary WK over K iterations. Starting with an

empty W, in each iteration, it will select a pair Pi and add it to W such that for any other

pair Pj , given that Pi, Pj ∈ P and Pi, Pj /∈ WK , the following condition hold: G(Q,U ,

WK ∪Pi) ≤ G(Q,U , WK ∪Pj). The details of this approach are shown in Algorithm 2.

Consider the pairs from Example-3 shown in Table 4.3. Table 4.7 shows the results

of Algorithm 2 for 2 iterations. In the first iteration, P1 that yields the best goodness value

amongst all pairs will be selected and added to WK . In the next iteration, the algorithm

will pick a pair such that when combined with P1, the best goodness value can be obtained.

106

Table 4.7. Example-3: Cumulative Selection Process

Iteration 1
Current WK P1 P2 P3 P4 P5 P6

Goodness 1.83 2.33 2.16 2.33 3.16 3.16
Iteration 2

Current WK P1, P2 P1, P3 P1, P4 P1, P5 P1, P6

Goodness 1.66 1.16 1 0.83 0.83

Given that the combination of both – P1, P5, and P1, P6 yield the best (and in this case, the

optimal) goodness, the algorithm will select one of these configurations to represent WK .

Time Complexity: Unlike the previous approaches, where the ranks of individual pairs

could be computed by the similarity model (while establishing the pairwise similarities

between user-query pairs), the cumulative selection approach cannot determine WK while

establishing the similarities. This is due to the fact that, based on Equation 4.2, the goodness

of WK can only be estimated once the pairwise rankings between all pairs are available.

Further, this technique determines WK , unlike its independent counterparts, in an incre-

mental fashion wherein the choice of a pair in each iteration depends on the previously

chosen pairs that form the currently established WK .

Given that the time to compute the goodness of WK , comprising of a single user-

query pair, is O(|P|), the worst-case time complexity to determine a workload of size K

(from a total of |P| pairs) will be O(K ∗ |P|2) – in a static as well as dynamic environment.

Heuristic Analysis: Since the cumulative selection approach considers combinations of

user-query pairs (instead of picking them individually) to assess their impact on the good-

ness of the WK , it is expected to perform better than the previous two independent ap-

proaches.

However, since the cumulative process involves multiple iterations and hence is com-

putationally expensive than its independent counterparts (which are relatively straightfor-

107

ward as far as computations are concerned), there is a definite trade-off in terms of the

computation time versus the quality of goodness yielded by these approaches. One pos-

sibility would be to initially establish WK (in a static environment) using the cumulative

approach, and shift to the independent high rank-based approach when additional users,

queries and functions are added to the system (i.e., in a dynamic environment).

4.4 Experimental Evaluation

We have evaluated the quality/accuracy of each of our heuristic algorithm for deter-

mining WK with appropriate goodness in a static as well as dynamic setting. Additionally,

we also evaluated the efficiency of of each of these algorithms in terms of the time to gen-

erate the resulting configuration of WK .

4.4.1 Setup

Selecting the set of K pairs to represent the workload requires the availability of sets

Q and U . As alluded to in Chapter 3 (Section 3.6), no Web database provides user data and

query logs that can be used for experimental evaluation. Hence, in order to experimentally

validate the quality of our proposal, we had to rely on generating a synthetic workload of

users and queries. For this, we relied on the two databases provided by Google Base – a

vehicle database comprising of 8 distinct attributes (Make, Model, Vehicle-Type, Mileage,

Price, Color, Location, and Transmission), and a real estate database with 12 attributes

such as Location, Price, House Area, Bedrooms, Bathrooms, and so on.

On each database, we established the set Q by generating ten thousand queries with

varying number of attributes, and involving different combinations of popular attributes and

values within the respective domains. We then employed the query similarity component

of the Similarity model (see Figure 3.1) to determine the individual pairwise similarities

between these queries. Since obtaining data of real users is difficult, we generated a total

108

of ten thousand synthetic users to establish the set U . In order to estimate an initial user

similarity between each pair of users, we randomly filled a small percentage (1%, 10%,

20%, etc.) of this workload with ranking functions. These functions were designed (by

varying the attribute-weights) from an existing collection of ranking functions obtained via

a survey conducted on real users over these two Web databases (in Section 3.6). Based on

these computed similarities, we obtained an ordering of all users with respect to each other

based on the method described in Section 4.2.3.

Our experiments were performed on a 2.6 GHz AMD Opteron Duo Core Processor

machine with 4GB RAM running on a 32-bit Redhat Linux installation. All algorithms

were implemented in Java.

4.4.2 Quality Evaluation

Static Workload Filling: Our initial goal was to compare each of our heuristic approach

against a brute-force solution in order to determine the difference in the goodness value

estimated by each approach. However, for a 10K ∗ 10K matrix, applying a brute-force ap-

proach to form WK of a significant size (e.g., 1000 pairs) was computationally infeasible.

Hence, for the sole purpose of comparing with the optimal solution, we randomly

selected a subset Q′ X U ′ of size 10*10. We then randomly assigned ranking functions to

10% of these pairs (obtained from the survey results in [49]) to determine a preliminary set

of user similarities. We then set a value of K = 10, and determined an optimal workload

Wopt using a brute-force approach. Likewise, we determined Wavg, Whigh, and Wcum

(each of size 10) using our three proposed heuristics i.e., independent rank-based, indepen-

dent high rank-based and cumulative respectively. For the high rank-based approach, we

associated a threshold T of size 10. We also generated a random workload Wrand of 10

pairs to validate the need of an algorithmic approach to the Workload Filling Problem. We

109

repeated this process for determining workloads of sizes K = 20, and K = 25 respectively

to further illustrate the effectiveness of our approach.

Figures 4.3 and 4.4 display the goodness obtained for workloads generated using

different strategies for the vehicle and real estate database respectively. It can be observed

that even over a 10*10 set of pairs, the difference in the goodness values between the three

proposed approaches is significant (over different sizes of workloads). Further, the results

validate our intuition that the cumulative process outperforms the independent selection

mechanism giving an average percentage improvement of 23.71% and 17.61% over the

high rank-based approach for the goodness value of the Vehicle and Real Estate database

respectively. Similarly, the high rank-based selection appears better than a rank-based

selection (i.e., an average percentage improvement of 15.21% and 14.77% in the goodness

values over the two respective databases). The significant point to note from these results

is that our proposed approach produces goodness values that are comparable to the optimal

value achieved by the brute force approach across workloads of different sizes. In addition,

a random selection of pairs does not seem to be ideal while forming a workload for ranking

in Web databases.

In order to further bring out the advantage of the cumulative selection approach over

the independent selection variants, we employed the entire 10K*10K set of user-query

pairs. Again, we randomly filled 1% of this matrix to determine the initial set of user

similarities. We generated corresponding workloads, of size K = 10,000, for all three algo-

rithms and determined their corresponding goodness values. Since obtaining the optimal

solution for such a large matrix is intractable, we compared our approach to the K-Means

clustering algorithm [70]. Given that for each user-query pair we can rank every user-query

pair in the matrix, we clustered all the pairs in Q ∗ U , as done in the Cluster-Based User

Similarity model in Section 3.4.2. We generated a total of 10,000 clusters and selected

the centroid of each cluster as the user-query pair to be selected for the WClus workload.

110

Figure 4.3. Evaluation For Static Filling: Vehicle Database.

We repeated this experiment for determining workloads of sizes 20,000 and 25,000 respec-

tively. In each experiment, we also generated a random workload for further elucidating

the need of a proper mechanism of establishing a workload.

Figures 4.3 and 4.4 show, for the vehicle and the real estate database respectively, the

resulting goodness by applying the above techniques for workloads of different sizes. It is

evident from the graphs that the cumulative process significantly outperforms the indepen-

dent selection algorithms across workloads of all sizes (again an average improvement of

21.22% in the goodness over the Vehicle database); thus, validating our hypothesis. Further,

it can be observed that the high rank-based approach performs better than the average rank

approach. This is due to the fact that, for most cases, the highest average rank obtained

has a value lesser than the one set for K (which is used by the high rank-based technique)

111

Figure 4.4. Evaluation For Static Filling: Real Estate Database.

thus, affecting the resulting goodness. The results also show that the heuristic algorithms

distinctly outperform the clustering approach (by providing an average improvement of

20.22% in the goodness over the Real Estate database); thus, indicating that the computed

centroids need not necessarily achieve good ranks in the ordered lists causing a low good-

ness value to be generated. Further, the random approach is significantly outperformed by

our proposed solution.

Dynamic Workload Filling: The goal of this set of experiments was to validate the pro-

cess of establishing an incremental workload i.e., in a dynamic fashion. Instead of varying

the number of users and queries, we decided to incrementally add ranking functions, and

hence, subsequently add these functions along with the corresponding user-query pairs to

WK for determining its effect on the workload filling process. Similar to the previous set-

112

ting, we wanted to test this approach against an optimal workload obtained via a brute-force

technique. Hence, we used the same 10*10 set of pairs, generated above, and assigned to

10% of these pairs, actual functions for the initial user similarity calculation. We performed

three sets of experiments for determining a workload of size K = 10, 20, and 25 respec-

tively. Each of the three heuristic algorithms used an increment K ′ of size 1 i.e., whenever

a single ranking function is added to Q′ ∗ U ′, user-similarities and the user-query pairs are

reordered (based on the corresponding changes if any), and a fresh set of K −K ′ pairs is

computed. This process continues till the desired size of K is reached.

Figures 4.5 and 4.6 show the goodness obtained for workloads generated using dif-

ferent strategies in a dynamic environment for the vehicle and real estate database respec-

tively. Similar to the static process, the difference in the goodness between the heuristic

algorithms is distinctly evident. Further, all the three approaches (and, in particular, cumu-

lative selection) produce a goodness value comparable with the optimal value obtained via

the brute-force strategy.

In order to test the dynamic filling over larger sets of queries and users, we used the

entire 10K*10K matrix. The goal was to determine workloads of sizes 10,000, 20,000 and

25,000 respectively. For each heuristic algorithm, we used an increment of size K ′ = 10

i.e., the algorithms recompute similarities and determine a new set of K − K ′ pairs after

incremental addition of 10 ranking functions to the existing workload. We compared the

goodness obtained with the one obtained by using the clustering technique listed above,

as well as with a randomly selected workload. Figures 4.5 and 4.6, similar to static fill-

ing, show the effectiveness of our proposal for the two databases respectively. It can be

observed that even for a dynamic filling, the cumulative approach outperforms the inde-

pendent selection process.

Static versus Dynamic Workload Filling: Figures 4.7 and 4.8 summarize, for the vehi-

cle and the real estate database respectively, the comparison between the goodness value

113

Figure 4.5. Evaluation For Dynamic Filling: Vehicle Database.

obtained by the heuristic algorithms in a static and a dynamic filling environment. The

percentage improvement in the goodness value obtained by using the dynamic (instead of

static) filling approach is shown in Table 4.8 and 4.9 for the two databases respectively.

Given that user similarities in most Web databases will undergo frequent changes (due to

addition of ranking functions, arrival of new users, and so on) the improvement provided

by the dynamic filling makes it an automatic choice for establishing actual workloads in

real Web database application.

4.4.3 Efficiency Evaluation

The goal of this study was to determine whether the proposed solution can be used

for determining the requisite workload in a real-time application. The Static Filling ap-

114

Figure 4.6. Evaluation For Dynamic Filling: Real Estate Database.

proach incurs only a one-time cost for determining the workload. However, the need for

providing heuristic solutions stems from the difficulty in obtaining the optimal solution for

Web databases having large sets of users and queries. For instance, it took us well over

12 hours (using an efficient multi-threaded program) to determine the optimal workload

of size K = 10 over a small set of 10*10 user-query pairs. In contrast, the Independent

approaches took less than 5 minutes whereas the Cumulative algorithm needs less than 15

minutes to determine the workloads of the same size.

In contrast, the Dynamic Filling process is computationally expensive since the pro-

cess of determining the workload is repeated multiple times along with the re-computations

for user similarities and obtaining the ranked lists for each pair. However, with a combi-

nation of hashing (to store ranked lists of users and queries separately) and an efficient

115

Figure 4.7. Static v/s Dynamic Workload Filling: Vehicle Database.

Table 4.8. Vehicle Database: % Improvement With Dynamic Filling

|K| = 10,000 |K| = 20,000 |K| = 25,000
Independent Rank-based 15.84 20.51 22.76

Independent High Rank-based 16.67 18.82 23.24
Cumulative 11.91 16.41 20.02

priority queue (for managing the corresponding ranked lists of pairs), the time involved in

performing this process is greatly reduced. For instance, over a 10K*10K set of pairs, the

workload is computed whenever 10 functions are added to the existing workload. The over-

all process of recomputing similarities and determining a fresh workload can be performed

in under 2 minutes. Further, by deferring the computation of user similarities, instead of

determining them whenever a user asks a query, the time to determine the requisite pairs

can be substantially reduced; albeit by incurring a small loss of the quality of workload

goodness.

4.5 Conclusion

In this Chapter, we proposed a solution to the Workload Filling problem i.e., deter-

mining a “good” set WK of K user-query pairs to represent a workload for assisting user-

116

Figure 4.8. Static v/s Dynamic Workload Filling: Real Estate Database.

Table 4.9. Real Estate Database: % Improvement With Dynamic Filling

|K| = 10,000 |K| = 20,000 |K| = 25,000
Independent Rank-based 15.21 17.87 20.99

Independent High Rank-based 13.63 17.73 23.13
Cumulative 19.83 21.77 27.28

and query-dependent ranking on Web databases. In order to quantify the quality of the

workload and the subsequent ranking, we proposed a novel metric of Workload Goodness.

We further demonstrated that finding an optimal workload is intractable in practice; and to

overcome this challenge, we proposed a suite of heuristic algorithms. Further, we showed

the applicability of our approach in determining the requisite workload in a static as well

as dynamic environment. We analytically explained the effectiveness of our proposal and

validated it experimentally over two real Web databases.

We now present the extensions to our proposed models of similarity i.e., a generic

model of query similarity to span all types of SPJ queries, and a combined model of user

similarity based on dynamic browsing choices and static user profiles.

CHAPTER 5

AN EXTENDED MODEL OF QUERY- AND USER-SIMILARITY

As alluded to in the earlier Chapter, the emergence of the deep Web provided a

new connotation to the concept of ranking database query results. In order to address this

challenge, we chose to depart from the earlier approaches for ranking (that resorted to either

a query-dependent model by analyzing frequencies of database values and query logs, or a

user-dependent model that utilized user profiles), and instead, advanced a novel similarity-

based framework for performing query- and user-dependent ranking in Web databases.

Although proven to be applicable in the context of two real Web databases in the domains

of automobiles and real estate, the current framework has certain drawbacks that limit its

applicability across any generic traditional and/or Web database.

The focus of this Chapter thus, is to address these drawbacks and advance appro-

priate solutions for the same. Specifically, we extend the currently proposed model of

query similarity (specifically, query-condition similarity) so as to support the computation

of pair-wise query similarity for arbitrary Select-Project-Join (SPJ) queries. Additionally,

we present a combined user similarity model that blends static user profiles with the users’

subsequent behavior over the database to fully support user-dependent ranking across all

kinds of users. We discuss the effectiveness of our proposal analytically as well as experi-

mentally over two Web databases.

5.1 Introduction

An important contribution of this dissertation is the similarity-based ranking frame-

work (elaborated in Chapter 3) for performing user- and query-dependent ranking in the

117

118

context of deep Web sources. This framework is based on the two proposed models of:

Query Similarity and User Similarity. However, the current definitions of these models

have certain drawbacks, listed below, that limit the applicability of this ranking framework

across any arbitrary Web and/or traditional database.

1. No support for query conditions with range and IN operators: The existing query

similarity component can only compute similarities between queries with point con-

ditions (e.g., “Make = Honda”, “Color = Red”, etc.). However, many Web users

would prefer to express their intent in a query involving range conditions (e.g., “Price

< 10K”) as well as IN conditions (e.g., “Make IN {Honda, Toyota, Nissan}”). Thus,

extending the query similarity component to compute similarity between query con-

ditions with range and IN operators is essential.

2. No support for query conditions with disjunction and negation operators: The

current model of query similarity supports only those queries whose conditions are

separated by a conjunctive (AND) operator (e.g., “Make = Honda AND Location =

Dallas, TX”). However, given the diversity of Web users, it is likely that some users

may have specific preferences for which supporting the negation (NOT) operator

(e.g., “Make=Toyota AND NOT Model = Corolla”) as well as the disjunctive (OR)

operator (e.g., “Make = Nissan AND (Price < 5,000 OR Year > 1994)”) becomes

necessary. Thus, supporting query conditions separated by either of the – AND,

OR and NOT operators and extending the query similarity component to support

computation of similarities between such queries is vital.

3. No support for projection and join predicates: The existing query similarity com-

ponent assumes a single relation database (which seems sufficient for most Web

databases), and further reckons that users are interested in all attributes of this re-

lation. However, in general, a database will have multiple relations and user queries

may be cast (internally by the Web application) to span multiple relations using the

119

JOIN operator. Likewise, users may be interested in viewing the values associated

with a smaller and more relevant subset of attributes (rather than a union of all at-

tributes across all relations), and these preferences may be expressed (again, inter-

nally by the Web application) via a PROJECTION predicate in the query. Therefore,

extending the query similarity component such that it can determine similarities be-

tween join as well as projection predicates (in addition to the selection predicates)

thus, becomes important.

4. No usage of functional dependencies and attribute correlations: While compar-

ing similarity between queries, the query similarity model currently assumes attribute

independence. However, utilizing the knowledge of functional dependencies (e.g.,

Model→Make) and attribute correlations (e.g., high-priced cars typically have low

mileage and vice versa) can further strengthen the similarity computation and hence

should be incorporated in the model of query similarity.

5. Similarity between users computed using only ranking functions: The model of

user similarity presently calculates pairwise similarities between users based on the

similarity between their respective ranking functions over the set of common queries

asked by them. This model is dynamic, since addition of ranking functions to the

workload can influence the corresponding changes in the similarities between users.

However, in certain cases (e.g., a user having very few or no prior ranking functions

in the workload), determining his/her similarity with the remaining users may not be

possible; thus, diminishing the effect of this model towards finding a good ranking

function for these class of users. Therefore, extending the current component to

incorporate static user profiles for ensuring user-dependent ranking uniformly across

all users (new and/or experienced) is important.

Thus, the overall motivation of this Chapter is to extend the existing similarity-based

ranking model (of Chapter 3) to a comprehensive and complete model that addresses all

120

aspects of query- and user-similarity computations. Specifically, we propose an appropriate

solution for each of the drawback listed above.

Contributions: The contributions of this Chapter are -

• Extending the current similarity-based ranking framework to a complete and compre-

hensive model to encompass all aspects of query- and user-similarity computations.

• Broaden the current model of query similarity to support queries with conditions con-

taining selection, join and projection predicates as well as conjunction, disjunction

and negation operators, coupled with the incorporation of the knowledge of func-

tional dependencies and attribute correlations

• Modify the existing model of user similarity to include the notion of static user pro-

files (in addition to existing dynamic function-based profiles) for supporting user-

dependent ranking for new as well as experienced users.

• An elaborate set of experimental results on real Web databases with the aid of real

users (obtained from Amazon Mechanical Turk) that establishes the quality of our

proposed solution.

Roadmap: In Sections 5.2 and 5.3, we respectively elaborate on our proposed approaches

for extending the current query and user similarity models. Section 5.4 presents the results

of our experimental evaluation, and we conclude in Section 5.5.

5.2 An Extended Model Of Query Similarity

In this section, we elaborate on the details that extend the current definition of the

query similarity model (described in Section 3.3 of Chapter 3) to support the computation

of similarity between any pair of arbitrary SPJ queries1.

1It must, however, be noted that this extended model does not cover queries involving GROUP-BY and

HAVING predicates. Furthermore, Aggregate operators are also not supported in this extension.

121

It is important to not that unlike its query-condition counterpart, the query-result sim-

ilarity model (Section 3.3.2) does not require any extension and is capable of determining

the similarity between any two queries; irrespective of the type of conditions and operators

expressed in those queries. The reason being that this model establishes a similarity by

only comparing the results produced in response to the given pair of queries. However,

apart from a lack of applicability (demonstrated in Sections 3.3.3 and 3.6.3.1 of Chapter 3),

the query-result model suffers from an extensive overhead if applied in a real-time scenario.

For instance, consider an incoming query Q and a large log of queries {Q1, Q2,

..., QN} against which the similarity of Q is to be computed. Assuming that T tuples

are obtained as the result for each query (in the log as well as for Q) and the database

schema comprises of p attributes, the process of determining the similarity between Q and

any query Qi (in the log) would incur a time complexity of O (T 2 ∗ p) u O (T 2) (since

T >> p). Consequently, determining the similarity of Q with every query in the log would

take a total time of the order of O (N ∗ T 2). Furthermore, this complexity does not include

the time for computing the result of the queries. Thus, although simplistic in nature, this

model of query-result similarity renders itself to be impractical to use in practice.

Hence, the focus of this Chapter is to extend the query-condition model (Section 3.3.1),

proven to be applicable (based on the experimental results in Section 3.6.3.1) and intuitive

(as shown in Section 3.3.3) for real Web databases. Specifically, we extend this model such

that computation of similarity between any pair of arbitrary SPJ queries would be accord-

ingly possible. We first detail the preliminaries for extending this model, and then present

the approach for the same.

5.2.1 Preliminaries

Consider a database D comprising of relations – {R1,R2, ...,Rr}wherein the schema

of each relation Ri (∈ D) consists of attributes – {Ai1 , Ai2 , ... Aip}. Further, the domain of

122

an attribute Aij represents values – {v1ij , v
2
ij

, ..., vnij}. Note that for the sake of simplicity,

we assume the schema of each relation contains p attributes, and the domain of each of

these attributes is of size n. However, in practice these numbers may vary for each relation

and the corresponding attributes.

Let Q: < R, S, P , J > represent a typical SQL query, whose selection and join

predicates are assumed to represented in the Conjunctive Normal Form, over D where:

• R: {R1, R2,, Rw} represent the set of relations specified in the FROM clause,

• P: {P1, P2, ... Px} represents the set of projection attributes in the SELECT clause

where each Pi (∈ P) is an attribute within the schema of a relation in D,

• S: {C1, C2, ..., Cy} represents the set of selection conditions (in the WHERE clause)

where each Ci ∈ S is either

– a single predicate: Ci, or

– a disjunction predicate: (Ci1 OR ... OR Ciw), or

– a negation predicate: NOT Ci, and

each individual predicate Ci (or Cik in case of disjunction) is:

1. a point condition (e.g., R1.A14 = v1014), or

2. a range condition (e.g., R2.A25 {<,<=, >,>=} v1525), or

3. an IN condition (e.g., R3.A36 IN {v1636 , v1736 , v1836}).

• J : {J1, J2, ... Jz} represents the set of joins (in the WHERE clause) where each

Ji ∈ J is a join condition (e.g., “R1.A13 OP R2.A24” where OP ∈ {=, <=, <,>

,>=, ! =}).

Based on this setup, given two queries – Q: < R, S, P , J >, and Q′: < R′, S ′,

P ′, J ′ >, our goal is to extend the current query-condition model such that it can compute

similarity between these two queries.

123

5.2.2 Query Re-writing

The query-condition similarity model currently compares the conditions between

a given pair of queries for determining the resulting similarity. However, based on its

definition (provided in Section 3.3.1 of Chapter 3), to compare two conditions within a

given pair of queries, it requires that both these conditions be formed on the same at-

tribute of a given relation. Although strict, this constraint (of comparing two conditions

only when they formed on the same attribute) is justified since comparing a condition like

“Make=Toyota” with “Make=Honda” is more intuitive than comparing it with a condi-

tion like “Color=Blue”. However, expecting all queries to be formed on an identical set

of attributes over the same of relations is definitely unrealistic. For instance, consider the

following pair of (Join/Cartesian product) queries:

• Q1: SELECT * FROM R1, R2 WHERE R1.A11 = v1011

• Q2: SELECT * FROM R1, R2 WHERE R2.A22 = v1122

It is evident that while Q1 and Q2 are on the same set of relations (R1 and R2),

there is no condition on A11 in Q2 with which we can compare the condition “R1.A11 =

v1011 ” in Q1; similarly, there is no condition on A22 in Q1. Thus, establishing similarity

between this pair of queries would not be possible. Intuitively, based on the conditions (on

different attributes) in Q1 and Q2, they are less likely to be similar to each other. However,

in order to ensure a consistent model wherein any given pair of queries can be compared

for similarity, we rewrite the above queries. This is done by appending missing relations

and missing predicates to them such that, given two initial queriesQ andQ′, their rewritten

versions have –

• R =R′,

• |S| = |S ′|, and Si ∈ S as well as the corresponding S ′i ∈ S ′ are specified on the same

attribute/s of a given relation, and

124

• |J | = |J ′|, and Ji ∈ J along with J ′i ∈ J ′ are stipulated over the same attributes

within a given set of relations.

While a common set of relations can be appended to both queries in a straightforward

manner (i.e., by ensuring R (as well as R′) = R
⋃
R′), in order to append conditions on

identical attributes, we analyze the intent behind the specified query. For instance, given

Q1, since no condition is specified on A22 , we can presume that any value returned for this

attribute in the result tuples is acceptable. Consequently, we can append a condition of the

form: “R2.A22 IN dom(A22)” in conjunction to the existing condition in Q1. Following

this notion, we re-write the above queries as:

• Q1r : SELECT * FROM R1, R2

WHERE R1.A11 = v1011 AND R2.A22 IN dom(A22)

• Q2r : SELECT * FROM R1, R2

WHERE R1.A11 IN dom(A11) AND R2.A22 = v1122

As is evident, comparing a specific value to the entire domain of an attribute will

yield a poor value of similarity; thus ensuring the overall similarity computed between Q1r

and Q2r to be a very small value. Thus, in-spite of re-writing and appending conditions,

the overall intuition (that the similarity between these queries is low) is not lost. The

above re-written queries only represent selection predicates. However, as we shall see later

in Section 5.2.5, join predicates are transformed into selection predicates (using the IN

operator); hence, explicit re-writing of join predicates is not necessary.

The process of appending a condition with the attribute value being specified as its

entire domain can be further refined using the knowledge of functional dependencies and

attribute correlations in providing a better value for the attribute (than assigning the entire

domain). We address the utilization of dependencies and correlations for re-writing queries

later in Section 5.2.6. It must be noted that process of re-writing queries to append relations

and predicates is performed only for the sake of computing similarities between queries.

125

The actual queries (and not their rewritten versions) are the ones specified on the database

to yield and display the results to the users.

5.2.3 Projection Similarity

Projection refers to the set of attributes whose corresponding values the user prefers

to be displayed as the output of the query. For queries involving multiple relations, projec-

tions attributes will be typically expressed as a combination of the relation and its attribute

(e.g., “SELECT R1.A12 , R2.A25 FROM R1, R2 WHERE ...”). However, for the sake of

simplicity, we assume that the projection attributes in the queriesQ andQ′ are represented

by sets – P = {P1, P2, ...Px}, and P ′ = {P ′1, P ′2, ...P ′y}, where each Pi (and P ′i) is of the

form: Ra.Aab , with Ra ∈ R and Aab ∈ schema(Ra).

The intuitive similarity between these two projections can be estimated based on the

number of common attributes listed in them. For instance, ifP andP ′ represent an identical

set of attributes, it is evident that the tuples corresponding to the same set of attributes

is desired across both queries; thus, indicating that two projections are similar (and in

this case, equivalent). In contrast, if P and P ′ are disjoint, it indicates the preferences

towards the output variables (in terms of attributes and their values) are completely different

for the two; hence, allowing us to conclude that the projection predicates are not similar.

Consequently, we can conclude that higher the overlap between P and P ′, greater will be

the similarity between the projections, and vice-versa.

Formally, for queriesQ andQ′, the similarity between the respective projection pred-

icates – P and P ′ is computed as the Jaccard coefficient [76] between the two sets –

sim(P ,P ′) = |P
⋂
P ′|

|P
⋃
P ′|

(5.1)

126

This similarity between the projection predicates varies from a value of 1 (when P

and P ′ are identical) to a value of 0 (when they are disjoint).

5.2.4 Selection Condition Similarity

Given Q and Q′ in their re-written forms (as shown in Section 5.2.2), let their re-

spective selection conditions be:

• S: “WHERE C1 AND C2 AND ... AND Cx”

• S ′: “WHERE C ′1 AND C ′2 AND ... AND C ′x”

where Ci and C ′i represent the condition/s on the attribute/s of the same relation/s;

however Ci and Cj (and correspondingly, C ′i and C ′j) can be specified on the attributes of

different relations. Given that we assume a Conjunctive Normal Form, the similarity be-

tween the selection conditions (represented as sim(S,S ′)) is established (as per the notion

of query-condition similarity defined in Section 3.3.1 of Chapter 3) as the conjunction of

the individual similarities computed between each pair of selection conditions. Formally,

sim(S,S ′) =
x∏

i=1

sim(Ci, C
′
i) (5.2)

Now, in order to determine the right hand side of the above equation, we need a

mechanism to determine similarity between a given pair of conditions. However, a given

condition Ci (and C ′i) could either be a single predicate, a negation of a single predicate

(i.e., expressed by the NOT operator), or a disjunction of multiple single predicates (i.e.,

separated by the OR operator). Further, each predicate can contain a point (=), a range

(<,<=, >,>=), or the IN operator. Therefore, we need to establish a model that can deter-

mine similarity between any pair of conditions comprising of either of the above specified

cases. We start by extending the current query-similarity model for single predicates, and

subsequently expand it to address negation and disjunction predicates.

127

5.2.4.1 Single Point Predicates

Consider single point conditions, C1 (∈ S) and C ′1 (∈ S ′) respectively, of the form –

• C1: “WHERE R1.A11 = v111”

• C ′1: “WHERE R1.A11 = v211”

As per Equation 3.2 (in Section 3.3.1 of Chapter 3), the similarity between these

conditions is estimated as the similarity between the corresponding values v111 and v211 i.e.,

sim(C1, C
′
1) = sim(v111 , v

2
11
) (5.3)

5.2.4.2 Single IN Predicates

Consider a sample pair of single IN conditions, C2 (∈ S) and C ′2 (∈ S ′) respectively,

of the form –

• C2: “WHERE R1.A12 IN {v212 , v312 , v412}”

• C ′2: “WHERE R1.A12 IN {v512 , v612}”

We adhere to the same procedure established for single point predicates i.e., we ana-

lyze the similarity between the values specified in the conditions via the IN operator. If we

separately apply both given conditions on the database, two sets of tuples – N2,3,4 (for C2)

and N5,6 (for C ′2) will be obtained.

Applying the intuition of the single point predicates described above i.e., the similar-

ity between two sets of results eventually equates to the similarity between the correspond-

ing conditions, we can state:

sim(C2, C
′
2) = sim(N2,3,4, N5,6) (5.4)

Since the values – {v22 , v32 , v42 , v52 , v62} correspond to the domain of the same attribute

(A12), the tuples corresponding to each of these values will be disjoint. As a result, we can

represent N2,3,4 and N5,6 as: N2,3,4 = N2

⋃
N3

⋃
N4, and N5,6 = N5

⋃
N6. Therefore, the

128

similarity between the two sets of result tuples – N2,3,4 and N5,6, can be evaluated as the

mean of the aggregate similarities between each of the sets {N2, N3, N4} (in N2,3,4) with

respect to each of the individual sets {N5, N6} (in N5,6). This follows the principle that the

similarity of N2 with N5,6 is the average aggregate similarity between the tuples of N2 with

the tuples of N5 and the tuples of N6.

However, we know from Equations 5.3 and 3.6 that similarity between two sets of

tuples (e.g.,N2 andN5) corresponds to the eventual similarity between the attributes values

(i.e., v22 and v62) representing these sets of tuples. Using this knowledge, we generalize the

similarity computation between two single IN predicates. Given C2 and C ′2 respectively of

the form2:

• C2: “WHERE R1.A12 IN {v112 , v212 , ..., vr12}”

• C ′2: “WHERE R1.A12 IN {v112 , v212 , ..., vs12}”

the similarity between these two conditions is calculated as:

sim(C2, C
′
2) =

∑r
i=1

∑s
j=1 sim(vi22 , v

j
22
)

r · s
(5.5)

where, the similarity between individual pairs of attributes values can be computed using

Equation 5.3.

5.2.4.3 Single Range Predicates

Consider a sample pair of single range conditions, C3 (∈ S) and C ′3 (∈ S ′) respec-

tively, of the form –

• C3: “WHERE R1.A13 < v713”

• C ′3: “WHERE R1.A13 > v813”

2Without loss of generality, it can be assumed that {v12 , v22 , ..., vr2}, and {v12 , v22 , ..., vs2} are the set of

values specified in C2 and C ′
2, although they can be any values in the domain of attribute A22 .

129

Given that dom(A13) represents all the values in the domain of attribute A13 , let

dom(C3) (⊂ dom(A13)) wherein each element in dom(C3) represents an element whose

numerical value is less than v713 . Likewise, let dom(C ′3) (⊂ dom(A13)) such that each

element in this subset is numerically greater than v813 . Consequently, conditions C3 and C ′3

can be respectively rewritten as –

• C31: “WHERE R1.A13 IN dom(C3)”

• C ′32: “WHERE R1.A13 IN dom(C ′3)”

Given that these two conditionsC31 andC32 now represent single IN predicates spec-

ified over a set of values corresponding to dom(C3) and dom(C ′3) respectively, the simi-

larity between them can be computed using Equation 5.5. We generalize this notion of

similarity between any two range predicates as follows – Given any two single range con-

ditions C3 and C ′3 respectively of the form:

• C3: “WHERE R1.A13 OP va13”

• C ′3: “WHERE R1.A13 OP vb13”

where OP ∈ {<,<=,=>,>}, the similarity between C3 and C ′3 is determined as:

sim(C3, C
′
3) = sim(dom(C3), dom(C ′3)) (5.6)

=

∑|dom(C3)|
i=1

∑|dom(C′
3)|

j=1 sim(vi13 , v
j
13
)

|dom(C3)| · |dom(C ′3)|

where, dom(C3) and dom(C ′3) represent the set of values satisfying the conditions –R1.A13

OP va13 and R1.A13 OP vb13 respectively. Furthermore, the pairwise similarity between the

values in the given domains can be computed using Equation 5.3.

5.2.4.4 Negation Predicates

Let C4 (∈ S) and C ′4 (∈ S ′) represent two negation predicates of the form –

• C4: “WHERE NOT R1.A14 OP V4”

• C ′4: “WHERE NOT R1.A14 OP V ′4”

130

where V4 and V ′4 either represent a single value (e.g., v149 and v1410 respectively) if OP ∈

{<,<=,=>,>,=}, or a set of values when OP represents the IN operator.

Now, let dom(C4) and dom(C ′4) be subsets of dom(A14) that satisfy the respective

conditions – “WHERE R1.A14 OP V4” and “WHERE R1.A14 OP V ′4”. Given that the origi-

nal two conditions involve the NOT operator, the resulting set of tuples forC4 andC ′4 would

be – {dom(A14) - dom(C4)}, and {dom(A14) - dom(C ′4)} correspondingly. Thereby, the

similarity between the two negation predicates C4 and C ′4) can be estimated as:

sim(C4, C
′
4) = sim({dom(A4

1)− dom(C4)}, {dom(A4
1)− dom(C ′4)}) (5.7)

The right hand side of above equation is similar to the right hand side of Equation 5.6

(i.e., they both represent IN conditions over a set of values) for single range predicates, and

thus, can be accordingly determined using Equation 5.6.

5.2.4.5 Disjunction Predicates

Consider a sample pair of two disjunction conditions C5 (∈ S) and C ′5 (∈ S ′) respec-

tively, of the form:

• C5: “WHERE (R1.A11 OP V1 OR R1.A12 OP V2)”

• C ′5: “WHERE (R1.A11 OP V ′1 OR R1.A12 OP V ′2)”

where OP ∈ {<,<=,=>,>,=, IN}, and V1, V2, V ′1 , and V ′2 represent either a single

or a set of values accordingly. Now, let N1,2 and N ′1,2 represent the set of tuples that

respectively represent the conditions C5 and C ′5 in the database. Given that each condition

is on the values of different attributes, unlike the case of single IN predicates, we have:

N1,2 = N1

⋃
N2, and N ′1,2 = N ′1

⋃
N ′2.

Further, the similarity between N1 and N ′1 represents the similarity between V1 and

V ′1 . Likewise, the similarity between N2 and N ′2 equates to the similarity between V2 and

V ′2 . Since these two conditions represent disjunction of single predicates, the similarity be-

131

tween the individual predicates can be computed using Equations 5.3, 5.5 or 5.6 (depending

on whether the predicates contain point, range or IN operators). Further since the above-

specified conditions adhere to the disjunctive normal form, the overall similarity between

the complete conditions can be computed as a summation of the similarities between the

individual predicates.

On a generalized note, given two disjunction conditions C5 and C ′5 of the form –

• C5: “WHERE (C51 OR C52 OR ... OR C5k)”

• C ′5: “WHERE (C ′51 OR C ′52 OR ... OR C ′5k)”

the similarity between these conditions is computed as:

sim(C5, C
′
5) =

k∑
i=1

sim(C5i , C
′
5i
) (5.8)

5.2.5 Join Condition Similarity

Given Q and Q′, let the respective join conditions in these queries be of the form:

• J : “WHERE J1 AND J2 AND ... AND Jz”

• J ′: “WHERE J ′1 AND J ′2 AND ... AND J ′z”

where, we assume Ji and J ′i represent the join condition/s on the same attribute/s of two

relations albeit over different operators; however, Ji and Jk (and correspondingly, J ′i and

J ′k) could be joins on different attributes of different relations. Now, consider two join

conditions Ji and J ′i specified in Q and Q′ of the respective form –

• Ji: “WHERE Ra.Aa1 OPx Rb.Ab2”

• J ′j: “WHERE Ra.Aa1 OPy Rb.Ab2”

where OPx and OPy ∈ {<,<=,=>,>,==, ! =}. Considering Ji, the attribute Aa1 is

joined with Ab2 using operator OPx. The result of this join represents the set of values

(denoted as V1,2) in the domain of Aa1 that satisfy this join condition. Specifically, we can

assume that the tuples containing these values are the ones of eventual interest. Likewise,

132

let the set V ′1,2 represent the values in the domain of Aa1 that are desired to occur in the

tuples generated by the join conditions J ′i . Thereby, the original join conditions can be

re-expressed as –

• Jir : “WHERE Ra.Aa1 IN V1,2”

• J ′ir : “WHERE Ra.Aa1 IN V ′1,2”

Thus, the given join conditions can be expressed as single predicates containing the

IN operator over those attribute values that represent the resulting join operation. It must

be noted that, the given query with the join condition will be the one that will be actually

applied on the database for obtaining the requisite results. The process of converting a join

condition to a non-join IN predicate is done only to establish similarity between two join

conditions in the given two queries. Furthermore, this process can be performed for all join

attributes over different operators, assuming the knowledge of join-compatible attributes

amongst the relations in the schema, at the time of establishing the pairwise similarities

between attributes values.

Correspondingly, the similarity between the join conditions Ji and J ′i can then be

computed as:

sim(Ji, J
′
i) = sim(Ra.Aa1 INV1,2, Ra.Aa1 INV ′1,2) (5.9)

The right hand side of the above equation can be calculated using Equation 5.5. Thus,

given that J = {J1, J2, ... Jz} and J ′ = {J ′1, J ′2, ... J ′z} are represented in the Conjunctive

Normal Form, the join similarity between them is given as:

sim(J ,J ′) =
z∏

i=1

sim(Ji, J
′
i) (5.10)

where the right hand side of the equation is determined using Equation 5.9.

133

5.2.6 Incorporating Correlations & Dependencies

So far we assumed that we do not have any additional information about the database

schema. However, some semantic information in the form of functional dependencies may

be available. It may also be possible to determine correlation between attribute values

from the extant database. During query re-writing (Section 5.2.2), we insert a missing

predicate by specifying the entire domain as the value for the given attribute. However, it

is possible that this attribute is functionally dependent and/ or correlated to other attributes;

in such cases, inserting an appropriate value instead of the entire domain may assist in

strengthening the similarity computations between the queries.

5.2.6.1 Incorporating Attribute Correlations

We explain this process via the example of a vehicle database. In the context of

this database, it is to be expected that there is a strong correlation between the attributes –

“Price” and “Mileage” i.e., high priced cars typically have low mileage whereas low priced

cars have a considerably high mileage. Hence, a query asking for a low priced vehicle will

be very similar to a query asking for a vehicle with high mileage, and vice versa.

For instance, consider, Qa: “Make = Honda AND Price = 5K-10K dollars”, and Qb:

“Make = Nissan AND Mileage = 125K-150K miles”. Based on the scheme elaborated

above for inserting missing predicates, the two queries will be re-written as –

• Q′a: “Make = Honda AND Price = 5K-10K dollars AND Mileage IN dom(Mileage)”

• Q′b: “Make = Nissan AND PRICE IN dom(Price) AND Mileage = 125K-150K

miles”

Now, the similarity between the above two queries will be computed such that for

Mileage attribute, the value of “125K-150K” will be compared to all the values in the do-

main of Mileage, and likewise for the Price attribute. However, it is obvious that comparing

134

a specific value (e.g., “125K-150K”) to the entire domain of an attribute will yield a much

lower value of similarity. In contrast, if the attributes are correlated, specific value/s of one

attribute will correspond to specific value/s of the second attribute. For instance, a car with

a mileage between “125K-150K” miles is typically priced in the ranges of “$ 5K-10K” and

“$ 0-5K” whereas a car priced in the range of “$ 5K-10K” will be in the mileage range of

“100K-125K” and “125K-150K”. Therefor, the above two queries can be rewritten as –

• Q′′a: “Make = Honda AND Price = $ 5K-10K AND Mileage IN {100K-125K, 125K-

150K}”

• Q′′b : “Make = Nissan AND PRICE IN $ {0-5K, 5K-10K} AND Mileage = 125K-

150K miles”

Comparing the respective conditions will yield a higher and a more accurate value

of similarity than the one obtained if such correlation was not considered. Such correlation

between attributes and the corresponding correlated values can be obtained by using the

Pearson’s chi-square test [77] for numerical attributes, and its variant [78] for categorical

attributes in Matlab [79]. Specifically, Matlab’s correlation toolbox [79] generates a coef-

ficient of correlation in the range of -1 to +1. For a given pair of attributes Aai , Aaj , the

correlation coefficient is –

1. 0 if the attributes are independent,

2. in the range of 0 to +1 if they are positively correlated, and

3. in the range of 0 to -1 if they are negatively correlated.

Further, for each distinct categorical/numerical value in Aai , the Matlab function

candgen return the set of matching value/s in Aaj based on the correlation (an empty set is

returned if coefficient is 0), and likewise returns the set of matching values inAai correlated

to a specific value in Aaj . Using this knowledge of attribute correlation between every

pair of attributes in the database schema, the missing predicates can be inserted using an

appropriate value for a given attribute, instead of it’s entire domain.

135

5.2.6.2 Incorporating Functional Dependencies

In the context of vehicle databases, the dependency “Model→Make” always holds

true. Similar to the above pair of queries, consider that we have two queries –Qc: “WHERE

Model = Camry”, and Qd: “WHERE Make = Toyota”.

Based on the current definition of similarity, “Camry” will be compared to each value

in the domain of Model, whereas “Toyota” will be compared to each value in the domain of

attribute Make. This will lead to a very poor value of similarity between these two queries;

although all Camry vehicles, being of the make Toyota, should have a higher similarity

with Toyota vehicles than the one computed presently. Using the appropriate functional

dependency, we know that the model “Camry” will be identified by a unique value of Make

(in this case, Toyota). Hence, instead of finding the average similarity of “Toyota” to cars

of all Make, we can rewrite the queries as –

• Q′c: “WHERE Make = Toyota AND Model = Camry”

• Q′d: “WHERE Make = Toyota AND Model IN dom(Model)”

The similarity between these conditions, and hence the queries would be higher and

more intuitive than the one obtained if dependencies were not assumed. However, unlike

attribute correlations, functional dependencies cannot be derived automatically. For this,

we assume that certain domain knowledge and meta-data is available for the underlying

database from which, an appropriate set of dependencies can be perceived. Using such

knowledge of dependent attributes, and their values, the missing predicates can be inserted

in an appropriate manner.

136

5.2.7 The Complete Query Condition Similarity Model

Given Q: < R, S, P , J >, and Q′: < R′, S ′, P ′, J ′ >, based on the formaliza-

tion provided in Sections 5.2.4, 5.2.5, and 5.2.3, we have at our disposal, the similarities

between – (S, S ′), (J , J ′), and (P , P ′).

Further, given a SPJ query, we have assumed that S and J (as well as S ′ and J ′),

are represented in the WHERE clause as a combined Conjunctive Normal Form. There-

fore, following the definition of similarity established for Selection and Join conditions,

the overall similarity of all conditions in the WHERE clause is a conjunction of these two

similarities. In contrast, it is important to factor in the the Projection similarity with the

overall Condition similarity since two queries having identical conditions may have dis-

joint projection attributes. In this scenario, the queries will generate altogether different

results; hence, claiming that the two queries are similar may not be intuitive.

Therefore, we establish the overall similarity between the given pair of queries as the

conjunction of the Projection similarity with the product of the Selection and Join similar-

ities. Formally,

sim(Q,Q′) = sim(P ,P ′) · (sim(S,S ′) · sim(J ,J ′)) (5.11)

Thus, given any two queries – Q: < R, S, P , J >, and Q′: < R′, S ′, P ′, J ′ >, the

extended query-condition model can compute similarity between these two queries using

Equation 5.11.

5.3 An Extended Model Of User Similarity

As described in Section 3.4 (of Chapter 3), the current model for user-similarity

in the ranking framework computes a similarity between a given pair of users, by only

considering the set of respective ranking functions obtained over the common queries asked

137

by these users. This model departs from the traditional forms of user similarity computed

typically using static profiles of users [28] [29] [30] [31] [35] [36], and hence, is dynamic

in nature since it adjusts the similarities between users based on the changes in the users’

behavior (in form of their ranking functions). However, this model’s applicability is limited

in situations when the pair of users being compared have no queries common between them

– a realistic scenario in the context of Web database applications involving new and/or

infrequent users.

In order to support user-dependent ranking uniformly across all types of users (new,

infrequent as well as frequent), we extend the current model into a unified model made

up of two components – i) dynamic user model, and ii) static user model. The former

ensures that it accounts for changes in similarities between users based on their subsequent

interactions (and hence, their derived ranking functions) with the Web databases, while the

latter ensures that similarity can be computed even for those users (new or infrequent) who

may not have too many functions associated with them with respect to the Web database.

5.3.1 Combined User Similarity

The proposed extension to the current model of user similarity transforms it into a

unified model with a dynamic and a static component. The dynamic user model is adopted

directly from the current definition of user-similarity given by Equation 3.7. We represent

this similarity between a given pair of users, say – Ua and Ub, as simD(Ua, Ub).

In contrast, the static user model relies on the profile information collected from

users by most Web database applications such as Yahoo!, Google, Amazon, and others.

Given that, a user Ua’s profile can be represented as a vector – {ua1 , uam ,..., uam} over a

set of m profile attributes (e.g., sex, location, profession, income-group, etc.) with each uai

representing the user’s details for the ith attribute, the similarity between a given pair of

138

users – Ua and Ub, is represented as simS(Ua, Ub), and can be computed by adopting the

variant of cosine-similarity model given by Equation 5.12 (in Section 3.3) i.e.,

simS(Ua, Ub) =
m∑
i=1

sim(uai , uki) (5.12)

where,

sim(uai , uki) =


1 if uai = uki ,

0 if uai 6= uki .

(5.13)

It must be noted that various techniques (e.g., Jaccard coefficient, Support Vector

Machines (SVM), and others) for determining the static similarity between users, based on

profiles, can also be adopted instead of the proposed cosine-similarity computation. Given

that there exists a large body of work for establishing profile-based user similarity, any

suitable technique from these works can be plugged in to Equation 5.12. In the context of

this dissertation, our primary goal was to combine the static and dynamic models, and not

on devising new techniques for computing static user similarity. For the sake of consistency

however, we use the variant of the cosine-similarity model for determining this similarity.

We now combine these two models into a single user similarity model. Toward that,

consider the above two users Ua and Ub. Now the intuition behind a combined model is

that, when either one or both these users are new, there exist no common queries between

them. Correspondingly, simD(Ua, Ub) is undefined (as per Equation 3.7)), and hence is

assigned a value of 0 by the current user-similarity model; thus, rendering the dynamic

model useless in this scenario. In contrast, simS(Ua, Ub) will always exist (assuming the

users have provided basic profile information), and hence the static model will be the lone

driving force to establish similarity between these users.

139

Subsequently, assuming that both these users ask a common query (for which their

respective ranking functions are obtained), computing simD(Ua, Ub) would be possible.

However, a single common query may not be sufficient to abandon the static model and

simply use the dynamic model. In fact, the significance of the dynamic model should

gradually, or rather, exponentially increase as the number of common queries between the

two users increase. In contrast, the static model will always yield the same similarity, and

hence its effect should be lessened as the common queries between the two users increases.

Based on this intuition, we combined these two models wherein the effect of the dynamic

model increases exponentially based on a factor given by the number of common queries,

between these users, for which ranking functions have been deduced. Formally, the unified

model of user similarity is given as:

Definition Given two users – U and U ′, and x (∈ {0...n}) representing the number of

queries common between them, the combined user similarity, represented as sim(U,U ′),

is given by Equation 5.14:

sim(U,U ′) = simS(U,U
′) + eln(x) ∗ simD(U,U

′) (5.14)

Based on Equation 5.14, the effect of the dynamic model will increase in an expo-

nential fashion as the number of queries common between the users increases. Note that

we take the exponent as a natural logarithm of x since this value of x can go in hundreds,

or even thousands (although this may be difficult to achieve in practice).

We would like to point out that there exists a large body of work that establishes

similarity between users based on profiles. Any of these techniques can be used (instead of

the proposed static model) in Equation 5.14. The primary contribution of this work is the

blending of a static profile-based similarity with a dynamic function-based similarity into

a single model to support user-dependent ranking across all types of users.

140

5.4 Experimental Evaluation

We evaluated the extended models of query- and user-similarity for quality/accuracy

in terms of the ranking framework presented in Chapter 3. Given that the (dynamic) model

of user-similarity is based on ranking functions, testing this model in the context of ranking

makes sense. However, the query-similarity model relies on the contents of the database

for estimating similarity between queries; hence, in addition to testing it in the context of

ranking, we also evaluated this extended model in isolation.

5.4.1 Setup and Workload Generation

For evaluation in the context of the ranking framework, we relied on the same two

real Web databases provided by Google Base and used for the earlier evaluations in Chap-

ters 3 and 4 i.e., the vehicle database comprising of 8 attributes (Make, Vehicle-Type,

Mileage, Price, Color, etc.), and the real estate database with 12 categorical/discretized

attributes (Location, Price, House Area, Bedrooms, Bathrooms, etc.). Further, given that

Google exports a single relation for these database schema, we split this schema into three

meaningful relations for both databases. For instance, the schema of the vehicle database

was represented as – Rv1: {Make, Model, Vehicle-type}, Rv2: {Model, Price, Mileage,

Year}, and Rv3: {Model, Transmission, Number-of-doors}. A similar splitting of the real

estate database was done to yield three relations for this schema as well.

Query Generation: In order to test the extended model of query similarity in the context

of the ranking framework, we generated over both databases, a pool of 60 random queries

(comprising of conditions based on randomly selected attributes and their values) on the

single schema (i.e., assuming a single relation database) exported by Google Base. We

then manually selected 21 representative queries that are likely to be formulated by real

users for either database. Table 5.1 and 5.2 show for the two databases respectively, three

such queries. We took sufficient care to ensure that a right mix of point, range, IN, disjunc-

141

Table 5.1. Sample Experimental Queries: Vehicle Database

Q1 “Make IN {Honda, Toyota} AND (Color = Blue OR Year < 2009)”
Q2 “Model IN {Corolla, Civic}” AND Location = Miami,FL AND Price<8,000$”
· · · · · ·
Q10 “NOT Location=Chicago,IL AND (Mileage < 100,500 OR Color = Red)”
· · · · · ·

tion and negation predicates for the selection conditions were involved in these queries.

However, for this experiment, we did not employ the use of join and projection conditions,

since we felt, that Web users typically are not capable of expressing queries involving these

predicates.

In addition, based on the set of attributes exported by the schema of Google Base,

we generated a small set of functional dependencies (e.g., “Model → Make”, “Model →

Vehicle-type” for Vehicle database, and “Zipcode→ Location” for Real Estate database).

Similarly, using Matlab, we established the set of correlated attributes and their corre-

sponding values (e.g., “Price” and “Mileage are negatively correlated whereas “Color” and

“Transmission” are independent in the Vehicle database; likewise, “Rent” and “Area” are

positively correlated in the Real Estate database).

To test the extended query similarity model in isolation, we employed the multiple

relations that were created (and shown above) for the two databases. Correspondingly, we

generated a total of 1 Million queries that adhered to the SPJ semantics i.e., the queries

had a right mix of projection, selection, and join conditions. The selection conditions

further were designed to involve point, range, IN, disjunction and negation predicates. The

dependencies and correlations, discussed in the above paragraph were retained for these

queries as well.

User Generation: The users in these experiments comprised of actual users on Amazon

Mechanical Turk. Each user provided us with a basic profile information (over 12 attributes

142

Table 5.2. Sample Experimental Queries: Real Estate Database

Q1 “Location=Dallas,TX AND (Beds = 3 OR To = Buy)”
Q2 “Location=Denton, TX AND (Beds => 2 OR Area > 1000 sq.ft)”
· · · · · ·
Q16 “Location=Dallas, TX AND NOT Type=Townhouse AND To = Rent”
· · · · · ·

like Gender, Age-range, Location, Education, Profession, Marital Status, Favorite Color,

and so on.). Further, due to the high level of security provided by Amazon, no privacy

regarding the user was violated in terms of name, location, and identification.

We then conducted two separate surveys (one for each database) where every user

was shown the 21 generated queries (one-at-a-time) and asked to input, for each query,

a ranking function by assigning weights to the schema attributes (on a scale of 1 to 10).

For aiding the user in expressing these preferences, we also displayed the set of results

returned for each query. Each explicit ranking provided by a user for a particular query

was then stored in the associated workload W. The vehicle database survey was taken by

110 distinct users whereas the real estate database survey was taken by 115 distinct users

who provided ranking functions for all the queries displayed to them. Thus, we generated

a workload of 2310 ranking functions for the vehicle database and 2415 functions for the

real estate database. Like we did for the evaluation of the similarity model in Chapter 3

(Section 3.6), we masked out 95% of the ranking functions from the workload i.e., the

workload for the vehicle database consists of only 115 (5% of 1100) ranking functions, and

the real estate database comprises of 120 function.

Our experiments were performed on a 2.6 GHz AMD Opteron Duo Core Processor

machine with 4GB RAM running on a 32-bit Redhat Linux installation, and the algorithms

were written in Java.

143

Figure 5.1. Quality Of Extended Query Similarity: Vehicle DB.

5.4.2 Query Similarity Evaluation

We first test the quality of this model in the context of the similarity-based ranking

framework, and then evaluate it in isolation.

Given that we extended the query-condition model, we test the quality of ranking pro-

duced by this model versus the one obtained by applying the standard query-result model

(that required no extensions). The quality is tested as follows: Given a query Q by user U ,

we obtain the most similar query Qc (using the extended query condition model) and Qr

(using the query result model). We then apply the function FQc,U and FQr,U to the results

of Q to obtain two sets of ranked results – Rc and Rr. We then apply the original ranking

function FQ,U (provided by U for Q) to the results of Q and get a ranked set of results R.

We then determine the quality of these models as the Spearman rank correlation coefficient

(Equation 3.8) between R and Rc, and between R and Rr. If the coefficient between R and

Rc is greater than the one between R and Rr, our understanding that extending the query-

condition model would be better and provide an improved quality of ranking than the one

obtained by the query-result model will be validated.

We performed the above process for each of the user (110 and 115 for vehicle and

real estate database) asking every query. Figures 5.1 and 5.2 show, for the two databases

144

Figure 5.2. Quality Of Extended Query Similarity: Real Estate DB.

respectively, the average query-condition similarity (as well as the average query-result

similarity) obtained across every query. The horizontal axis represents the queries; whereas

the vertical axis represents the average value of the resulting Spearman coefficient. As the

graph shows, over both the domains, the query-condition model outperforms the query-

result model.

Departing from the ranking context, we tested the extended model of query-condition

similarity in isolation. The motivation of this evaluation was to simply test the query sim-

ilarity models without involving the ranking functions (and the quality of ranking there-

after). Primarily, the goal was to determine the exact values of similarity obtained by either

of the two models versus the one obtained from a randomly selected query. Given that

the value of similarity ranges from 0 to 1 (with 1 indicating equivalent or the most similar

query), we evaluated the values yielded by these models for various queries on the database.

Specifically, we use the 1 Million queries generated over either database. We then randomly

generate additional 20 queries. For each of these 20 queries, we determine the most similar

query (by comparing with the set of 1 Million queries) using the extended query-condition

and the original query-result model. Likewise, for each query, we randomly select a query

145

Figure 5.3. Evaluation Of Query Similarity Values: Vehicle DB.

(from the 1 Million queries) and compute its similarity with the former query using the

query-condition model.

The results of this experiment are shown in Figures 5.3 and 5.4. The horizontal axis

represents the 20 queries whereas the vertical axis represents the resulting value of query

similarity (between 0 and 1). As seen in the figures, the query-condition model generates

a more reasonable value of similarity as compared to its query-result counterpart. Fur-

thermore, it can be clearly observed that employing a random model for selecting a query

(either in the context of ranking or otherwise) does not seem to be a desirable approach.

5.4.3 User Similarity Evaluation

The goal of this evaluation was to validate that the unified model involving the dy-

namic as well as the static user similarity component would yield a better quality of overall

ranking across a wide set of users than the one obtained if either of them were to be applied

in isolation. In the workloads used for both the databases in the experimental setup, we

have masked 95% of the ranking functions; therefore, there would be a large number of

146

Figure 5.4. Evaluation Of Query Similarity Values: Real Estate DB.

users who would have very few queries common amongst them; thus reducing the utility

of the dynamic user model. In contrast, the static model would establish a single order-

ing of users with respect to a given user across all queries; thus, not taking into account

that changes in user behavior may reflect in the corresponding similarities between them.

However, a combined model would, according to our hypothesis, yield a better value of

similarity and hence, a finer quality of overall ranking.

The quality of this model is tested as follows: For a user U asking query Q, we

determine the most similar user Us using the static user model (i.e., based on user profiles),

and the most similar user Ud based on the similarity of the ranking functions across the

common queries between these two users (for this, we employed the top-K suite (presented

in Section 3.4.3) of user similarity models). We apply FQ,Us and FQ,Ud
to the results of

Q, and obtain two sets of ranked results – Rs and Rd. Likewise, we determine the most

similar user Uc based on the unified model (as per Equation 5.14) and obtain the ranked set

of resultsRc by applyingFQ,Uc toQ’s results. We then apply the original (masked) function

FQ,U to Q’s results and obtain the ranked set of results R. The quality of these models is

147

Figure 5.5. Quality Of Combined User Similarity: Vehice DB.

then evaluated as the Spearman rank correlation coefficient (Equation 3.8) between R and

Rs, between R and Rd, and between R and Rc. If the coefficient between R and Rc is

greater than the one obtained for the other two models, our understanding that a combined

user similarity model would be better and provide an improved quality of ranking than the

one obtained by any of the individual models would be validated.

We performed the above process for each of the users (110 and 115 for vehicle and

real estate database) asking each of the 20 queries. Figures 5.5 and 5.6 show, for the vehicle

and the real estate database respectively, the average user similarity obtained for the three

models across every query. The horizontal axis represents the queries; whereas the vertical

axis represents the average value of the resulting Spearman coefficient. As depicted by the

results, over both databases, the combined user similarity model outperforms the individual

static as well as the dynamic user models. Thus, these results verify the claim that over a

Web database with sparse workloads, a model that employs the static information from

user profiles combined with a model based on dynamic browsing behavior will prove to be

more effective than applying either of the two models in isolation.

148

Figure 5.6. Quality Of Combined User Similarity: Real Estate DB.

5.5 Conclusion

In this Chapter, we explored the notion of query similarity in the context of database

queries (SQL). Specifically, we proposed and elaborated on the details for extending the

query-condition similarity model that analyzes the components such as selections, joins and

projections between queries, to establish similarity between them. Likewise, we extended

the notion of user similarity into a unified model comprising of a static (i.e., user profiles)

and a dynamic (i.e., based on users’ browsing behavior) component. We presented the

experimental results over two Web databases and real Web users to corroborate the validity

of our proposed extensions to these models.

CHAPTER 6

RELATED WORK

This Chapter presents the survey of the work related to the dissertation. We organize

the related work into two categories – intent specification over the Web, and ranking in the

context of different forms of information/data retrieval, and discuss their relevance to the

work presented in this dissertation.

6.1 Intent Specification

Almost every form of data/information retrieval involves – the provision for users

to specify their intent, a mechanism to capture and translate this intent into queries (to be

posed over the retrieval systems), and some form of meta-data that allows these frameworks

to surmise the specified intent. Correspondingly, there exists a considerable amount of

work that independently address these aspects of intent specification over different forms

of retrieval frameworks.

6.1.1 Query/Search Formulation

In the context of database systems, the earliest and the most relevant work in terms

of formulating queries using templates/skeletons (with multiple interactions from the user)

has been the popularly accepted paradigm of Query-By-Example (or QBE) paradigm [13].

In addition, template-based query formulation using multiple interactions with the user has

been developed for database systems such as SQL Server, Oracle and Microsoft Access.

Similarly, the CLIDE framework [80] adopts a multiple-interaction visual framework for

allowing users to formulate queries. The primary motivation of the CLIDE architecture is

149

150

to determine which queries would yield results versus those which produce a null result-set.

However, formulating queries using these mechanisms requires the user to have knowledge

about the types of queries supported by the underlying schema as well as a minimal under-

standing of the query language of the data model.

With the emergence of Web databases, most deep Web portals such as Expedia

(www.expedia.com) or Amazon (www.amazon.com) relied on the QBE paradigm,

in the form of templates, facets, and menus, to allows users to specify their intent. How-

ever, the queries to these systems are restricted to the schema of a single domain such as

travel, shopping, and so on, and thus, lack the flexibility to support complex queries that

span multiple domains. Furthermore, since the underlying schemas of the Web databases

are well-defined and user queries are purely based on these schemas, the need to support

arbitrary queries/intents with varying conditions on multiple types of operators does not

arise.

Retrieval frameworks such as search engines (e.g., Google) and meta-search engines

(e.g., Vivisimo [81]) use the keyword query paradigm and its success forms the motivation

for our QBK approach. However, these search engine mechanisms do not convert the key-

words into queries as their aim is to perform a lookup followed by a post-process of results

(such as ranking, clustering, etc.) instead of sophisticated query processing. Although

some search engines such as Ask (www.ask.com) and Kartoo (www.kartoo.com),

and a few question-answering frameworks (e.g., START [5]) accept natural language in-

put, we believe that they do not transform them into structured queries.

Frameworks that support queries on multiple sources employ either a keyword-based

query paradigm (e.g., Havasu [15]) or mediated query interfaces (e.g., WHIRL [16]) for

accepting user intents. Similarly, commercial systems such as Google Base [82] advocate

the usage of keyword queries. Faceted-search systems such as DBLP (www.dblp.l3s.

de) support query formulation using keywords in multiple navigational steps till the user

151

gets the desired results. However, the focus of these frameworks is to perform a simple

text/Web-search to obtain different types of data in response to the keywords (e.g., blogs,

web-links, videos, etc.) instead of formulating a query where every keyword corresponds

to a distinct entity.

In the context of information integration i.e., retrieval of information from multiple

sources, existing frameworks (e.g., Ariadne [83], TSIMMIS [84], and WHIRL [85]) have

extended the database querying models using combinations of templates or menu-based

forms to incorporate queries that are restricted to a single domain (or a set of domains).

Other frameworks (such as Havasu [86]) employ an interface similar to search engines,

that take relevant keywords (associated with a concept) from the user and retrieve infor-

mation for this particular concept from a range of sources. However, as the domains for

querying established by these systems are fixed (although the sources within the domain

might change), the problem of designing a querying mechanism is simplified to a great

extent. When a more involved query needs to be posed, users may not know how to unam-

biguously express their needs and may formulate queries that lead to unsatisfactory results.

Moreover, providing a rigid specification format may restrict the user from providing com-

plete information about his/her intent.

Additionally, most of the above-mentioned frameworks fail to capture queries that

involve a combination of spatial, temporal, and spatio-temporal conditions. A few sys-

tems (e.g., Hermes [87] and TerraWorld [88]) allow a limited set of spatial operations

(such as close to, travel time) through its push-button listing-based interface or a form-

based interface. Currently, centralized Web-based mapping interfaces like Google Maps

(www.maps.google.com) and Bing Maps (http://www.bing.com/maps/) al-

low searching and overlaying spatial layers (e.g., all hotels and metro stations in current

window or a given geo-region) to examine the relationships among them visually. How-

152

ever, these user interfaces are not expressive enough and restrict users from specifying their

intent in a flexible manner.

To the best of our knowledge, the problem of formulating arbitrary queries that span

multiple domains comprising of structured and/or unstructured sources has not been ad-

dressed. We believe that the Query-By-Keywords (QBK) approach proposed in this disser-

tation (Chapter 2) could be the first step towards solving this problem, which may in turn,

assist the next generation of retrieval frameworks.

6.1.2 Mapping Intent into Queries

Given an intent specified by the user, the next challenge is to transform this intent

into an appropriate query format that can be represented using a variant of relational algebra

(or similar established mechanisms). Since the queries (as seen in Example-1 in Chapter 1)

are complex and involve a myriad set of conditions, it is obvious that applying the existing

formalisms of relational algebra may not be sufficient.

Over the past decade, several querying languages that extend the basics of relational

algebra and allow access to structured data (SQL, OOQL [9], Whirl [85]), semi-structured

data (SemQL [10], CARIN [89], StruQL [90]) and vague (or unstructured) data (VAGUE

[91]) have been designed. These languages have, with limited success, incorporated impre-

cise user queries posed on a single-domain (or fixed set of multiple domains). Addition-

ally, several frameworks have deployed customized models that translate the user query

to a query format supported by the internal global schema (that provides an interface to

the underlying sources). Briefly, Havasu’s QPIAD [92] maps imprecise user queries to a

more generic query using a combination of data-mining techniques. Similarly, Ariadne

[83] interprets the user-specified conditions as a sequence of LOOM statements that are

combined to generate a single query. MetaQuerier’s form assistant [57] consists of built-in

type handlers that aids the query translation process with moderate human efforts.

153

However, existing mechanisms will prove to be insufficient to represent complex in-

tent spanning several domains. Hence, as alluded to by the Query-By-Keywords approach,

it becomes necessary to use domain-related taxonomies/ontologies and source-related se-

mantics to disambiguate as well as generate multiple potential queries from the user intent.

A feedback and learning mechanism may be appropriate to learn user intent from the com-

binations of concepts provided based on user feedback. If multiple queries are generated

(which is very much possible on account of the ambiguity of natural language and the vol-

ume of concepts involved in the domains of integration), an ordering mechanism may be

useful to obtain valuable feedback from the user. Once the query is finalized, a canonical

representation can be used to further transform the query into its components and elabora-

tion.

6.1.3 Domain Discovery And Source Identification

As elucidated by Example-1 (in Chapter 1), the Query-By-Keywords approach re-

lies on the availability of meta-data in the form of ontologies and taxonomies that assist

formulation of user queries pertaining to multiple concepts/entities across several domains.

Gathering appropriate knowledge about the domains and the corresponding sources within

these domains is thus, vital to the success of the QBK approach. In order to relate various

parts of a user query to appropriate domains (or concepts), the meaning of information that

is interchanged across the system has to be understood.

Over the past decade, several customized techniques have been adapted by differ-

ent frameworks that focus on capturing such meta-data about concepts and sources that

facilitate easy mapping of queries over the global schema and/or the underlying sources.

Havasu’s attribute value hierarchies [86], InfoMaster’s knowledge-base [93], Information

Manifold’s CARIN [89], TSIMMIS’s OLE model [84], Ariadne’s LIM [83], and Tukwila’s

154

data-source catalog [94] are some of the important advances in formulation of a compre-

hensive source repository replete with adequate domain knowledge.

For instance, Havasu’s attribute-valued hierarchies [86] maintain a classification of

the attributes of the data sources over which the user queries are formed. Ariadne uses

an independent domain model [83] for each application, that integrates the information

from the underlying sources and provides a single terminology for querying. This model

is represented using the LOOM knowledge representation system [95]. TSIMMIS adopts

an Object Exchange Model (OEM) [84], a self-describing (tagged) object model, in which

objects are identified by labels, types, values, and an optional identifier. Information Man-

ifold’s CARIN [89] proposes a method for representing local-source completeness and an

algorithm for exploiting source information in query processing. This is an important fea-

ture for integration systems, since, in most scenarios, data sources may be incomplete for

the domain they are covering. Furthermore, it suggests the use of probabilistic reasoning

for the ordering of data sources that appear relevant to answer a given query. InfoMaster’s

knowledge base [93] is responsible for the storage of all the rules and constraints required

to describe heterogeneous data sources and their relationships with each other. In Tukwila,

the metadata obtained from several sources is stored in a single data source catalog [94],

and holds different type of information about the data sources such as – semantic descrip-

tion of the contents of the data sources, overlap information about pairs of data sources,

and key statistics about the data, such as the cost of accessing each source, the sizes of the

relations in the sources, and selectivity information. Additionally, the use of ontologies

for modeling implicit and hidden knowledge has been considered as a possible technique

to overcome the problem of semantic heterogeneity by a number of frameworks such as

KRAFT [96], SIMS [97], OntoBroker [98], and others.

The proliferation of data on the Internet has ensured that within each domain, there

exist vast number of sources providing adequate yet similar information. For instance,

155

portals such as Expedia (www.expedia.com) and Travelocity (www.travelocity.

com) provide information for the domain of Air Travel. Similarly, sources such as Google

Scholar (www.scholar.google.com) and Microsoft Academic Search (academic.

research.microsoft.com/) generate adequate and similar results for the domain

of Publications and Literature. Thus, the next logical challenge is to automate the cur-

rent manual process of identifying appropriate sources associated with individual domains.

Semantic discovery of sources, that involves a combination of - web crawling, interface

extraction, source clustering, semantic matching and source classification, has been ex-

tensively researched by the Semantic Web community [99]. Currently, a significant and

increasing amount of information obtained from the web is hidden behind the query in-

terfaces of searchable databases. The potential of integrating data from such hidden data

sources [100] is enormous. The MetaQuerier project [101] addresses the challenges for

integrating these deep-web sources such as – discovering and integrating sources automat-

ically, finding an appropriate mechanism for mapping independent user-queries to source-

specific sub-queries, and developing mass collaboration techniques for the management,

description and rating of such sources.

To conclude, an ideal archetype would be to design a global taxonomy (that models

all the heterogeneous domains across which user queries might be posed), and a domain

taxonomy (that models all the sources belonging to the domain and orders them based on

distinct criteria specified by the integration system). The construction of such a multi-level

ontology requires extensive efforts in the areas of – domain knowledge aggregation, deep-

web exploration, and statistics collection. However, the earlier work on databases (use of

equivalences and statistics in centralized databases, use of source schemas for obtaining a

global schema) and recent work on information integration (as elaborated earlier) provide

adequate reasons to believe that this can be extended to multi-domain queries and compu-

tations that include spatial and temporal constraints.

156

6.2 Ranking Relevant Information

Although there was no notion of ranking in traditional databases, it has existed in the

context of information retrieval for quite some time. With the advent of the Web, ranking

gained prominence due to the volume of information being searched/browsed. Currently,

ranking has become indispensable and is used in document retrieval systems, recommender

systems, Web search/browsing, and traditional databases as well.

The focus of this dissertation is the development of a personalized ranking model

based on a holistic framework that combines user choices for select queries (for obtaining

ranking functions and user similarity), query analysis (for determining query similarity),

and importantly the above two to identify a relevant ranking function for a new query.

Logically, ranking has to be based on: user, query, the database content, and their inter-

relationship all of which forms the basis for our framework. To the best of our knowledge,

user- and query-dependent ranking in the context of Web database queries have not been

addressed in conjunction in current literature. Below, we relate our effort to earlier work in

these areas.

6.2.1 Ranking In Recommendation Systems

Given the notion of user- and query-similarity, it appears that our proposal is similar

to the techniques of collaborative [28] [29] [30] [31] and content filtering [32] [33] [34]

used in recommendation systems. However, there are some important differences (between

ranking tuples for database queries versus recommending items in a specific order) that

distinguish our work. For instance, each cell in the user-item matrix of recommendation

systems represents a single scalar value that indicates the rating/preference of a particu-

lar user towards a specific item. Similarly, in the context of recommendations for social

tagging [102] [103] [104] [105], each cell in the corresponding user-URL/item-tag matrix

indicates the presence or absence of a tag provided by a user for a given URL/item. In con-

157

trast, each cell in the user-query matrix (used for database ranking) contains an ordered set

of tuples (represented by a ranking function). Further, although the rating/relevance given

to each tuple (in the results of a given query) by a user can be considered to be similar to a

rating given for an item in recommendation systems, if the same tuple occurs in the results

of distinct queries, it may receive different ratings from the same user. This aspect of the

same item receiving varied ratings by the same user in different contexts makes it a dif-

ferent problem, and hence, current recommender techniques cannot be applied for solving

this problem.

Another important distinction that sets our work apart from recommendation systems

is the notion of similarity. In content filtering, the similarity between items is established

either using a domain expert, or user profiles [34], or by using a feature recognition al-

gorithm [32] over the different features of an item (e.g., author and publisher of a book,

director and actor in a movie, etc.). In contrast, since our framework requires establish-

ing similarity between actual SQL queries (instead of simple keyword queries), the direct

application of these techniques does not seem to be applicable.

To the best of our knowledge, the notion of similarity has not been explored and

leveraged in the context of database queries (SQL). Although the no answers problem [67]

is typically addressed by using several techniques proposed for query relaxation [106] [107]

that rewrite queries, the notion of similarity is employed in a delimited context to gener-

ate at least a few acceptable results. In contrast, similarity in the form of the information

retrieval models [24] is used for ordering tuples in the many answers problem [43]. In con-

trast, equivalence and subsumption of queries have been well-established [108]; however

the focus of these works is still toward obtaining answers without focusing on the aspect

of ranking these answers; a requirement that needs to be relaxed in the context of Web

databases. Furthermore, since we assume that the same user may have different prefer-

158

ences for different queries, capturing this information via profiles will not yield the same

level of personalization that is, in contrast, provided by our approach.

The notion of user similarity used in our framework is identical to the one adopted in

collaborative filtering; however, the technique used for determining this similarity is differ-

ent. In collaborative filtering, users are compared based on the ratings given to individual

items (i.e., if two users have given a positive/negative rating for the same items, then the

two users are similar). In the context of database ranking, we propose a rigorous definition

of user similarity based on the similarity between their respective ranking functions, and

hence ranked orders. Furthermore, this work extends user-personalization using context

information based on user and query similarity instead of static profiles and data analysis.

6.2.2 Ranking In Database Systems

Although ranking query results for relational and Web databases has received signif-

icant attention over the past years, a holistic support for automated similarity-based user-

and query-dependent ranking has not been addressed in this context. For instance, [42] [67]

address the problem of query-dependent ranking by adapting the vector model from in-

formation retrieval, whereas [43] [44] do the same by adapting the probabilistic model.

However, for a given query, these techniques provide the same ordering of tuples across all

users.

Employing user personalizations by considering the context and profiles of users for

user-dependent ranking in databases has been proposed in [35] and [36]. Similarly, the

work proposed in [48] requires the user to specify an ordering across the database tuples,

without posing any specific query, from which a global ordering is obtained for each user.

A drawback in all these works is that they do not consider that the same user may have

varied ranking preferences for different queries.

159

The closest form of query- and user-dependent ranking in relational databases in-

volves manual specification [38] [39] [37] [40] [41] of the ranking function/preferences as

part of SQL queries. However, this technique is unsuitable for Web users who are not pro-

ficient with query languages and ranking functions. In contrast, our framework provides

an automated query- as well as user-dependent ranking solution without requiring users to

possess knowledge about query languages, data models and ranking mechanisms.

6.2.3 Ranking In Information Retrieval

Ranking has been extensively investigated in the domain of information retrieval.

The cosine-similarity metric [25] is very successful in practice, and we employ its vari-

ant [42] for establishing similarities between attribute-value pairs as well as query results in

our framework. The problem of integrating information retrieval system and database sys-

tems have been attempted [109] [24] with a view to apply the ranking models (devised for

the former) to the latter; however, the as illustrated in the studies conducted by [110] [111],

the intrinsic differences between their underlying models is a major problem.

6.2.4 Inferring Functions Via Relevance Feedback

Inferring a ranking function by analyzing the user’s interaction with the query results

originates from the concepts of relevance feedback [71] [112] [113] [114] in the domain of

document and image retrieval systems. However, the direct application of either explicit or

implicit feedback mechanisms for inferring database ranking functions has several draw-

backs, and to the best of our knowledge have not been addressed in literature. To address

this challenge in a limited context, we proposed a preliminary probabilistic learning method

for capturing attribute preferences for Web queries. Our approach is similar to the use of

learning methods, such as linear regression and Bayesian classifier, for deriving ranked

lists and has been studied extensively in Machine Learning and Image Processing [45].

160

Our results show that within the framework that we tested, our proposed model performed

better than existing Bayesian or regression models. There exists a number of sophisticated

learning models that can aid in inferring a ranking function, but comparing them has not

been the major focus of this work.

6.2.5 Workloads For Ranking Frameworks

Similar to the workload established in this work, recommendation systems in the

form of content filtering [32] [33] [34] as well as collaborative filtering [28] [29] [30] [31]

employ a similar user-item rating matrix. A significant difference that separates our work

is the information contained in the matrix. While each cell in the rating matrix of recom-

mendation systems contains information in the form of a simple rating given by an user

to an object (e.g., rating a particular movie), the information contained in each cell of our

workload is more complex in terms of a preference to individual tuples within the results

of a query. While it is significantly easier, in terms of time and effort, to obtain a rating

for an item, obtaining a ranking function from a user incurs considerable time and effort

(since the user needs to browse through the query results and then make individual choices

towards the relevance/non-relevance of the tuples).

Furthermore, since the goal of recommendation systems is to recommend items to

user based on past data, the more ratings obtained by this matrix, the better it serves these

systems. Although this is applicable even in the case of our workload for ranking in Web

databases, owing to the cost in obtaining individual functions, the number of functions that

can be obtained will be much lesser than the ratings obtained for a recommender system.

Consequently, deciding the exact pairs for whom the functions need to obtained (for ensur-

ing a good quality of subsequent ranking) is much more vital than determining the objects

for which ratings can be obtained.

161

To conclude, this dissertation presents a unique framework that blends a novel sim-

ilarity model with a sophisticated workload (obtained using a heuristic approach) to assist

ranking in the context of Web databases; and to the best of our knowledge, has not been

addressed in literature.

CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

The principal contribution of this work is to provide a new insight to the paradigms

of – intent specification (for focused information retrieval on the Web) and ranking (for

providing a user- and query-specific ordering of results). In particular, we have made the

following original contributions.

7.1 Contributions

An Approach For Query Formulation On The Web – We presented Query-By-

Keywords (or QBK), a preliminary approach for query specification over the unstructured

Web. This approach translates an user intent, expressed as a collection of keywords, to a

structured query that can be processed over the disparate Web sources. We demonstrated

the feasibility of this approach when supported by an adequate Knowledge Base, compris-

ing of a Knowledge Repository of semantic information and a Workload Repository made

up of statistical data. We detailed the steps involved in the processes of keyword resolu-

tion, ranking alternative query intents, generating appropriate query skeletons, and finally,

transforming these skeletons into full-fledged queries via meaningful user interaction.

A Similarity-based Ranking Model For Web Databases – Given the limitations of

current frameworks, in terms of providing a personalized model of ranking, we advanced a

unique Similarity-based ranking framework for user- and query-dependent ranking of query

results in the context of Web databases. Specifically we presented two comprehensive

models – Query Similarity and User Similarity, that were merged to form a holistic ranking

framework for Web databases. The model of Query Similarity is a novel advancement to

162

163

the notion of establishing similarity between any pair of arbitrary SQL queries posed (in

the form of SPJ semantics) on a database. Likewise, the component of User Similarity is an

innovative amalgamation of static information (in the form of user profiles) and dynamic

user behavior (in the form of their browsing choices and ranking preferences over query

results). The applicability of this ranking model, in terms of the quality of ranked results as

well as the efficiency for real-time situations, was established via an extensive experimental

evaluation with the assistance of real users from Amazon Mechanical Turk over two distinct

Web databases provided by Google Base.

An Algorithmic Approach For Workload Design – The similarity-based ranking

framework, presented in this work, relies on the availability of a workload of ranking func-

tions, collected from several users asking various queries on the Web database. Thus, given

that the quality of the final ranking depends on such a workload, we argued that this work-

load needs to be established using an algorithmic design, instead of a random process.

Toward that, we presented a Workload Filling technique for determining a “good” set of

users and queries to represent a workload for assisting user- and query-dependent ranking

on Web databases. In order to quantify the notion of a “good” workload, we advanced

a novel metric of Workload Goodness. We further demonstrated that finding an optimal

workload is intractable in practice; and to overcome this challenge, we proposed a suite of

heuristic algorithms. Further, we showed the applicability of our approach in determining

the requisite workload in a static as well as dynamic environment. We analytically ex-

plained the effectiveness of our proposal and validated it experimentally over the two Web

databases of Google Base coupled with real users from Amazon Mechanical Turk.

A Learning Model For Inferring Ranking Functions – The workload employed

by the similarity-based ranking framework, in turn represents a collection of distinct rank-

ing functions for several user-query pairs. Each ranking function depicts the preferences of

a specific user towards the results of a distinct query. The ranking model eventually avails

164

of these functions, for performing ranking at the time of query; hence, appropriately cap-

turing these user preferences over query results and translating them into appropriate func-

tions becomes a pertinent challenge. In this dissertation, we put forward novel technique

for obtaining ranking functions based on user preferences. Unlike relational databases,

the nature of Web database applications allow users to browse and select the results that

match their preferences (through an interaction with the Web pages containing the result

records). Hence, although an user’s explicit ranking preferences over the results of a query

are not available, our proposal avails of the results implicitly chosen by an user that, in turn,

indicate his/her ranking preferences. In order to translate these choices into formal mathe-

matical ranking functions, we advanced a novel technique, that relies on the principles of

Machine Learning, called Probabilistic Data Distribution Difference. We compared our

proposal with existing learning mechanisms such as Naive Bayes and Linear Regression,

and showed its effectiveness with respect to these models via an experimental evaluation.

7.2 Future Work

In this dissertation, we presented a framework for the QBK approach. Although we

outlined the different components of its resulting framework as well as identified the var-

ious types of information to be associated with the Knowledge Base, an important task is

to test the practicality of this approach. Given that the approach adheres itself to query for-

mulation over the Web, determining its applicability in the context of Web users specifying

intents over multiple disparate domains on the Web becomes mandatory. Correspondingly,

investigating (semi-automated) techniques for constructing the Knowledge Base, that sup-

ports this approach, is necessary. Furthermore, since the given intent is eventually trans-

formed into a complete formal query, extending the semantics of a query language (such as

SQL) to include constructs for domains, Web sources, temporal/spatial conditions is vital.

165

Finally, checking the applicability of this approach for focused retrievals in the domains

(beyond the Web) such as biology, bioinformatics, and other sciences and related fields

would be interesting.

The primary contribution of this thesis is a holistic framework for user- and query-

dependent ranking over Web databases. Although we covered most of the bases in this

problem i.e., a comprehensive similarity model, an appropriately designed workload, and a

learning model for inferring functions; certain challenges need to be further explored.

In the ranking framework, the current model of query similarity, although capable

of handling most SPJ queries, needs to be further extended to cover all aspects for SQL,

namely – queries involving GROUP-BY conditions, HAVING clauses, and Aggregate op-

erators. In addition, application of the query similarity model to different applications such

as query processing and optimization, analysis of query logs and keyword-based searching

in databases needs to be investigated. Incorporating these models as part of commercial

databases like Oracle, MY-SQL, and others, to support recommendation of similar queries

would be worth exploring into. Similarly, analyzing different techniques so as to adopt the

most suitable one for combining the static and dynamic components of the user similarity

would be meaningful.

In the context of workload design, determining an appropriate size in terms of the

user-query pairs needs further attention. Although pragmatic in nature, we believe a good

estimate of the workload size can further enhance the ranking model. Likewise, Web

databases who plan on using this framework need to analyze different mechanisms (e.g.,

surveys, opinion polls, etc.) for obtaining the actual preferences from users. Furthermore,

our current representation of a ranking function is a linear weighted-sum model; how-

ever, further analysis that yields the exact nature of a function that maps closely to user

preferences would be worthwhile. Finally, determining the applicability of the ranking

166

framework to other repositories such as the surface Web, document collections, traditional

databases and recommender systems would be beneficial.

To conclude, we presented novel solutions to the two most important problems in the

context of the Web as known today i.e., intent specification, and relevant result retrieval.

As the scale and spread of the Web continues to rise, we believe that this dissertation

could act as a stepping stone for spawning new threads of research in these areas, which

in turn, would lead to the development of the next generation of sophisticated personalized

frameworks for information retrieval.

REFERENCES

[1] G. Salton, J. Allan, and C. Buckley, “Approaches to Passage Retrieval in Full Text

Information Systems,” in Proceedings of the ACM Special Interest Group on Infor-

mation Retrieval (SIGIR), 1993, pp. 49–58.

[2] S. Miike, E. Itoh, K. Ono, and K. Sumita, “A Full-Text Retrieval System with a

Dynamic Abstract Generation Function,” in Proceedings of the ACM Special Interest

Group on Information Retrieval (SIGIR), 1994, pp. 152–161.

[3] M. Narita and Y. Ogawa, “The Use of Phrases from Query Texts in Information Re-

trieval,” in Proceedings of the ACM Special Interest Group on Information Retrieval

(SIGIR), 2000, pp. 318–320.

[4] M. Shokouhi and J. Zobel, “Federated Text Retrieval from Uncooperative Over-

lapped Collections,” in Proceedings of the ACM Special Interest Group on Informa-

tion Retrieval (SIGIR), 2007, pp. 495–502.

[5] B. Katz, J. J. Lin, and D. Quan, “Natural Language Annotations for the Seman-

tic Web,” in Proceedings of the Conference on Cooperative Information Systems

(CoopIS), 2002, pp. 1317–1331.

[6] S. Agrawal, S. Chaudhuri, and G. Das, “DBXplorer: A System for Keyword-Based

Search over Relational Databases,” in Proceedings of the IEEE International Con-

ference on Data Engineering (ICDE), 2002, pp. 5–16.

[7] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe, and S. Sudarshan,

“BANKS: Browsing and Keyword Searching in Relational Databases,” in Proceed-

ings of the International Conference on Very Large Databases (VLDB), 2002, pp.

1083–1086.

167

168

[8] J. Melton and A. R. Simon, Understanding the New SQL: A Complete Guide. Mor-

gan Kaufmann Publishers, 1993.

[9] L. Liu, C. Pu, and Y. Lee, “An adaptive approach to query mediation across het-

erogeneous information sources,” in Proceedings of the Conference on Cooperative

Information Systems (CoopIS), 1996, pp. 144–156.

[10] J.-O. Lee and D.-K. Baik, “SemQL: A Semantic Query Language for Multidatabase

Systems,” in Proceedings of the Conference on Information and Knowledge Man-

agement (CIKM), 1999, pp. 259–266.

[11] M. K. Bergman, “The Deep Web: Surfacing Hidden Value,” Proceedings of the

Journal of Electronic Publishing, vol. 7, no. 1, 2001.

[12] K. C.-C. Chang, B. He, C. Li, M. Patil, and Z. Zhang, “Structured Databases on

the Web: Observations and Implications,” Proceedings of the ACM Special Interest

Group On Management Of Data (SIGMOD), vol. 33, no. 3, pp. 61–70, 2004.

[13] M. M. Zloof, “Query-by-Example: A Database Language,” IBM Systems Journal,

vol. 16, no. 4, pp. 324–343, 1977.

[14] ——, “Design Aspects of the Query-by-Example Data Base Management Lan-

guage,” in Proceedings of the International Conference on Data and Knowledge

Bases (JCDKB), 1978, pp. 29–55.

[15] Z. Nie, S. Kambhampati, and T. Hernandez, “BibFinder/StatMiner: Effectively Min-

ing and Using Coverage and Overlap Statistics in Data Integration,” in Proceedings

of the International Conference on Very Large Databases (VLDB), 2003, pp. 1097–

1100.

[16] W. W. Cohen, “A Demonstration of WHIRL,” in Proceedings of the ACM Special

Interest Group on Information Retrieval (SIGIR), 1999.

169

[17] B. He, Z. Zhang, and K. C.-C. Chang, “Towards Building a MetaQuerier: Extract-

ing and Matching Web Query Interfaces,” in Proceedings of the IEEE International

Conference on Data Engineering (ICDE), 2005, pp. 1098–1099.

[18] C. A. Knoblock, S. Minton, J. L. Ambite, N. Ashish, I. Muslea, A. Philpot, and S. Te-

jada, “The Ariadne Approach to Web-Based Information Integration,” Proceedings

of the International Journal on Cooperative Information Systems, vol. 10, no. 1-2,

pp. 145–169, 2001.

[19] D. Braga, S. Ceri, F. Daniel, and D. Martinenghi, “Optimization of Multi-domain

Queries on the Web,” Proceedings of the International Conference on Very Large

Databases (VLDB), vol. 1, no. 1, pp. 562–573, 2008.

[20] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G. Ives, “DBpedia:

A Nucleus for a Web of Open Data,” in Proceedings of the International Semantic

Web Conference, 2007, pp. 722–735.

[21] A. Telang, S. Chakravarthy, and C. Li, “Query-By-Keywords (QBK): Query Formu-

lation Using Semantics and Feedback,” in Proceedings of the International Confer-

ence on Conceptual Modeling (ER), 2009, pp. 191–204.

[22] A. Telang, S. Chakravarthy, and Li, “Querying for Information Integration: How To

Go From An Imprecise Intent To A Precise Query?” in Proceedings of the Interna-

tional Conference on Management of Data (COMAD), 2008, pp. 245–248.

[23] D. L. Lee, H. Chuang, and K. E. Seamons, “Document Ranking and the Vector-

Space Model,” Proceedings of the IEEE International Journal on Software Systems,

vol. 14, no. 2, pp. 67–75, 1997.

[24] N. Fuhr, “A Probabilistic Relational Model for the Integration of IR and Databases,”

in Proceedings of the ACM Special Interest Group on Information Retrieval (SIGIR),

1993, pp. 309–317.

170

[25] Ricardo Baeza-Yates and Berthier Ribeiro-Neto, Modern Information Retrieval.

ACM Press, 1999.

[26] S. Brin and L. Page, “The Anatomy of a Large-Scale Hypertextual Web Search

Engine,” in Proceedings of the International World-Wide Web Conference (WWW),

vol. 30, no. 1-7, 1998, pp. 107–117.

[27] W. W. Cohen, “Recognizing Structure in Web Pages using Similarity Queries,” in

Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 1999, pp. 59–

66.

[28] T. Hofmann, “Collaborative Filtering via Gaussian Probabilistic Latent Semantic

Analysis,” in Proceedings of the ACM Special Interest Group on Information Re-

trieval (SIGIR), 2003, pp. 259–266.

[29] J. Basilico and T. Hofmann, “A Joint Framework for Collaborative and Content Fil-

tering,” in Proceedings of the ACM Special Interest Group on Information Retrieval

(SIGIR), 2004, pp. 550–551.

[30] D. Billsus and M. J. Pazzani, “Learning Collaborative Information Filters,” in Pro-

ceedings of the IEEE International Conference on Machine Learning (ICML), 1998,

pp. 46–54.

[31] P. W. Foltz and S. T. Dumais, “Personalized Information Delivery: An Analysis of

Information Filtering Methods,” Proceedings of the ACM Communications, vol. 35,

no. 12, pp. 51–60, 1992.

[32] M. Balabanovic and Y. Shoham, “Content-Based Collaborative Recommendation,”

Proceedings of the ACM Communications, vol. 40, no. 3, pp. 66–72, 1997.

[33] C. Basu, H. Hirsh, and W. W. Cohen, “Recommendation as Classification: Using

Social and Content-Based Information in Recommendation,” in Proceedings of the

AAAI Conference on Artificial Intelligence (AAAI), 1998, pp. 714–720.

171

[34] S. Gauch, M. Speretta, A. Chandramouli, and A. Micarelli, “User Profiles for Per-

sonalized Information Access,” in Proceedings of the The Adaptive Web, 2007, pp.

54–89.

[35] G. Koutrika, “Database Query Personalization,” in Proceedings of the International

Conference on Extending Database Technologies (EDBT), 2005, pp. 147–152.

[36] G. Koutrika and Y. E. Ioannidis, “Constrained Optimalities in Query Personaliza-

tion,” in Proceedings of the ACM Special Interest Group on Management of Data

(SIGMOD), 2005, pp. 73–84.

[37] M. Ortega-Binderberger, K. Chakrabarti, and S. Mehrotra, “An Approach to Inte-

grating Query Refinement in SQL,” in Proceedings of the International Conference

on Extending Database Technologies (EDBT), 2002, pp. 15–33.

[38] K. Werner, “Foundations of Preferences in Database Systems,” in Proceedings of the

International Conference on Very Large Databases (VLDB). VLDB Endowment,

2002, pp. 311–322.

[39] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song, “RankSQL: Query Algebra and Opti-

mization for Relational Top-k Queries,” in Proceedings of the ACM Special Interest

Group on Management of Data (SIGMOD), 2005, pp. 131–142.

[40] A. Marian, N. Bruno, and L. Gravano, “Evaluating Top-k Queries over Web-

accessible Databases,” Proceedings of the ACM Transactions of Database Systems

(TODS), vol. 29, no. 2, pp. 319–362, 2004.

[41] H. Yu, S.-w. Hwang, and K. C.-C. Chang, “Enabling Soft Queries for Data Re-

trieval,” Proceedings of the International Journal on Information Systems, vol. 32,

no. 4, pp. 560–574, 2007.

[42] S. Agrawal, S. Chaudhari, G. Das, and A. Gionis, “Automated Ranking of Database

Query Results,” in Proceedings of the Conference on Innovations in Database Re-

search (CIDR), 2003.

172

[43] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum, “Probabilistic Information Re-

trieval Approach for Ranking of Database Query Results,” Proceedings of the ACM

Transactions of Database Systems (TODS), vol. 31, no. 3, pp. 1134–1168, 2006.

[44] W. Su, J. Wang, Q. Huang, and F. Lochovsky, “Query Result Ranking over E-

commerce Web Databases,” in Proceedings of the Conference on Information and

Knowledge Management (CIKM), 2006, pp. 575–584.

[45] H. Yu, Y. Kim, and S. won Hwang, “RV-SVM: An Efficient Method for Learning

Ranking SVM,” in Proceedings of the Pacific-Asia Conference on Knowledge Dis-

covery and Data Mining (PAKDD), 2009, pp. 426–438.

[46] G. Koutrika and Y. E. Ioannidis, “Personalization of Queries in Database Systems,”

in Proceedings of the IEEE International Conference on Data Engineering (ICDE),

2004, pp. 597–608.

[47] R. Agrawal, R. Rantzau, and E. Terzi, “Context-Sensitive Ranking,” in Proceedings

of the ACM Special Interest Group on Management of Data (SIGMOD). New York,

NY, USA: ACM, 2006, pp. 383–394.

[48] Seung-Won Hwang, “Supporting Ranking For Data Retrieval,” Ph.D. dissertation,

University of Illinois, Urbana Champaign, 2005.

[49] A. Telang, C. Li, and S. Chakravarthy, “One Size Does Not Fit All: Towards

User- and Query-Dependent Ranking For Web Databases,” Proceedings of the IEEE

Transactions on Knowledge and Data Engineering (TKDE), 2011, (To Appear).

[50] ——, “One Size Does Not Fit All: Towards User- and Query-Dependent Ranking

For Web Databases,” University of Texas at Arlington, Tech. Rep. 6, 2009.

[51] A. Telang, S. Chakravarthy, and C. Li, “Establishing SQL Query Similarity For

Ranking and Other Applications,” in Proceedings of the Conference on Information

and Knowledge Management (CIKM), 2011, (Under Review).

173

[52] ——, “Fill-In-The-Functions: Toward Establishing A Workload For Ranking in Web

Databases,” Proceedings of the IEEE Transactions on Knowledge and Data Engi-

neering (TKDE), 2011, (Under Review).

[53] ——, “Fill-In-The-Functions: Towards Establishing A Workload For Ranking in

Web Databases,” University of Texas at Arlington, Tech. Rep. 3, 2011.

[54] A. Telang, S. Chakravarthy, and Y. Huang, “Information Integration Across Hetero-

geneous Sources: Where Do We Stand and How to Proceed?” in Proceedings of the

International Conference on Management of Data (COMAD), 2008, pp. 186–197.

[55] A. Telang, R. Mishra, and S. Chakravarthy, “Ranking Issues For Information Inte-

gration,” in Proceedings of the IEEE International Conference on Data Engineering

(ICDE) Workshop (DBRank), 257-260, Ed., 2007.

[56] A. Telang and S. Chakravarthy, “Information Integration across Heterogeneous Do-

mains: Current Scenario, Challenges and the InfoMosaic Approach,” University of

Texas at Arlington, Tech. Rep., 2007.

[57] Z. Zhang, B. He, and K. C.-C. Chang, “Light-weight Domain-based Form Assistant:

Querying Web Databases On the Fly,” in Proceedings of the International Confer-

ence on Very Large Databases (VLDB), 2005, pp. 197–208.

[58] E. Chu, A. Baid, X. Chai, A. Doan, and J. Naughton, “Combining Keyword Search

and Forms For Ad Hoc Querying Of Databases,” in Proceedings of the ACM Special

Interest Group on Management of Data (SIGMOD), 2009, pp. 349–360.

[59] G. A. Miller, “WordNet: A Lexical Database for English,” Proceedings of the ACM

Communications, vol. 28, no. 11, pp. 39–41, 1995.

[60] J. F. Allen, “Maintaining Knowledge About Temporal Intervals,” Proceedings of the

ACM Communications, vol. 26, no. 11, pp. 832–843, 1983.

174

[61] F. Fonseca, M. Egenhofer, P. Agouris, and G. Camara, “Using Ontologies for Inte-

grated Geographic Information Systems,” Proceedings of the ACM Transactions in

Geographic Information Systems, vol. 3, 2002.

[62] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach, “Scalable Semantic Web

Data Management Using Vertical Partitioning,” in Proceedings of the International

Conference on Very Large Databases (VLDB), 2007, pp. 411–422.

[63] R. Waldinger, D. E. Appelt, J. Fry, D. J. Israel, P. Jarvis, D. Martin, S. Riehemann,

M. E. Stickel, M. Tyson, J. Hobbs, and J. L. Dungan, “Deductive Question Answer-

ing from Multiple Resources,” in Proceedings of the AAAI Conference on Artificial

Intelligence (AAAI), 2004.

[64] H. N. Gabow and E. W. Myers, “Finding All Spanning Trees of Directed and Undi-

rected Graphs,” Proceedings of the Society For Industrial and Applied Mathematics

(SIAM), vol. 7, no. 3, pp. 280–287, 1978.

[65] A. Agresti, Building and Applying Logistic Regression Models. Wiley, August

2006, no. 2, ch. 5.

[66] J. Adlrich, “R.A. Fisher And The Making Of Maximum Likelihood,” Proceedings

of the Journal of Statistical Sciences, vol. 12, no. 3, pp. 1912–1922, August 1997.

[67] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum, “Probabilistic Ranking of

Database Query Results,” in Proceedings of the International Conference on Very

Large Databases (VLDB), 2004, pp. 888–899.

[68] J. L. Myers and A. D. Well, Research Design and Statistical Analysis. Lawrence

Erlbaum Associates, 2003.

[69] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, “Rank Aggregation Methods

for the Web,” in Proceedings of the International conference on World Wide Web

(WWW). New York, NY, USA: ACM, 2001, pp. 613–622.

175

[70] T. Kanungo and D. Mount, “An Efficient K-Means Clustering Algorithm: Analysis

and Implementation,” Proceedings of the IEEE Transactions of Pattern Analysis in

Machine Intelligence, vol. 24, no. 7, pp. 881–892, 2002.

[71] B. He, “Relevance Feedback,” in Proceedings of the Encyclopedia of Database Sys-

tems, 2009, pp. 2378–2379.

[72] F. Nielsen and S. Boltz, “The Burbea-Rao And Bhattacharyya Centroids,” Proceed-

ings of the Computer Research Repository (CoRR), 2010.

[73] W. J. Reed, “The Pareto, Zipf and Other Power Laws,” Proceedings of the Economic

Letters, vol. 74, no. 1, pp. 15–19, December 2001.

[74] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock, “Methods and Met-

rics for Cold-Start Recommendations,” in Proceedings of the ACM Special Interest

Group on Information Retrieval (SIGIR), 2002, pp. 253–260.

[75] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan, “Time Bounds for

Selection,” Proceedings of the Journal of Computer and System Sciences, vol. 7, pp.

448–461, August 1973.

[76] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Addison-

Wesley, 2005.

[77] J. L. Rodgers and A. Nicewander, Thirteen Ways to Look at the Correlation Coeffi-

cient, ser. The American Statistician. Mendeley, 1988, vol. 42.

[78] A. Agresti, Categorical Data Analysis, ser. Wiley Series in Probability and Statistics.

Wiley, 2002.

[79] MathWorks Inc., “Weighted Correlation Matrix,” http://www.mathworks.com/

matlabcentral.

[80] M. Petropoulos, A. Deutsch, and Y. Papakonstantinou, “CLIDE: Interactive Query

Formulation for Service Oriented Architectures,” in Proceedings of the ACM Special

Interest Group on Management of Data (SIGMOD), 2007, pp. 1119–1121.

176

[81] S. M. zu Eissen and B. Stein, “Analysis of Clustering Algorithms for Web-Based

Search,” in Proceedings of the International Conference on Practical Aspects of

Knowledge Management (PAKM), 2002, pp. 168–178.

[82] J. Madhavan, S. Cohen, X. L. Dong, A. Y. Halevy, S. R. Jeffery, D. Ko, and C. Yu,

“Web-Scale Data Integration: You can afford to Pay as You Go,” in Proceedings of

the Conference on Innovations in Database Research (CIDR), 2007, pp. 342–350.

[83] C. A. Knoblock, “Planning, Executing, Sensing, and Replanning for Information

Gathering,” in Proceedings of the International Joint Conference on Artificial Intel-

ligence (IJCAI), 1995, pp. 1686–1693.

[84] S. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou,

J. D. Ullman, and J. Widom, “The TSIMMIS Project: Integration of Heterogeneous

Information Sources,” in Prcoeedings of the ACM Transactions on Computer Vision

and Applications (IPSJ), 1994, pp. 7–18.

[85] W. W. Cohen, “Integration of Heterogeneous Databases Without Common Domains

Using Queries Based on Textual Similarity,” in Proceedings of the ACM Special

Interest Group on Management of Data (SIGMOD), 1998, pp. 201–212.

[86] S. Kambhampati, U. Nambiar, Z. Nie, and S. Vaddi, “Havasu: A Multi-Objective,

Adaptive Query Processing Framework for Web Data Integration,” Arizona State

University, Tech. Rep., 2002.

[87] V. Subrahmanian, “A HEterougeneous Reasoning and MEdiator System,” http:

//www.cs.umd.edu/projects/hermes/.

[88] M. Michalowski and C. A. Knoblock, “A Constraint Satisfaction Approach to

Geospatial Reasoning,” in Proceedings of the AAAI Conference on Artificial Intelli-

gence (AAAI), 2005, pp. 423–429.

[89] A. Y. Levy, “Information Manifold Approach to Data Integration,” Proceedings of

the IEEE Journal on Intelligent Systems, pp. 1312–1316, 1998.

177

[90] D. Florescu, A. Levy, and A. Mendelzon, “Database Techniques for the World-Wide

Web: A Survey,” Proceedings of the ACM Special Interest Group On Management

Of Data (SIGMOD), vol. 27, no. 3, pp. 59–74, 1998.

[91] A. Motro, “VAGUE: A User Interface to Relational Databases that Permits Vague

Queries,” Proceedings of the ACM Transactions of Information Systems, vol. 6, no. 3,

pp. 187–214, 1988.

[92] J. Fan, H. Khatri, Y. Chen, and S. Kambhampati, “QPIAD: Query processing over

Incomplete Autonomous Databases,” Arizona State University, Tech. Rep., 2006.

[93] O. M. Duschka and M. R. Genesereth, “Infomaster: An Information Integration

Tool,” in Proceedings of the International Conference on Intelligent Information

Integration, 1997.

[94] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, and D. S. Weld, “Adaptive Query

Processing for Internet Applications,” in Proceedings of the IEEE International Con-

ference on Data Engineering (ICDE), 1999, pp. 19–26.

[95] R. M. MacGregor, “Inside the LOOM Description Classifier,” Proceedings of the

ACM Special Interest Group On Artificial Intelligence (SIGART), vol. 2, no. 3, pp.

88–92, 1991.

[96] P. M. D. Gray, A. D. Preece, N. J. Fiddian, W. A. Gray, and et. al., “KRAFT: Knowl-

edge Fusion from Distributed Databases and Knowledge Bases,” in Proceedings of

the International Conference on Database and Expert Systems Applications (DEXA),

1997, pp. 682–691.

[97] C.-N. Hsu and C. A. Knoblock, “Reformulating Query Plans for Multidatabase Sys-

tems,” in Proceedings of the Conference on Information and Knowledge Manage-

ment (CIKM), 1993, pp. 423–432.

178

[98] S. Decker, M. Erdmann, D. Fensel, and R. Studer, “Ontobroker: Ontology Based

Access to Distributed and Semi-Structured Information,” in Proceedings of the

Database Semantics: Semantic Issues in Multimedia Systems, 1999, pp. 351–369.

[99] H. Stuckenschmidt and H. Wache, “Context Modelling and Transformation for

Semantic Interoperability,” Proceedings of the Knowledge Representation Meets

Databases (KRDB), 2000.

[100] B. He, M. Patil, K. C.-C. Chang, and Z. Zhang, “Accessing the Deep Web: A Sur-

vey,” University of Illinois at Urbana-Champaign, Tech. Rep., 2004.

[101] K. C.-C. Chang, B. He, and Z. Zhang, “Toward Large Scale Integration: Building

a MetaQuerier over Databases on the Web,” in Proceedings of the Conference on

Innovations in Database Research (CIDR), 2005, pp. 44–55.

[102] S. Amer-Yahia, A. Galland, J. Stoyanovich, and C. Yu, “From del.icio.us To

x.qui.site: Recommendations In Social Tagging Sites,” in Proceedings of the ACM

Special Interest Group on Management of Data (SIGMOD), 2008, pp. 1323–1326.

[103] A. Penev and R. K. Wong, “Finding Similar Pages In A Social Tagging Repository,”

in Proceedings of the International conference on World Wide Web (WWW), 2008,

pp. 1091–1092.

[104] K. Razikin, D. H.-L. Goh, E. K. C. Cheong, and Y. F. Ow, “The Efficacy of Tags in

Social Tagging Systems,” in Proceedings of the International Conference on Asian

Digital Libraries (ICADL), 2007, pp. 506–507.

[105] T. C. Zhou, H. Ma, M. R. Lyu, and I. King, “UserRec: A User Recommendation

Framework in Social Tagging Systems,” in Proceedings of the AAAI Conference on

Artificial Intelligence (AAAI), 2010.

[106] S. Shen, “Database Relaxation: An Approach to Query Processing in Incomplete

Databases,” Proceedings of the Journal on Information Processing and Manage-

ment, vol. 24, no. 2, pp. 151–159, 1988.

179

[107] J. Shan, D. Shen, T. Nie, Y. Kou, and G. Yu, “An Effective and High-quality Query

Relaxation Solution on the Deep Web,” in Proceedings of the International Asia-

Pacific Web Conference (APWEB), 2010, pp. 68–74.

[108] N. Chomsky, The Minimalist Program. MIT Press, 1995, vol. 28.

[109] N. Fuhr, “A Probabilistic Framework for Vague Queries and Imprecise Informa-

tion in Databases,” in Proceedings of the International Conference on Very Large

Databases (VLDB), 1990, pp. 696–707.

[110] W. W. Cohen, “Providing database-like access to the web using queries based on

textual similarity,” in SIGMOD Conference, 1998, pp. 558–560.

[111] S. Amer-Yahia, P. Case, T. Rölleke, J. Shanmugasundaram, and G. Weikum, “Report

on the DB/IR Panel At SIGMOD 2005,” Proceedings of the ACM Special Interest

Group On Management Of Data (SIGMOD), vol. 34, pp. 71–74, 2005.

[112] D. Harper and C. V. Rissbergen, “An Evaluation of Feedback in Document Retrieval

Using An Evaluation Of Feedback In Document Retrieval Using Co-occurence

Data,” in Proceedings of the International Journal of Documentation, vol. 34, no. 3,

1978, pp. 189–216.

[113] Y. Rui, T. S. Huang, and S. Mehrotra, “Content-Based Image Retrieval With Rel-

evance Feedback In MARS,” in Proceedings of the IEEE International Conference

on Image Processing, 1997, pp. 815–818.

[114] L. Wu, C. Faloutsos, K. P. Sycara, and T. R. Payne, “FALCON: Feedback Adaptive

Loop for Content-Based Retrieval,” in Proceedings of the International Conference

on Very Large Databases (VLDB), 2000, pp. 297–306.

BIOGRAPHICAL STATEMENT

Aditya Telang was born in Mumbai, India in 1981. He received his Bachelor of

Engineering degree in Computer Science and Engineering from University of Mumbai,

India in July 2003. He received his Masters of Science degree in Computer Science from

the University of Buffalo, The State University of New York in February 2005. He received

his Doctor of Philosophy in Computer Science and Engineering from The University of

Texas at Arlington in August 2011.

He worked as a Software Developer for Talker Inc., New York in 2005 and has served

as a Graduate Teaching Assistant, a Graduate Research Assistant, a Faculty Associate and

an Assistant Instructor in the Department of Computer Science and Engineering at The

University of Texas at Arlington from 2006 till 2011. He is a member of TBP, ACM and

IEEE. In addition, he is the recipient of the Cyneta CSE Graduate Teaching Assistant Award

in 2009 and the recipient of the STEM Doctoral Fellowship from 2007 till 2011.

Following the completion of his Ph.D., Aditya Telang will begin work as a Research

Scientist at IBM India Research Labs in Bangalore, India.

180

