A GENERALIZED METHOD TO EXTENDING THE ACTIVE CAPABILITY OF
RELATIONAL DATABASE SYSTEMS

By

ZECONG SONG

A THESISPRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA
2000

Copyright 2000

by
ZECONG SONG

To my parents

ACKNOWLEDGMENTS

| would like to thank my advisor, Dr. Sharma Chakravarthy, for his continuous
guidance and support throughout the course of this research work, and for giving me an
opportunity to work on this interesting topic.

| would like to thank Dr. Stanley Su and Dr. Joachim Hammer for serving on my
committee.

| would like to thank Sharon Grant for maintaining a well-administered research
environment and being so helpful at times of need.

| sincerely thank Hongen Zhang for his invaluable help and fruitful discussions
during the implementation of this work. | would like to thank Weera Tanpisuth, Seokwon
Yang and Regesh Dasari for their invaluable help and patience they showed whenever
they help me solve problems. Also | would like to thank all my friends for their support
and encouragement.

This work was supported in part by the Office of Nava Research and the
SPAWAR System Center—San Diego, by the Rome Laboratory, DARPA.

| also thank my family for their constant support and encouragement throughout

my academic career.

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS ...ttt st e e nnne e e anneee 4
LIST OF TABLES ...ttt ettt ane e e ne e e viii
LIST OF FIGURES...... .ottt ettt sttt st et e e nna e e e nnte e e e nneeenneeas X
E N = 1S 2 72X O [R PTS Xii
INTRODUGTION. ...ttt e st e e st e e ste e e s nsee e e ssseeesnseeeanseeeanneeens 1
1.1TriggersiN RDBIMS.......coo ettt e e neeas 1
L2 ECA RUIBS.... .ttt ettt e e st e e e nae e e nnbe e e enneeennneas 4
A Y | P RSEURSSUPPRPRPR 4
1.2.2 CONTITION......uiieeiiiiie et e e e e e e e e e e aa e e e s snr e e e e e enraeeeannnneeeaas 5
B2 37 X (o] SR PSPSSPRPI 5
RELATED WORK ...ttt ettt ettt et e st e e st e e s sae e e nnseeennseeennneeennneas 6
A S 111 < PP 6
2.2 SEAIDUISE ... e e e e annes 6
FZC 1 o (TR 8
2.4 An Agent-Based APPrOaCheiiiiiiiiiiie e 9
DESIGN ISSUES OF ECA AGENT ...ttt 11
.l ATCHITECIUIt e e e et e e e e e e e e sanr e e e e e aanrneeeans 11
.2 BN/ SEIVEL ... e e e e et e e e et a e e e sasr e e e e e ansneeeeans 13
A RS oo (< SRR UPRPRRTI 14

BB MUII-TRIEAA ... 15
T 0 R I 1= U UPRPRRTI 15

G D = 1 PRSP 16
S5 JAVALED ... e ae e nree e 18

G IS o0 o TR PPPRPPRPRRN 19
3.6.1 EVENE OPEIALOISueeiieeeiieieeeeiiiee e e ettt e e e aise e e e e e see e e e s asne e e e e snneeeeesnnneeeeannnes 19
3.6.2 Parameter CONLEXT ..ottt e e e e ennnees 20
3.6.3 CoUPIING MOUES........eiiiiiieiiiie ettt e e sne e e snnee e 22

3.7 DB2 UNIversal Database.ccciuuieeiiiiiie et e sttt 22
IMPLEMENTATION ISSUES...... ..ottt 24
4.1 SYStEM TADIES......eeeeiie e 24

4.1.1 Table SysPrimitiVEEVENT'cooceiiiieeeee e 24

4.1.2 Table ' SySCOMPOSITEVENTccooeiieiiiie e 25
4.1.3Table SYSECATIIQOENooi e 26
4.1.4 Table SYSCONLEXLcceieeeeiiieeeieee ettt e et et e e e e snneas 26
4.1.5 Table 'EVENTCONIEXTeoiiiiieeeieee ettt 27
A.1.6 TaADIE VEISION ...ttt et e e e nnneas 28

4.2 Naming MECNANISIM........uiiiiiie e 29
4.3 PrE-PrOCESSOceieiieiiie ettt e et e e s sbe e e e e e enn e e e e e ennneeeeeannneeeeans 29
A4 LangUage FilTerot 30
A5 PerSIStENt MANAOEScoiviieiiiie ittt sttt ssae e snt e e b e e e snne e e enneas 32
4.5.1 Architecture of Persistent Managerccceeveeeiiieeiniee e 32
4.5.2 Generate PersiStent COURouiiuiiiiiiie e 33
4.5.3 Restore ECA eventS and rUIES.........occueiiiiiiiiiee e 34
IMPLEMENTATION OF PRIMITIVE EVENTS......ooiee e 36
5.1 Syntax of Primitive EVENES..........oiiiiiiieeee e 36
5.2 Parsing and Generating Primitive EVENt...........cocoiiiiii i 37
5.3 Creating Triggers 0N EXiSting EVENtcooiiiiiiiieieeeiee e 42
5.3.1 Syntax of creating triggers on eXisting eVentccveveeeeiieeesiee e 42
5.3.2 Implementation of Triggerson Existing Eventccocceeieiniiiniieecieenns 43

5.4 Dropping a Trigger on aPrimitive EVENtcocuviiiiiiiiie e 45
5.4.1 Syntax of drop trigger COMMEANGcueeiiiiriiiie i 45
5.4.2 Implementation of drop trigger on primitive eventccocceeevceeeniieeesineenns 45
IMPLEMENTATION OF COMPOSITE EVENTS. ...t 47
6.1 Syntax Of COMPOSITE BVENLeeiiiiieeiiee et a7
6.2 COMPOSITE EVENT PAISENcveeeetieeeitee ettt e e sttee e st ettt e e sstee e st e e saneeessaeeesnseeesnseeennns 438
6.3 Create EVENtS and RUIEScooeeiiiiie e 52
6.4 Event Notification and DeLECtiONeeeiiiiiiiiiieriie e 54
6.4.1 Primitive EVent DELECIONc..ooiiiiiiiiieecee et 55
6.4.2 Primitive Event NOtITICaHION...........cceiiiiiieiiieeee e 57
6.4.3 Composite EVENt DELECLION.........ccoiiiieiiiieiiii e 58

B.5 ECA ACTION ...ttt ettt et e et e e sane e e snae e e s nne e e s reeeenes 60
6.6 Parameter CONLEXL ..ottt e e e e e e e ennae e e e nees 62
CONCLUSIONS, CONTRIBUTIONS AND FUTURE WORKcccceiiiiieeniieesieene 67
80 R 0 o 10 o L PSSR 67
7.2 CONITDULTONS. ...ttt et e e e ssae e e s nne e e s nneeeenes 68
7.3 FULUIE WOTK ...t e e 68
USER MAINU ...ttt ettt e e st e e s e e s st e e e nnae e e nnneeennseeeenes 70
JAVA ECA AQENE SEIVEN ...ttt e et e e e e st e e e e s snnne e e e e ennneeeeaas 70
SEAt thE ECA AQENT ...ttt e e e e s e snae e e snnee e 70
JAVAECA AQENt CHENT... ...t 71
Start the ECA Agent Client iNterfateooveeriiiii i 71
D] T 1= = o PSPPI 74
DEMO .ttt e e bt e e e bae e e ntee e e nnte e e nnneeennaeeeanes 76

vi

DT 1 0 TSR 76
FILESUSED IN THEDEMO.......cooiiiiiii 78
File 1: createSystabl €S.IXE ..o 78
File 2: ClEANDEMO.EXLvvviiiiiiiiiiiiiiiiiiiiiiiiiii i arbabaaaaaraaebaaaaassabasassssssassssssssssssssssssnsnns 79

e LSRR == (< Y=] FS 04 AR 81

L LS S (< 1 0 d SRR 83

L TES ST (== U SN 0 SRR 83
SOME JAVA CLASSFILES. ...ttt 92
File “zSoNg0adadD el JAVA'eoiiiiieiiiie et 92
File “CalDynamiCMethod.java’cooiiiriiiiieii e 93
BIOGRAPHICAL SKETCH ... 97

Vil

LIST OF TABLES

Table Page
Table 4.1 SysPrimItIVEEVENToooeiee e 24
Table 4.2 SysPrimItIVEEVENToooie e 25
Table 4.3 SySCOMPOSITEVENTcooiieiiie e 25
Table 4.4 SySCOMPOSITEVENTcooiiiiiieie e e 26
TabhlE 4.5 SYSECAT TIQQEN ... tieeeee ettt e sar e e eneeeeanes 26
TahIE 4.6 SYSECAT TIQQEN ... ettt san e e nee e anes 26
TaDIE 4.7 SYSCONMEXL.....cciieiieiiiee ittt st st e e e be e e e san e e e snse e e aneeeeanes 27
TaDIEV 4.8 SYSCONIEXL.........eeeiiiiie ettt st e s et e e e sbe e e e sas e e e sane e e anneeeanes 27
Table 4.9 EVENECONLEXLooiiiiiieeie ettt ne e 27
Table 4.20 EVENTCONTEXTccueeiieeeieeiee et 28
TADIE 4. 11 VEISION ...ttt ettt et e b s e ne e ne e an e 28
TADIE 5.0 SOCK ... 39
Table 5.2 stock_inserted or Stock_deleted............oviiiiiiiiee e 40
TADIE 8.1 SEOCK ... 52
Table 6.2 StOCK_TNSEIE Meiiiie i 52
Table 6.3 StOCK_TNSEIE Meiieiie i 64
TablE 6.4 EVENTCONLEXLooieeeiieeiee ettt nn e 64
TaDIE 6.5 SYSCONMEXL.ccoiueieeiiiieeiie ettt st e st e e b e e e sae e e e snne e e eneeeeanes 64
TaDIE 6.6 SYSCONIEXL......cciieieeiiiee ettt st st e e st e e e be e e e sase e e sase e e eneeeeanes 65

viii

LIST OF FIGURES

Figure Page
Figure 1.1 Syntax of Trigger Creation iN DB2..........ccciiiiiieiiieciee e 2
Figure 3.1 Architecture of thiS ProJECL.........coouii i 12
Figure 3.2 Architecture Of ECA AQENt.......cooiii et 13
Figure 3.3 Client and server communicate through SOCKELSceeviiiieiiiiiiiie e 14
Figure 3.4 Multiple threadsin aSiNgle Program...........ccoooueeeieeesiieee e seee e 15
Figure 3.5 APIsfor creating eventS and rUIEScooovei e 19
Figure 4.1 Flow Chart of Language Filterooeiiiie e 31
Figure 4.2 Architecture of PerSiStent Managercoocueeeieeeeiieeeiieee e 32
Figure 4.3 Code for restoring eventS and rUIEScueeiiiiieiiieeeiiee e 34
Figure 5.1 Flow Chart for Parsing and Generating Primitive Event............ccccoooeiiiieiiieenn. 38
Figure 5.2 Repeat Primitive EVENE SYNEAXcooiuiriiiieeciieecieee s 43
Figure 5.3 Drop TriQQer SYNEBXcccuueeaiuereiiieieesieeesieeesteeeseeeesseeessseeessnseessnseessnseeesseeeas 45
Figure6.1: Composite Event DefinitioNooiiuiriiiieeiiiee e 438
Figure6.2: Flow Chart of Composite EVENt Parsercceveieeeiiiiee i see e 49
Figure 6.3 file “zsongladdStK.JaVa'eeiiieieiie e 53
Figure 6.4 code for dynamic compile Javafile.........cooueeiiiiiiii e 53
Figure 6.5 code fOr regiSter VENTS.......coouiii e 54
Figure 6.6 Javafile “Ledjaval ...t 59
Figure 6.7 parameter CONLEXt PrOCESSINGcevveeerurererieresreeesreeesnseeessseeesssseessseeesseessnseeens 65

Figure A.1 ECA Agent Server INtEIface.c.oviiuiiiiiie e 70

Figure A.2 ECA Agent Server DOS ENVIFONMENT.........cooiuiiiiiiieiiiee i esiee e seee e 71
Figure A.4 ECA Client INTEITaCE........eeiiiiiie e 72
FIQUrE A5 DB2 INTEITACE ...ttt e e nee s 74
Figure B.1 ECA Agent Client INterface..........cooiiiii i 77

Xi

Abstract of Dissertation Presented to the Graduate School
of the University of Floridain Partial Fulfillment of the
Requirements for the Degree of Master of Science

A GENERALIZED METHOD TO EXTENDING THE ACTIVE CAPABILITY OF
RELATIONAL DATABASE SYSTEMS
By
Zecong Song
August 2000

Chairman: Dr. Sharma Chakravarthy
Major Department: Computer and Information Science and Engineering

In the database research community, active databases have received widespread
attention for at least ten years. Active databases have been the focus of several researches
to extend the functionality of traditional (passive) databases. Active databases generally
use active rules to express their active behavior. These rules are called ECA rules (Event-
Condition-Action). There are several commercial databases using active rules, such as
DB2, Informix or Oracle. The problem is that the active rules in these databases are very
limited. We discussed this problem in this thesis. And we also proposed a general method
of turning a passive database to an active database.

We add a mediator between the SQL server and the clients termed ECA Agent.
ECA rules are completely supported in the ECA Agent and both primitive events and
composite events can be detected in the ECA Agent. Java LED are used to detect the
composite events. JDBC is used as a bridge to connect between SQL server and the SQL

requirements.

Xii

Xiii
ECA Agent aso provides all the usual functionality of a conventional passive
database system. And the active behaviors (events, rules and actions) become a persistent
part of the database.

We present the architecture and implementation details of ECA Agent in this

thesis. DB2 are used as the test database.

CHAPTER 1
INTRODUCTION

Active database management systems (ADBMS's), as examples of active
systems, are able to monitor and react to specific circumstances of relevance to an
application [Nor98]. Traditional DBMSs are passive in the sense that commands are
executed by the database when requested by the user or application program. However,
some situations cannot be modeled effectively by passive systems.

Active database systems enhance traditional database functionality with powerful
rule processing (or “trigger”) capabilities. Active database systems are significantly more
powerful than their passive counterparts in the following aspects [JEN96]:

Active database systems can efficiently perform functions that in passive
database systems must be encoded in application.

Active database systems suggest and facilitate applications beyond the
scope of passive database systems.

Active database systems can perform tasks that require special-purpose

subsystems in passive database systems.

1.1 Triggersin RDBMS

Several commercial relational database management systems support active
database rules, usually referred to as triggers. The functionality of commercial database
trigger systems is generally rather limited as compared to the active database research

prototypes, such as ‘Sentinel’, ‘Starburst’” and ‘Ode’. Nevertheless, the capabilities of

many commercial systems are aready sufficient to provide relatively complex active

database behavior. Figure 1.1 illustrates the syntax for the creation of a trigger in DB2

[DON9S].
>>- CREATE TRI GCGER- - trigger-name- - - +- NO CASCADE BEFCRE- +--------- >
+- AFTER------------- +
>--+-INSERT----------mmmmmm e - +ON- - table-name----------- >
+-DELETE--------------------------- +
+-UPDATE- - +-------------mm oo - - - +- +
| +- y ST TTTEEEEES + |
| \ |
+- OF- - - column-name- - +- - +
S e o m e m o e m e mn +->
| o + |
| V(1) (2 +-AS-+ |
+- REFERENCING - - ---------- +- OLD +- - - - +- - correlation-name- - ++- - +
| +AS-+ |
+- NEW +- - - - +- - correlation-name- - +
| +AS-+ |
+- OLD TABLE- +- - - - +- - identifier- - +
| +AS-+ |
+- NEW TABLE- +- - - - +- - identifier- - +
>--+-FOR EACH ROWM - ----------- +MODE DB2SQ.---| triggered-action |-><
| (3) |
e FOR EACH STATEMENT- - +
triggered-action
| e e e e e e e e e e e e e e o o >
+- WHEN- - (- - search-condition--)--+
>- - +- triggered-SQL-statement---------------------------- +-----
| e + |
| v | |
+-BEG N ATOM C- - - - triggered-SQL-statement- - ; - - +- - END- - +

Figure 1.1 Syntax of Trigger Creation in DB2

From the above trigger syntax we see that DB2 do support active database rules.
But currently, DB2 active capabilities as the other commercial active database

suffer from four main shortcomings [JEN96]:

1. They lack standardization. Consequently, the various products have a wide
variance in both the syntax and execution behavior of triggers. This results
in a lack of uniformity, and the inability to use trigger applications on
differing products.

2. They lack clearly defined execution semantics. A number of aternative
constructs may be provided (such as both tuple-level and statement-level
triggering, or both immediate and deferred execution), but often it is not
specified precisdly how triggers will behave when multiple triggers with
different options are present.

3. They lack a number of useful “advanced features’ that have been included
in research prototypes. Some of the them are application-specific events,
event composition techniques, binding of events to conditions and of
conditions to actions, use of net effects, use of enhanced transaction
models to support sophisticated coupling modes or paralelism, lack of
externa procedure calls, and so on.

4. They often incorporate a number of restrictions, such as limitations on the
number of triggers that may be defined, or on the interactions between
triggers.

Because of these shortcomings, the development of an active database needs to
consider the following issues [JEN96]:

An active database system must provide al the usua functiondity of a

conventional passive database system. Meanwhile, it is desirable that the

performance of conventional database tasks is not degraded by the fact that
the database system is active.

An active database system must provide some mechanism for users and
applications to specify the desired active behavior, and these specifications
must become a persistent part of the database.

An active database system must efficiently implement any active behavior that
can be specified; it must monitor the behavior of the database system and,
when appropriate, automatically initiate additional behavior.

An active database system must provide database design and debugging tools
smilar to those provided by conventional database systems, extended to

incorporate active behavior.

1.2 ECA Rules

Active database systems are centered around the notion of rules [JEN96]. Rulesin
active database systems are defined by users or applications. They specify the desired
active behavior. In most general form, active database rules consist of three parts. Event,
Condition, and Action. We also denote it ECA rules.

1.2.1 Events

In an active database rule, the event specifies what causes the rule to be triggered.

In a relational database system, event can be insert, delete, or update on a particular
table. Types of event can be Primitive event and Composite event.

Primitive Event: event that is pre-defined in the system. In relational

database system, primitive event can be insert, deleted, or update on a

particular table.

Composite Event: event that is formed by applying a set of operators to
primitive and composite events.

1.2.2 Condition

In an active database rule, the condition specifies an additional condition to be
checked once the rule is triggered and before the action is executed. In ECA rules, the
condition is generally optional, or adummy condition true can be given.

1.2.3 Action

In an active database rule, the action is executed when the rule is triggered and its
condition is true. Actions may update the structure of the database, perform some
behavior invocation within the database or an external call.

In our research, we use LED (Java version) to implement the ECA rules. We'll

talk about the detail of LED in Chapter 3.

CHAPTER 2
RELATED WORK

The field of active database research has been one of the most prominent areas of
database research during the late 1980s and early 1990s. There are a lot of research
projects in this field over these years. We will review some of the most important projects

in this chapter.

2.1 Sentind

Sentinel (from University of Florida) is an integrated active OODBMS that
supports Event-Condition-Action (ECA) rules and their management. It uses the Open
OODB Toolkit (from Texas Instruments, Dallas, Texas) as the underlying platform.
Event and rule specifications are seamlessly incorporated into the C++ language. Any
method of an object class is a potential primitive event. Applying a set of operators to
primitive events and composite events can form composite events. Sentinel supports
multiple rule executions, nested rule executions as well as prioritized rule executions.
Sentinel supports all the four parameter-contexts specified in HIPAC, namely, recent,
chronicle, continuous and cumulative contexts. Sentinel currently supports immediate

and deferred modes of rule execution [CHA94][CHA94a][CHA94D].

2.2 Starburst

The Starburst system is a prototype extensible relational DBMS developed at the

IBM Almaden Research Center [JEN96+]. Startburst’s extensbility alows the database

system to be customized for advanced and non-traditional database applications. One of
Starburst’s extensions is an integrated active database rule processing facility caled the
Starburst Rule System.

The Starburst rule language differs from most of the other active database rule
languages in that it is based on permitting an execution semantics that is both cleanly
defined and flexible. The implementation of the Starburst Rule System was completed
rapidly and relies heavily on the extensibility features of Starburst. The Starburst rule
processor differs from most other active database rule systems in that it is completely
implemented, and it is fully integrated into all aspects of database processing, including
guery and transaction processing, concurrency control, rollback recovery, error handling,
and authorization.

The syntax of the Starburst rule language is based on the extended version of SQL
supported by the Starburst database system. The Starburst rule language includes five
commands for defining and manipulating rules. create rule, adter rule, deactivate rule,
activate rule, and drop rule.

The syntax of create rule is:

create rule name on table
When triggering-operations
[if condition]
then action-list
[precedes rule-list |
[follows rule-list |
The name names the rule, and each rule is defined on a table. Square brackets

indicate clauses that are optional.

The components of a rule can be changed after the rule has been defined. Thisis
done using the alter rule command. The syntax of thiscommand is:
alter rule name on table
[if condition]
[then action-list]
[precedes rule-list |
[follows rule-list |
[nopriority rule-list]
An existing rule can be deleted by issuing the drop rule command:
drop rule name on table
We can deactive rules using the deactivate rule command:
deactivate rule name on table
To reactivate arule that has been deactivated, use the activate rule command:
activate rule name on table
From the above syntax of rule language we see that the Starburst rule language is

flexible and generd.

2.3 0de

Ode is an object-oriented database that based on the C++ object paradigm. The
primary interface for the Ode database is the database programming language O++,
which is an upward-compatible extension of the C++. O++ extends C++ by providing
facilities suitable for database applications, including the association of constraints and

triggers with objects.

Ode provides two kinds of active facilities: “constraints’ for maintaining database
integrity and “triggers’ for automatically performing actions depending upon the
database state [GJ91].

Ode supports two kinds of triggers. once-only (default) and timed triggers. A
once-only trigger is automatically deactivated after the trigger has “fired”, and it must
then be explicitly activated again, if desired. A timed trigger must fire within the
specified period.

Ode trigger model is an event-action (E-A) model. When an event occurs, the
associated action is executed.

Ode supports primitive events and composite events. Primitive events are defined
and composite events are constructed by applying operators to primitive events. The
basic events that are supported are object state events. The event operators supported are

prior, sequence, first, firstAfter, happened, every, prefix, etc.

2.4 An Agent-Based Approach

Lijuan Li implemented “An Agent-Based approach to extending the native active
capability of relationa database systems’ in May 1998 from University of Florida
[L1J98]. She implemented an ECA Agent, which is a mediator between clients and
Sybase SQL Server. She used Sybase Gateway Open Server to extend the active
capability of Sybase.

In this thesis, we tried to solve the same problem, which is to extend the native
active capability of relationa database systems. So we use the same idea to design our

project. The difference here is her design is based on Sybase Gateway Open Server and

10

our design is not based on any specified RDBMS. We want to find a generalized method
that any RDBMS can useit.

In the next chapters, we'll discuss our design and implementation in detail.

CHAPTERS3
DESIGN ISSUES OF ECA AGENT

This chapter discusses the design issues of ECA Agent. It includes the
architecture, Java LED, and Snoop. We aso include the basis of JDBC, client/server and
multi-thread in this chapter because these techniques are the basic techniques we used in

this project.

3.1 Architecture

The goal of this project is to implement a generalized method to extend the active
capability of RDBMS. It's a generalized method, so we must design it as it can be used
by any RDBMS, such as Oracle, DB2, Informix, etc. Figure 3.1 shows the architecture of
this project. From this figure, we can see that there are multi-clients for esch RDBMS
server, and one ECA Agent for one SQL server. ECA Agent is a mediator between the
client and the server. When clients have some requests, these requests must first be sent
to ECA Agent, and then the ECA Agent sendsit to SQL server.

Here, ECA Agent will do some work to extend the active capability of RDBMS.
Figure 3.2 shows the architecture of ECA Agent.

From Figure 3.2 we can see that ECA Agent includes the following function
modules:

Language Filter: when clients have request, the request first is sent to Language
Filter. Language Filter will filter the request. If it's ECA command, it is sent to ECA

Parser, otherwise sent it to JDBC.

11

12

ECA Parser: ECA Parser will parse the ECA command. If there are no
errors, the ECA Parser will create corresponding events and rules which
depend on the LED. Also, ECA Parser will send the events and rules to the
Persistent Manager for persistent storing.

Persistent Manager: All events and rules defined by a client need to be
persistent. Persistent Manager will store the information using RDBMS.
When ECA Agent starts or recovers, Persistent Manager restores and
creates all events and rules.

JDBC: We use JDBC to connect between SQL server and client. JDBC
gets request from client and sends it to SQL server, and then JDBC gets
result from SQL server and sends it back to client.

LED (Loca Event Detector): In RDBMS, trigger can only detect primitive
events. So we use LED to detect composite events.

ECA Action: When event occurs, the action defined on this event should
be executed. In our project, ECA Actions are SQL statements. It will call

JDBC to send the SQL statementsto SQL server and get results.

ECa

a 1
fzent racle

Server

ECaA

hxent LE=

Serwver

il

Figure 3.1 Architecture of this project

13

[_ Iﬁ|
‘@ Language Filter |
I ECA Parser |
|
| LED Fersistent Manager
ECA Action |
|
JOBC |
ECA Agent |
S0L Server |
|
I

L

Figure 3.2 Architecture of ECA Agent

3.2 Client/Server

Today’s popular database software tools are based on the client/server paradigm.
Our progran aso is based on the client/server paradigm. We have
“Java ECA_Agent Server” program for the server side and “Java ECA_Agent_Client”
for the client side. Socket classes are used to represent the connection between a client

program and a server program.

14

3.2.1 Socket

A socket is one endpoint of a two-way communication link between two programs
running on the network. A socket is bound to a port number so that the TCP layer can
identify the application that data is destined to be sent.

Normally, a server runs on a specific computer and has a socket that is bound to a
specific port number. The server just waits to listen to the socket for a client to make a
connection request.

On the client side, the client knows the hostname of the machine on which the
server is running and the port number to which the server is connected. To make a
connection request, the client tries to rendezvous with the server on the server's machine
and port.

If everything goes well, the server accepts the connection.

On the client side, if the connection is accepted, a socket is successfully created
and the client can use the socket to communicate with the server.

The client and server can now communicate by writing to or reading from their

sockets. Figure 3.3 shows the communication between client and server [JavaT utorial].

semer

Figure 3.3 Client and server communicate through sockets

AR = s

client

el iy

15

3.3 Multi-Thread

In a typical server, you want to be able to deal with many clients at once. The
solution is multithreading. In Java, multithreading is about as smple as possible because
threading in Java is reasonably straightforward. Making a server that handles multiple
clientsisrelatively easy.

3.3.1 Thread

A thread--sometimes called an execution context or a lightweight process--is a
single sequentia flow of control within a program. Y ou use threads to isolate tasks. Each
thread is a sequential flow of control within the same program (the browser).

Multiple threads in a single program are illustrated by Figure 3.4 [Java Tutorial].

—

T
Threads

AProgram ~<‘:

Figure 3.4 Multiple threads in a single program

Multiple threads run at the same time and perform different tasks. The server can
service multi-clients simultaneoudly through the use of threads - one thread for each
client connection. The basic flow of logic in such a server isthis:

while (true) {

accept a connection ;

create athread to deal with theclient ; }
end while

The thread reads from and writes to the client connection as necessary.

16

3.4JDBC

The Java Database Connectivity (JDBC) is developed from the need to enable
Java applications to connect to SQL databases. It consists of a set of classes and
interfaces written in the Java programming language. JDBC provides a standard API for
tool/database devel opers and makes it possible to write database applications using a pure
Java API. Because of Java's features, it is uniquely suitable for network access to a
variety of databases. And because Java itself is a platform-independent language, there is
a compelling reason to develop applications that are independent of a particular database
vendor [ART99].
In this thesis, we use JDBC to send SQL statements to RDBMS, so we'll tak
about the basic JDBC programming.
1. Load driver
The first step in usng JDBC is to load the JDBC driver. This is usualy
accomplished using the forName static method of the class object. The cal is
made as follows:
Class.forName(""COM.ibm.db2.jdbc.app.DB2Driver");
When this call is made, the Java system searches for the class requested and loads
the driver.
2. Create connection
The loading of the JIDBC database driver does not connect to the database. It merely
creates an environment in the program where this can be done. Before any database-
specific SQL statements can be executed, a connection must be established to the

database. Thisis accomplished through a call to the getConnection method in

5.

17

DriverManager classto find a specific driver that can create a connection to the
URL requested. The call is made as follows:
String url = ""jdbc:db2: database™;
Connection con = DriverManager.getConnection (url, username, password);

Create statement
In order to interact with the database, SQL statements must be executed. This requires
that a Statement object to be created to manage the SQL statements. Thisis
accomplished with acall to the createStatement method in Connection class as
follows:

Statement stmt = con.createStatement();
This call creates a Statement object using the established database connection. The
Statement class provides methods for executing SQL statements and retrieving the
results from the statement execution.
Execute statement and return ResultSet or result count
The SQL Statement object does not have a specific SQL statement associated with it.
The SQL statement to be executed is determined when the call to executeQuery is
made, as follows:

String gs = "'select * from stock'";

ResultSet rs = stmt.executeQuery(gs);
This call sends the query to the database and returns the results of the query asa
ResultSet.

Iterate ResultSet if returned

18

The ResultSet represents the collection of results from the query. First, you must
make a call to the first element of the result set, as follows:
Boolean more = rs.next();
The call to the next method returns a boolean value. The boolean value of true
indicates that the call was successful and the pointer is positioned, thus there is datato
retrieve. A boolean value of false indicates that the call was unsuccessful and there
are no rows to retrieve.
Next, we can get the first value of the first column of the result set as follows:
returnstring = rs.getString(1);
6. Closethe result set, statement, and the connection
rs.close();
stmt.close();

conn.close();

3.5 JavaLED

In our research, we use Java LED to detect composite events. Java LED is the
Java version of Local Event Detector. It incorporates active capability in a Java
environment.

In Java LED there is an event detector for detecting events in Java applications
and executing rules defined on events. Both primitive event and composite event have
been detected in various parameter contexts. It also implemented most event operators for
composite event, they aree AND, OR, SEQUENCE, NOT, APERIODICA(A),
APERIODIC-STAR(A*), PLUS, PERIODIC(P) and PERIODIC-STAR(P*).

In Figure 3.5, we show some APIs that are used to create events and rules.

19

public EventHandle createPrimitiveEvent(String eventName,
String className,
EventModifier eventModifier,
String methodSignature)

public EventHandle createCompositeEvent(EventType eventType,
String eventName,
EventHandle |eftEvent,
EventHandle rightEvent)

public void createRule(String ruleName,
EventHandle eventHandle,
String condName,
String actionName)

Figure 3.5 APIsfor creating events and rules

3.6 Snoop
Snoop is the event specification language used in Sentinel for specifying ECA

rules. Snoop defines the event expressions and a set of event operators for constructing
composite events.

3.6.1 Event Operators

The Snoop event operators and the semantics of composite events formed by
these event operators are as follows:
OR (V): E1V EZ2, occurs when either E1 occurs or E2 occurs.
AND (™): E1 ™ E2, occurs when both E1 and E2 occurs, irrespective of their order of

occurrence.

20

SEQUENCE (;): EL;E2, occurs when E2 occurs provided E1 has aready occurred.
This implies that the time of occurrence of E1 is guaranteed to be before the time of
occurrence of E2.

NOT (~): ~(E2) [E1 ,E3], detects the non-occurrence of the event E2 in the closed
interval formed by E1 and E3.

A (Aperiodic): A(EL1,E2,E3), detects the occurrence of E2 during the half-open
interva formed by E1 and E3.

A*: A*(E1, E2, E3), detects when E3 occurs provided E1 has aready occurred. The
occurrences of E2 are accumulated during the half-open interval formed by E1 and
E3. A* isacumulative variant of the A operator.

P (Periodic): P (E1, E2, E3), detects for every time period specified by E2 during the
half-open interval (E1, E3], where E2 is arelative temporal event.

P*. P*(EL, E2, E3), detects only once when E3 occurs provided the E1 has aready
occurred. The time specified in E2 is accumulated whenever E2 occurs. P* is a
cumulative variant of P operator.

3.6.2 Parameter context

Snoop supports parameter context. Parameter contexts indicate the order in which
successive occurrences of the same constituent events are grouped [CHA94] [CHA94D].
The notion of parameter contexts was primarily introduced for the purpose of capturing
application semantics while computing the parameters of composite events when they are
not unique. They serve the purpose of disambiguating the parameter computation and at

the same time accommodate a wide range of application requirements [KRI94].

21

The parameter contexts proposed by Snoop are recent, continuous, cumulative,
and chronicle. The contexts are defined using the notion of initiator and terminator
events. An initiator of a composite event is a constituent event that can start the detection
of the composite event whereas a terminator is a constituent event that can detect the
occurrence of the composite event [CHA94].

Recent: in this context, only the most recent occurrence of the initiator for any event
that has started the detection of that event is used. When an event occurs, the event is
detected and all the occurrences of events that cannot be the initiators of that event in
the future are deleted.

Chronicle: in this context, for an event occurrence, the initiator, terminator pair is
unique. The oldest initiator is paired with the oldest terminator for each event, i.e., in
chronological order of occurrence. In this context, the same primitive event
occurrence is used at most once for computing the parameters of the composite event.

Continuous: in this context, each initiator of an event starts the detection of that
event. A terminator event occurrence may detect one or more occurrences of the same
event. This context is especialy useful for tracking trends of interest on a diding time
point governed by the initiator event. There is a subtle difference between the
chronicle and the continuous contexts. In the former, pairing of the initiator is with a
unique terminator of the event whereas in the latter multiple initiators are paired with
asingle terminator of that event.

Cumulative: in this context, for each constituent event, all occurrences of the event
are accumulated until the composite event is detected. Whenever a composite event is

detected, all the constituent events that are used for detecting that composite event are

22

deleted. Unlike the continuous context, an event occurrence does not participate in
two distinct occurrences of the same event in the cumulative context.

3.6.3 Coupling modes

Coupling modes specify when arule is to be executed relative to the event firing
the rule. Three coupling modes are described below:

Immediate: in this coupling mode, the fired rule is executed immediately after the
event is detected.
Deferred: in the deferred mode, the execution of afired rule is deferred to the end of
the transaction. In our case (a non-transaction-based environment) deferred rules are
executed by an explicit event raised by the application.
Detached: in the detached mode, the rule is executed in a separate transaction but
after the triggering transaction has committed. Since there are no transaction in our

case, the detached mode is not supported.

3.7 DB2 Universal Database

In this thesis, we use DB2 as the test RDBMS.

DB2 Universa Database (UDB) is developed at IBM’s laboratories in Toronto,
Canada, and San Jose, California. UDB uses new technology based on the Starburst
architecture developed at Almaden Research Center. UDB is portable to many hardware
and software platforms, including Inte/Windows NT, Intel/OS2, PowerPC/AIX,
SPARC/Solaris, and HPPA/HPUX.

UDB is a substantial advance over traditional relational systems. It integrates
object-oriented ideas with the SQL language to produce an object-relational database

management system. It includes magor innovations in query optimization, recursive

23

queries, active databases, and stored procedures. It integrates technology from DB2
Parallel Edition to support parallel processing, both on symmetric multiprocessors and on
massively parallel, shared nothing platforms. UDB has aso made substantial advances in
usability, providing graphica user interfaces and wizards to help you perform
administrative tasks.

We use DB2 as the test database because DB2 trigger has some active database
capabilities, but it has some limitations. We extend its trigger command to extend the

active capability.

CHAPTER 4
IMPLEMENTATION ISSUES

In this chapter, we describe the implementation of ECA Agent. In Section 4.1, we
detail the format and purpose of the system tables because in this research we use these
system tables to store persistent information for primitive events, composite events, and
triggers. Naming mechanism is introduced in Section 4.2. Preprocessor, Language Filter,

and Persistent Manager are described in Section 4.3, 4.4 and 4.5 respectively.

4.1 System Tables

4.1.1 Table ‘ SysPrimitiveEvent’

Table “SysPrimitiveEvent” is used to store the information for primitive events
that the user defined on atable for an operation. The structure of thistable isillustrated in

Table4.1.

Table 4.1 SysPrimitiveEvent

DBName | UserName | EventName| TableName |Operation| BeAfOperation | Timestamp | VNoO

In this table, BeAfOperation means “before/after” and Vno is used to record the
occurrence of this event.
If we have a primitive event addStk defined on table “stock” for “insert”

operation and this primitive event has the following definition:

Create trigger t_addStk after insert on stock event addStk

24

25

Then one tuple should be added into the table “SysPrimitiveEvent”, which is

shownin Table 4.2.

Table 4.2 SysPrimitiveEvent
DBName | UserNa | EventName | TableName |Operation| BeAfOperation | Timestamp | VNo
me
‘ECAdDL’ | ‘zsong’ | ‘addStk’ | ‘stock’ | ‘insert’ ‘after’ Current | O

timestamp

Every time when the event *addStk’ occurs, VNo will be increased by 1.

4.1.2 Table ‘ SysCompositEvent’

Table “ SysCompositEvent” is used to store the information for composite events

that the user defined. The structure of thistable is shown in Table 4.3.

Table 4.3 SysCompositEvent

DBName |UserName |EventName |EventDescribe | Timestamp|Coupling |Context |Priority

In Table 4.3, Coupling mode can be ‘IMMEDIATE', ‘DEFERED’ or
‘DETACHED’. Context can be ‘RECENT’, ‘CHRONICLE’, ‘CONTINUOUS, or
‘CUMULATIVE'. Priority is used to define the priority of this composite event.

If we have a composite event addDel defined as follows:
Create trigger t_addDel event addDel = addStk ~ delStk RECENT

Then, the table “SysCompositEvent” should have one more tuple like in Table

4.4,

26

Table 4.4 SysCompositEvent

DBNamgUserName| EventName | EventDescribe Timestamp Coupling | Context | Priority
‘ECAdD’| ‘zsong' | ‘addDel’ |'addStk " delStk’(Current timestampl MMEDIATERRECENT| 1

4.1.3 Table ‘ SysEcaTrigger’

Table “SysEcaTrigger” is used to store the information for triggers that the user

defined. The structure of thistableis shown in Table 4.5.

Table 4.5 SysEcaTrigger

DBName| UserName | TriggerName | TriggerProc | Timestamp | EventName

In Table 4.5, ‘TriggerProc’ is the procedure defined on this trigger. That means if
the trigger fires, the procedure will execute. ‘EventName' is the event name that the
trigger is defined on. Different trigger can be defined on same event.

If we have atrigger defined as follows:

Create trigger t_addStk after insert on stock event addStk...

Then, the table “ SysEcaTrigger” should have one more tuple shown in Table 4.6:

Table 4.6 SysEcaTrigger
DBName | UserName| TriggerName | TriggerProc | Timestamp| EventName
‘ECAdL’ | ‘zsong’ ‘t addStk’ ['t_addStk_Proc’| Current | ‘addStk’
timestamp

4.1.4 Table ‘ SysContext’

Table “SysContext” is used to store the occurrence number for a certain event
defined on a certain context. This information can be used for composite events. The

structure of thistableisillustrated in Table 4.7.

27

Table 4.7 SysContext

EventName Context Vno

In Table 4.7, *“VNO' is used to record the occurrence number of a certain event for
acertain context.

If we have an event ‘addStk’ defined on the context ‘RECENT’, and this event
has occurred for three times (suppose no other event occurs), then tuples will insert into

the table “ SysContext” as shown in Table 4.8.

Tablev 4.8 SysContext

EventName Context Vno
‘addStk’ ‘RECENT’ 1
‘addStk’ ‘RECENT’ 2
‘addStk’ ‘RECENT’ 3

4.1.5 Table ' EventContext’

When the user creates composite event, table “EventContext” is used to store the
information of primitive event and context. When primitive event occurs, we can insert
tuples into table ‘SysContext’ using the joining results from table ‘EventCotext’ and

‘SysPrimitiveEvent’. The structure of table ‘ EventContext’ is shown in Table 4.9.

Table 4.9 EventContext

EventName Context

If we have a composite event addDel defined as follows:
Create trigger t_addDel event addDel = addStk ~ delStk RECENT

28

Then, the table “EventContext” should have two more tuples shown in Table

4.10.

Table 4.10 EventContext

EventName Context
‘addStk’ ‘RECENT’
‘del Stk ‘RECENT’

4.1.6 Table ‘Verson'

Table“Version” is used to store the occurrence number for a primitive event. We

can get the version number from the following SQL statements:

delete from version;
insert into version select VNo from SysPrimitiveEvent where eventname="eventname’

Table4.11 Version

VNO

We use table ‘Version' because we want to ssimplify the SQL query language. For
example, if we want to insert tuple into table ‘stock inserted’, we can write SQL
statements like thisif we have table ‘Version'’:

insert into stock_inserted select * from stock, version;

Otherwise, if we do not have table ‘Version’, we need to write SQL statements

likethis:

insert into stock_inserted
select Symbol, Co_name, price, date, VNo from stock, SysPrimitiveEvent
where SysPrimitiveEvent.eventname="addStk’

29

4.2 Naming Mechanism

Relational DBMS, such as Sybase, Oracle and DB2 support multi-user, multi-
database environment, a user can assign a name for an object in the system, and the
system will turn it into a system-wide internal name. For example, user ‘mark’ uses
database ‘mining’ in DB2, and if he creates a trigger ‘miningTrigger’, then the system-
wide interna name for trigger ‘miningTrigger’ is‘mining.mark.mingTrigger’.

In our research, we aso follow the system-wide internal name for an object. That
means, when the user creates an object, we'll turn its name to system-wide internal name
use the following mechanism:

DatabaseName.userName.objectName

4.3 Pre-Processor

We use pre-processor to parse the composite event in this research. Pre-
processor is developed using JavaCC (Java Compiler Compiler, Verson 1.0) which is
developed by Sun Microsystems. JavaCC has the following features:

100% PURE JAVA (hence portable). JavaCC is certified 100% PURE JAVA.
This means JavaCC can run on any Java compliant platform version 1.0.2 or
later. JavaCC has been successfully used on over 40 different
hardware/software platforms.
TREE BUILDING PREPROCESSOR. JavaCC comes with a tree building pre-
processor called JJTree.
DOCUMENTATION GENERATION. A trandator that converts grammar files to
documentation files (optionaly in html) is now an integra part of the JavaCC release.

Thistrandator is called JJDoc.

30

Because of the above nice features we select JavaCC as the pre-processor tool. In
this research, we use pre-processor to parse the composite event. The input for the parser
is a composite event. When the pre-processor parses the composite event, if there are any
syntax errors, the parser will give the error message. If there is no syntax error, the parser
will generate two files, oneis“eventlist.txt” and the other is “compositevent.txt”.

File “eventlist.txt” is used to keep events, which consist of this composite event.
Primitive events (leaves in this composite event tree) will be inserted into table
“EventContext”. When primitive events occurs, tuples that is the results of joining table
‘EventContext’ and ‘ SysPrimitievEvent’ will be inserted into table “ SysContext”.

File “CompositEvent.txt” is used to keep the content of creating composite event
in LED. For example, if we have afollowing composite event definition:

Create trigger t_addDel event addDel = addStk ~ delStk RECENT

Then the content of file ‘CompositeEvent.txt’ looks like this:

EventHandle addDel = myAgent.createCompositeEvent(EventType.AND, “event

addDel”, addStk, delStk)
And the content of file ‘eventlist.txt’ looks like this;

addStk del Stk

4.4 Language Filter

When the client sends a request to the ECA_Agent_Server, first the request goes
to the ‘Language Filter'. The ‘Filter’ will analyze the request first, and then send the

request to the right way. The flow chart isillustrated in Figure 4.1.

31

|

| 7 Primitive Event Parser
W Language Filter —

| 4)‘ Conposite Event Parser

[rop Trigger
ﬁ‘Dther Command

JDEC SOL Server %

Figure 4.1 Flow Chart of Language Filter

Client ECA_igent_Server

As we see from the above flow chart, if the request is about primitive event or
composite event, there are five sub-modules:

Primitive Event Parser: this module parses the primitive event when it was
defined at the first time.
Composite Event Parser: this module parses the composite event when it
was defined at the first time.
Repeat Primitive Event Parser: this module parses the repeat primitive
event, which means if a trigger is defined on an existing primitive event,

we'll use this module to parse it.

32

Repeat Composite Event Parser: this module parses the repeat composite
event. When a trigger defined on an existing composite event, we'll use
this module to parseit.
Drop Trigger: when the user’s request is ‘drop trigger’ command, we'll
cal thismodule.
If the request is ‘Other Command’, it means the request is not about primitive
event or composite event. The ECA_Agent_Server will send the request to *JDBC’, and

‘JDBC’ sends the request to SQL Server. At last, the results are returned to the client.

4.5 Persistent Manager

We can get some values from memory when a program is running. But when the
program terminates, the values stored in memory will disappear. In order to keep the
values that we' ve gotten from the program, we need to use ‘Persistent Manager’. In this
research, ‘Persistent Manager’ is used to keep ECA rules and generate persistent code.
Also, when ECA Agent starts and recovers, Persistent Manager will restore the events
and rules. Next we'll talk thisin detall.

4.5.1 Architecture of Persistent Manager

In this research, we use JDBC to develop a generalized method for all RDBMS to
extend the active capabilities. To implement the *Persistent Manager’, we call JDBC to

connect to SQL server, asin Figure 4.2.

Ferziztent
Manager JDBL SOL Serwver

Figure 4.2 Architecture of Persistent Manager

33

When persistent command is sent to the ‘Persistent Manager’, the ‘Persistent
Manager’ will send the command to JDBC and JDBC will send the command to SQL
server. Finaly the command will be executed in the server.

4.5.2 Generate Persistent Code

For generating persistent code, the ‘Persistent Manager’ will do the following
tasks:
Maintain ECA Agent system tables.
Insert tuples into ECA Agent system tables.
Create trigger command for primitive event.
Keep track of the occurrence of each primitive event.
Now, we give examples to interpret how the ‘ Persistent Manager’ works:

When the client defines primitive event, for example:

Create trigger t_addStk after insert on stock event addStk
REFERENCING NEW_TABLE AS newtable
FOR EACH STATEMENT MODE DB2SQL

Insert into stock_copy select * from newtable

The Persistent Manager will take the following actions:

1. Insert tuplesinto system tables:
Insert into SysEcaTrigger values(‘zsong’, ‘t_addStk’, ‘t_addStk_proc’, current
timestamp, ‘addStk’)
Insert into SysPrimitiveEvent values(‘zsong0’, ‘addStk’, ‘stock’, ‘insert’, ‘after’,
current timestamp, 0)
2. Keep track of the occurrence of the primitive event:

Update SysPrimitiveEvent set vNo = vNo+1 where eventname = ’addStk’;

3. Create triggers for primitive event:

34

Create trigger t_addStk after insert on stock
REFERENCING NEW_TABLE AS newtable
FOR EACH STATEMENT MODE DB2SQL

Insert into stock_copy select * from newtable;

4.5.3 Restore ECA events and rules

When the user defines events and rules, the Persistent Manager inserts tuples into
system tables. In order to register the events and rules using Java Led, our program
generates a Java file, compiles it and then registers it at the run time of ECA Agent (we'll
discussthisin detail in chapter 6).

If we restart the ECA Agent, we need to restore the events and rules. The tuples
that we inserted into system tables are till in the system tables so we do not need to
worry about this. The only thing we need to do is to re-register the events and rules using
Java Led.

Because we generated a file for event and we already compiled it, we just need to
call the API to register it. Thisis the same as we call the APl when we register it at the

first time. We'll use the following code to do this:

/1 to do “ zsongOaddStk.call_addStk();”, use the following code
CallDynamicM ethod.ExecuteM ethod(classname,"call_" + eventname, null, null);

/[class “ zsongOaddStk”
public class zsongOaddStk{
public static EventHandle addStk =nulll;
public static void call_addStk(){
ECAAgent myAgent = ECAAgent.initializeECAAgent();
addStk = myAgent.createPrimitiveEvent("addStk","Led",
EventModifier.BEGIN, "void addStk()", DetectionMode.SYNCHRONOUYS);

}
}

Figure 4.3 Code for restoring events and rules

35

CHAPTER 5
IMPLEMENTATION OF PRIMITIVE EVENTS

In this chapter, we describe how to implement primitive events in
ECA_Agent_Server. Firgt, the syntax of primitive events is introduced in Section 5.1. In
Section 5.2, we describe the parsing and generating primitive event. How to create
triggers on existing event and how to drop atrigger on a primitive event are described in

Section 5.3 and 5.4 respectively.

5.1 Syntax of Primitive Events

In this research we extend the trigger definition to extend the active capability of

RDBMS. For example, if we have the “ create trigger” syntax of DB2 as follows:
Create trigger t_addStk after insert on stock
REFERENCING NEW_TABLE AS newtable
FOR EACH STATEMENT MODE DB2SQL
Insert into stock_copy select * from newtable
WEe'll extend the create trigger syntax as follows for the primitive event:
Create trigger t_addStk after insert on stock event addStk
REFERENCING NEW_TABLE AS newtable
FOR EACH STATEMENT MODE DB2SQL
Insert into stock_copy select * from newtable

As we can see we just add the primitive event definition into ‘create trigger’

syntax.

36

37

The primitive event definition is:

event event_name [coupling_mode] [parameter_context] [priority].
Where
parameter_context := RECENT|CHRONICLE|CONTINUOUS|ICUMULATIVE.
coupling_mode := IMMEDIATE|DEFERED|DETACHED.
priority := positive integer.

The default coupling mode is IMMEDIATE and the default parameter context is

RECENT.

5.2 Parsing and Generating Primitive Event

Figure 5.1 is the flow chart for parsing and generating primitive event

From Figure 5.1, we can see that there are four steps for parsing and generating

primitive event:

1.

Syntax check: check if there are syntax errors for this primitive event. If there are
syntax errors, return error message to the client.

Duplicate Name check: check the trigger name is duplicate or not, because in
RDBMS, trigger name can not be duplicate. If the trigger name is duplicated, return
error message to the client.

If there are no errors, create primitive event using LED.

Generate persistent code.

38

Frinitive Event] Client

Frimitive Event
Farser

Syntax Check |

Yes ‘
{:EE?:??R 1DBC
g’); SOL server ‘

{[x]
Duplicate
Name Check
I
ErtEL;f ==

Her ¢
Ergatg Generate
Primtive Persistent
Event Code
LED Persistent |

Manager |

Figure 5.1 Flow Chart for Parsing and Generating Primitive Event

Now, we use an example to show how to apply these steps:

Example: Create trigger t_addStk after insert on stock event addStk
REFERENCING NEW_TABLE AS newtable
FOR EACH STATEMENT MODE DB2SQL

Insert into stock_copy select * from newtable

39

1. Syntax check: there are no syntax errors. Go to step 2.
2. Duplicate Name Check: trigger name does not duplicate. Go to step 3.
3. Create primitive event in LED.
Suppose we have dready initialized ‘myAgent’ using LED:
ECAAgent myAgent = ECAAgent.initializezECAAgent();
We create primitive event ‘addStk’ using LED like this way:

EventHandle addStk = myAgent.createPrimitiveEvent(“addStk”, “Led”,

EventModifier.BEGIN, “void addStk()”, DetectionMode.SYNCHRONOUS);
4. Generate persistent code.

Insert into SysEcaTrigger values(‘zsong’, ‘t_addStk’, ‘t_addStk_proc’, current
timestamp, ‘addStk’)
Insert into SysPrimitiveEvent values(‘zsong0’, ‘addStk’, ‘stock’, ‘insert’, ‘after’,

current timestamp, 0)

5. Create inserted and deleted table.

Table ‘inserted’ is used to store the inserted tuples of a table. That means when
you insert a tuple into a table, the inserted tuple will also be inserted into table
‘inserted’. In addition, the ‘inserted’ table also records the number of insertion.

For example, if we have table ‘stock’ as Table 5.1,

Table 5.1 stock

Symbol Co_name Price Time

Then, we create table ‘ stock inserted’ and table ‘stock deleted’ as Table

5.2.

40

Table 5.2 stock_inserted or stock_deleted

Symbol Co_name Price Time vNO

We see that the only difference of table ‘stock’ and table ‘stock inserted (or table
‘stock_deleted’) is that table ‘stock inserted’ has an additiona attribute ‘vNo'. The
attribute ‘vNo' is used to record the insertion number of table ‘stock’. That means
whenever the client inserts tuples into table ‘stock’, the ‘vNo' will be increased by
one with each insertion. This just records the unique event (here, for event ‘addStk’)
occurrence value. The value of this attribute will be used for composing parameters
for the parameter context specified (will be used for composite event).

Create trigger for primitive event. We need to do some works whenever after
the tuples are inserted into table ‘ stock’. So we put this work into the trigger part. The
trigger will be fired after the client inserts tuples into table ‘stock’. The works we
need to do include the following steps:

User defined trigger action.
Insert into stock_copy select * from newtable;
Get event occurrence number:
First, increase ‘vNO' in table * SysPrimitiveEvent’.
Update SysPrimitiveEvent set vNo = vNo+1 where eventname = *addStk’;
Then, put the value of ‘vNo’ into table ‘Version'.

Delete from Version;
Insert into Version select vNo from SysPrimitiveEvent where eventname =

’addStk’;

Insert inserted tuple into table ‘ stock_inserted'.

41

Insert into stock_inserted select * from newtable, Version;

(note: ‘newtable’ stores the new inserted tuples in DB2)

Insert tuplesinto table * SysContext’ (for composite event).

Insert into SysContext select * from EventContext, Verion where

EventContext.eventname = ‘addStk’;
Send notification to Event Notifier (for composite event detection).

Update notify set eventname =’addStk’;

In all, the “create trigger” command looks like this:

Create trigger t_addStk after insert on stock
REFERENCING NEW_TABLE AS newtable
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC
Insert into stock_copy select * from newtable;
Update SysPrimitiveEvent set vNo = vNo+1 where eventname = *addStk’;
Delete from Version;
Insert into Version select vNo from SysPrimitiveEvent where eventname =
"addStk’;
Insert into SysContext select * from EventContext, Verion where
EventContext.eventname = ‘addStk’;
Insert into stock_inserted select * from newtable, Version;

Update notify set eventname = ‘addStk’;
END;

(Note: in DB2 version 5.0, multiple sgl statements are not supported in create trigger
command, but in DB2 6.0, multiple sgl statements are supported)

(Note: by now, we use DB2 version 5.0, we write multiple triggers for a certain event to
implement the multiple sgl statements in one trigger)

42

5.3 Creating Triggers on Existing Event

In DB2, we can create multiple-triggers for the same database operation on the
same table, this is different from Sybase. In Sybase, user can only create one trigger for
the same database operation on the same table, if you create the second trigger on the
same table for the same database operation, the second one will replace the first one.

So, to implement ‘ create triggers on existing event’ is much smple in DB2 than
in Sybase. Next we give the syntax of creating triggers on existing event.

5.3.1 Syntax of creating triggers on existing event

In the earlier part of this chapter, we define the syntax of creating primitive event

asfollows:

create trigger trigger_name after/before insert/delete/update on table_name event
event_name

REFERENCING NEW_TABLE AS newtable

FOR EACH STATEMENT MODE DB2SQL

SQL_statements

After we define a primitive event, we know which table this primitive event
defined on and we know what kind of operation this primitive event defined on this table.
So, when we define another trigger on this primitive event, we need not to define the

table name and operation in the create trigger command, the follows is the syntax:

43

create trigger trigger_name event event_name
REFERENCING NEW_TABLE AS newtable
FOR EACH STATEMENT MODE DB2SQL

SQL_statements

The primitive event definition is:

event event_name [coupling_mode] [parameter_context] [priority].

Where

parameter_context :=
ECENT|CHRONICLE|CONTINUOUS|ICUMULATIVE.

coupling_mode := IMMEDIATE|DEFERED|DETACHED.

priority := positive integer.

The default coupling mode is IMMEDIATE and the default parameter
context is RECENT.

Figure 5.2 Repeat Primitive Event Syntax

When the user creates triggers on existing event, our program will call the * Repeat
Primitive Event Parser’ to parse the command. Next we'll discuss how this parser works.

5.3.2 Implementation of Triggers on Existing Event

Because DB2 supports multiple-triggers in the same event, it isssmple for usto
deal with the repeated primitive event in our program. We use ‘ Repeated Primitive Event
Parser’ to parseit, the following steps are what we need to do:

1. Syntax checking:
2. Duplicate object name checking:
3. Code Generation:

4. Persistent code generation:

44

Now, we use an example to show how this works. Suppose we have aready

defined primitive event ‘addStk’, now define another trigger based on this event:

create trigger t1_addStk event addStk
REFERENCING NEW_TABLE AS newtable
FOR EACH STATEMENT MODE DB2SQL
insert into PF values('Jin Kim', "IBM', 1000, 200, current date)

We'll work through the above steps:
1. Syntax checking: since there are no syntax errors, we'll go to step 2.
2. Duplicate object name checking: here, trigger name ‘t1_addStk’ is not a duplicate
name and event name ‘addStk’ already defined, so there are no errors, go to step 3.
3. Code Generation: When first time we define primitive event ‘addStk’, we aready
generate some codes to extend the active capability for the RDBMS. So, we need not
to do that again, we just need to create a trigger, put the action into the trigger. The

trigger command is:

create trigger t1_addStk after insert on stock
REFERENCING NEW_TABLE AS newtable
FOR EACH STATEMENT MODE DB2SQL
insert into PF values('Jin Kim’, "IBM’, 1000, 200, current date)

Here, we just change the event addStk to the event definition (after insert on
stock). Thisis acceptable for DB2.

4. Persistent code generation: we need to insert tuple into table * SysEcaTrigger’:

Insert into SysEcaTrigger values(‘zsong’, ‘t1_addStk’, ‘t1_addStk_proc’, current

timestamp, ‘addStk’)

Right now, we have finished the work for the trigger defined on an exiting

primitive event.

45

5.4 Dropping a Trigger on a Primitive Event

In DB2, we have ‘drop trigger’ command. In our program, we extend the ‘ create
trigger’ command. So if we want to drop a trigger, we need to do the reverse steps
according to its ‘create trigger’ command. First we'll discuss the syntax of drop trigger
command.

5.4.1 Syntax of drop trigger command

In DB2, the syntax of drop trigger command as the follows:

drop trigger trigger_name

Figure 5.3 Drop Trigger Syntax

In our program, we still use the same syntax, thisis transparent to the user.

When the user requests a drop trigger command, our program first check this
trigger defined on a primitive event or a composite event. If this trigger is defined on a
primitive event, ‘Drop trigger on primitive” will be used to parse it. If this trigger is
defined on a composite event, ‘Drop trigger on composite” will be used to parse it. If this
trigger did not defined on our primitive event or composite event, then this trigger just a
traditional RDBMS trigger, we simply send this drop trigger command to SQL server to
drop it.

Next we'll discuss the stepsto drop atrigger on primitive event.

5.4.2 Implementation of drop trigger on primitive event

When user define primitive events, our ECA Agent performs some actions. In
order to drop a trigger, our ECA Agent needs to perform the reverse actions. The

following is the steps we performed for creating a primitive event:

46

1. Generate persistent code.

2. Createtrigger in DB2.

3. Create primitive event using LED.

WEe'll do the following steps:

1. Deletetuple from table ‘ SysEcaTrigger’.

2. Droptrigger in DB2.

3. Check if there is another trigger defined on this primitive event. If there are no
other triggers defined on this primitive event, delete this primitive event tuple
from table ‘ SysPrimitiveEvent’. If there are triggers also defined on this primitive
event, we need not to delete this primitive event from table * SysPrimitiveEvent'.

4. Drop primitive event from LED. First, we need to check if there are composite
events defined based on this primitive event. If there are, we can not drop the
primitive event. If there is no composite event defined based on this primitive
event, we need to drop it from LED. To drop the primitive event from LED, the
only thing we need to do is to delete the Java file that we created for this primitive

event.

CHAPTER 6
IMPLEMENTATION OF COMPOSITE EVENTS

Composite events are not supported by RDBMS. In this research, we extend the
trigger definition so composite events are supported in ECA Agent. In this chapter, we'll
describe the details of implementation of composite events. In Section 6.1, we describe
the syntax of composite event. In Section 6.2, Composite Event Parser is introduced.
Event Notifier, ECA Action, and Parameter Context are described in Section 6.3, 6.4, and

6.5 respectively.

6.1 Syntax of composite event

We extend the trigger definition for composite event as we did for primitive
event. For example:

create trigger t_addDel event addDel = addStk ” delStk RECENT
BEGIN ATOMIC
insert into temp values(‘Mark’, 4) ;

END

We add the keyword ‘event’ in the trigger command, and follow the keyword
‘event’ is the composite event syntax.

We use ‘Snoop’ - the event specification language to specify composite events in
the trigger command.

Figure 6.1 shows the syntax of a composite event definition (Figure 6-1).

a7

48

The default coupling_mode is ‘IMMEDIATE' and the default prameter_contxt is

‘RECENT".

create trigger trigger_name
event event_name [= Snoop_Event_exp] [coupling_mode] [parameter_context][priority]
BEGIN ATOMIC SQL_statements; END
Coupling_mode := RECENT|CHRONICLE|CONTINUOUS|ICUMULATIVE
Parameter_context := IMMEDIATE|DEFERED|DETACHED
Priority := positive integer
Snoop_Event_exp ::= E1
El1:=E1ORE2|E2
E2::=E2AND E3 | E3
E3::=E3SEQE4|E4
E4 ::=NOT(EL1,E1El)
| A (E1,E1EL)
| A* (E1,E1,EL)
| P(E1, [time string], E1)
| P(EL, [time string]: parameter, E1)
| P* (E1, [time string], E1)
| P(EL, [time string]: parameter, E1)
| [time string]
| E1 PLUS [time string]
| (E1)
| event_name
event_name ::= name

Figure6.1: Composite Event Definition

6.2 Composite event parser

When the user defines a composite event, Composite Event Parser will parse it.

There are four steps as shown in Figure 6.2:

49

EDmpD:iEEqEEEEEJJ Client

Composite Event
Farser

Syntax Check |

k“xh Ves ‘
<”'3” JDBC
g’iﬁ S0L Server ‘

Mo

Duplicate
Mame Check

Yes

Snoop Parser

Yesz
rror;
No
&

1

LED Code
Generation

Figure6.2: Flow Chart of Composite Event Parser

1. Syntax check: check if there are syntax errors for this composite event. If there
are syntax errors, return error message to the client.

2. Duplicate Name check: check if the trigger name is duplicate or not, because in
RDBMS trigger name can not be duplicate. If the trigger name is duplicated,

return error message to the client.

50

Send the composite event definition to Snoop parser. Snoop parser will parse the
composite event syntax definition. If there are errors, return error message to the
client. If there are no errors, snoop parser will create composite event in LED.
Code Generation.

Now, we use the following example to show how to apply these steps:

create trigger t_and event addDel = addStk ~ delStk RECENT
BEGIN ATOMIC
insert into temp values(*‘Mark’, 4) ;

END

Syntax check: there are no syntax errors. Go to step 2.
Duplicate Name Check: trigger name does not duplicate. Go to step 3.
Send the composite event definition (event addDel = addStk ~ del Stk RECENT) t0 snoop
parser. Snoop parser parses this composite event. No error is found. So create
composite event and rule in LED.
The output of Snoop parser consists of two files, one is ‘eventlist.txt’ and the
other is ‘ compositeevent.txt’.
File ‘eventlist.txt’ contains the events that used to define the composite event. We
keep the event list to check whether these events have been defined or not. If there
are events which are not defined, errors must be send to the client.
File ‘compositeevent.txt’ contains the API for creating the composite event.
Suppose we have dready initidized ‘myAgent’ using LED:

ECAAgent myAgent = ECAAgent.initializeECAAgent();
We create composite event ‘addDel’ using LED like this:

EventHandle addDel = myAgent.createCompositeEvent(EventType.AND,

“event addDel”, addStk, delStk)

51

Createrulein LED:

myAgent.createRule(“rule addDel”, addDel, “Led.true”, “Led.addDel”, 1,

CouplingMode.DEFAULT, Context. RECENT)
Persistent Code generation.

Insert into SysCompositEvent values(‘EcaAgent’, ‘zsong0’, ‘addDel’, ‘addStk ~ delStk’,
‘RECENT’, ‘IMMEDIATE’, 1)
Insert into SysEcaTrigger values(‘zsong0’, ‘t_and’, ‘t_and_proc’, current timestamp,

‘addDel’)

Create ECA_Action in LED. When composite event occurs, the following two tasks

have to be done:
Trigger action that the user defined in this composite event should
be executed.
We should keep the parameter context for this composite event.
That means we'll keep the tuples (inserted or deleted or both of
them) that made this composite event occurred and the composite
event’s parameter context.

The following is the ECA Action for the example composite event written by

SQL statements. We implement these SQL statement use JDBC.

Delete from stock_inserted_tmp;
Insert into stock_inserted_tmp
Select * from stock_inserted, SysContext
where SysContext.context = ‘RECENT’ and
SysContext.eventname = eventname(leftEventName and
rightEventName) and
Stock_inserted.vNo = SysContext.vNo;

Insert into temp values(‘Mark’,4) ;

52

In this example, table ‘stock inserted tmp’ is a table generated from table * stock’
and table ‘SysContex’. Recall when we create primitive event, we have table ‘stock’

defined like Table 6.1.

Table 6.1 stock

Symboal Co_name Price Time

We create table ‘stock_inserted_tmp’ and table ‘stock _deleted tmp’ as Table 6.2.

Table 6.2 stock_inserted_tmp

Symbol | Co name| Price | Time | VNo | EventName | Context | VNol

When the composite event occurs, tuples will be inserted into table

‘stock_inserted tmp’ and ‘stock_deleted tmp’ according to the specific composite event.

6.3 Create Events and Rules

In this project, we use Java Led to detect composite events, so we need to register
primitive events and composite events use the APl of Java Led. For example, if user
defined a primitive event ‘addStk’, then we'll create primitive event use the following

API:

EventHandle addStk = myAgent.createPrimitiveEvent(""addStk™," Led",EventModifier.BEGIN, ""void

addStk™, DetectionMode.SYNCHRONOUS);

53

Because users define events dynamically, we must register events dynamicaly. In
order to register events dynamicdly, well create a Java file cdled
“userNameteventName,java’, and then compile it dynamicaly. In our program, we'll
call method “call_addStk()” to register this primitive event. Figure 6.3 shows the Java
file, Figure 6.4 shows the code for compiling the Java file dynamically, and Figure 6.5

shows the code of how to register the primitive event.

import Sentinel.*;

import java.util .V ector;
import java.util.Hashtable;
import java.util.Enumeration;

public class zsongOaddStk{
public static EventHandle addStk =nulll;
public static void call_addStk(){
ECAAgent myAgent = ECAAgent.initializeECAAgent();
addStk = myAgent.createPrimitiveEvent("addStk","Led",
EventModifier.BEGIN, "void addStk()", DetectionMode.SYNCHRONOUYS);

}
}

Figure 6.3 File “ zsongOaddStk.java’

I/l using 'javac' to compile the generated javafile
String cmd = "javac " + className + " java';
javalang.Runtime rt = Runtime.getRuntime();

try {
Process pro = rt.exec(cmd); // execute the command

int a= pro.waitFor(); // wait until the current process terminate,
/I so that the command compl eted

} catch(Exceptione) { }

Figure 6.4 Code for dynamic compile Javafile

/1 to do “ zsongOaddStk.call_addStk();”, use the following code
CallDynamicM ethod.ExecuteM ethod(classname,"call_" + eventname, null,
null);

Figure 6.5 Code for register events

In figure 6.5, we use “CalDynamicMethod.ExecuteMethod()” to do
“zsongOaddStk.call_addStk();” because in our program, we have a class
“CdlDynamicMethod”, and we have a method called “ExecuteMethod” in this class.
This method is used to execute the dynamic generated method. We put this class in
appendix d.

To register composite events and rules we use the same method. Here we give an

example.

create trigger t_and event addDel = addStk ~ delStk RECENT
BEGIN ATOMIC
insert into temp values(‘Mark’, 4) ;

END

WEe'll create file “zsongOaddDel .java’, see appendix d file ‘ zsongOaddDel .java .
And then we compile this file and register the composite event and rule just like

we did for the primitive event.

6.4 Event Notification and Detection

A composite event is composed of two or more primitive events using one or

more of the snoop operators. Every composite event has an initiator event that initiates

55

the detection, and a terminator event that completes the detection of the event. The
composite event is detected only when the terminator event is detected.
If we have a composite event using the AND operator:
event andEvent = AND(ey, &)

Consider the event occurrences shown on the timeline below:

The AND event is detected when e; occurs.

In our case, e; and e, are database operations such as ‘insert’, ‘delete’ or ‘update’.
When the database operations occur (primitive events occur), we know this is be done by
SQL server, how can we know these operations occur? — We are not the Servers. If we do
not know the primitive events occur, how can we detect the occurrence of composite
event? Solving these problemsis our way to detect the composite event.

As we know, we use Java LED to detect the composite event. In order to detect
the composite event, first we need to detect primitive events, as the above example, when
& occurs, the AND event is detected. How can we detect primitive events is our next
topic.

6.4.1 Primitive Event Detection

In Java LED, we use the API to define a primitive event:

EventHandle addStk = myAgent.createPrimitiveEvent(“addStk”, “Led”,

EventModifier.BEGIN, “void addStk()”, DetectionMode.SYNCHRONOUS);

56

When the primitive event is defined as the above, an event handle corresponding
to that event is returned. The event handle is used to signa the method invocation to the
event detector. In order to signa the invocation of a method (a primitive event
occurrence), the user can call an API inside a method that is defined as a primitive event.

Void addStk() {
EventHandle[] myEvent = ECAAgent.getEventHandles (“addStk™);
ECAAgent.raiseBeginEvent (myEvent, this);

}

Firgt, the event handles corresponding to the primitive event are obtained using
the name of the primitive event. Second, the event handles and the instance which
invokes the method (this) are passed through the “raiseBeginEvent’ API.

By now, the primitive event “addStk” is detected.

In our case, the primitive events are database operations, for example we define

the primitive event “addStk” inside the create trigger command:

Create trigger t_addStk after insert on stock event addStk
REFERENCING NEW_TABLE AS newtable
FOR EACH STATEMENT MODE DB2SQL

Insert into stock_copy select * from newtable

After we insert a tuple into table ‘stock’, the primitive event ‘addStk’ will occur,
but the operation ‘insert’ will be done in the SQL server side, and the SQL statements
inside the trigger aso will be done in the server side, that implies the primitive event
‘addStk’ will occur in the server side. We do not want these, if the primitive events occur
in the server side, how can these primitive events trigger the composite event in our

application?

57

What we want is after the ‘insert’ operation occurs, the SQL server should notify
our application, let our application to raise the primitive event. Only in this way, the
composite event can be triggered.

How to implement thisissue is our next discussion.

6.4.2 Primitive Event Notification

After the ‘insert’ operation occurs, the SQL statements inside the trigger will be
executed by the SQL server. The primitive event ‘addStk’ occurs in the server side, the
server needs to notify the application that this primitive event occurred. The solution is
that we call method ‘void addStk()’ inside the trigger to raise the primitive event, but this
will raise the primitive event in the server side, not in the application.

In Sybase, it has a build-in function, “sybase-SendMesg(port number, 1P address,
method)”. Using this build-in function, we can raise primitive event in the specified IP
address.

But in DB2, we do not have this kind of build-in function. We solve this problem
using the following steps:

1. We create a table named notify. It has only one attribute, called “event name’”.

And thistable has only one tuple at any time.

2. When a primitive event occurs, we put the occurred primitive event name into

table ‘notify’. We do this by put one SQL statement into the trigger command

like the follows:
Update table notify set eventname="addStk’.

After we insert atuple into table stock, this trigger will be fired, and this SQL

statement will be executed automatically.

58

In our program, we use multi-thread to deal with each query requested by clients.
Before the results are sent back to client, we check the table notify. If a primitive name
exists in the table, our application will raise this primitive event by calling the method
“void addStk()”. Thus, this primitive event is notified to our application and is detected
by LED.

6.4.3 Composite Event Detection

We use Java LED to detect composite events. When we create a composite event,
we'll aso create a rule. This rule contains “Event-Condition-Action”. Once the event
occurs, it will check the condition. If the condition is true, the Action will be executed.
For example, we will create the following composite event:

Event addDel = addStk ~ delStk;

WEe'll dso create the following rule:

myAgent.createRule(“rule addDel”, addDel, “Led.true”, “Led.addDel”, 1,

CouplingMode.DEFAULT, Context. RECENT)

When the composite event ‘addDel’ is detected, and the condition is satisfied, the
Action “Led.addDd” will be executed automatically.
Next, we'll discuss how to implement thisin our case.

First, we have a Javafile called “Led.java’, like the follows:

59

import Sentinel.*;

import java.util .V ector;
import java.util.Hashtable;
import java.util.Enumeration;

public class Led {
[IPrimitiveEventM ethod
public void PrimEvent(String eventname) {
EventHandl €[] addStk = ECAAgent.getEventHandles(eventname);
ECAAgent.insert(addStk," eventname” ,eventname);
ECAAgent.raiseBeginEvent(addStk,this);
}

/[ECA_Condition

public static boolean True(ListOf ParameterLists parameterLists) {
System.out.println("****** From Condition ***** ");
return true;

}

Figure 6.6 Javafile “Ledjava’

In Figure 6.6, we have a method “public static boolean True()”. This method
defines the condition part of ECA. Here, we suppose the condition is always true, which
means if the event occurs, the action will be executed.

We aso have a method “public void PrimEvent(String eventname)”. This method
is used to raise the specified primitive event. The event name will be passed as the
parameter. After a primitive event occurred and our application got the notification from
the SQL server, the application will call this method to raise this primitive event like the
follows:

Led.PrimEvent(eventname);
When both of the primitive event ‘addStk’ and ‘delStk’ occurred, the composite

event ‘addDel’ is detected, and the Action should be executed.

60

Next we'll discuss the ECA Action part.

6.5 ECA Action

In active database, we use ECA rules to implement the active capability. In our
case, events are database operations, conditions are always true, and actions are some
SQL statements related to the database.

When events are detected, actions should be executed automatically. Because we
define events in the extended trigger part, so the action should include the SQL
statements that are defined inside the trigger. We also implement the parameter context in
the action part. So, the action includes two parts:

1. SQL statements user defined inside the trigger.
2. SQL statements used to implement the parameter context.

Events are created by users. We don’'t know what kind of trigger action will be
defined and we don’'t know the event defined on which table, so the action part will be
dynamically created according to the definition of events.

To implement the ECA Action part, we do like this way:

When the user defines a composite event,

1. Get thetriggered SQL statements.

2. According to the definition of the composite event, get the table names defined on
this composite event, then insert tuples into table ‘tablename.inserted tmp’ to get
parameter context.

Because we use Java LED to detect composite event, and in Java LED, only class
function written by Java can be called as the Action part, we create a Java file to contain

the action pat as a function in the Java file We cdl the Java file

61

‘EventNameUserNamejava to distinguish the same event that has been defined by the
different users.

In our program, when we define a composite event, we'll also define a rule.
Through the rule definition, we know when the event is detected and which action
function we should call.

WEe Il give an example to show how we implement this.

1. Define acomposite event ‘addDdl’:

create trigger t_and event addDel = addStk ” delStk RECENT
BEGIN ATOMIC
insert into temp values(*‘Mark’, 4) ;

END
2. Create composite event and rulein LED.

EventHandle addDel = myAgent.createCompositeEvent(EventType.AND,

“event addDel”, addStk, delStk)

myAgent.createRule(“rule addDel”, addDel, “Led.true”,
“addDelzsong0.addDel”, 1, CouplingMode.DEFAULT,

Context. RECENT)

3. From the rule, we know when this composite event is detected, LED will execute
“zsongOaddDel.call_addDel()” asthe action.
WEe'll create file ‘zsongOaddDel.java’. In this file, there is a method called
‘cal_addDel()’. This Javafileis appended in appendix d.
Because this file is created when the ‘composite parser’ parses the composite
event, we need to compile this Java file in the run time. This is the same as we did for
creating events. The code for how to compile Java file dynamicaly is shown in Figure

6.4.

62

Now, the action part is ready. When the composite event is detected, this action

part will be executed automatically.

6.6 Parameter Context

As mentioned before, composite events can be detected in more than one
parameter context. In Java LED, the parameter contexts we supported are recent,
chronicle, continuous, and cumulative. And we aso need to be noted that for primitive
events all parameter contexts are identical.

Here we dtill use the example we used in the earlier part of this chapter to discuss
the different detection in different parameter contexts.

If we have a composite event using the AND operator:

event andEvent = AND(ey, &)

Consider the event occurrences shown on the timeline below:

The AND event is detected when e occurs. But we are not clear whether e}
should be paired with e] or e’. Parameter contexts are useful for distinguishing this
ambiguity. In recent context, e/ and e; are detected for ‘andEvent’. In chronicle context,

e; and e; are detected for ‘andEvent’. In continuous context, two events e; e; and e’ e;
are detected at the same time for ‘andEvent’. In cumulative context, a single event

e, e2 e} isdetected for ‘andEvent’.

63

In our case, primitive events are database operations. In order to keep the context

for a primitive event in a certain composite event, we create a table named

‘tablename.inserted tmp’ to contain the context for the primitive event. Next we'll

discuss how to implement parameter context for primitive event.

1.

2.

When the user defines a primitive event, we create table *tablename.inserted_tmp’
and ‘tablename.deleted_tmp'.

When the user defines a composite event, we put al primitive events (which
consists of this particular composite event) and parameter context into table
‘eventContext’ to keep the primitive events and its context for the composite
event.

When primitive events occur, join two tables ‘tablename inserted and
‘eventContext’, and then the results are inserted into table ‘ SysContext’.

When composite events occurs, join two tables ‘tablename inserted” and
‘SysContext’, and then the results are inserted into table ‘tablename.inserted_tmp’

to get parameter context.

Now, we'll use an example to show how this works:

create trigger t_and event addDel = addStk ” delStk RECENT
BEGIN ATOMIC
insert into temp values(‘Mark’, 4) ;

END

1. When the user defines primitive events ‘addStk’ and ‘delStk’, we'll create table

‘stock_inserted tmp’ and table ‘stock deleted tmp’ as Table 6.3.

64

Table 6.3 stock_inserted _tmp or stock_deleted_tmp

Symbol | Co name| Price | Time | VNo | EventName | Context | VNol

2. When the user defines composite event ‘addDel’, we'll input tuples into table

‘eventContext’ as Table 6.4.

Table 6.4 EventContext
EventName Context
‘addStk’ ‘RECENT’
‘del Stk ‘RECENT’

3. When primitive event ‘addStk’ occurs, for example, we insert a tuple into table
‘stock’, we join table *stock_inserted’ and ‘eventContext’ to get tuples insert to table
‘SysContext’, as follows:

Insert into table stock values(‘sun’, ‘sun’, 123, current timestamp);
Delete from Syscontext where eventname="addStk” and context="RECENT’;
Insert into Syscontext select eventname, context, vNo from eventContext, stock_inserted;

Now, table * SysContext has the format of Table 6.5.

Table 6.5 SysContext

EventName Context Vno
‘addStk’ ‘RECENT’ 1

When we delete a tuple from table ‘ stock’, primitive event *delStk’ will occur,
we'll do the follows just like we did after primitive event ‘addStk’ occured,

Delete from table stock;
Delete from Syscontext where eventname="delStk’ and context="RECENT’;
Insert into Syscontext select eventname, context, vNo from eventContext, stock_deleted;

65

Now, table * SysContext has the format of Table 6.6.

Table 6.6 SysContext
EventName Context Vno
‘addStk’ ‘RECENT’ 1
‘del Stk ‘RECENT’ 1

4. Right now, the composite event ‘addDel’ is detected, we'll get parameter context

after we did the follows(Figure 6.7):

/[context processing for event ‘del Stk’
Delete stock_deleted tmp;

Insert into stock_deleted tmp;
Select * from stock _deleted, SysContext
Where SysContext.context="RECENT’ and
SysContext.eventname = ‘delStk’ and
Stock_deleted tmp.vNo = SysContext.vNo

/[context processing for event ‘ addStk’
Delete stock_inserted_tmp;

Insert into stock _inserted tmp;
Select * from stock_inserted, SysContext
Where SysContext.context="RECENT’ and

SysContext.eventname = ‘delStk” and

Stock_inserted_tmp.vNo = SysContext.vNo

Figure 6.7 parameter context processing

66

CHAPTER 7
CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this thesis, we presented the details of design, architecture and implementation
of ECA Agent, to recall there are some sub-modulesin our ECA Agent:
Language Filter
ECA Parser
Primitive Event Parser
Composite Event Parser
Repeat Primitive Event Parser
Repeat Composite Event Parser
Drop trigger Parser
Drop trigger defined on Primitive Event
Drop trigger defined on Composite Event
Persistent Manager
JavalLed
JDBC
At the same time that we implement these sub-modules, we aso fulfilled the
following goals:
ECA rules are supported in our Agent.

Both primitive events and composite events can be detected.

67

68

Active behaves (events, rules, actions) are persistent in DBMS.
Drop trigger and events as desired.
Multiple parameter contexts are supported in our Agent.
Our ECA Agent is a mediator in the SQL server and clients, and we use JDBC to
connect with SQL server and SQL requirements. So this design is a generalized method

for any RDBMS to extend its active capability.

7.2 Contributions

The contributions of thisthesis are:
Designed a mediated approach that significantly extends the active capability
of any RDBMS. This mediated approach has some advantages. it does not
change the SQL Server/Client; it's transparency to the clients;, it has
extensbility, etc.
Implemented the ECA Agent according to the design.
Full-fledged active capability is supported.
We use JDBC to connect the SQL Serer and the Clients. It's a generaized
method. By using JDBC, you can connect any SQL Server and clients. You

need not to worry about the specified functions of a specified RDBMS.

7.3 Future work

In our implementation, we use DB2 as the test database and we extended the
active capability of DB2 Universal Database. Next we'll implement these by using
Oracle as the test database. The only difference here is the SQL statements syntax

between DB2 and Oracle.

69

In this thesis, we use Java Led to detect composite events. Right now, Java Led
can only detects events in a single application. In the future, it can be extended to detect
events in a distributed system. At that time, our Agent will also support to detect events

in adistributed system.

APPENDIX A
USER MANUAL

In this project, we implement two programs, oneis “Java ECA Agent Server”, the
other one is “Java ECA Agent Client”.

Java ECA Agent Server

This program is our ECA Agent, it should be run on the server machine, just like
the Oracle SQL server or Sybase SQL server is running on the server machine. This
program can be run on any machine, but first you must run this program before you run
the client program.

Start the ECA Agent

If you want to start the ECA Agent, you should execute the following command
in the “dos’ environment:
java Java_ECA Agent_Server

Then, the ECA Agent starts, you will see alittle window like follows:

Eg’_g.lava ECA Agent Sewver =]

ECA agent is Running.. |

Clean Demo Exit

Figure A.1 ECA Agent Server Interface

70

71

In this window, it said: “ECA Agent is Running...” that means ECA Agent is
running and right now you can start you client interface.

There is a button “Exit”, when you click this button, the ECA Agent will shut
down.

Also, we have a“dos’ window like the follows:

"% Java_ECA_Agent_Server [_ ol =]
AppAcce leratoritn? 1.2.818 for Java (JDK 1.2>, xB6 version.

Copyright <c>» 1997-1999 Inprise Corporation. All Rights Reserved.
ECA Agent is Running...

Figure A.2 ECA Agent Server DOS Environment

Use this window, you can get some run time information.

Java ECA Agent Client

This program is the interface for the client, clients can use this interface input the
SQL requirements. It looks just like the original DBMS interface. We should notice that
this program must be start after the ECA Agent server program started.

Start the ECA Agent Client interface

To sart this program, just input the following command in the “dos’
environment:

java Java_ECA_Agent_Client

72

You'll notice that the following window displays:

EE_@ Java_ECA_Agent

—
—

okyo.dbcenter.cise.ufl.edu
3080

okyo.dbcenter.cise.ufl.edu

Figure A.4 ECA Client Interface

In this window, there isalot of information. We'll talk it one by one.

RDBMS: from the como box you can select “DB2”, “Oracle’, “Sybase” or
“Informix”. Because our Agent is a generalized Agent, it will be worked for

al kinds of RDBMS. Right now, it works for “DB2”, and it will work for
“Oracl€’ in ashort time.

73

List DBs: you should input the database name that you'll use in the specified
RDBMS into this text area. For example, we'll use database named
“ECAAgent” in DB2. So we put “ECAAgent” in this text area.

Host Name: this should be the machine name where you run the ECA Agent
Server. For example, our ECA Agent is running on the machine “tokyo”, so
we input the name “tokyo.cise.ufl.edu” into this text area.

PortNumber:

URL for RDBMS: this is the URL for RDBMS, for example, our DB2 SQL
server in running on machin “tokyo”, and the URL for “tokyo” is
“tokyo.cise.ufl.edu”, so we put “tokyo.cise.ufl.edu” into this text area. Notice
you can aso input the IP address into here, the IP address of “tokyo” is
128.227.146.79', so we can input “128.227.146.79" in this text area.

User Name: this is the account id that you use in the specified RDBMS. For
example, we use the account id “zsong0” for DB2.

Password: thisis the password for the account used in the specified RDBMS.
Button “Set”: chick this button, the system will keep all the information you
input into this window, it will be used latter.

Button “Go”: click this button, another window will show on, if you select
“Oracle’, the “Oracle” interface will show on, if you select “DB2", the “DB2"
interface will show on.

Button “Exit”: click this button, the client program will terminate.

74

DB2 interface
If we select “DB2”, then the “DB2” interface will show on, it looks like the DB2

command center:

EE‘-_% DB2 Command Center =] B

Excute

Clear |

Seript Results

C Interactive ¢ Seripte

select* from temp

5Kl

select * from temp

Figure A.5 DB2 Interface

This interface looks like the “DB2 command center”, there are some buttons:
Script: when you click this button, the script you select from the “script list” will
show in the text area window. You can also input SQL statements into text area

window directly.

Results: click this button, you can get the latest results.

75

Execute: click this button, the SQL statements inside the text area window will be
executed. Before you click this button, make sure the SQL statements inside the text
area window are what you want.

Clear: click this button, the text area window will be cleaned.

APPENDIX B
DEMO

Here, we'll use examples to show how this ECA Agent works. Before the demo,
we need to do some work.

Preparing the Demo

First, we need to create some tables, see appendix c file “ createSystables.txt”.
Second, if necessary, clean demo use DB2 command center, the clean demo
commands are in the file “cleanDemo.txt” in appendix c.
Demo
There are some steps for the demo:
1. Start ECA Agent Server by input the following command in the “dos’
environment:
java Java_ECA Agent_Server
We'll see a “dos window”-- “Java ECA_Agent_Server” shows on. That
means the ECA Agent is ready.
2. Start the ECA Agent Client by input the following command in the “dos’
environment:
java Java_ECA Agent_Client
Now, the ECA Agent Client interface shows on, we input some

informationin hiswindow, like the follows:

76

7

[»gj Java ECA_Agent

DB2
ECAAgENt

okyo.dbrenter.cige.ufl edy

a0an
okyo.dbcenter.cise.ufledy

—
—
—

Figure B.1 ECA Agent Client Interface

. Click button “ Set” to let the system keeping the information.

. Click button “Go”. The DB2 interface displays.

Now, we create some primitive events and composite events, see appendix ¢
file “createEvents.txt”.

. After we create primitive events and composite events, now we can test it. See
appendix c file “test.txt”.

. Check the results, see appendix c file “results.txt”.

APPENDIX C
FILESUSED IN THE DEMO

The following files are used for the demo.

File 1: createSystables.txt

drop table SysEcaTrigger;

drop table SysPrimitiveEvent;
drop table SysCompositeEvent;
drop table Version;

drop table ActiveRDBMS _ECA
drop table sysContext;

drop table eventContext;

create table SysEcaTrigger (
dbName char(30),
userName char(30),
triggerName char(30),
triggerProc char(60),
timeStamp timestamp,
eventName char(30)

)

create table SysPrimitiveEvent (
dbName char(30),
userName char(30),
eventName char(30),
tableName char(30),
operation char(30),
beafoperation char(10),
timeStamp timestamp,
vNo integer
)

create table SysCompositEvent (
dbName char(30),
userName char(30),
eventName char(30),
eventDescribe char(100),
timeStamp timestamp,

78

79

coupling char(10),
context char(12),
priority integer

)

create table Version (
vNo integer

)

create table ActiveRDBMS _ECA (
EcaV ariables varchar(255),
TriggerFunc char(50)

)

create table sysContext (
eventname char(20),
context char(12),
vNo integer

)

create table eventContext (
eventname char(20),
context char(12)

)

grant all on SysEcaTrigger to public;

grant al on SysPrimitiveEvent to public;
grant all on SysCompositEvent to public;
grant all on Version to public;

grant all on ActiveRDBMS _ECA to public;
grant all on sysContext to public;

File 2: cleanDemo.txt

drop table stock _inserted;
drop table stock deleted;

drop table stock_inserted tmp;
drop table stock _deleted tmp;
drop trigger t_addStk;

drop trigger t_addStk1;

drop trigger t_addStk2;

drop trigger t_addStk01,

drop trigger t_addStk02;

drop trigger t_addStk03;

80

drop trigger t_addStk04;
drop trigger t_del Stk;
drop trigger t_del Stk1;
drop trigger t_del Stk2;
drop trigger t_del StkO1,;
drop trigger t_del Stk02;
drop trigger t_del Stk03;
drop trigger t_del Stk04;

drop table stock;

drop table stock _copy;

create table stock(symbol char(10), Co_name char(20), price integer, time
timestamp);

create table stock _copy(symbol char(10), Co_name char(20), price integer, time
timestamp);

insert into stock vaues('ibm','ibm',320,current timestamp);

delete from SysEcaTrigger;
delete from SysPrimitiveEvent;
delete from SysCompositEvent;
delete from temp;

delete from SysContext;

delete from eventContext;

drop table PF_inserted,;
drop table PF_deleted,;

drop table PF_inserted_tmp;
drop table PF_deleted tmp;
drop trigger t_buyStk;

drop trigger t_buyStk1;
drop trigger t_buyStk2;
drop trigger t_buyStk01,
drop trigger t_buyStk02;
drop trigger t_buyStk03;
drop trigger t_buyStk04;
drop trigger t_sel Stk;

drop trigger t_sel Stk1;
drop trigger t_selStk2;

drop trigger t_sel Stk01,
drop trigger t_sel Stk02;
drop trigger t_sel Stk03;
drop trigger t_sel Stk04;

drop table PF_copy;

81

drop table PF;

create table PF(name char(20), symbol char(6), amount integer, price integer, time
date);

create table PF_copy(name char(20), symbol char(6), amount integer, price
integer, time date);

insert into PF values('Sharma Cha, 'INJ, 1000, 200, current date);

File 3: createEvents.txt

Create primitive events

create trigger t_addStk after insert on stock event addStk
REFERENCING NEW_TABLE AS newtable
FOR EACH STATEMENT MODE DB2SQL

insert into stock_copy select * from newtable

create trigger t1_addStk event addStk
REFERENCING NEW_TABLE AS newtable
FOR EACH STATEMENT MODE DB2SQL
insert into PF values('Jin Kim', 'IBM', 1000, 200, current date)

create trigger t_del Stk after delete on stock event del Stk
REFERENCING OLD_TABLE ASoldtable
FOR EACH STATEMENT MODE DB2SQL

insert into stock_copy select * from oldtable

create trigger t_buyStk after insert on PF event buy Stk
REFERENCING NEW_TABLE AS newtable
FOR EACH STATEMENT MODE DB2SQL

insert into PF_copy select * from newtable

create trigger t_sel Stk after delete on PF event sel Stk
REFERENCING OLD_TABLE ASoldtable
FOR EACH STATEMENT MODE DB2SQL

insert into PF_copy select * from oldtable

82

Create composite events

create trigger t_and event addDel = del Stk * addStk RECENT
BEGIN ATOMIC

insert into temp values(Mark',4) ;
END

create trigger t_Or event buySel = buyStk | selStk RECENT
BEGIN ATOMIC

insert into temp values('Jerry',3) ;
END

create trigger t addDelBuy event addDelBuy = addDel ; buyStk CUMULATIVE
BEGIN ATOMIC

insert into temp values('addDelBuy',4) ;
END

create trigger t_delSel event delSel = del Stk * selStk CUMULATIVE
BEGIN ATOMIC

insert into temp values('delSel', 4) ;
END

create trigger t_com event comEvent = addDelBuy ; delSel CUMULATIVE
BEGIN ATOMIC

insert into temp values('comEvent',4) ;
END

create trigger t_coml event comEventl = addDel ; buyStk ; (del Stk ~ sel Stk)
CUMULATIVE
BEGIN ATOMIC
select * from PF.deleted ;
END

create trigger t_comOr event comOr = buyStk | sel Stk | addStk | del Stk RECENT
BEGIN ATOMIC

insert into temp values(Tom',4) ;
END

wWwN e

7.

8.
9. insert into PF values('Don', 'Don’, 1800, 150, current date)

83

File 4: test.txt

insert into stock values(‘sun’,’ sun’,123, current timestamp)
insert into stock values(* soft’,’ soft’,230, current timestamp)
insert into stock values(‘ citrix’,’ citrix’,100, current timestamp)

delete from stock where price=123
delete from stock where price=230

insert into stock values(‘ Oracle’, ‘Oracle’, 320, current timestamp)
delete from stock where price=100

insert into PF values('Jone, 'Jone', 1500, 100, current date)

10. delete from PF where price=100

11. insert into stock values(‘ Informix’, ‘Informix’, 310, current timestamp)

12. delete from stock where price=320

13. delete from PF where price=150

14. insert into PF values('RockWood', 'Don’, 1300, 200, current date)

File 5: results.txt

Results from LED

DB2 Jdbc driver started...

Sequence number = 1

RAISING EVENT L edzsongObeginvoidaddStk() 1
Notifying CLASS level event addStk...
LEDThread returning from get

notifying event addStk

Executing rules on event 'addStk'’ ...

Rules on event addStk

Number of rules=0

applicationThread returning from put
finshiehd.
closing...

DB2 Jdbc driver started...

Seguence number = 2

RAISING EVENT L edzsongObeginvoidaddStk() 2
Notifying CLASS level event addStk...
LEDThread returning from get

notifying event addStk

Executing rules on event 'addStk'’ ...

Rules on event addStk

Number of rules=0

Thread-13 returning from put
finshiehd.
closing...

DB2 Jdbc driver started...

Seguence number = 3

RAISING EVENT L edzsongObeginvoidaddStk() 3
Notifying CLASS level event addStk...
LEDThread returning from get

notifying event addStk

Executing rules on event 'addStk' ...

Rules on event addStk

Number of rules=0

Thread-14 returning from put
finshiehd.
closing...

DB2 Jdbc driver started...

Sequence number = 4

RAISING EVENT LedzsongObeginvoiddel Stk() 4
Notifying CLASS level event delStk...

LEDThread returning from get

notifying event del Stk

Executing rules on event 'delStk' ...

Rules on event del Stk

Number of rules=0

85

Event event addDel was triggered at the context of RECENT.

void addStk() 3
void delStk() 4 ***** From Condition *****
**** From Composite Event Action of Rule****

Event event addDel was triggered at the context of CUMULATIVE.

void addStk() 1

void addStk() 2

void addStk() 3

void delStk() 4

Thread-15 returning from put
finshiehd.

closing...

DB2 Jdbc driver started...

Seguence number =5

RAISING EVENT LedzsongObeginvoiddel Stk() 5
Notifying CLASS level event delStk...
LEDThread returning from get

notifying event del Stk

Executing rules on event 'delStk' ...

Rules on event del Stk

Number of rules=0

Event event addDel was triggered at the context of RECENT.

void addStk() 3
void delStk() 5 ***** From Condition *****
**** Erom Composite Event Action of Rule****

Thread-16 returning from put
finshiehd.
closing...

DB2 Jdbc driver started...

Seguence number = 6

RAISING EVENT L edzsongObeginvoidaddStk() 6
Notifying CLASS level event addStk...
LEDThread returning from get

notifying event addStk

Executing rules on event ‘addStk'’ ...

86

Rules on event addStk
Number of rules=0

Event event addDel was triggered at the context of RECENT.

void delStk() 5
void addStk() 6 ***** From Condition *****
**** From Composite Event Action of Rule****

Event event addDel was triggered at the context of CUMULATIVE.

void delStk() 5

void addStk() 6

Thread-17 returning from put
finshiehd.

closing...

DB2 Jdbc driver started...

Seguence number = 7

RAISING EVENT LedzsongObeginvoiddel Stk() 7
Notifying CLASS level event delStk...
LEDThread returning from get

notifying event del Stk

Executing rules on event 'delStk' ...

Rules on event del Stk

Number of rules=0

Event event addDel was triggered at the context of RECENT.

void addStk() 6
void delStk() 7 ***** From Condition *****
**** From Composite Event Action of Rule****

Thread-18 returning from put
finshiehd.
closing...

DB2 Jdbc driver started...

Seguence number = 8

RAISING EVENT LedzsongObeginvoidbuyStk() 8
Notifying CLASS level event buyStk...
LEDThread returning from get

notifying event buy Stk

87

Executing rules on event 'buyStk' ...

Rules on event buyStk

Number of rules=0

DetectionMask at event event buySel: 1000

Event event buySel was triggered in context RECENT.

void buyStk() 8 ***** From Condition *****
**** From Composite Event Action of Rule****

Event event addDelBuy was triggered at the context of CUMULATIVE.

void addStk() 1

void addStk() 2

void addStk() 3

void delStk() 4

void delStk() 5

void addStk() 6

void buyStk() 8 ***** From Condition *****
**** From Composite Event Action of Rule****

Thread-19 returning from put
finshiehd.
closing...

DB2 Jdbc driver started...

Seguence number = 9

RAISING EVENT LedzsongObeginvoidbuyStk() 9
Notifying CLASS level event buyStk...
LEDThread returning from get

notifying event buyStk

Executing rules on event 'buyStk' ...

Rules on event buyStk

Number of rules=0

DetectionMask at event event buySel: 1000

Event event buySel was triggered in context RECENT.

void buyStk() 9 ***** From Condition *****
**** From Composite Event Action of Rule****

Thread-20 returning from put
finshiehd.
closing...

88

DB2 Jdbc driver started...

Sequence number = 10

RAISING EVENT LedzsongObeginvoidsel Stk() 10
Notifying CLASS level event selSk...

LEDThread returning from get

notifying event sel Stk

Executing rules on event 'sel Stk' ...

Rules on event sel Stk

Number of rules=0

DetectionMask at event event buySel: 1000

Event event buySel was triggered in context RECENT.

void selStk() 10 ***** From Condition *****
**** From Composite Event Action of Rule****

Event event del Sel was triggered at the context of CUMULATIVE.

void delStk() 4

void delStk() 5

void delStk() 7

void selStk() 10 ***** From Condition *****
**** From Composite Event Action of Rule****

Event event comEvent was triggered at the context of CUMULATIVE.

void addStk() 1

void addStk() 2

void addStk() 3

void delStk() 4

void delStk() 5

void addStk() 6

void buyStk() 8

void delStk() 4

void delStk() 5

void delStk() 7

void selStk() 10 ***** From Condition *****
**** From Composite Event Action of Rule****

Thread-21 returning from put
finshiehd.
closing...

89

DB2 Jdbc driver started...

Sequence number = 11

RAISING EVENT L edzsongObeginvoidaddStk() 11
Notifying CLASS level event addStk...

LEDThread returning from get

notifying event addStk

Executing rules on event ‘addStk'’ ...

Rules on event addStk

Number of rules=0

Event event addDel was triggered at the context of RECENT.

void delStk() 7
void addStk() 11 ***** From Condition *****
**** From Composite Event Action of Rule****

Event event addDel was triggered at the context of CUMULATIVE.

void delStk() 7

void addStk() 11

Thread-22 returning from put
finshiehd.

closing...

DB2 Jdbc driver started...

Sequence number = 12

RAISING EVENT L edzsongObeginvoiddel Stk() 12
Notifying CLASS level event delStk...

LEDThread returning from get

notifying event del Stk

Executing rules on event 'delStk' ...

Rules on event del Stk

Number of rules=0

Event event addDel was triggered at the context of RECENT.
void addStk() 11

void delStk() 12 ***** From Condition *****

**** From Composite Event Action of Rule****

Thread-23 returning from put
finshiehd.

90

closing...
DB2 Jdbc driver started...

Sequence number = 13

RAISING EVENT LedzsongObeginvoidsel Stk() 13
Notifying CLASS level event selSk...

LEDThread returning from get

notifying event sel Stk

Executing rules on event 'sel Stk ...

Rules on event sel Stk

Number of rules=0

DetectionMask at event event buySel: 1000

Event event buySel was triggered in context RECENT.

void selStk() 13 ***** From Condition *****
**** From Composite Event Action of Rule****

Event event del Sel was triggered at the context of CUMULATIVE.

void delStk() 12
void selStk() 13 ***** From Condition *****
**** From Composite Event Action of Rule****

Thread-24 returning from put
finshiehd.
closing...

DB2 Jdbc driver started...

Sequence number = 14

RAISING EVENT L edzsongObeginvoidbuyStk() 14
Notifying CLASS level event buyStk...

LEDThread returning from get

notifying event buyStk

Executing rules on event 'buyStk' ...

Rules on event buyStk

Number of rules=0

DetectionMask at event event buySel: 1000

Event event buySel was triggered in context RECENT.

void buyStk() 14 ***** From Condition *****
**** From Composite Event Action of Rule****

91

Event event addDelBuy was triggered at the context of CUMULATIVE.

void delStk() 7

void addStk() 11

void buyStk() 14 ***** From Condition *****
**** From Composite Event Action of Rule****

Thread-25 returning from put
finshiehd.
closing...

APPENDIX D
SOME JAVA CLASSFILES

File“zsong0addDd.java’

import Sentinel.*;

import java.util .V ector;
import java.util.Hashtable;
import java.util.Enumeration;

public class zsongOaddDel{
static String rdbms="";
static String url ="";
static String username ="";
static String password ="";

public static EventHandle addDel =null;

public static void call_addDel(String Prdbms, String Purl, String Pusername, String
Ppassword)
{
rdbms = Prdbms;
url = Purl;
username = Pusername;
password = Ppassword,;

ECAAgent myAgent = ECAAgent.initializeECAAgent();
addDel = myAgent.createCompositeEvent(EventType.AND,"event addDel"
,(EventHandle)del Stk.del Stk, (EventHandle)addStk.addStk);

myAgent.createRule("Rule addDel", addDel, "Led.True","addDel .addDel zsong0",
1,CouplingMode.DEFAULT,Context. RECENT);

}

public static void addDel zsongO(ListOf ParameterLists paramLists) {
String spcO = "delete from stock _deleted tmp";
Jdbc storedProCom0 = new Jdbc(rdoms,url,username,password, spc0);
storedProCom0.ExecuteSqglUpdate(" del ete from stock _deleted tmp™);

92

93

spc0 = "insert into stock _deleted tmp select * from stock _deleted, sysContext where
sysContext.context="RECENT" and sysContext. EVENTNAME="del Stk' and
stock deleted.vNo=sysContext.vNo";
storedProComO = new Jdbc(rdbms,url,username,password, spc0);
storedProCom0.ExecuteSqglUpdate("insert into stock deleted tmp™);

String spcl = "delete from stock_inserted tmp";
Jdbc storedProCom1 = new Jdbc(rdoms,url,username,password, spcl);
storedProCom1.ExecuteSglUpdate(" delete from stock_inserted tmp");

spcl = "insert into stock_inserted tmp select * from stock_inserted, sysContext where
sysContext.context="RECENT" and sysContext. EVENTNAME='addStk' and
stock_inserted.vNo=sysContext.vNoO";

storedProCom1 = new Jdbc(rdbms,url,username,password, spcl);

storedProCom1.ExecuteSglUpdate("insert into stock _inserted _tmp");

Ilaction function
String spc =" insert into temp values('Mark',4)";
Jdbc storedProCom = new Jdbc(rdbms,url,username,password, spc);
storedProCom.ExecuteSglUpdate(" insert into table temp *);
System.out.println ("****From Composite Event Action of Rule****");

H

File “ CalDynamicMethod.java’

import java.io.*;

public class CalDynamicMethod
{
public static void ExecuteM ethod(String className, String methodName,
Clasg]] paramTypes, Object[] params)
{
// load the new compiled class
String strClass = className; Il "InsertStock", etc
ClassLoader cl = null;
cl = ClassL oader.getSystemClassL oader ();

Class cla= null;
try {
cla= cl.loadClass(strClass); // load the class
}
catch(ClassNotFoundException e4)
{

System.out.printIn(e4.toString());
}

94

/I get the method from the class
javalang.reflect.Method meth = null;
try {
/I find the particular method from the loadedclass
meth = cla.getM ethod(methodName, paramTypes);
Object obj = null;
meth.invoke(obj, params); // execute the particular method.
System.out.println("finshiehd.");
}
catch(Exception €5)
{
System.out.printin(e5.toString());

}
} /1 end of 'ExecuteM ethod()'

} // end of class

[L1J98]

[DON98]

[JEN96]

[Nor9g]

[JENO6+]

[CHAY4]

[CHA944]

[GJO1]

[CHA94b]

[KRI94]

[LEE9SE]

LIST OF REFERENCES

Lijuan, L. (1998), An Agent-Based Approach to Extending the Native
Active Capability of Relational Database Systems, Master’ s thesis,
University of Florida, Gainesville, 1998

Don Chamberlin. (1998), A Complete Guide To DB2 Unviersal Database.
IBM Almaden Research Center.

Jennifer Widom, and Stefano Ceri(1996), Active Database Systems
Triggers and Rules for Advanced Database Processing.

Norman W. Paton (1998), Active Rules in Database Systems.

Jennifer Widom (1996), The Starburst Active Database Rule System,
| EEE Transactions on Knowlede and data engineering, Vol.8, No. 4
August 1996, pp. 583-595

S.Chakravarthy, V. Krishnaprasad, E. Anwar, and S.K.Kim, “Composite
Events for Active Databases: Semantics, Contexts and Detection,” in
Proceedings International Conference on Very Large Databases,
Santiago, Chile, 1994, pp. 606-617.

S.Chakravarthy, E. Anwar, L. Maugis, and D. Mishra, “Design of
Sentinel: An Object-Oriented DBM S with Event-Based Rules,” in
Information and Software Technology, Vol. 36, pp. 559-568, 1994

N.Gehani and H.V. Jagadish, Ode as an active database: Constraints and
triggers, in Proceedings of the Seventeenth International Conference on
Very Large Databases, pages 327-336, Barcelona, Spain, September 1991.

S. Chakravarthy and D. Mishra, Snoop: An Expressive Event
Specification Language for Active Databases, Data and knowledge
Engineering, 13(3), Octorber 1994.

V.Krishnaprasad, Event Detection for Supporting Active Capability in an
OODBMS: Semantics, Architecture, and Implementation, Master’s
Thesis, Database Systems R&D Center, CIS Department, University of
Florida, Gainesville, 1994.

Lee, H. Support for Tempora Eventsin Sentinel: Design, Implementation,

and Preprocessing. Master’ s thesis, University of Florida, Gainesville,
1996.

95

96

[JavaT utorial] The Java Tutorial.

[ART99] ART Taylor. JIDBC Developer’ s Resource.

BIOGRAPHICAL SKETCH

Zecong Song was born on March 05, 1972 in Baoding, Hebel, China She
received her Bachelor of Science degree in Computer Science from Hebei University,
Baoding, Hebei, Chinain July 1994.

In the fall of 1998, she started her graduate studies in the department of Computer
and Information Sciences and Engineering at the University of Florida. She will receive
her Master of Science degree in Computer Science in August 2000 from the University of
Florida, Gainesville, Florida. Her research interests include active databases and e-

commerce.

97

98

