

A GENERALIZED METHOD TO EXTENDING THE ACTIVE CAPABILITY OF
RELATIONAL DATABASE SYSTEMS

By

ZECONG SONG

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2000

Copyright 2000

by

ZECONG SONG

To my parents

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Sharma Chakravarthy, for his continuous

guidance and support throughout the course of this research work, and for giving me an

opportunity to work on this interesting topic.

I would like to thank Dr. Stanley Su and Dr. Joachim Hammer for serving on my

committee.

I would like to thank Sharon Grant for maintaining a well-administered research

environment and being so helpful at times of need.

I sincerely thank Hongen Zhang for his invaluable help and fruitful discussions

during the implementation of this work. I would like to thank Weera Tanpisuth, Seokwon

Yang and Rejesh Dasari for their invaluable help and patience they showed whenever

they help me solve problems. Also I would like to thank all my friends for their support

and encouragement.

This work was supported in part by the Office of Naval Research and the

SPAWAR System Center–San Diego, by the Rome Laboratory, DARPA.

I also thank my family for their constant support and encouragement throughout

my academic career.

v

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS ...4

LIST OF TABLES ... viii

LIST OF FIGURES... x

ABSTRACT.. xii

INTRODUCTION...1

1.1 Triggers in RDBMS...1
1.2 ECA Rules...4

1.2.1 Events...4
1.2.2 Condition ..5
1.2.3 Action...5

RELATED WORK ...6

2.1 Sentinel ...6
2.2 Starburst ..6
2.3 Ode..8
2.4 An Agent-Based Approach ..9

DESIGN ISSUES OF ECA AGENT ... 11

3.1 Architecture...11
3.2 Client/Server..13

3.2.1 Socket...14
3.3 Multi-Thread ...15

3.3.1 Thread ..15
3.4 JDBC...16
3.5 Java LED...18
3.6 Snoop ..19

3.6.1 Event Operators ...19
3.6.2 Parameter context ...20
3.6.3 Coupling modes ..22

3.7 DB2 Universal Database..22
IMPLEMENTATION ISSUES.. 24

4.1 System Tables..24

vi

4.1.1 Table ‘SysPrimitiveEvent’ ..24
4.1.2 Table ‘SysCompositEvent’..25
4.1.3 Table ‘SysEcaTrigger’ ..26
4.1.4 Table ‘SysContext’ ...26
4.1.5 Table ‘EventContext’ ..27
4.1.6 Table ‘Version’ ...28

4.2 Naming Mechanism...29
4.3 Pre-Processor...29
4.4 Language Filter..30
4.5 Persistent Manager ..32

4.5.1 Architecture of Persistent Manager ...32
4.5.2 Generate Persistent Code ..33
4.5.3 Restore ECA events and rules ...34

IMPLEMENTATION OF PRIMITIVE EVENTS ... 36

5.1 Syntax of Primitive Events...36
5.2 Parsing and Generating Primitive Event...37
5.3 Creating Triggers on Existing Event ..42

5.3.1 Syntax of creating triggers on existing event ...42
5.3.2 Implementation of Triggers on Existing Event ..43

5.4 Dropping a Trigger on a Primitive Event ...45
5.4.1 Syntax of drop trigger command ...45
5.4.2 Implementation of drop trigger on primitive event ..45

IMPLEMENTATION OF COMPOSITE EVENTS... 47

6.1 Syntax of composite event ...47
6.2 Composite event parser..48
6.3 Create Events and Rules ..52
6.4 Event Notification and Detection ..54

6.4.1 Primitive Event Detection ...55
6.4.2 Primitive Event Notification..57
6.4.3 Composite Event Detection...58

6.5 ECA Action...60
6.6 Parameter Context ...62

CONCLUSIONS, CONTRIBUTIONS AND FUTURE WORK.................................... 67

7.1 Conclusions ...67
7.2 Contributions ...68
7.3 Future work ...68

USER MANU ... 70

Java ECA Agent Server ...70
Start the ECA Agent ..70
Java ECA Agent Client..71
Start the ECA Agent Client interface ...71
DB2 interface ..74

DEMO .. 76

vii

Preparing the Demo...76
Demo...76

FILES USED IN THE DEMO... 78

File 1: createSystables.txt ..78
File 2: cleanDemo.txt ..79
File 3: createEvents.txt ..81
File 4: test.txt...83
File 5: results.txt ..83

SOME JAVA CLASS FILES .. 92

File “zsong0addDel.java” ..92
File “CallDynamicMethod.java”..93

BIOGRAPHICAL SKETCH ... 97

viii

LIST OF TABLES

Table Page

Table 4.1 SysPrimitiveEvent ..24

Table 4.2 SysPrimitiveEvent ..25

Table 4.3 SysCompositEvent ...25

Table 4.4 SysCompositEvent ...26

Table 4.5 SysEcaTrigger..26

Table 4.6 SysEcaTrigger..26

Table 4.7 SysContext..27

Tablev 4.8 SysContext..27

Table 4.9 EventContext ...27

Table 4.10 EventContext ...28

Table 4.11 Version ..28

Table 5.1 stock ..39

Table 5.2 stock_inserted or stock_deleted..40

Table 6.1 stock ..52

Table 6.2 stock_inserted_tmp ..52

Table 6.3 stock_inserted_tmp ..64

Table 6.4 EventContext ...64

Table 6.5 SysContext..64

Table 6.6 SysContext...65

ix

x

LIST OF FIGURES

Figure Page

Figure 1.1 Syntax of Trigger Creation in DB2..2

Figure 3.1 Architecture of this project..12

Figure 3.2 Architecture of ECA Agent...13

Figure 3.3 Client and server communicate through sockets ..14

Figure 3.4 Multiple threads in a single program..15

Figure 3.5 APIs for creating events and rules ...19

Figure 4.1 Flow Chart of Language Filter ..31

Figure 4.2 Architecture of Persistent Manager ...32

Figure 4.3 Code for restoring events and rules ...34

Figure 5.1 Flow Chart for Parsing and Generating Primitive Event.....................................38

Figure 5.2 Repeat Primitive Event Syntax ..43

Figure 5.3 Drop Trigger Syntax ...45

Figure6.1: Composite Event Definition ..48

Figure6.2: Flow Chart of Composite Event Parser ...49

Figure 6.3 file “zsong0addStk.java” ...53

Figure 6.4 code for dynamic compile Java file ..53

Figure 6.5 code for register events ...54

Figure 6.6 Java file “Led.java” ...59

Figure 6.7 parameter context processing ..65

xi

Figure A.1 ECA Agent Server Interface...70

Figure A.2 ECA Agent Server DOS Environment..71

Figure A.4 ECA Client Interface ..72

Figure A.5 DB2 Interface ..74

Figure B.1 ECA Agent Client Interface..77

xii

Abstract of Dissertation Presented to the Graduate School

of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

A GENERALIZED METHOD TO EXTENDING THE ACTIVE CAPABILITY OF
RELATIONAL DATABASE SYSTEMS

By

Zecong Song

August 2000

Chairman: Dr. Sharma Chakravarthy
Major Department: Computer and Information Science and Engineering

In the database research community, active databases have received widespread

attention for at least ten years. Active databases have been the focus of several researches

to extend the functionality of traditional (passive) databases. Active databases generally

use active rules to express their active behavior. These rules are called ECA rules (Event-

Condition-Action). There are several commercial databases using active rules, such as

DB2, Informix or Oracle. The problem is that the active rules in these databases are very

limited. We discussed this problem in this thesis. And we also proposed a general method

of turning a passive database to an active database.

We add a mediator between the SQL server and the clients termed ECA Agent.

ECA rules are completely supported in the ECA Agent and both primitive events and

composite events can be detected in the ECA Agent. Java LED are used to detect the

composite events. JDBC is used as a bridge to connect between SQL server and the SQL

requirements.

xiii

ECA Agent also provides all the usual functionality of a conventional passive

database system. And the active behaviors (events, rules and actions) become a persistent

part of the database.

We present the architecture and implementation details of ECA Agent in this

thesis. DB2 are used as the test database.

1

CHAPTER 1
INTRODUCTION

Active database management systems (ADBMS’s), as examples of active

systems, are able to monitor and react to specific circumstances of relevance to an

application [Nor98]. Traditional DBMSs are passive in the sense that commands are

executed by the database when requested by the user or application program. However,

some situations cannot be modeled effectively by passive systems.

Active database systems enhance traditional database functionality with powerful

rule processing (or “trigger”) capabilities. Active database systems are significantly more

powerful than their passive counterparts in the following aspects [JEN96]:

• Active database systems can efficiently perform functions that in passive

database systems must be encoded in application.

• Active database systems suggest and facilitate applications beyond the

scope of passive database systems.

• Active database systems can perform tasks that require special-purpose

subsystems in passive database systems.

1.1 Triggers in RDBMS

Several commercial relational database management systems support active

database rules, usually referred to as triggers. The functionality of commercial database

trigger systems is generally rather limited as compared to the active database research

prototypes, such as ‘Sentinel’, ‘Starburst’ and ‘Ode’. Nevertheless, the capabilities of

2

many commercial systems are already sufficient to provide relatively complex active

database behavior. Figure 1.1 illustrates the syntax for the creation of a trigger in DB2

[DON98].

Figure 1.1 Syntax of Trigger Creation in DB2

From the above trigger syntax we see that DB2 do support active database rules.

But currently, DB2 active capabilities as the other commercial active database

suffer from four main shortcomings [JEN96]:

>>-CREATE TRIGGER--trigger-name---+-NO CASCADE BEFORE-+--------->
 +-AFTER-------------+

>--+-INSERT---------------------------+ON--table-name----------->
 +-DELETE---------------------------+
 +-UPDATE--+----------------------+-+
 | +-,------------+ |
 | V | |
 +-OF---column-name--+--+

>--+---+->
 | +---+ |
 | V (1) (2) +-AS-+ | |
 +-REFERENCING-------------+-OLD-+----+--correlation-name--++--+
 | +-AS-+ |
 +-NEW-+----+--correlation-name--+
 | +-AS-+ |
 +-OLD_TABLE-+----+--identifier--+
 | +-AS-+ |
 +-NEW_TABLE-+----+--identifier--+

>--+-FOR EACH ROW-------------+MODE DB2SQL---| triggered-action |-><
 | (3) |
 +------FOR EACH STATEMENT--+

triggered-action

|--+-------------------------------+---------------------------->
 +-WHEN--(--search-condition--)--+

>--+-triggered-SQL-statement-----------------------------+-----|
 | +-----------------------------+ |
 | V | |
 +-BEGIN ATOMIC----triggered-SQL-statement--;--+--END--+

3

1. They lack standardization. Consequently, the various products have a wide

variance in both the syntax and execution behavior of triggers. This results

in a lack of uniformity, and the inability to use trigger applications on

differing products.

2. They lack clearly defined execution semantics. A number of alternative

constructs may be provided (such as both tuple-level and statement-level

triggering, or both immediate and deferred execution), but often it is not

specified precisely how triggers will behave when multiple triggers with

different options are present.

3. They lack a number of useful “advanced features” that have been included

in research prototypes. Some of the them are application-specific events,

event composition techniques, binding of events to conditions and of

conditions to actions, use of net effects, use of enhanced transaction

models to support sophisticated coupling modes or parallelism, lack of

external procedure calls, and so on.

4. They often incorporate a number of restrictions, such as limitations on the

number of triggers that may be defined, or on the interactions between

triggers.

Because of these shortcomings, the development of an active database needs to

consider the following issues [JEN96]:

• An active database system must provide all the usual functionality of a

conventional passive database system. Meanwhile, it is desirable that the

4

performance of conventional database tasks is not degraded by the fact that

the database system is active.

• An active database system must provide some mechanism for users and

applications to specify the desired active behavior, and these specifications

must become a persistent part of the database.

• An active database system must efficiently implement any active behavior that

can be specified; it must monitor the behavior of the database system and,

when appropriate, automatically initiate additional behavior.

• An active database system must provide database design and debugging tools

similar to those provided by conventional database systems, extended to

incorporate active behavior.

1.2 ECA Rules

Active database systems are centered around the notion of rules [JEN96]. Rules in

active database systems are defined by users or applications. They specify the desired

active behavior. In most general form, active database rules consist of three parts: Event,

Condition, and Action. We also denote it ECA rules.

1.2.1 Events

In an active database rule, the event specifies what causes the rule to be triggered.

In a relational database system, event can be insert, delete, or update on a particular

table. Types of event can be Primitive event and Composite event.

• Primitive Event: event that is pre-defined in the system. In relational

database system, primitive event can be insert, deleted, or update on a

particular table.

5

• Composite Event: event that is formed by applying a set of operators to

primitive and composite events.

1.2.2 Condition

In an active database rule, the condition specifies an additional condition to be

checked once the rule is triggered and before the action is executed. In ECA rules, the

condition is generally optional, or a dummy condition true can be given.

1.2.3 Action

In an active database rule, the action is executed when the rule is triggered and its

condition is true. Actions may update the structure of the database, perform some

behavior invocation within the database or an external call.

In our research, we use LED (Java version) to implement the ECA rules. We’ll

talk about the detail of LED in Chapter 3.

6

CHAPTER 2
RELATED WORK

The field of active database research has been one of the most prominent areas of

database research during the late 1980s and early 1990s. There are a lot of research

projects in this field over these years. We will review some of the most important projects

in this chapter.

2.1 Sentinel

Sentinel (from University of Florida) is an integrated active OODBMS that

supports Event-Condition-Action (ECA) rules and their management. It uses the Open

OODB Toolkit (from Texas Instruments, Dallas, Texas) as the underlying platform.

Event and rule specifications are seamlessly incorporated into the C++ language. Any

method of an object class is a potential primitive event. Applying a set of operators to

primitive events and composite events can form composite events. Sentinel supports

multiple rule executions, nested rule executions as well as prioritized rule executions.

Sentinel supports all the four parameter-contexts specified in HiPAC, namely, recent,

chronicle, continuous and cumulative contexts. Sentinel currently supports immediate

and deferred modes of rule execution [CHA94][CHA94a][CHA94b].

2.2 Starburst

The Starburst system is a prototype extensible relational DBMS developed at the

IBM Almaden Research Center [JEN96+]. Startburst’s extensibility allows the database

7

system to be customized for advanced and non-traditional database applications. One of

Starburst’s extensions is an integrated active database rule processing facility called the

Starburst Rule System.

The Starburst rule language differs from most of the other active database rule

languages in that it is based on permitting an execution semantics that is both cleanly

defined and flexible. The implementation of the Starburst Rule System was completed

rapidly and relies heavily on the extensibility features of Starburst. The Starburst rule

processor differs from most other active database rule systems in that it is completely

implemented, and it is fully integrated into all aspects of database processing, including

query and transaction processing, concurrency control, rollback recovery, error handling,

and authorization.

The syntax of the Starburst rule language is based on the extended version of SQL

supported by the Starburst database system. The Starburst rule language includes five

commands for defining and manipulating rules: create rule, alter rule, deactivate rule,

activate rule, and drop rule.

The syntax of create rule is:

create rule name on table

When triggering-operations

[if condition]

then action-list

[precedes rule-list]

[follows rule-list]

The name names the rule, and each rule is defined on a table. Square brackets

indicate clauses that are optional.

8

The components of a rule can be changed after the rule has been defined. This is

done using the alter rule command. The syntax of this command is:

alter rule name on table

[if condition]

[then action-list]

[precedes rule-list]

[follows rule-list]

[nopriority rule-list]

An existing rule can be deleted by issuing the drop rule command:

 drop rule name on table

We can deactive rules using the deactivate rule command:

deactivate rule name on table

To reactivate a rule that has been deactivated, use the activate rule command:

activate rule name on table

From the above syntax of rule language we see that the Starburst rule language is

flexible and general.

2.3 Ode

Ode is an object-oriented database that based on the C++ object paradigm. The

primary interface for the Ode database is the database programming language O++,

which is an upward-compatible extension of the C++. O++ extends C++ by providing

facilities suitable for database applications, including the association of constraints and

triggers with objects.

9

Ode provides two kinds of active facilities: “constraints” for maintaining database

integrity and “triggers” for automatically performing actions depending upon the

database state [GJ91].

Ode supports two kinds of triggers: once-only (default) and timed triggers. A

once-only trigger is automatically deactivated after the trigger has “fired”, and it must

then be explicitly activated again, if desired. A timed trigger must fire within the

specified period.

Ode trigger model is an event-action (E-A) model. When an event occurs, the

associated action is executed.

Ode supports primitive events and composite events. Primitive events are defined

and composite events are constructed by applying operators to primitive events. The

basic events that are supported are object state events. The event operators supported are

prior, sequence, first, firstAfter, happened, every, prefix, etc.

2.4 An Agent-Based Approach

Lijuan Li implemented “An Agent-Based approach to extending the native active

capability of relational database systems” in May 1998 from University of Florida

[LIJ98]. She implemented an ECA Agent, which is a mediator between clients and

Sybase SQL Server. She used Sybase Gateway Open Server to extend the active

capability of Sybase.

In this thesis, we tried to solve the same problem, which is to extend the native

active capability of relational database systems. So we use the same idea to design our

project. The difference here is her design is based on Sybase Gateway Open Server and

10

our design is not based on any specified RDBMS. We want to find a generalized method

that any RDBMS can use it.

In the next chapters, we’ll discuss our design and implementation in detail.

11

CHAPTER3
DESIGN ISSUES OF ECA AGENT

This chapter discusses the design issues of ECA Agent. It includes the

architecture, Java LED, and Snoop. We also include the basis of JDBC, client/server and

multi-thread in this chapter because these techniques are the basic techniques we used in

this project.

3.1 Architecture

The goal of this project is to implement a generalized method to extend the active

capability of RDBMS. It’s a generalized method, so we must design it as it can be used

by any RDBMS, such as Oracle, DB2, Informix, etc. Figure 3.1 shows the architecture of

this project. From this figure, we can see that there are multi-clients for each RDBMS

server, and one ECA Agent for one SQL server. ECA Agent is a mediator between the

client and the server. When clients have some requests, these requests must first be sent

to ECA Agent, and then the ECA Agent sends it to SQL server.

Here, ECA Agent will do some work to extend the active capability of RDBMS.

Figure 3.2 shows the architecture of ECA Agent.

From Figure 3.2 we can see that ECA Agent includes the following function

modules:

• Language Filter: when clients have request, the request first is sent to Language

Filter. Language Filter will filter the request. If it’s ECA command, it is sent to ECA

Parser, otherwise sent it to JDBC.

12

• ECA Parser: ECA Parser will parse the ECA command. If there are no

errors, the ECA Parser will create corresponding events and rules which

depend on the LED. Also, ECA Parser will send the events and rules to the

Persistent Manager for persistent storing.

• Persistent Manager: All events and rules defined by a client need to be

persistent. Persistent Manager will store the information using RDBMS.

When ECA Agent starts or recovers, Persistent Manager restores and

creates all events and rules.

• JDBC: We use JDBC to connect between SQL server and client. JDBC

gets request from client and sends it to SQL server, and then JDBC gets

result from SQL server and sends it back to client.

• LED (Local Event Detector): In RDBMS, trigger can only detect primitive

events. So we use LED to detect composite events.

• ECA Action: When event occurs, the action defined on this event should

be executed. In our project, ECA Actions are SQL statements. It will call

JDBC to send the SQL statements to SQL server and get results.

Figure 3.1 Architecture of this project

13

Figure 3.2 Architecture of ECA Agent

3.2 Client/Server

Today’s popular database software tools are based on the client/server paradigm.

Our program also is based on the client/server paradigm. We have

“Java_ECA_Agent_Server” program for the server side and “Java_ECA_Agent_Client”

for the client side. Socket classes are used to represent the connection between a client

program and a server program.

14

3.2.1 Socket

A socket is one endpoint of a two-way communication link between two programs

running on the network. A socket is bound to a port number so that the TCP layer can

identify the application that data is destined to be sent.

Normally, a server runs on a specific computer and has a socket that is bound to a

specific port number. The server just waits to listen to the socket for a client to make a

connection request.

On the client side, the client knows the hostname of the machine on which the

server is running and the port number to which the server is connected. To make a

connection request, the client tries to rendezvous with the server on the server's machine

and port.

If everything goes well, the server accepts the connection.

On the client side, if the connection is accepted, a socket is successfully created

and the client can use the socket to communicate with the server.

The client and server can now communicate by writing to or reading from their

sockets. Figure 3.3 shows the communication between client and server [JavaTutorial].

Figure 3.3 Client and server communicate through sockets

15

3.3 Multi-Thread

In a typical server, you want to be able to deal with many clients at once. The

solution is multithreading. In Java, multithreading is about as simple as possible because

threading in Java is reasonably straightforward. Making a server that handles multiple

clients is relatively easy.

3.3.1 Thread

A thread--sometimes called an execution context or a lightweight process--is a

single sequential flow of control within a program. You use threads to isolate tasks. Each

thread is a sequential flow of control within the same program (the browser).

Multiple threads in a single program are illustrated by Figure 3.4 [Java Tutorial].

Figure 3.4 Multiple threads in a single program

Multiple threads run at the same time and perform different tasks. The server can

service multi-clients simultaneously through the use of threads - one thread for each

client connection. The basic flow of logic in such a server is this:

while (true) {

 accept a connection ;

 create a thread to deal with the client ; }

end while

The thread reads from and writes to the client connection as necessary.

16

3.4 JDBC

The Java Database Connectivity (JDBC) is developed from the need to enable

Java applications to connect to SQL databases. It consists of a set of classes and

interfaces written in the Java programming language. JDBC provides a standard API for

tool/database developers and makes it possible to write database applications using a pure

Java API. Because of Java’s features, it is uniquely suitable for network access to a

variety of databases. And because Java itself is a platform-independent language, there is

a compelling reason to develop applications that are independent of a particular database

vendor [ART99].

In this thesis, we use JDBC to send SQL statements to RDBMS, so we’ll talk

about the basic JDBC programming.

1. Load driver

The first step in using JDBC is to load the JDBC driver. This is usually

accomplished using the forName static method of the class object. The call is

made as follows:

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");

When this call is made, the Java system searches for the class requested and loads

the driver.

2. Create connection

The loading of the JDBC database driver does not connect to the database. It merely

creates an environment in the program where this can be done. Before any database-

specific SQL statements can be executed, a connection must be established to the

database. This is accomplished through a call to the getConnection method in

17

DriverManager class to find a specific driver that can create a connection to the

URL requested. The call is made as follows:

String url = "jdbc:db2: database";

Connection con = DriverManager.getConnection (url, username, password);

3. Create statement

In order to interact with the database, SQL statements must be executed. This requires

that a Statement object to be created to manage the SQL statements. This is

accomplished with a call to the createStatement method in Connection class as

follows:

Statement stmt = con.createStatement();

This call creates a Statement object using the established database connection. The

Statement class provides methods for executing SQL statements and retrieving the

results from the statement execution.

4. Execute statement and return ResultSet or result count

The SQL Statement object does not have a specific SQL statement associated with it.

The SQL statement to be executed is determined when the call to executeQuery is

made, as follows:

String qs = "select * from stock";

ResultSet rs = stmt.executeQuery(qs);

This call sends the query to the database and returns the results of the query as a

ResultSet.

5. Iterate ResultSet if returned

18

The ResultSet represents the collection of results from the query. First, you must

make a call to the first element of the result set, as follows:

Boolean more = rs.next();

The call to the next method returns a boolean value. The boolean value of true

indicates that the call was successful and the pointer is positioned, thus there is data to

retrieve. A boolean value of false indicates that the call was unsuccessful and there

are no rows to retrieve.

Next, we can get the first value of the first column of the result set as follows:

returnstring = rs.getString(1);

6. Close the result set, statement, and the connection

rs.close();

stmt.close();

conn.close();

3.5 Java LED

In our research, we use Java LED to detect composite events. Java LED is the

Java version of Local Event Detector. It incorporates active capability in a Java

environment.

In Java LED there is an event detector for detecting events in Java applications

and executing rules defined on events. Both primitive event and composite event have

been detected in various parameter contexts. It also implemented most event operators for

composite event, they are: AND, OR, SEQUENCE, NOT, APERIODICA(A),

APERIODIC-STAR(A*), PLUS, PERIODIC(P) and PERIODIC-STAR(P*).

In Figure 3.5, we show some APIs that are used to create events and rules.

19

Figure 3.5 APIs for creating events and rules

3.6 Snoop

Snoop is the event specification language used in Sentinel for specifying ECA

rules. Snoop defines the event expressions and a set of event operators for constructing

composite events.

3.6.1 Event Operators

The Snoop event operators and the semantics of composite events formed by

these event operators are as follows:

• OR (V): E1 V E2, occurs when either E1 occurs or E2 occurs.

• AND (^): E1 ^ E2, occurs when both E1 and E2 occurs, irrespective of their order of

occurrence.

public EventHandle createPrimitiveEvent(String eventName,
 String className,
 EventModifier eventModifier,
 String methodSignature)

public EventHandle createCompositeEvent(EventType eventType,
 String eventName,
 EventHandle leftEvent,
 EventHandle rightEvent)

public void createRule(String ruleName,
 EventHandle eventHandle,
 String condName,
 String actionName)

20

• SEQUENCE (;): E1;E2, occurs when E2 occurs provided E1 has already occurred.

This implies that the time of occurrence of E1 is guaranteed to be before the time of

occurrence of E2.

• NOT (~): ~(E2) [E1 ,E3], detects the non-occurrence of the event E2 in the closed

interval formed by E1 and E3.

• A (Aperiodic): A(E1,E2,E3), detects the occurrence of E2 during the half-open

interval formed by E1 and E3.

• A*: A*(E1, E2, E3), detects when E3 occurs provided E1 has already occurred. The

occurrences of E2 are accumulated during the half-open interval formed by E1 and

E3. A* is a cumulative variant of the A operator.

• P (Periodic): P (E1, E2, E3), detects for every time period specified by E2 during the

half-open interval (E1, E3], where E2 is a relative temporal event.

• P*: P*(E1, E2, E3), detects only once when E3 occurs provided the E1 has already

occurred. The time specified in E2 is accumulated whenever E2 occurs. P* is a

cumulative variant of P operator.

3.6.2 Parameter context

Snoop supports parameter context. Parameter contexts indicate the order in which

successive occurrences of the same constituent events are grouped [CHA94] [CHA94b].

The notion of parameter contexts was primarily introduced for the purpose of capturing

application semantics while computing the parameters of composite events when they are

not unique. They serve the purpose of disambiguating the parameter computation and at

the same time accommodate a wide range of application requirements [KRI94].

21

The parameter contexts proposed by Snoop are recent, continuous, cumulative,

and chronicle. The contexts are defined using the notion of initiator and terminator

events. An initiator of a composite event is a constituent event that can start the detection

of the composite event whereas a terminator is a constituent event that can detect the

occurrence of the composite event [CHA94].

• Recent: in this context, only the most recent occurrence of the initiator for any event

that has started the detection of that event is used. When an event occurs, the event is

detected and all the occurrences of events that cannot be the initiators of that event in

the future are deleted.

• Chronicle: in this context, for an event occurrence, the initiator, terminator pair is

unique. The oldest initiator is paired with the oldest terminator for each event, i.e., in

chronological order of occurrence. In this context, the same primitive event

occurrence is used at most once for computing the parameters of the composite event.

• Continuous: in this context, each initiator of an event starts the detection of that

event. A terminator event occurrence may detect one or more occurrences of the same

event. This context is especially useful for tracking trends of interest on a sliding time

point governed by the initiator event. There is a subtle difference between the

chronicle and the continuous contexts. In the former, pairing of the initiator is with a

unique terminator of the event whereas in the latter multiple initiators are paired with

a single terminator of that event.

• Cumulative: in this context, for each constituent event, all occurrences of the event

are accumulated until the composite event is detected. Whenever a composite event is

detected, all the constituent events that are used for detecting that composite event are

22

deleted. Unlike the continuous context, an event occurrence does not participate in

two distinct occurrences of the same event in the cumulative context.

3.6.3 Coupling modes

Coupling modes specify when a rule is to be executed relative to the event firing

the rule. Three coupling modes are described below:

• Immediate: in this coupling mode, the fired rule is executed immediately after the

event is detected.

• Deferred: in the deferred mode, the execution of a fired rule is deferred to the end of

the transaction. In our case (a non-transaction-based environment) deferred rules are

executed by an explicit event raised by the application.

• Detached: in the detached mode, the rule is executed in a separate transaction but

after the triggering transaction has committed. Since there are no transaction in our

case, the detached mode is not supported.

3.7 DB2 Universal Database

In this thesis, we use DB2 as the test RDBMS.

DB2 Universal Database (UDB) is developed at IBM’s laboratories in Toronto,

Canada, and San Jose, California. UDB uses new technology based on the Starburst

architecture developed at Almaden Research Center. UDB is portable to many hardware

and software platforms, including Intel/Windows NT, Intel/OS/2, PowerPC/AIX,

SPARC/Solaris, and HPPA/HPUX.

UDB is a substantial advance over traditional relational systems. It integrates

object-oriented ideas with the SQL language to produce an object-relational database

management system. It includes major innovations in query optimization, recursive

23

queries, active databases, and stored procedures. It integrates technology from DB2

Parallel Edition to support parallel processing, both on symmetric multiprocessors and on

massively parallel, shared nothing platforms. UDB has also made substantial advances in

usability, providing graphical user interfaces and wizards to help you perform

administrative tasks.

We use DB2 as the test database because DB2 trigger has some active database

capabilities, but it has some limitations. We extend its trigger command to extend the

active capability.

24

CHAPTER 4
IMPLEMENTATION ISSUES

In this chapter, we describe the implementation of ECA Agent. In Section 4.1, we

detail the format and purpose of the system tables because in this research we use these

system tables to store persistent information for primitive events, composite events, and

triggers. Naming mechanism is introduced in Section 4.2. Preprocessor, Language Filter,

and Persistent Manager are described in Section 4.3, 4.4 and 4.5 respectively.

4.1 System Tables

4.1.1 Table ‘SysPrimitiveEvent’

Table “SysPrimitiveEvent” is used to store the information for primitive events

that the user defined on a table for an operation. The structure of this table is illustrated in

Table 4.1.

Table 4.1 SysPrimitiveEvent

DBName UserName EventName TableName Operation BeAfOperation Timestamp VNo

In this table, BeAfOperation means “before/after” and Vno is used to record the

occurrence of this event.

If we have a primitive event addStk defined on table “stock” for “insert”

operation and this primitive event has the following definition:

Create trigger t_addStk after insert on stock event addStk ….

25

Then one tuple should be added into the table “SysPrimitiveEvent”, which is

shown in Table 4.2.

Table 4.2 SysPrimitiveEvent

DBName UserNa
me

EventName TableName Operation BeAfOperation Timestamp VNo

‘ECAdb’ ‘zsong’ ‘addStk’ ‘stock’ ‘insert’ ‘after’ Current
timestamp

0

Every time when the event ‘addStk’ occurs, VNo will be increased by 1.

4.1.2 Table ‘SysCompositEvent’

Table “SysCompositEvent” is used to store the information for composite events

that the user defined. The structure of this table is shown in Table 4.3.

Table 4.3 SysCompositEvent

DBName UserName EventName EventDescribe Timestamp Coupling Context Priority

In Table 4.3, Coupling mode can be ‘IMMEDIATE’, ‘DEFERED’ or

‘DETACHED’. Context can be ‘RECENT’, ‘CHRONICLE’, ‘CONTINUOUS’, or

‘CUMULATIVE’. Priority is used to define the priority of this composite event.

If we have a composite event addDel defined as follows:

Create trigger t_addDel event addDel = addStk ^ delStk RECENT ….

Then, the table “SysCompositEvent” should have one more tuple like in Table

4.4.

26

Table 4.4 SysCompositEvent

DBName UserName EventName EventDescribe Timestamp Coupling Context Priority
‘ECAdb’ ‘zsong’ ‘addDel’ ‘addStk ^ delStk’ Current timestampIMMEDIATE RECENT 1

4.1.3 Table ‘SysEcaTrigger’

Table “SysEcaTrigger” is used to store the information for triggers that the user

defined. The structure of this table is shown in Table 4.5.

Table 4.5 SysEcaTrigger

DBName UserName TriggerName TriggerProc Timestamp EventName

In Table 4.5, ‘TriggerProc’ is the procedure defined on this trigger. That means if

the trigger fires, the procedure will execute. ‘EventName’ is the event name that the

trigger is defined on. Different trigger can be defined on same event.

 If we have a trigger defined as follows:

Create trigger t_addStk after insert on stock event addStk…

Then, the table “SysEcaTrigger” should have one more tuple shown in Table 4.6:

Table 4.6 SysEcaTrigger
DBName UserName TriggerName TriggerProc Timestamp EventName
‘ECAdb’ ‘zsong’ ‘t_addStk’ ‘t_addStk_Proc’ Current

timestamp
‘addStk’

4.1.4 Table ‘SysContext’

Table “SysContext” is used to store the occurrence number for a certain event

defined on a certain context. This information can be used for composite events. The

structure of this table is illustrated in Table 4.7.

27

Table 4.7 SysContext

EventName Context Vno

In Table 4.7, ‘VNo’ is used to record the occurrence number of a certain event for

a certain context.

If we have an event ‘addStk’ defined on the context ‘RECENT’, and this event

has occurred for three times (suppose no other event occurs), then tuples will insert into

the table “SysContext” as shown in Table 4.8.

Tablev 4.8 SysContext

EventName Context Vno
‘addStk’ ‘RECENT’ 1
‘addStk’ ‘RECENT’ 2
‘addStk’ ‘RECENT’ 3

4.1.5 Table ‘EventContext’

When the user creates composite event, table “EventContext” is used to store the

information of primitive event and context. When primitive event occurs, we can insert

tuples into table ‘SysContext’ using the joining results from table ‘EventCotext’ and

‘SysPrimitiveEvent’. The structure of table ‘EventContext’ is shown in Table 4.9.

Table 4.9 EventContext

EventName Context

 If we have a composite event addDel defined as follows:

Create trigger t_addDel event addDel = addStk ^ delStk RECENT ….

28

Then, the table “EventContext” should have two more tuples shown in Table

4.10.

Table 4.10 EventContext

EventName Context
‘addStk’ ‘RECENT’
‘delStk’ ‘RECENT’

4.1.6 Table ‘Version’

 Table “Version” is used to store the occurrence number for a primitive event. We

can get the version number from the following SQL statements:

delete from version;
insert into version select VNo from SysPrimitiveEvent where eventname=’eventname’

Table 4.11 Version

VNO

We use table ‘Version’ because we want to simplify the SQL query language. For

example, if we want to insert tuple into table ‘stock_inserted’, we can write SQL

statements like this if we have table ‘Version’:

insert into stock_inserted select * from stock, version;

Otherwise, if we do not have table ‘Version’, we need to write SQL statements

like this:

insert into stock_inserted
 select Symbol, Co_name, price, date, VNo from stock, SysPrimitiveEvent
 where SysPrimitiveEvent.eventname=’addStk’

29

4.2 Naming Mechanism

Relational DBMS, such as Sybase, Oracle and DB2 support multi-user, multi-

database environment, a user can assign a name for an object in the system, and the

system will turn it into a system-wide internal name. For example, user ‘mark’ uses

database ‘mining’ in DB2, and if he creates a trigger ‘miningTrigger’, then the system-

wide internal name for trigger ‘miningTrigger’ is ‘mining.mark.mingTrigger’.

In our research, we also follow the system-wide internal name for an object. That

means, when the user creates an object, we’ll turn its name to system-wide internal name

use the following mechanism:

DatabaseName.userName.objectName

4.3 Pre-Processor

 We use pre-processor to parse the composite event in this research. Pre-

processor is developed using JavaCC (Java Compiler Compiler, Version 1.0) which is

developed by Sun Microsystems. JavaCC has the following features:

• 100% PURE JAVA (hence portable). JavaCC is certified 100% PURE JAVA.

This means JavaCC can run on any Java compliant platform version 1.0.2 or

later. JavaCC has been successfully used on over 40 different

hardware/software platforms.

• TREE BUILDING PREPROCESSOR. JavaCC comes with a tree building pre-

processor called JJTree.

• DOCUMENTATION GENERATION. A translator that converts grammar files to

documentation files (optionally in html) is now an integral part of the JavaCC release.

This translator is called JJDoc.

30

 Because of the above nice features we select JavaCC as the pre-processor tool. In

this research, we use pre-processor to parse the composite event. The input for the parser

is a composite event. When the pre-processor parses the composite event, if there are any

syntax errors, the parser will give the error message. If there is no syntax error, the parser

will generate two files, one is “eventlist.txt” and the other is “compositevent.txt”.

File “eventlist.txt” is used to keep events, which consist of this composite event.

Primitive events (leaves in this composite event tree) will be inserted into table

“EventContext”. When primitive events occurs, tuples that is the results of joining table

‘EventContext’ and ‘SysPrimitievEvent’ will be inserted into table “SysContext”.

File “CompositEvent.txt” is used to keep the content of creating composite event

in LED. For example, if we have a following composite event definition:

Create trigger t_addDel event addDel = addStk ^ delStk RECENT ….

Then the content of file ‘CompositeEvent.txt’ looks like this:

EventHandle addDel = myAgent.createCompositeEvent(EventType.AND, “event

addDel”, addStk, delStk)

And the content of file ‘eventlist.txt’ looks like this:

addStk delStk

4.4 Language Filter

When the client sends a request to the ECA_Agent_Server, first the request goes

to the ‘Language Filter’. The ‘Filter’ will analyze the request first, and then send the

request to the right way. The flow chart is illustrated in Figure 4.1.

31

Figure 4.1 Flow Chart of Language Filter

As we see from the above flow chart, if the request is about primitive event or

composite event, there are five sub-modules:

• Primitive Event Parser: this module parses the primitive event when it was

defined at the first time.

• Composite Event Parser: this module parses the composite event when it

was defined at the first time.

• Repeat Primitive Event Parser: this module parses the repeat primitive

event, which means if a trigger is defined on an existing primitive event,

we’ll use this module to parse it.

32

• Repeat Composite Event Parser: this module parses the repeat composite

event. When a trigger defined on an existing composite event, we’ll use

this module to parse it.

• Drop Trigger: when the user’s request is ‘drop trigger’ command, we’ll

call this module.

If the request is ‘Other Command’, it means the request is not about primitive

event or composite event. The ECA_Agent_Server will send the request to ‘JDBC’, and

‘JDBC’ sends the request to SQL Server. At last, the results are returned to the client.

4.5 Persistent Manager

We can get some values from memory when a program is running. But when the

program terminates, the values stored in memory will disappear. In order to keep the

values that we’ve gotten from the program, we need to use ‘Persistent Manager’. In this

research, ‘Persistent Manager’ is used to keep ECA rules and generate persistent code.

Also, when ECA Agent starts and recovers, Persistent Manager will restore the events

and rules. Next we’ll talk this in detail.

4.5.1 Architecture of Persistent Manager

In this research, we use JDBC to develop a generalized method for all RDBMS to

extend the active capabilities. To implement the ‘Persistent Manager’, we call JDBC to

connect to SQL server, as in Figure 4.2.

Figure 4.2 Architecture of Persistent Manager

33

When persistent command is sent to the ‘Persistent Manager’, the ‘Persistent

Manager’ will send the command to JDBC and JDBC will send the command to SQL

server. Finally the command will be executed in the server.

4.5.2 Generate Persistent Code

For generating persistent code, the ‘Persistent Manager’ will do the following

tasks:

• Maintain ECA Agent system tables.

• Insert tuples into ECA Agent system tables.

• Create trigger command for primitive event.

• Keep track of the occurrence of each primitive event.

Now, we give examples to interpret how the ‘Persistent Manager’ works:

When the client defines primitive event, for example:

Create trigger t_addStk after insert on stock event addStk

 REFERENCING NEW_TABLE AS newtable

 FOR EACH STATEMENT MODE DB2SQL

 Insert into stock_copy select * from newtable

The Persistent Manager will take the following actions:

1. Insert tuples into system tables:

Insert into SysEcaTrigger values(‘zsong’, ‘t_addStk’, ‘t_addStk_proc’, current

timestamp, ‘addStk’)

Insert into SysPrimitiveEvent values(‘zsong0’, ‘addStk’, ‘stock’, ‘insert’, ‘after’,

current timestamp, 0)

2. Keep track of the occurrence of the primitive event:

Update SysPrimitiveEvent set vNo = vNo+1 where eventname = ’addStk’;

3. Create triggers for primitive event:

34

Create trigger t_addStk after insert on stock

REFERENCING NEW_TABLE AS newtable

FOR EACH STATEMENT MODE DB2SQL

 Insert into stock_copy select * from newtable;

4.5.3 Restore ECA events and rules

When the user defines events and rules, the Persistent Manager inserts tuples into

system tables. In order to register the events and rules using Java Led, our program

generates a Java file, compiles it and then registers it at the run time of ECA Agent (we’ll

discuss this in detail in chapter 6).

If we restart the ECA Agent, we need to restore the events and rules. The tuples

that we inserted into system tables are still in the system tables so we do not need to

worry about this. The only thing we need to do is to re-register the events and rules using

Java Led.

Because we generated a file for event and we already compiled it, we just need to

call the API to register it. This is the same as we call the API when we register it at the

first time. We’ll use the following code to do this:

Figure 4.3 Code for restoring events and rules

// to do “zsong0addStk.call_addStk();”, use the following code
CallDynamicMethod.ExecuteMethod(classname,"call_" + eventname, null, null);

//class “zsong0addStk”
public class zsong0addStk{
 public static EventHandle addStk =null;
 public static void call_addStk(){
 ECAAgent myAgent = ECAAgent.initializeECAAgent();
 addStk = myAgent.createPrimitiveEvent("addStk","Led",
EventModifier.BEGIN, "void addStk()", DetectionMode.SYNCHRONOUS);
 }
}

35

36

CHAPTER 5
IMPLEMENTATION OF PRIMITIVE EVENTS

In this chapter, we describe how to implement primitive events in

ECA_Agent_Server. First, the syntax of primitive events is introduced in Section 5.1. In

Section 5.2, we describe the parsing and generating primitive event. How to create

triggers on existing event and how to drop a trigger on a primitive event are described in

Section 5.3 and 5.4 respectively.

5.1 Syntax of Primitive Events

In this research we extend the trigger definition to extend the active capability of

RDBMS. For example, if we have the “create trigger” syntax of DB2 as follows:

Create trigger t_addStk after insert on stock

REFERENCING NEW_TABLE AS newtable

FOR EACH STATEMENT MODE DB2SQL

 Insert into stock_copy select * from newtable

We’ll extend the create trigger syntax as follows for the primitive event:

Create trigger t_addStk after insert on stock event addStk

REFERENCING NEW_TABLE AS newtable

FOR EACH STATEMENT MODE DB2SQL

 Insert into stock_copy select * from newtable

As we can see we just add the primitive event definition into ‘create trigger’

syntax.

37

The primitive event definition is:

event event_name [coupling_mode] [parameter_context] [priority].

Where

parameter_context := RECENT|CHRONICLE|CONTINUOUS|CUMULATIVE.

coupling_mode := IMMEDIATE|DEFERED|DETACHED.

priority := positive integer.

The default coupling mode is IMMEDIATE and the default parameter context is

RECENT.

5.2 Parsing and Generating Primitive Event

Figure 5.1 is the flow chart for parsing and generating primitive event

From Figure 5.1, we can see that there are four steps for parsing and generating

primitive event:

1. Syntax check: check if there are syntax errors for this primitive event. If there are

syntax errors, return error message to the client.

2. Duplicate Name check: check the trigger name is duplicate or not, because in

RDBMS, trigger name can not be duplicate. If the trigger name is duplicated, return

error message to the client.

3. If there are no errors, create primitive event using LED.

4. Generate persistent code.

38

Figure 5.1 Flow Chart for Parsing and Generating Primitive Event

Now, we use an example to show how to apply these steps:

Example: Create trigger t_addStk after insert on stock event addStk

 REFERENCING NEW_TABLE AS newtable

 FOR EACH STATEMENT MODE DB2SQL

 Insert into stock_copy select * from newtable

39

1. Syntax check: there are no syntax errors. Go to step 2.

2. Duplicate Name Check: trigger name does not duplicate. Go to step 3.

3. Create primitive event in LED.

Suppose we have already initialized ‘myAgent’ using LED:

ECAAgent myAgent = ECAAgent.initializeECAAgent();

We create primitive event ‘addStk’ using LED like this way:

EventHandle addStk = myAgent.createPrimitiveEvent(“addStk”, “Led”,

 EventModifier.BEGIN, “void addStk()”, DetectionMode.SYNCHRONOUS);

4. Generate persistent code.

Insert into SysEcaTrigger values(‘zsong’, ‘t_addStk’, ‘t_addStk_proc’, current

timestamp, ‘addStk’)

Insert into SysPrimitiveEvent values(‘zsong0’, ‘addStk’, ‘stock’, ‘insert’, ‘after’,

current timestamp, 0)

5. Create inserted and deleted table.

Table ‘inserted’ is used to store the inserted tuples of a table. That means when

you insert a tuple into a table, the inserted tuple will also be inserted into table

‘inserted’. In addition, the ‘inserted’ table also records the number of insertion.

For example, if we have table ‘stock’ as Table 5.1,

Table 5.1 stock

Symbol Co_name Price Time

Then, we create table ‘stock_inserted’ and table ‘stock_deleted’ as Table

5.2.

40

Table 5.2 stock_inserted or stock_deleted

Symbol Co_name Price Time vNo

We see that the only difference of table ‘stock’ and table ‘stock_inserted’(or table

‘stock_deleted’) is that table ‘stock_inserted’ has an additional attribute ‘vNo’. The

attribute ‘vNo’ is used to record the insertion number of table ‘stock’. That means

whenever the client inserts tuples into table ‘stock’, the ‘vNo’ will be increased by

one with each insertion. This just records the unique event (here, for event ‘addStk’)

occurrence value. The value of this attribute will be used for composing parameters

for the parameter context specified (will be used for composite event).

6. Create trigger for primitive event. We need to do some works whenever after

the tuples are inserted into table ‘stock’. So we put this work into the trigger part. The

trigger will be fired after the client inserts tuples into table ‘stock’. The works we

need to do include the following steps:

• User defined trigger action.

 Insert into stock_copy select * from newtable;

• Get event occurrence number:

First, increase ‘vNo’ in table ‘SysPrimitiveEvent’.

Update SysPrimitiveEvent set vNo = vNo+1 where eventname = ’addStk’;

Then, put the value of ‘vNo’ into table ‘Version’.

Delete from Version;

Insert into Version select vNo from SysPrimitiveEvent where eventname =

’addStk’;

• Insert inserted tuple into table ‘stock_inserted’.

41

Insert into stock_inserted select * from newtable, Version;

(note: ‘newtable’ stores the new inserted tuples in DB2)

• Insert tuples into table ‘SysContext’ (for composite event).

Insert into SysContext select * from EventContext, Verion where

EventContext.eventname = ‘addStk’;

• Send notification to Event Notifier (for composite event detection).

 Update notify set eventname =’addStk’;

In all, the “create trigger” command looks like this:

Create trigger t_addStk after insert on stock

REFERENCING NEW_TABLE AS newtable

FOR EACH STATEMENT MODE DB2SQL

BEGIN ATOMIC

Insert into stock_copy select * from newtable;

Update SysPrimitiveEvent set vNo = vNo+1 where eventname = ’addStk’;

Delete from Version;

Insert into Version select vNo from SysPrimitiveEvent where eventname =

’addStk’;

Insert into SysContext select * from EventContext, Verion where

EventContext.eventname = ‘addStk’;

Insert into stock_inserted select * from newtable, Version;

 Update notify set eventname = ‘addStk’;
END;

(Note: in DB2 version 5.0, multiple sql statements are not supported in create trigger
command, but in DB2 6.0, multiple sql statements are supported)
(Note: by now, we use DB2 version 5.0, we write multiple triggers for a certain event to
implement the multiple sql statements in one trigger)

42

5.3 Creating Triggers on Existing Event

In DB2, we can create multiple-triggers for the same database operation on the

same table, this is different from Sybase. In Sybase, user can only create one trigger for

the same database operation on the same table, if you create the second trigger on the

same table for the same database operation, the second one will replace the first one.

So, to implement ‘create triggers on existing event’ is much simple in DB2 than

in Sybase. Next we give the syntax of creating triggers on existing event.

5.3.1 Syntax of creating triggers on existing event

In the earlier part of this chapter, we define the syntax of creating primitive event

as follows:

create trigger trigger_name after/before insert/delete/update on table_name event

event_name

REFERENCING NEW_TABLE AS newtable

FOR EACH STATEMENT MODE DB2SQL

 SQL_statements

After we define a primitive event, we know which table this primitive event

defined on and we know what kind of operation this primitive event defined on this table.

So, when we define another trigger on this primitive event, we need not to define the

table name and operation in the create trigger command, the follows is the syntax:

43

Figure 5.2 Repeat Primitive Event Syntax

When the user creates triggers on existing event, our program will call the ‘Repeat

Primitive Event Parser’ to parse the command. Next we’ll discuss how this parser works.

5.3.2 Implementation of Triggers on Existing Event

Because DB2 supports multiple-triggers in the same event, it is simple for us to

deal with the repeated primitive event in our program. We use ‘Repeated Primitive Event

Parser’ to parse it, the following steps are what we need to do:

1. Syntax checking:

2. Duplicate object name checking:

3. Code Generation:

4. Persistent code generation:

create trigger trigger_name event event_name

REFERENCING NEW_TABLE AS newtable

FOR EACH STATEMENT MODE DB2SQL

 SQL_statements

The primitive event definition is:
event event_name [coupling_mode] [parameter_context] [priority].
Where
parameter_context :=

ECENT|CHRONICLE|CONTINUOUS|CUMULATIVE.
coupling_mode := IMMEDIATE|DEFERED|DETACHED.
priority := positive integer.
The default coupling mode is IMMEDIATE and the default parameter

context is RECENT.

44

Now, we use an example to show how this works. Suppose we have already

defined primitive event ‘addStk’, now define another trigger based on this event:

create trigger t1_addStk event addStk
REFERENCING NEW_TABLE AS newtable
FOR EACH STATEMENT MODE DB2SQL
 insert into PF values('Jin Kim', 'IBM', 1000, 200, current date)

We’ll work through the above steps:

1. Syntax checking: since there are no syntax errors, we’ll go to step 2.

2. Duplicate object name checking: here, trigger name ‘t1_addStk’ is not a duplicate

name and event name ‘addStk’ already defined, so there are no errors, go to step 3.

3. Code Generation: When first time we define primitive event ‘addStk’, we already

generate some codes to extend the active capability for the RDBMS. So, we need not

to do that again, we just need to create a trigger, put the action into the trigger. The

trigger command is:

create trigger t1_addStk after insert on stock
REFERENCING NEW_TABLE AS newtable
FOR EACH STATEMENT MODE DB2SQL
 insert into PF values('Jin Kim', 'IBM', 1000, 200, current date)

Here, we just change the event addStk to the event definition (after insert on

stock). This is acceptable for DB2.

4. Persistent code generation: we need to insert tuple into table ‘SysEcaTrigger’:

Insert into SysEcaTrigger values(‘zsong’, ‘t1_addStk’, ‘t1_addStk_proc’, current

timestamp, ‘addStk’)

Right now, we have finished the work for the trigger defined on an exiting

primitive event.

45

5.4 Dropping a Trigger on a Primitive Event

In DB2, we have ‘drop trigger’ command. In our program, we extend the ‘create

trigger’ command. So if we want to drop a trigger, we need to do the reverse steps

according to its ‘create trigger’ command. First we’ll discuss the syntax of drop trigger

command.

5.4.1 Syntax of drop trigger command

In DB2, the syntax of drop trigger command as the follows:

Figure 5.3 Drop Trigger Syntax

In our program, we still use the same syntax, this is transparent to the user.

When the user requests a drop trigger command, our program first check this

trigger defined on a primitive event or a composite event. If this trigger is defined on a

primitive event, ‘Drop trigger on primitive” will be used to parse it. If this trigger is

defined on a composite event, ‘Drop trigger on composite” will be used to parse it. If this

trigger did not defined on our primitive event or composite event, then this trigger just a

traditional RDBMS trigger, we simply send this drop trigger command to SQL server to

drop it.

Next we’ll discuss the steps to drop a trigger on primitive event.

5.4.2 Implementation of drop trigger on primitive event

When user define primitive events, our ECA Agent performs some actions. In

order to drop a trigger, our ECA Agent needs to perform the reverse actions. The

following is the steps we performed for creating a primitive event:

drop trigger trigger_name

46

1. Generate persistent code.

2. Create trigger in DB2.

3. Create primitive event using LED.

We’ll do the following steps:

1. Delete tuple from table ‘SysEcaTrigger’.

2. Drop trigger in DB2.

3. Check if there is another trigger defined on this primitive event. If there are no

other triggers defined on this primitive event, delete this primitive event tuple

from table ‘SysPrimitiveEvent’. If there are triggers also defined on this primitive

event, we need not to delete this primitive event from table ‘SysPrimitiveEvent’.

4. Drop primitive event from LED. First, we need to check if there are composite

events defined based on this primitive event. If there are, we can not drop the

primitive event. If there is no composite event defined based on this primitive

event, we need to drop it from LED. To drop the primitive event from LED, the

only thing we need to do is to delete the Java file that we created for this primitive

event.

47

CHAPTER 6
IMPLEMENTATION OF COMPOSITE EVENTS

Composite events are not supported by RDBMS. In this research, we extend the

trigger definition so composite events are supported in ECA Agent. In this chapter, we’ll

describe the details of implementation of composite events. In Section 6.1, we describe

the syntax of composite event. In Section 6.2, Composite Event Parser is introduced.

Event Notifier, ECA Action, and Parameter Context are described in Section 6.3, 6.4, and

6.5 respectively.

6.1 Syntax of composite event

We extend the trigger definition for composite event as we did for primitive

event. For example:

create trigger t_addDel event addDel = addStk ^ delStk RECENT

 BEGIN ATOMIC

 insert into temp values(‘Mark’, 4) ;

 END

We add the keyword ‘event’ in the trigger command, and follow the keyword

‘event’ is the composite event syntax.

We use ‘Snoop’- the event specification language to specify composite events in

the trigger command.

Figure 6.1 shows the syntax of a composite event definition (Figure 6-1).

48

The default coupling_mode is ‘IMMEDIATE’ and the default prameter_contxt is

‘RECENT’.

Figure6.1: Composite Event Definition

6.2 Composite event parser

When the user defines a composite event, Composite Event Parser will parse it.

There are four steps as shown in Figure 6.2:

create trigger trigger_name
event event_name [= Snoop_Event_exp] [coupling_mode][parameter_context][priority]
BEGIN ATOMIC SQL_statements; END

Coupling_mode := RECENT|CHRONICLE|CONTINUOUS|CUMULATIVE
Parameter_context := IMMEDIATE|DEFERED|DETACHED
Priority := positive integer
Snoop_Event_exp ::= E1
E1 ::= E1 OR E2 | E2
E2 :: = E2 AND E3 | E3
E3 ::= E3 SEQ E4 | E4
E4 ::= NOT(E1,E1,E1)
 | A (E1,E1,E1)
 | A* (E1,E1,E1)
 | P(E1, [time string], E1)
 | P(E1, [time string]: parameter, E1)
 | P* (E1, [time string], E1)
 | P(E1, [time string]: parameter, E1)
 | [time string]
 | E1 PLUS [time string]
 | (E1)
 | event_name
event_name ::= name

49

Figure6.2: Flow Chart of Composite Event Parser

1. Syntax check: check if there are syntax errors for this composite event. If there

are syntax errors, return error message to the client.

2. Duplicate Name check: check if the trigger name is duplicate or not, because in

RDBMS trigger name can not be duplicate. If the trigger name is duplicated,

return error message to the client.

50

3. Send the composite event definition to Snoop parser. Snoop parser will parse the

composite event syntax definition. If there are errors, return error message to the

client. If there are no errors, snoop parser will create composite event in LED.

4. Code Generation.

Now, we use the following example to show how to apply these steps:

create trigger t_and event addDel = addStk ^ delStk RECENT

 BEGIN ATOMIC

 insert into temp values(‘Mark’, 4) ;

 END

1. Syntax check: there are no syntax errors. Go to step 2.

2. Duplicate Name Check: trigger name does not duplicate. Go to step 3.

3. Send the composite event definition (event addDel = addStk ^ delStk RECENT) to snoop

parser. Snoop parser parses this composite event. No error is found. So create

composite event and rule in LED.

The output of Snoop parser consists of two files, one is ‘eventlist.txt’ and the

other is ‘compositeevent.txt’.

File ‘eventlist.txt’ contains the events that used to define the composite event. We

keep the event list to check whether these events have been defined or not. If there

are events which are not defined, errors must be send to the client.

File ‘compositeevent.txt’ contains the API for creating the composite event.

Suppose we have already initialized ‘myAgent’ using LED:

ECAAgent myAgent = ECAAgent.initializeECAAgent();

We create composite event ‘addDel’ using LED like this:

EventHandle addDel = myAgent.createCompositeEvent(EventType.AND,

“event addDel”, addStk, delStk)

51

 Create rule in LED:

 myAgent.createRule(“rule addDel”, addDel, “Led.true”, “Led.addDel”, 1,

CouplingMode.DEFAULT, Context.RECENT)

4. Persistent Code generation.

Insert into SysCompositEvent values(‘EcaAgent’, ‘zsong0’, ‘addDel’, ‘addStk ^ delStk’,

‘RECENT’, ‘IMMEDIATE’, 1)

Insert into SysEcaTrigger values(‘zsong0’, ‘t_and’, ‘t_and_proc’, current timestamp,

‘addDel’)

5. Create ECA_Action in LED. When composite event occurs, the following two tasks

have to be done:

• Trigger action that the user defined in this composite event should

be executed.

• We should keep the parameter context for this composite event.

That means we’ll keep the tuples (inserted or deleted or both of

them) that made this composite event occurred and the composite

event’s parameter context.

The following is the ECA Action for the example composite event written by

SQL statements. We implement these SQL statement use JDBC.

Delete from stock_inserted_tmp;

Insert into stock_inserted_tmp

 Select * from stock_inserted, SysContext

 where SysContext.context = ‘RECENT’ and

 SysContext.eventname = eventname(leftEventName and

rightEventName) and

 Stock_inserted.vNo = SysContext.vNo;

Insert into temp values(‘Mark’,4) ;

52

In this example, table ‘stock_inserted_tmp’ is a table generated from table ‘stock’

and table ‘SysContex’. Recall when we create primitive event, we have table ‘stock’

defined like Table 6.1.

Table 6.1 stock

Symbol Co_name Price Time

We create table ‘stock_inserted_tmp’ and table ‘stock_deleted_tmp’ as Table 6.2.

Table 6.2 stock_inserted_tmp

Symbol Co_name Price Time VNo EventName Context VNo1

When the composite event occurs, tuples will be inserted into table

‘stock_inserted_tmp’ and ‘stock_deleted_tmp’ according to the specific composite event.

6.3 Create Events and Rules

In this project, we use Java Led to detect composite events, so we need to register

primitive events and composite events use the API of Java Led. For example, if user

defined a primitive event ‘addStk’, then we’ll create primitive event use the following

API:

EventHandle addStk = myAgent.createPrimitiveEvent("addStk","Led",EventModifier.BEGIN, "void

addStk", DetectionMode.SYNCHRONOUS);

53

Because users define events dynamically, we must register events dynamically. In

order to register events dynamically, we’ll create a Java file called

“userName+eventName.java”, and then compile it dynamically. In our program, we’ll

call method “call_addStk()” to register this primitive event. Figure 6.3 shows the Java

file, Figure 6.4 shows the code for compiling the Java file dynamically, and Figure 6.5

shows the code of how to register the primitive event.

Figure 6.3 File “zsong0addStk.java”

Figure 6.4 Code for dynamic compile Java file

import Sentinel.*;
import java.util.Vector;
import java.util.Hashtable;
import java.util.Enumeration;

public class zsong0addStk{
 public static EventHandle addStk =null;
 public static void call_addStk(){
 ECAAgent myAgent = ECAAgent.initializeECAAgent();
 addStk = myAgent.createPrimitiveEvent("addStk","Led",
EventModifier.BEGIN, "void addStk()", DetectionMode.SYNCHRONOUS);
 }
}

// using 'javac' to compile the generated java file
String cmd = "javac " + className + ".java";
java.lang.Runtime rt = Runtime.getRuntime();

try {
 Process pro = rt.exec(cmd); // execute the command
 int a = pro.waitFor(); // wait until the current process terminate,
 // so that the command completed
 } catch(Exception e) { }

54

Figure 6.5 Code for register events

In figure 6.5, we use “CallDynamicMethod.ExecuteMethod()” to do

“zsong0addStk.call_addStk();” because in our program, we have a class

“CallDynamicMethod”, and we have a method called “ExecuteMethod” in this class.

This method is used to execute the dynamic generated method. We put this class in

appendix d.

To register composite events and rules we use the same method. Here we give an

example.

create trigger t_and event addDel = addStk ^ delStk RECENT

 BEGIN ATOMIC

 insert into temp values(‘Mark’, 4) ;

 END

We’ll create file “zsong0addDel.java”, see appendix d file ‘zsong0addDel.java’.

And then we compile this file and register the composite event and rule just like

we did for the primitive event.

6.4 Event Notification and Detection

A composite event is composed of two or more primitive events using one or

more of the snoop operators. Every composite event has an initiator event that initiates

// to do “zsong0addStk.call_addStk();”, use the following code
CallDynamicMethod.ExecuteMethod(classname,"call_" + eventname, null,
null);

55

the detection, and a terminator event that completes the detection of the event. The

composite event is detected only when the terminator event is detected.

If we have a composite event using the AND operator:

 event andEvent = AND(e1, e2)

Consider the event occurrences shown on the timeline below:

The AND event is detected when e2
 occurs.

In our case, e1 and e2 are database operations such as ‘insert’, ‘delete’ or ‘update’.

When the database operations occur (primitive events occur), we know this is be done by

SQL server, how can we know these operations occur? – We are not the Servers. If we do

not know the primitive events occur, how can we detect the occurrence of composite

event? Solving these problems is our way to detect the composite event.

As we know, we use Java LED to detect the composite event. In order to detect

the composite event, first we need to detect primitive events, as the above example, when

e2
 occurs, the AND event is detected. How can we detect primitive events is our next

topic.

6.4.1 Primitive Event Detection

In Java LED, we use the API to define a primitive event:

EventHandle addStk = myAgent.createPrimitiveEvent(“addStk”, “Led”,

 EventModifier.BEGIN, “void addStk()”, DetectionMode.SYNCHRONOUS);

56

When the primitive event is defined as the above, an event handle corresponding

to that event is returned. The event handle is used to signal the method invocation to the

event detector. In order to signal the invocation of a method (a primitive event

occurrence), the user can call an API inside a method that is defined as a primitive event.

Void addStk() {
EventHandle[] myEvent = ECAAgent.getEventHandles (“addStk”);
ECAAgent.raiseBeginEvent (myEvent, this);

}

First, the event handles corresponding to the primitive event are obtained using

the name of the primitive event. Second, the event handles and the instance which

invokes the method (this) are passed through the “raiseBeginEvent’ API.

By now, the primitive event “addStk” is detected.

In our case, the primitive events are database operations, for example we define

the primitive event “addStk” inside the create trigger command:

Create trigger t_addStk after insert on stock event addStk

REFERENCING NEW_TABLE AS newtable

FOR EACH STATEMENT MODE DB2SQL

 Insert into stock_copy select * from newtable

After we insert a tuple into table ‘stock’, the primitive event ‘addStk’ will occur,

but the operation ‘insert’ will be done in the SQL server side, and the SQL statements

inside the trigger also will be done in the server side, that implies the primitive event

‘addStk’ will occur in the server side. We do not want these, if the primitive events occur

in the server side, how can these primitive events trigger the composite event in our

application?

57

What we want is after the ‘insert’ operation occurs, the SQL server should notify

our application, let our application to raise the primitive event. Only in this way, the

composite event can be triggered.

How to implement this issue is our next discussion.

6.4.2 Primitive Event Notification

After the ‘insert’ operation occurs, the SQL statements inside the trigger will be

executed by the SQL server. The primitive event ‘addStk’ occurs in the server side, the

server needs to notify the application that this primitive event occurred. The solution is

that we call method ‘void addStk()’ inside the trigger to raise the primitive event, but this

will raise the primitive event in the server side, not in the application.

In Sybase, it has a build-in function, “sybase-SendMesg(port number, IP address,

method)”. Using this build-in function, we can raise primitive event in the specified IP

address.

But in DB2, we do not have this kind of build-in function. We solve this problem

using the following steps:

1. We create a table named notify. It has only one attribute, called “event name”.

And this table has only one tuple at any time.

2. When a primitive event occurs, we put the occurred primitive event name into

table ‘notify’. We do this by put one SQL statement into the trigger command

like the follows:

Update table notify set eventname=’addStk’.

After we insert a tuple into table stock, this trigger will be fired, and this SQL

statement will be executed automatically.

58

In our program, we use multi-thread to deal with each query requested by clients.

Before the results are sent back to client, we check the table notify. If a primitive name

exists in the table, our application will raise this primitive event by calling the method

“void addStk()”. Thus, this primitive event is notified to our application and is detected

by LED.

6.4.3 Composite Event Detection

We use Java LED to detect composite events. When we create a composite event,

we’ll also create a rule. This rule contains “Event-Condition-Action”. Once the event

occurs, it will check the condition. If the condition is true, the Action will be executed.

For example, we will create the following composite event:

 Event addDel = addStk ^ delStk;

We’ll also create the following rule:

myAgent.createRule(“rule addDel”, addDel, “Led.true”, “Led.addDel”, 1,

CouplingMode.DEFAULT, Context.RECENT)

When the composite event ‘addDel’ is detected, and the condition is satisfied, the

Action “Led.addDel” will be executed automatically.

Next, we’ll discuss how to implement this in our case.

First, we have a Java file called “Led.java”, like the follows:

59

Figure 6.6 Java file “Led.java”

In Figure 6.6, we have a method “public static boolean True()”. This method

defines the condition part of ECA. Here, we suppose the condition is always true, which

means if the event occurs, the action will be executed.

We also have a method “public void PrimEvent(String eventname)”. This method

is used to raise the specified primitive event. The event name will be passed as the

parameter. After a primitive event occurred and our application got the notification from

the SQL server, the application will call this method to raise this primitive event like the

follows:

Led.PrimEvent(eventname);

When both of the primitive event ‘addStk’ and ‘delStk’ occurred, the composite

event ‘addDel’ is detected, and the Action should be executed.

import Sentinel.*;
import java.util.Vector;
import java.util.Hashtable;
import java.util.Enumeration;

public class Led {
 //PrimitiveEventMethod
 public void PrimEvent(String eventname) {
 EventHandle[] addStk = ECAAgent.getEventHandles(eventname);
 ECAAgent.insert(addStk,"eventname",eventname);
 ECAAgent.raiseBeginEvent(addStk,this);
 }

 //ECA_Condition
 public static boolean True(ListOfParameterLists parameterLists) {
 System.out.println("***** From Condition ***** ");
 return true;
 }

}

60

Next we’ll discuss the ECA Action part.

6.5 ECA Action

In active database, we use ECA rules to implement the active capability. In our

case, events are database operations, conditions are always true, and actions are some

SQL statements related to the database.

When events are detected, actions should be executed automatically. Because we

define events in the extended trigger part, so the action should include the SQL

statements that are defined inside the trigger. We also implement the parameter context in

the action part. So, the action includes two parts:

1. SQL statements user defined inside the trigger.

2. SQL statements used to implement the parameter context.

Events are created by users. We don’t know what kind of trigger action will be

defined and we don’t know the event defined on which table, so the action part will be

dynamically created according to the definition of events.

To implement the ECA Action part, we do like this way:

When the user defines a composite event,

1. Get the triggered SQL statements.

2. According to the definition of the composite event, get the table names defined on

this composite event, then insert tuples into table ‘tablename.inserted_tmp’ to get

parameter context.

Because we use Java LED to detect composite event, and in Java LED, only class

function written by Java can be called as the Action part, we create a Java file to contain

the action part as a function in the Java file. We call the Java file

61

‘EventNameUserName.java’ to distinguish the same event that has been defined by the

different users.

In our program, when we define a composite event, we’ll also define a rule.

Through the rule definition, we know when the event is detected and which action

function we should call.

We’ll give an example to show how we implement this.

1. Define a composite event ‘addDel’:

create trigger t_and event addDel = addStk ^ delStk RECENT

 BEGIN ATOMIC

 insert into temp values(‘Mark’, 4) ;

 END

2. Create composite event and rule in LED.

EventHandle addDel = myAgent.createCompositeEvent(EventType.AND,

“event addDel”, addStk, delStk)

myAgent.createRule(“rule addDel”, addDel, “Led.true”,

“addDelzsong0.addDel”, 1, CouplingMode.DEFAULT,

Context.RECENT)

3. From the rule, we know when this composite event is detected, LED will execute

“zsong0addDel.call_addDel()” as the action.

We’ll create file ‘zsong0addDel.java’. In this file, there is a method called

‘call_addDel()’. This Java file is appended in appendix d.

Because this file is created when the ‘composite parser’ parses the composite

event, we need to compile this Java file in the run time. This is the same as we did for

creating events. The code for how to compile Java file dynamically is shown in Figure

6.4.

62

Now, the action part is ready. When the composite event is detected, this action

part will be executed automatically.

6.6 Parameter Context

As mentioned before, composite events can be detected in more than one

parameter context. In Java LED, the parameter contexts we supported are recent,

chronicle, continuous, and cumulative. And we also need to be noted that for primitive

events all parameter contexts are identical.

Here we still use the example we used in the earlier part of this chapter to discuss

the different detection in different parameter contexts.

If we have a composite event using the AND operator:

 event andEvent = AND(e1, e2)

Consider the event occurrences shown on the timeline below:

The AND event is detected when e2
 occurs. But we are not clear whether 1

2e

should be paired with 1
1e or 2

1e . Parameter contexts are useful for distinguishing this

ambiguity. In recent context, 2
1e and 1

2e are detected for ‘andEvent’. In chronicle context,

1
1e and 1

2e are detected for ‘andEvent’. In continuous context, two events 1
1e 1

2e and 2
1e 1

2e

are detected at the same time for ‘andEvent’. In cumulative context, a single event

1
1e 2

1e 1
2e is detected for ‘andEvent’.

63

In our case, primitive events are database operations. In order to keep the context

for a primitive event in a certain composite event, we create a table named

‘tablename.inserted_tmp’ to contain the context for the primitive event. Next we’ll

discuss how to implement parameter context for primitive event.

1. When the user defines a primitive event, we create table ‘tablename.inserted_tmp’

and ‘tablename.deleted_tmp’.

2. When the user defines a composite event, we put all primitive events (which

consists of this particular composite event) and parameter context into table

‘eventContext’ to keep the primitive events and its context for the composite

event.

3. When primitive events occur, join two tables ‘tablename_inserted’ and

‘eventContext’, and then the results are inserted into table ‘SysContext’.

4. When composite events occurs, join two tables ‘tablename_inserted’ and

‘SysContext’, and then the results are inserted into table ‘tablename.inserted_tmp’

to get parameter context.

Now, we’ll use an example to show how this works:

create trigger t_and event addDel = addStk ^ delStk RECENT

 BEGIN ATOMIC

 insert into temp values(‘Mark’, 4) ;

 END

1. When the user defines primitive events ‘addStk’ and ‘delStk’, we’ll create table

‘stock_inserted_tmp’ and table ‘stock_deleted_tmp’ as Table 6.3.

64

Table 6.3 stock_inserted_tmp or stock_deleted_tmp

Symbol Co_name Price Time VNo EventName Context VNo1

2. When the user defines composite event ‘addDel’, we’ll input tuples into table

‘eventContext’ as Table 6.4.

Table 6.4 EventContext

EventName Context
‘addStk’ ‘RECENT’
‘delStk’ ‘RECENT’

3. When primitive event ‘addStk’ occurs, for example, we insert a tuple into table

‘stock’, we join table ‘stock_inserted’ and ‘eventContext’ to get tuples insert to table

‘SysContext’, as follows:

• Insert into table stock values(‘sun’, ‘sun’, 123, current timestamp);
• Delete from Syscontext where eventname=’addStk’ and context=’RECENT’;
• Insert into Syscontext select eventname, context, vNo from eventContext, stock_inserted;

Now, table ‘SysContext has the format of Table 6.5.

Table 6.5 SysContext

EventName Context Vno
‘addStk’ ‘RECENT’ 1

When we delete a tuple from table ‘stock’, primitive event ‘delStk’ will occur,

we’ll do the follows just like we did after primitive event ‘addStk’ occured,

• Delete from table stock;
• Delete from Syscontext where eventname=’delStk’ and context=’RECENT’;
• Insert into Syscontext select eventname, context, vNo from eventContext, stock_deleted;

65

Now, table ‘SysContext has the format of Table 6.6.

Table 6.6 SysContext

EventName Context Vno
‘addStk’ ‘RECENT’ 1
‘delStk’ ‘RECENT’ 1

4. Right now, the composite event ‘addDel’ is detected, we’ll get parameter context

after we did the follows(Figure 6.7):

Figure 6.7 parameter context processing

//context processing for event ‘delStk’
Delete stock_deleted_tmp;

Insert into stock_deleted_tmp;

Select * from stock_deleted, SysContext

 Where SysContext.context=’RECENT’ and

 SysContext.eventname = ‘delStk’ and

 Stock_deleted_tmp.vNo = SysContext.vNo

//context processing for event ‘addStk’
Delete stock_inserted_tmp;

Insert into stock_inserted_tmp;

Select * from stock_inserted, SysContext

 Where SysContext.context=’RECENT’ and

 SysContext.eventname = ‘delStk’ and

 Stock_inserted_tmp.vNo = SysContext.vNo

66

67

CHAPTER 7
CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this thesis, we presented the details of design, architecture and implementation

of ECA Agent, to recall there are some sub-modules in our ECA Agent:

• Language Filter

• ECA Parser

• Primitive Event Parser

• Composite Event Parser

• Repeat Primitive Event Parser

• Repeat Composite Event Parser

• Drop trigger Parser

• Drop trigger defined on Primitive Event

• Drop trigger defined on Composite Event

• Persistent Manager

• Java Led

• JDBC

At the same time that we implement these sub-modules, we also fulfilled the

following goals:

• ECA rules are supported in our Agent.

• Both primitive events and composite events can be detected.

68

• Active behaves (events, rules, actions) are persistent in DBMS.

• Drop trigger and events as desired.

• Multiple parameter contexts are supported in our Agent.

Our ECA Agent is a mediator in the SQL server and clients, and we use JDBC to

connect with SQL server and SQL requirements. So this design is a generalized method

for any RDBMS to extend its active capability.

7.2 Contributions

The contributions of this thesis are:

• Designed a mediated approach that significantly extends the active capability

of any RDBMS. This mediated approach has some advantages: it does not

change the SQL Server/Client; it’s transparency to the clients; it has

extensibility, etc.

• Implemented the ECA Agent according to the design.

• Full-fledged active capability is supported.

• We use JDBC to connect the SQL Serer and the Clients. It’s a generalized

method. By using JDBC, you can connect any SQL Server and clients. You

need not to worry about the specified functions of a specified RDBMS.

7.3 Future work

In our implementation, we use DB2 as the test database and we extended the

active capability of DB2 Universal Database. Next we’ll implement these by using

Oracle as the test database. The only difference here is the SQL statements’ syntax

between DB2 and Oracle.

69

In this thesis, we use Java Led to detect composite events. Right now, Java Led

can only detects events in a single application. In the future, it can be extended to detect

events in a distributed system. At that time, our Agent will also support to detect events

in a distributed system.

70

APPENDIX A
USER MANUAL

In this project, we implement two programs, one is “Java ECA Agent Server”, the

other one is “Java ECA Agent Client”.

Java ECA Agent Server

This program is our ECA Agent, it should be run on the server machine, just like

the Oracle SQL server or Sybase SQL server is running on the server machine. This

program can be run on any machine, but first you must run this program before you run

the client program.

Start the ECA Agent

If you want to start the ECA Agent, you should execute the following command

in the “dos” environment:

java Java_ECA_Agent_Server

Then, the ECA Agent starts, you will see a little window like follows:

Figure A.1 ECA Agent Server Interface

71

In this window, it said: “ECA Agent is Running…” that means ECA Agent is

running and right now you can start you client interface.

There is a button “Exit”, when you click this button, the ECA Agent will shut

down.

Also, we have a “dos” window like the follows:

Figure A.2 ECA Agent Server DOS Environment

Use this window, you can get some run time information.

Java ECA Agent Client

This program is the interface for the client, clients can use this interface input the

SQL requirements. It looks just like the original DBMS interface. We should notice that

this program must be start after the ECA Agent server program started.

Start the ECA Agent Client interface

To start this program, just input the following command in the “dos”

environment:

java Java_ECA_Agent_Client

72

You’ll notice that the following window displays:

Figure A.4 ECA Client Interface

In this window, there is a lot of information. We’ll talk it one by one.

• RDBMS: from the como box you can select “DB2”, “Oracle”, “Sybase” or

“Informix”. Because our Agent is a generalized Agent, it will be worked for

all kinds of RDBMS. Right now, it works for “DB2”, and it will work for

“Oracle” in a short time.

73

• List DBs: you should input the database name that you’ll use in the specified

RDBMS into this text area. For example, we’ll use database named

“ECAAgent” in DB2. So we put “ECAAgent” in this text area.

• Host Name: this should be the machine name where you run the ECA Agent

Server. For example, our ECA Agent is running on the machine “tokyo”, so

we input the name “tokyo.cise.ufl.edu” into this text area.

• PortNumber:

• URL for RDBMS: this is the URL for RDBMS, for example, our DB2 SQL

server in running on machin “tokyo”, and the URL for “tokyo” is

“tokyo.cise.ufl.edu”, so we put “tokyo.cise.ufl.edu” into this text area. Notice

you can also input the IP address into here, the IP address of “tokyo” is

‘128.227.146.79’, so we can input “128.227.146.79” in this text area.

• User Name: this is the account id that you use in the specified RDBMS. For

example, we use the account id “zsong0” for DB2.

• Password: this is the password for the account used in the specified RDBMS.

• Button “Set”: chick this button, the system will keep all the information you

input into this window, it will be used latter.

• Button “Go”: click this button, another window will show on, if you select

“Oracle”, the “Oracle” interface will show on, if you select “DB2”, the “DB2”

interface will show on.

• Button “Exit”: click this button, the client program will terminate.

74

DB2 interface

If we select “DB2”, then the “DB2” interface will show on, it looks like the DB2

command center:

Figure A.5 DB2 Interface

This interface looks like the “DB2 command center”, there are some buttons:

• Script: when you click this button, the script you select from the “script list” will

show in the text area window. You can also input SQL statements into text area

window directly.

• Results: click this button, you can get the latest results.

75

• Execute: click this button, the SQL statements inside the text area window will be

executed. Before you click this button, make sure the SQL statements inside the text

area window are what you want.

• Clear: click this button, the text area window will be cleaned.

76

APPENDIX B
DEMO

Here, we’ll use examples to show how this ECA Agent works. Before the demo,

we need to do some work.

Preparing the Demo

First, we need to create some tables, see appendix c file “createSystables.txt”.

Second, if necessary, clean demo use DB2 command center, the clean demo

commands are in the file “cleanDemo.txt” in appendix c.

Demo

There are some steps for the demo:

1. Start ECA Agent Server by input the following command in the “dos”

environment:

java Java_ECA_Agent_Server

We’ll see a “dos window”-- “Java_ECA_Agent_Server” shows on. That

means the ECA Agent is ready.

2. Start the ECA Agent Client by input the following command in the “dos”

environment:

java Java_ECA_Agent_Client

Now, the ECA Agent Client interface shows on, we input some

information in his window, like the follows:

77

Figure B.1 ECA Agent Client Interface

3. Click button “Set” to let the system keeping the information.

4. Click button “Go”. The DB2 interface displays.

5. Now, we create some primitive events and composite events, see appendix c

file “createEvents.txt”.

6. After we create primitive events and composite events, now we can test it. See

appendix c file “test.txt”.

7. Check the results, see appendix c file “results.txt”.

78

APPENDIX C
FILES USED IN THE DEMO

The following files are used for the demo.

File 1: createSystables.txt

drop table SysEcaTrigger;
drop table SysPrimitiveEvent;
drop table SysCompositeEvent;
drop table Version;
drop table ActiveRDBMS_ECA
drop table sysContext;
drop table eventContext;

create table SysEcaTrigger (
 dbName char(30),
 userName char(30),
 triggerName char(30),
 triggerProc char(60),
 timeStamp timestamp,
 eventName char(30)
)

create table SysPrimitiveEvent (
 dbName char(30),
 userName char(30),
 eventName char(30),
 tableName char(30),
 operation char(30),
 beafoperation char(10),
 timeStamp timestamp,
 vNo integer
)

create table SysCompositEvent (
 dbName char(30),
 userName char(30),
 eventName char(30),
 eventDescribe char(100),
 timeStamp timestamp,

79

 coupling char(10),
 context char(12),
 priority integer
)

create table Version (
 vNo integer
)

create table ActiveRDBMS_ECA (
 EcaVariables varchar(255),
 TriggerFunc char(50)
)

create table sysContext (
 eventname char(20),
 context char(12),
 vNo integer
)

create table eventContext (
 eventname char(20),
 context char(12)
)

grant all on SysEcaTrigger to public;
grant all on SysPrimitiveEvent to public;
grant all on SysCompositEvent to public;
grant all on Version to public;
grant all on ActiveRDBMS_ECA to public;
grant all on sysContext to public;

File 2: cleanDemo.txt

drop table stock_inserted;
drop table stock_deleted;
drop table stock_inserted_tmp;
drop table stock_deleted_tmp;
drop trigger t_addStk;
drop trigger t_addStk1;
drop trigger t_addStk2;
drop trigger t_addStk01;
drop trigger t_addStk02;
drop trigger t_addStk03;

80

drop trigger t_addStk04;
drop trigger t_delStk;
drop trigger t_delStk1;
drop trigger t_delStk2;
drop trigger t_delStk01;
drop trigger t_delStk02;
drop trigger t_delStk03;
drop trigger t_delStk04;

drop table stock;
drop table stock_copy;
create table stock(symbol char(10), Co_name char(20), price integer, time

timestamp);
create table stock_copy(symbol char(10), Co_name char(20), price integer, time

timestamp);
insert into stock values('ibm','ibm',320,current timestamp);

delete from SysEcaTrigger;
delete from SysPrimitiveEvent;
delete from SysCompositEvent;
delete from temp;
delete from SysContext;
delete from eventContext;

drop table PF_inserted;
drop table PF_deleted;
drop table PF_inserted_tmp;
drop table PF_deleted_tmp;
drop trigger t_buyStk;
drop trigger t_buyStk1;
drop trigger t_buyStk2;
drop trigger t_buyStk01;
drop trigger t_buyStk02;
drop trigger t_buyStk03;
drop trigger t_buyStk04;
drop trigger t_selStk;
drop trigger t_selStk1;
drop trigger t_selStk2;
drop trigger t_selStk01;
drop trigger t_selStk02;
drop trigger t_selStk03;
drop trigger t_selStk04;

drop table PF_copy;

81

drop table PF;
create table PF(name char(20), symbol char(6), amount integer, price integer, time

date);
create table PF_copy(name char(20), symbol char(6), amount integer, price

integer, time date);
insert into PF values('Sharma Cha', 'JNJ', 1000, 200, current date);

File 3: createEvents.txt

• Create primitive events

create trigger t_addStk after insert on stock event addStk
REFERENCING NEW_TABLE AS newtable
FOR EACH STATEMENT MODE DB2SQL
 insert into stock_copy select * from newtable

create trigger t1_addStk event addStk
REFERENCING NEW_TABLE AS newtable
FOR EACH STATEMENT MODE DB2SQL
 insert into PF values('Jin Kim', 'IBM', 1000, 200, current date)

create trigger t_delStk after delete on stock event delStk
REFERENCING OLD_TABLE AS oldtable
FOR EACH STATEMENT MODE DB2SQL
 insert into stock_copy select * from oldtable

create trigger t_buyStk after insert on PF event buyStk
REFERENCING NEW_TABLE AS newtable
FOR EACH STATEMENT MODE DB2SQL
 insert into PF_copy select * from newtable

create trigger t_selStk after delete on PF event selStk
REFERENCING OLD_TABLE AS oldtable
FOR EACH STATEMENT MODE DB2SQL
 insert into PF_copy select * from oldtable

82

• Create composite events

create trigger t_and event addDel = delStk ^ addStk RECENT
BEGIN ATOMIC
 insert into temp values('Mark',4) ;
END

create trigger t_Or event buySel = buyStk | selStk RECENT
BEGIN ATOMIC
 insert into temp values('Jerry',3) ;
END

create trigger t_addDelBuy event addDelBuy = addDel ; buyStk CUMULATIVE
BEGIN ATOMIC
 insert into temp values('addDelBuy',4) ;
END

create trigger t_delSel event delSel = delStk ^ selStk CUMULATIVE
BEGIN ATOMIC
 insert into temp values('delSel', 4) ;
END

create trigger t_com event comEvent = addDelBuy ; delSel CUMULATIVE
BEGIN ATOMIC
 insert into temp values('comEvent',4) ;
END

create trigger t_com1 event comEvent1 = addDel ; buyStk ; (delStk ^ selStk)
CUMULATIVE
BEGIN ATOMIC
 select * from PF.deleted ;
END

create trigger t_comOr event comOr = buyStk | selStk | addStk | delStk RECENT
BEGIN ATOMIC
 insert into temp values('Tom',4) ;
END

83

File 4: test.txt

1. insert into stock values(‘sun’,’sun’,123, current timestamp)
2. insert into stock values(‘soft’,’soft’,230, current timestamp)
3. insert into stock values(‘citrix’,’citrix’,100, current timestamp)

4. delete from stock where price=123
5. delete from stock where price=230

6. insert into stock values(‘Oracle’, ‘Oracle’, 320, current timestamp)

7. delete from stock where price=100

8. insert into PF values('Jone', 'Jone', 1500, 100, current date)
9. insert into PF values('Don', 'Don', 1800, 150, current date)

10. delete from PF where price=100

11. insert into stock values(‘Informix’, ‘Informix’, 310, current timestamp)

12. delete from stock where price=320

13. delete from PF where price=150

14. insert into PF values('RockWood', 'Don', 1300, 200, current date)

File 5: results.txt

Results from LED

DB2 Jdbc driver started...

Sequence number = 1
RAISING EVENT Ledzsong0beginvoidaddStk() 1
Notifying CLASS level event addStk...
LEDThread returning from get
notifying event addStk
Executing rules on event 'addStk' ...
Rules on event addStk
Number of rules = 0

84

applicationThread returning from put
finshiehd.
closing...

DB2 Jdbc driver started...

Sequence number = 2
RAISING EVENT Ledzsong0beginvoidaddStk() 2
Notifying CLASS level event addStk...
LEDThread returning from get
notifying event addStk
Executing rules on event 'addStk' ...
Rules on event addStk
Number of rules = 0

Thread-13 returning from put
finshiehd.
closing...

DB2 Jdbc driver started...

Sequence number = 3
RAISING EVENT Ledzsong0beginvoidaddStk() 3
Notifying CLASS level event addStk...
LEDThread returning from get
notifying event addStk
Executing rules on event 'addStk' ...
Rules on event addStk
Number of rules = 0

Thread-14 returning from put
finshiehd.
closing...

DB2 Jdbc driver started...

Sequence number = 4
RAISING EVENT Ledzsong0beginvoiddelStk() 4
Notifying CLASS level event delStk...
LEDThread returning from get
notifying event delStk
Executing rules on event 'delStk' ...
Rules on event delStk
Number of rules = 0

85

Event event addDel was triggered at the context of RECENT.

void addStk() 3
void delStk() 4 ***** From Condition *****
****From Composite Event Action of Rule****

Event event addDel was triggered at the context of CUMULATIVE.

void addStk() 1
void addStk() 2
void addStk() 3
void delStk() 4
Thread-15 returning from put
finshiehd.
closing...

DB2 Jdbc driver started...

Sequence number = 5
RAISING EVENT Ledzsong0beginvoiddelStk() 5
Notifying CLASS level event delStk...
LEDThread returning from get
notifying event delStk
Executing rules on event 'delStk' ...
Rules on event delStk
Number of rules = 0

Event event addDel was triggered at the context of RECENT.

void addStk() 3
void delStk() 5 ***** From Condition *****
****From Composite Event Action of Rule****

Thread-16 returning from put
finshiehd.
closing...

DB2 Jdbc driver started...

Sequence number = 6
RAISING EVENT Ledzsong0beginvoidaddStk() 6
Notifying CLASS level event addStk...
LEDThread returning from get
notifying event addStk
Executing rules on event 'addStk' ...

86

Rules on event addStk
Number of rules = 0

Event event addDel was triggered at the context of RECENT.

void delStk() 5
void addStk() 6 ***** From Condition *****
****From Composite Event Action of Rule****

Event event addDel was triggered at the context of CUMULATIVE.

void delStk() 5
void addStk() 6
Thread-17 returning from put
finshiehd.
closing...

DB2 Jdbc driver started...

Sequence number = 7
RAISING EVENT Ledzsong0beginvoiddelStk() 7
Notifying CLASS level event delStk...
LEDThread returning from get
notifying event delStk
Executing rules on event 'delStk' ...
Rules on event delStk
Number of rules = 0

Event event addDel was triggered at the context of RECENT.

void addStk() 6
void delStk() 7 ***** From Condition *****
****From Composite Event Action of Rule****

Thread-18 returning from put
finshiehd.
closing...

DB2 Jdbc driver started...

Sequence number = 8
RAISING EVENT Ledzsong0beginvoidbuyStk() 8
Notifying CLASS level event buyStk...
LEDThread returning from get
notifying event buyStk

87

Executing rules on event 'buyStk' ...
Rules on event buyStk
Number of rules = 0
DetectionMask at event event buySel: 1000

Event event buySel was triggered in context RECENT.

void buyStk() 8 ***** From Condition *****
****From Composite Event Action of Rule****

Event event addDelBuy was triggered at the context of CUMULATIVE.

void addStk() 1
void addStk() 2
void addStk() 3
void delStk() 4
void delStk() 5
void addStk() 6
void buyStk() 8 ***** From Condition *****
****From Composite Event Action of Rule****

Thread-19 returning from put
finshiehd.
closing...

DB2 Jdbc driver started...

Sequence number = 9
RAISING EVENT Ledzsong0beginvoidbuyStk() 9
Notifying CLASS level event buyStk...
LEDThread returning from get
notifying event buyStk
Executing rules on event 'buyStk' ...
Rules on event buyStk
Number of rules = 0
DetectionMask at event event buySel: 1000

Event event buySel was triggered in context RECENT.

void buyStk() 9 ***** From Condition *****
****From Composite Event Action of Rule****

Thread-20 returning from put
finshiehd.
closing...

88

DB2 Jdbc driver started...

Sequence number = 10
RAISING EVENT Ledzsong0beginvoidselStk() 10
Notifying CLASS level event selStk...
LEDThread returning from get
notifying event selStk
Executing rules on event 'selStk' ...
Rules on event selStk
Number of rules = 0
DetectionMask at event event buySel: 1000

Event event buySel was triggered in context RECENT.

void selStk() 10 ***** From Condition *****
****From Composite Event Action of Rule****

Event event delSel was triggered at the context of CUMULATIVE.

void delStk() 4
void delStk() 5
void delStk() 7
void selStk() 10 ***** From Condition *****
****From Composite Event Action of Rule****

Event event comEvent was triggered at the context of CUMULATIVE.

void addStk() 1
void addStk() 2
void addStk() 3
void delStk() 4
void delStk() 5
void addStk() 6
void buyStk() 8
void delStk() 4
void delStk() 5
void delStk() 7
void selStk() 10 ***** From Condition *****
****From Composite Event Action of Rule****

Thread-21 returning from put
finshiehd.
closing...

89

DB2 Jdbc driver started...

Sequence number = 11
RAISING EVENT Ledzsong0beginvoidaddStk() 11
Notifying CLASS level event addStk...
LEDThread returning from get
notifying event addStk
Executing rules on event 'addStk' ...
Rules on event addStk
Number of rules = 0

Event event addDel was triggered at the context of RECENT.

void delStk() 7
void addStk() 11 ***** From Condition *****
****From Composite Event Action of Rule****

Event event addDel was triggered at the context of CUMULATIVE.

void delStk() 7
void addStk() 11
Thread-22 returning from put
finshiehd.
closing...

DB2 Jdbc driver started...

Sequence number = 12
RAISING EVENT Ledzsong0beginvoiddelStk() 12
Notifying CLASS level event delStk...
LEDThread returning from get
notifying event delStk
Executing rules on event 'delStk' ...
Rules on event delStk
Number of rules = 0

Event event addDel was triggered at the context of RECENT.

void addStk() 11
void delStk() 12 ***** From Condition *****
****From Composite Event Action of Rule****

Thread-23 returning from put
finshiehd.

90

closing...

DB2 Jdbc driver started...

Sequence number = 13
RAISING EVENT Ledzsong0beginvoidselStk() 13
Notifying CLASS level event selStk...
LEDThread returning from get
notifying event selStk
Executing rules on event 'selStk' ...
Rules on event selStk
Number of rules = 0
DetectionMask at event event buySel: 1000

Event event buySel was triggered in context RECENT.

void selStk() 13 ***** From Condition *****
****From Composite Event Action of Rule****

Event event delSel was triggered at the context of CUMULATIVE.

void delStk() 12
void selStk() 13 ***** From Condition *****
****From Composite Event Action of Rule****

Thread-24 returning from put
finshiehd.
closing...

DB2 Jdbc driver started...

Sequence number = 14
RAISING EVENT Ledzsong0beginvoidbuyStk() 14
Notifying CLASS level event buyStk...
LEDThread returning from get
notifying event buyStk
Executing rules on event 'buyStk' ...
Rules on event buyStk
Number of rules = 0
DetectionMask at event event buySel: 1000

Event event buySel was triggered in context RECENT.

void buyStk() 14 ***** From Condition *****
****From Composite Event Action of Rule****

91

Event event addDelBuy was triggered at the context of CUMULATIVE.

void delStk() 7
void addStk() 11
void buyStk() 14 ***** From Condition *****
****From Composite Event Action of Rule****

Thread-25 returning from put
finshiehd.
closing...

92

APPENDIX D
SOME JAVA CLASS FILES

File “zsong0addDel.java”

import Sentinel.*;
import java.util.Vector;
import java.util.Hashtable;
import java.util.Enumeration;

public class zsong0addDel{
 static String rdbms = "";
 static String url = "";
 static String username = "";
 static String password = "";

 public static EventHandle addDel =null;

 public static void call_addDel(String Prdbms, String Purl, String Pusername, String
Ppassword)
 {
 rdbms = Prdbms;
 url = Purl;
 username = Pusername;
 password = Ppassword;

 ECAAgent myAgent = ECAAgent.initializeECAAgent();
 addDel = myAgent.createCompositeEvent(EventType.AND,"event addDel"
,(EventHandle)delStk.delStk, (EventHandle)addStk.addStk);

 myAgent.createRule("Rule addDel", addDel, "Led.True","addDel.addDelzsong0",
1,CouplingMode.DEFAULT,Context.RECENT);
}

public static void addDelzsong0(ListOfParameterLists paramLists) {
 String spc0 = "delete from stock_deleted_tmp";
 Jdbc storedProCom0 = new Jdbc(rdbms,url,username,password, spc0);
 storedProCom0.ExecuteSqlUpdate("delete from stock_deleted_tmp");

93

 spc0 = "insert into stock_deleted_tmp select * from stock_deleted, sysContext where
sysContext.context='RECENT' and sysContext.EVENTNAME='delStk' and
stock_deleted.vNo=sysContext.vNo";
 storedProCom0 = new Jdbc(rdbms,url,username,password, spc0);
 storedProCom0.ExecuteSqlUpdate("insert into stock_deleted_tmp");

 String spc1 = "delete from stock_inserted_tmp";
 Jdbc storedProCom1 = new Jdbc(rdbms,url,username,password, spc1);
 storedProCom1.ExecuteSqlUpdate("delete from stock_inserted_tmp");

 spc1 = "insert into stock_inserted_tmp select * from stock_inserted, sysContext where
sysContext.context='RECENT' and sysContext.EVENTNAME='addStk' and
stock_inserted.vNo=sysContext.vNo";
 storedProCom1 = new Jdbc(rdbms,url,username,password, spc1);
 storedProCom1.ExecuteSqlUpdate("insert into stock_inserted_tmp");

 //action function

 String spc = " insert into temp values('Mark',4)";
 Jdbc storedProCom = new Jdbc(rdbms,url,username,password, spc);
 storedProCom.ExecuteSqlUpdate(" insert into table temp ");
 System.out.println ("****From Composite Event Action of Rule****");
 }}

File “CallDynamicMethod.java”

import java.io.*;

public class CallDynamicMethod
{
 public static void ExecuteMethod(String className, String methodName,

Class[] paramTypes, Object[] params)
 {
 // load the new compiled class
 String strClass = className; // "InsertStock", etc
 ClassLoader cl = null;
 cl = ClassLoader.getSystemClassLoader ();
 Class cla = null;
 try {
 cla = cl.loadClass(strClass); // load the class
 }
 catch(ClassNotFoundException e4)
 {
 System.out.println(e4.toString());
 }

94

 // get the method from the class
 java.lang.reflect.Method meth = null;
 try {
 // find the particular method from the loadedclass
 meth = cla.getMethod(methodName, paramTypes);
 Object obj = null;
 meth.invoke(obj, params); // execute the particular method.
 System.out.println("finshiehd.");
 }
 catch(Exception e5)
 {
 System.out.println(e5.toString());
 }
 } // end of 'ExecuteMethod()'

} // end of class

95

LIST OF REFERENCES

[LIJ98] Lijuan, L. (1998), An Agent-Based Approach to Extending the Native

Active Capability of Relational Database Systems, Master’s thesis,
University of Florida, Gainesville, 1998

[DON98] Don Chamberlin. (1998), A Complete Guide To DB2 Unviersal Database.

IBM Almaden Research Center.

[JEN96] Jennifer Widom, and Stefano Ceri(1996), Active Database Systems

Triggers and Rules for Advanced Database Processing.

[Nor98] Norman W. Paton (1998), Active Rules in Database Systems.

[JEN96+] Jennifer Widom (1996), The Starburst Active Database Rule System,

IEEE Transactions on Knowlede and data engineering, Vol.8, No. 4:
August 1996, pp. 583-595

[CHA94] S.Chakravarthy, V. Krishnaprasad, E. Anwar, and S.K.Kim, “Composite

Events for Active Databases: Semantics, Contexts and Detection,” in
Proceedings International Conference on Very Large Databases,
Santiago, Chile, 1994, pp. 606-617.

[CHA94a] S.Chakravarthy, E. Anwar, L. Maugis, and D. Mishra, “Design of

Sentinel: An Object-Oriented DBMS with Event-Based Rules,” in
Information and Software Technology, Vol. 36, pp. 559-568, 1994

[GJ91] N.Gehani and H.V. Jagadish, Ode as an active database: Constraints and

triggers, in Proceedings of the Seventeenth International Conference on
Very Large Databases, pages 327-336, Barcelona, Spain, September 1991.

[CHA94b] S. Chakravarthy and D. Mishra, Snoop: An Expressive Event

Specification Language for Active Databases, Data and knowledge
Engineering, 13(3), Octorber 1994.

[KRI94] V.Krishnaprasad, Event Detection for Supporting Active Capability in an

OODBMS: Semantics, Architecture, and Implementation, Master’s
Thesis, Database Systems R&D Center, CIS Department, University of
Florida, Gainesville, 1994.

[LEE96] Lee, H. Support for Temporal Events in Sentinel: Design, Implementation,

and Preprocessing. Master’s thesis, University of Florida, Gainesville,
1996.

96

[JavaTutorial] The Java Tutorial.

[ART99] ART Taylor. JDBC Developer’s Resource.

97

BIOGRAPHICAL SKETCH

Zecong Song was born on March 05, 1972 in Baoding, Hebei, China. She

received her Bachelor of Science degree in Computer Science from Hebei University,

Baoding, Hebei, China in July 1994.

In the fall of 1998, she started her graduate studies in the department of Computer

and Information Sciences and Engineering at the University of Florida. She will receive

her Master of Science degree in Computer Science in August 2000 from the University of

Florida, Gainesville, Florida. Her research interests include active databases and e-

commerce.

98

