
PERFORMANCE EVALUATION OF GRACE HASH-JOIN ALGORITHM
ON THE KSR-1 MULTIPROCESSOR SYSTEM

By

XIAOHAI ZHANG

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

1994

Dedicated to my
Parents

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dr. Sharma Chakravarthy,

for showing me the path of research with his enlightening advise and expert guidance,

and for his continuous support and constant encouragement throughout the course

of this research work.

I am extremely grateful to Dr. Andrew Francis Laine and Dr. Herman Lam for

agreeing to serve on my committee and for their careful perusal of this thesis. Thanks

also go to Dr. Haruo Yokota at Japan Advanced Institute of Science and Technology

for his insightful suggestions and comments.

I would like to thank Randy Fischer for his various help and suggestions, and for

providing me all the resources I requested on the KSR-1 system.

I would like to thank Mrs. Sharon Grant for maintaining a well administered

research environment and making numerous copies of papers for me.

I will also take this opportunity to thank all the graduate students at this center

for their help and friendship.

Last, but not the least, I thank my parents and brother for their endless love.

Without their encouragement and endurance, this work would not have been possible.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS : iii

LIST OF FIGURES : vi

ABSTRACT : vii

CHAPTERS : 1

1 INTRODUCTION : 1

1.1 Join Algorithms in Relational Database Systems : : : : : : : : : : : : 1
1.2 Multiprocessor Systems and Database Design : : : : : : : : : : : : : 3
1.3 Motivation and Contribution : 5

2 SOME BACKGROUND: ALGORITHMS AND ARCHITECTURE : : : : 8

2.1 Hash-Based Join Algorithms : 8
2.1.1 Simple Hash-Join Algorithm : : : : : : : : : : : : : : : : : : : 11
2.1.2 GRACE Hash-Join Algorithm : : : : : : : : : : : : : : : : : : 12
2.1.3 Hybrid Hash-Join Algorithm : : : : : : : : : : : : : : : : : : : 14

2.2 Architecture of the KSR-1 System : 15
2.2.1 On-Demand Data Movement : : : : : : : : : : : : : : : : : : : 17
2.2.2 Parallel I/O System : 19

2.3 An Overview of Related Work : 20

3 IMPLEMENTATION ISSUES : 23

3.1 Double Bu�ering Technique : 23
3.2 Data Partitioning and Distribution : : : : : : : : : : : : : : : : : : : 25
3.3 Parallelism in Each Phase : 27
3.4 Synchronization Mechanism : 28
3.5 Hash Function : 29

4 RESULTS AND ANALYSIS : 31

4.1 Bu�er Management : 32
4.1.1 Processing Bu�er Size vs. Performance : : : : : : : : : : : : : 33
4.1.2 Range of Hash Values vs. Performance : : : : : : : : : : : : : 35

4.2 Parallelizing I/O Operations : 36
4.2.1 Double Bu�ering : 37
4.2.2 Arranging I/O threads : 38

4.3 Processor Allocation and Load Balancing : : : : : : : : : : : : : : : : 40

iv

4.3.1 Di�erent Processor Sets vs. Performance : : : : : : : : : : : : 41
4.3.2 Load Balancing vs. Performance : : : : : : : : : : : : : : : : : 43
4.3.3 Number of Processors vs. Performance : : : : : : : : : : : : : 45

4.4 Data Partition and Distribution : 48
4.4.1 Number of Disks vs. Performance : : : : : : : : : : : : : : : : 49
4.4.2 Data Distribution vs. Elapsed Time : : : : : : : : : : : : : : : 50

5 CONCLUSIONS AND FUTURE WORK : : : : : : : : : : : : : : : : : : : 53

REFERENCES : 56

BIOGRAPHICAL SKETCH : 60

v

LIST OF FIGURES

1.1 A General Hierarchical Architecture : : : : : : : : : : : : : : : : : : : 6

2.1 An Example of Basic Hash-Join Algorithm : : : : : : : : : : : : : : : 9

2.2 The Reduction of Work Load in Hash-Join : : : : : : : : : : : : : : : 10

2.3 General Architecture of KSR-1 System : : : : : : : : : : : : : : : : : 16

2.4 The Processor Unit in KSR-1 System : : : : : : : : : : : : : : : : : : 16

2.5 ON-Demand Data Movement in The All-Cache Memory : : : : : : : 18

2.6 The Hierarchical Structure of All-Cache Memory System : : : : : : : 19

3.1 Data Distribution During Parallel GRACE Hash-Join : : : : : : : : : 26

4.1 Processing Bu�er Size vs. Elapsed Time : : : : : : : : : : : : : : : : 34

4.2 Range of Hash values vs. Probing Time : : : : : : : : : : : : : : : : : 36

4.3 The E�ect of Double Bu�ering : 38

4.4 Binding methods of I/O threads vs. performance : : : : : : : : : : : 39

4.5 The Impact of Di�erent Processor Sets : : : : : : : : : : : : : : : : : 42

4.6 Load Balancing strategy vs. Elapsed Time : : : : : : : : : : : : : : : 44

4.7 Number of Processors vs. Partitioning Time : : : : : : : : : : : : : : 47

4.8 Number of Processors vs. Building Time : : : : : : : : : : : : : : : : 47

4.9 Number of Processors vs. Probing Time : : : : : : : : : : : : : : : : 48

4.10 Number of Disks vs. Elapsed Time : : : : : : : : : : : : : : : : : : : 50

4.11 Data Distribution vs. Elapsed Time : : : : : : : : : : : : : : : : : : : 51

vi

Abstract of Thesis
Presented to the Graduate School of the University of Florida

in Partial Ful�llment of the Requirements for the
Degree of Master of Science

PERFORMANCE EVALUATION OF GRACE HASH-JOIN ALGORITHM
ON THE KSR-1 MULTIPROCESSOR SYSTEM

By

Xiaohai Zhang

December 1994

Chairman: Dr. Sharma Chakravarthy
Major Department: Computer and Information Sciences

The performance of relational databases is being challenged by the increasing data

size they have to deal with. Due to the limited capability of uniprocessor systems and

the reduction of hardware cost, multiprocessor systems may provide a viable alterna-

tive for meeting the requirements of applications with very large databases. This the-

sis presents our preliminary work on the parallel database research within the COMA

shared-everything multiprocessor environment. In the relational database systems,

join is one of the most expensive but fundamental query operations. Among vari-

ous join methods, the hash-based join algorithms show great potential because they

lend themselves for parallelism. This thesis describes our implementation and per-

formance evaluation of the GRACE hash-based join algorithm on the KSR-1 shared-

everything multiprocessor system which has the COMA memory structure. Various

join methods are analyzed and compared with respect to their e�ciency and suit-

ability for the multiprocessor environment. The following implementation issues are

addressed: double bu�ering, data partition and distribution, potential parallelism,

synchronization and hash function. Finally, the performance evaluation results and

the corresponding analysis are presented. The results and analysis indicate that the

vii

KSR-1 system provides a good environment for parallelizing the GRACE hash-based

join algorithm. In addition, the work also shows that the architecture proposed by

G. Graefe in 1992 possesses great potential for parallel database development.

viii

CHAPTER 1
INTRODUCTION

In relational database management systems (RDBMS), join is one of the expensive

but fundamental query operations. It is frequently used, computationally expensive

and di�cult to optimize. During the last decade, a lot of research work has been

focused on developing e�cient join algorithms. Consequently, various join methods

are available for current database systems: nested-loops join, sort-merge join, hash-

based join [17].

1.1 Join Algorithms in Relational Database Systems

Nested-loops join comes directly from the de�nition of join operation. In the

nested-loops join, the source relations are named as inner and outer relations. For

each tuple of the outer relation, all tuples of inner relation are retrieved and compared

with it. If the join condition is satis�ed, the pair of tuples are concatenated and put

into the result relation. Sort-merge join �rst sorts the two relations on the join

attributes, then scans both relations on the join attributes. Whenever a tuple from

one relation matches another tuple from the other relation according to the join

condition, they are concatenated as a result tuple.

Hash-based join performs the operation in a more interesting way. Typically, it

is executed in two phases. First, the smaller relation is used to build a hash table

based on the values of applying a hash function to the join attributes. Second, the

tuples of the other relation are used to probe the hash table by means of applying

the same hash function to its join attributes. Tuples from each relation that match

1

2

on join attributes will be concatenated and written into the result relation (Chapter

2 describes hash-based join algorithms in detail).

The advantage of nested-loops join is simple. However, since it compares the

tuples from two relations exhaustively, it is not e�cient under most circumstances.

When joining two large relations and the selectivity factor is extremely low, most

of comparisons are wasteful as they do not generate result tuples. If the cardinality

of the two relations are m and n, respectively, the complexity of this algorithm is

O(mn). In contrast, sort-merge join outperforms the nested-loops join while the

relations are presorted, since both relations need to be scanned only once to complete

the join operation. In the case of low selectivity factor, the number of comparisons

is signi�cantly reduced. But if the relations are not sorted before they participate in

the join, the complexity includes the cost to sort both relations, which is O(n log n)+

O(m logm), where m, n are the cardinalities of the source relations. Hash-based join

also improves the performance via reducing the number of comparisons. During the

probing phase, a tuple from the larger relation only needs to be compared with the

tuples from the smaller relation which have the same hash value. The tuples which

have di�erent hash values do not match. The scope of comparison for each tuple from

the larger relation is then reduced from the entire smaller relation to a small subset.

The complexity of this algorithm is O(n +m), since the smaller relation is scanned

once to build the in-memory hash table, and the larger relation is also scanned once

to probe the hash table.

Hash-based join has been proved to be more e�cient than other join algorithms in

most cases [26, 15, 8, 19]. However, suprisingly, most of the existing database systems

only use the nested-loops join and sort-merge join. Historically, the sort-merge join

is considered as the most e�cient join method [6]. The main reason for this is that

System R did not measure the performance of hash-based join [2]. However, since

3

the work [15, 8], hash-based join has received considerable attention: a large number

of hash-based join algorithms have been proposed, implemented and evaluated. The

emergence of interest in hash-based join is driven by the rapid hardware development.

First, the technology makes large amounts of memory possible, which is not necessary

but desirable for the hash-based join to achieve its best performance. Second, with the

trends moving towards multiprocessor system, hash-based join shows great potential

as it lends itself for parallelism.

1.2 Multiprocessor Systems and Database Design

Multiprocessor systems are being used nowadays, mostly because of their high

performance and relatively low cost. In order to improve the performance of the

relational databases by means of parallel computing, specialized hardware such as

database machines were proposed and implemented in the early stages of parallel

database systems. For example, Gamma at University of Wisconsin [13, 9], Bubba at

MCC [7, 1], GRACE in Japan [18, 26], Volcano at University of Colorado at Boulder

[20, 21] are some of the research prototypes, and NonStop SQL from Tandem [33],

TBC/1012 from Teradata [12] are commercial products. Although these systems

provide high performance, they use propriety hardware. The high cost to design and

build such database machines prevent them from becoming popular in the real world.

Thus, the trend has been gradually towards developing parallel database system using

a general-purpose multiprocessor environment.

Based on their architecture, general-purpose multiprocessor systems can be cate-

gorized into shared-nothing, shared-disk and shared-everything systems. In a shared-

nothing multiprocessor system, every processor has its own local memory and each

disk is accessible to only one processor; and in a shared-disk system, every processor

has its local memory but a disk may be accessed by more than one processors; in a

shared-everything system, both memory and disks are shared among the processors.

4

Several researchers [32, 3, 4, 29] have investigated the suitability of each architec-

ture from the view point of DBMS design. Although the shared-nothing architecture

can provide high scalability, the processors can only communicate with each other

through message passing, which is typically much slower than the shared-everything

case. The development of software is also more di�cult in a shared-nothing system

because of the lack of exibility and compatibility with conventional programming.

Shared-everything architecture provides a more comfortable software development

environment. Each processor can easily communicate with the other processors via

the shared memory. The synchronization of parallel operations can be achieved with

little e�ort. Besides, the shared-everything systems provide automatic load balanc-

ing. Therefore, we believe that shared-everything multiprocessor systems are good

candidates for parallelizing database systems.

Shared-everything systems can be further divided into three categories according

to their memory structure. The �rst is Uniform Memory Access model (UMA), in

which every processor can access each memory unit in a uniform way, no matter

where the memory unit is. All processors have equal access time to all memory units

[23]. The second is Nonuniform Memory Access model (NUMA), which means that

the way a processor accesses a memory unit depends on the location of the particular

memory unit. For example, di�erent interconnect networks may be traversed. The

third is Cache Only Memory Architecture model (COMA), in which every part of

the memory is also the local cache of certain processor. All the caches constitutes a

global pool of memory. Actually, the COMA model is a special case of NUMAmodel.

The KSR-1 all-cache memory structure in chapter 2 will illustrate the COMA model.

Symmetry S-81 is an example of UMA model, BBN TC-2000 Buttery is an example

of NUMA model and KSR-1 is a typical COMA machine.

5

1.3 Motivation and Contribution

Hash-based join algorithms have been implemented and evaluated on both shared-

nothing systems and shared-everything systems. Gamma project has carefully stud-

ied the performance of hash-based join on shared-nothing architecture [16, 14]. The

behavior of hash-based join on shared-everything has been investigated [27, 30]. Ac-

tually, Lu et al. [30] evaluated the hash-based join based on simulation, where the

lack of accuracy is unavoidable; and Kitsuregawa et al. [27] implemented and evalu-

ated the hash-based join on Symmetry S81, which is classi�ed as UMAmultiprocessor

system. The performance of hash-based join on COMA multiprocessor architecture

is still under question. We feel it is very useful to understand the hash-based join

algorithms in the COMA model, because the COMA systems have high scalability

besides the advantages of shared-everything architecture (for example, the KSR-1 can

be scaled up to 1096 processors). COMA model is one of the most suitable multipro-

cessor environment for databases as it Combines both the features of shared-nothing

and shared-everything architecture, and in addition it has fast memory access. Graefe

[22] proposed a general hierarchical architecture which is believed to have the advan-

tages, such as e�cient communication, sychroniztion, automatic load balancing, high

scalability and reliability (Figure 1.1). These features are very essential for a parallel

database system. The paper only gave a general description of this architecture and

many details were left open. However, we believe that the architecture of COMA sys-

tem KSR-1 is very similar to the proposed architecture (this issue will be discussed

further in Chapter 2). It is interesting to verify the advantages of this architecture

by actually implementing database algorithms on the KSR-1 system. These factors

motivated our research on the parallelism of hash-based join within the COMAmodel

and KSR-1 architecture.

6

Memory Memory Memory

Disk

Disk

Disk

Disk

Disk

Disk

Disk

Disk

Disk

Disk

Disk

Disk

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Local Bus Local Bus Local Bus

Interconnection Network

Figure 1.1. A General Hierarchical Architecture

There are three types of hash-based join algorithms: Simple hash-join, GRACE

hash-join and Hybrid hash-join (their di�erence will be addressed in chapter 2). The

GRACE hash-join is not only easy to parallelize, but also able to handles large rela-

tions e�ciently. In addition, it can be easily modi�ed to implement other hash-join

algorithms. Therefore, we implemented the GRACE hash-join in our �rst stage of

study. This paper addresses some implementation issues of parallelizing the GRACE

hash-join on the KSR-1 multiprocessor system (which has COMA structure) and

presents the results of our study about the GRACE hash-join in the COMA model.

We evaluated the performance of GRACE hash-join under various conditions. The

analysis based on the evaluation results is aiming to show how to optimize the per-

formance of GRACE hash-join in the COMA model. The following techniques to

parallelize GRACE hash-join are covered in this thesis: processor allocation and load

balancing, data Partition and distribution, I/O overlapping and bu�er management.

7

The rest of this thesis is organized as follows: Chapter 2 describes the hash-based

join algorithms, the COMA architecture of the KSR-1 system, and gives an overview

of related work. Chapter 3 addresses some implementation issues. Chapter 4 presents

the evaluation results and analysis. Finally, Chapter 5 gives conclusion and discusses

some future work.

CHAPTER 2
SOME BACKGROUND: ALGORITHMS AND ARCHITECTURE

This chapter presents various hash-based join algorithms, the COMA architec-

ture of the KSR-1 shared-everything multiprocessor system and some related work.

Section 2.1 discusses the general strategy of hash-based join and describes three ma-

jor hash-based join algorithms; section 2.2 presents the architecture of the KSR-1

system, with the focus on its all-cache memory structure and parallel I/O system;

Section 2.3 provides an overview of related work.

2.1 Hash-Based Join Algorithms

Let R and S be two relations participating in the join, and the size of R be

smaller than that of S. The most straightforward hash-join algorithmworks as follows:

applying a hash function to R's join attributes, build an in-memory hash table from

R; then use each tuple of S to probe the hash table. Whenever a match occurs, the

matching tuples are output. An example of this basic hash-join is shown in �gure

2.1.

As illustrated in �gure 2.1, each tuple of R is put into the hash table according

to the value obtained after applying the hash function to the join attribute, which

is Dept# in this example. If more than one tuple have the same hash value, they

are linked together in the same entry (R1 and R3 in entry 2). This is the procedure

to build the hash table. After having built the hash-table, for each tuple of S, the

same hash function is also applied to the join attribute. If the hash value indicates

an empty entry in the hash-table, This tuple is dropped; otherwise, the tuple is

compared with the tuples in the corresponding entry. If a match is found, the pair of

8

9

Employee Dept#

12

15Maller

Chang

Boral

Smith 2

10

P_2

P_3

2

15

11

Project Dept#

P_6 12

P_4

P_5 9

P_1 3

R

S

S1

S2

S3

S4

S5

S6

Entry 0

Entry 1

Entry 2

Entry 3

Entry 4

Entry 5

Entry 6

Entry 7

Entry 8

Entry 9

R1

R2

R3

R4
R1 R3

R2

R4

In-Memory Hash Table

R join S =

Employee Dept# Project Dept#

Smith

Chang

2

12

2

12

P_2

P_6

Maller 15 P_3 15

(Join Attribute: Dept#)

Probe

Build

Hash Function: Dept# mod 10

Figure 2.1. An Example of Basic Hash-Join Algorithm

tuples are written into result relation. This procedure is termed as probing phase. It

works as follows: while applying a hash function to two attributes, if the hash values

are di�erent, then the two attribute values can not be equal.

The reason for choosing the smaller relation to build the hash table is try to avoid

building a large hash table in the available memory. But even the smaller relation can

still produce a hash table which exceeds the memory. To solve this problem, all the

enhanced hash-join algorithms partition the two relations into disjoint subsets, called

buckets, and then join the corresponding buckets. The partition does not reduce the

overall size of hash table. However, the hash table is divided into a set of small hash

tables, and the small hash tables are built in the memory one by one to join each

pair of the corresponding buckets. It is this \divide and conquer \strategy allows us

to parallelize the hash-join algorithms. Usually, each hash-join algorithm is executed

in two phases:

10

Partitioning phase: Apply a hash function h(x) to the join attributes of the tuples

in both R and S. According to the hash value, each tuple is put into a corre-

sponding bucket. Suppose the range of hash values is H, and H1;H2; : : : ;Hn

are disjoint subsets of H, where H = H1 [H2:::[Hn, and H1 \H2 : : :\Hn = �.

Buckets R1; R2; : : : ; Rn and S1; S2; : : : ; Sn are corresponding buckets of R and

S, such that R = R1 [R2:::[Rn, R1 \R2 : : :\Rn = �, and S = S1 [S2:::[Sn,

S1 \ S2 : : : \ Sn = �. Suppose r is a tuple of R, if h(r) is in Hi, then r is put

into Ri. Similarly, the tuples of S are put into Si.

Joining phase: Use the basic hash-join algorithm to join Ri and Si(i = 1 : : : n).

We do not need to join Ri and Sj if i 6= j. If r 2 Ri and s 2 Si, we have h(r)

6= h(s), so that r and s do not match on join attributes.

The e�ciency of this join operation comes from the reduction of work load, which

is illustrated in �gure 2.2.

R

S

R

S

(a) without partition (b) with partition

Shaded parts represent the work load

Figure 2.2. The Reduction of Work Load in Hash-Join

Although the hash-based join algorithms are e�cient under most conditions, there

are some problems with this class of algorithms. First, it is not easy to choose

11

a hash function that partitions the source relations into equal size buckets, as the

distribution of join attribute values are not known. Furthermore, keeping track of

the distribution of join attribute values may not be practical due to its high cost.

When a hash function fails to partition the source relations uniformly, some buckets

of R may be too large to �t into the memory. This is called bucket overow. A

compensating method for bucket overow is to further divide the oversized buckets

into smaller buckets by recursively applying the same hash function [15, 8]. Even

when the bucket overow does not occur, the unbalanced partitioning has impact on

the load balancing in a multiprocessor environment. Second, the hash-join algorithms

are only suitable for equijoin. For nonequijoins, the probing procedure is di�cult to

implement.

2.1.1 Simple Hash-Join Algorithm

The Simple Hash-Join algorithm creates only one bucket at a time during its

execution, instead of creating all the buckets at the begining. Suppose the range

of hash values is H. According to the size of available memory, H is partitioned into

H0;H2; : : : ;Hn�1, so that the corresponding R0; R2; : : : ; Rn�1 can �t into memory. At

�rst, the relation R is scanned and the hash function is applied to the join attributes

of each tuple. If the hash value is in H1, the tuple is put into the in-memory hash

table, otherwise it is written into a temporary �le R temp. At the end of this stage,

R is partitioned into two parts: the tuples whose hash values are in H1 are used to

build the hash-table, the other tuples are written in R temp �le. Next, the relation

S is scanned, and the same hash function is also applied to the join attributes of

each tuple. If the hash value is in H1, this tuple is used to probe the hash table,

otherwise the tuple is written into a temporary �le S temp. This process is repeated

with R temp and S temp as its input �les and Hi(i = 2 : : : n) as new range partition.

12

The process terminates whenever either the R temp or S temp is empty.

The pseudo code for Simple Hash-Join algorithm is as follows:

/* h is the hash function */
/* H[0..n-1] is the range array */
i=0;
do
{ for (each tuple r in R){

if (h(r) in current_range)
insert r into hash-table;

else
write r into R_temp;

}
for (each tuple s in S){

if (h(s) in current_range){
use s to probe the hash-table;
if (any match is found)

output the matching tuples;
}
else

write s into S_temp;
}
R = R_temp;
S = S_temp;
current_range = H[i+1];

}
while (R_temp is not empty and S_temp is not empty);

The disadvantage of this algorithm is that it introduces too many I/O operations

when the memory is not large. In that case, the range of hash values has to be par-

titioned in many subsets; and each tuple may be frequently read and written. Under

most conditions, this algorithm is not e�cient due to the I/O overhead. However, if

the memory is large enough to hold the entire hash table built from R, partitioning

is not necessary and this algorithm can provide good performance.

2.1.2 GRACE Hash-Join Algorithm

Simple Hash-Join algorithm combines the partitioning work and probing work

into each iteration of the loop. In contrast, the GRACE Hash-Join algorithm exe-

cutes the partitioning phase and joining phase separately. In the partitioning phase,

Both R and S are partitioned into an equal number of buckets; in the joining phase,

13

each pair of corresponding buckets are joined and the result relation is formed by

concatenating the results of each separate join. These two phases are very similar to

the two phases presented at the beginning of this chapter as the general description

of hash-based join algorithms.

The GRACE Hash-Join algorithm can be described as follows:

/* R[i](i=1..n) and S[i](i=1..n) are buckets */
for (each tuple r in R relation)
{ apply hash function to the join attributes of r;

put r into the appropriate bucket R[i];
}

for (each tuple s in S relation)
{ apply hash function to the join attributes of s;

put r into the appropriate bucket S[i];
}

for (i=1;i<=n;i++)
{ build the hash table from R[i];

for (each tuple s in S[i]){
apply hash function to the join attributes of s;
use s to probe the hash table;
output any matches to the result relation;

}
}

In this algorithm, all the tuples only need to be written back into disk once.

When the memory is not large, the I/O overhead is greatly reduced compared with the

SimpleHash-Join algorithm. Therefore, this algorithm performsmuchbetter than the

Simple Hash-join algorithm under most circumstances. From the above description

we can also see that the partitioning phase and joining phase are completely disjoint

in the GRACE hash join. This feature avoides bucket overow: in the partitioning

phase, increase the number of buckets to guarantee that each bucket �ts into the

available memory; in the joining phase, integrate multiple buckets into a set of larger

buckets which have the maximum size to �t into the memory. This techniques is

termed bucket tuning. Another advantage is that during the partitioning phase,

R and S can be partitioned concurrently. These features make it easy to split the

14

join into many smaller operations. These operations can be assigned to di�erent

processors with little data dependence in the multiprocessor environment.

2.1.3 Hybrid Hash-Join Algorithm

The Hybrid hash-join algorithm combines both the features of Simple Hash-Join

and Grace Hash Join. Similar to the GRACE hash-join, it consists of partitioning

phase and joining phase. However, in the partitioning phase, a portion of relation R

is used to build an in-memory hash table. When the memory is large enough, there

may be additional memory available besides the memory used to partition relation R.

Hybrid hash-join creates the hash table in the additional memory. R is partitioned

into n+1 parts: R0; R1; : : : ; Rn, where R0 is an in-memory hash table, and R1; : : : ; Rn

are written back into the disk as temporary �les. The corresponding range sets of

hash values are H0;H1; : : : ;Hn. Next, relation S is also partitioned using the same

hash function. Logically, S is also partitioned into n+1 parts: S0; S1; : : : ; Sn. How-

ever, instead of being written back into the disk, the tuples in S0 are used to probe

the hash table. Any matching tuples are output to the result relation. The other

parts, which are S1; : : : ; Sn, are written into the disk as temporary �les. At the end

of this phase, R and S are split into buckets and a portion of join work has been

completed. The join phase is the same as in the GRACE hash-join.

The following is the description of this algorithm:

/* H[0..n] is the array of range sets of hash function */
/* R[1..n] and S[1..n] are buckets */

for (each tuple r in R)
{ if (the hash value of r is in H[0])

insert r into the in-memory hash table;
else

put r into appropriate bucket R[i];
}

for (each tuple s in S)
{ if (the hash value of s is in H[0]){

use s to probe the hash table;

15

put any matching tuples into the result relation;
}
else

put s into appropriate bucket S[i];
}

for (i=1;i<=n;i++)
{ build the hash table from R[i];

for (each tuple s in S[i]){
apply hash function to the join attributes of s;
use s to probe the hash table;
output any matches to the result relation;

}
}

When the available memory is extremely large, the Hybrid hash-join algorithm out-

performs the GRACE hash-join algorithm, since it optimizes the usage of memory.

Actually, the size of hash table built in partitioning phase depends on the size of

additional memory. If a large hash table can be created in the partitioning phase, a

signi�cant part of join phase is done in advance. Meanwhile, the tuples in R0 and

S0 do not need to be written back into the disk and read in the joining phase. This

reduces the number of I/O operations.

2.2 Architecture of the KSR-1 System

The KSR-1 is a typical shared-everything multiprocessor system with COMA

structure. Combining the shared-memory architecture with high scalability, the sys-

tem provides a suitable software development environment for various types of appli-

cations: large-scale numeric processing, transaction processing, database processing

and their combinations. Its unique all-cache memory structure enables it to run

many industry-standard software systems such as standard UNIX operating system,

standard programming language (Fortran, C, Cobol) and standard networks. This

industry-standard development environment makes it easy to port existing applica-

tion softwares to the KSR-1 system [24]. The system also provides automatic load

balancing, which is absent in the shared-nothing systems.

16

The general architecture of the KSR-1 system is illustrated in �gure 2.3 and �gure

2.4:

: Disk

Ring1

Ring 0 Ring 0 Ring 0

: Processor Unit : I/O Processor Unit

Figure 2.3. General Architecture of KSR-1 System

Subcache

Local Cache

Processor

32 MB

0.5 MB

Figure 2.4. The Processor Unit in KSR-1 System

The system has 96 processors, which are divided into three sets. These processor

sets are further organized into a ring structure. The processors in the same set are

connected by one of the rings at level 0 (ring:0), so that they can communicate

with each other directly through the ring. The three rings at level 0 are further

connected by a ring at level 1 (ring:1). There are communication ports between the

17

ring at level 1 and each of the rings at level 0. The processors in di�erent rings must

communicate with each other via ring:1. The packet-passing rate of a ring:0 is 8

million packets/second (1 GB/second). For a ring:1, the rate can be con�gured as 8,

16 or 32 million packets/second (1, 2 or 4 GB/second).

In each ring at level 0, there are one processor working as the I/O processor which

is capable of accessing �ve I/O channels in parallel, and each I/O channel may be

connected up to two disks. Therefore, each I/O processor can control as many as 10

disks. The speed of I/O channel is 30 MB/second. If other processors want to access

these disks, they must communicate with the corresponding I/O processor.

Each processor has 0.5 Mbytes subcache plus 32 Mbytes local cache; all the local

cache memories are managed by the all-cache engine as a huge pool of shared-memory.

2.2.1 On-Demand Data Movement

The local cache associated to each processor is divided into 211 pages of 16 KB,

and each page is divided into 128 subpages of 128 bytes. When a processor references

an address, it �rst checks with the subcache, then searches the local cache if necessary.

If the address is not found in the local cache, on-demand data movement occurs: The

memory system allocates one page of space in the local cache, and then copies the

subpage containing the referenced address into the local cache. In other words, the

unit of allocation is page and the unit of transfer/sharing is subpage. In the memory

system, the ALLCACHE engine is responsible for locating and transferring subpages

among the local caches, as described in �gure 2.5.

In the �gure 2.5, suppose processor B wants to read address N, but N is not in

the local cache of processor B. Then, the ALLCACHE engine is informed to �nd

address N within the global memory. It is assumed that N is found in the local cache

of processor A. A page is allocated in the local cache of processor B, and the subpage

containing address N is copied from A's local cache to B's local cache [25].

18

Local Local
Cache

Local
Cache

ALLCACHE Engine

Processor B Processor XProcessor A

Cache

Page

N

N

Address

Address
Page

Subpage Subpage

Page Size: 16 KB Subpage Size: 128 Bytes

Figure 2.5. ON-Demand Data Movement in The All-Cache Memory

If processor B needs to write address N, the ALLCACHE engine invalidates all

the copies of address N. Therefore, after processor B updates the address N, the copy

of N in processor B's local cache is the only valid copy. All the other processors

should get a copy of N from processor B's local cache if they need to access address

N.

The all-cache memory system in KSR-1 has a hierarchical structure. The �rst

level of the hierarchy is ALLCACHE group:0, which is comprised of ALLCACHE

engine:0, local caches and processors within the same ring:0 shown in �gure 2.3. The

second level is ALLCACHE group:1, which consists of three ALLCACHE group:0.

Figure 2.6 shows this hierarchical structure:

Although the KSR-1 system only implements two levels of this hierarchy, the

structure is natural for scalability: higher level ALLCACHE group can be formed

by the lower level groups. During the memory access procedure, if the referenced

19

ALLCACHE Enginee:0

Local

Cache

Local
Cache

Processor Processor

AllCACHE Group:0

ALLCACHE Enginee:0

Local
Cache

Local
Cache

Processor Processor

AllCACHE Group:0

ALLCACHE Enginee:0

AllCACHE Group:0

Processor Processor

Cache
Local Local

Cache

ALLCACHE Engine:1

ALLCACHE Group:1

Figure 2.6. The Hierarchical Structure of All-Cache Memory System

address is located in the local cache in the same ALLCACHE group:0 as the re-

questing processor, then only ALLCACHE engine:0 needs involved and data is only

transferred through ring:0. If the referenced address is located in a local cache in a

di�erent ALLCACHE group:0, the ALLCACHE engine:1 will be requested to search

and transfer data via ring:1.

2.2.2 Parallel I/O System

As shown in �gure 2.3, the disks are only connected to the I/O processors in

each ring. Every other processor can access the disks but must do this via the

I/O processors. At �rst, the accessing processor sends an I/O request to the I/O

processor; upon receiving the request, the I/O processor invokes the corresponding

I/O channel which will handle the I/O operation without the assistance of the I/O

processor. When the I/O operation has been �nished, the I/O processor noti�es the

requesting processor the accomplishment. In the case that more than one processor

need to access the disks connected to the same I/O processor simultaneously, the I/O

processor serializes the I/O requests and issues I/O commands to the corresponding

20

channels one by one. Since the issuing of I/O commands takes very short time

compared with the actual disk accessing time, the disks can almost be accessed in

parallel. However, the disks bound to the same I/O channel can only be accessed

serially.

The architecture of KSR-1 system is similar to the proposed architecture in �gure

1.1. First, ring:0 is equivalent to the local bus in the proposed architecture. In �gure

1.1, all the processors access the shared memory through local bus; in the KSR-1

system, the processors send memory access requests to ALLCACHE engine:0, and the

ALLCACHE engine searches and transfers the requested data through ring:0. Second,

the interconnection network in �gure 1.1 is implemented in the KSR-1 as the ring:1.

ring:1 connects the processor sets located in separate ring:0. This is exactly what the

interconnection network does in �gure 1.1. Third, although the disks associated to

each ring:0 are only connected to the I/O processor, they can be accessed in parallel.

The architecture in �gure 1.1 provides the same functionality but in a di�erent way:

every processor accesses any disks by way of local bus. Furthermore, both of them

possess high degree of scalability because of their hierarchical architectures.

2.3 An Overview of Related Work

Hash-based join algorithms show great potential in multiprocessor systems be-

cause they can be easily parallelized. Many researchers have proposed parallel version

of hash-join algorithms and studied their behavior and performance using simulation,

implementation and analytical models [26, 15, 14, 16, 30, 31, 27].

Based on an analytical model, [15] compared various query processing algorithms

in a centralized database system with large memory. The results showed that hash-

based algorithms outperform all the other algorithms when the size of available mem-

ory is larger than the square root of the size of involved relations. [14] extended the

hash-based join algorithms to a multiprocessor environment. They implemented and

21

evaluated Simple hash-join, GRACE hash-join, Hybrid hash-join and sort-merge join

using the Wisconsin Storage System(Wiss) [10]. The result of performance evalua-

tion not only veri�ed the analytical conclusions in [15], but also showed that both

GRACE hash-join and Hybrid hash-join algorithms provide linear increases in per-

formance when resources increase. [16] studied the performance of Simple hash-join,

GRACE hash-join, Hybrid hash join and sort-merge join algorithms within a shared-

nothing architecture. They found that non-uniformly distribution of join attribute

values has great impact on the performance of hash-based join algorithms. The

Hybrid hash-join algorithm was shown to dominate the others unless the join at-

tribute values are non-uniformly distributed and the memory is relatively small. [30]

analyzed the hash-based join algorithms in a shared-memory environment. Their an-

alytical model considered two key features to optimize the performance: the overlap

between the CPU processing and I/O operations and the contention of writing to the

same memory. The study concluded that the Hybrid hash-join algorithm does not

always outperform the other algorithms because of the contention. The authors also

proposed a modi�ed Hybrid hash-join algorithm to reduce the contention. [31] pro-

posed a new version of parallel GRACE hash-join algorithm for a shared-everything

environment. The modi�cation on this algorithm was designed to improve the load

balancing in the presence of data skew. They implemented the modi�ed GRACE

hash-join algorithm on a 10 node Sequent Symmetry multiprocessor system. Both

the theoretical analysis and implementation results showed that the modi�ed algo-

rithm provides a much better performance when the data is skewed. [27] implemented

and evaluated parallel GRACE hash-join algorithm on a shared-everything multipro-

cessor system which is Sequent Symmetry S81. They exploited the parallelism with

respect to I/O page size, parallel disk access, number of processors and number of

22

buckets. The work concluded that such a shared-everything multiprocessor system

has potential for building parallel database systems.

CHAPTER 3
IMPLEMENTATION ISSUES

Since the KSR-1 is a general-purpose multiprocessor system, it provides great

exibility for software development, but does not have special hardware for support-

ing database operations such as sorting and indexing. Therefore, to parallelize the

GRACE hash-join algorithm on KSR-1 system, it is very important to e�cientlymake

use of the available resources such as parallel I/O system, automatic load balancing

and all-cache memory structure.

We further divide the joining phase of the GRACE hash-based join algorithm

into two parts: the phase of building the hash table and the phase for probing the

hash table. This results in three phases for the GRACE hash-based join algorithm:

partitioning phase, building phase and probing phase. Exploit of parallelism in each

phase is important.

This chapter discusses several implementation techniques, each making use of

a particular aspect of parallelism. The rest of this chapter is organized as follows:

section 3.1 presents the technique for overlapping I/O operations and CPU processing;

section 3.2 addresses data partitioning and distribution; section 3.3 describes the

synchronization mechanism; section 3.4 details the parallelism obtained in each phase

of GRACE hash-based join algorithm; section 3.5 discusses the hash function.

3.1 Double Bu�ering Technique

Most database operations spend a lot of time in accessing the secondary storage

because the main memory is usually not large enough to hold the entire database. In

the case of GRACE hash-based join algorithm, there are I/O operations involved in

23

24

each phase: in the partitioning phase, the tuples in both R and S need to be read into

the memory for applying the hash function for partitioning the relations, and then

each partition is written back to one or more disks; in the building phase, the tuples

in R are read into memory to build hash tables; in the probing phase, the tuples in

S are read into memory to probe the hash tables. Hence, taking advantage of the

parallel I/O system on the KSR-1 to reduce the I/O waiting time is a main issue for

implementing the parallel GRACE hash-join algorithm.

In each phase, the data are read into memory page by page. It is not possible

to reduce the time to read/write one page, but we can overlap the I/O operations

and CPU processing. The idea is to use double bu�ering technique. Usually, each

processor needs a local bu�er to hold the data which is being processed. For example,

in the partitioning phase, suppose processor P0 is in charge of partitioning the data

�le R0, and B0 is the local bu�er associated with P0. The tuples in R0 are �rst read

into B0, then P0 begins to process the data in B0. When P0 has �nished processing

B0, it sends request to the I/O system for getting more data into bu�er B0 from �le

R0. The disadvantage of this procedure is obvious: whenever P0 needs new data, it

has to wait for the disk read operation.

Double bu�ering technique solves this problem by assigning two bu�ers for each

processor. In order to implement double bu�ering, there need be two bu�ers, B0 and

B1, associated with P0 in the previous example. First, the processor P0 reads data

into B0; then, it creates another thread to read data from R0 into B1. Thus, while P0

is processing the data in B0, new data are also being read into B1. When P0 �nishes

the processing of B0, hopefully B1 has been ready to be processed. Similarly, while

processing B1, new data are also being read into B0. In this way, most of I/O waiting

time is avoided.

25

The double bu�ering technique is suitable for the parallel I/O structure in the

KSR-1 system. As we know, the disks are only connected to the I/O processor in

each ring. The other processors only need to send I/O requests to the I/O processors,

and the I/O processors will take charge of the actual I/O operations. In the case

of double bu�ering, the thread created for reading new data takes little time of P0,

because the corresponding I/O processor accomplishes most of the I/O operation.

Hence, P0 can dedicate itself to performing join operation.

3.2 Data Partitioning and Distribution

To take full advantage of parallel I/O system, data can also be partitioned and

distributed. In the absence of data distribution, multiple processors may have to

access the same disk at the same time, and one I/O operation needs to wait for the

end of another I/O operation. This situation causes the disk subsystem to be the

bottleneck of performance.

If data is partitioned and distributed across multiple disks, simultaneous access to

the same relation, either R or S, , or both, becomes feasible. Suppose the relation R

is partitioned into �ve data �les: R0, R1, R2, R3, R4, and they are stored in �ve disks:

D0, D1, D2, D3, D4, respectively. Five processors, P0, P1, P2, P3, P4, are assigned

to process each data �le. Pi can access �le Ri (i = 0; : : : ; 5) without any contention.

If the number of processors is larger than the number of disks, it is also possible to

allocate multiple processors for each data �le. However, there is an optimal number

of processors for each data �le [27]. Let us denote it as M. If more than M processors

are processing a data �le, the performance may remain the same or even be degraded

while increasing the number of processors. The reason is that the e�ect of too much

I/O contention outweighs the acceleration of multiple processors.

Distribution of data for the parallel GRACE hash-join is shown in �gure 3.1.

First, the two source relations R and S are horizontally partitioned and distributed

26

across a set of disks. These disks may be controlled by the same I/O processor but

must be connected to di�erent I/O channels, because two disks using the same I/O

channel can not be accessed in parallel. Second, At the end of partitioning phase, the

bucket �les of the same relation are distributed across the involved disks, so that the

join operation can be performed on di�erent pairs of buckets concurrently. Finally,

To minimize the case that di�erent processors are trying to write into the same disk

simultaneously, the result relation are distributed across the disks.

I/O Channel 1

I/O Channel 2

I/O Channel 3

I/O Channel 4

I/O Channel 5

Disks
Distribution

Bucket Files

Result Files

I/O Processor
S Relation

R Relation

Figure 3.1. Data Distribution During Parallel GRACE Hash-Join

In our implementation, the two source relations, R and S are horizontally parti-

tioned into data �les of equal size. The data �les of the same relation are stored in

di�erent disks, but one disk can hold the data �les from both relations. For example,

Suppose R0 is one of the data �les from R and S0 is one of the data �les from S, R0

and S0 can reside in the same disk. During the execution of parallel GRACE hash

27

join algorithm, at any point of time, only one relation, either R or S needs to be

accessed, unless the algorithm intends to partition them concurrently.

3.3 Parallelism in Each Phase

In the partitioning phase, suppose the relation R is being partitioned, and R

consists of n data �les R0; : : : ; Rn�1, which reside in n disks D0; : : : ;Dn�1, respec-

tively. These data �les are processed in parallel: for each data �le, more than one

processor can be allocated. Since each partition of R is a bucket �le, a write bu�er

is allocated for each bucket at the beginning of this phase. Suppose Pi is one of the

processors which are processing R0. First, Pi allocates two local bu�ers for itself in

order to realize the double bu�ering. Then, the tuples are read into the bu�ers page

by page. Pi applies the partitioning hash function to the join attribute values of each

tuple in its local bu�er. According to the hash value, the tuples are moved to the

appropriate bu�ers of buckets. When the bu�er for a bucket gets full, it is written

back into the disk. Each of the other processors works in the same way as Pi. After

having partitioned relation R, The processors begin to partition relation S. This is

the case that R and S are partitioned one by one. It is also possible to partition

R and S concurrently, as long as the number of processors is large enough, and the

I/O contention caused by di�erent �les residing in the same disk is not high. At the

end of this phase, All the tuples are organized into buckets, and these buckets are

distributed across the disks.

In the building phase, each bucket of R is used to build an in-memory hash table.

Assuming that the bucket �les: RB0; : : : ; RBn�1 are stored in the disks D0; : : : ;Dn�1,

the hash table of each bucket can be created in parallel: Each bucket �le may be

processed by a small processor set. The involved processors read data into their local

bu�ers, apply the hash function to the join attributes of each tuple, and then insert

the tuple into the corresponding hash table. At the end of this phase, the hash tables

28

are built for some or all of the bucket �les from R. The number of hash tables created

in this phase depends on the size of available memory.

In the probing phase, the join results will be generated. To achieve the maximum

parallelism, the result relation is also distributed across the disks. If the result consists

of n data �les, n write bu�ers need to be allocated for each data �le at the beginning

of this phase. Since the relation S is also distributed among the disks, they can be

processed in parallel. A small processor set can be assigned to process each data �le.

Suppose processor Pi is in the processor set in charge of RSj . Pi reads the tuples from

RSj into its local bu�ers, then applies the same hash function used in the building

phase to the the join attribute of each tuple. If a match is found in the corresponding

hash table, the two tuples are concatenated and moved to the appropriate write bu�er

of result data �le. When the write bu�ers are full, they are written into the disks.

3.4 Synchronization Mechanism

Since the KSR-1 is a shared-everything multiprocessor system, the processors or

threads communicate with each other by means of accessing the same memory. The

KSR-1 provides a \barrier" mechanism for the sake of synchronization. A barrier

is a software environment to enforce multiple threads to execute in parallel. There

are two types of threads in a barrier: master thread and slave thread. Each barrier

can have only one master thread, but may have many slave threads. All the slave

threads are suspended until the master thread enters the barrier, and only after all

the slave threads have terminated, the master thread can check out of the barrier.

Thus, the parallel work begins with the check in of the master thread, ends with

the check out of the master thread. The KSR-1 system also provides other software

synchronization mechanisms. Since it is easy to measure the timing using a barrier

because the barrier can guarantee that each thread starts at the same time, we select

the barrier mechanism for our implementation.

29

The KSR-1 system also provides lock mechanismwhich is necessary for protecting

some shared �les and bu�ers. There are a couple of cases in which locks are needed

to prohibit the concurrent access to shared data. For example, in the partitioning

phase, if more than one processor is used to process the same data �le, lock is used to

prevent the processors from reading the same portion of data to their local bu�ers.

The write bu�er for each bucket also need to be protected by lock from concurrent

writes, which may cause the loss of data. In the building phase, lock is used to

prevent concurrent access to the hash table. In the probing phase, the write bu�er

for each result data �le is protected by lock from being concurrently written.

3.5 Hash Function

A good hash function is very critical to the hash-based join algorithms. In the

partitioning phase of GRACE hash-join algorithm, a proper hash function is needed

to generate the buckets of equal or similar size; in the building phase, a good hash

function means that few tuples should be hashed into the same entry. In other words,

the chain in each entry should be kept short. Having short chains in the hash table

accelerates the probing phase.

The criteria for a good hash function is to hash the tuples in a uniform way: each

tuple has the same probability to hash to any entry. However, it is di�cult to �nd

such an optimal hash function in practice. As a guideline, if a hash function derives

the hash value in a way which is independent of the patterns of hashed data, it is

likely to perform well [11].

There are two hash functions in our implementation. The �rst hash function is

used in the partitioning phase. In order to control the number of buckets easily, we

choose the MOD function as the hash function. If the algorithm intends to partition

the relations into n buckets, then the hash function is

keyMODn.

30

The range of hash values is 0; 1; : : : ; n � 1. If the hash value of a tuple is i, then

it is put into bucket i.

The second hash function is used in the building phase and probing phase. Sup-

pose k is the join attribute of tuples, the chosen hash function is: h(k) = bm(kA�
bkAc)c, where A is a constant in the range 0 < A < 1, m is an integer. [28] suggests

that when A = (
p
5�1)=2 � 0:618034, the hash function provides good performance.

For example, if k = 5427, m = 1000, and A = 0.618034, then

h(k) = b1000 � (5427 � 0:618034 � b5427 � 0:618034c)c
= b1000 � (3354:0705 � 3354)c
=b70:5c
=70

The advantage of this hash function is that the value of m is independent of

the performance. Thus, we can change m to get di�erent hash value range without

inuencing the performance.

CHAPTER 4
RESULTS AND ANALYSIS

In a multiprocessor environment, the performance of hash-join algorithms is af-

fected by many parameters. It is not easy to �nd out the optimal value for each

parameter. Although the theoretical analysis may predict the trends of performance

with respect to changes in parameters, the actual performance evaluation is one of

the best way to understand the behavior of a hash-based join algorithm.

We implemented the GRACE hash-join algorithm in such a way that most of the

parameters can be supplied as a data �le making it easy to perform experiments.

These parameters include: number of processors to process each data �le (may be

di�erent in each phase), bu�er size, range of hash values, number of buckets, number

of disks, etc. Some of these parameters, such as bu�er size and range of hash values

are very critical to the performance of the algorithm. A naive choice of of some

of the parameters may hide the optimal value of other parameters. For example,

if the bu�er size is very small, the performance may not increase with the increase

in the number of processors. Therefore, we decided to evaluate the e�ects of these

parameters �rst, and conduct other experiments using the optimal values of these

parameters.

Although a parallel program should provide the same �nal results when it runs

each time, its internal execution procedure may be di�erent from run to run. For

instance, the threads created during the execution may be completed in di�erent

order. Consequently, the execution time of a parallel program may vary slightly from

run to run. To obtain the most accurate results, we executed our GRACE hash-join

31

32

algorithm with the same parameters for several times (at least 5 times), and took the

average values as the �nal results.

The KSR-1 system provides a system function \pmon delta" to collect perfor-

mance data on a per-thread basis. This function is used for time measuring in one

experiment. In this function, there is a wall clock counter to monitor the number of

elapsed clock cycles during the execution of a parallel program. This number of clock

cycles is converted to obtain the elapsed time.

Typically, a parallel database is used to manage large data. It is much more

meaningful to investigate the GRACE hash-join algorithm with relations of large

size rather than small relations. The size of relations and tuples are similar to the

one proposed in Wisconsin benchmark [5]. The join attribute is a 4-byte integer; each

tuple is 208-bytes long; The source relations R and S both consist of 250,000 tuples.

The joinability is 60%, which means that the result relation has 150,000 tuples.

The following sections present the experimental results and corresponding anal-

ysis, which are categorized into bu�er management, parallelism of I/O system, pro-

cessor allocation, data partition and distribution.

4.1 Bu�er Management

During the execution of parallel GRACE hash-join algorithm, each processor al-

locates local bu�ers for itself. The data stored in the disks are read into the bu�ers

page by page. These are read bu�ers to store the data being processed. There are

also write bu�ers when data need to be written back into the disks. For example,

in the partitioning phase, each bucket has corresponding write bu�er; in the probing

phase, each partition �le of the result relation has corresponding write bu�er. The

data are �rst stored into these write bu�ers. When the write bu�ers get full, the

data are written into the disks page by page. In general, these bu�ers are used to

33

avoid frequent I/O operations. Without these bu�ers, the I/O cost will be very high

because the process of each tuple may invoke I/O operations.

In the building phase, a hash table is created for each bucket from relation R.

Therefore, multiple hash tables exist at the end of building phase. These hash tables

are also a sort of bu�ers. The range of hash values has a great impact on the size

and e�ciency of these bu�ers. It is useful to �nd out an optimal range.

4.1.1 Processing Bu�er Size vs. Performance

Although the KSR-1 system provides a huge memory pool, either read bu�er or

write bu�er can not be arbitrary large. On the other hand, large bu�ers do not

necessarily mean good performance. We executed the algorithm with various sizes of

bu�ers. Some other parameters are listed below:

Size of R relation: 250,000 tuples
Size of S relation: 250,000 tuples
Size of the result relation: 150,000 tuples
Number of processors to partition each data �le: 5
Number of processors to build hash table from each bucket �le: 5
Number of processors to probe hash table from each bucket �le: 1
Number of the disks among which R is distributed: 5
Number of the disks among which S is distributed: 5
Number of the disks among which the bucket �les are distributed: 5
Number of the disks among which the result relation is distributed: 5
Range of hash values: 30000

The results is shown in �gure 4.1.

Figure 4.1 describes the relationship between elapsed time and bu�er size. When

the bu�er size is less than 16 KB, the elapsed time decreases with the increase in

bu�er size. However, after the bu�er size is larger than 16 KB, the elapsed time does

not change too much when the bu�er size increases. The curve indicates that 16 KB

is an optimal size for the read/write bu�er.

34

100

120

140

160

180

200

220

240

260

280

4 6 8 10 12 14 16 18 20

E
la

ps
ed

 T
im

e
(S

ec
)

Buffer Size (KB)

Elapsed Time

Figure 4.1. Processing Bu�er Size vs. Elapsed Time

It is noticed that the page size of the all-cache memory of KSR-1 system is also 16

KB. We believe that this is somehow related the optimal bu�er size in the GRACE

hash-join algorithm. As described in chapter 2, the unit of allocation in the all-cache

memory is page. If the bu�er size is less than 16 KB, when a processor allocates a

local bu�er, one page of space is allocated in its local cache regardless of the actual

size of bu�er. Since the bu�er is smaller than one page, there is an unused portion of

this page. With the increase in bu�er size, the unused portion becomes smaller but

there is no additional cost of allocation. The elapsed time keeps decreasing when the

bu�er size is smaller than the page size. When the bu�er size is larger than the page

size, at least two pages of space need to be allocated in the local cache. The cost of

allocation is higher than allocating one page. Therefore, the elapsed time remains

certain level with the increase in bu�er size.

35

4.1.2 Range of Hash Values vs. Performance

The hash function we used in the implementation allows easy change of the range

of hash values. Actually, the range of hash values implies the average number of

tuples in each entry of hash table. The larger the range, the more entries in the hash

table and the less number of tuples in each entry.

The number of tuples in each entry is especially related to the elapsed time of

probing phase, because the hash table is accessed only in this phase. Figure 4.2 shows

the change of probing time with the increase in hash range. The following is a list of

parameters in this experiment:

Size of R relation: 250,000 tuples
Size of S relation: 250,000 tuples
Size of the result relation: 150,000 tuples
Number of processors to partition each data �le: 5
Number of processors to build hash table from each bucket �le: 5
Number of processors to probe hash table from each bucket �le: 1
Number of the disks among which R is distributed: 5
Number of the disks among which S is distributed: 5
Number of the disks among which the bucket �les are distributed: 5
Number of the disks among which the result relation is distributed: 5

During the probing phase, if the hash value of a tuple from the buckets of S maps

to a non-empty entry, the tuple will be compared with the tuples in this entry to

�nd a match. Hence, smaller number of tuples in each entry means faster search in

the entries. In �gure 4.2, the probing time decreases with the increase in hash range

while the hash range is smaller than 30 K. After the hash range is larger than 30 K,

the probing time does not decrease with the increase in hash range. The reason is

obvious. When the range of hash values reaches certain number, 30 K in this case,

almost each entry has only one tuple. The increase in hash range above this number

36

0

5

10

15

20

10 15 20 25 30 35 40 45 50 55 60

P
ro

be
 T

im
e(

S
ec

on
ds

)

Hash Range(k)

Time of probing phase

Figure 4.2. Range of Hash values vs. Probing Time

only introduces more empty entries. The length of link in non-empty entry remains

1. Therefore, the search time in each entry does not change.

4.2 Parallelizing I/O Operations

Usually, the main memory is not large enough to hold an entire relation. During

each phase of the GRACE hash-join, data need to be moved back and forth between

disks and memory. The e�ciency of I/O operations has a great inuence on the

performance. In the centralized database systems, a major objective of query opti-

mization is to reduce the I/O cost. This is also true in the parallel database systems.

The elapsed time of each single I/O operation is bound by the hardware design, and

there is no way to reduce the latency of each I/O operation. However, there are

ways to improve the performance of I/O system as a whole in a multiprocessor en-

vironment. First, the number of I/O operations can be minimized by appropriate

algorithms. Second, It is possible to overlap the I/O operations and CPU computing.

Third, I/O operations can be performed concurrently.

37

The following experiments are designed to investigate the proper techniques to

make use of the parallel I/O system of the KSR-1.

4.2.1 Double Bu�ering

The double bu�ering technique is presented in chapter 3. It is a common tech-

nique to overlap the I/O operations and CPU computing. In the GRACE hash-join

on the KSR-1 system, this technique is applied to each processor. Although the dou-

ble bu�ering can reduce the I/O waiting time of each processor, there is also cost for

this option. The KSR-1 system provides asynchronous I/O ability which allows the

application programs to read/write data from the disks asynchronously. After issuing

the asynchronous I/O command, the program can continue without waiting for the

completeness of I/O operation. This function seems to be suitable for the implemen-

tation of double bu�ering. However, this function only works when a single processor

asynchronously accesses certain data �le. The behavior of asynchronous I/O function

is uncertain when multiple processors are accessing the same �le. Unfortunately, in

the GRACE hash-join algorithm, multiple processors may be processing a particular

�le. Hence, the algorithm has to create a thread for each I/O operation, so that the

I/O operation can be performed while the processor is processing the data in the

current bu�er. The initialization of each I/O thread forms the overhead of double

bu�ering technique.

We executed the GRACE hash-join algorithm with and without double bu�ering,

measuring the performance in each case. The following are some parameters:

Size of R relation: 250,000 tuples
Size of S relation: 250,000 tuples
Size of the result relation: 150,000 tuples
Number of processors to partition each data �le: 5
Number of processors to build hash table from each bucket �le: 5
Number of processors to probe hash table from each bucket �le: 1
Number of the disks among which R is distributed: 5

38

Number of the disks among which S is distributed: 5
Number of the disks among which the bucket �les are distributed: 5
Number of the disks among which the result relation is distributed: 5
Range of hash values: 30000

The results are shown in �gure 4.3.

160

180

200

220

240

260

280

300

4 6 8 10 12 14 16 18 20

E
la

ps
ed

 T
im

e(
S

ec
on

d)

Buffer Size(K)

without double buffer
with double buffer

Figure 4.3. The E�ect of Double Bu�ering

Figure 4.3 shows that the double bu�ering technique makes a great di�erence of

performance. The algorithm have much shorter elapsed time when the double bu�er-

ing is applied. The results indicate that the bene�ts of double bu�ering outweigh

its overhead. We conclude that the double bu�ering is appropriate for the GRACE

hash-join algorithm on the KSR-1 system.

4.2.2 Arranging I/O threads

Because of the implementation of double bu�ering, each I/O operation is carried

on by a thread. These threads run concurrently with the processing threads. At �rst,

we thought that binding these I/O threads to the I/O processors is a good idea, since

39

each I/O operation is accomplished by the I/O processors. However, the experiment

results does not support this argument.

We executed the algorithm with and without binding the I/O threads to the I/O

processors. Some parameters are listed below:

Bu�er Size: 16 KB
Size of R relation: 250,000 tuples
Size of S relation: 250,000 tuples
Size of the result relation: 150,000 tuples
Number of processors to partition each data �le: 5
Number of processors to build hash table from each bucket �le: 5
Number of processors to probe hash table from each bucket �le: 1
Number of the disks among which R is distributed: 5
Number of the disks among which S is distributed: 5
Number of the disks among which the bucket �les are distributed: 5
Number of the disks among which the result relation is distributed: 5
Range of hash values: 30000

The elapsed time of each case are compared in �gure 4.4.

0

200

400

600

800

1000

1 2 3 4 5 6

E
la

ps
ed

 T
im

e(
S

ec
on

ds
)

Number of Disk

Binding I/O thread to I/O processor
I/O thread is not bound

Figure 4.4. Binding methods of I/O threads vs. performance

40

Figure 4.4 shows surprising results. Instead of improving the performance, binding

I/O threads keeps the elapsed time consistently large, regardless of the increase in

the number of disks. In contrast, when the I/O threads are assigned to the processors

automatically by the system, the elapsed time is much shorter and decreases with the

increase in the number of disks. To �nd out the reason for this anomaly, we observed

the CPU utilization when running the algorithm with binding the I/O threads. It

was noticed that only the I/O processor was kept busy while the other processors

remained idle for most of the time. From this observation, we believe that the I/O

processor was overloaded and became the bottleneck. This is the major reason for

degradation of performance when the I/O threads are bound to the I/O processor.

As we know, there may be up to 10 disks controlled by one I/O processor (there

are �ve disks used in our implementation). When the algorithm is in execution, each

processor creates I/O thread for each of its I/O operation. Suppose Five processors

are allocated to process each data �le, then there are 5 � 5 = 25 processors con-

tinuously creating I/O threads. When all of the I/O threads are bound to the I/O

processor, the I/O processor is de�nitely overloaded. This experiment result suggests

it is better to let the system handle the I/O threads automatically.

4.3 Processor Allocation and Load Balancing

The 96 processors are distributed in three separate rings in the KSR-1 system.

Because the communication cost across rings is much higher than the cost within

one ring, choice of processor sets will lead to di�erent communication costs. Further-

more, the KSR-1 system provides exibility for processor allocation: automatic load

balancing and various processor binding methods. It is interesting to �nd out what

is a good processor allocation strategy among these available alternatives.

41

4.3.1 Di�erent Processor Sets vs. Performance

When an algorithm runs on the KSR-1 system, the processors it can allocate may

be restricted to a subset, rather than all the processors in the system. The subset

may be within one ring or across multiple rings. Without such restriction, all the

processors are available for the algorithm, and each thread of the algorithm will be

assigned to speci�c processor automatically.

Suppose the three rings in the system are denoted as Ra, Rb, Rc, and the source

relations R and S reside in the disks which are controlled by the I/O processor in

Rb. In order to �nd out the impact of di�erent processor sets on the performance

of GRACE hash-join algorithm, we conducted the following experiment: First, we

restricted the processor set to Rb and executed the algorithm; then we restricted the

processor set to Ra and Rc and executed the algorithm. Other parameters in this

experiment are as follows:

Bu�er size: 16 KB
Number of processors to partition each data �le: 5
Number of processors to build hash table from each bucket �le: 5
Number of processors to probe hash table from each bucket �le: 1
Number of the disks among which R is distributed: 5
Number of the disks among which S is distributed: 5
Number of the disks among which the bucket �les are distributed: 5
Number of the disks among which the result relation is distributed: 5
Range of hash values: 30000

The result of this experiment is shown in �gure 4.5.

From �gure 4.5, we observed that the elapsed time is shorter when the processor

set is restricted in Rb. That means, using the processors in Rb achieves better per-

formance. An obvious reason for this result is the di�erence in communication cost.

When the processor set consists of the processors in both Ra and Rc, There are lots

42

0

20

40

60

80

100

120

140

160

20 40 60 80 100 120 140 160 180 200

E
l
a
p
s
e
d

T
i
m
e

(
S
e
c
o
n
d
s
)

Relation Size (K tuples)

Using processors within the ring
Using processors in the other rings

Figure 4.5. The Impact of Di�erent Processor Sets

of data exchange between Ra and Rb, or between Rc and Rb. Since the relations are

stored in the disks connected to Rb, the processors in Ra and Rc need to communicate

with the I/O controller in Rb when they want to access the data �les. The communi-

cation is across multiple rings and involves ring:1. Thus, the communication cost is

relatively high. In contrast, when the processor set is restricted in Rb, although the

processors still need to communicate with the I/O controller to access the disks, all

the communication are within this ring and has lower cost.

In �gure 4.5, With the increase in relation size, the di�erence in elapsed time

increases. Larger relation size implies more I/O operations should be performed and

each I/O operation involves the communication between the processing processor

and I/O processor. However, as we know, The processors in both Ra and Rc have to

communicate with the I/O processor in Rb via ring:1 while the processors in Rb can

communicate with the I/O processor directly. When the relation size increases, the

43

cumulative di�erence of communication cost gets larger. This is why the curves in

�gure 4.5 diverge.

Based on the above result and analysis, we conclude that the location of processor

set is critical to the performance of GRACE hash-join on the KSR-1 system. If the

data is stored in the disks connected to a particular ring, it is more e�cient to use

the processors within that ring. When data is distributed across multiple rings, the

communication cost is still a major issue in processor allocation.

4.3.2 Load Balancing vs. Performance

A feature of the KSR-1 system is its automatic load balancing which is achieved

in a dynamic way. During the execution of a parallel algorithm, the threads can mi-

grate from one processor to another in order to maintain the load balancing among

the processors. The operating system is responsible for migrating threads. By de-

fault, parallel programs are executed on the KSR-1 with automatic load balancing.

However, it is also possible to bind a thread to a speci�c processor. When a thread is

bound to a processor, its migrations are prohibited. Each processor only handles the

jobs which are assigned to it at the beginning of execution. \autobinding" is one of

the functions to perform processor binding. It binds the calling thread to a processor

which is chosen by the system. With this function, the users may have their own

load balancing strategy.

To �nd out a suitable load balancing strategy for the GRACE hash-join algorithm,

we �rst executed the algorithm with automatic load balancing, and then executed it

using \autobinding" to prevent the migrations of threads. Other parameters in this

experiment are as follows:

Bu�er size: 16 KB
Size of R relation: 250,000 tuples
Size of S relation: 250,000 tuples

44

Size of the result relation: 150,000 tuples
Number of the disks among which R is distributed: 5
Number of the disks among which S is distributed: 5
Number of the disks among which the bucket �les are distributed: 5
Number of the disks among which the result relation is distributed: 5
Range of hash values: 30000

Figure 4.6 shows the elapsed time for both executions.

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7

E
la

ps
ed

 T
im

e
(S

ec
on

ds
)

Number of Processors to process each file

autobinding
default binding

Figure 4.6. Load Balancing strategy vs. Elapsed Time

Figure 4.6 shows that autobinding case outperforms automatic load balancing

case when the number of processors is less than or equal to 4, but vice versa when

the number of processors is larger than 4. The reason for this phenomenon is twofold.

First, there is overhead caused by the automatic load balancing. This overhead con-

tributes the di�erence in elapsed time when only one processor is used. Second,

automatic load balancing needs to migrate the threads among the processors. The

migrations invoke additional communication which is absent in the autobinding case.

When the processor set is small, the automatic load balancing mechanism does not

have much chance to improve the performance because there are few alternatives

45

available. Therefore, the overhead and additional communication cost outweigh the

bene�ts of automatic load balancing. In contrast, while the processor set is large

enough, automatic load balancing can take full advantage of run time information

about resource utilization, especially the status of processors. Usually, a much better

processor allocation plan can be found than in the autobinding case. As a conse-

quence, the overhead and additional communication cost are compensated by the

e�ect of the good load balancing.

In our GRACE hash-join algorithm, the source relations R and S are divided into

buckets of almost equal size during the partitioning phase. This is a major reason

for the good performance of autobinding strategy when the number of processors is

small. If the source relations are not partitioned in a uniform way, The autobinding

method may probably lead to extremely unbalanced load for the processors. The

elapsed time will be much larger since it is the execution time of the processor with

the heaviest load. Hence, we can not conclude that the autobinding strategy is better

than the automatic load balancing in the case of small processor set. The autobinding

strategy is only suitable for the GRACE hash-join when the processor set is small

and the partitioning phase has ideal results. However, it is not easy to divide a

job into small jobs with the same size in practice. In conclusion, we believe that

the automatic load balancing is a better and safer choice for the GRACE hash-join

algorithm on the KSR-1 system.

4.3.3 Number of Processors vs. Performance

Another issue we concern is the number of processors used to process each data

�le. Since there are three phases in GRACE hash-join algorithm, we investigate this

problem in each phase. Because the previous results and analysis show that the

automatic load balancing outperforms the other load balancing strategy, we adopt

46

automatic load balancing in the following experiments. Some parameters in these

experiments are listed below:

Bu�er size: 16 KB
Size of R relation: 250,000 tuples
Size of S relation: 250,000 tuples
Size of the result relation: 150,000 tuples
Number of the disks among which R is distributed: 5
Number of the disks among which S is distributed: 5
Number of the disks among which the bucket �les are distributed: 5
Number of the disks among which the result relation is distributed: 5
Range of hash values: 30000

Figure 4.7 shows the elapsed time of partitioning phase vs. the number of pro-

cessors used. While the number of processors is less than �ve, the partitioning time

decreased rapidly with the increase in processor number. But when the number of

processor is more than �ve, there is no substantial change in the partitioning time.

This result indicates that �ve processors is appropriate for catching up with the data

ow from one disk.

Figure 4.8 describes the relationship between the number of processors and the

time to build the hash table. It is similar to what is shown in �gure 4.7. The elapsed

time of building phase maintains certain level after the number of processors are

greater than �ve. Five Processors are good enough to build the hash table from one

data �le.

Figure 4.9 gives the probing time when the number of processors increases. The

result is not the same as that of partitioning time and building time. The number

of processors has little impact on the elapsed time of probing phase. The situation

implies that one processor is good enough for each data �le during the probing phase.

In the above experiments, we observed that there is no linear speed-up when

the number of processors increases. When the processor set is large enough, the

47

0

20

40

60

80

100

1 2 3 4 5 6 7

P
ar

tit
io

ni
ng

 T
im

e(
S

ec
on

ds
)

Number of Processors for Each File

Time of Partitioning Phase

Figure 4.7. Number of Processors vs. Partitioning Time

0

20

40

60

80

100

1 2 3 4 5 6 7

B
ui

ld
in

g
T

im
e(

S
ec

on
ds

)

Number of processors for Each File

Time of Building Phase

Figure 4.8. Number of Processors vs. Building Time

48

0

20

40

60

80

100

1 2 3 4 5 6 7

P
ro

bi
ng

 T
im

e(
S

ec
on

ds
)

Number of Processors for Each File

Time of Probing Phase

Figure 4.9. Number of Processors vs. Probing Time

performance remains almost the same regardless of the number of processors. Many

factors may contribute to this scenario. First, more processors indicate that more

threads need to be created, and the cost to initialize a thread is high. Second, more

processors also cause more lock contentions. During the execution of the GRACE

hash-join algorithm, there are locks for data �les, hash tables and write bu�ers. These

critical sections may become bottlenecks when too many contentions occur.

4.4 Data Partition and Distribution

Data partition and distribution is necessary for parallel I/O operations in a mul-

tiprocessor system. During each phase of the GRACE hash-join algorithm, the rela-

tions are divided into multiple data �les which reside in di�erent disks. Even before

the execution of the algorithm, the source relations R and S need to be partitioned

and distributed into multiple disks. Otherwise, the partitioning phase of GRACE

hash-join can not be performed in parallel. The partitioning phase generates buckets

which are separate data �les. The buckets can be regarded as a new partition of R

49

and S. After the probing phase, the result relation is also generated as multiple �les.

In the following experiments, number of data �les for each relation expands when the

number of disks increases.

4.4.1 Number of Disks vs. Performance

Number of disks is a very important parameter for the parallel GRACE hash-join

algorithm. Since I/O operations are much slower than CPU operations, the algorithm

spends most time waiting for I/O operations. More disks will increase the parallelism

of I/O operations, which is critical for the algorithm to achieve better performance.

We executed the algorithm with di�erent numbers of disks and compared the

elapsed time for each case. Other parameters in this experiment are as follows:

Bu�er size: 16 KB
Size of R relation: 250,000 tuples
Size of S relation: 250,000 tuples
Size of the result relation: 150,000 tuples
Number of processors to partition each data �le: 5
Number of processors to build hash table from each bucket �le: 5
Number of processors to probe hash table from each bucket �le: 1
Range of hash values: 30000

The result is presented in �gure 4.10:

Figure 4.10 shows the decrease in elapsed time with the increase in the number

of disks. It is observed that the elapsed time decreases rapidly when the number

of disks is less than �ve. However, when the number of disks is larger than �ve,

the elapsed time does not change so much with the increase in disk number. The

result shows that I/O operations are not the bottleneck when the �les are distributed

into �ve disks. In this case, the data �les are relatively small, so that most of the

I/O operations are performed concurrently in each disk. The time spent on other

operations such as lock contention and CPU calculation dominates the elapsed time.

50

0

200

400

600

800

1000

1 2 3 4 5 6

E
la

ps
ed

 T
im

e(
S

ec
on

ds
)

Number of Disks

Figure 4.10. Number of Disks vs. Elapsed Time

The increase in disk number can not reduce this part of elapsed time. We also need

to mention that the sixth disk shown in �gure 4.10 is not connected to the same ring

as the previous �ve disks. 1 To read/write the data �les in this disk results in more

communication cost. This additional cost also degrades the performance.

4.4.2 Data Distribution vs. Elapsed Time

As we mentioned in chapter 2, the disks of the KSR-1 system are connected to the

I/O processors within di�erent rings. The disks associated to each ring constitute

a disk group. The data �les may be distributed within one disk group or across

multiple disk groups during the execution of the parallel GRACE hash-based join.

Will it make any di�erence in performance to distribute the data among di�erent

groups? In order to answer this question, we conducted the following experiment:

Let the processor set consist of all of the available processors in the system, and

executed the algorithm with di�erent data distribution strategies: distributing data

1There are only �ve disks mounted in this ring currently.

51

across three rings, across two rings and within one ring. Some other parameters are

as follows:

Bu�er size: 16 KB
Number of processors to partition each data �le: 5
Number of processors to build hash table from each bucket �le: 5
Number of processors to probe hash table from each bucket �le: 1
Number of the disks among which R is distributed: 4
Number of the disks among which S is distributed: 4
Number of the disks among which the bucket �les are distributed: 4
Number of the disks among which the result relation is distributed: 4
Range of hash values: 30000

The results are shown in �gure 4.11.

20

40

60

80

100

120

140

0 50 100 150 200 250

E
la

ps
ed

 T
im

e
(S

ec
on

ds
)

Relation Size (K Tuples)

Distributing data across three rings
Distributing data across two rings

Distributing data within one ring

Figure 4.11. Data Distribution vs. Elapsed Time

Figure 4.11 describes the elapsed time in each case when the relation size increase.

We noticed that there is no substantial di�erence among the elapsed time in each

case. Although there is slight di�erence, it is caused by the internal di�erence of each

run of the parallel algorithm. The results reveal the strong ability of the parallel I/O

52

system in the KSR-1. When the data �les are distributed among three rings, the

I/O operations are carried on by three I/O processors concurrently. The load of

each I/O processor is relatively low compared with the case that all the data �les are

distributed within one ring. Although the same amount I/O operations are processed

by one I/O processor in the later case, there is no di�erence in performance. This

indicates that the I/O processors are not usually overloaded by the simultaneous I/O

requests. The parallel I/O system in the KSR-1 provides good performance in each

case.

In the above experiment, the processor set is constituted by all the processors in

three rings. If the processor set is restricted within one ring, then it would better

distribute the data only within the disks associated to that ring. The purpose is

to avoid high communication cost across multiple rings. We concluded that if the

processor set consists of the processors in rings R1; : : : ; Rn, then the data are free to

be distributed among R1; : : : ; Rn.

CHAPTER 5
CONCLUSIONS AND FUTURE WORK

This thesis presents our preliminary work on the parallel database research within

the COMA model. It evaluates the performance of GRACE hash-join algorithm on

the KSR-1 multiprocessor system under various conditions. The hash-based join

algorithms are distinguished by their e�ciency and amenability for parallel imple-

mentation. Three di�erent kinds of hash-based join algorithms, Simple hash-join,

GRACE hash-join and Hybrid hash-join are described and their suitability for the

multiprocessor environment is analyzed.

KSR-1 is a shared-everything multiprocessor with COMA memory structure. The

thesis provides an overview of its hardware architecture. The all-cache memory struc-

ture and parallel I/O system are described in detail. The similarities between the

architecture of KSR-1 system and the general hierarchical architecture proposed in

[22] are identi�ed.

To investigate the behavior of hash-based join algorithms in the COMA model

and verify the suitability of the proposed architecture in [22] for parallel database

design, we implemented the GRACE hash-join algorithm on the KSR-1 system. The

thesis addresses the following issues in our implementation: double bu�ering, data

partition and distribution, potential parallelism, synchronization and hash function.

Finally, the performance of GRACE hash-based join algorithm is evaluated under

di�erent conditions (e.g., number of processors, relation size, number of disks, etc.)

and the corresponding analysis is presented. The experiments are designed to ex-

plore the optimal utilization of various resources in the KSR-1 system. The analysis

53

54

corresponding to each experiment reveals the underlying reasons for the results. A

summary of conclusions drawn from the experimental results are listed below:

� The cost of communication across multiple rings is higher than the communica-

tion cost within each ring. The processors from a ring should be used to process

the local data �les (within the same ring) in order to reduce the communication

cost.

� The automatic load balancing mechanism of the KSR-1 system is suitable for

the parallel GRACE hash-join algorithm.

� In each phase of GRACE hash-join algorithm, there is an optimal number of

processors for each data �le. In the partitioning phase, �ve processors seem to

be good enough to partition one data �le; in the building phase, �ve processors

is suitable for building the hash table from each data �le; in the probing phase,

one processor is su�cient to probe each hash table.

� To process two relations which have the size of 250,000 tuples each, �ve disks

are su�cient to take full advantage of the parallel I/O system of the KSR-1.

� The data can be distributed among the rings from which the processor set is

constituted.

� Double bu�ering technique does improve the performance of parallel GRACE

hash-join substantially on the KSR-1 system.

� The automatic management of I/O threads in the KSR-1 system gives good

performance.

� The page size of all-cache memory of the KSR-1 system is also the optimal

processing bu�er size of parallel GRACE hash-join.

55

� The optimal range of hash values is 30 K in the experiments.

These conclusions indicate that the KSR-1 system provides a good environment

for parallelizing GRACE hash-based join algorithm. In most cases, the internal

system mechanisms directly support the parallelism of the GRACE hash-join. For

instance, the ring structure provides the locality and scalability; the all-cache engine

guarantees the quick reference of memory and the easy implementation of double

bu�ering; the automatic load balancing mechanism optimizes the allocation of pro-

cessors; the parallel I/O system can handle the I/O operations e�ciently. Further-

more, the KSR-1 system provides a comfortable software development environment

for the parallel programming. The standard parallel facilities such as barrier and lock

mechanism make it easy to implement the parallel GRACE hash-join algorithm.

The results also suggest that the proposed architecture in [22] possess great po-

tential for parallel database development. Since any multiprocessor systems derived

from this architecture may have e�cient communication, easy synchronization, au-

tomatic load balancing and high degree of scalability. All these facilities have been

veri�ed to be desirable for the parallel database design by our experiments on the

KSR-1 system.

This is our �rst e�ort towards parallel database research within the COMA shared-

everything architecture. There are still many open issues. In the shared-everything

multiprocessor environment, lock mechanisms are frequently used to protect shared

data. In our experiments, we noticed that the contention for various locks seriously

a�ects the performance of algorithm. As part of future work, the e�ect of lock con-

tention in each phase of GRACE hash-join algorithm needs to be investigated. In the

partitioning phase, the hash function splits the source relations R and S into buckets

of equal size, because we know the distribution of join attribute values in our experi-

ments. However, this is not practical in a real database system. The performance of

56

GRACE hash-join algorithm needs to be studied when the partitioning hash function

can not uniformly split the source relations. Another open issue is the relationship

between the size of available memory and the performance. In the experiments, we

assumed that there is enough memory during each phase of the GRACE hash-join,

because the KSR-1 system provides a huge shared memory pool. However, for the

join operations involving larger relations than in our experiments, the memory size

is one of the key elements to determine the performance. When the memory is not

large enough to hold all the bu�ers and hash tables concurrently, the bucket tuning

technique may be adopted to solve the problem. It is very useful to �nd out how

these conditions will inuence the parallelism of hash-based join algorithms in the

COMA shared-everything architecture.

We only implemented and evaluated the GRACE hash-based join algorithm on

the KSR-1 system. The Simple hash-based join and Hybrid hash-based join need

to be studied to fully understand the hash-based join algorithms in the COMA

shared-everything multiprocessor environment. The multiprocessor systems such

as the KSR-1 tend to have huge memory. The Hybrid hash-based join algorithm

may probably outperforms the other hash-based join algorithms, because it supports

better memory usage. This prediction needs to be veri�ed by the future research.

Furthermore, there are many other hash-based database operations such as hash-

based selection, hash-based projection. The study of these hash-based operations is

necessary to build the database system within the COMA shared-everything multi-

processor environment.

REFERENCES

[1] W. Alexander, H. Boral, L. Clay, G. Copel, S. Danforth, M. Franklin, B. Hart,
M. Smith, and P. Valduriez. Prototyping bubba, a highly parallel database
system. IEEE Transaction on Knowledge and Data Engineering, pages 4{24,
March 1990.

[2] M. Astrhan, M. W. Blasgen, D. D. Chamberlin, and P. Eswaran. System r:
Relational approach to database management. ACM Transactions on Database
Systems, 1(2):119{120, June 1976.

[3] A. Bhide. An analysis of three transaction processing architectures. In Proceed-
ings of International Conference on VLDB, page 339, Long Beach, CA, August
1988.

[4] A. Bhide and M. Stonebraker. A performance comparison of two architectures
for fast transaction processing. In Proceedings IEEE Conference on Data Engi-
neering, page 536, Los Angeles, CA, February 1988.

[5] D. Bitton, D. DeWitt, and C. Tuby�ll. Benchmarking database systems - a
systematic approach. In Proceedings of International Conference on VLDB,
Florence, Italy, 1983.

[6] M. W. Blasgen and K. P. Eswaran. Storage and access in relational databases.
IBM System Journal, 16(4):21{33, 1977.

[7] H. Boral. Parallelism in bubba. In Proceedings of International Symposium on
Database in Parallel and Distributed Systems, Austin, TX, December 1988.

[8] Kjell Bratbergsengen. Hashing methods and relational algebra operations. In
Proceedings of International Conference on VLDB, Singapore, August 1984.

[9] A. Bricker, D. J. DeWitt, S. Ghandeharizadeh, S. Ghandeharizaeh, H. I. Hsiao,
and D. A. Schneider. The gamma database machine project. IEEE Transaction
on Knowledge and Data Engineering, 2(1):44, March 1990.

[10] H-T Chou, , D. J. DeWitt, R. Katz, and T. Klug. Design and implementation
of the wisconsin storage system. Technical Report 524, University of Wisconsin,
November 1983.

[11] Thmos H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. McGraw-Hill Book Company, Cambridge, MA, 1992.

[12] Terdata Corp. Dbc/1012 data base computer concepts & facilities. Technical
Report C02-0001-00, Teradata Corp., 1983.

57

58

[13] D. J. DeWitt. Gamma-a high performance dataow database machine. In Pro-
ceedings of International Conference on VLDB, Kyoto, Japan, 1986.

[14] David J. DeWitt and Robert Gerber. Multiprocessor hash-based join algorithms.
In Proceedings of International Conference on VLDB, Stockholm, 1985.

[15] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro, Michael R.
Stonebraker, and David Wood. Implementation techniques for main memory
database systems. In Proceedings of ACM SIGMOD Conference, Boston, MA,
1984.

[16] David J. DeWitt and Donovan A. Schneider. A performance evaluation of four
parallel join algorithms in a shared-nothing multiprocessor environment. In
Proceedings of ACM SIGMOD Conference, Portland, OR, June 1989.

[17] Margaret H. Eich and Priti Mishra. Join processing in relational databases.
ACM Computing Surveys, 24(1):63, March 1992.

[18] S. Fushimi, M. Kitsuregawa, and H. Tanaka. An overview of the system software
of a parallel relational database machine grace. In Proceedings of International
Conference on VLDB, Kyoto, Japan, August 1986.

[19] R. J. Gerber. Dataow query processing using multiprocessor hash-partitioned
algorithms. Technical Report 672, University of Wisconsin,, Madison, WI, 1986.

[20] G. Graefe. Encapsulation of parallelism in the volcano query processing system.
In Proceedings of ACM SIGMOD Conference, Atlantic City, NJ, May 1990.

[21] G. Graefe. Volcano, an extensible and parallel dataow query processing system.
IEEE Transaction on Knowledge and Data Engineering, pages 14{21, June 1992.

[22] Goetz Graefe. Query evaluation techniques for large databases. Technical report
cu-cs-579-92, University of Colorado at Boulder, January 1992.

[23] Kai Hwang. Advanced Computer Architecture: Parallelism, Scalability, Pro-
grammability. McGraw-Hill, Inc., Reading, MA, 1993.

[24] Kendall Square Research, Boston, MA. KSR Parallel Programming, 1993.

[25] Kendall Square Research, Boston, MA. KSR1 Principles of Operation, 1993.

[26] M. Kitsuregawa, T. Moto-oka, and H. Tanaka. Application to data base machine
and its architecture. New Generation Computing, 1(1), 1983.

[27] Masaru Kitsuregawa, Miyuki Nakano, and Shin ichiro Tsudaka. Parallel grace
hash join on shared-everything multiprocessor: Implementation and performance
evaluation on symmetry s81. IEEE 8th International Conference on Data Engi-
neering, 1992.

[28] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison-Wesley, 1973.

[29] H. Lu, K. Mikkilineni, and J . P. Richardson. Design and evaluation of parallel
pipelined join algorithms. In Proceedings of ACM SIGMOD Conference, San
Francisco, CA, May 1987.

59

[30] Hongjun Lu, Ming-Chien Shan, and Kian-Lee Tan. Hash-based join algorithms
for multiprocessor computers with shared memory. In Proceedings of Interna-
tional Conference on VLDB, Brisbane, Australia, 1990.

[31] Edward Omiecinski. Performance analysis of a load balancing hash-join algo-
rithm for a shared memory multiprocessor. In Proceedings of Lnternational
Conference on VLDB, Barcelona, September 1991.

[32] M. Stonebraker. The case for shared-nothing. IEEE Database Engineering,
March 1986.

[33] Performance Group Tandem. A benchmark of non-stop sql on the debit credit
transaction. In Proceedings of ACM SIGMOD Conference, Chicago, IL, June
1988.

BIOGRAPHICAL SKETCH

Xioahai Zhang was born on March 12, 1968, at Nanning, People's Republic of

China. He recieved his bachelor's degree in computer sciences from Hangzhou Uni-

versity, China, in July 1987. He also received his master's degree in computer engi-

neering from Shanghai Jiao Tong University, China, in December 1989. Thereafter,

he worked in Hangzhou Instruments Co., China as a software engineer for one year,

developing a database management information system. He will receive his Master of

Science degree in computer and information sciences from the University of Florida,

Gainesville, in December 1994.

His research interests include query processing, parallel databases and object-

oriented databases.

60

