
DESIGN AND IMPLMENTATION OF EVENT BASED  

SUBSCRIPTION/NOTIFICATION PARADIGM  

FOR DISTRIBUTED ENVIRONMENTS 

 

 

 

 
The members of the Committee approve the masters  
thesis of Weera Tanpisuth 

 

 
Sharma Chakravarthy          ____________________________________ 
Supervising Professor                   
 
 
Ramez Elmasri         ____________________________________ 
 
 
Leonidas Fegaras         ____________________________________ 
 



  

DESIGN AND IMPLMENTATION OF EVENT_BASED 

SUBSCRIPTION/NOTIFICATION PARADIGM  

FOR DISTRIBUTED ENVIRONMENTS 

by 

WEERA TANPISUTH 

Presented to the Faculty of the Graduate School of 

The University of Texas at Arlington in Partial Fulfillment 

of the Requirements 

for the Degree of 

MASTER OF SCIENCE IN COMPUTER SCIENCE 

THE UNIVERSITY OF TEXAS AT ARLINGTON 

December 2001 



 

 

Dedicated to my parents  
and my family 

 
 
 
 
 
 
 

 



 

iv 

ACKNOWLEDGMENTS 

First and foremost, I would like to thank my advisor, Dr. Sharma Chakravarthy, for 

giving me an opportunity to work on this challenging topic and providing me great 

guidance and support through the course of this research. 

I would like to thank Dr. Ramez Elmasri and Dr. Leonidas Fegaras for serving on 

my committee. 

I am grateful to Raman Adaikkalavan, Sreekant Thirunagari, and Nishanth Vontela 

for their invaluable help and advice during the implementation of this work. I also would 

like to thank Pratyush Mishra for administering the research network.  I would like to 

thank all my friends in the ITLAB for their support and encouragement.  

I thank my parents, my mother Rattikorn, my brothers Savee and Nutthapong, for 

their endless love and constant support throughout my academic career. Without their 

encouragement and endurance, this work would not have been complete. Last but not least, 

I thank Nong Porn for extraordinary encouragement and patience.  

November 19, 2001 
 
 



 

v 

ABSTRACT 

DESIGN AND IMPLMENTATION OF EVENT BASED  

SUBSCRIPTION/NOTIFICATION PARADIGM  

FOR DISTRIBUTED ENVIRONMENTS 

Publication No.__________ 

Weera Tanpisuth, M.S. 

The University of Texas at Arlington, 2001 

Supervising Professor: Sharma Chakravarthy 

A majority of today�s applications are distributed in nature and hence there is a need for 

monitoring and reacting to changes in a distributed application environment. In applications, 

such as stock tracking, weather alert and forecasting, and network management, timely 

notification of changes are critical.  In the call-driven or demand-based approach, applications 

that are interested in the monitoring of changes (or specific states) need to take initiative to 

execute a query to pull to infer changes and perform appropriate actions. However, the 

conventional pull model is inadequate for large-scaled (distributed) environments since it may 

the window of opportunity if polling is too slow or incur excessive unnecessary system 

resources if polling is done too frequently. In contrast, the distributed event-based system, 



 

vi 

based on the event-driven approach (or push), supports timely notification of changes and 

hence is appropriate for building applications that must monitor and react to changes (in both 

centralized and distributed environments). A system extended with active capability 

automatically detects occurrences of the events of interest, and provides timely notification 

from the producer (notifier) to consumers (subscribers). 

This thesis extends the earlier work on Local Event Detector (LED) to provide active 

capability in a distributed environment. The aim of this thesis is to support event detection 

across address spaces, provide interface for event registration and notification, and support 

composite event detection. This thesis discusses the design and implementation of the 

distributed event-based system, which is called Global Event Detector (GED).  The design is 

based on the notify/subscribe paradigm, and uses the Event-Condition-Action (ECA) rules to 

support active capability: when an event is detected, a condition is evaluated and an action is 

executed if the condition is satisfied. This thesis also summarizes the differences between an 

earlier C++ version and the current Java version in terms of functionality and advantages. 

 
 



 

vii 

TABLE OF CONTENTS 
 
 

ACKNOWLEDGMENTS   ...............................................................................................   iv 

ABSTRACT   ....................................................................................................................    v 

LIST OF FIGURES   ..........................................................................................................   x 

Chapter  
 
1.  INTRODUCTION   ......................................................................................................    1 

2.  RELATED WORK   .....................................................................................................    4 

2.1.  Common Object Request Broker Architecture   ..........................................    4 
 

2.2.  COM+ Events Model   .................................................................................    5 
 

2.3.  Schwiderski Dissertation   ............................................................................    5 
 

2.4.  Sentinel Global Event Detector   ..................................................................    6 
 
3.  SEMANTICS OF EVENTS   .......................................................................................    8 

3.1.  Primitive Event   ..........................................................................................    8 
 

3.1.1.  Local Primitive Event   .................................................................    9 
 

3.1.2.  Global Primitive Event   ...............................................................   10 
 

3.2.  Composite Events   .....................................................................................   10 
 

3.2.1.  Local Composite Event   ..............................................................   11 
 

3.2.2.  Global Composite Event   ............................................................   11 
 

3.3.  Event Operators   .........................................................................................   11 
 

3.4.  Parameter Context   .....................................................................................   13 
 

3.5. Coupling Modes   .........................................................................................   15 



 

viii 

 

4.  SUMMARY OF JAVA LOCAL EVENT DECTOR   ................................................   17 

4.1.  Event Specification Interfaces   ...................................................................   17 
 

4.2.  Event Detection   .........................................................................................   21 
 

4.3.  Overview of local event detector architecture   ..........................................   24 
 
5.  DESIGN OF THE GLOBAL EVENT DECTOR   .....................................................   28 

5.1.  Global Event Specification   .......................................................................   28 
 

5.2.  Goals of Global Event Detection   ..............................................................   29 
 

5.3.  Architecture Alternatives   ..........................................................................   30 
 

5.3.1  Distribute global event detection among applications   . ...............   30 
 

5.3.2  Client/server architecture   ............................................................   32 
 

5.4.  Java Remote Method Invocation (RMI)   ...................................................   39 
 

5.5.  Global Event Detection Site   ......................................................................   43 
 

5.5.1.  Global composite detection at the GED server   ..........................   44 
 

5.5.2.  Global composite detection at the local application   ..................   47 
 

5.6.  Extension of Local Event Detection   .........................................................   50 
 

5.6.1.  Type of events   ............................................................................   50 
 

5.6.2.  Communication Module   .............................................................   54 
 

5.6.3.  Type Of Messages   ......................................................................   57 
 

5.7.  Global Event Graph   ...................................................................................   58 
 

5.8.  Application Configuration File   .................................................................   59 
 



 

ix 

5.9.  Global Configuration File   .........................................................................   60 
 
6.  IMPLEMENTATION OF GLOBAL EVENT DETECTOR   ....................................   61 

6.1.  Implementation of an Application Configuration File   ..............................   61 
 

6.2.  Implementation of the Global Configuration File   .....................................   63 
 

6.3.  Implementation of Global Event Detector Initialization   ...........................   67 
 

6.4.  Implementation of Local Event Detector Initialization   ............................   68 
 

6.5.  Implementation of Application�s registration   ...........................................   69 
 

6.6.  Implementation of Global Primitive Event Definition   .............................   71 
 

6.7.  Implementation of Global Composite Event Definition   ...........................   73 
 

6.8.  Implementation of Rule definition   ............................................................   75 
 

6.9.  Implementation of Global Primitive Event Detection   ..............................   77 
 

6.10.  Implementation of Global Composite Event Detection   ..........................   79 
 
7.  CONCLUSIONS AND FUTURE WORK   ................................................................   81 

7.1.  Conclusion   ................................................................................................   81 
 

7.2.  Future Work   ..............................................................................................   82 
 
REFERENCES   ...............................................................................................................   84 

BIOGRAPHICAL SKETCH   ..........................................................................................   86 



 

x  

LIST OF FIGURES 

Figure Page 
 
4.1. Event graph for detecting primitive and composite events   .........................................    22 

4.2. An event table represents a set of event occurrences   ..................................................    23 

4.3. Event Class Hirarchy   ...................................................................................................    25 

4.4. Rule Class Diagram   .....................................................................................................    25 

4.5. Notify Buffer and Notify Object Class Diagram   .........................................................    26 

5.1. Architecture of a distributed event detector system   ....................................................    30 

5.2. Global event detection in a distributed event detector system   ....................................    32 

5.3. Global event detection in the global event detector   ....................................................    33 

5.4. A design model of GED with message-oriented middleware   .....................................    36 

5.6. A RMI communication design model of GED from the GED server to applications   .    39 

5.7. Composite event detection at the GED server when all the constituents are                
global events   ........................................................................................................    45 

5.8. Composite event detection at the GED server when some of the constituents are         
local events   . .........................................................................................................    47 

5.9. Composite event detection at the GED server when all the constituents are                 
global events   ........................................................................................................    48 

5.10. Composite event detection at the local site when some of the constituents are            
local events   . .........................................................................................................    50 

5.11. Global Event Class Hierarchy   ...................................................................................    52 

5.12. The LED interface class diagram   ..............................................................................    55 

5.13. The communication layer between LED and GED   . ..................................................    56 

5.14. Sentinel Message class diagram   ................................................................................    56 



 

xi  

5.15. Global event graph for detecting global events   .........................................................    59 

6.1. Mapping information of the old application ID and new application ID and                  
vice versa. ...............................................................................................................    65 

6.2. An example of clientAddressHt (client address list)   ...................................................    69 

6.3. Producer Event List Data Structure ................................................................................    70 

6.4. Consumer List Data Structure   .....................................................................................    73 

 

 
 



 

1 

CHAPTER 1 

INTRODUCTION 

A majority of applications today are distributed in nature and hence there is a need 

for monitoring and reacting to changes in a distributed application environment. For 

example, Element Management System (EMS), used to monitor and manage a network of 

distributed components, such as controller cards in Multi Service Fabric (MSF) and links 

between signaling points (SP) requires a change detection and notification mechanism. 

These network components are subject to failures in many ways. For instance, the links are 

broken or the cards are overloaded. When an unpredictable and undesirable problem 

occurs, the application operators prefer to be notified rather than executing a query to pull 

the status from a massive repository. For these and other similar application environments, 

active capability offers a promising approach to detect events and respond with user-

defined actions if appropriate conditions are satisfied. 

The early work on the Local Event Detector (LED), and other active notification 

systems such as Observer/Observable from Java and Producer-Bus-Consumer from 

InfoBus [1] are limited to their own address space. That is, they are well suited for stand-

alone applications. In CORBA [2]  (Common Object Request Broker Architecture), the 

event service decouples the communication between suppliers and consumers. Suppliers 

produce event data and consumers process event data through the standard CORBA 

request. Even though the CORBA�s event service provides the event notification in 

distributed environments, the notion of composite event detection has not been addressed. 

This thesis extends the earlier work that provides support for events and rules in 

Java applications in a seamless manner [3] within an application environment or address 



2 

 

space. Our focus is on the global event specification and primitive and composite event 

detection in a distributed environment by using event-based subscription/notification 

paradigm. The subscription is completely localized in the sense that the subscriber does not 

have to even worry about the presence of the event producer. As and when the producer 

comes on-line, event subscription is made by a mediator on behalf of the subscriber and 

notification is also handled by the same mediator. This thesis discusses the architecture, 

design, and implementation of the global event detection system.  

The Global Event Detector (GED) is a server based on the notification/subscription 

paradigm. All message passing is done in a demand-driven mode. That is, no messages are 

sent to the server unless there is a consumer for that message. The server receives an event 

detection request from a consumer application and forwards it to the corresponding 

producer only when it registers with the server. When the event of interest defined in the 

producer application occurs, the producer application notifies the occurrence of event to 

the server. The server not only forwards the occurrence of the event to the corresponding 

consumers, but it is also responsible for detecting any composite event based on that event.  

Our implementation of the GED uses the ECA (Event-Condition-Action) rule paradigm in 

order to support active capability in a distributed environment. According to the ECA rule 

paradigm, whenever the event occurs, the condition defined in the rule (for that event) is 

evaluated and the corresponding action is performed if applicable. The outline of this thesis 

is as follows. Chapter 2 reviews the research area of active database systems and some of 

the related work. Chapter 3 discusses the semantics of events and rules in a distributed 

environment. Chapter 4 summarizes the design and implementation of the local event 

detector (LED). Chapter 5 discusses the architecture alternatives for the distributed 

extension, describes the communication mechanisms, and explains the basic event 



3 

 

detection mechanism. Chapter 6 describes the implementation of global event detection 

and the server components. Chapter 7 concludes the thesis with a summary and some 

suggestion for future work.



 

4 

CHAPTER 2 

RELATED WORK 

This chapter reviews the related work in the area of event-based notification.  We 

will discuss the research from Object Management Group (OMG), Microsoft Corporation, 

Cambridge Computer Laboratory, and Global Event Detector from the Sentinel group. 

2.1  Common Object Request Broker Architecture  

Based on publish/subscribe paradigm, event service is one of the services from 

Common Object Request Broker Architecture (CORBA). [2] [4] It defines three roles 

(supplier, consumer, and event channel). The suppliers and consumers are decoupled, and 

transparent from each other. Suppliers can push data to consumers through the event 

channel.  Likewise, consumers can use event channel to pull the data from suppliers. The 

event channel works as a mediator between consumers and suppliers. The event channel 

inte4rface can be used for adding consumers, adding suppliers, and also for destroying the 

channel. 

There are four models of component collaboration in the event service 

architecture:Push Model, Pull Model, Hybrid Push/Pull Model, and Hybrid Pull/Push 

Model. The Push model allows suppliers to initiate the transfer of event data to consumers. 

In the pull model, the consumers request the event data from suppliers through event 

channel. The Hybrid Push/Pull model allows both consumers and producers to initiate the 

transfer of event data. The event channel plays the role of a passive mediator. The active 

consumers can request data via the event channel in which the active supplier pushes the 



5 

 

data. The Hybrid Pull/Push model, in contrast to the Hybrid Push/Pull model, allows the 

active event channel to pull the data from suppliers and push them to consumers. 

Although the symmetry provided by the COBRA event service is well designed, it 

is not possible for consumers to subscribe only to events, which are of interest.  Each event 

that is sent from each producer to the event channel is delivered to all the registered 

consumers. This requires consumers to filter out event data that is not of interest. It 

involves additional overhead for the consumers. This is likely to increase the network 

utilization and cause clogged network traffic. In addition, there is no notion of composite 

events. Thus, it does not support advanced event handling. 

2.2  COM+ Events Model 

COM+ [5] is an event model from Microsoft.  The push model is supported as 

event notification model. It defines three roles (publisher, subscriber, and COM+ events). 

Unlike CORBA�s event service, it only supports push model. It allows the subscribers to 

request event notifications from a particular producer. The subscribers and publishers are 

loosely coupled. Acting as a mediator, COM+ Events system stores event information 

from different publishers in an event store, and allows subscribers to select subscriptions, 

which are of interest and register them with the COM+ event service. When publishers fire 

events; the mediator looks in the event store, and finds the subscribers that have registered 

to the particular subscriptions, and notify subscribers.  However, COM+ Events model 

does not support distributed applications. In addition, there is no notion of composite 

events.  

2.3  Schwiderski Dissertation 

This dissertation [6] presents an approach to event-driven monitoring of the 

behavior of distributed systems. It defines an event specification language for primitive 



6 

 

and composite events that are used in a distributed system. Five event operators 

(conjunction, disjunction, sequence, iteration, and negation) are introduced to construct 

composite events that are applicable to events at either local or remote sites. In addition, 

formal semantics of primitive and composite event are defined to identify when and where 

an event occurs. Furthermore, the detection algorithm and the architecture of the global 

event detection are presented. The local and global event detections are distributed.  Thus, 

each site has both a local event detector and a global event detector to support event 

detection.  

This design, however, does not directly address issues of event registrations. It uses 

a configuration file to define the global event trees in order to construct the event graph. In 

addition, the prototype implementation is based on a conventional RPC system. But RPC 

does not support object communication. Hence, it is not suitable for application using the 

object-oriented paradigm. It uses Modula-3 network object, which is a distributed 

programming system. Thus, it lacks system interoperability. Furthermore, it doesn�t handle 

the complex event parameters and contexts. It doesn�t address how to handle parameters 

that are associated with the composite event, and the evaluation of global event trees is 

presented in only the chronicle context.  

2.4  Sentinel Global Event Detector  

The Sentinel project [7] addresses design and implementation of a global event 

detector in the C++ environment. The major contributions of this project are the extension 

of the event specification language (termed Snoop) and Snoop Preprocessor (SPP), and the 

implementation of a global event detector.  Snoop used to define ECA rules is extended to 

express event semantics for the distributed environments.  A Snoop Preprocessor 

transforms the event and rule definitions written in Snoop to the conventional C++ 

programming code. It also generates the global event specification file, which contains the 



7 

 

information used by the server for detecting the event defined outside of a local 

application. Based on this information, the global event detector constructs the event graph 

for the detection of primitive and composite global events.  

This implementation presents an approach to overcome the shortcomings of 

CORBA mentioned above.  However, there are still some limitations introduced by C++ 

environment in providing active capability.  

• Portability: Implemented in C++, the Global Event Detection uses system calls to the 

underlying operating system to support temporal event detection. This implementation, 

thus, is difficult to port and use on a different platform. 

• Object Oriented Paradigm: The Global Event Detector relies on a conventional RPC 

communication. This technique is not suitable for applications using the object-

oriented paradigm since the communication is restricted to the primitive data type such 

as integer, float, and double. In order to support object communication, it requires 

tedious and enormous work to marshal parameters at the client and unmarshal at the 

server.  Furthermore, the condition and action parts of rules were modeled as C 

functions, which are typically used in procedural programming paradigm. Thus this 

compromises object-oriented paradigm  

• Resource Utilization: Each application independently uses the Snoop Preprocessor to 

transform the ECA rules into conventional C++ code, and generate event specifications 

in a flat file. Each application reads this information at run time and sends it to the 

server to construct the event graph for detecting both primitive and composite events. 

Since the structure of the event graph is identified by each application at the pre-

compilation time and sent separately to the server, two applications cannot share the 

same event graph even though they are interested in the same event supplied by the 

same producer. When the event occurs, producers have to send the duplicate 



8 

 

notifications to the server in order to notify each corresponding node. This is likely to 

increase resource utilization 

 

CHAPTER 3 

SEMANTICS OF EVENTS 

In an active database system, the expressiveness of event specification is 

important for modeling complex applications. In a single application scenario, all the 

occurrences of events (primitive or composite) relate to one application (or address 

space). On the other hand, the occurrences of events in a distributed application scenario 

relates to more than one application (or address space). In this chapter, event 

specification for primitive and composite are discussed. The extensions to support 

specification and detection of events across address spaces (termed global event 

detection) are needed to support a distributed application environment. This chapter 

describes the types of events needed in a distributed environment. This chapter also 

discusses event operators used in composite event expressions, associated semantics, and 

the notion of parameter contexts. 

3.1  Primitive Event 

An event is an occurrence of interest at a specific point in time.  Primitive events 

are the elementary occurrences and are classified into database, temporal, and explicit 

events. Database events are associated with the manipulation of data such as the creation, 

deletion, or insertion that are executed over a period of time. Event modifiers (begin and 

end) were introduced to transform operations that take an interval into an event.  In other 



 

 

9 
 

words, the event modifiers (begin and end) are used to map the logical events at the 

conceptual level to physical events. The begin event modifier denotes the starting point of 

a database event and the end event modifier denotes the ending point. Temporal events 

correspond to absolute and relative temporal events. The absolute temporal event is an 

event associated with an absolute value of time. For example, 4 P.M. on September 11, 

2001 is an absolute event. The relative temporal event is an event corresponding to a 

specific point on the time line, which is an offset from another time point (specified either 

as absolute or as an event).  Explicit (also termed abstract) events are explicitly defined in 

the application, but their occurrences are either detected outside of the application and 

conveyed to the application or the application explicitly raises those events.  

In a distributed environment, primitive events can be broadly classified into two 

types: local primitive and global primitive. 

3.1.1  Local Primitive Event 

Local primitive events are the database (or domain specific), temporal, or explicit 

events that are defined in an application and are detected (or raised) in the same site as 

that of application. [7] An event is defined in terms of a name, an event modifier, a 

method signature (method whose execution raises the event), a class (with which the 

event is associated) and parameters (arguments of the method plus the instance on which 

the method is executed). The underlying event detection mechanism (the local event 

detector) uses this information to determine the occurrence of an event. The parameters 

of the event are gathered at the time of occurrence and are preserved for later use by 

condition and action components of an ECA (event-condition-action) rule. Here is an 

example of local primitive event. A meteorologist in Arlington weather center likes to 

know when the temperature reaches 100 degrees Fahrenheit. This event is defined in the 

Arlington weather application on the update temperature method along with the condition 

that checks for the new temperature as to whether it has reached 100 degree Fahrenheit 



 

 

10 
 

and an action that informs the meteorologist about this happening. Whenever the event 

occurs (that is, the update temperature method is executed), the system will check for the 

condition and if it evaluates to true, the action is executed notifying to the meteorologist 

by mail (in this case). 

3.1.2  Global Primitive Event 

Global primitive events are those the events that are defined and detected outside 

the current application and are subscribed to by the current application in the context of a 

distributed application scenario. In other words, an application considers an event (either 

a primitive or composite) defined outside of that application as a global primitive event. 

Since the remote applications are autonomous, only an event name is not sufficient to 

distinguish events form different application as two applications may have the same event 

name. In order to avoid any potential ambiguity, additional information such as an 

application name and a machine name are used to refer to a primitive global event. The 

following are examples of composite global events. The Arlington meteorologist wants to 

know when the humidity in Austin goes above 40 percent. This local primitive event is 

defined and detected in the application located in Austin; however, the occurrence is 

forwarded to the application in Arlington. Another example is that the Arlington 

meteorologist might be interested when the temperature in Austin is below 50 degrees 

Fahrenheit and is raining. As described in the next section, the local composite event in 

Austin (corresponding to the composite event temp < 50 AND raining) is considered to 

be a global primitive event for the application running at Arlington.   

3.2  Composite Events 

A composite event is an event that is composed of primitive events and/or other 

composite events by applying Snoop [8] [9] [10] event operators such as OR, AND, 

SEQUENCE, and NOT. These operators will be discussed later in this chapter. In order 



 

 

11 
 

words, the constituent events of the composite event can be primitive events and/or 

composite events. 

 In the context of a distributed application, a composite event can be classified 

into two types: local composite event and global composite event. 

3.2.1  Local Composite Event 

Local composite events are composed of local primitive events and/or other local 

composite events with event operators. [11] The local composite event and all its 

constituent events are locally defined and detected in one site. The occurrence can be 

detected by using a local detection mechanism. For example, the meteorologist in 

Arlington weather center wants to know when the temperature is over 100 degrees 

Fahrenheit and the humidity is less than 40 percent (in Arlington). All the constituent 

events are defined and detected in the Arlington weather application.  

3.2.2  Global Composite Event 

Global composite events are events whose constituent events are related to the 

event occurrences from many sites including the local site. They can be composed of 

local primitives, local composite events, global primitive events and/or other global 

composite events by applying one or more of the event operators; however, one of the 

constituent events must be a global event.  

3.3  Event Operators 

The even operators are used to construct composite events. Each of these event 

operators and its semantics are described briefly in the following section. The upper case 

letter E, which represents an event type, is a function from the time domain on the 

Boolean values. The function is given by   

E (t) = True if an event type E occurs at time point t 

False otherwise 

• Disjunction: OR (∇∇∇∇) 



 

 

12 
 

Disjunction of two events E1 and E2, denoted by E1 ∇ E 2 is applied when either E1 

occurs or E 2 occurs. Formally, 

(E1 ∇ E2) (t)  = E1 (t) ∇ E2 (t) 

• Conjunction: AND (∆) 

Conjunction of two events E1 and E2, denoted by E1 ∆ E 2 is applied when E1 occurs 

and E 2 occurs in any arbitrary order. Formally, 

(E1 ∆ E2) (t)  =  (E1 (t1) ∆ E2 (t)) ∇ ((E1 (t) ∆ E2 (t1)) 

and t1  ≤  t 

• Sequence (;) 

The sequence of two events E1 and E2, denoted by E1 ; E 2 occurs when E1 happens 

before E2. The timestamp of occurrence of E1 is less the timestamp of occurrence E2. 

Formally, 

(E1; E1) (t)  = E1 (t1) ∆ E2 (t) and t1  < t 

• Negation: NOT (¬) 

The not operator, denoted by ¬(E2) [E1, E3] is applied when there is no occurrence of 

E2 in the closed interval formed by E1 and E3. Formally, 

¬ (E2) [E1, E3] (t)  =  (E1 (t1) ∆  ~E2(t2)  ∆  E3(t)) 

and t1  ≤  t2  ≤  t 

• Aperiodic Operators (A) 

The non-cumulative aperiodic operator, denoted by A (E1, E2, E3) is used to express 

the occurrence of an aperiodic event in the half-open interval formed by two arbitrary 

events. The A event occurs each time when E2 occurs during the half-open interval 

defined E1and E3. The number of occurrence of A event is proportional to the occurrence 

of E2 during the interval. Formally, 

A (E1, E2, E3) (t)  = E1 (t1) ∆ ~ E3 (t2) ∆ E2 (t)) 

and (t1 < t2 ≤ t  or  t1 ≤ t2 < t) 

 



 

 

13 
 

• Aperiodic Star Operators (A*) 

The cumulative aperiodic operator, denoted by A* (E1, E2, E3) is similar to the non-

cumulative aperiodic operator. It A* event is signaled only once when E3 occurs rather 

than detected the event every time the event E2 occurs. However, the occurrences of E2 

are accumulated each time when E2 occurs during the half �open interval formed by E1 

and E3. Formally, 

A*(E1, E2, E3) (t) = (E1 (t1) ∆ E3 (t)) and t1 < t 

• Periodic Operator (P) 

The periodic operator, denoted by P (E1, [t], E3) is used to express a periodic event 

that repeats itself within a constant and finite amount of time. The event P is signaled for 

every amount of time t in the half-open interval (E1, E3]. Formally, 

P (E1, [TI], E3) (t)  =  (E1(t1) ∆ ~ E3(t2)) 

and t1 < t2 and t1 + x * TI = t for some 0 < x < t and t2 ≤  t 

where TI is a time specification. 

• Periodic Star Operator (P*) 

The periodic star operator denoted by P* (E1, [t], E3) is a cumulative variant of P. The 

occurrence Similar to aperiodic star context, the P* event is signaled only once when E3 

occur. Formally, 

P*(E1, [TI], E3) (t)  =  (E1(t1) ∆ E3(t)) 

and t1  ≤  t 

• Plus (+) 

The plus operator denoted by E1+ [T] is applied when T time units are elapsed after 

E1 occurs.  

3.4  Parameter Context 

Four parameter contexts�recent, chronicle, continuous, and cumulative�were 

introduced to provide a mechanism for capturing meaningful application semantics and 



 

 

14 
 

reduce the space and computation overhead for the detection of composite events using 

the semantics described above. [9] [11] The contexts are defined by using the notions of 

initiator and terminator for events. An event that initiates the occurrence of a composite 

event is termed the initiator of the composite event.  An event complete the detection of 

composite event is denoted the terminator of the composite event. For example, a 

composite event (E1 ∆ E2 ∆ E3) has E1 as an initiator and E3 as a terminator.  

• Recent:  

In the recent context, only the most recent occurrence of the initiator (when there 

are multiple instances of the same event) for any event that has started the detection of 

that event is used. When the event occurs, all the occurrences of events, that are used in 

the parameter relation and cannot be initiators of that event in the future, are deleted. In 

this context, not all occurrences of a constituent event will be used in detecting a 

composite event. Furthermore, an initiator of an event will continue to initiate new event 

occurrences until a new initiator occurs. This recent context is suitable for events that 

happen at a fast rate and the multiple occurrences of the same event only refine the 

previous value. 

• Chronicle:  

In the chronicle context, the initiator-terminator pair is unique for an event 

occurrence. The oldest initiator is paired with the oldest terminator for each event. When 

event occurs, the occurrences of the events are deleted. The event occurrence can be used 

at most once for computing the parameters of the composite event. This context is useful 

when the different types of events have an established relationship between their 

occurrences.  

• Continuous: 

 In the continuous context, each initiator of an event starts a separate detection of 

that event. A terminator event occurrence may detect one or more occurrences of the 



 

 

15 
 

same event. The initiator and terminator are discarded after an event is detected. This 

context is fit for tracking trends of interest along a moving time window.  

• Cumulative:  

In the cumulative context, all occurrences of an event type are accumulated as 

instances of that event until the event is detected. When the event occurs, all the 

occurrences that are used for detecting are discarded. 

3.5  Coupling Modes 

In early systems such as POSTGRES [12], condition evaluation and action 

execution were done immediately after the event was detected.  However, in some 

situations this is too restrictive. For integrity checks, condition evaluation and action 

execution need to be done at the end of a transaction before it commits. Coupling modes 

were introduced to specify a relative point in time where condition evaluation and action 

execution should take place after the event is detected, with the constraint that the action 

will be performed only when the condition  is satisfied. There are three coupling modes: 

• Immediate:  

When an event is detected, the transaction is suspended, and the condition 

associated with the event is evaluated immediately. If the condition evaluates to true, the 

action is executed.  The execution of the triggering transaction is continued when the 

condition evaluation and action execution are completed. 

• Deferred:  

The triggering transaction is continued after an event is detected. Condition 

evaluation and action execution are done at the end of the triggering transaction before it 

commits.  

• Detached (or decoupled): 

Condition evaluation and action execution are done in a separate transaction (or 

triggered transaction) from the triggering transaction. The detached mode can be 



 

 

16 
 

classified into two types (totally independent and causally dependent).  When two 

transactions are totally independent, the triggered transaction is executed regardless of 

whether the triggering transaction commits or aborts. On the other hands, the triggered 

transaction can commit only after the triggering transaction commits for the causally 

dependent mode. 

 

IMPLEMENTATION OF PRIMTIVE EVENTS 

 
In this chapter, we discuss, in detail, the issues concerning the creation and detection of 

primitive events. The reason we need to know about the occurrence of primitive events 

outside the scope of the SQL Server is to primarily aid the Java LED in the detection of 

Composite events. We have to remember here that; we are using another layer of 

software over the SQL Server in order to enhance the trigger capability of the SQL 

Server. This layer of Software is what is called The Generalized Mediator Agent or The 

ECA Agent. This ECA Agent uses the trigger mechanism of the underlying SQL Server 

as the basis and builds upon it, in order to enhance the triggering capability and turn the 

system into a true Active DBMS. 



 

17 

CHAPTER 4 

SUMMARY OF JAVA LOCAL EVENT DECTOR 

This chapter summarizes the design of java local event detector (LED) and its 

functionality. The local event detector, based on the ECA rule paradigm, provides flexible 

and expressive event semantics in order to support active capability useful to various kinds 

of applications, including relational and object-oriented database systems. The LED has 

been used to develop a agent/mediator that work with various commercial Relational 

DBMSs (such as Oracle, DB2 and Sybase). [13] [14] The local event detector is well 

suited for monitoring complex changes with in an application. In addition to the overall 

architecture, this chapter discusses various data structures used in local event detection. 

4.1  Event Specification Interfaces 

In a centralized system, the local event detector provides active capability in an 

application by detecting the occurrence of local primitive and local composite events 

defined as part of the application.   The application interacts with the local event detector 

through a set of interfaces (API).  

This following section describes the steps for using the event detector. First, the 

application has to initialize an agent by invoking the initializeECAAgent( ) or 

initializeECAAgent(String agentName) method. When the initializeECAAgent( ) method is 

invoked for the first time, the system initiates a  new ECA agent ( called the 

defaultECAAgent when invoked without a parameter); otherwise, it will return the existing 

defaultECAAgent to the application. The application can initialize multiple agents by 

using initializeECAAgent (String agentName). Each agent is responsible for monitoring 



18 

 

events defined in that agent and performing appropriate actions. After initialization, the 

application can start defining events (both primitive and composite), and rules. The APIs 

for initializing an agent are shown below. 
Initialize ECAAgent API :  

initializeECAAgent () 

initializeECAAgent (String agentName) 

For defining a  primitive event, the application basically specifies a name for the 

primitive event, a name of the class in which the method associated with the event is 

defined, the event modifier (begin or end), and the complete method signature. The 

application uses the initialized ECAAgent to invoke with the createPrimitiveEvent method 

to define the primitive event. When an event is defined using the API shown below, the 

associated event handle is returned. This handle is used for defining the composite event, 

storing the parameter of the event as well as, signaling the method invocation of event to 

the detector.  

There are mainly two APIs for defining a composite event. First API is used for 

defining a binary Snoop operator such as AND, OR, and SEQUENCE with two constituent 

events, which can be either primitive events or other composite events. The other API is 

for defining a composite event that has three constituent events. The examples of a ternary 

operator are NOT, PERODIC, and APERIORDIC. To define a composite event, the 

application specifies the operator type and event handles obtained from previous 

declarations as described above. Similar to defining a primitive event, the application calls 

the createCompositeEvent method to define a composite event in a specific ECA agent. 

The following interfaces is used for defining an event  

 
 



19 

 

Create Primitive Event API 

createPrimitiveEvent (String eventName, String className,  

EventModifier modifier, String methodSignature) 

Create Composite Event API  

createCompositeEvent  (EventType operator, String eventName,                  

EventHandle ehOne, EventHandle ehTwo) 

createCompositeEvent  (EventType operator, String eventName, EventHandle ehOne, 

EventHandle ehTwo, EventHandle ehThree) 

The rule definition basically consists of an event handle (corresponding to an 

event) with which the rule is associated, a condition method name, and an action method 

name. To specify a rule, the application invokes createRule (EventHandle eh, String 

ruleName, String condMethod, String actionMethod). The condition and action are defined 

as methods in the associated class. The rule is fired when the event occurs and the 

condition is evaluated. If the condition is satisfied, the action will be performed.  

 In some cases, we can define an event and a rule specification in a separate class. 

To define a rule that has a condition and an action defined in another class, the application 

specifies the class name (in which the method associated with the rule is defined) in the 

condMethod and actionMethod. The format is as follows: 

condMethod = �PackageName�+�.�+ClassName�+�.�+�MethodName� 

actionMethod = �PackageName�+�.�+�ClassName�+�.�+�MethodName� 

For a class-level rule, the application invokes the same API as: createRule 

(EventHandle eh, String ruleName, String condMethod, String actionMethod). To apply 

the rule on the specific instance of the class in which condition and action methods are 



20 

 

defined, the application needs to add a target object , termed a targetInstance, in the a rule. 

The APIs for defining a rule are as follows. 
 

Create Rule API  

createRule ( String ruleName, EventHandle eh, String ruleName, String condMethod, 

String actionMethod) 

createRule ( Object targetInstance, String ruleName, EventHandle eh, String ruleName, 

String condMethod, String actionMethod) 

In the body of the method  defined as a primitive event, arguments of that method 

need to be inserted into the parameter list using the even handle before raising the event. 

The application can insert any primitive data type or object through insert( ) API shown 

below. As described in the previous chapter, these parameters will be used for checking 

conditions and performing actions when the rule is fired.  At the time a primitive event is 

raised, the application signals the   event detector through a method so that the detector can 

trap the occurrence of the primitive event. Typically, the application calls raiseBeginEvent 

(EventHandle [] eventHandleArray, Object instance) or raiseEndEvent (EventHandle [] 

eventHandleArray, Object instance) inside the method. The API used depends on whether 

the event is raised at the beginning or at the end of the method. The application uses event 

name to retrieve the vector of event handles by calling getEventHandles (String 

eventName) API in the ECAAgent class.   
Insert Parameter API 

insert(EventHandle[] eventHandleArray, String varName, long longValue) 

insert(EventHandle[] eventHandleArray, String varName, float floatValue) 

insert(EventHandle[] eventHandleArray, String varName, Object object) 



21 

 

Raise Event API 

raiseBeginEvent(EventHandle[] eventHandleArray, Object instance) 

raiseEndEvent(EventHandle[] eventHandleArray, Object instance) 

4.2  Event Detection 

LED uses on an event graph for detecting composite events as shown in figure 4.1. 

Each node in the event graph represents either a primitive event or a composite event 

defined in the application by using above interfaces. Primitive event nodes are leaf nodes 

from which composite event nodes are constructed. Composite event node can also be 

constructed from primitive events and/or other composite events. The primitive event node 

contains an instance-based multiple rule list and an event subscriber list, while the 

composite event node contains only one rule subscriber list and an event subscriber list. An 

instance-rule list is a collection of rule subscriber lists for classes and instances. The rule 

subscriber list and event subscriber list keep the associated rules and composite events 

respectively. The eventSignaturesEventNodes and eventNamesEventNodes hash tables 

provide references to the primitive event nodes. When a  primitive event occurs, it is 

inserted to the leaf node and the occurrence is propagated to the internal nodes similar to a 

data-flow computation. The occurrence is propagated by means of an  event table, which is 

described in the next section. 
 

 



22 

 

 

 
Figure 4.1.  Event graph for detecting primitive and composite events. 

 

Figure 4.2 shows an event table that stores all the key information including event 

occurrences, timestamp, a list of parameter lists, and context information used in detecting 

an event. The event table is also passed to the condition and action methods for extracting 

appropriate parameters for usage within condition and actions methods.  An event table, 

termed a PCTable, consists of a set of event entries. Each event entry holds four-bit context 

information (Recent, Chronicle, Continuous, and Cumulative) and a list of parameter lists. 

The parameter list denotes the occurrence of a primitive event, whilst the list of parameter 

eventSignature

IBM

MSFT

null

an Instance-rule list

eventSignaturesEventNodes Hashtable

Event Subscriber

Rule Subscriber

Primitive Event Node Composite Event Node

Pointer to Event NodeRule Node



23 

 

lists denotes the occurrence of a composite event. The number of parameter lists in the list 

will be proportional to the number of constituent primitive events. The parameter list is 

used to store information when the event is raised, and to retrieve the data when the event 

is detected. The data coming form the parameter list is used for checking condition and 

performing action according to the rule definition.   

 

Figure 4.2.  An event table represents a set of event occurrences. 
 

The rule subscriber list consists of rule nodes, each of which defines a rule. The 

rule node stores the rule name, references to context in which the rule should be executed, 

condition method name and action method name. The rules in the rule subscriber list are 

triggered when the associated event occurs in that particular context. Whenever the rule is 

fired, the rule thread that contains the rule definition is instantiated. And it will be inserted 

into the rule scheduler. Once the rule is executed, the condition will be evaluated to 

determine whether the action should be performed or not.  

Composite event
occurrence

Bit pattern

e1
1 e2

1

e1
2 e2

1

e1
1 e1

2 e2
1

0110

1010

0001

An Event Entry

Vector of
Event Entries

Composite event
occurrence

Bit pattern

e1
1 e2

1

e1
2 e2

1

e1
1 e1

2 e2
1

0110

1010

0001

e1
1 e2

1

e1
2 e2

1

e1
1 e1

2 e2
1

0110

1010

0001

e1
1 e2

1

e1
2 e2

1

e1
1 e1

2 e2
1

An Event Entry

Vector of
Event Entries

1010

0001

0110



24 

 

4.3  Overview of local event detector architecture 

The main components of the local event detection system are event, rule, ECA 

agent, rule scheduler, and event detector thread 

The event nodes are used to represent defined events. As mentioned in chapter 3, 

the events of interest are classified into two main groups (primitive and composite) for the 

local event detection. Therefore, an Event class is derived into two subclasses, which are a 

Primitive event and a Composite event class. And the composite event is derived into 

subclasses, which correspond with the event operators such as AND, OR, SEQUENCE. 

For ease of use, the application is provided with an event handle for each primitive event 

(or node). The application can obtain the event handle by giving an event name. . The 

EventHandle object stores a method signature, a class name, and a list of parameter lists 

associated with that event. It is used for various tasks by the application. The user uses the 

EventHandle object when creating the composite event or inserting the parameters. The 

purpose of the event handle is to reduce the amount of information the user needs to keep 

track of. The event handle allows one to obtain all other information by remembering the 

event name. Figure 4.3 depicts the event class hierarchy. 

A rule consists of a condition and an action. The condition and action are 

implemented as methods of a class in Java. Since LED uses Java reflection, the rule object 

needs to know the name of a method to reference back to the condition and action method. 

In addition, it keeps the context information for composite event detection. Whenever the 

rule is triggered, the RuleThread object is instantiated if rule scheduler is turned on. Then, 

this instance is inserted into the rule queue and executed by rule scheduler. Figure 4.4 

shows the relationship between Rule, RuleThread, and Event class. 

 
 
 



25 

 

 
 

Figure 4.3.  Event Class Hierarchy. 
 
 

 
Figure 4.4.  Rule Class Diagram. 

 
 

Event

Notifiable
<<Interface>>

And

Sequence

Or

Not

Periodic PeriodicStar

Aperiodic AperiodicStar

EventHandle

PrimitiveEventHanle Primitive CompositeEv entHandleComposite

Event Rule R ul eTh re ad



26 

 

The ECAAgent is responsible for monitoring the events of interest in an 

application. It provides interface to define events and rules, insert parameters using the 

event handle, and signals an event occurrence to the event detector. The application can 

name the agent at the initialization time. When the agent is initialized without a specific 

name, the defaultECAAgent is created. After initialization, this default agent can be 

referred to at any time by using the static method, ECAAgent.getDefaultECAAgent( ). The 

ECAAgent class maintains two hash tables. The eventNameEventNodes and 

eventSignaturesEventNodes hash tables store a mapping to the event nodes. These two 

hash tables work as a registry, which is internally used for referring back the event node 

when the event occurs. Since the application thread is separated from the event detector, it 

works in conjunction with an event detector thread (LEDThread) through a buffer 

(NotifyBuffer) as shown in figure 4.5 
 

Figure 4.5.  Notify Buffer and Notify Object Class Diagram. 
  

The event detector thread is responsible for detecting events and firing rules. 

Whenever a primitive event occurs, all the relevant information about its occurrence is 

wrapped into an object called NotifyObject. This NotifyObject is put into the buffer, and is 

ECAAgent LEDThread

N oti fy Object

N otify B uffer

put()
get()



27 

 

processed by the LEDThread. Running in an infinite loop, the event detector thread keeps 

fetching NotifyObjects, notifying occurrences of events, propagating the parameters to the 

internal nodes of the event graph, and firing the associated rules. The application thread 

that raised an event is synchronized according the immediate rule firing semantics. 

 

 

 
 
 
 
 



 

28 

CHAPTER 5 

DESIGN OF THE GLOBAL EVENT DECTOR 

This chapter describes the design of the global event detector. New interfaces 

(APIs) introduced to accommodate event specification for a distributed environment are 

explained. In addition, alternative architectures and communication mechanisms along 

with their advantages and disadvantages will be discussed.  One of our goals is to 

minimize the computation and communication costs by determining an appropriate 

location where a global event is managed.  All the requirements of global event detection 

are addressed in this chapter.  We also summarize Remote Method Invocation (RMI) and 

object serialization mechanisms used for communication. 

5.1 Global Event Specification 

Two global event types are supported in our development: global primitive and 

composite event. As defined in the chapter on semantics of events, global primitive event 

is an event that is defined and detected outside of current or local application. Event name, 

application name, and host name are used to compose a global primitive event 

specification. The event detection and network communication details are transparent to 

users. The API used for the global primitive event specification is as follows: 

Create Global Primitive Event API 

createPrimitiveEvent (String consEventName, String className, 

String prodEventName, String appName, String machName) 

 



29 

 

consEventName is the event name defined by a current or local application,and can 

be used to reference an event handler. className is a name of the class in which the 

current or local application subscribes to a global primitive event.  prodEventName is the 

event name that is defined in the other application where this event is detected. appName 

and machName denote the name of the application and machine name where this global 

event is defined. 

Global composite event is an event that is composed by event operators and at least 

on e of its constituent events is a global event. The global composite event specification is 

identical to the local composite event specification. The internal mechanism will determine 

the type of composite event (local or global) and the site of a global composite event 

detection at run-time. The details of composite event detection site are described later in 

this chapter. The APIs for defining a composite event are as follows: 

Create Composite Event API  

createCompositeEvent  (EventType operator, String eventName,                  

EventHandle ehOne, EventHandle ehTwo) 

createCompositeEvent  (EventType operator, String eventName, EventHandle ehOne, 

EventHandle ehTwo, EventHandle ehThree) 

5.2  Goals of Global Event Detection 

Applications running on different sites and possibly using heterogeneous platforms 

constitute a distributed application environment. Any monitoring mechanism for a 

distributed environment should provide a mechanism for subscribing to changes in other 

applications as well as changes that span, multiple applications.  Global event detection is 

introduced as a mechanism to accomplish the above. This entails enhancing the local event 

detector to communicate with a global event detector as well as sending appropriate events 

from one address space to another. Our approach also endeavors to minimize the overhead 



30 

 

associated with message communication. The communication alternatives are taken into 

account to enhance the system performance. 

5.3  Architecture Alternatives 

There are two main approaches to detect global events in a distributed environment.  

5.3.1  Distribute global event detection among applications 

 

 
Figure 5.1.  Architecture of a distributed event detector system. 

 

In this approach, each application communicates directly with every other 

application that is part of a distributed application scenario.  Each application needs to 

know other applications in order to communicate with them. As shown in figure 5.1, in this 

approach, both local and global events are detected in a local site, and applications are 

coupled with each other to exchange messages. [7]  Each application requires both a local 

event detector and a global event detector module, and has to directly communicate with 

every other application as shown in figure 5.2. In addition, this approach requires that all 

applications to be running at all times. Most of the time, event detection in each site keeps 

on flooding the communication channel with messages rather than effectively monitoring 

the events of interest. In order to detect global events, each consumer application directly 

LED

GED

App 1

LED

GED

App 2

LED

GED

App n



31 

 

sends requests to appropriate producer applications in which its constituent events are 

defined. When an event occurs, a producer application sends a notification message back 

to a consumer application. Each application is responsible to detect a composite event by 

itself.  

The following example (shown in figure 5.2) is used to demonstrate how this 

approach works and derive the communicate cost for detecting a composite event in order 

to compare with the other approaches. A local event LE1 and LE2 are defined as primitive 

events in application (called Prod1 and Prod2 respectively). The Cons1, Cons2, and Cons3 

applications are interested in a composite event, which is composed by LE1 <op> LE2. 

Each application needs to send event detection requests to Prod1 and Prod2. When the 

event occurs, the producer application sends the notification message to notify the 

consumer applications. The total number of communication in this scenario is: 12 (6 

detection request messages and 6 notification messages) 

An event operator can be either binary or ternary. A number of consumer 

application (Cons1, Cons2, Cons3, �, ConsX) may be interested in the same event. Each 

consumer sends an event detection request to Y producers where Y is either 2 or 3 (binary 

or ternary operator)..  When the event occurs, each producer sends back an event 

notification to all registered consumers. Therefore, the number of messages sent is: 2 * X * 

Y where the upper case X is used to represent a number of consumer applications that are 

interested in the same global composite events. 

 

 

 

 

 



32 

 

Figure 5.2.  Global event detection in a distributed event detector. 
 

5.3.2  Client/server architecture 

This approach introduces a global event detector as a server.  Each application only 

communicates with the server and hence does not have to know the identities of each 

application.  The server is responsible for managing the subscription/notification aspect of 

global event detection. Determining what global events to detect and where to detect, the 

server allows clients (applications) to share information. The global event detector partially 

relieves the applications of the event detection.  Each application still contains the local 

event detection module.  

Applications, in this approach, are loosely coupled.  A consumer (of events are 

detected in another application) application can subscribe to remote events through the 

global event detector. Running in the background on the server, the global event detector 

keeps track of subscriptions on the server site, and forwards the request to the appropriate 

LE
2

Prod 1 Prod 2

LE
1

GE
1

Cons 3

Event

Notificat

ion

Global composite event node

Local primitve event node

Node represents an event defined in
other applications.

GE
1

VL
E1

Cons 2

Event Detection Request

VL
E2

VL
E1

VL
E2

Event Notification

GE
1

VL
E1

VL
E2

Cons 1



33 

 

application that generated the event (a producer).  Once the event occurs in the producer 

site, the global event detector is notified which forwards the notification to the consumer. 
 

 
Figure 5.3.  Global event detection in the global event detector.  

 

For the earlier example, using this approach, the number of messages among 

applications and the server is: 10 (5 notification request messages and 5 notification 

messages). In general, the number of messages between clients and server is: 2*[X+Y] 

where X is used to represent a number of consumer applications and Y is either 2 or 3 

(binary or ternary operator). The number of messages in this approach will be less than that 

of the first approach when the number of consumers increases. 

The first approach works well only with very small number of applications and 

small number of global events. The client/server infrastructure decreases network traffic as 

compared to the first architecture, especially, when the applications and number of global 

events are more.  

L2

Prod 1 Prod 2

L1

Cons 3

Event

Notification

Global composite event node

Local primitve event node

Node represents an event defined
in other applications.

VG
E1

Cons 2

Event Detection Request

VG
E1

Event Notification

GE
1

VL
E1

VL
E2

ServerCons 1

VG
E1



34 

 

The communication between clients and the global event detection server plays an 

important role in system performance.  There are three communication approaches 

discussed in the following section: 

5.3.2.1  Client/server with remote procedure  
call  architecture 

Remote Procedure Call (RPC) is a client/server infrastructure that allows clients to 

invoke a method residing in the server in a different address space (either on the same 

machine or a remote machine).  It encapsulates the details of the network interfaces and 

operating system from the applications. Most RPCs follow the blocking or synchronous 

protocol. The client application is blocked after sending the request to the server, until a 

return is received. 

Two way remote procedure call (RPC) approach works only in situations that allow 

only one application per machine. The server cannot differentiate multiple 

clients/applications running on the same machine since they all obtain the same client 

identification (host name, service program number, version number, procedure number). 

Even though the remote procedure call (RPC) along with a socket-based approach works 

properly in the global event detection in C++ version, it is not suitable for application 

using the object-oriented paradigm. RPC doesn�t support object communication between 

application residing in different address space. Therefore, it is complicated to extend the 

earlier version of Global Event Detector to support an object-oriented application. 

5.3.2.2  Client/server with middle-oriented  
middleware architecture 

Middle-oriented middleware (MOM) [15] is an alternative infrastructure, which 

operates as a mediator between the server and client. MOM, and resides on both sides of 

client and server, is responsible for transferring messages between them. Most MOM 



35 

 

architectures support both synchronous and asynchronous communication. Asynchronous 

communication allows clients and server to send messages in non-blocking manner 

In this approach, MOM provides message router and message queues for 

asynchronous message passing between applications and the GED server. These 

administrated objects must be configured before running the global event detector. After 

starting MOM message router, applications can send an event detection request message to 

GED through the channel or queue. Similarly, the GED server can send the notification 

message back to applications via an asynchronous call. This kind of communication 

enables the server to continue performing other tasks without waiting for response from 

applications.  The scenario of this approach is shown in figure 5.4 

The benefits of this architectural approach are as follows. Clients are enabled to 

exchange the data with server in synchronous or asynchronous manner. For asynchronous 

communication, once the client sends out a message through the message queue provided 

by MOM, it is allowed to handle other jobs without awaiting a response from the server. 

MOM can ensure guaranteed message delivery.  

This approach seems to make system run effectively and robustly. However, there 

are many drawbacks in this approach. Typically MOM architectures are proprietary 

software from many leading vendors. Therefore, we cannot modify internal infrastructure 

to accomplish our goals.  Building the GED on the top of MOM incurs substantial 

overhead since it already provides rich set of functionality, such as, transaction 

management and security control, which are excessive for the GED server. In addition, 

duplicate subscription information is stored in both MOM and GED. Since substantial 

resources are shared by MOM, it could deteriorate system performance. Hence, this 

approach is not suitable for our development. 

 



36 

 

 
 

Figure 5.4.  A design model of GED with message-oriented middleware. 

5.3.2.3  Client/server with object request  
broker architecture 

An object request broker (ORB) is also a middleware that manages interaction 

between clients and servers, preserving full object messaging semantics. The objective of 

ORB is to support object communication across applications on different machines. Clients 

c1 is channel to application 1
c2 is channel to applicaiton 2
c3 is channel to server

MOM Message Router

Global Event Detector (GED)

Server

MOM

Event N
otification

M
essage

Event N
otification

M
essage

Local EvenDetector (LED)

Application 1
MOM

Event N
otification

M
essage

Local EvenDetector (LED)

Application 2
MOM

Event N
otification

M
essage

Ev
en

t D
et

ec
tio

n
R

eq
ue

st
 M

es
sa

ge

Ev
e n

t D
et

e c
tio

n
R

e q
ue

st
 M

es
sa

ge
c1

c2

c3



37 

 

can request services on the server through interfaces, which are provided by the server. 

Working in conjunction with ORB, client applications can invoke methods that are defined 

in a remote application as if those methods are defined in their own applications. In 

addition, clients are not concerned about the location and implementation of services. 

Implementation of services can be modified to improve performance or revised with a 

better algorithm without affecting client applications. This transparency enhances system 

modularity and maintainability.  

Three of major ORB technologies are Microsoft�s Distributed Component Object 

Model (DCOM), [16] The Object Management Group�s (OMG) Common Object Request 

Broker Architecture (CORBA). [2] and JavaSoft�s Java/Remote Method Invocation 

(JAVA/RMI).[17] DCOM doesn�t support multiple inheritances. It provides various 

functionalities by using multiple interfaces. It is broadly used in PC platforms. Unlike 

DCOM, both CORBA and Java/RMI support multiple inheritances. In addition, both of 

them are platform independent. However, CORBA doesn�t support distributed garbage 

collection, since not all the languages support garbage collection, In addition, the license 

costs and compatibility of the vendor-dependent CORBA products are limited to our 

development. In contrast, JAVA/RMI are freely available. Adopting JAVA/RMI, we can 

run the application on any platform as long as the Java Virtual Machine (JVM) is installed. 

JAVA/RMI provides mechanisms for manipulating remote distributed objects, and 

retrieving the class files from the Java/RMI server dynamically. Additionally, JAVA/RMI 

can be easily integrated with the existing system, a local event detector. Consequently, this 

approach is the most appropriate to implement the global event detector.   

 

 

 



38 

 

To implement the distributed object applications, we need to be able to locate the 

remote objects, communicate with remote objects, and load class byte codes for object 

communications. The rmiregistry in RMI provides a naming service and allows the clients 

and servers to rebind and lookup the remote objects. Concepts of stubs and skeletons are 

used to handle synchronous communication between applications. When the client invokes 

the remote method, the stub is responsible for initiating a connection, marshaling the 

parameters to the remote virtual machine, and unmarshaling the return value.  On the other 

side of communication, the skeleton unmarshals the incoming parameters dispatches the 

request to the actual implementation, and unmarshals the return value before sending it 

back to the caller. 
 

Figure 5.5.  A RMI communication design model of GED from applications to 
the GED server. 

rmiregistry

Local EvenDetector (LED)

Application 1

Binding the GED server object

Looking up the GED server object

Local EvenDetector (LED)

Application 2

Looking up the GED server object

Global Event Detector (GED)

Register,
Event detection request

Register,
Event detection request

Server



39 

 

 
Figure 5.6.  A RMI communication design model of GED from the GED server to 
applications. 

 

Client/server with two-way RMI communication approach is used to implement 

global event detector. Figure 5.2 illustrates how clients can register to the GED server 

through RMI communication. When the GED server is started, it binds the GED server 

object to the rmiregistry. To obtain the GED server object, clients can look up from 

rmiregistry.  After obtaining the reference, clients are entitled to register to the GED server 

and subscribe to the events of interest.  On the other hand, figure 5.6 demonstrates how the 

GED server can notify the clients when the events occur. To receive the notification, 

clients need to bind the client objects to rmiregistry. Once the event of interest is raised, 

the GED server looks up the client object and notifies the client. 

5.4  Java Remote Method Invocation  

The Java Remote Method Invocation (RMI) is used in the global event detector to 

send detection request and notification messages. Clients also use the remote method 

rmiregistry

Local EvenDetector (LED)

Application 1

Looking up client objects

Binding a client object

Local EvenDetector (LED)

Application 2

Binding a client object

Global Event Detector (GED)

Server

Event notification Event notification



40 

 

invocation to register with the GED server. The RMI is a backbone for the communication 

mechanism of GED system. This section summarizes the overview of the RMI. 

According to the Java specification, a remote object is one whose methods can be 

invoked from another Java virtual machine, potentially on a different host. [java 

specification]. Clients can acquire this remote object to request for services. These services 

are obtained through methods of the remote object declared in one or more remote 

interface. RMI uses stubs and skeletons to communicate with remote object. The stub, 

residing on the client, works as a representative for the remote object. When the client 

invokes a remote method, it actually invokes a method on the local stub, which is 

responsible for hiding the network layer, forwarding the call to the remote object, and 

returning the result to the client invocation. The skeleton is used to dispatch the call to the 

actual remote object implementation on the server site, and send the result back to the 

client. 

Based on Java remote method protocol, RMI allows objects to be marshalled and 

unmarshalled through object serialization technique. The key of object serialization is to 

store and retrieve objects in a serialized form. This self-describing byte stream can be used 

to sequentially transmit an object between two java virtual machines, and reconstruct the 

object  from the stream.  

5.4.1.1 Basic RMI programming 

The following section describes how to develop the distributed application via 

RMI: 

The first step is to define the scope of the services in remote interfaces. Each 

service corresponds to a method declared in the interface. Clients can request for services 

by invoking these methods. Here is a skeleton of interface definition for the remote 

interface. The interface contains methods which are  invoked remotely. 



41 

 

 

import java.rmi.Remote; 

import java.rmi.RemoteException; 

public interface RemoteObjIntf extends Remote {  

Object service1(Parameter p1, Parameter p2, �) throws RemoteException; 

Object service2(Parameter p1, Parameter p2, �) throws RemoteException; 

} 

The next step is to implement a class of a remote interface. It needs to provide an 

implementation for each remote method defined in the interface. The example of 

implementation follows: 

 

import java.rmi.*; 

import java.rmi.server.*; 

import compute.*; 

public class RemoteObjImpl  extends UnicastRemoteObject  

implements RemoteObjIntf { 

public RemoteObjImpl () throws RemoteException { 

super(); 

} 

public Object service1(Parameter p1, Parameter p2, �) { 

� 

� 

} 

public Object service2(Parameter p1, Parameter p2, �) { 

� 



42 

 

} 

} 

 

It is necessary to install a security manager and register at least one remote object 

into the rmiregistry. To register, we have to bind the server object with a naming service. 

These can be done in the server main program so that the remote clients can later perform a 

look up. 

public static void main(String[] args) { 

if (System.getSecurityManager() == null) { 

System.setSecurityManager(new RMISecurityManager()); 

} 

String name = "//host/remObjName"; 

try { 

RemoteObjImpl remObj = new RemoteObjImpl(); 

Naming.rebind(name, remObj); 

}catch (Exception e) { 

 e.printStackTrace(); 

} 

} 

 

In the client site, the caller can look up for the remote object through rmiregistry. 

After getting the remote object reference, the caller can invoke a remote method as it is 

implemented locally. 

import java.rmi.*; 

import  RemoteObjIntf.*; 



43 

 

public class ComputePi { 

public static void main(String args[]) { 

try { 

String name = "//hostname/ remObjName "; 

RemoteObj remObj = (RemoteObj ) Naming.lookup(name); 

remObj.service1(); 

remObj.service2(); 

}  

catch (Exception e) { 

e.printStackTrace(); 

} 

} 

5.5  Global Event Detection Site 

In a distributed setting, data is exchanged among applications. The communication 

strategy is a key factor to reduce the communication cost, and it is critical to  system 

performance. The cost of communication can be described as:  

Communication Cost = Frequency * (Overhead + Occupancy) 

The overhead is the time to initiate the transfer. The occupancy is defined as the 

time it takes for transmitting the data. And the frequency is the number of times a message 

is sent. [18] These factors influence system performance. The system should minimize the 

size and number of messages exchanged among applications to obtain the better 

performance. 

In the global event detector, there are two approaches for detecting global 

composite events. [7] The first approach is that all the global composite events are detected 

at the local site. The GED server acts as mediator to receive the information about the 



44 

 

occurrences of constituent primitive events and forwarding the occurrence to all its 

subscribers. In this case, the event graph of the global composite event is constructed and 

events detected at the local site. In the second approach, the global composite events are 

detected   server sites. The GED server not only receives and forwards the information, but 

also detects the composite event in some cases. Unlike the first approach, the GED does 

not forward every occurrence of the constituent primitive event to its corresponding 

application. If a part of the event graph is constructed on the server site, the GED sends the 

notification back to the corresponding client application only when the composite global 

event is detected. Therefore, the location where the global composite events are detected 

has a major impact on the number of messages passed between the server and client 

applications. Consequently, the second approach is implemented in the global event 

detector in order to decrease the communication cost. The criteria where the event graph 

should be defined and detected are described in the following section. 

A global composite event can be detected either at the local site or the server site. 

The site where a global composite event is detected is determined by its constituent events. 

The global composite event is detected at the GED when all of its constituent events are 

the global events; whereas, it is detected at the local site when one of its constituent events 

is a local event. The following examples show how and why this is made.   

5.5.1  Global composite detection at the GED server 

This section compares the communication cost of detecting a global composite 

event at the server versus its detection at the local site.  We conclude that the global 

composite event should be detected at the server when all the constituent events of the 

composite event are the global events.   



45 

 

In the example, an event E1 is defined as a primitive event in one application called 

Prod1, and an event E2 is specified in another application called Prod2. Running in 

different address space, the Con1and Con2 applications are interested in a composite event, 

which is composed by E1 <op> E2. There are two places where the composite event can be 

detected. 

 
Figure 5.7.  Composite event detection at the GED server when all the constituents 
are global events. 
 

• Global composite event is detected at the GED 

Figure 5.7 illustrates event graphs of each application and the GED server. In this 

case, the composite event graph is constructed and detected on the server site. These two 

events (E1 and E2) are considered to be global primitive event from the viewpoint of 

consumer applications. Both consumer applications send the event detection request 

message to the GED server. Then the GED server constructs event graph and forwards the 

request to the corresponding producer applications. In the server site, G node is used to 

represent the event on the producer site. And R node on the consumer site represents the 

R^ G2 E2E1

Prod 1 Prod 2GEDCons 2Cons 1

^

G1R^

Event Notification
Message



46 

 

remote event. Once E1 occurs, the GED server is notified from the prod1. Prod2 also 

notifies it when E2 occurs.  Then the server propagates the occurrences of the constituent 

events into the internal node of the event graph before sending the occurrence of AND (^) 

event to each consumer.  Consequently, the communication cost for detecting this 

composite event is equal to four message transmissions.  

To consider in general case, E is a constituent event of a composite global event 

and is defined in a producer application. The constituent events are defined in Y producer 

applications. When event occurs, Y producers send notification messages to the GED 

server. After the GED server detect a composite event, it will signal an occurrence of event 

to all subscribed consumers. The communication cost for detecting a composite event is 

X+Y where X is the number of consumers for that event and Y is either 2 or 3 (binary or a 

ternary operator).  

• Global composite event is detected at the local site 

Figure 5.8 illustrates the same scenario as above, but the global composite event is 

detected at the local site. In this case, the event graph of the composite event is constructed 

on the consumer site. When E1 and E2 occur, the GED server simply forwards the 

occurrence of the events E1 and E2 to the corresponding consumer. Then the consumer 

application propagates the occurrence of the primitive events into the internal node and 

detects the global composite event in its local site. The communication cost for this case is 

equal to six message transmissions.  

 



47 

 

To consider in general case, the communication cost for detecting a composite 

event is : Y + (X*Y) where x, y, are the same as before.   
 

Figure 5.8.  Composite event detection at the GED server when some of the constituents 
are local events. 

 

The 2 expressions are same when x is 1 and y is 1. Y is never one as it is an 

operator. So, even for 1 consumer (when X is 1), one can see that it is beneficial to detect 

the event at the GED. 

As a result, the number of messages between clients and server of the first case is 

less in the first case than in second case. Therefore, the global composite event should be 

detected at the GED when all of its constituent events are global events. 

5.5.2  Global composite detection at the local application 

This section compares the communication cost comparison to determine when a 

global composite event should be detected at the local application. It turns out that when at 

least one of the constituents is a local event (local primitive or local composite event), it is 

beneficial to detect the event at the local site. 

G2 E2E1

Prod 1 Prod 2GEDCons 2Cons 1

G1R2

^

R1R2

^

R1

Event Notification
Message



48 

 

In the example below, the consumer (Cons1) is interested in the global composite 

event composed of a local event, and a remote event E1 that is defined in the producer 

(Prod1) application. A L node on the consumer site denotes the local event.  

• Global composite event is detected at the GED 

Figure 5.9 illustrates the composite event detection at the GED. In this case, the 

producer first defines the primitive event (E1) in Prod1. Next, the consumer defines the 

local event (L1) and specifies the composite event on the events L1 and E1. The composite 

event graph is constructed on the server side. When E1 occurs, the producer sends the 

notification message to the GED. After receiving the notification message about L1, the 

GED detects the composite event and sends the notification message back to the consumer. 

Consequently, the communication cost for detecting this composite event is equal to three. 

 

 
Figure 5.9.  Composite event detection at the GED server when all the constituents are 
global events. 
 

To consider in general case, En is an event which is defined in the nth producer 

application (termed prod(n)).We can n to represent a number of constituent events that 

defined outside a consumer application. Whenever event occurs in either consumer or 

E1

Prod 1GEDCons 1

Event
Notification

L1 G1

^

G2R^



49 

 

producer applications, the occurrence of event has to be sent to the GED server. Therefore, 

n notification messages from producer applications are sent to the GED server, and Y- n 

notification messages are sent from the consumer application where Y is either 2 or 3 

(binary or a ternary operator). After the GED server detects a composite event, it sends a 

notifications message back to the appropriate consumer. The communication cost for 

detecting a composite event is (Y-n) +n +1 or Y+1.  

• Global composite event I s detected at the local site 

Figure 5.10 illustrates the composite event detection at the local site when some of 

the constituent events are local events. In this case, similar to a previous one, the producer 

first defines the primitive event (E1); the consumer defines the local event (L1) and 

specifies the composite event on the events L1 and E1. But the composite event graph is 

constructed on the local site. Therefore, the consumer application does not need to send the 

event notification message of L1 to the GED server. When E1 occurs, the producer sends 

the notification message to the GED. Then the GED forwards the occurrence of E1 to 

Cons1. Consequently, the communication cost for detecting this composite event is equal 

to two. 

To consider in general case, En is an event which is defined in the nth producer 

application (termed prod(n)).We can n to represent a number of constituent events that 

defined outside a consumer application. When event occurs, a producer application sends a 

notification message to the GED server, and it will forward the message to a consumer. 

The communication cost for detecting a composite event is 2( Y�n) where Y is either 2 or 

3 (binary or a ternary operator). 
 

 
 

 



50 

 

 
Figure 5.10.  Composite event detection at the local site when some of the constituents are 
local events. 
 

The 2 expressions are same when Y is 3 and n is 1. Beside that, the communication 

cost of detecting in a local site is less than that of detecting at the GED when at least of a 

constituent event is defined and detected inside a local application.. 

As a result,the communication cost for detecting the global composite event at local 

site is lower when some of constituent events are local events. Therefore, the global 

composite event should be detected at the local site when some of constituent events are 

local events. 

5.6  Extension of Local Event Detection 

This section describes how the local event detector can be extended to 

accommodate the global event detection. In addition, the key classes are also explained.. 

5.6.1  Type of events 

An event is an occurrence of interest at a specific point in time. With in an address 

space, an event is simply classified into primitive and composite events. In Java, method 

invocations are considered as primitive events. There is no notion of local and remote 

E1

Prod 1GEDCons 1

G1

Event Notification
Message

R1

^

L1



51 

 

event. All the method invocations that are monitored reside in the same address space as 

the application. In a distributed environment, one application may be interested in the 

event defined in another application running in another address space. This kind of event is 

called global event as described in the chapter on semantics of events. Figure 5.11 depicts 

the event class hierarchy. The next section describes event classes that are designed for 

representing four different types of event (local primitive, local composite, global primitive 

and global composite). 

5.6.1.1  Event   

 Event class, an abstract class, contains common attributes and behaviors, including 

abstract methods, which are used for representing the event node in the event graph. In a 

distributed environment, an event defined in one address space can be subscribed to by any 

application.  Therefore, the event detector should be able to determine whether an event (or 

a corresponding node in the event graph) is subscribed to by another application. The 

forwardFlag is added into Event class for this purpose. In the GED server, once it receives 

a notification message from the producer application, it decides to send the notification 

message to consumer applications by using sendBackFlag. This flag is set only when there 

is at least one rule defined in the event node. This Event class has Primitive, Composite, 

Remote, and Global event class as subclasses. 

 



52 

 

 
Figure 5.11.  Global Event Class Hierarchy. 

5.6.1.2  Primitive 

 Primitive class was introduced in the LED. Each Primitive object is used to 

represents a local primitive event in the global event detection.  

5.6.1.3  Composite 

 Composite class is also an abstract class. The composite events are defined by 

applying one event operator to primitive events and/or other composite events. The 

composite class is subclassed to each event operator (AND, OR, SEQUENCE, NOT, 

PLUS, APERIODIC, APERIODIC*, PERIODIC, PERIODIC*). Composite events are 

N o tifia b le
< < In terface> >

Even t

C o mp o site

A n d Se q u e n ce

G l obalE ve nt

N otO r

G lo b al E ven t D etectio n  E ven t C lass H ierarch y

R em oteE v entP rim iti v e

P e r iod ic

P eriodicS tar

A p eriodic

A peri odicS tarP lu s



53 

 

classified into two groups (local composite and global composite event). If one of its 

constituent events is a global event, it is a global composite event. Otherwise, it is a local 

composite event. However, for the maintenance purpose, each operator object is used to 

represent both a local composite and a global composite event instead of having one for the 

local composite and one for the global composite event. The site of the global composite 

event detection is determined by event specification at run time. Since our design has only 

one class for both the composite event node constructed by LED and the one constructed 

by GED, the EventCategory class is used to categorize the event type. We use this to 

customize the functionality for each type in the program.  For example, when an event is 

detected and the event category of that node is equal to EventCategory.GLOBAL, the 

executedRules( ) method should be ignored. This is because there is no rule defined on the 

global event (at least for the present) at the GED server.  

5.6.1.4  Global 

 As defined earlier, a global primitive event is an event that is defined and detected 

outside the current application. The GED server not only forwards the messages between 

applications, but it is also responsible for detecting global events Therefore, the global 

event class is introduced to represent the global primitive event node on the server site. 

Global event nodes are used to construct a global event graph for detecting composite 

events.   

In order to subscribe to an event defined outside a current or local application,  it  

current or local application has to know the producer event name, remote application 

name, and host name. The producer event name is the event name that is defined in the 

other application where the event is detected. The application name and host name denote 

the application and machine name where the event is defined.  This information is 



54 

 

necessary for the mediator to forward the detection request to the producer application and 

send back the notification message to the corresponding consumer application. 

5.6.1.5  Remote 

A remote class has been added into the event class hierarchy. Each Remote object 

corresponds to a global event (global primitive or global composite), which is defined in 

another application. It is similar to the Global object, but  is used to represent the global 

event in the consumer application. The Remote object contains the information about  the 

global event. When representing a global primitive event, producer event name, remote 

application name, and host name of the producer application are stored in the Remote 

object. The application name and host name are ignored, when the Remote object 

corresponds to the global composite event.  

It would be tedious to refer the primitive global event by using these three 

attributes whenever the consumer application tries to refer to the Remote object.  Remote 

object introduces a consumer event name (termed consName) to store a proper and 

meaningful name that is internally used inside the consumer application instead of using 

concatenation of producer event name, remote application name, and host name.  

5.6.2  Communication Module 

The existing local event detector is only aware of the events defined in its address 

space. It cannot send the event detection request to another application. Therefore, a 

communication interface has been introduced to handle the remote call so that the existing 

local event detector can exchange information with other applications. Figure 5.13 

illustrates the overview of how one application can interact with another application.  

The LED interface is introduced to facilitate the communication between LED and 

GED. It is responsible for looking up for the remote objects as mentioned in the RMI 



55 

 

section, and making remote invocations to send an event detection request or  event 

notification to the server. It also has a listener that waits for incoming messages such as 

event notification and event detection request from the server. The class diagram of 

LEDInterface is shown in figure 5.12. 

 

Figure 5.12.  The LED interface class diagram. 
 

On the server site, the GED interface is designed not only to forward the messages 

from one application to another application, but also to store some data to construct the 

global event graph and additional information for global event detection. Every application 

needs to register with the server through this interface. The communication layer between 

GED and LED is shown in figure 5.13. 

SentinelMesgRecv

onMessage(mesg : SentinelMessage)

<<Interface>>

UnicastRemoteObject

LEDMesgRecv

ledIntf : LEDInteface

onMessage(mesg : SentinelMessage)

(from led)

LEDInterface

glbEvntNm_ECAAgentList : Hashtable
glbEvntFact : GlobalEventFactory
senMesgRec : LEDMesgRecvImp

consumeCompGlbEvnt()
consumeCompGlbEvnt()
consumePrimGlbEvnt()
receiveNotification()
receiveEvntDetctnReqst()
send()

(from led)

1 1

ECAAgent

* 1* 1 11



56 

 

 

Figure 5.13.  The communication layer between LED and GED.  

 

Figure 5.14.  Sentinel Message class diagram. 

Global Event Detection

Communication Layer

Existing LED

Application A Application B

LED

LED Interface LED Interface

LED

GED

GED Interface

Host A Host B

N o tific a tionM es s age

m ac hN am e  :  S tring
a p p N a m e :  S tring
p rodE v n tN am e  :  S trin g
p c Tab le  :  P C Ta b le

D e tec tionR eques tM es s age

pro d E v n tN a m e  :  S trin g
appN am e  :  S tring
m ac hN am e  :  S tring
c o n te x t :  in t

S en tine lM e ss a ge
< < In te r fa c e > >



57 

 

5.6.3 Type Of Messages 

Typically, a client application makes a remote invocation to the server to request 

the detection of a global event, and receive event notification from the server when that 

event occurs. As shown in figure 5.14, there are two types of messages 

(eventNotificationMessage and detectionRequestMessage) that are exchanged among 

clients and the GED server.  

5.6.3.1  Event Notification Message 

When a client send a request to the global event detector, it is necessary to send the 

event name, application name, and host name of the global event to the server. This request 

also includes context bit information to capture the useful semantics of the application. 

When a rule is defined on a global event in a particular context, the context data will be 

sent to the GED server. This information is packed into a message called 

detectionRequestMessage. Once the GED server receives the message, it creates the global 

event node representing the event on the server site. The sendBackFlag described  earlier is 

set in order to specify that there is at least one application listening to the occurrence of 

this event. Then the server forwards the message to the application that defines the event. 

The producer application unpacks the package and sets the forwardFlag associated with 

event node to be true so that it will signal the event occurrence to the server. 

5.6.3.2  Detection Request Message 

Similar to detectionRequestMessage, the eventNotificationMessage contains 

information about the global event. However, it contains the PCTable information instead 

of the context bit. This PCTable contains the list of parameter lists. Typically, the relevant 

information is recorded in the parameter list when the primitive event occurs. The 

occurrence of this primitive event is propagated to the internal node if it is a constituent 



58 

 

event of the composite event. In addition, the parameter lists are inserted into the event 

table of internal node. Whenever the forwardFlag of the notified node is set, the 

evntNotificationMessage, including the PCTable, will be sent to the GED server.  

5.7  Global Event Graph 

As described in the chapter 4, the event graph is used for detecting composite 

events. Each event that is defined in the application is represented as an event node in the 

graph. The relationship among composite events and their constituent events forms an 

event graph. In the event graph for LED, each node has a list of event subscribers and a list 

of rule subscribers. When a composite event subscribes to its constituent nodes, the 

reference of composite event will be stored into the list of event subscribers. Similarly, 

when a rule is defined, it is stored in the list of rule subscribers.  

As mentioned earlier, the composite global events can be detected either on the 

local site or on the server. The composite global event can also be detected on the GED 

server by using the event graph as shown in figure 5.15. The leaf nodes of the global event 

graph represent the global primitive events. The internal nodes represent global composite 

events. Unlike the node of a local event graph, the global event node does not have a list of 

rule subscribers, since all the rules are locally executed at the application site. The rules 

that are defined on a global event are applied to the Remote event node on the application 

site instead. Each global event node contains only a list of event subscribers, which 

contains references to the global composite event nodes.  In addition, each node maintains 

occurrences of events and their parameter lists in the PCTable. Whenever a global event 

occurs, it will check the sendBackFlag to check whether to send the event notification 

message toe appropriate clients (or consumers).  

 



59 

 

 
Figure 5.15.  Global event graph for detecting global events. 

5.8  Application Configuration File 

As described earlier, the GED is extended from the LED to provide the active 

capability in the distributed environment. Both of them are integrated into the sentinel 

package from which applications import to obtain the services. However, users should be 

able to tailor the execution environment to meet the particular requirements without burden 

to system resources, since the overhead associated with the global event detection is higher 

than that of local event detection.  For instance, the LED interface is instantiated to 

interface with the GED server in the global event detection, whereas the communication 

layer is concealed from the application in the local event detection.  A stand-alone 

application should work in conjunction with the local event detector to avoid the overhead 

of the global event detector.  

Reference to Event Node

 Primitive Global Event Node

LED Interface

eventNamesEventNodes Hashtable

Network Communication

GED Interface

Composite Global Event Node



60 

 

Since the global event detection involves applications from many sites, the event 

name defined in each application is not sufficient to uniquely identify a global event in a 

distributed setting. As discussed, the application ID (application name and host name) is 

needed to disambiguate a global event.  Each application can obtain the host name at run-

time, getting the application name from the users. By providing an application name, users 

are allowed to run many applications on the same machine. Users also need to provide the 

GED server information, including the IP address and the GED server name before 

running the application so that the application can register and send requests to the 

appropriate server. The server name is not hard-coded since it is possible to have multiple 

GED servers. We plan on supporting multiple GED servers for scalability and for 

replicating global event detection.  

The application configuration file is introduced so that users provide necessary 

information and customize the event detector for their needs.  

5.9  Global Configuration File 

In order to define a primitive global event, the application name and host name of 

the producer application have to be specified at the time the event is defined in the 

consumer application. Therefore, these applications are dependent on the machine. If these 

applications are ported to run on other machines, the machine name and application name 

that are defined in the event definitions inside each application needs to be modified in 

order to subscribe to appropriate application. To overcome this problem, a name mapping 

is provided to the GED server to make the application virtually independent of the 

application name and machine name.  The users only need to specify the old application ID 

and the new application ID in the configuration file instead of re-writing the application 

code. In addition to the mapping information, the GED server name can be supplied into 

the global configuration file. 



 

61 

CHAPTER 6 

IMPLEMENTATION OF GLOBAL EVENT DETECTOR 

In chapter 5, we discussed the design and architecture alternatives. This chapter 

describes the implementation details of the global event detector. First, the configuration of 

each application and a GED server is described. Second, it describes how the applications 

and GED are initialized. Third, the event and rule definitions are discussed in detail. At the 

end, it explains how the global primitive and composite events are detected in the 

distributed environment.  

6.1  Implementation of an Application Configuration File  

The event detector can be configured to support either a stand-alone application or 

a distributed application through an application configuration file (App.config). In addition, 

the users can set up the event detector to run along with the rule scheduler or without it. 

For a stand-alone application, the default configuration will be set by the sentinel package 

if users do not provide the App.config file. Since the default configuration file is set to 

support only local event detection, the application that imports the sentinel package to 

obtain the active capability in the distributed environment needs to provide the App.config 

file. Furthermore, each application running as part of the distributed application needs to 

specify its application name and the location of the GED server. Two applications cannot 

have the same name within a machine, since the GED server cannot distinguish between 

them. 

When an  ECAAgent is initialized, it first reads App.config file from the current 

directory. The readAppConfig( ) method in Utilities class is used for reading the properties 



62 

 

of the event detector through App.config file, which  contains the scope of event detection, 

the GED server information, and the local application information.  All of this static 

information is stored in the attributes of the Constant class of the LED package. The event 

detection system will use this information at run time. The format of an App.config file is 

as follows: 

SCOPE  [LOCAL/GLOBAL]    

RULE_SCHEDULER [ON/OFF] 

GED_URL [IP ADDRESS] 

GED_NAME [GED NAME] 

APP_NAME [APPLICATION NAME] 

Each of the parameters is described below. 

• SCOPE  

The scope of the event detector can be set to local or global, depending on the 

usage of application. For the stand-alone application, it should be set to  LOCAL in order 

to avoid the overhead caused by the communication interface and the remote event 

manager. 

• RULE_SCHEDULER 

The rule scheduler is responsible for scheduling each  rule and its execution 

according to the specified priority and coupling mode.   The rule scheduler can be turned 

ON or OFF. When the rule scheduler flag is turned ON, the local event detector can trigger 

the rule according to its priority and coupling mode. Otherwise, rules are executed in the 

order in which they were defined for each event. Rules on primitive events are executed 

prior to rules on composite events.  

 

 



63 

 

• GED_URL  

In order to communicate with the GED server, the application must specify the 

location of the GED server. The GED_URL, in IP address format, is used to specify the 

location of the server.  

• GED_NAME 

The GED_NAME is a name of the server object that is registered in the rmiregistry. 

This GED_NAME needs to be matched with the GED_NAME that is specified in the 

Global.config (will be discussed in the next section).  This might be useful for the future 

development when there are many global event detectors. This makes the application 

scalable and provides replication and better performance for event detection. 

• APP_NAME 

The application name is used to identify the application. Setting the application 

name allows users to run multiple applications on the same machine. Users must give a 

name for each application. 

The example of the App.config file for a distributed application is shown below. 

The application name is �producer�. This application registers to the GED server running 

on �129.107.12.243� machine. The GED server name is �ged1”.  

SCOPE GLOBAL 

RULE_SCHEDULER ON 

GED_URL 129.107.12.243 

GED_NAME ged1 

APP_NAME producer 

6.2  Implementation of the Global Configuration File 

The global configuration file (Global.config) is used by the server to setup the 

global event detector and solve the naming dependency problem. When the GED server 



64 

 

starts, it reads this configuration file from the current directory. This file contains the GED 

server name (GED_NAME) and mapping from an old application ID to a new application 

ID. 

The server binds this GED_NAME to the GED remote object, and registers the 

remote object in the rmiregistry.  The applications on remote hosts can look up the GED 

remote object by using GED_NAME, and send the detection request or notification 

messages.  The GED_NAME value is stored in the Constant class in the GED package.  

In addition to the server name information, mapping information of the old 

application ID and new application ID is read from this file. This information is stored in 

two hash tables (OLDAPPID_NEWAPPIDMAP and NEWAPPID_OLDAPPIDMAP), 

which are shown in figure 6.1. The purpose of using two hash tables is to speed up the 

mapping process from the old application ID to the new application ID, and vice versa.   

This information is crucial for the GED server in resolving the machine name dependency.  

The main reason for the mapping is to make the changes in the application ID transparent 

for porting. The mapping allows the applications to be executed on different machines 

without changing and re-compiling the application code. The GED server can act as if all 

applications still run at the same location. Hence, the global event nodes are constructed 

based on the old event specification, which is coded as part of  the application. In addition, 

it keeps clients� application ID under the old application ID in every place. 

 

 

 

 

 

 



65 

 

Figure 6.1.  Mapping information of the old application ID and new application ID and    
vice versa. 

 

The GEDInterface play a role in mapping the old application ID to the new 

application ID and vice versa.  Mapping is needed in several places.  For example, 

whenever the old application registers to the GED server with the new application ID, the 

GEDInterface gets the old application ID of this client form the 

NEWAPPID_OLDAPPIDMAP table and registers this client in the old application ID.  In 

addition, when an event notification message is sent from a producer application running 

on the new machine, this message is seemingly to be from the new application, but the 

GEDInterface maps this new application ID of the producer with the old application ID, 

and uses the old application ID to notify the global event node on the server. In some 

cases, the GEDInterface needs to substitute the old application ID with the new application 

Old Application ID New Application ID
producer_newdelhi producer_bangkok

consumer_newdelhi consumer_tokyo

[appName_machineName] [appName_machineName]

New Application ID Old Application ID
producer_bangkok producer_newdelhi

consumer_tokyo consumer_newdelhi

[appName_machineName] [appName_machineName]

OLDAPPID_NEWAPPIDMAP

NEWAPPID_OLDAPPIDMAP



66 

 

ID.  For example, when the GED server sends the event detection request form the GED to 

the producer application, and the producer application runs on the different machine, the 

GEDInterface can look up for the new application ID from the 

OLDAPPID_NEWAPPIDMAP table and use this new application ID to locate the remote 

object before making RMI call to subscribe to the event. The format of Global.config file 

is below.  

BEGIN 

MAPPING  [OLDAPPLICATIONID] [NEWAPPLICATIONID] 

GED_NAME  [GED NAME] 

END 

The description of each field is shown below. 

• BEGIN, END 

These are used to denote the begin and the end of the configuration file 

• MAPPING  

This is used to map the old application identification and new application identification 

and vice versa in the GED server. Even though the application hasn�t been ported to 

another machine, users still have to specify this mapping. The application ID is in the 

following format: �applicationName� and � _� and �hostName�.  

• GED_NAME 

The GED_NAME is the name of the GED remote object. The value of GED_NAME in 

the Global.config has to be the same as the GED_NAME that is specified in the 

App.config. The applications use this name to lookup the GED remote object via the 

rmiregistry. 

An  example of Global.config is shown below. The application named �consumer� is 

ported to run on the machine named �tokyo� from the machine �newdelhi�, whereas the 



67 

 

application named �producer� still runs on the same machine. The GED server name is 

ged1. 

BEGIN  

MAPPING consumer_newdelhi consumer_tokyo 

MAPPING producer_bangkok producer_bangkok 

GED_NAME ged1 

END 

6.3  Implementation of Global Event Detector Initialization 

In the global event detection, the GED server needs to be started before any other 

application. The GED server initially invokes the initializeGECAgent( ) method inside the 

GECAAgent class. It begins with reading the given values from the Global.config file as 

described in last section, keeping the GED_NAME in the Constant class and mapping the 

information into the hash tables. Then, the global node event manager 

(GlobalNodeManager) object is instantiated to manage the global event nodes, which are 

created by the global event factory (GlobalEventFactoryImp). The GlobalNodeManager is 

responsible for maintaining these two hash tables. One hash table, which is called 

glbEvntNm_GlbEvntNd, stores the mapping between global event name and global event 

node. While the other  (glbEvntNm_GlbEvntHndle) maps the global event names with the 

global event handles. Next, the GED server creates the communication interface 

(GEDInterface) that is used to send and receive messages. In addition, the server creates a 

ServerConnectorImp object for handling the client registration, a GlobalEventFactoryImp 

object for creating the global event node on the server, and a GEDMesgRecvImp object for 

handling the Sentinel messages, including EventNotificationMessage and 

DetectionRequestMessage. Then it binds these objects to the rmiregistry so that the clients 



68 

 

can request for services. At this point the server is ready to support interaction with clients 

and global event detection. 

6.4  Implementation of Local Event Detector Initialization 

The application invokes an initializeECAAgent( ) method of the ECAAgent class to 

initialize the LED. When the ECAAgent is initialized, the application configuration data 

are read from the file. If a scope is global, the extended part of LED is setup to 

accommodate the global event detection. A communication interface, a remote event 

factory, and a remote node manager are instantiated at this step.  

The communication interface (LEDInterface), which is responsible for interfacing 

with the GED server, is initially created. When the LEDInterface is initialized, it binds the 

LEDMesgRecvImp object with the APP_ID and registers it to the rmiregistry so that the 

GED server can look up for the remote object (LEDMesgRecvImp) of the application, and 

make a remote invocation to send the message to this application.  Then, it looks up for the 

ServerConnectorImp object in the registry. After obtaining this reference, it makes a 

remote invocation in order to register with the GED server. In addition, it also looks up for 

the GlobalEventFactoryImp, and GEDMesgRecvImp remote object; and keeps these 

references for the future use.  

After initializing the communication interface, the remote event factory 

(RemoteEventFactory) and remote node manager (RemoteNodeManager) are created. For 

modularity purpose, these two classes are introduced to manipulate the remote event node. 

The RemoteEventFactory class is used to create the remote event node and construct the 

event graph. In addition, it helps in off-loading the ECAAgent class, since the users never 

create remote nodes directly and ECAAgent class mainly contains a set of APIs. It would 

be confusing for the users, if the methods of RemoteEventFactory class were mixed with 

the APIs in the ECAAgent class.  



69 

 

6.5  Implementation of Application�s registration 

   As described in the previous section, the application registers with the GED server 

using an application ID when the agent is initialized. This application ID is a combination 

of an application name and a host name. The format of application ID is: 

applicationName_hostName. The application name is a given value from the application 

configuration file while the host name can be obtained at run-time. Each application can 

make a remote invocation to register with the GED server.  

The GED server records the application ID and its address into the clientAddrsHt 

hash table. This address book (clientAddrsHt) is designed for the GED server to facilitate 

in looking up the client remote object in the rmiregistry. Since the GED server needs to 

know the host name in order to make a remote invocation to a particular client at a later 

time. The example of clientAddressHt is shown in figure 6.2. 

 

Figure 6.2.  An example of clientAddressHt (client address list). 
 

The new application registers to the server in  arbitrary order, and there might be 

other application that is already registered, since each application runs autonomously.  

Therefore, there might be a consumer application that has already registered and sent an 

event detection request associated with this new application. To determine whether there is 

an event associated with it or not, the GED server scans to the producer list that contains 

clientAddressHt

Client application ID IP Address
producer_bangkok 192.107.12.242

consumer_tykyo 197.107.12.241

[appName_machineName] [appName_machineName]



70 

 

the producer ID and detection request messages. If it has an event detection request for the 

new application, the GED server will send the message back to the new application.  

 

Figure 6.3.  Producer Event List Data Structure. 
 

As mentioned in the section, the producer list is used for keeping track of events to 

be detected and sent to the GED by a producer application. This producer list stores a 

producer ID or application ID, and the detection request messages corresponding to this 

application ID.   When there is an  event detection request from the consumer, the GED 

server inserts the detection request message, which contains the event information, into the 

producer list. Since there is typically more than one event defined in a  producer 

application, there might be many detection requests corresponding to this producer. The 

GED server should use the application ID to retrieve the corresponding detection requests. 

Hence, a  hash table is used for mapping between the application ID and the list of event 

detection requests in which requests are kept in a vector since it can grow dynamically. 

The producer list is shown in figure 6.3. 

Producer App ID msg 1 msg 2

Event Detection Request Message List

evntName

appName
hostName

context

DetectionRequestMessage



71 

 

6.6  Implementation of Global Primitive Event Definition 

As a part of primitive global event definition, the application specifies the 

consumer event name that is known and referred by the consumer application, the full class 

name in which the global event is defined, the primitive event name that is defined and 

detected in the producer application, the producer application name, and the host name of 

the producer application. The following API is invoked within the ECAAgent instance to 

define a  global event.  The ECAAgent can be obtained at the initialization. 

createPrimitiveEvent( String consEventName, String className, String prodEventName, 

String appName,String machName) 

 When a local primitive event is defined, the LED constructs the primitive event 

node corresponding to that event. In contrast, the remote event node is created on the 

consumer application site when the global primitive event is defined.  Then, the 

LEDInterface makes the remote invocation to create the global event node on the GED 

server. The details of how the server responds to this request will be discussed in the next 

section. After making the request, the RemoteEventFactory creates the remote event node, 

which represents the global event on the consumer site. This remote event node is always 

the leaf node of the local event graph. When the remote event node is created, a remote 

event handle corresponding to the remote event is returned. This handle can be used to 

create the global composite event. Next, the RemoteNodeManger, which is responsible for 

managing the remote event node, keeps the consumer event name and the remote event 

node in the hash table, which is called consEvntNm_ConsEvntNd. By using consumer 

event name, the system can retrieve the reference of the remote event node. However, the 

consumer event name is known and used only in the local site, the GED server knows 

nothing about this name. When the global event occurs, the server notifies the consumer 

application by sending the notification message containing the producer name, the 



72 

 

application name and the host name. The consumer application needs to map this 

information back to the consumer event name so that it can reference back the event node. 

Hence, we define the global event name is a concatenation of the producer event name, 

application name, and the host name; and introduces GlbEvntNm_ConsEvntNm hash table 

to map the global event name with the consumer event name.  

 When the server receives an event detection request from a  consumer application, 

the GlobalEventFactoryImp creates the global event node representing the global event on 

the server site if the global event node does not exist. Even when many applications are 

interested in the same global event, only one global event node is created. This global 

primitive event node is constructed as the leaf node of the global event graph. Similar to 

the RemoteNodeManger, the GlobalNodeManager maintains the global event node. It 

stores the global event name and the global event node into the glbEvntNm_GlbEvntNd 

hash table.  

In addition, the GED server needs to update the consumer list of the corresponding 

event. By using the global event name, the server can look up for the associated consumer 

list and insert the application ID into it. Consequently, when the event occurs, the server 

will know which application has subscribed to this event. However, the event detection 

request will be sent to the producer application site when there is a rule applied on that 

global primitive event or the composite event that has that global primitive event as a 

constituent. The data structure of this consumer list is described in the next page. 
 
 
 
 
 

 



73 

 

 

Figure 6.4.  Consumer List Data Structure. 
 

As shown in figure 6.4, the consumer list data structure is introduced to help the 

server keep track of the subscribers of each event. The server uses the event name to search 

for the applications that has subscribed to this event. Because of the above reasons, a hash 

table (glbEvntName_consumerList) and a vector are used for this data structure. The hash 

table maps the event name with the vector of application ID. When the new application 

wants to subscribe to a global event, the server adds its application ID at the end of the 

vector. When this event occurs, the server retrieves the application ID of consumers and 

uses that list to make a remote invocation to the client. 

6.7  Implementation of Global Composite  
Event Definition 

To define a global composite event, the application uses the existing set of APIs, 

which has been introduced in the LED. The application has to specify the event type such 

as EventType.AND, EventType.OR, or EventType.NOT, and a consumer event name that is 

used and known in the local application, and its constituents. We use the event handle to 

Global Event Name consumer app ID consumer app ID

� Global primitive name
prodEvntNm+appNm+machNm

� Global composite name (binary operation)
evntType+leftGlbPrimEvntNm+rightGlbPrimEvntNm

� Global composite name (ternary operation)
evntType+leftGlbPrimEvntNm+ middleGlbPrimEvntNm +rightGlbPrimEvntNm

Client Application ID List



74 

 

represent the constituent events. The set of APIs used for defining the global composite 

event is shown below.  

CreateCompositeEvent (EventType eventType, String eventName, EventHandle leftEvent, 

EventHandle rightEvent) 

CreateCompositeEvent (EventType eventType, String eventName, EventHandle leftEvent,  

EventHandle middleEvent, EventHandle rightEvent) 

When the composite event is created, the system can distinguish whether this event 

is a global event or a local event by checking the SCOPE of event detector and the 

constituent events. If the SCOPE which is read from the application configuration file is 

global, and one of it constituents is a remote event handle; the system discerns that this is 

the global event. Then, it can determine where the event should be detected, and where the 

event node should be constructed (as described in an earlier Chapter). As we discussed in 

the last chapter, the location of the composite event node will be constructed at the GED 

server when all of it constituents are remote; otherwise, it will be constructed at the local 

site.  

When one of the constituent events is detected at the local site or one of the 

constituents is not remote node; the global composite node is constructed in the same 

manner as when the local composite event is created.  The composite event node stores the 

name of the composite event, and the references to the constituent event nodes.  In 

addition, it prepares the PCTable for keeping the parameters of all constituent events. In 

this case, the LED is responsible for monitoring and detecting this event. Therefore, the 

LEDInterface doesn�t need to send any request to the GED.  

When a global primitive event is to be created at the GED server, , the 

LEDInterface sends a  request to create a global composite event to the GED server. Since 

the composite event node will be created and detected at the remote site, the 



75 

 

RemoteEventFactory creates the remote event node after sending the request. This remote 

node, which is also a  leaf node of the local event graph, represents the composite global 

event on the consumer site. In addition, the RemoteNodeManger also puts the event name 

and the reference of event node inside the hash table (consEvntNm_ConsEvntNd), and adds 

the global event name along with the consumer event name to the glbEvntNm_GlbEvntNd 

hash table. However, unlike the primitive global event name, the composite global event 

name is a concatenation of the name of the event type and the global event name of the 

constituent events.  At the GED server site, GlobalEventFactoryImp constructs the 

composite event node after receiving the request. The GlobalNodeManager stores the 

global event name and the global event node into the glbEvntNm_GlbEvntNd hash table. In 

addition, the GED server also updates the consumer list of the corresponding event.  

6.8  Implementation of Rule definition 

Rule is comprised of a condition and an action, which can be implemented as 

methods in a class. To define a rule, the application specifies the rule name, the event 

handle of the event that is of interest, the condition method name and the action method 

name. By default, the rule is triggered when an e event occurs in the recent context. The 

application can define the rule to be triggered when the composite event occurs in a 

particular context (recent, chronicle, continuous, or cumulative). As mentioned in the 

previous chapter, there are four integers at each node.  Each integer represents the sum of 

rules on that event and all the dependent events in a particular context. The corresponding 

integer will be incremented when a rule is applied on an event in a particular context. In 

addition, the corresponding integers of its constituent events from the event node till the 

leaf nodes along the tree hierarchy are also incremented.  Hence, the composite event is 

detected only when either there is a rule associated with that event or a rule defined on 

another composite event for which this event is a constituent event.  



76 

 

 

createRule (String ruleName, EventHandle eventHandle,  

       String condName, String actionName) 

createRule (String ruleName, EventHandle eventHandle, String condName, 

       String actionName, int priority, CouplingMode coupling,  

       ParamContext context) 

When a rule is associated with an event, the rule is simply inserted into the rule 

subscriber list and the context integers are incremented recursively on the tree rooted at the 

node where the rule was inserted. However, if the event is detected at the remote site, the 

LEDInterface needs to send the detection request message to the GED server. In other 

words, whenever the rule is defined as the global primitive event, the LEDInterface has to 

send the event detection request to the server.  The global composite event might be 

detected at the consumer application site in some case; therefore, the LEDInterface doesn�t 

need to send the request whenever the rule is applied to the global composite event. 

In some cases, there are many rules defined on the remote event node with the same 

context. The corresponding integer representing the context information is also 

incremented proportional to the number of rules and all the dependent events. In the global 

event detection, however, the LEDInterface shouldn�t send the event detection request to 

the GED every time when it is incremented except the first time. It will incur the 

communication overhead if the LEDInterface sends the event detection request whenever 

another rule is defined on the same event in the same context, since it will send the same 

information to the GED server. However, if the rule is defined on the global event in a 

different context, the LEDInterface will send the event detection request message 

containing the new context information to the GED server so that it can detect the event in 

the new context. 



77 

 

Once the GED server receives the event detection request message, the GED server 

will set the sendBack flag on the corresponding global event node. The GED server will 

send the notification message to the subscribers or consumers only when the global event 

is detected on the server and the sendBack flag is true, since some global events are 

defined as the constituents of the composite event, and there is no rule applied on these 

constituents. In addition, the GED server needs to increment the context value at the 

corresponding node in the same manner as incrementing the context value of the remote 

node at the consumer site. The only difference is that it will send the event detection 

request to the producer site when the context value at the leaf node of the global event 

graph is equal to one. 

When the producer application receives the event detection request, the LED will 

set the forwardFlag of the corresponding node to be true and also increment its the 

context.  So that when the event occurs in that context, the LEDInterface will notify to the 

GED server. The details of the event detection will be discussed in the next section. 

6.9  Implementation of Global Primitive Event Detection 

Any method in the Java application can be defined as a primitive event. For 

example, the setTempature( ) is defined as a primitive event in the weather application. 

When this method is invoked, the event detection mechanism should be able to detect the 

occurrence of event and notify to all its subscribers. In order to detect the primitive event, 

the event detector requires the user to signal the occurrence of the event by using 

raiseBeginEvent and raiseEndEvent API calls. The arguments to the method need to be 

inserted into the event handle, which is passed through these APIs. Since the event handle 

stores the signature of the method, the event detector can use it to retrieve the 

corresponding primitive node from the eventSignsEventNodes hash table. Then, the node is 

notified about the occurrence of this event and the rules associated with this event are 



78 

 

triggered (if any). For the global event detection, the forwardFlag flag in each node is 

checked whenever it is notified. If the forwardFlag is true, it means that this event is 

subscribed by another application in the different address space. The LEDInterface, which 

is responsible for notifying the GED server, prepares the event notification message and 

sends it to the server.  To send the message, the LEDInterface looks up the server remote 

object registered in the rmiregistry, and makes a remote invocation to the remote object. 

As mentioned earlier, the notification message contains the event name, application name, 

hose name, and PCTable. When the primitive event occurs, the parameter associated to this 

event is encapsulated into the PCTable. Even though there is only one parameter list in the 

PCTable, we don�t put the ParameterList object instead of PCTable inside the message, 

since we want to make the event notification message format the same for both global 

primitive events and global composite events. 

After receiving the notification message, the GED concatenates the event name, 

producer application name and host name to make global event name. Then, it uses this 

name to retrieve the corresponding global event node from the glbEvntNm_GlbEvntNd 

hash table. When it notifies the occurrence of this global event node, it checks the 

sendBack flag to determine whether it needs to send the notification message back to the 

consumer application or not. If the flag is set, the GED server searches for the consumers 

of this event in the eventName_consumerList, and forwards the notification message to 

each consumer.  

When the GED server notifies the consumer application, the LEDInterface receives 

the notification message containing global event information and the parameter lists. As 

we mentioned before, the consumer event name is used in the local site instead of the 

global event name. Therefore, the LEDInterface needs to translate the global event name 

into the consumer event name, which is used in retrieving the remote event handle in the 



79 

 

remEvntNm_RemEvntHndle hash table. Similar to the local primitive event detection, the 

remote event handle is used to instantiate the NotifyObject so that the LEDInterface can 

put this NotifyObject into the NotifyBuffer. Running separately in a finite loop, the local 

event detector thread gets this object from the buffer and invokes the method calls with the 

parameters stored in the object as if it detects the local primitive event in the previous 

version of the local event detection. 

6.10 Implementation of Global Composite  
Event Detection 

As mentioned earlier, the local composite event is composed of local primitive 

events and/or other local composite events by applying event operators, and it can be 

detected at the local site by the local event detector. However, a global composite event 

can be detected at either local site or server site. Checking the constituent events, the 

system can create the global composite event node and detect it at the appropriate place. If 

at least one of the constituent events is a global event (global primitive or global composite 

event), the LED at the consumer site is responsible to detect this composite event. In 

contrast, if all of the constituent events are global events, the global composite event is 

detected at the server. 

The approach to detect the global composite event that at the local site is similar to 

that of the local composite event, but at least one of the occurrences of the constituent 

events including its descendents is signaled from the GED server. 

In order to detect a global composite event on the server, we also use the event 

graph at the server. Each composite event has an initiator and a terminator event. When its 

constituent event is detected, it will propagate a list of parameter lists to all the event nodes 

that have subscribed to this event, when it notifies the occurrence of the constituent event. 

When the terminator event of the composite is detected, the composite event will be 



80 

 

detected and notified. And if there is a rule defined on the composite event or rule defined 

on another composite event for which this composite event is a constituent, this composite 

event will be detected in that particular context. Similar to a global primitive event, when 

the global composite event is detected on the server, it will check the forwardFlag whether 

it needs to send the notification message to the corresponding consumers or not.  It should 

be noted that a remote node is also used to represent the global composite event in the 

consumer site. Hence, when the LEDInterface receives the notification message form the 

GED server, it will notify the remote event node with the list of parameter lists, and it 

continues notifying all the event nodes that are in the event subscriber list, and propagating 

the list of parameter lists. All the rules associated with this event are also executed. 

 

 

 



 

81 

CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 Conclusion  

This thesis extends earlier work on the Local Event Detector (LED) implemented 

in Java and presents an approach to monitor events in a distributed environment. The Local 

Event Detector was designed and developed to provide support for events and rules in a 

seamless manner in the Java application environment. It is used to monitor event and 

respond to the changes within a single address space.  Since a large number of applications 

today are distributed in nature, our implementation of Global Event Detector (GED), based 

on the notification/subscription paradigm, uses the ECA (Event-Condition-Action) rule 

paradigm in order to support active capability in a distributed environment. 

In this implementation, the existing Local Event Detector has been extended to 

accommodate global event detection involving one or more applications, and a GED as a 

server is introduced to provide the subscription and notification services in a distributed 

environment.  

A summary of the each chapter is provided. 

Chapter 1 explains the motivation and defines the problem. It also explains why the 

earlier work is not adequate to support and monitor events in a distributed application 

environment.   

Chapter 2 describes recent research work on a distributed event-based system and 

related work on event services and event notification mechanisms. 

Chapter 3 discusses the semantics of primitive t and composite events. 



82 

 

Chapter 4 provides a summary of the Local Event Detector in terms of event 

specification and the data structures used. 

Chapter 5 describes the design of the Global Event Detector. It discusses alternative 

architectures, communication mechanisms, optimization techniques to minimize the 

computation cost and communication. 

The implementation of the Global Event Detector is described in chapter 6. The 

global event definition and rule definition are introduced for defining ECA rules. The event 

subscription and event detection mechanisms are described. 

7.2  Future Work 

A number of extensions are planned beyond the current implementation.  

Robustness of the Global Event Detector and event persistence issues are not 

addressed in the current implementation of the GED. It is important to address these issues 

since rules can be specified on events that occur in one or more applications, and there 

should be no surprise when a failure occurs, as the distribution of events is not sufficient to 

make the distributed application reliable. Global Event Detector should be able to recover 

to a consistent state following various types of failures, and continue to provide services 

after it recovers. It should also be possible to tolerate client crashes and provide loss less 

delivery of events. 

Guaranteed delivery of events: It is essential to ensure the delivery of notification 

messages or subscription messages since messages can be lost due to the communication 

failure. 

Implementing publish/subscribe paradigm: This paradigm is useful when the 

consumers are concerned more about the event topic rather than the source of event. The 

system should allow the consumers to subscribe to the event without the knowledge of the 

source. 



83 

 

Supporting content based filtering: In this implementation, the event can be filtered 

out at the subscriber by using ECA rule mechanism. It would be interesting to filter events 

based on its content at the server before notifying the occurrence of an event to its 

subscribers. This will further minimize event traffic and network load. 

Scalability and performance issues need to be further investigated. Also, the 

possibility of multiple GEDs for replication and availability has not yet been addressed. 

 
 



 

84 

REFERENCES 

 
 1. http://java.sun.com/beans/infobus/, InfoBus. 1999. 
 
 2. Object Management, G., {CORBAServices: Common Object Services 

Specification v1.0}. 1995: John Wiley \& Sons Inc. NJ. 
 
 3. Dasari, R., Events And Rules For JAVA: Design And Implemenation Of A 

Seamless Approach, in Database Systems R&D Center, CIS Department. 1999, 
University of Florida: Gainesville. 

 
 4. Schmidt, D.C. and S. Vinoski, The OMG Events Service. C++ Report. 1997. 
 
 5. http://msdn.microsoft.com/library/en-

us/cossdk/htm/pgservices_events_20rp.asp?frame=true, COM+ Events 
Architecture. 2001. 

 
 6. Scarlett, S., Monitoring the Behaviour of Distributed Systems, in Cambrigde 

University Computer Laboratory. 1996, University of London: London. 
 
 7. Liao, H., Global Events in Sentinel: Design and Implementation of a Global 

Event Detector, in MS Thesis. 1997, Database Systems R&D Center CISE 
University of Florida, Gainesville, FL 32611. 

 
 8. Chakravathy, S. and D. Mishra, An Event Specification Language (Snoop) for 

Active Databases and its Detection. 1991, Database Systems R\&D Center CIS 
Department University of Florida. 

 
 9. Chakravarthy, S. and D. Mishra, Snoop: An Expressive Event Specification 

Language for Active Databases. Data and Knowledge Engineering, 1994. 14(10): 
p. 1--26. 

 
10. Chakravarthy, S., et al., Composite Events for Active Databases: Semantics, 

Contexts and Detection, in Proc. Int'l. Conf. on Very Large Data Bases VLDB. 
1994: Santiago, Chile. p. 606--617. 

 
 
 
 



85 

 

11. Krishnaprasad, V., Event Detection for Supporting Active Capability in an 
OODBMS: Semantics, Architecture, and Implementation, in MS Thesis. 1994, 
Database Systems R&D Center, CIS Department, University of Florida, 
Gainesville, FL 32611. 

 
12. Stonebraker, M., L. Rowe, and M. Hirohama, The Implementation of 

{POSTGRES}. IEEE Transactions on Knowledge and Data Engineering, 1990. 
2(1): p. 125--142. 

 
13. Song, Z., A Generalized Approach For Extending The Active Capability Of 

RDBMSs, in Database Systems R&D Center, CISE Department. 2000, University 
of Florida: Gainesville. 

 
14. Kim, Y., A Generalized Active Agent System For Extending The Active 

Capabilities Of A RDBMS, in Database Systems R&D Center, CISE Department. 
2000, University of Florida: Gainesville. 

 
15. Vondrak, C., Message-Oriented Middleware. 1997. 
 
16. http://msdn.microsoft.com/library/en-us/dndcom/html/msdn_dcomarch.asp, 

DCOM Architecture. 1997. 
 
17. http://java.sun.com/j2se/1.3/docs/guide/rmi/spec/rmiTOC.html, Remote Method 

Invocation Specification. 1999. 
 
18. David E. Culler, J.P.S., Anoop Gupta, Parallel Computer Architecture : A 

Hardware/Software Approach. 1st Edition ed. 1998. 1100. 

 

 
 



 

86 

BIOGRAPHICAL SKETCH  

Weera Tanpisuth was born on August 2, 1975 in Bangkok, Thailand.  He received 

his Bachelor of Science degree in Electrical Engineering from Thammasat University, 

Thailand in March 1997, and Master of Science degree in Electrical and Computer 

Engineering from University of Florida in August 2000. In the Fall of 2000, he started his 

graduate studies in Computer Science and Engineering at The University of Texas, 

Arlington. He received his Master of Science in Computer Science from The University of 

Texas at Arlington, in December 2001. His research interests include active and object-

oriented databases.  

 


	Common Object Request Broker Architecture
	COM+ Events Model
	Schwiderski Dissertation
	Sentinel Global Event Detector
	Primitive Event
	Local Primitive Event
	Global Primitive Event

	Composite Events
	Local Composite Event
	Global Composite Event

	Event Operators
	Parameter Context
	Coupling Modes
	Event Specification Interfaces
	Event Detection
	Overview of local event detector architecture
	Global Event Specification
	Goals of Global Event Detection
	Architecture Alternatives
	Distribute global event detection among applications
	Client/server architecture
	Client/server with remote procedure


	call  architecture
	
	Client/server with middle-oriented


	middleware architecture
	
	Client/server with object request


	broker architecture
	Java Remote Method Invocation
	
	Basic RMI programming


	Global Event Detection Site
	Global composite detection at the GED server
	Global composite detection at the local application

	Extension of Local Event Detection
	Type of events
	Event
	Primitive
	Composite
	Global
	Remote

	Communication Module
	Type Of Messages
	Event Notification Message
	Detection Request Message


	Global Event Graph
	Application Configuration File
	Global Configuration File
	Implementation of an Application Configuration File
	Implementation of the Global Configuration File
	Implementation of Global Event Detector Initialization
	Implementation of Local Event Detector Initialization
	Implementation of Application’s registration
	Implementation of Global Primitive Event Definition
	Implementation of Global Composite
	Event Definition
	Implementation of Rule definition
	Implementation of Global Primitive Event Detection
	Implementation of Global Composite
	Event Detection
	Conclusion
	Future Work

