
RECOVERABLE GLOBAL EVENT DETECTOR FOR

DISTRIBUTED ACTIVE APPLICATIONS

The members of the Committee approve the masters
thesis of Sreekant Thirunagari

Sharma Chakravarthy ____________________________________
Supervising Professor

Mohan Kumar ____________________________________

Alp Aslandogan ____________________________________

RECOVERABLE GLOBAL EVENT DETECTOR FOR

 DISTRIBUTED ACTIVE APPLICATIONS

by

SREEKANT THIRUNAGARI

PRESENTED TO THE FACULTY OF THE GRADUATE SCHOOL OF

THE UNIVERSITY OF TEXAS AT ARLINGTON IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2002

To my parents

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Sharma Chakravarthy, for his great

guidance and support, and for giving me an opportunity to work on this project. I am also

thankful to Dr. Mohan Kumar and Dr. Alp Aslandogan for serving on my committee.

I would like to thank Pratyush Mishra for maintaining a well-administered

research environment and being so helpful at times of need. Thanks are due to Weera

Tanpisuth and Raman Adaikkalavan for their help and fruitful discussions during the

implementation of this work. I would like to thank all my friends at ITLAB. I also thank

my friends Sirish Davuluri, Shashidhar Govind, Nishanth Vontela and Venugopal

Cherukupalli for their support and encouragement.

I am thankful to my parents and brother for their constant support and

encouragement throughout my academic career without which I would not have reached

this position.

v

vi

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS.. iv

LIST OF TABLES ... ix

LIST OF FIGURES... x

ABSTRACT.. 12

CHAPTER 1.. 14

INTRODUCTION... 14

CHAPTER 2.. 17

RELATED WORK ... 17

2.1 Database Recovery.. 17
2.1.1 ARIES ... 18
2.1.2 Shadow Paging.. 20

2.2 JMS.. 21
2.3 Recovery of C++ GED.. 22

CHAPTER 3.. 23

Summary of Local and Global Event Detectors.. 23

3.1 Local Event Detector... 23
3.1.1 Event Specification Interfaces and Usage... 23
3.1.2 Event Graph and Propagation of events.. 25
3.1.3 An Overview of Components in Local Event Detector 26

3.2 Global Event Detector... 27
3.2.1 Global Events .. 28
3.2.2 Architecture... 29
3.2.3 Global Event Detection Site.. 30
3.2.4 Communication Module.. 31
3.2.5 Type of Messages.. 32

3.2.5.1 Detection Request Message .. 33
3.2.5.2 Event Notification Message .. 33

3.2.6 Global Event Graph... 33
3.2.6.1 Dynamic Graph Construction: .. 34

vii

CHAPTER 4.. 35

Design Issues for Persistence and Recovery... 35

4.1 Requirements to Make GED Recoverable .. 35
4.2 Persistence... 36

4.2.1 Notification Message Log File.. 37
4.2.2 Persisting other Data Structures .. 39
4.2.3 Persisting the Event Graph.. 41

4.3 Recovery.. 41
4.3.1 Server Recovery .. 42
4.3.2 Failure of Producers and Consumers .. 43

4.4 Buffer Management... 44
4.4.1 Initial design.. 44
4.4.2 Alternate Design.. 47
4.4.3 Sending messages to consumers ... 48
4.4.4 Current Design .. 49

4.5 Buffer Manipulations .. 50
4.6 Guaranteed Delivery of Events ... 51
4.7 Extensions to Configuration File... 52

4.7.1 Extensions to Global Configuration File... 53
4.7.2 Extensions to Application Configuration File... 54

4.8 LOCKS.. 55
4.8.1 Mutex .. 56
4.8.2 ReadWrite.. 56
4.8.3 Semaphore... 56

4.9 Summary ... 57
CHAPTER 5.. 58

Implementation of Persistence .. 58

5.1 Implementation of Log Files ... 58
5.1.1 Basics of Java Object Serialization ... 58
5.1.2 Tailoring Serialization... 61
5.1.3 Notification Message Log File.. 63
5.1.4 Other Log Files.. 65
5.1.5 Log Compression .. 65

5.2 Implementation of Buffer Management.. 66
5.2.1 Object Store... 67
5.2.2 Notification Dispatch Thread .. 68
5.2.3 Pull Message Thread ... 69

5.3 Implementation of Recovery and Other Locks ... 70
5.3.1 Implementation of Recovery Lock.. 71
5.3.2 Other Locks ... 71

5.4 Configuration File ... 72
5.5 Summary ... 74

CHAPTER 6.. 75

viii

Implementation of Recovery... 75

6.1 GEDInterface .. 75
6.1.1 Client Address List (Hashtable clntAddrsHt) ... 76
6.1.2 Producer Event List (Hashtable prod_DectectnReqstHt).......................... 77
6.1.3 ConsumerList (Hashtable glbEvntName_consumerList).......................... 79

6.2 GlobalNodeManager ... 80
6.2.1 Hashtable glbEvntNm_GlbEvntNd... 80
6.2.2 Hashtable glbEvntNm_GlbEvntHndle.. 81

6.3 BufferManager .. 82
6.3.1 Main Memory Buffers (objectStore1 and objectStore2)........................... 82
6.3.2 Slow Consumer buffers (Hashtable clientId_logEvntCounter) 84

6.4 Processing Undelivered Messages .. 84
6.5 Summary ... 85

CHAPTER 7.. 86

Sample Scenario.. 86

CHAPTER 8.. 92

Conclusions and Future Work... 92

8.1 Conclusion... 92
8.2 Future Work .. 92

REFERENCES.. 94

BIOGRAPHICAL SKETCH .. 96

ix

LIST OF TABLES

Table Page

Table 3-1 Common API’s used in Event Detectors .. 28

Table 3-2 APIs to Create Global Events ... 29

Table 3-3 Alternative Architectures .. 30

Table 5.1 Global Configuration File ... 73

Table 5.2 Application Configuration File ... 74

Table 7-1 Global Configuration File for this execution .. 86

x

LIST OF FIGURES

Figure Page

Figure 3-1 Local Event Graph... 26

Figure 3-2: The communication layer between LED and GED.. 32

Figure 3-3: Global event graph for detecting global events .. 34

Figure 4-1 Notification Message Log File .. 38

Figure 4-2 Overview of GED Server... 39

Figure 4-3 Buffer Manager.. 45

Figure 4-4 Log Header .. 46

Figure 4-5 Consumer Buffers.. 46

Figure 4-6 Object Store and Consumer Buffers .. 47

Figure 4-7 Refined Buffer Manager .. 50

Figure 4-8 Global Configuration File.. 54

Figure 4-9 Locks package ... 55

Figure 4-10 Lock usage ... 57

Figure 5-1 Code showing serialization process... 60

Figure 5-2 Code showing Serialization into a ByteArrayStream .. 63

Figure 5-3 Index Table .. 64

Figure 5-4 Buffer manager .. 67

Figure 5-5 Slow Consumer Buffers... 69

Figure 5-6 Recovery Lock... 71

xi

Figure 6-1 Producer Event List ... 78

Figure 6-2 Consumer List.. 79

Figure 6-3 Message Queue.. 83

xii

ABSTRACT

RECOVERABLE GLOBAL EVENT DETECTOR FOR

DISTRIBUTED ACTIVE APPLICATIONS

Publication No.________

Sreekant Thirunagari

The University of Texas at Arlington, 2002

Supervising Professor: Sharma Chakravarthy

Active applications support mechanisms that enable them to respond

automatically to events that are taking place and are thus able to monitor and react to

specific circumstances of relevance to an application. To support the reactive behavior a

description mechanism called ECA (Event-Condition-Action) rules are used.

Based on ECA rule paradigm, Local Event Detector (LED) provides active

capability to various kinds of applications enabling them to react to local events. The

Global Event Detector (GED) is a server based on the notification/subscription model. It

also uses the ECA rule paradigm in order to support active event monitoring capability in

a distributed environment.

Distributed applications are prone to a variety of failures like client crashes,

system failures and network failures. For reliable operation, any system in a distributed

environment should be able to handle such failures. GED as any other application is

prone to system crash and in addition, clients connected to GED can fail.

13

Earlier work on GED did not handle the robustness of GED to failures. The

motivation for this thesis is to have reliable event detection and propagation by designing

a recoverable GED that can be brought to previous consistent state following various

types of failures, can continue to provide services when it recovers from failures and

guarantees delivery of events. GED must be able to manage event buffers and

accommodate the slow consumers.

This thesis provides buffer management, persistence and recovery capabilities to

the GED server. All the information needed for recovery must be in stable storage at the

time of recovery. Write Ahead Logging (WAL) concept is used to persist the appropriate

information required to recover the GED from a crash. Buffer manager module manages

the main memory used to store incoming events and handles buffer over flows and, the

required read/write access to secondary storage.

14

CHAPTER 1

INTRODUCTION

Active applications support mechanisms that enable them to respond

automatically to events that are taking place and are thus able to monitor and react to

specific circumstances of relevance to an application. To support the reactive behavior, a

declarative mechanism called ECA (Event-Condition-Action) rules [1] are used. These

rules have three components: an event, a condition, and an action. An event is an

instantaneous, atomic occurrence of interest at a specific point in time to which the rule

may be able to respond. The condition part of the rule evaluates the condition using the

context in which the event has taken place. The action describes the task to be carried out

by the rule if the relevant event has taken place and the condition has evaluated to true.

When an event occurs the rule is triggered. If the condition associated with the rule

evaluates to true, action is executed.

Based on ECA rule paradigm, Local Event Detector (LED) [2] provides active

capability to various kinds of applications including relational database systems. It uses

flexible and expressive event semantics provided by SNOOP [3] [4]. LED is well suited

for monitoring complex changes within an application. LED allows the applications to

define ECA rules on local events. To extend the event and rule specification capabilities

of applications, from events occurring in their local address space to events occurring in

different address spaces, a Global Event Detector has been developed.

The Global Event Detector (GED) [5] is a server based on the

notification/subscription model. It also uses the ECA rule paradigm in order to support

active event monitoring capability in a distributed environment. It enables an application

to monitor an event or a combination of events occurring in multiple applications

distributed over a network. Applications subscribe for a remote events and the LED,

transparently, sends a detection request messages to GED. GED, in turn, notifies the

clients who produce these events to start sending them to GED. GED, then, notifies the

subscribers as and when it receives a notification of event of interest from the producer.

It is also possible for the clients to request the GED to detect composite events and notify

15

15

when those composite events occur. GED detects composite events of interest based on

event detection requests and event notifications it gets from the client application.

Distributed applications are prone to a variety of failures, such as client crashes,

server failure and network failures. For reliable operation, any system in a distributed

environment should be able to handle such failures. GED, as any other application, is

prone to system crash and in addition, clients connected to GED can fail.

Current implementation of the Global Event Detector does not address the

robustness to system failures. All the event information is kept in main memory and sent

to clients. If memory is not sufficient in GED, events can be lost. If GED crashes all the

event information along with global event graph is lost. To recover from a crash all the

information needed should be available in stable storage at the time of recovery. With out

event persistence and recovery, GED and all client applications need to restart. When a

consumer is not responding or slow, the producer will still send events; these events are

lost due to the lack of in memory buffers.

In order to have a reliable event detection and propagation, a recoverable Global

Event Detector that can be brought to previous consistent state following various types of

failures, can tolerate client failures, and can continue to provide services when it recovers

from failures is needed. GED must be able to manage event buffers and accommodate the

slow consumers.

This thesis provides buffer management and recovery capabilities to the GED

server. GED is enabled with an option to choose the persistent mode of operation. All the

information needed for recovery must be in stable storage at the time of recovery. In

persistent mode Write Ahead Logging (WAL) concept is used to log the appropriate

information required to recover the GED from a crash. Buffer manager module takes care

of event buffers in case of buffer overflows and, handles the required read/write access to

secondary storage.

 The outline of this thesis is as follows: Chapter 2 reviews the work related

to different ways of providing persistence and recoverable capability to an application.

Chapter 3 summarizes the architecture and usage of existing local and global event

detector systems. Chapter 4 explains the design issues associated with the buffer manager

and providing event persistence and recovery capabilities to GED. Chapter 5 goes into

16

16

the implementation details of buffer manager and data persistence onto stable storage.

Chapter 6 explains the logging and recovery of different data structures required for the

GED recovery. Chapter 7 shows an example scenario demonstrating the robustness of

GED to system failures and client crashes. Chapter 8 concludes the thesis and discusses

the future work.

17

17

CHAPTER 2

RELATED WORK

This chapter reviews the work related to providing persistence and recoverable

capabilities. It discusses the persistence and recovery related to databases. It discusses the

database approach, recovery with ARIES and explains the similarities and difference of

GED recovery approach compared to ARIES algorithm. It also explains the shadow

paging mechanism and its disadvantages. It then discusses the features of JMS that can be

useful for making GED recoverable. Finally, it discusses C++ version of robust Global

Event Detector.

2.1 Database Recovery

DBMS ensures the atomicity and durability of its transactions to provide fast

recovery. Atomicity of transaction implies that all the actions in it are executed or none.

Durability implies that all the effects of a successful transaction are persist even after

system crash. A DBMS has a recovery manager that maintains relevant information in

normal execution of transactions in order to enable it to perform its task in the event of a

system crash. A log of all the modifications to the database is saved on stable storage. It

ensures that the log entries describing a change to database are written to stable storage

before the change is made. The log enables recovery manager undo the actions of aborted

and incomplete transactions and redo the actions of committed transactions. If no-force

approach is used, in case of crash, some transactions updates might be still in the buffer

pool. Such changes must be identified and written to disk. The changes made by

transactions that did not commit prior to crash might have been written to disk because of

steal approach. Such changes must be identified and using the log and then undone.

Recovery manager ensures atomicity by undoing the actions of uncommitted transactions

and ensures durability by making sure that all actions of committed transactions are

persistent.

18

18

Initial approach to database recovery was an UNDO/REDO approach. Later on,

ARIES and other variants of write ahead logging based recovery mechanisms replaced

this. Shadow paging is one other way to provide database recoverability.

2.1.1 ARIES

Algorithm for Recovery and Isolation using Event Semantics (ARIES) [6] [7] is a

Write Ahead Logging (WAL) based recovery mechanism. This is a database approach

and is an improvement over conventional undo/redo approaches prior to ARIES. It

supports fine granularity locking and partial rollbacks. Aries uses log files to record the

actions that cause changes to recoverable data objects. It records all transaction into a log.

The log is considered as an ever-growing sequential file. This log is critical for ensuring

a transaction’s committed actions are reflected in the database despite various types of

failures and that its uncommitted actions are undone. Log files are stored on stable

storage, which is non-volatile, remains intact and available across system failures. Aries

supports page-oriented redo and logical undo, thus achieving efficiency and high

concurrency.

Information logging can be of two types, physical and operational. In physical

logging, before update and after update values of specific fields within the object are

stored. In operational logging, the operations that were performed on the object are

recorded. Operation logging permits the use of high concurrency lock modes, which

exploit the semantics of the operations performed on objects.

The WAL protocol asserts that the log records representing changes to some data

must already be on stable storage before the changed data is allowed to replace the

previous version of that data on nonvolatile storage. The system is not allowed to write an

updated page to the nonvolatile storage version of the database until at least the undo

portions of the log records, which describe the updates to the page, have been written to

stable storage.

To enable the enforcement of this protocol, systems using the WAL method of

recovery store in every page the LSN of the log record that describes the most recent

update performed on that page. LSN is a unique log sequence number assigned to the

record when that record is appended to the log. LSNs are assigned in ascending sequence.

19

19

Recovery process in ARIES is divided into three phases analysis, redo and undo

phases. During recovery, the first thing it does is analysis, which is to repeat history. In

redo phase, history is repeated to reestablishes the state of the database as of the time of

the system failure. A log record’s update is redone if the affected page’s page_LSN is

less than the log record’s LSN. In undo pass, all loser transactions’ updates are rolled

back in reverse chronological order. This is done by continually taking the maximum of

the LSNs of the next log record to be processed for each of the yet-to-be completely

undone loser transactions, until no transaction remains to be undone. Basic features of

ARIES can be summarized as follows:

o Simplicity

o Operational and value logging

o Partial rollbacks

o Multi-granularity recovery

o Page-oriented recovery

o Logical undo

o Red0.Undo only as necessary

o Don’t redo something that is already done

o Flexible storage management

o Flexible buffer management

o Minimal overhead

To provide the event persistence and recovery capabilities to the existing GED we

have adopted Write Ahead Logging mechanism. ARIES algorithm is not used in

complete, because there is no UNDO phase in GED recovery.

DBMS maintains certain information in normal operation in order to enable it to

recover in the event of crash. With ARIES, DBMS uses WAL to persist the log records

indicating the changes made by a transaction so that they can be redone in case of a crash.

Aries is a steal, no-force approach. In case of a crash, all the committed transactions are

repeated thus bringing the database to its state prior to crash. All the actions of

uncommitted transactions are undone, thus restoring the database to previous consistent

state.

20

20

Similar to DBMS, in normal operation, GED stores certain information to restore

its state in case of a crash. Unlike DBMS, GED has non-transactional approach. This

introduces a window of failure. If a crash occurs during the processing of event massage

from client the state of the GED is lost. WAL is used to persist the event messages GED

receives from clients. All the events that are received are persisted before they are

processed. This avoids the loss of unprocessed events in the event of crash and aids in

buffer management. Any update to the GED state during the event detection process is

persisted by writing information that reflects this change to log before updating the in

memory data values.

ARIES algorithm uses LSN as log record id that enables it to fetch the record with

one disk access. GED uses a similar concept. Each event message that comes on to GED

is assigned a unique id called Event Sequence Number. GED uses this id to keep track of

the message stay on GED. Given a message ESN the message can be read from the log in

single file access. ESN is also used in buffer management and recovery of main memory

event buffers in case of crash.

As there are no transactions and transaction atomicity, recovery of GED involves

only the redo portion. The history is repeated by reading the log files and restoring the

state of GED prior to crash. There is no undo in GED recovery.

2.1.2 Shadow Paging

It is based on maintaining a dual mapping between pages and their location on

disk. One mapping represents the current state of a segment being modified; the other

represents a previous backup state. At any time, the backup state can be replaced by the

current state without any data merging. The basic idea in shadow paging is that existing

data is never overwritten, but instead modified pages are always written to new locations

on disk, and a mapping is used to keep track of the current location of each page. The

mapping is called the page table. Shadow paging [8] [9] implies force policy, that is, all

modified data must be written to non-volatile storage before a transaction can commit.

Before a transaction is committed, current page table is written to disk. Current

page table is made the shadow page table by overwriting the disk address of shadow page

table by the address of current page table.

21

21

Shadow paging is better compared to log-based systems in cases where fast

recovery can be extremely important and applications with large read-only transactions

mixed with small updates. Advantages of shadow page mechanism over log-based

mechanism are that the overhead of log-record output is eliminated and recovery from

crashes is much faster (no undo or redo). Disadvantages of shadow page mechanism over

log-based mechanism are:

1. Every transaction commit need to write actual data blocks, current page

table and its disk address to stable storage.

2. Garbage collection imposes additional overhead and complexity

3. Offers no help for fine granularity locking for concurrent transactions and

hence difficult to be adapted for concurrent transactions.

2.2 JMS

Message Oriented Middleware (MOM) products allow separate business

components to be combined into a reliable, yet flexible, system. JMS [10] provides a

common way for Java programs to create, send, receive and read a MOM system’s

messages.

JMS is a set of interfaces and associated semantics that define how a JMS client

accesses the facilities of an enterprise-messaging product. JMS incorporates persistence

in message delivery mode. JMS supports two modes of message delivery, PERSISTENT

and NON-PERSISTENT.

In NON_PERSISTENT mode, message is not logged to stable storage. A JMS

provider must deliver a NON_PERSISTENT message at-most-once. This means that in

case of JMS provider failure, it may lose the message, but it must not deliver it twice. In

PERSISTENT mode, extra care is taken to insure that the message is not lost in transit

due to a JMS provider failure. A JMS provider must deliver a PERSISTENT message

once-and-only-once. This means a JMS provider failure must not cause it to be lost, and

it must not deliver it twice.

JMQ can be used for guaranteed delivery of event messages from server to client

and vise versa. The main objective of this thesis is to provide a recoverable GED server.

This implies that JMQ can provide only the persistence with respect to the messages

22

22

exchanged. Persistence of GED state and recovery from crash should be handled

separately. JMQ itself comes with a lot of additional functionality and communication

overhead [5]. The functionality, persistent message delivery, provided by it is not worth

paying the overhead associated with it.

JMS specifications [10] say, “The use of PERSISTENT messages does not

guarantee that all messages are always delivered to every eligible consumer. ”

2.3 Recovery of C++ GED

C++ version of GED [11] [12] is robust to sever and client failures. It follows log

based recovery approach. The algorithm used here similar to ARIES. Write Ahead

Logging is used to ensure that all the changes are recorded on stable storage. It uses LSN

to keep track of the message objects on the secondary storage and for guaranteed delivery

of events to clients. With the aid of LSN, it keeps track of number messages sent and

number of messages to be sent. It uses individual buffers for each client to store the

notification messages of events subscribed by this client. Each consumer buffer has a

separate log file that persists all the messages received for this client. This log file aids in

recovery of buffers in the event of crash and buffer management of the client buffers in

normal operation.

Unlike the Java GED, which constructs the event graph dynamically, C++ GED

constructs event graph statically. C++ clients use Snoop preprocessor. A Snoop

Preprocessor transforms the event and rule definitions written in Snoop to the

conventional C++ programming code. It generates the global event specification file,

which contains the information used by the server for detecting the event defined outside

of a local application. Based on this information, the global event detector constructs the

event graph for the detection of primitive and composite global events. Hence, it does not

face the problem of persisting the event graph. In case of crash, the event graph is

reconstructed from the event specification file. Only the information that is propagated

through the graph is persisted. The state of the graph is restored using this information.

For the same reason it can support client recovery, whereas Java GED cannot. This will

be explained in detail in chapter 4.

23

23

CHAPTER 3

Summary of Local and Global Event Detectors

3.1 Local Event Detector

This section summarizes the Java Local Event Detector (LED)[2] and its

functionality. Based on ECA rule paradigm, local event detector supports active

capability to various kinds of monitoring applications including relational database

systems. It uses flexible and expressive event semantics provided by SNOOP[3] [4] [13].

The LED has been used to develop an agent that works with various commercial

Relational DBMSs (such as Oracle[14], DB2[15] and Sybase[16]). The local event

detector is well suited for monitoring complex changes within an application.

3.1.1 Event Specification Interfaces and Usage

Local event detector provides active capability to an application by detecting the

occurrence of local primitive and local composite events defined as part of the

application. The application interacts with the local event detector through a set of

interfaces shown in Table 3-1. Following are the steps for using the event detector.

1. Application has to initialize an agent by invoking the initializeECAAgent () or

initializeECAAgent (String agentName) method.

When initialized for the first time, the system initiates a new default ECA agent. If it

is not for the first time, it will return the existing defaultECAAgent to the application.

Multiple ECAAgents identified with different names can be initialized using

initializeECAAgent (String agentName) API. Each agent is responsible for monitoring

events defined in that agent and performing appropriate actions.

2. After initialization, the application can start defining events (both primitive and

composite), and rules.

a. Define primitive events using createPrimitiveEvent API.

b. Define composite events using createCompositeEvent API.

c. Define rules using createRule API.

24

24

Using the ECAAgent initialized in step 1, the application can define a primitive

event by invoking the createPrimitiveEvent method. Application has to supply name for

the primitive event, name of the class in which the method associated with the event is

defined, the event modifier (begin or end), and the complete method signature as

parameters to this method. This method returns the event handle associated with the

primitive event, which can be used for defining the composite events with this event as a

constituent, storing the parameter of the event, and signaling the method invocation of

event to the detector.

The application can define a composite event in a specific ECAAgent by invoking

createCompositeEvent method on that ECAAgent. To define a composite event, the

application specifies the operator type and event handles of constituent events obtained

from previous declarations. These constituent events can be either primitive events or

other composite events. Based on the number of constituent events, SNOOP composite

event operators can be classified into two categories, binary and ternary. Two basic API’s

that can be used to define binary SNOOP operators, such as AND, OR, and SEQUENCE

with two constituent events and ternary SNOOP operators, such as NOT, PERODIC, and

APERIORDIC are shown in Table 3-1.

To define a rule associated with an event the application should provide the

handle corresponding to that event, a condition method name, and an action method

name. The condition and action are defined as methods in the associated class. Basic API

used for defining a rule is shown in Table 3-1.

3. Raise an event.

a. Insert parameters of different data types using insert () APIs provided by

ECAAgent.

b. Raise the event.

The application can insert any primitive data type or object through insert () APIs

shown in Table 3-1. In the method defined as primitive event, arguments of condition and

action methods need to be inserted into the parameter list using the event handle before

raising the event. These parameters can be used in evaluating the condition and

performing actions.

25

25

An event can be raised at the beginning or at the end of the method corresponding

to that event. The applications are provided with two APIs, raiseBeginEvent and

raiseEndEvent for this purpose. These are also shown in Table 3-1.

LED detects the occurrence of the events through the invocation of

raiseBeginEvent or raiseEndEvent methods. All the associated rules are triggered when

the event occurs. The condition is evaluated. If the condition is satisfied, the action will

be performed.

3.1.2 Event Graph and Propagation of events

LED constructs an event graph when events are declared and uses that graph

during event detection. Each node in the event graph is either a primitive event or a

composite event defined in the application. Primitive events become the leaf nodes.

Constituent events of a composite event can be primitive or other composite events.

Hence, non-leaf nodes in the graph represent composite events. Each event node contains

a list of rules associated with it and a list of composite events subscribed for its

occurrence. LED supports instance level rules on primitive events as there is a single

object associated with a primitive event. Instance level composite events do not make

sense, as there is one object associated with each constituent occurrence. The primitive

event node contains an instance-based multiple rule list and an event subscriber list, while

the composite event node contains only one rule subscriber list and an event subscriber

list. On the occurrence of the event, its corresponding node is updated and the

information propagated to the subscribed intermediate node (composite events). The

occurrence is propagated by means of an event table called PCTable.

26

26

Figure 3-1 Local Event Graph

3.1.3 An Overview of Components in Local Event Detector

The building blocks of local event detector are events, rules, ECAAgent, rule

scheduler, and event detector thread. Every event defined in the application has an event

handle. EventHandle object stores method signature associated with the event, class name

in which the event is defined, and a list of parameter lists associated with that event.

Event handle has been introduced to encapsulate several pieces of information pertaining

to an event and to reduce the amount of information the user needs to keep track of.

A rule consists of a condition and an action. These are specified in

classname.methodname format. The conditions and actions are implemented as methods

in a Java class. LED uses Java reflection to refer to the classes in which the condition and

action methods are implemented. Whenever the rule is triggered, the RuleThread object is

instantiated and is inserted into the rule queue if rule scheduler is turned on. Rule

scheduler later executes it.

The ECAAgent provides interfaces to define events and rules, insert parameters,

and signals an event occurrence to the event detector. The ECAAgent class maintains

even tS ignature

IB M

M S FT

null

an Instance-ru le lis t

even tS igna turesEventN odes H ash table

Even t Subscribe r

R u le Subscriber

Prim itive Event N ode C om posite Event N ode

Pointer to Event N odeR ule N ode

27

27

data structures to refer to event nodes with their names and method signatures associated

with them. Application thread is separated from the event detector and works in

conjunction with an event detector thread (LEDThread) through a buffer (NotifyBuffer).

The event detector thread is responsible for detecting events and firing rules.

Whenever a primitive event occurs, all the relevant information about its occurrence is

wrapped into an object called NotifyObject. This NotifyObject is put into the buffer, and

is processed by the LEDThread. Running in an infinite loop, the event detector thread

keeps fetching NotifyObjects, notifying occurrences of events, propagating the

parameters to the internal nodes of the event graph, and firing the associated rules.

3.2 Global Event Detector

The local event detector is well suited for monitoring complex changes within an

application. The capabilities of LED are limited to a single address space. To extend this

event detection capability to distributed environment Global Event Detector is designed.

The Global Event Detector (GED)[5] is a server based on the

notification/subscription model. It uses the ECA (Event-Condition-Action) rule paradigm

in order to support active event monitoring capability in a distributed environment. It

detects composite events of interest based on event detection requests and event

notifications it gets from the client application. This section summarizes the global event

detector.

28

28

Create Primitive

Event API

CreatePrimitiveEvent (String eventName, String className,

EventModifier modifier, String methodSignature)

Create Composite

Event API

createCompositeEvent (EventType operator, String eventName

EventHandle ehOne, EventHandle ehTwo)

createCompositeEvent (EventType operator, String eventName,

EventHandle ehOne, EventHandle ehTwo, EventHandle ehThree)

Create Rule API createRule (String ruleName, EventHandle eh, String ruleName, String

condMethod, String actionMethod)

createRule (Object targetInstance, String ruleName, EventHandle eh, String

ruleName, String condMethod, String actionMethod)

Insert Parameter

API

insert (EventHandle [] eventHandleArray, String varName, long

longValue)

insert (EventHandle [] eventHandleArray, String varName, float

floatVal)

insert (EventHandle [] eventHandleArray, String varName, Object

object)

Raise Event API raiseBeginEvent (EventHandle [] eventHandleArray, Object instance)

raiseEndEvent (EventHandle [] eventHandleArray, Object instance)

Table 3-1 Common API’s used in Event Detectors

3.2.1 Global Events

Like LED, GED also uses SNOOP for the flexible and expressive event

semantics. GED uses the event names to refer to event nodes. Hence, to make the event

names unique, global event name is composed of event name on the detection site, name

of the application that is detecting this event, and host name on which this application is

running. The event detection and network communication details are transparent to users.

The events on GED are mainly classified into two types, global primitive events and

global composite events.

29

29

Create Global

Primitive Event API

CreatePrimitiveEvent (String consEventName, String className,

String prodEventName, String appName,

String machName)

Create Global

Composite Event

API

createCompositeEvent (EventType operator, String eventName,

EventHandle ehOne, EventHandle ehTwo)

createCompositeEvent (EventType operator, String eventName,

EventHandle ehOne, EventHandle ehTwo,

EventHandle ehThree)

Table 3-2 APIs to Create Global Events
Global primitive event is an event that is defined and detected outside of current

or local application. On the site of detection, this could be a primitive or composite event.

The API used to define global primitive event is shown in Table 3-2.

Global composite event is an event that is composed by event operators and at

least one of its constituent events is a global event. The global composite event

specification is identical to the local composite event specification. The internal

mechanism will determine the type of composite event (local or global) and the site of

global composite event detection at run-time. The details of composite event detection

site are described later in this section. The APIs used for defining a global composite

event are shown in Table 3-2.

3.2.2 Architecture

GED uses client/server architecture. Table 3-3 summarizes the other architecture

alternatives considered for GED. This approach introduces a global event detector as a

server. Each application communicates only with the server and hence, it does not have to

know the identities of other applications. Server is responsible for managing the

subscription/notification aspect of global event detection. Determining what global events

to detect and where to detect, the server allows clients (applications) to share information.

The global event detector partially relieves the applications of event detection. Each

application still contains the local event detection module. Applications are loosely

coupled.

30

30

A consumer (of events detected in another application) can subscribe to remote

events through the global event detector. Running in the background on the server, the

global event detector keeps track of subscriptions on the server site and forwards the

request to the appropriate application that generated the event (a producer). Once the

event occurs in the producer site, the global event detector is notified which forwards the

notification to the consumer. The maximum number of messages between clients and

server is: 2*[X+Y] where X is used to represent a number of consumer applications and

Y is either 2 or 3 (binary or ternary operator).

Table 3-3 Alternative Architectures

3.2.3 Global Event Detection Site

In a distributed setting, data is exchanged among applications. The

communication strategy is a key factor to reduce the communication cost and it is critical

to system performance. The cost of communication is described as:

Communication Cost = Frequency * (Overhead + Occupancy)

The overhead is the time to initiate the transfer. The occupancy is defined as the

time it takes for transmitting the data. Frequency is the number of times a message is

sent. The factors affecting the system performance, size and number of messages

Client/server architecture with object request broker (ORB)

Characteristics
- To manage interaction
between clients and servers via
ORB
- Supports primitive data types,
and a wide range of data
structures, as parameters

Drawbacks
- Not support the transfer of
objects, or code.
- No garbage collection
 (CORBA)

CORBA

Characteristics
- Provides the mechanism by
which the server and the client
communicate and pass information
(objects) back and forth

Advantages
- Portable across many platforms
- Support object communication
across network
- Cost

This approach is used to
implement the Global Event
Detector

Characteristics
- Provides message router
and message queues for
message passing between
applications
- Proprietary software
from venders

Drawbacks
- Not all MOM
implementations support
all operating systems and
protocols.
- Can’t modify internal
infrastructure to
accomplish our goals

Hi h h d if

Characteristics
- Encapsulates
details of the
network
interfaces
- Most RPCs are
blocking
communication

Drawbacks
- Not support
object
communication.
- Allow only
primitive data
type.

JAVA-RMI

Client/server

architecture with

i d

Client/server
architecture with
remote procedure
call

31

31

exchanged among applications, should be minimized to obtain a better performance. In

the global event detector, there are two approaches for detecting global composite events.

First approach can be termed the mediator approach. In this approach, GED acts

merely as a mediator passing event occurrences as messages among the clients. It

forwards the notification messages it receives from producers to consumers. Event graph

of the global composite event is constructed at the local site. All the event detection is

done at the local sites.

In the second approach, the global composite events are detected at the server site

as well. The GED server not only receives and forwards the event information, but also

detects any composite event of interest. As the composite events are detected on server

site, GED does not forward every occurrence of the constituent primitive event to the

consumer of the composite event. Rather, the event graph is constructed on the server site

and GED sends the notification back to the corresponding client application only when

the composite global event is detected.

The location where the global composite events are detected has a major impact

on the number of messages passed between the server and client applications. Detecting

all the composite events at local sites is costly when all the constituent events are global.

Consequently, the second approach seems better in this situation. However, when at least

one of the constituent events is a local event, first approach has less message passing.

A global composite event can be detected either at the local site or at the server

site. The site where a global composite event is detected is determined by its constituent

events at run time. The global composite event is detected at the GED when all of its

constituent events are the global events; whereas, it is detected at the local site when one

of its constituent events is a local event.

3.2.4 Communication Module

The earlier implementation of Local Event Detector [ref…] is only aware of the

events defined in its address space. It cannot send the event detection request to another

application. Therefore, a communication interface is introduced to handle the remote

calls so that the existing local event detector can exchange information with other

applications.

32

32

Figure 3-2: The communication layer between LED and GED

The LED interface is introduced to facilitate the communication between LED

and GED. It is responsible for looking up the remote objects and making remote

invocations to send an event detection request or event notification to the server. It also

has a listener that waits for incoming messages such as event notification and event

detection request from the server.

On the server site, the GED interface is designed not only to forward the

messages from one application to another application, but also to store some data to

construct the global event graph and additional information for global event detection.

Every application needs to register with the server through this interface. The

communication layer between GED and LED is shown in Figure 3-2.

3.2.5 Type of Messages

Typically, there are two types of messages passed between clients and server. One

is, the client application communicates with the server to request the detection of a global

event, and receives event notification from the server when that event occurs. Second is,

the client receives an event detection request from the server and sends it the notification

when that event is detected at its site. Hence, the messages exchanged between clients

and the GED server can be classified into two types, eventNotificationMessage and

detectionRequestMessage.

Global Event Detection

Communication Layer

Existing LED

Application A Application B

 LED

LED Interface LED Interface

GED

GED Interface

Host A Host B

 LED

33

33

3.2.5.1 Detection Request Message

The detectionRequestMessage is packed with event name, application name, and

host name of the global event and context bit information to capture the useful semantics

of the application. Once the GED server receives the message, it creates the global event

node representing the event on the server site. The sendBackFlag is set in order to specify

that there is at least one application waiting for the occurrence of this event. Then the

server forwards the message to the application that defines the event. The producer

application unpacks the package and sets the forwardFlag associated with event node to

be true so that it will signal the event occurrence to the server.

3.2.5.2 Event Notification Message

The eventNotificationMessage contains parameter information about the global

event. It contains an event table described earlier in section 3.1.2. Typically, the relevant

information is recorded in the parameter lists in associated PCTable when the primitive

event occurs. The occurrence of this primitive event is propagated to the internal node if

it is a constituent event of the composite event. In addition, the parameter lists are

inserted into the event table of internal node. Whenever the forwardFlag of the notified

node is set, the eventNotificationMessage, including the PCTable, will be sent to the GED

server.

3.2.6 Global Event Graph

The event graph is used for detecting composite events. Each event that is defined

in the application is represented as an event node in the graph. The relationship among

composite events and their constituent events forms an event graph. In the event graph

for LED, each node has a list of event subscribers and a list of rule subscribers. When a

composite event subscribes to its constituent nodes, the reference of composite event will

be stored into the list of event subscribers. Similarly, when a rule is defined, it is stored in

the list of rule subscribers. As mentioned earlier, the composite global events can be

detected either on the local site or on the server.

34

34

The composite global event can also be detected on the GED server by using the

event graph as shown in Figure 3-3. The leaf nodes of the global event graph represent

the global primitive events. The internal nodes represent global composite events. Unlike

the node of a local event graph, the global event node does not have a list of rule

subscribers, since all the rules are locally executed at the application site. The rules that

are defined on a global event are applied to the Remote event node on the application site

instead. Each global event node contains only a list of event subscribers, which contains

references to the global composite event nodes. In addition, each node maintains

occurrences of events and their parameter lists in the PCTable. Whenever a global event

occurs, it will check the sendBackFlag to check whether to send the event notification

message to appropriate clients (or consumers).

Figure 3-3: Global event graph for detecting global events
3.2.6.1 Dynamic Graph Construction:

The main emphasis of the design is to do things only on demand and avoid

sending messages over the network unless it is necessary. Only on request from the

consumers, the global event nodes are constructed at the GED server and sendback flag is

set so that the occurrence of these events is notified to the consumers. Producers send

notification messages of only those events for which server forwarded the

detectionRequestMessages from consumers. This design ensures that the event nodes are

constructed on demand and notification messages are passed over only when there are

consumers for that event.

Reference to Event Node

 Prim itive Global Event Node

LED Interface

eventNamesEventNodes Hashtable

Network Communication

GED Interface

Composite Global Event Node

35

35

CHAPTER 4

Design Issues for Persistence and Recovery

Distributed applications are prone to a variety of failures like client crashes,

system failures and network failures. For reliable operation, any system in a distributed

environment should be able to handle such failures. GED as any other application is

prone to system failures.

The existing system [5] summarized in previous chapter is a main memory

system. All the event information and the state of the GED are stored in main memory. It

assumes the availability of infinite main memory to handle the incoming event

notification messages (explained in section 3.2.5.2). In case of a system failure, all the

information in the volatile memory is lost. GED looses its state information along with

the event graph resulting in a fresh start of GED and thus all its client applications. This

chapter discusses the design details of persistence, recovery of GED and buffer

management

4.1 Requirements to Make GED Recoverable

Following a crash, the system should be able to recover to its previous stable state

and continue its normal operation there after. To recover from crash all the data needed

to restore the state of GED should be made available even after crash. This can be

achieved by persisting the information in log files.

The recovery process should be able to read the data from log files and reestablish

the state of the GED prior to crash. It is desirable that, the overhead associated with the

file IO during normal operation of GED and during its recovery is minimized.

All the incoming event notification messages are stored in a buffer and GED

processes them from this buffer and dispatches them to corresponding event subscribers.

As GED is prone to failures, loss of the unprocessed messages must be avoided.

As the resources could be limited, GED needs a buffer manager that can manage

the main memory used to store the incoming messages from clients. This module should

be able to handle the buffer overflows and required read/write to secondary storage. It

should aid in recovery of main memory buffers. It should also take care of clients that

cannot consume the events fast enough to keep pace with the GED.

36

36

The delivery of events and event detection should not be affected by the GED

crash. Even when the GED is down, client applications continue to generate new events

and send notification messages to GED. If the clients persist those events and resend

them to GED after its recovery, event detection will be unaffected.

4.2 Persistence

Data persistence is the ability to keep data or information around even after a

program ends. To recover a server from crash, enough information of the server must be

persisted on stable storage so that the state of the server at the time of failure can be

reconstructed at a later time. To handle recovery of GED server from failures, its state

should be persisted. The key here is to store the state of GED sufficient to reconstruct it.

As we cannot predict the crash, Write Ahead Logging (WAL) concept is used to store the

state to stable storage. WAL ensures that before updating the data values in memory,

appropriate information reflecting this update is persisted onto stable storage.

Along with the state of GED, the incoming notification messages should also be

persisted. If the GED crashes before processing the event notification messages it

received, they will be lost. Hence, to handle the recovery of unprocessed messages, all

the incoming messages should be logged before they are processed. In case of a main

memory buffer overflow, the incoming messages from the clients cannot be added to

buffers and will be lost. If these messages are made available in stable storage and GED

can write the unprocessed messages when there is empty space available in the buffer, it

can avoid the loss of these messages. This is achieved by persisting the messages into a

log file and reading them back later. They are persisted in Notification message log file,

which is discussed in next section.

Java object serialization mechanism [17] is adopted to persist the data values.

Java object serialization is a simple and flexible way to persist java objects based on

copying of objects to and from streams. An object can be serialized by implementing the

Serialization interface provided by Java and using the methods provided by the interface.

It gives the ability to easily read and write entire objects and primitive data types, without

converting to/from raw bytes or parsing text/ASCII data. Serialization is the mechanism

to flatten the objects into a stream of bytes that can be written to disk or transferred over a

37

37

network. De-Serialization is the mechanism to reconstruct the object from its serialized

byte stream.

4.2.1 Notification Message Log File

This log file stores all the notification messages (event occurrences) arriving at

the server. Each notification message is assigned a sequence number called Event

Sequence Number (ESN) when it arrives at the server. Along with the notification

messages, this log file also stores some additional information needed by the Buffer

Manager in the process of normal buffer management and to recover the main memory

buffers in case of a crash. It store three variables, buffESN -- the largest ESN in buffer,

dESN -- the largest ESN that is dispatched to its consumers, pendingEvts -- counter that

indicates the number of messages in the log to be pulled into main memory buffer, and

itSize -- size of the Index Table of the log file in bytes.

In a traditional log file if an application wants to read an object stored in it, it has

to do a sequential read of the file until it finds that object. This has an overhead of

reading the unnecessary data from the file. This overhead grows as the file size grows.

To avoid the sequential reading of the log files, this design introduces a

mechanism to index into the file and retrieve only the object that is required. All the

message objects in log file are in a serialized byte stream form. To retrieve a specific

object from this would require the exact position where the byte stream of this object

would start and the length of the byte stream i.e., the number of bytes corresponding to

this object. This information is collected at the time of writing the serialized object

stream into the file. As mentioned before each message object is identified with a unique

event sequence number. Byte size of the object and its offset in the file are stored along

with the ESN in Index Table.

To read a specific object from the file, the index table is queried with ESN of the

object to get its position and the number of bytes to read. The byte stream so read is de-

serialized to obtain Java object.

38

38

Figure 4-1 Notification Message Log File

This indexing capability comes at the cost of limited log file size. Unlike the ever

growing traditional log files, this log file has a limited size specified in terms of number

of notification messages. As GED has to log the notifications coming at runtime, it has to

add new index records to the index table at runtime. Therefore, it needs to know exactly

where in the log file the byte stream of this message should be written i.e., the offset of

the object in file, and this position cannot change once it is written. This imposes the

condition that all the objects that come before this notification message must be of fixed

size. Nevertheless, the index table is populated only at runtime hence it grows at runtime.

If the size of the index table were not limited, it would violate the condition mentioned

above.

This problem can be avoided by two ways. One is to write the index table in a

separate file so that the size of the index table can grow dynamically without effecting the

offsets in the notification message log file. The other is to keep the index table in the

same file and limit it to a fixed size. Index table is accessed each time a message is

written to the file and read from the file. Hence, in the first approach, each write or read

would result in opening and closing of two files. In second case, there is only one file

open and close associated with each write or read. Nevertheless, the number of messages

that can be held in the log would be limited and the log file needs to be compressed

occasionally to avoid log operation failures. We assume that the overhead associated with

buffESN dESN pendingEvts

Index Table

ESN Object Size Offset

Notification Messages …….

itSize

39

39

opening and closing two files for each write or read operation is more than the overhead

of compressing the log file occasionally.

This design limits the size of index table to a fixed number of bytes thus limiting

the size of the file. The size of index table is mentioned in terms of number of message

indexes it can hold. This value is read from the configuration file. GED creates the index

table of fixed size, populated with the default values at the time of initialization. These

default values are replaced with the actual values at runtime, thus maintaining the

constant size.

Index table size is only a limit on the number of messages that can be stored in

log file. This should not limit the number of messages GED server can handle. If the log

file were full, the message logging would fail. To avoid the log overflow due to this

limitation, a mechanism to compress the notification log file is provided. At any point of

time, the dESN indicates the maximum ESN that was dispatched to its consumers.

Ensured that all the messages with the ESN lower than dESN are already dispatched they

do not need to be kept in the log file. These message objects are purged from the file and

the index table is updated to reflect the current locations of the notification messages.

Figure 4-2 Overview of GED Server
4.2.2 Persisting other Data Structures

All the data structures that are a part of the GED’s current state need to be

persisted to enable GED recovery. As mentioned earlier, the key is to persist only that

GED Interface

Global Node Manager Buffer Manager

Event
Log

40

40

information which is required to restore the GED state. Each data structure is persisted

onto a separate file. All these files are written in an append mode. Whenever the state of

the data structure changes, instead of recording the entire data structure into the log, only

the information that represents this change is written at end of the file. Reading these

information bits step by step from the file, the data structure can be restored to its

previous state.

As shown in Figure 4-2 GED server can be mainly divided into three parts. GED

server can be mainly divided into three parts. The communication layer between the

clients and the server becomes the first part. Processing the incoming event detection

request messages and event notification messages to construct the global event graph and

doing the global event detection becomes the second part. Managing the main memory

buffer space available to store the notification messages before processing them and

dispatching them to their corresponding consumers becomes the third part. Persisting

GED state mainly involves persisting these three parts.

Not all the information in these objects is persisted. The threads involved in

different data manipulations are tied to resources that are specific to this session of the

virtual machine. It does not make any sense to serialize the thread for later use. Hence,

they are re-instantiated in the recovery process and associated with the appropriate data

values. The main memory buffers used to store incoming messages are not persisted. The

notification message log file, explained in previous section, contains all the messages that

come onto GED server. This log file can be used to extract the appropriate messages from

the log and reconstruct the main memory buffers. Similarly, the remote interfaces used to

communicate with the client applications are also not serialized. These remote interfaces

are bound in the RMI registry with a standard name so that the client applications can

look up for them in registry and use them later to communicate with GED. Once the

system crashes, these objects will be no more available. Similar to threads, they are

specific to this session of virtual machine and must be rebound at the time of recovery.

GED does a logical logging. Any information that can be restored or can be

computed from already persisted data is not persisted. Depending on the semantics of the

data structure, minimum amount of information required to restore its state is persisted.

41

41

The process of persisting the data structures and restoring them later in recovery process

is explained in detail in chapter 6.

4.2.3 Persisting the Event Graph

Event graph cannot be persisted as any other data structure. Event graph is

constructed dynamically. The event nodes are constructed only when there is a request

from a client. GED needs to update it accordingly in stable storage along with the main

memory copy.

When a new node is added to the existing event graph (a new event to the table),

if it is a global composite event that consists of global primitive events it updates some

data corresponding to these constituent events in memory and GED wants this to be

reflected on secondary storage. Depending on the level at which the event is being added,

number of internal nodes and leaf nodes that are modified varies. This could be as small

as two primitive event nodes or as large as the entire event graph.

This may result in logging all the event nodes that are updated and keeping track

of the sequence of these updates to re-do them during recovery process. This complicates

the logging and recovery process.

At this point of time, we want to keep our recovery plan as simple as possible so

we just write the updated in-memory version of hash table into a file. This introduces a

window of failure. If the GED crashes while updating the event graph, the updates made

to the event graph are lost because the stable storage only has the information that reflects

the state of the graph before this update was started.

4.3 Recovery

There is a fundamental difference between a server recovery and an application

recovery. Server recovery involves the restoration of the previous state of the server and

it should resume to provide normal services after recovery. An application recovery along

with the state restoration would involve pinpointing the point of crash and resuming from

that point after recovery. When an application is started in initialize or resume mode it

would always start executing from the first command. In resume mode, the application

should be able to skip to the point of crash and then start executing the rest of the

commands. A DBMS supports the application recovery [18] by relying on transaction

commits to pinpoint the point of crash. It would thus know the operations to be redone

42

42

and the operations to be undone. In case of applications where there is no notion of

transactions, resuming an application is easier said than done. It involves an arduous deal

of bookkeeping and cross checking for each statement executed.

GED is a server that supports the event detection in distributed environment by

processing the incoming messages and sending out appropriate notifications. It provides

services to clients that enable them to subscribe for remote events and receive

notifications on the occurrence of these events. The expressive events semantics provided

by Snoop enable it to detect the composite events composed of events occurring in

different applications distributed over a network. It builds an event graph based on the

event notification and event detection request messages it receives from the clients and

uses it in the process of event detection. The recovery of GED server from a failure

involves restoration of its state prior to crash and continue to provide normal event

detection services.

We assume that system failures do not corrupt information on stable storage and

the effect of failure is not spread beyond the point of crash. As mentioned in the previous

section, the event graph persistence introduces a window of failure in which the loss of

information is inevitable. WAL concept used in persisting all other information ensures

that all the changes are recorded on to the stable storage and are available during the

recovery.

4.3.1 Server Recovery

To recover from the crash, all the information required should be in stable storage

at the time of recovery. The user is given a choice to run the GED in PERSIST mode.

Event persistence capability provided in this design makes the GED server robust to

failures. Write Ahead Logging (WAL) concept adopted in this design ensures that the

information in stable storage reflects the GED state prior to crash. Apart from logging

the notification messages arriving onto the server, all the data structures required to

restore the system are logged to reflect their stable state prior to crash. When the server

crashes, these log files are used to restore the GED state.

As shown in Figure 4-2 GED server can be mainly divided into three parts. The

communication layer called GED Interface, Global Node Manager that maintains the

global event graph and does the global event detection and the Buffer Manager that

43

43

manages the main memory buffer space available to store the notification messages

before dispatching them to their corresponding consumers.

Recovery of GED mainly involves recovery of these three parts. As a part of

recovery GED, registers its communication interfaces with the RMI registry and

instantiates it threads associated with message processing before the recovery is

complete. This opens the GED for incoming messages from client applications, but the

recovery process is not yet complete and GED state is not reestablished until the recovery

is finished. Processing any messages would involve modifying the incompletely

recovered GED state. Hence, the processing of any messages received during recovery

should be deferred until the recovery is complete. Locking the entire recovery and

performing it as an atomic operation achieve this. Access to all the data structures is

restricted to the main thread until the recovery is complete.

The recovery process first recovers the state of the GED from log files. In the

process, it opens the communication interface to the clients by rebinding the remote

interfaces used to communicate with clients, and finally it takes care of any messages that

were generated when GED was down. GED then continues normal operation. The

recovery of GED server is explained in detail in chapter 6.

4.3.2 Failure of Producers and Consumers

Akin to GED, producers and consumers are also prone to errors. In the C++

version of the GED [11] [12], the event graph is built statically. The graph information is

read from a specification file and it is used in the event detection process. The global

event graph pertaining to a client is sent to the GED server at the time of initial

handshake. GED uses this information and updates its event graph accordingly. When a

consumer recovers from a crash, it can be started in INIT or RESUME mode. If it is

started in RESUME mode, the previous spec file it sent will be retained and used for

further communication with the client. If it is started in INIT mode, the client supplies a

new spec file to the GED server.

In the Java version, the event graph is built dynamically. The main emphasis of

the Java design is to do things only on demand and avoid unnecessary message passing

over the network. Only on request from the consumers, the global event nodes are

constructed on the GED server and any notifications of this event are sent back to the

44

44

consumer. Producers send notification messages of only those events for which server

forwarded the detection request messages from consumers. This design ensures that the

event nodes are constructed on demand. There is no event graph specification file.

Consumer detection requests are RMI calls to GED server. Unlike the C++ version where

in all the event and rule definitions are collected into a spec file and sent to the server at

the registration time, requests are sent to the GED server whenever it occurs in the client

program execution. This makes the client recovery a program recovery. Java version

doesn’t provide any mechanism to recover the client sessions.

To recover a client from crash we need to pinpoint the command on which the

client application failed, recover the state up to that point and resume from that

command. As creation of events is done dynamically, create event and create rule calls

can come at any point in client code. When restarted, the application starts from the

beginning. As the point at which client has crashed is not known, we cannot find how

many client calls to LED/GED are executed and how many are pending. Hence, if a

client crashes, current implementation cannot restore its state to the previous stable state.

This would result in the loss of local event graph built during the previous run. Client has

to start a fresh.

4.4 Buffer Management

The objective of the buffer manager is to provide a simple mechanism that takes

care of the main memory constraints, handle required read and write on secondary

storage. It should aid in recovery of the main memory buffers in case of system crash.

An abstract view of buffer manager would be as shown in the Figure 4-3. It

should handle the main memory buffers used to store the event notification messages. It

controls the addition of new messages to the buffers, dispatching of these messages to

corresponding consumers. It should also handle the buffer overflows and use the

secondary storage appropriately to avoid the loss of the messages in such cases.

4.4.1 Initial design

Each consumer has a buffer and a log file assigned to it. The size of consumer

buffer is determined by the ratio of total available buffer space and number of clients.

The consumer log file contains all the event notification messages (explained in section

3.2.5.2) for that consumer. Along with these messages, log file also contains header

45

45

information, which is used in buffer management and recovery of the consumer buffers.

To keep track of the messages on the server event sequence number (ESN) is used. ESN

is a unique, monotonically increasing number assigned to messages on their arrival at the

server. The log header shown in Figure 4-4 contains three values buffESN - the largest

ESN in buffer, dESN - the largest ESN that is dispatched to the consumer, pendingEvts -

counter that indicates the number of messages in the log to be pulled into main memory

buffer.

Figure 4-3 Buffer Manager
Every message is logged before it is actually added to main memory buffer. If it

cannot be added to main memory buffer, the necessary header information indicating that

there is a logged message that needs to be pulled into main memory is stored in log. At a

later point of time if there are any empty slots created by the dispatched messages, these

logged messages will be pulled to main memory and are dispatched accordingly. At any

point of time, the log file stores all the messages along with the information needed to

recover the main memory buffer. Variables buffESN and dESN in log header indicate

that at a given point main memory buffer contains messages with ESN between dESN

New
Messages
from Clients

Message
Dispatch

To Consumers

Main Memory Buffers

Messages
from Log
files

Notification
Message
Log File

Notification
Message
Log File

46

46

and buffESN. This information is used to recover the main memory buffers in case of a

crash. Data structure used for consumer buffers is shown in Figure 4-5. A hashtable was

used for the purpose, where key is clientID and value is an object containing vector of

messages along with rmi url (rmi://consIP/consID) for this client.

Figure 4-4 Log Header
The buffer manipulations are divided into two threads. First, there is a thread that

handles the message dispatch from main memory buffers to consumers. Second thread

pulls the logged messages, if any, from consumer logs into main memory buffers. In

addition, there are RMI threads resulting from the client notification calls to GED, which

add the newly arriving messages.

This design makes add and delete of messages to a particular consumer buffer

independent of other consumer buffers. Having separate buffer and log files for each

consumer enables us to concurrently handle the message delivery and buffer

management. However, this concurrency comes at the cost of duplication and multiple

file operations. Multiple consumers can subscribe an event. Hence, notification message

for that event must be distributed to all its consumers. As this design has separate main

memory buffer and a log files for each consumer, any message for multiple consumers

must be stored in buffers of all these consumers and each consumer log has to be updated

accordingly. For example in the Figure 4-5, message M1 is intended for all the three

consumers as a result all the three consumer buffers and log files have a copy of M1.

Duplication on secondary storage results in multiple file operations, which incur high

performance cost.

Figure 4-5 Consumer Buffers

Consumer Id

Cons_Bangkok

Cons_Paris

Cons_Tokyo

M6 M1 M4

M1 M2

M1

Vector of messages

buffESN dESN pendingEvts

47

47

4.4.2 Alternate Design

To avoid duplication of messages in main memory, we came up with an alternate

design. In this design, all the messages arriving at the server are stored at a single place

called object store. Instead of message itself, a reference to it is stored in all its consumer

buffers. Figure 4-6 shows the object store and the consumer buffer. Still, this design uses

multiple logs to enable independent writes and reads on secondary storage.

Figure 4-6 Object Store and Consumer Buffers
Object store is a data structure that stores all the messages according to the event

sequence number associated with them. Message dispatch thread needs to extract

messages with specific ESNs from object store. Hence, object store needs to store the

mapping between the message and associated ESN to reduce the search time. Object store

is implemented using a Java hashtable. In Java, a hashtable is structurally synchronized.

This means, “If multiple threads access this map concurrently, and at least one of the

threads tries to modify the map structurally, it is synchronized internally”. (A structural

modification is any operation that adds or deletes one or more mappings; merely

changing the value associated with a key that an instance already contains is not a

structural modification.) Thus any new add operations or delete operations on this table

are synchronized, avoiding us from attaining any amount of parallelism with thread,

Consumer Id

Cons_Bangkok

Cons_Paris

Cons_Tokyo

6 1 4

1 2

1

Vector of ESNs

ESN
1
2
4
6

Message
Object Store

Consumer Buffers

48

48

which read messages and deletes them appropriately from main memory buffer and the

thread, which adds the messages to main memory buffer.

Consider a case where a message for multiple (say n) consumers cannot be put

into Object store due to the buffer overflow. It will be logged into all its consumer logs

and each of these consumer logs reflect the information that they have message logged in

their log file. This would result in ‘n’ file accesses. Pulling of the messages from log to

main memory is done on consumer bases, i.e., a thread goes to each consumer log, checks

for pending messages and pulls them to main memory. In this case, if a message is pulled

to main memory, the application has to update all consumer logs that this message is in

object store otherwise the thread makes multiple attempts to pull the same message from

multiple logs if the corresponding info is not updated in all the logs. In either case,

application has to do more ‘n’ file accesses. This sums to a total of 2n file accesses for a

message with n consumers.

4.4.3 Sending messages to consumers

In both the above-mentioned designs, when a message arrives on the server,

following is the order of processing:

1. Find all consumers for this message

2. Log the message in each consumer log

3. If it can be added to main memory (Consumer buffer/Object store), it is

added (In later design, the reference is kept in each consumer buffer) and

the header info (buffESN) is updated in each consumer log accordingly.

4. If it cannot be added to object store, the header info (pendingEvts) is

updated in each consumer log accordingly.

The event semantics used by GED depend heavily on the time and order of

occurrence of the events. Hence, while dispatching the event notification messages that

arrive onto the server the global order of the messages should be maintained. The

dispatch thread dispatches the messages on consumer basis. This thread goes over all the

consumers’ buffers sequentially and dispatches all buffered messages for each consumer

at once. When the messages are buffered and dispatched later, the global ordering of

messages is lost. For example in Figure 4-6, all the messages for the first consumer

would be dispatched before dispatching any messages to second consumer. As a result,

49

49

the messages M4 and M6 generated after M1 are dispatched to first consumer before the

message M1 is dispatched to the other consumers. To avoid this lack of correct ordering,

this design uses event sequence number to keep track of the order of arrival of messages

at server. To ensure the messages are dispatched in the same order as they arrive at the

server, before dispatching any messages the thread checks if all the messages with lower

ESN are already dispatched.

Both the above-mentioned designs use separate log files for each consumer. When

the main memory buffer (Consumer buffers/Object store) is full, consumer logs are

updated such that, they reflect the information that there is an event in the log that has to

be pulled to main memory when empty slots are available. A thread does this work of

pulling from secondary storage to main memory. This thread adopts Round Robin

method to ensure fairness among clients. To pull the messages that have to be delivered

first, the thread has to pull the messages in order of their ESNs. This raises the following

issues:

• Store and update the location (in which consumer log) of next ESN. This

could complicate the process.

• According to the number of empty slots and message distribution, the

process may have to do multiple file opens and closes to fill the object

store. This would hinder the basic idea (concurrence) in introducing

individual logs for clients.

However, the concurrency provided by multiple logs is lost. So to avoid the

complicated process of keeping track of next ESN on secondary storage, we decided to

introduce single log for all the events on the server. Hence, the current system uses a

central object store wherein all the in-memory messages are stored and a single log file

for messages that arrive onto the GED server for all the consumers.

4.4.4 Current Design

Figure 4-7 shows the refined design. There are two threads, Dispatch Thread and

Pull Thread. One dispatches the messages in object store to the consumers of that

message. The other pulls in the logged messages, if any, from the log into object store

whenever there are empty slots available. To avail some concurrency between the threads

that modify the object store, this design introduces two object stores (similar to the

50

50

concept of double buffering), one stores the messages with odd ESNs and other stores the

messages with even ESNs. Object store, as the name indicates is a place where all the

incoming message objects are stored. It ensures the First In First Out (FIFO) order in

message delivery. Hence, messages are dispatched in the order in which they arrive and

thus maintaining the global ordering. As this is a shared data structure, it is protected with

a lock.

Figure 4-7 Refined Buffer Manager

4.5 Buffer Manipulations

When a new message arrives, if the GED is running in PERSIST mode, it is

logged first and an attempt is made to add it to the main memory buffer i.e., object store.

If it can be added, the buffESN is updated in the log file. If the main memory buffer is

full, then the pendingEvts counter in the log file is incremented indicating that there is a

logged event that needs to be pulled into main memory whenever there is an empty slot

available for it. When a message is dispatched from the main memory buffer, it creates an

Object Store

RMI
Threads

Notification
Dispatch
Thread

Dispatch to
Consumers

Pull
Message
Thread

Notificatio
n

Message
Log File

51

51

empty slot. Any logged messages that could not be added to the main memory buffer on

their arrival are then read from log file into main memory.

Clients send event notification messages to GED through RMI calls. The RMI

threads resulting from these calls add the messages to object store. There are mainly two

other threads, a dispatch thread and a pull thread. Dispatch thread is responsible for

reading the messages from object store and dispatching them to the consumers and it

takes care of any failures during this process. Pull thread is the one that pulls the logged

messages, if any, into main memory whenever there are empty slots available in the main

memory buffer i.e., object store.

The dispatch thread is notified when a message is added to the object store.

Dispatch thread obtains the lock on the appropriate object store and extracts a message

from the top of the queue. The consumer list for this message is read and the message is

dispatched to all the consumers that are up, with an RMI call. The dESN counter in log is

updated to represent the largest message ESN that is dispatched to its subscribers.

Whenever a message is dispatched by the dispatch thread, there is an empty slot

created in the object store. This is notified to Pull Thread, which checks if there are any

events pending in the log that can be brought into main memory. If there are any,

according to the number of empty slots available, they are read from the log file and

added to the appropriate object store based on their ESN. At the same time, the buffESN

in log file is updated to represent the largest ESN present in the buffer.

4.6 Guaranteed Delivery of Events

Since the communication model is asynchronous, the GED wouldn’t know

whether a client is alive or crashed until it tries to communicate. Hence, while making an

RMI call to the consumer, if GED receives an exception then it indicates a problem with

the consumer. The problem might be that the consumer is slow to pick the messages or it

has crashed. Java GED can support the slow consumers but cannot support the client

crashes and recovery. GED has to make sure the client has crashed before declaring it

crashed and at the same time it has to take care of the undelivered messages. To avoid

loss of these undelivered messages GED introduces a buffer window such that even if the

client fails to pick up a certain number of messages, they will not be lost. Once a client

52

52

goes over the limit GED assumes that the client has crashed. Nevertheless, within the

allowed window GED should accommodate the slow consumers.

If the number of message delivery failures to a client is within the buffer window

size, the undelivered messages are stored. GED allocates a buffer of specified window

size for each slow consumer. Whenever there is a new message for this consumer, GED

appends it to the end of undelivered message list and tries to send them all in a single

call. The size of the window or the number of messages the client can fail to pick is

specified by the TIMEOUT variable in global configuration file.

 Similarly, clients would not know if GED has crashed until they try to send a

message and receive an exception. The messages that are to be passed between clients

and server should not be affected due to the server failures.

Unaware of GED crash, client applications try to send event notification and

event detection request messages to server. Messages sent to server when it was down

will be lost. To avoid discrepancies in event detection due to loss of these messages, they

should be logged on client side. GED should be able to receive undelivered messages

from the clients when it recovers. If multiple events that have occurred over a period of

time are received from each client are processed individually, the global ordering of the

event occurrences will be lost. To maintain the global order of event occurrences, the

event notification messages from different clients should be sorted according to the time

stamp associated with them and processed in the same order, as they would be if sent

when they are generated. During the recovery process GED queries each client for any

messages it lost. It collects the logged messages, if any, from client applications.

Assuming that all the client clocks are in sync, the event notification messages from all

the clients are sorted based on the timestamps associated with the messages and

processed as if they were received in that order. This ensures that they are processed in

the same order they were generated, the only drawback being the delay in processing

because of crash.

4.7 Extensions to Configuration File

A system requires certain information to initialize itself. For example, GED as a

server requires information, such as the mode in which it should start, whether it should

persist events and provide recovery etc. The users need to convey these constants and

53

53

flags to the system to configure it to their requirements. Either these values can be passed

as arguments to the program or a configuration file can be used to store this information.

Providing this information as a configuration files has the advantage that the information

is recorded in a file, which can be looked up or changed for each execution. Providing as

arguments does not provide a record of usage and from the usage point of view is

difficult to manage if the number of parameters were large. Hence, we use configuration

files to allow the user to tailor the GED server and local applications. In addition, several

different configuration files can be created and used for different applications in which

we want different features from the same GED server. Configuration files in GED were

introduced by [5]

The user, according to the requirements and available resources, can configure the

system by setting the parameters in the file. The system reads the file during the process

of initialization and configures itself accordingly. Global configuration file is used to

configure the GED and application configuration file is used configure the client

applications. The following sections discuss the extra parameters that have been added to

the global and application configuration files. Figure 4-8 shows a sample global

configuration file.

4.7.1 Extensions to Global Configuration File

In persist mode of operation of GED; the buffer manager manages the main

memory buffers used to store the incoming messages and handles the buffer overflows.

For this purpose, the user needs to convey the amount of main memory available to store

the messages. Since the management is done at the message level, the user need to

convey this in terms of the number of messages that can be stored in main memory. In a

non-persistent mode of operation, buffer manager assumes the infinite availability that is

limited by the amount of memory available to the Java Virtual Machine. User can supply

this information using the BUFF_MAX property in the configuration file.

Persistence of events and recovery capability adds an overhead to the system,

which in turn affects the system performance. Hence, the user must be given option to

turn this capability off if he/she does not want to provide recoverable capability to their

system. Configuration file provides this with PERSIST property.

54

54

Log file is nothing but a sequential stream of message objects. To provide the

capability to navigate through and provide non-sequential access of message objects

stored in log file, index table is added to the notification message log file. As discussed

earlier this puts a limit on the log file size. Number of messages that can be stored in a

log file is the number of index records that can be held in the index table. This is

conveyed to system through the LOG_SIZE property of the configuration file.

Along with notification message log file, there are several other log files, which

store the system state from time to time. All these log files are stored in a Log directory.

LOG_DIR property gives the path to this directory.

GED server can be started afresh or it can resume from the previous state (either

after a crash or a proper shutdown) if appropriate log files exist. The mode in which the

GED is started is conveyed through the MODE property of configuration file.

TIMEOUT property indicates the number of message dispatch failures that can be

tolerated before declaring that a consumer has crashed or there is a network failure. This

will be discussed in detail in section 4.6.

Figure 4-8 Global Configuration File

4.7.2 Extensions to Application Configuration File

In accordance with the recovery capability added to the GED server, there are

certain things that are added at the local application level.

The messages produced by the producers when the server is down, cannot be sent

to the server. The client must store them so that they can be sent when the server comes

BEGIN
PERSIST TRUE
LOG_DIR .\..\Log\
BUFF_MAX 100
LOG_SIZE 10000
GED_NAME ged1
MODE INIT
TIMEOUT 5
MAPPING consumer_newdelhi consumer_seoul
MAPPING producer_newdelhi producer_seoul
MAPPING conprod_newdelhi conprod_seoul
MAPPING airTrackApp_myhome airTrackApp_seoul
MAPPING shipTrackApp_myhome shipTrackApp_seoul
MAPPING control_myhome control_seoul
END

55

55

up and asks for them. As with any other logging process this involves some overhead and

the user is given an option to turn this capability off with LOCAL_LOGGING property

in the application configuration file.

LOG_DIR property indicates the place where the above-mentioned log file should

be stored. Similar to the server, the clients can also be started in initialize or resume

mode. This facility is provided by the MODE property in the configuration file.

4.8 LOCKS

A situation where several threads access and manipulate the same data

concurrently, and the outcome of the execution depends on the order in which, the access

takes place, is called race condition. To avoid race conditions, only one thread at a time

should be able to manipulate the shared data. To make such guarantee, some form of

synchronization mechanism is needed. Locks are used to synchronize the access of

multiple threads to shared data structures.

The util.concurrent package provided by [19] is used as the base model. [19]

provides a high-level design principles and strategies, technical details surrounding

constructs, utilities that encapsulate common usages, and associated design patterns that

address particular concurrency problems. util.concurrent package provided with [19]

comes with lot of functionality. It provides a variety of locks used for synchronization.

This thesis has extracted only the necessary classes and modified them according to our

requirements. This implementation adopts the acquire/release protocol provided by the

“sync” interface. Three types of locks are introduced here, Mutex, ReadWrite and

Semaphore.

Figure 4-9 Locks package

Interface Sync

void acquire ()
void release ()

boolean attempt(msecs)

Mutex RLock SemaphoreWLock

56

56

4.8.1 Mutex

Mutex is a short form of Mutually Exclusive Object. Mutex is a synchronization

variable that has only two states, locked and unlocked. The first thread that locks the

mutex gets ownership to data and any subsequent attempts to lock the data will cause that

thread to go to sleep. When the owner unlocks it, one of the sleepers will be awakened

and given a chance to obtain ownership. When a program is started, it creates a mutex for

a given resource at the beginning. After that, any thread needing the resource must use

the mutex to lock the resource from other threads while it is using the resource. Mutex is

suitable for the situations that need most restrictive access to data because it allows only

one thread to access the data.

4.8.2 ReadWrite

In situations where data is read more frequently than it is written, ReadWrite lock

is used. This lock is composed of two locks, read lock and write lock. ReadWrite lock

allows multiple threads to read lock the data concurrently but only one writer can acquire

the write lock at a given time. Any number of read locks can be issued, so long as there

are no writers. Write lock is mutually exclusive.

4.8.3 Semaphore

Semaphore is a synchronization variable that has a value. It can be incremented to

an arbitrarily high value but can be decremented only to zero. The value of a semaphore

is the number of units of the resource that are free. If there is only one resource a binary

semaphore, with values zero or one is used. Semaphore operations are known as P and V

operations. The P operation attempts to decrement the variable and thus claim the

resource. V is the inverse, it increments the semaphore. It simply makes a resource

available again after the process has finished using it. If semaphore is greater than zero, P

operation succeeds; if not, the calling thread must go to sleep until different thread

increments it. Semaphore is initialized before any requests are made. This package uses

acquire/release protocol. General usage of locks looks as shown in Figure 4-10.

57

57

Figure 4-10 Lock usage
Mutex locks are used to synchronize access to shared data structure on GED

server. When the GED server recovers from a crash, it issues a lock called recoverLock

that locks the entire recovery process, and releases the lock only when the recovery is

over. RecoverLock is a mutex lock. GED recovery process is treated as atomic and access

to all the data structures is restricted to the main thread. This ensures that, threads

resulting from client RMI calls and other threads in GED cannot access the shared data

during the GED server recovery. Similarly, the access to object stores in buffer manager

module is synchronized using mutex locks. Any access to these object stores results in an

addition of new message to it or a deletion of message from it. Hence, mutex locks are

used for this purpose. Notification message log file is also locked using a mutex lock.

Every access to this log file, either a read or write of a notification message results in

update of the header information (buffESN, dESN, pendingEvts, index table) associated

with the log file.

4.9 Summary

This chapter explains the design of buffer manager, persistence and recovery of

GED. It first discusses the persistence of the event information and state of the GED

server. It explains the design of GED recovery. It then goes into the design of the buffer

manager and buffer manipulations. It discusses the extensions that have been made to the

global and application configuration files. How GED guarantees the delivery of events is

explained and finally it discusses the locks used to synchronize access to shared data

structures.

try{
 lock.acquire();
 try {
 action();
 }
 finally {
 lock.realse();
 }
}
catch(InterruptedException ie) {

/* response to thread cancellation during acquire */
}

58

CHAPTER 5

Implementation of Persistence

This chapter discusses the implementation details of persistence. The structure of

this chapter is as follows: It first goes into the implementation details of the data

persistence using Java Object Serialization and implementation of logs. It then explains

the buffer manager module and the threads involved in it. It explains the locks used to

synchronize different data structures in the implementation and finally it explains the

configuration of the client applications and GED server.

5.1 Implementation of Log Files

Writing and reading of files involve considerable overhead in terms of opening

the file and closing the file. In addition, sequential access (typically used) is not

appropriate as we are using the log files to bring events into the buffer. This is different

from how log files are typically used by a DBMS for recovery. During recovery, since all

the log records need to be read, sequential access is fine. In our case, we need to read

only a few selected records both for buffer management and for recovery. Hence, the

main emphasis here is to minimize the file IO involved in writing to and reading from

logs. For the log files from which we need to do a non-sequential read an indexing

mechanism is needed. Java Serialization is used to persist the data values. The log files

are written in append mode. Instead of persisting a data structure, as it is whenever it

changes, GED persists only the information that reflects the change made to its state. This

information is appended at the end of corresponding log file.

5.1.1 Basics of Java Object Serialization

Java object serialization [17] provides the ability to write or read java objects to

and from a byte stream. It allows Java objects and primitives to be encoded into a byte

stream suitable for streaming to a network or to a file-system. The Java Serialization API

provides a standard mechanism for developers to handle object serialization. The API is

small and easy to use.

To persist an object in Java, the object must be serializable. Object is marked

serializable by implementing the java.io.Serializable interface or by inheriting that

59

implementation from its object hierarchy. Serializable interface has no methods, so the

object itself need not implement any methods. This interface signals the Java virtual

machine to use default serialization mechanism to serialize this object. Serialization and

de-serialization is done through the ObjectInputStream and ObjectOutputStream

respectively. ObjectOutputStream class provides writeObject method. This method is

responsible for saving the state of the object. The readObject method provided by the

ObjectInputStream class is responsible for restoring the object from the serialized byte

stream.

The following example shows the serialization of the Person object to a file and

de-serialization of it from the file. WritePerson class serializes the Person object to a file.

This class creates an ObjectOutputStream for the Person object and writes it to a

FileOutputStream named Person.ser. It formats the object as a stream of bytes and saves

it in the Person.ser file. ReadPerson class de-serializes the serialized Person object. It

creates an ObjectInputStream from the FileInputStream, Person.ser. It reads the byte

stream from Person.ser and reconstitutes the Person object from it. The code sample is

shown in Figure 5-1

Figure 5-1 shows a very concise and easy way to implement serialization. The

same code can be used to persist a complex object as the serialization mechanism works

by transitive reachability. Reachability means that all the objects reachable from this

object will also be serialized. If the object passed to the writeObject method contains

references to other objects, the passed object and the other objects reachable from it will

also be serialized. Java Object Serialization handles cyclic graphs. Each object visited is

marked. If a cycle exists and an object is visited again, the mechanism knows that this

object has already been serialized. Therefore, it only puts enough information into the

serialized form so that the cycle can be rebuilt when the data is de-serialized.

60

Figure 5-1 Code showing serialization process

class WritePerson {
 public static void main(String [] args) {
 Person p = new Person("Fred",
"cantguessthis");
 ObjectOutputStream oos = null;
 try {
 oos = new ObjectOutputStream(

new FileOutputStream("Person.ser"));
 oos.writeObject(p);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 finally {
 if (oos != null) {
 try {oos.flush();}
 catch (IOException ioe) {}
 try {oos.close();}
 catch (IOException ioe) {}
 }
 }
 }
}

class ReadPerson {
 public static void main(String [] args) {
 ObjectInputStream ois = null;
 try {
 ois = new ObjectInputStream(

new FileInputStream("Person.ser"));

Object o = ois.readObject();
 }
 catch (Exception e) {

e.printStackTrace();
 }
 finally {
 if (ois != null) {
 try {ois.close();}
 catch (IOException ioe) {}
 }
 }
 }
}

import java.io.*;
public class Person implements Serializable {
 public String name;
 private String password;

 public Person(String name, String password) {
 this.name = name;
 this.password = password;
 }
}

61

5.1.2 Tailoring Serialization

In Java, object serialization is done through writeObject () method provided by

the ObjectOutputStream class. As explained in previous section, to serialize objects into a

file, a FileOutputStream would be used. To serialize objects into a file in append, the

application should be able to skip through the file to its end and then add the newly

serialized object byte stream by using the writeObject () method. Nevertheless, neither

ObjectOutputStream nor FileOutputStream classes allow the programmer to browse/skip

through the serialized byte stream in file.

In Java, object de-serialization is done through readObject () method of

ObjectInputStream class. To restore data from a log, the recovery process should be able

to read the objects and use them in restoring the data values. In some situations different

types of objects are written into the same file in append mode. Trying to read such

objects using the readObject () method will result in StreamCorruptedException because,

ObjectInputStream cannot demarcate between the byte streams of objects of different

types. It cannot demarcate end of one object and start of another object.

In case of notification message log file, explained in chapter 4, the objects at a

specific position should be restored by de-serializing the serialized byte stream,

corresponding to that object, in the file. This needs the implementation to browse/skip

through the serialized byte stream in file, extract the serialized bytes corresponding to this

object from the file and de-serialize them to restore the object. Even if the application has

to read the objects consecutively serialized into the file, it has to browse through the file

and de-serialize each object one by one. ObjectInputStream or the FileInputStream

classes does not allow browsing /skipping through the serialized byte stream. Simply

trying to skip through the file to a specified byte position and using the readObject ()

method would result in a StreamCorruptedException.

To overcome these problems a mechanism should be devised to handle the

serialized byte stream according to our requirements rather than depending on the

ObjectOutputStream and ObjectInputStream classes. Serialization and de-serialization

mechanism should be dealt at byte level rather than at object level. The application

should be able to write the serialized objects at the end of the file. If the size of the byte

stream of a serialized object can be calculated, application can demarcate between the

62

objects. During the serialization of an object, offset of the serialized bytes in the file and

the number of bytes in serialized stream should be marked. To restore an object from file,

file pointer should be skipped to the starting position of its serialized bytes and the

corresponding number of bytes should be de-serialized.

The solution to above problems is achieved by using ByteArrayInputStream and

ByteArrayOutputStream classes in conjunction with RandomAccessFile class. According

to the Java documentation [20], “A random access file behaves like a large array of bytes

stored in the file system. There is a kind of cursor, or index into the implied array, called

the file pointer; input operations read bytes starting at the file pointer and advance the

file pointer past the bytes read. If the random access file is created in read/write mode,

then output operations are also available; output operations write bytes starting at the

file pointer and advance the file pointer past the bytes written. Output operations that

write past the current end of the implied array cause the array to be extended. The file

pointer can be read by the getFilePointer method and set by the seek method.”

RandomAccessFile class provides enough functionality to read, write and browse

through a file. Using methods provided by this class, the serialized bytes can be written at

the end of the file, thus achieving our requirement to write log files in append mode. It

provides functionality to seek to a particular position in the file and read specified

number of bytes from the file, thus solving our problem of extracting the serialized bytes

of a particular object.

To find the size of the serialized byte stream of an object ByteArrayOutputStream

class is used. According to Java documentation [20], “This class implements an output

stream in which the data is written into a byte array. The buffer (byte []) automatically

grows as data is written to it. The data can be retrieved using toByteArray() and

toString().” The size of the byte array resulting due to serialization of an object is

not known before hand. But, after serializing it into a ByteArrayOutputStream, the

size() method provided by this class can be used to find out the size of the buffer

(byte[]) and thus the size of the serialized byte stream.

Similarly, to de-serialize the byte array read from the file (using

RandomAccessFile), ByteArrayInputStream is used. Through this class, the application

63

supplies the byte array to ObjectInputStream and invokes readObject() method to restore

object.

Figure 5-2 Code showing Serialization into a ByteArrayStream

For cases where the objects to be persisted can be directly written to and read

from files, they are serialized or de-serialized directly using the File Input/Output Stream

classes as shown in Figure 5-1. However, for situations explained above serialization and

de-serialization processes are done using ByteArray Input/Output Stream and

RandomAccessFile classes. A small code snippet of the process is shown in Figure 5-2

5.1.3 Notification Message Log File

Notification message log file stores the notification messages along with the

information required for the buffer management and recovery of the main memory buffer

i.e., Object Store. First twenty bytes of the file are allocated to store three integers and a

long value. First four bytes represent buffESN, the largest ESN in the buffer. Next four

 byte[] barr = null;
 int objsize;
 try {
 bos = new ByteArrayOutputStream();
 so = new ObjectOutputStream(bos);
 so.writeObject(obj);
 objsize = bos.size();
 barr = new byte[objsize];
 barr = bos.toByteArray();

 rf.seek(offset);
 rf.write(barr);
 bos.close();
 } catch (Exception e) {
 System.out.println("Error in Logwrite");
 System.out.println(e);
 }
 finally {

 if (so != null) {
 try {

so.flush();
so.close();

} catch (IOException ioe)
{ioe.printStackTrace();}

 byte[] barr = new byte[(int)objsize];
 try {
 rf.seek(offset);
 int r = rf.read(barr);
 bis = new ByteArrayInputStream(barr);
 si = new ObjectInputStream(bis);
 obj = si.readObject();
 } catch (Exception e) {
 System.out.println(e);
 }
 finally {
 if (si != null) {

 try {
si.close();

} catch (IOException ioe)
{ioe.printStackTrace();}

 }
 }

64

bytes store dESN, the largest ESN that has been dispatched to and received by the

consumer. Bytes from four to eight store pendingEvts, the counter that reflects number of

events that are waiting in the log file to be pulled into main memory buffer. Following

eight bytes store the index table size represented as a long value. The size information of

index table, itSize, is stored to make the reads and writes of index table data structure

easy. The itSize indicates the size of serialized byte array of index table. The rest of the

file contains the serialized message objects.

Index table as shown in Figure 5-3, is nothing but a collection of table elements.

Each element has three fields: ESN, ObjectSize and Offset. ESN stores the unique

sequence number assigned to the message when it arrives on the server. ObjectSize

represents size of the serialized byte stream of notification message object corresponding

to id in first field. Offset represents byte position in the file at which the byte stream of

this message object starts. Number of elements in index table is specified by the ITSIZE

property of configuration file.

Figure 5-3 Index Table

If the user opts for PERSIST mode of operation, GED creates the log file. It

instantiates the index table of size given by ITSIZE and inserts it into the log file. All the

notification messages coming to the GED are written to log file before being added to the

object store. The message objects are serialized into a byte array. During the process,

byte size of the serialized object is inferred from the byte array size. This byte array is

written at the end of the log file, the position of which is calculated from the length of the

file. After writing the object byte array into the file, GED reads the index table into main

Index Table

ESN Object Size Offset

65

memory, updates it with the information of the message object size and its offset in the

file and writes it back.

To extract a message object with a specific ESN from the log, index table is read

in to main memory. It is queried with the ESN to find the position and size of the object.

GED then seeks to that point in the file, reads the required number of bytes into an array

and de-serializes them to obtain the requested message object.

5.1.4 Other Log Files

To restore the GED from a crash, all the information needed for recovery must be

in stable storage at the time of recovery. GED needs to log all the required data

structures. All the data structures that are logged for this purpose are explained in detail

in chapter 6. Each of these data structures is stored in separate logs. The name of the log

file is used to correlate it to the corresponding data structure. All the log files are stored in

a directory specified by LOG_DIR property in configuration file. As mentioned earlier,

the importance is given to reduce the amount of logging that is done to restore the data

structures. The data that is persisted for each data structure and the process of restoring

them from log files is discussed in detail in chapter 6.

5.1.5 Log Compression

Notification message log file provides the capability to index into the byte stream

and extract a specific notification message. As explained earlier, this capability comes at

the cost of limiting the file size. Log file size is limited by the number of elements of the

index table used in the file. This attribute, ITSIZE, is read from the global configuration

file at the time of GED initialization. If the log reaches this limit, further logging would

result in a failure. To overcome this, GED provides a functionality to compress the

notification message log. At any point of time, the dESN indicates the maximum ESN

that was successfully dispatched to its consumers. As all the messages with ESN less than

dESN are already dispatched, they don’t need to be kept in log any more, so they become

the potential candidates for purging.

As this file is a stream of bytes corresponding to the serialized message objects, if

an application wants to delete a message object it has to first delete the bytes

corresponding to this object and then move the remaining bytes forward to reclaim the

66

empty space in the file. Thus deleting these serialized message objects would change the

starting positions of all other messages in the log file. The Index table should be updated

accordingly to reflect the latest start positions.

Messages with ESN less than dESN can be deleted from the log. For each

message that can be deleted, size of its serialized byte stream is fetched from index table

and the sum of these byte stream sizes would give us the number of bytes that can be

removed from the file. The new start positions of each of the messages that will be left in

the file after compression is calculated. The information about the new start positions

along with the ESN and object size information in index table is recorded into a new

index table. This index table, along with the buffESN, dESN and pendingEvts counter

information is written to a temporary file. The bytes that will be left after removing bytes

corresponding to the deleted objects into can now be copied into this temporary file. Now

the temporary file reflects the state of log file after deleting the unwanted messages. By

deleting the current notification message log file and renaming the temporary file to the

notification log file name, the original log file is replaced with the compressed log file.

Thus, the compression is achieved.

As this process is updating the contents of the log file, during the entire process

the log file is locked. Any new messages coming during this time will just wait on the

thread to complete the compression process. When 80% of the log is filled, GED initiates

the log compression. The compression can also be initiated as a separate client process.
5.2 Implementation of Buffer Management

In the existing implementation discussed in chapter 3, all the event information is

kept in main memory and sent to clients. It assumes unlimited memory availability. All

the incoming messages are stored in a Vector. If memory is not sufficient in GED, events

are lost. This memory overflow may even result in a system crash. As the communication

is asynchronous, when a consumer is not responding/slow, the producer will still send

events; these events are lost due to the lack of main memory buffers.

To overcome these limitations, a buffer manager has been added to the main

memory implementation. This module should manage the main memory used to store

event notification messages. It should be able to handle the buffer overflows and the

required read/write access to secondary storage.

67

Buffer manager manages the notification message buffer called object stores. It

provides a mechanism to add messages to these object stores, retrieve messages from the

stores, and dispatch them to their consumers. As this module is responsible for

dispatching the messages to the consumers, it also accommodates the slow consumers. If

GED is running in persist mode it handles the required read/write access to secondary

storage.

The threads involved in buffer management are RMI threads that bring in

messages from clients, dispatch thread that handles the message dispatch from the buffer

to its consumers and pull thread that pulls messages from log file into main memory

buffer. Figure 5-4 shows the object store and the threads that access it.

Figure 5-4 Buffer manager
5.2.1 Object Store

Object store is the place where all the incoming event notification messages are

stored. As mentioned earlier in chapter 4 global ordering of the message dispatch is

important to ensure the correct event detection semantics. The main requirement of this

data structure is that it has to ensure that the messages that arrive first have to be

Object Store

RMI
Threads

Notification
Dispatch
Thread

Dispatch to
Consumers

Pull
Message
Thread

Notificatio
n

Message
Log File

68

dispatched first. Hence, it has to be a queue data structure with First In First Out (FIFO)

policy. Any new message is added at the end of the queue and the dispatches are done

from the top of the queue.

Object store is accessed by the threads that try to add and remove messages from

it. The access should be synchronized and a mutex lock is used for the purpose. Any

thread trying access the object store should wait to acquire this lock. This deprives of any

concurrence between the different threads. Some amount of concurrency can be achieved

by using two object stores, a concept similar to double buffering. The object store is

divided into two parts, one that stores messages with odd ESNs and the other that stores

messages with even ESNs. This approach provides concurrency between the threads that

access the store.

In non-persistent mode of operation, the object store size is limited by the amount

of the memory the JVM can allocate to this data structure. In a persistent mode of

operation as the buffer manager is responsible to manage the object store, it needs to

know the maximum number of messages that can be stored here. This is indicated by the

BUFF_MAX property in global configuration file.

5.2.2 Notification Dispatch Thread

This thread extracts the notification messages from the object store and dispatches

it to its consumers. Initially, it waits for notification from buffer manager. It is notified

when there is a new message in the object store. GED stores a mapping between the

global event name and all the consumers for that event. For each event notification

message it extracts from the object store, it gets the consumer list from the mapping.

Before sending the message to consumer, this thread checks if this is a slow or crashed

consumer. A slow or crashed consumer would have not picked up earlier messages. As

discussed earlier in section 4.6, buffer manager allocates special buffers for slow

consumers and stores the undelivered messages in these buffers. Figure 5-5 shows the

slow consumer buffers data structure. A consumer is declared crashed if the number of

message dispatch failures to it goes over the limit specified by the TIMEOUT variable in

configuration file. To avoid unnecessary communication cost, no messages are sent to the

crashed clients. For example, in the Figure 5-5 Cons_Bangkok is a slow consumer and

Cons_Paris is a crashed consumer (Assuming TIMEOUT = 5). Once the consumer crash

69

is detected, its slow consumer buffer is cleared and just the first element indicating that

this consumer has gone over the limit is stored. If the consumer is a slow consumer, all

the undelivered messages are extracted and the current message is added at the end of the

list. Notification dispatch thread then tries to send this list to the consumer. If there are no

pending messages for this consumer, notification dispatch thread tries to send only the

current message to the consumer. If the communication intended for a slow consumer is

successful, its consumer buffer is cleaned and its entry is deleted from the data structure.

If this communication fails, the message is added to the consumer buffer and the counter

information is updated accordingly.

Slow consumer buffers are implemented using Java hashtable data structure. The

key is consumer id and the value corresponding to this is a Vector storing the messages

that were not received by the consumer. The first element of this Vector stores the count

of such messages. Number of messages that can be stored in each consumer buffer is

limited to specific amount mentioned by the TIME_OUT variable in configuration file.

At the end, this thread updates the dESN field in the log file with the latest ESN

dispatched.

Figure 5-5 Slow Consumer Buffers
5.2.3 Pull Message Thread

This thread exists only when the GED is running in persistent mode. It handles

the reads from log file. This thread reads the serialized messages from the log and puts

them in the appropriate object store according to its ESN. Initially, it waits for the

notification from the buffer manager. When the notification thread dispatches a message,

it creates an empty slot in the object store. As and when an empty slot appears in one of

the object stores, the buffer manager sends a notification to pull message thread.

Consumer Id

Cons_Bangkok

Cons_Paris

Cons_Tokyo

3

2

6

Vector of messages with count as
first element

70

Number of messages that could not be added to object store and are to be pulled

into main memory is indicated by the pending events counter (pendingEvts) in log file.

Once the pull message thread is notified from buffer manager, it checks the pending

events counter. If there are any, it reads one message at a time and puts it in appropriate

object store. It does so until the object store is full or there are no more pending events. It

updates the buffESN field and pendingEvts counter in log file to appropriate values after

each message read it does.

5.3 Implementation of Recovery and Other Locks

As mentioned earlier util.concurrent package [19] is used to implement locks.

This provides three different types of synchronization protocols. They are:

Sync: acquire/release protocols

Channel: put/take protocols

Executor: executing Runnable tasks

The Sync interface is used to implement Mutex, ReadWrite and Semaphore locks.

Interface Sync provides three methods. First, acquire () is the operation performed to

enter into the synchronized block. Second, release () is the operation performed to exit

the synchronized block. Third, attempt () returns true only if the lock is acquired within

the specified time. Mutex, ReadWrite and Semaphore classes implement this interface.

These method implementations are taken from the util.concurrent package.

Two additional functionalities are added to Mutex. These are isAvailable () and

waitUntilAvailable (). isAvailable () method returns true if lock is available at the given

time or false if someone is holding the lock. “waitUntilAvailable ()” method does not

acquire the lock but it makes the thread that invoked it to wait until the lock is available.

The use of these methods is explained in the next section.

ReadWrite lock comes with the facility to control the number of readers and

writers. It also provides mechanism to assign priorities to readers and writer. Our

implementation is stripped off all this functionality. The classes corresponding to this

lock are modified to provide the bare minimum functionality of issuing read locks and

write locks because our requirements do not need this additional functionality.

Semaphore lock implementation is retained as provided by the package.

71

5.3.1 Implementation of Recovery Lock

During the process of recovery, GED registers its remote communication

interfaces with the RMI registry before the recovery is complete. This opens the GED for

incoming messages from client applications, even though the GED has not completely

recovered. Processing of these incoming messages would involve modifying the

incompletely recovered GED state. Hence, the processing of such messages should be

deferred until the recovery is complete. This is achieved by using the RecoveryLock.

RecoveryLock is to lock the entire recovery process and release the lock only when

recovery is over. In the normal operation, the threads would check for the availability of

this lock but not acquire it. Holding this lock ensures that others cannot access the shared

data during GED server recovery. Figure 5-6 shows the pseudo code for recovery lock

algorithm.

Figure 5-6 Recovery Lock
5.3.2 Other Locks

Object stores in buffer manager module are exposed to multiple threads. They

will be accessed by the RMI threads emerging from client calls to server, notification

dispatch thread and pull message thread. RMI threads and pull message thread add new

messages to the object stores, while the notification dispatch thread removes messages

from stores. All the threads access result in structural modifications of these data

structures. Hence, mutex locks are used to synchronize access to object stores. Each store

access goes through acquire and release of the mutex lock associated with it.

When GED Recovers:

Obtain Recovery Lock

Communication layer recovery

Global event graph recovery

Buffer Recovery

Release Recovery Lock

When server accesses to the data
structure:

If (recovery lock is available)

Do not obtain the recovery

lock, but obtain the

individual lock on

the data structure

72

Log file is also exposed to the same threads as the object stores. RMI threads adds

new messages to the log file and pull message thread reads the serialized messages from

log. Each of these access results in modification of header information (buffESN, dESN,

pendingEvts) associated with the log file. Notification thread updates the dESN field after

dispatching a message to its consumers. Log file is prone to race conditions. Hence,

mutex lock is used to synchronize access to log file.

5.4 Configuration File

Configuration files are used to convey the setup information to the system and

customize it according to user requirements. These constants are read into static variables

at the time of system initialization. The configuration file location and name either can be

passed to the application as a command line argument or could be a standard name in a

standard location so that the application automatically locates it. As each execution of the

application uses only one configuration file, it is associated with a standard name. The

application configuration file is named as App.config and is located in the directory from

which the application is run. Similarly, the global configuration file is named as

Global.config and is located in the source file directory.

Table 5.1 shows the information specified in global configuration file

(Global.config) and their default values. This file is read using the Property class in Java.

Table 5.2 shows the information specified in application configuration file (App.config)

and their default values.

73

Flag Description Values Default Remarks

GED_NAME Name of the GED String GED1

MODE Start mode of the
application

INIT

RESUME

INIT INIT – initialize, starts the
application a fresh

RESUME – resume, starts the
application in resume mode. Uses
the log files (if available) to recover
the previous state.

PERSIST Indicates whether to
do persist the event
information or not

TRUE

FALSE

TRUE ON – logs the event information.
This includes notification
messages, detection request
messages and data structures
needed to restore the state when
started in RESUME mode.

OFF – no logging.

LOG_DIR

Indicates the
directory path for log
files

Path name

Log dir in the
distribution
folder

Can be absolute or relative.

BUFF_MAX Maximum number of
messages that can be
held in memory

Integer 100 Set according to the user
requirements and available
resources

LOG_SIZE Maximum number of
messages that can be
stored in notification
message log file

Integer 10000 Set according to the user
requirements and available
resources

TIMEOUT Dispatch failure
window size for
consumers

Integer 5 User can specify the number of
message dispatch failures that can
be tolerated before declaring a
consumer to be crashed.

MAPPING Mapping from an old
application ID to a
new application
ID.

String
Values

 Mapping allows the applications to
be executed on different machines
without changing and re-compiling
the application.

Table 5.1 Global Configuration File

74

Table 5.2 Application Configuration File
5.5 Summary

This chapter explains the implementation details of the data persistence and buffer

management in GED. It first discusses the implementation of persistence using Java

object serialization, problems with the basic approach and the solutions adopted to

overcome those problems. It explains the implementation of buffer manager module,

which involves the implementation details of main memory buffers and the threads that

are involved in the buffer manipulations. The implementation locks used by GED are

discussed. Finally, it summarizes parameters and their default values in the global and

application configuration files.

Flag Description Values Default Remarks

SCOPE Scope of the
application

LOCAL

GLOBAL

LOCAL For the stand-alone application

To communicate with GED and
participate in global event detection

RULE_SCHEDULER Indicates whether
to use rule
scheduler or not

OFF

ON

OFF LED can trigger rules according to
its priority and coupling mode.

Rules are executed in the order in
which they were defined for each
event.

LOCAL_LOGGING Indicates whether
to do local
logging or not

ON

OFF

OFF ON – logs information locally.
This includes notification messages
that could not be sent to server and
data structures needed to restore the
state when started in RESUME
mode.

OFF – no logging.

LOG_DIR

Indicates the
directory path for
log files

Path
name

Log dir in the
distribution

Can be absolute or relative.

75

CHAPTER 6

Implementation of Recovery

The effects of all updates must be durable: persistent despite system failures. A

system failure results in the loss of the contents of volatile storage. After a recovery from

system failure, all data values must reflect the stable state before the failure. Furthermore,

all the information needed for recovery must be in stable storage at the time of recovery.

GED server can be mainly divided into three parts: The communication layer

between the clients and the server, construction of event graph and detection of global

events, and managing the buffer space available to store the notification messages. Thus,

recovery of GED mainly involves recovery of these three parts.

1. GEDInterface

2. GlobalNodeManager

3. BufferManager

Even when the GED is down, the client applications will still be up and

generating new event notification messages. Locally logging the messages and sending

them to GED when it recovers can avoid the loss of these messages. The option to log

these messages locally is given to user as logging involves some overhead associated

with file IO. After restoring the state prior to crash, GED has to get these messages, if

any, from clients and process them before continuing to normal operation.

The sections of this chapter explain in detail the data that is logged and recovery

process of data structures in each of the three objects mentioned above. This chapter will

also cover the processing of lost messages by GED because of the crash.

6.1 GEDInterface

GEDInterface provides a thin layer of communication between the clients and the

GED server. Its attribute, ServerConnecterImp, enables the GED server to provide the

register and un-register functionalities. It also implements SentinelComm interface,

which enables it to forward the event detection requests and event notification messages

76

76

to its clients. GEDMesgRecvImp provides the functionality required to receive the event

detection requests and event notification messages from the clients.

Attributes:

o ServerConnectorImp

o GEDMesgRecvImp

o GlobalEventFactoryImp

o Hashtable prod_DectectnReqstHt

o Hashtable glbEvntName_consumerList

o Hashtable clntAddrsHt

ServerConnectorImp, GEDMesgRecvImp, GlobalEventFactoryImp are the

remote interfaces used for the communication between the GED server and clients. These

interfaces are registered in the RMI registry with specific names known to the clients.

They are re-instantiated at the time of recovery and bound to RMI registry with the same

names. This ensures that the clients can look up these latest communication interface

objects at any time. Rest of the three Hash tables are logged and recovered from log. The

following sections explain this in detail.
6.1.1 Client Address List (Hashtable clntAddrsHt)

This data structure maps client ID to its IP address. At the time of client

registration, GED records application ID and its address into this address book

(clientAddrsHt). This facilitates in looking up the client remote object in the RMI registry

in order to make a remote invocation to a particular client later.

Key: String ConsId

Value: String ConsIP

Logging: filename: clntAddrsHt.log

Keep appending the String (“a / d” + “,” + appID+","+clientHost) object to the

end of the file for each client that registers with GED server. The first character would

indicate whether it’s a client registration or un-registration. An “a ” means the client has

registered and a “d” means the client has unregistered.

77

77

Reason: Instead of serializing the entire hashtable, serialize only the necessary

information to reconstruct this data structure (hashtable). To restore the state of the

hashtable key-value pairs are needed. Hence, just serialize necessary key and value

objects into a file in append mode. It is always good to minimize the number of objects to

be serialized and de-serialized because it reduces the IO. As the key and value in this

hashtable are strings, they can be appended to form a single String object and serialize it.

The CPU time involved in appending the strings before serialization and parsing the

string after de-serialization is lot less than the IO time involved in reading an extra object

from the byte stream in log file and de-serializing it.

Recovery: Recovery process needs to rebuild the address book of clientIDs with

their IP addresses. The log file stores the necessary information in custom serialized

string objects in the clntAddrsHt.log file. The recovery process is as follows:

1. Instantiate clntAddrsHt hashtable.

2. De-serialize the String (“a / d” + “,” + appID+ “,”+clientHost) objects in

sequence.

3. Parse it and get client ID, client IP and whether it’s a registration or un-

registration.

4. Invoke put or remove (clientId, clientIp) method on clntAddrsHt.

6.1.2 Producer Event List (Hashtable prod_DectectnReqstHt)

This data structure associates producers with the list of detection request

messages for them from the consumers. It contains producer ID and a vector of detection

request messages. If it has an event detection request for the producer, the GED server

will forward the message to producer.

Key: producerId (String)

Value: DetectionRequestList – vector of detectionRequestMessages

Logging: filename: prod_DectectnReqstHt.log

Keep appending the detectionRequestMessage objects to the end of the file.

Reason: The objective is to reduce the number of objects that should be serialized and de-

78

78

serialized. Here the “key” object is producer Id that is a part of the “value” object. Instead

of serializing both key and value pair, only the value object is serialized, thus reducing

the amount of serialization and de-serialization done. The recovery process can get the

key from the value object that is read (de-serializing the byte stream) from the file and

insert the key - value pair into the table.

Figure 6-1 Producer Event List

Recovery: Recovery process needs to rebuild the detection request list of each

producer. The key value here, producer id, is extracted from the detection request

message read from the file. If the producer id read from the message already exists in the

hashtable it just appends the new message at the end of the Vector associated with this

producer. If producer id read doesn’t exist then, recovery process creates a new Vector,

the first two elements of which are integers. Messages for the new producer are appended

to this Vector from here after. The recovery process is as follows:

1. Instantiate prod_DectectnReqstHt hashtable.

2. De-serialize the detectionRequestMessage Objects in sequence from the

log file.

3. Get the ProdAppName stored in the detectionRequestMessage object.

4. Invoke put (ProdAppName, DetectionReqstMesg) method on hashtable.

AppID

Detection
Message
Vector

prod_Bangkok
mesg1 mesg2 mesg3 2

Detection Message Vector

The first number
indicates the number
of detections that
have been sent form
server to producer.

The second slot tells
the maximum number
of messages in the
list

3

79

79

6.1.3 ConsumerList (Hashtable glbEvntName_consumerList)

As shown in Figure 6-2, the consumer list data structure helps the server keep

track of the subscribers of each event. The server uses the event name to search for the

applications that has subscribed to this event. The hash table maps event name with the

vector of consumer Ids.

Figure 6-2 Consumer List
Key: EventName

Value: ConsumerList – Vector of ConsId Strings

Logging: filename: glbEvntName_consumerList.log

Keep appending the String (“a / d” + “,” + glbEvntNm+","+consID) objects to

end of the file.

Reason: As in Client Address List data structure, here both key and value are

string objects. The reasoning and the recovery process are similar to Client Address List

data structure.

Recovery: The recovery is as follows

1. Instantiate the glbEvntName_consumerList hashtable

2. De-serialize the String (“a / d” + “,” + glbEvntNm+","+consID) Objects in

sequence

3. Parse it and get Global Event Name and the consumer Id

4. Get the consumer list corresponding to the global event name and invoke

add or remove (consId) method on consumer list Vector.

Event Name

Cons1 Cons2
Sart_Service

Cons7 Cons8 Cons11

Cons3

Vector of Consumer Ids

80

80

6.2 GlobalNodeManager

GlobalNodeManager maintains the global event graph in two hashtable data

structures. It provides mechanism to access the event nodes and event handles based on

their names. Recovery of GlobalNodeManager means the recovery of global event graph.

Attributes:

o Hashtable glbEvntNm_GlbEvntNd

o Hashtable glbEvntNm_GlbEvntHndle

6.2.1 Hashtable glbEvntNm_GlbEvntNd

This hashtable maps the global event names with the global event nodes.

Whenever there is a request for new global event, primitive or composite, an event node

is created on the server and it is added to this table. This table represents the event graph

on the server.

Key: String Event Name

Value: Event

Logging: filename: glbEvntNm_GlbEvntNd.log

Whenever a new event is added, update the in-memory hashtable and write it to

file by serializing the entire hashtable as one object. This is one place where the write

ahead logging and append mode of logging are foregone for simplicity in

implementation. The rationale for this decision is explained in chapter 4 and is

summarized below.

Rationale: GED could have written just the Event Nodes to log and populate the

hashtable by reading them as done for the other hashtables. The reason for persisting the

entire table is that, this table represents the global event graph. When a new node is added

to this graph (a new event to the table), if it is a global composite event consisting of

global primitive or composite events, it updates data in additional nodes corresponding to

the constituent events in memory and GED wants this to be reflected on secondary

storage. Depending on the level at which the event is being added, number of internal

nodes that are modified varies. This could be as small as two primitive event nodes to

entire event graph. This requires GED to log all the event nodes that are updated and

81

81

keep track of the sequence of these updates to re-do them when recovering. This

complicates the logging and recovery process. At this point of time, we want to keep our

recovery plan simple so we just write the updated in-memory version of hash table into a

file. This is one place where we are not doing WAL.

Recovery: De-serialize the hashtable object from the byte stream in file. For all

global composite events nodes of type AND, NOT, SEQ, OR set the commInterface

object in them to the current GEDInterface. The commInterface (GEDInterface for global

composite) reference present in the event nodes is not persisted and recovered here since

the GEDInterface object is recovered independent of event nodes.

6.2.2 Hashtable glbEvntNm_GlbEvntHndle

This data structure maps the event names to event handles. Event handles are used

in creating the composite events.

Key: String Event Name

Value: Event Handle Object

Logging: Serialize the Event handle objects to file in append mode. The

underlying idea is same; recovery mechanism has to reduce the amount serialization

done. As in earlier cases, the key in here (Event Name) is a part of value Object (Event

Handle). Hence, it can be retrieved from the event handle object. In an Event handle

object the constituent Event node object is made transient. As we recover all the event

nodes in another hashtable, we can use the same nodes and rebuild the event handles

except for the other handle specific data like producer application name etc. This reduces

the amount serialization we do considerably.

Recovery: Recovery process is as follows.

1. De-Serialize the Event Handle objects from the file. Retrieve the event

name from it.

2. Get the corresponding event node from eventNm_EventNd hash table.

3. Set the event node in current event handle to this and invoke put (event

name, event handle) method.

82

82

6.3 BufferManager

Buffer manager takes care of all the messages on the server. It adds the incoming

messages to the object store according to the availability of space and dispatches the

messages in object store to their corresponding consumers in FIFO order.

NotifMesgDispatchThread dispatches message objects from the object store to

consumers. If logging is activated, the PullMesgThread takes care of pulling those events

from log file that could not be stored in main memory buffer when they arrived onto the

server. esnCounter is the count of number of event notification messages that arrived onto

the server. This counter is maintained to assign the unique event sequence number to

each message that arrives on to GED.

Attributes:

o NotifMesgDispatchThread

o PullMesgThread

o LinkedList objectStore1

o LinkedList objectStore2

o Hashtable clientId_logEvntCounter

o int esnCounter

NotifMesgDispatchThread and PullMesgThread will be re-instantiated and started

at the time of recovery. esnCounter is inferred from the maximum sequence number in

notification message log file (GED_Notif.log) that stores all the notification messages

that arrive onto the server. Recovery of object store is explained below.

6.3.1 Main Memory Buffers (objectStore1 and objectStore2)

This is a queue data structure that stores the notification messages and allows

Notification
from Producer

Notification
to Consumers

83

83

them to be dispatched in FIFO order.

Figure 6-3 Message Queue
Value: Message Object �{ESN, NotificationMessage}

Logging: There is no specific log file for this queue. It is reconstructed from the

notification message log file. Global_Notif.log file contains the Message objects that

have arrived onto the server. Along with the indexing information, it also stores the

information that indicates the messages that were present in the object store prior to

crash. When a notification message from a producer arrives at GED, following is the

sequence of steps taken by it:

1. GEDInterface receives the messages through GEDMesgRecvImp interface.

2. This notification message is forwarded to buffer manager.

3. If (Persist) Buffer Manager writes this event into global notification log.

4. If it can be added to Object Store and if (Persist) the buffESN is updated in each

log. Message is added to the Object Store

5. If Object Store is full and if (Persist), pendingEvts counter is updated in the log to

reflect this information or a warning message is given to the user about the loss of

the message.

Recovery: In recovery process the notification log file is read. buffESN read from

the log indicates the maximum ESN message that is present in object store. dESN

indicates the maximum ESN message that is dispatched to its consumers. These variables

convey that the buffer before crash contained the messages with ESN greater than dESN

and less than or equal to buffESN. Accordingly, all the events from the event with (ESN

> dESN) to the event with (ESN = buffESN) are pulled from the log to main memory and

stored in the appropriate object store according to their ESN. The messages with odd

ESN are store objectstore1 and messages with even ESN are stored in objectstore2. This

restores the object store. The maximum ESN present in the log indicates the esnCounter.

84

84

6.3.2 Slow Consumer buffers (Hashtable clientId_logEvntCounter)

This hashtable maps the clientId’s with a message list associated to that client.

This message list stores the count and messages that were not picked up by the

consumers. This might be because the consumer is slow or it is down. GED demarcates

this with a limit on the size of the list associated with each slow consumer. If it exceeds

the TIMEOUT specified in the configuration file, GED infers the consumer crash.

Key: String clientId

Value: Vector with the count as first element

Logging: Messages associated with each client are stored in separate log files.

These log files are differentiated from other log files with their name. Appending clientId

with “_crash.log” derives each log file name. The first four bytes of the file store integer

value indicating the number of messages in log file. Any new message is appended at the

end of the file and the counter information in the first four bytes is updated.

Recovery: For each clientId_crash.log file, first four bytes are read. If this exceeds

the TIMEOUT variable, recovery process knows that the client has crashed. Therefore,

the first element of the corresponding Vector is set and the key value pair of clientId and

Vector is inserted into the hashtable. If the count read from the first four bytes is less than

the TIMEOUT variable then, all the messages are read from the log file and added to a

Vector in the same order. First element of the Vector is set to store the count.

6.4 Processing Undelivered Messages

Even when the GED is down, client application can still be up and generate new

event notification messages. Unaware of GED crash, client applications try to send event

notification to server. Messages sent to server when it was down will be lost. To avoid

loss of these messages and discrepancies in event detection due to the loss, they should be

stored and sent to GED at a later point of time when GED is restored to its state prior to

crash. These messages will be logged on client site. As there is an overhead associated

with logging the user is given an option to turn off this logging by setting the

LOCAL_LOGGING property in application configuration file.

During the recovery process, after restoring the state, GED queries each client for

any messages that were logged locally and collects them from the clients. These

85

85

messages are collected on client basis not in the (global) order of their generation. As

mentioned earlier, they have to be sorted on their time of occurrence before processing.

To maintain the global order of event occurrences, GED sorts the event notification

messages from different clients using a Java Comparator class that takes the time stamp

associated with these messages as basis for comparison. The assumption here is that all

the client clocks are synchronous. Processing the messages in sorted order ensures that

they are processed in the same order they were generated, the only drawback being the

delay in processing because of crash.

6.5 Summary

This chapter explains the details of persisting the data and retrieving them from

log files during recovery. The entire recovery process can be summarized as follows: On

starting the GED in RESUME mode following a crash, it tries to restore its previous state

from the log file generated in the previous run. The entire recovery process is locked by

the RecoveryLock explained in previous chapter. GED first acquires the recovery lock.

Then it restores the state by restoring the GEDInterface, GlobalNodeManager and

BufferManager objects. During the process, the remote interfaces used for the

communication with clients are re-bound in the RMI registry. It then compresses the

notification message log file so that it does not face the log overflow problem early in this

fresh run. Finally it queries the client applications for any messages that were generated

when it was down, collects them and process them in the order of their generation. It then

releases the recovery lock and continues the normal operation.

86

86

CHAPTER 7

Sample Scenario

This Chapter shows a sample scenario that exhibits the robustness of GED to

system failures. It first shows the normal operation of GED and then the GED operations

during crash recovery. Global Configuration file is set as follows:

Flag Values

GED_NAME GED1

MODE INIT
PERSIST TRUE

LOG_DIR To log directory

BUFF_MAX 500

LOG_SIZE 5000

TIMEOUT 5

MAPPING String Values

Table 7-1 Global Configuration File for this execution

Initially GED is started in INIT mode of operation. The PERSIST property is set

to true to enable the recovery of GED in case of system failure. BUFF_MAX,

LOG_SIZE, and TIMEOUT variables are set to values shown in the Table 7-1.

LOG_DIR and Mappings are set accordingly.

This run of GED logs all the event information. In case of system crash, GED is

started in RESUME mode of operation. GED then tries to recover the previous state from

the log files in LOG_DIR. After recovery, it continues to provide normal services as

earlier.

87

Client 1 GED Client 2 Client 3
 Read Config file. Check

for MODE (INIT or
RESUME) Initialize GED.
C1 register
Register with
GED

Add the client id and IP
address to
clientId_address
hashtable.
Check producer
detection request list
entry for this client.
Check if there are any
detection request
messages for this client.
If yes, send them.

Register with
GED
C2 register
87

Send detection
request message for
event e2 at Client 2

See if the producer
has already
registered. Buffer
the message and
send it.

Set the send
forward flag
for this event.

- Do -

Send detection
request message
for event e3at
Client3

The producer
has not yet
registered. Just
buffer the
message.

88

Client 1 GED Client 2 Client 3

Register with
GED Add the client id and IP
C3 register
address to
clientId_address
hashtable.
Check producer detection
request list entry for this
client.
Check if there are any
detection request
messages for this client.
If yes, send them.

Set the send
forward flag for all
the events. Here e3

s Event e2 is
e2 occur
88

detected.

Notification
sent to GED See if it has any

consumers. If yes, add it
to the Buffer manager
(BM). Adding to BM
involves logging the
message to stable
storage. Activate
notification dispatch
thread. Process this
message

89

Client 1 GED Client 2 Client 3

Notification
dispatch thread
extracts the
message from
object store and
dispatches it to
all its consumers

Receive
notification of
event e2 from
Client2

GED
crash

s
e3 occur
Try to send
notification to GED.
Receive
communication
exception.
If(local_logging)
 Log the mesg. s
e2 occur
89

Try to send
notification to GED.
Receive
communication
exception.
If(local_logging)
 Log the mesg.

90

Client 1 GED Client 2 Client 3

GED started in
RESUME mode.
Restart GED
90

Acquire recovery
lock {
Recover GED state
from crash using the
log files.
Compress
notification message
log.
Get undelivered
messages from
clients.

Receive Nothing

Receive e2

Receive e3

Send
undelivered
mesgs from
log.

Send
undelivered
mesgs from
log.

No
undelivered
mesgs

91

Client 1 GED Client 2 Client 3

Sort all the
messages according
to timestamp
associated with s

Send
notification of
e3 occur
91

Receive
notification
for e2

them.
Process them.

}
Release recovery
lock.
inue normal

operation. --

Process notification
of e3

Receive
notification
for e3

e3 to GED

Receive
notification
for e3

92

CHAPTER 8

Conclusions and Future Work

8.1 Conclusion

This thesis hones the existing system with buffer management, event persistence

and recoverable capabilities. The buffer manager module introduced here manages the

main memory used to store the notification messages from clients. It also handles the

required reads and writes to secondary storage. GED can now be run in either PERSIST

or NO-PERSIST mode. In PERSIST mode of operation all the event information and the

state of the GED server is persisted on to stable storage. Write Ahead Logging concept is

used for this purpose. GED is made robust to system failures. GED can now be recovered

to previous consistent state following a system failure and can continue to provide normal

services when it recovers. Following a system crash, GED can be recovered by starting it

in RESUME mode.

Chapter 1 defines the problem and explains the motivation for this thesis. Chapter

2 reviews the work related to providing persistence and recoverable capabilities. Chapter

3 summarizes the architecture and usage of existing local and global event detector

systems. Chapter 4 explains the design issues associated with the buffer manager and

providing event persistence and recovery capabilities to GED. Chapter 5 goes into the

implementation details of buffer manager and data persistence onto stable storage.

Chapter 6 explains the logging and recovery of different data structures required for the

GED recovery. Chapter 7 shows an example scenario demonstrating the robustness of

GED to system failures and client crashes.

8.2 Future Work

Following could be the extensions to the existing system.

The event detection process now is handled by single thread. It could be extended

to a multi threaded event detection process. Then the synchronization of event graph

issues should be addressed properly.

Support event monitoring with multiple GEDs over a vast network. A network of

GED can be formed to monitor events over a wide network, with each of the GED

93

93

controlling a subnet and being able share these events with the other GEDs over the

network. The replication of GEDs increasing the availability should also be explored.

Collaborate with Distributed Alert Server, which is a recoverable priority based

message oriented middleware, used to distribute messages based on publish/subscribe

model.

94

REFERENCES

1. Paton, N.W. Active database systems. in ACM Computing Surveys (CSUR) March
1999. 1999.

2. Dasari, R., Events And Rules For JAVA: Design And Implemenation Of A
Seamless Approach, in Database Systems R&D Center, CIS Department. 1999,
University of Florida: Gainesville.

3. Chakravathy, S. and D. Mishra, An Event Specification Language (Snoop) for
Active Databases and its Detection. 1991, Database Systems R\&D Center CIS
Department University of Florida.

4. Chakravarthy, S. and D. Mishra, Snoop: An Expressive Event Specification
Language for Active Databases. Data and Knowledge Engineering, 1994. 14(10):
p. 1--26.

5. Tanpisut, W., Design and Implementation of Event based
subscription/notification paradigm for distributed environments. 2001, The
University of Texas at Arlington.

6. Mohan, C., et al., ARIES: A transaction recovery method supporting fine-
granularity locking and partial rollbacks using write-ahead logging. ACM
Transactions on Database Systems, 1992. 17(1): p. 94--162.

7. Rothermel, K. and C. Mohan, ARIES/NT: A recovery method based on write-
ahead logging for nested transactions, in Proceedings of the Fifteenth
International Conference on Very Large Data Bases. 1989: Amsterdam. p. 337--
346.

8. R.Lorie, Physical Integrity in a lrage segmented database. ACM Transactions on
Database Systems, 1977.

9. J. Gray, P.M., M. Blasgen, B.Lindsay, R. Lorie, G. Putzolu, T. Price and I.
Traiger, The Recovery Manager of the System R database manager. ACM
Computing Surveys, 1981.

10. SunMicrosystems, Java Message Service Specification Version 1.0.2b. 2000.
11. Liao, H., Global Events in Sentinel: Design and Implementation of a Global

Event Detector, in MS Thesis. 1997, Database Systems R&D Center CISE
University of Florida, Gainesville, FL 32611.

12. Sung, J.C., A Recoverable Asynchronous Event Manager for Supporting
Distributed Active Databases, in E470 CSE Building, Gainesville, FL 32611.
1997, Database Systems R&D Center CISE University of Florida.

13. Chakravarthy, S., et al., Composite Events for Active Databases: Semantics,
Contexts and Detection, in Proc. Int'l. Conf. on Very Large Data Bases VLDB.
1994: Santiago, Chile. p. 606--617.

14. Mysore Ganesha Rao, Y., An Agent based approach for extending the Trigger
capability of Oracle, in ITLAB, CSE department. 2002, University of Texas at
Arlington: Arlington.

95

15. Subramaniam, N., A mediator based approach to support ECA rules in DB2
RDBMS. 2002, The University of Texas at Arlington: Arlington.

16. Gopalakrishnan, G., Making Sybase fully Active: Supporting Composite events
and Prioritized rules, in ITLAB, CSE Department. 2002, University of Texas at
Arlington: Arlington.

17. SunMicrosystems, Object Serialization Specification Sun Microsystems Inc. 2001.
2000.

18. David Lomet, G.W. Efficient Transperant Application Recovery In Client-Server
Information Systems. in SIGMOD. 1998.

19. Lea, D., Concurrent Programming in Java. Second Edition ed. 2000.
20. SunMicrosystems, JavaTM 2 Platform, Standard Edition, v 1.4.0 API

Specification. 2002.

96

BIOGRAPHICAL SKETCH

Sreekant Thirunagari was born on December 21, 1976 in Nizamabad, India. He

received his Bachelor of Science degree in Electronics and Communication Engineering

from Jawaharlal Nehru Technological University, Hyderabad, India in June 1999. In the

Fall of 1999, he started his graduate studies in Computer Science and Engineering at The

University of Texas, Arlington. He received his Master of Science in Computer Science

from The University of Texas at Arlington, in May 2002. His research interests include

active and mobile databases.

	Database Recovery
	ARIES
	Shadow Paging

	JMS
	Recovery of C++ GED
	Local Event Detector
	Event Specification Interfaces and Usage
	Event Graph and Propagation of events
	An Overview of Components in Local Event Detector

	Global Event Detector
	Global Events
	Architecture
	Global Event Detection Site
	Communication Module
	Type of Messages
	Detection Request Message
	Event Notification Message

	Global Event Graph
	Dynamic Graph Construction:

	Requirements to Make GED Recoverable
	Persistence
	Notification Message Log File
	Persisting other Data Structures
	Persisting the Event Graph

	Recovery
	Server Recovery
	Failure of Producers and Consumers

	Buffer Management
	Initial design
	Alternate Design
	Sending messages to consumers
	Current Design

	Buffer Manipulations
	Guaranteed Delivery of Events
	Extensions to Configuration File
	Extensions to Global Configuration File
	Extensions to Application Configuration File

	LOCKS
	Mutex
	ReadWrite
	Semaphore

	Summary
	Implementation of Log Files
	Basics of Java Object Serialization
	Tailoring Serialization
	Notification Message Log File
	Other Log Files
	Log Compression

	Implementation of Buffer Management
	Object Store
	Notification Dispatch Thread
	Pull Message Thread

	Implementation of Recovery and Other Locks
	Implementation of Recovery Lock
	Other Locks

	Configuration File
	Summary
	GEDInterface
	Client Address List (Hashtable clntAddrsHt)
	Producer Event List (Hashtable prod_DectectnReqstHt)
	ConsumerList (Hashtable glbEvntName_consumerList)

	GlobalNodeManager
	Hashtable glbEvntNm_GlbEvntNd
	Hashtable glbEvntNm_GlbEvntHndle

	BufferManager
	Main Memory Buffers (objectStore1 and objectStore2)
	Slow Consumer buffers (Hashtable clientId_logEvntCounter)

	Processing Undelivered Messages
	Summary
	Conclusion
	Future Work

