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Languages for event speci�cation in centralized systems and their semantics have

received considerable attention in the literature. In contrast, very little work exists

on extending the semantics of event speci�cation languages to distributed environ-

ments. This severely restricts the use of event-condition-action (or ECA) rules for a

large number of distributed applications that are becoming prevalent such as change

propagation in data warehouses. The diÆculty of extending the event semantics to

distributed cases are due to the special characteristics of the distributed environment,

especially the lack of global time. In S. Schwiderski's dissertation, \Monitoring the

Behaviour of Distributed Systems," a semantics of time stamps and their ordering

based on the approximated global time and 2gg�restricted temporal ordering are

de�ned. But the de�nition of composite time stamp ordering is logically inconsistent

and su�ers from lack of proof.

This thesis provides a formal framework of partial ordered sets for distributed

composite event detection. A well-de�ned distributed composite time stamps and

their least restricted strict ordering are de�ned under closed scrutiny and are care-

fully chosen based on mathematical reasoning to ensure the best semantics. The

vi



concurrent and weakened-less-then-or-equal temporal relations are also introduced

for the expressiveness of ECA rules, and furthermore, a Max operator is introduced

for propagating the composite event time stamps. Based on this partial ordering and

the Max operator on the time stamps, the semantics of Sentinel composite events

is described for distributed event detection. The algorithms of the composite event

operators are designed and implemented on the thesis.
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CHAPTER 1
INTRODUCTION

Database management systems (DBMS) are designed to store, retrieve, update

and analyze large volumes of data. Conventional database systems are passive which

means the data is created, retrieved and updated in response to requests from users or

the application programs outside the database system. The demand� based charac-

teristic of the passive DBMS cannot meet a large real-world situation which requires

monitoring and reacting to the internal and external changes to the database state au-

tomatically without the intervention of the users or the application programs. Active

DBMS enhances the functionality of the conventional DBMS by issuing the opera-

tions in response to certain event occurrences or conditions. This active capability is

modeled by ECA (Event-Condition-Action) rules. When an event is detected and if

the condition speci�ed by the rules evaluates to be true, then an action is executed.

Rule de�nition, event detection and action execution are some of the fundamental

features provided by an active DBMS. Much work has been done on active function-

ality in the centralized context: Hipac [1], Ode [2, 3], ADAM [4],and SAMOS [5, 6, 7],

Sentinel [8, 9, 10].

Many applications are distributed in nature and, hence, require active capability

in a distributed environment. Most active DBMSs, so far, are dealing only with a

uniprocessor or centralized environment. The diÆculties in supporting ECA rules

in distributed environments (as opposed to centralized systems) arise on account of:

lack of global time, message delays between sites, and concurrent processes. The

lack of the totally ordered global time makes it diÆcult to extend the ECA rules

to distributed systems because the composite event detection relies heavily on the

1
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total ordering of time. The message delays between di�erent sites indicate the arrival

order at event detectors and does not re
ect the order of occurrence of the events

in di�erent sites. Di�erent policies of dealing with delayed events will give rise to

alternative ways of detecting composite events.

This thesis focuses on deriving a well-de�ned time stamp and its ordering relation

in a distributed environment. We extend the semantics of Sentinel composite events

to a distributed system. A distributed composite time stamp is de�ned to be the

set of maximum primitive time stamps from the participating primitive ones. A

well-de�ned partial ordering of the (set of) time stamps is de�ned carefully based

on mathematical reasoning for providing the semantics. The �,
<
� relations are also

introduced for dealing with some of the Sentinel operators.

The Max operator on the time stamps is also introduced for propagating the

events. Finally, the full semantics of Sentinel distributed composite event detection

is discussed. This thesis provides a fundamental framework of partial ordered sets

relation for distributed event detection. A number of properties concerning the partial

ordering is presented and formally proved. Some of the them are not so obvious due

to the partial ordered property and set representation. The de�nition of the partial

ordering of the time stamps can also be useful for distributed applications based on

approximated global time system and 2gg-restricted order.

This thesis is organized as follows. Chapter 2 brie
y reviews some of the related

work, especially Schwiderski's dissertation [11]. The di�erences between that work

and this paper are discussed. In Chapter 3, an overview of centralized composite

event semantics in Sentinel is presented. Chapter 4 introduces the distributed time

and temporal relation based on the global time and 2gg� restricted ordering. The

de�nition of composite time stamps and their ordering along with the Max operator

is presented in Chapter 5 and the distributed composite event semantics of Sentinel is
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derived. Chapter 6 introduces two kinds of evaluation policies and Chapter 7 contains

conclusions.



CHAPTER 2
RELATED WORK

In additional to Sentinel, there are several e�orts attempting to monitor the be-

havior of the distributed systems. Microsoft's COM (Component Object Model)

[12] and CORBA (Common Object Request Broker Architecture)[13] provide some

fundamental distributed event services but none of them have the notion of com-

posite events. Schwiderski's dissertation [11] presents a general concept of primitive

and composite event speci�cation, event semantics and event detection in distributed

systems which is based on the notion of approximated global time and 2gg-restricted

temporal order.

In [11], the syntax of primitive and composite events is derived from the work

of both active database systems and distributed debugging systems. The primitive

events are site-related and include time events, data manipulation events, transaction

events and abstract events. The composite events are made up of primitive and/or

other composite events and event operators and are de�ned recursively. There are

six event operators: conjunction, disjunction, sequence, concurrency, iteration and

negation which can be applied to local and/or remote sites. Event parameters of a

detected event are introduced to evaluate the condition and to execute the action of

an ECA rule.

The semantics of primitive and composite events establishes when and where

an event occurs and depends largely on the notion of physical time in distributed

systems. When a primitive event occurs, a time stamp is allocated and associated

with the primitive event which is represented as a tuple containing the information of

the original site, approximated global time and local time. When a composite event

4
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is detected, a set of time stamps are collected corresponding to the time stamps of the

constituent primitive and composite events. The temporal ordering relations< and �

are de�ned on the primitive and composite time stamps based on the 2gg�restricted

temporal order. The structure and the handling of the time stamps in a distributed

system are also discussed. A simpli�ed version of the semantics of ordering and

handling time stamps is introduced for some speci�c applications in order to build a

easier and more eÆcient implementation.

On the event detection issue, the architecture and algorithms for the detection

of composite events at system runtime are developed. The event detectors are dis-

tributed to arbitrary sites and composite events are evaluated concurrently. Two

di�erent policies of evaluation are considered: asynchronous and synchronous evalu-

ation. Asynchronous evaluation is based on the ad hoc occurrences of the signaled

event and is evaluated immediately on the arrival of the suitable event occurrences

without blocking while the synchronous one will wait until all corresponding sites

have been checked for relevant occurrences. The asynchronous evaluation is suitable

for real-time application or the applications requiring fast response time while the

synchronous one is suitable for applications requiring a high degree of consistency

and reliability.

Our approach is similar to [11]. One di�erence is that we enforce the concurrency

and \latest" properties in the de�nition of the time stamps. The philosophy behind

our de�nition is that only the \latest" time stamps are considered and carried to form

the set of the composite time stamp, which is corresponding to the concept of t occ in

centralized systems. Another major di�erence is the de�nition of temporal ordering

< on the (set of) time stamps of the composite events. Our de�nition of stricted

< ordering satis�es the irre
ective and more importantly transitive properties which

ensure a well-de�ned mathematical ordering unlike the one de�ned on [11]. Finally,
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our time stamp operator, Max, is conceptually similar to their \joining" operators,

but de�ned in a more precise way and is well-integrated with our de�nition of dis-

tributed composite time stamps, in which the \latest" and \concurrency" properties

are ensured.



CHAPTER 3
THE CENTRALIZED COMPOSITE EVENT SEMANTICS IN SENTINEL

Sentinel is an active object-oriented DBMS which supports ECA rules mostly in

a centralized environment. In this chapter, an overview of the centralized composite

event semantics in Sentinel is presented.

3.1 Time in the Centralized System

Time in the centralized systems is totally ordered and can be represented as the

(local) clock ticks of the (local) physical clock from some starting point. The following

are the fundamental concepts about time which can be found in [14]:

De�nition 3.1 (Physical Clock) : A physical clock is a device for time measurement

that contains a counter and a physical oscillation mechanism that periodically gener-

ates an event to increase the counter. The periodic event is called the microtick of

the clock. The duration between two consecutive microticks is the granularity of the

clock.

De�nition 3.2 (Local Time ticks) : A local time ticks of the physical clock k repre-

sents a moment in time, counted as the number of microticks with granularity gk

since some starting time. This time ticks can be modeled mathematically as discrete

non-negative integers. The local time ticks is a logical representation of the physical

clock.

Example 3.1 Let gk = 1=100s. A microticks of 106 is 106 � 1=100s = 104s after the

starting point of the system.

7
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In the centralized system, time is totally ordered as the non-negative integers. This

means for any given two time represented as the time ticks t1 and t2, the temporal

relationship between these two can be: t1 < t2, t1 = t2, or t1 > t2.

3.2 Primitive Events in Centralized Active DBMS

An event is an instantaneous occurrence of interest which occurs at a speci�c

point in time. Primitive events are those that are pre-de�ned in the system. There

are three kinds of primitive events supported in Sentinel: database events, temporal

events and explicit events.

� Database events correspond to database operations, such as data manipulation

operations, transactions, or methods in object-oriented database. There are

two events speci�ed by the event modi�ers [15], begin-of and end-of, can be

associated with each database operation.

� Temporal events are the events related to the time. There are two kinds of

temporal events: absolute and relative. An absolute temporal event is speci�ed

with an absolute value of time. A relative temporal event is speci�ed with a

reference time point and the o�set. The reference point may be any event in

Sentinel including the absolute temporal event.

� Explicit events are those that are detected along with their parameters by the

application programs (outside the DBMS) and are only managed by the DBMS.

The explicit events need to be registered with the DBMS system to be used as

primitive events.

Each primitive event is associated with a time stamp, which indicates the time

ticks of the occurrence of the event. That is t occ(e) = clock ticks (with gk) at the

point when the event occurs, denoted clock(e).
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De�nition 3.3 (Time stamps in the Centralized system) Let e be a primitive event,

the time stamp of that event is the time occurrence of the event denoted by T (e).

Formally,

T (e) = t occ(e) = clock(e)

Any two primitive events e1 and e2 with the corresponding time stamps T (e1)

and T (e2) can be totally ordered based on the ordering of the time stamps.

De�nition 3.4 (Temporal Orders of Centralized Time stamps) Let e1 and e2 be any

primitive events then the temporal order of these two events are de�ned as follows:

1. happen-before. e1 is said to be happen-before e2 if T (e1) < T (e2).

2. simultaneously. e1 is said to be simultaneously with e2 if T (e1) = T (e2).

3. happen-after. e1 is said to be happen-after e2 if T (e1) > T (e2).

Some of events are not allowed occur simultaneously, but there are some events

that have to occur simultaneously with other events. The following are the assump-

tions of simultaneity of events:

1. Each non-temporal event has at least one temporal event happening simulta-

neously.

2. Each composite event (will be de�ned later) has at least one primitive event

happening simultaneously.

3. No two database events can happen simultaneously.

3.3 Centralized Composite Event Semantics in Sentinel

Primitive events are the basic building blocks for developing an expressive and

useful composite event speci�cation language. Primitive events are single occurrences
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of interest, while the composite events represent the complex pattern of a set of prim-

itive events. Composite events are denoted as event expression formed by primitive

events associated by the event operators. Conceptually, a primitive event type is the

name of the interested primitive event while a composite event type is the name of

a pattern of the set of interested events (including primitive and composite events)

speci�ed by the event expression. The event type is usually prede�ned or registered

in the system. An event occurrence or event instance is the event being detected or

monitored at run time. An event can be de�ned as follow:

De�nition 3.5 (Centralized Event) An event E (either primitive or composite) is a

function from the time domain onto the boolean values, True and False.

E : T ! fTrue;Falseg

given by

E(t) =

(
T (rue) if an event of type E occurs at time point t
F (alse) otherwise

The negation of the boolean function E is denoted as �E which given a time

point, denotes the non-occurrence of the event at that point.

In Sentinel, the composite event expression is de�ned recursively, by using a set

of the primitive events, event operators and the composite events.

Let E1; E2; : : : ; Em be any events (primitive or composite), the semantics of the

composite event operators in Sentinel is de�ned as follows:

1. OR (r): Disjunction of two events E1 and E2, denoted E1rE2 occurs when

E1 occurs or E2 occurs. Formally,

(E1rE2)(t) = E1(t) _ E2(t)
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2. AND (4): Conjunction of two events E1 and E2, denoted E1 4 E2 occurs

when both E1 and E2 occur, irrespective of their order of occurrence. Formally,

(E14E2)(t) = (9t1) (E1(t1) ^ E2(t)) _ ((E1(t) ^ E2(t1))

^(t1 � t)

3. ANY: The conjunction events, denoted by Any(m;E1; E2; : : : ; En) where m �

n, occurs when m events out of the n distinct events speci�ed occur, ignoring

the relative order of their occurrence. Formally,

ANY (m;E1; E2; � � � ; En)(t) = (9t1; t2; : : : ; tm)

(Ei(t1) ^ Ej(t2) ^ � � � ^ Ek(tm))

^(t1 � t2 � � � � � tm ^ tm = t)

^(i 6= j 6= � � � 6= l)

4. Seq (;) Sequence of two events E1 and E2, denoted E1;E2, occurs when E2 oc-

curs provided E1 has already occurred. This implies that the time of occurrence

of E1 is guaranteed to be less than the time of occurrence of E2. Formally,

(E1;E2)(t) = (9t1)(E2(t) ^ E1(t1))

^(t1 < t)

It is possible that after the occurrence of E1, E2 does not occur at all. To avoid

this situation, it is desirable that de�nite events, such as end-of-transaction or

an absolute temporal event, are used appropriately.

5. Aperiodic Operators (A, A*): The Aperiodic operator A allows one to

express the occurrence of an aperiodic event in the half-open interval formed

by E1 and E2
1.

1The interval can either be (t occ(E1), t occ(E2)] or [t occ(E1), t occ(E2)).
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There are two variants of this event speci�cation. The non-cumulative variant

of an aperiodic event is expressed as A(E1, E2, E3), where E1, E2 and E3 are

arbitrary events. The event A is signaled each time E2 occurs during the half-

open interval de�ned by E1 and E3. A can occur zero or more times (zero times

either when E2 does not occur in the interval or when no interval exists for the

de�nitions of E1 and E3). Formally,

A(E1; E2; E3)(t) = (9t1)(8t2; t1 � t2 < t)(E1(t1)^ � E3(t2) ^ E2(t))

The accumulative version is denoted as A�(E1, E2, E3) which occurs only once

when E3 occurs and accumulates all the occurrences of E2 in the half-open

interval formed by E1 and E3. This constructor is useful for integrity checking

in databases and for collecting parameters of an event over an interval for

computing aggregates. Formally,

A�(E1; E2; E3)(t) = (9t1)(E1(t1) ^ E3(t))

^(t1 < t)

6. Periodic Event Operators (P, P*): A periodic event is a temporal event

that occurs periodically. A periodic event is denoted as P (E1; T I[: parameters]; E3)

where E1 and E3 are arbitrary events and TI[: parameters] is a time interval

speci�cation with optional parameter list. P occurs for every TI in the half-

open interval (E1, E3]. Formally,

P (E1; T I[: parameters]; E3)(t) = (9t1)(8t2)(E1(t1) ^ ((t1 � t2 � t)! (� E3(t2))

^(t = t1 + i � TI for some 0 < i < t):

P also has a accumulative version P* expressed as P �(E1; T I[: parameters]; E3)

which occurs only once when E3 occurs. Also, speci�ed parameters are collected
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and accumulated at the end of each period and made available when P* occurs.

Formally,

P �(E1; T I[: parameters]; E3) = (9t1)(E1(t1) ^ E3(t)) ^ (t � t1 + TI)

Here TI is a time speci�cation.

7. Not (:): The not operator, denoted :(E2)[E1, E3] detects the non-occurrence

of the event E2 in the closed interval formed by E1 and E3. Note that this

operator is di�erent from that of !E (a unary operator in Ode [3]) which detects

the occurrence of any event other than E.

:(E2)[E1; E3](t) = (9t1)(8t2)(E1(t1)^ � E2(t2) ^ E3(t))

^(t1 � t2 � t)!� (E2(t2) _ E3(t2)))

The above operators is believed to meet the requirements of a large class of the

applications including process control, networking. The operators have the following

properties.

Proposition 3.1 1. AND, OR are commutative, associative and distributive:

A4B = B4B

(A4B)4C = A(4B4C)

ArB = BrB

(ArB)rC = A(rBrC)

A4(BrC) = (A4B)r(A4C)

2. AND can be derived from SEQ and OR:

A4B = (A;B)r(B;A)
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3. If E3 does not occur, A and NOT are equivalent.

A(E1; E2; E3) = NOT (E1; E3; E2)



CHAPTER 4
TIME IN DISTRIBUTED SYSTEMS

The composite event detection relies largely on on the comparison of the time of

occurrence of events. Because of the lack of global time and lack of total ordering of

the global time, a weakened semantics of approximated global time along with their

partial ordering in distributed systems, and a semantics of distributed primitive time

stamps and the partial ordering [11] are reviewed below. Besides, the notions of �,

<
� and \open", \closed" intervals are introduced for the expressiveness of Sentinel

ECA rules. A number of properties about the time stamps and their ordering are

discussed and proved and are used for the proofs of composite event ordering.

4.1 Ordering

Before introducing the global time and its temporal relation, it is necessary to

de�ne the (strict) partial ordering relation on any given set A in general set theory.

This general de�nition is based on some of the important properties of a given relation

on any set. Our de�nition of temporal ordering should follow this general de�nition of

(partial) ordering relation to be a well-de�ned ordering relation. Also, this de�nition

will serve as a basis when we de�ne a well-de�ned ordering of given set.

De�nition 4.1 A relation R on a set A is said to be:

re
exive on A if (8x 2 A)(xRx);

irre
exive on A if (8x 2 A)(:xRx);

transitive on A if (8x; y; z 2 A)(xRy ^ yRz)) (xRz);

symmetric on A if (8x; y 2 A)(xRy ) yRx);

15
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asymmetric on A if (8x; y 2 A)(xRy ) :(yRx));

antisymmetric on A if (8x; y 2 A)(xRy ^ yRx)) (x = y);

The above properties are important when we de�ne the ordering relation as well as

when we evaluate an given ordering relationship. Based on the above properties, a

general de�nition of equivalent , (restricted) partial ordering and total ordering can

be de�ned as follow:

De�nition 4.2 (equivalent relation) A relation = on a set A is called a equivalent

relation if it is transitive, re
exive and symmetric.

De�nition 4.3 (partial ordering and total ordering) A relation < on a set A is called

a strict partial ordering if it is transitive and irre
exive.

It is called a strict total ordering if, in addition, we have:

(8x; y 2 A)( only x < y or x = y or y < x)

In centralized time system, the < strict total ordering satis�es irre
exive, tran-

sitive and asymmetric, and the � total ordering satis�es re
exive, transitive, and

antisymmetric.

4.2 A Semantics of Global Time in Distributed Systems

The notion of physical time is a problem in distributed systems; there is no global

time in nature. Each site in a distributed system has a single local physical clock

with its own local clock tick which is transferred to local time by some software

device. In order to compare the time of occurrence at the remote site, local clocks

have to be synchronized. In a distributed system a global time can be achieved with

synchronized local clocks through an approximated global time base [16, 17]. That

is, there is a unique reference clock z with granularity gz. The local clocks can be
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synchronized by the concept of precision �, which is the maximum time di�erence

between two corresponding ticks of any two local clocks.

De�nition 4.4 (Reference Clock) Assume the existence of an omniscient external ob-

server who can observe all events that are of interest in a given context. This observer

is equipped with a unique reference clock z with frequency f z which is in perfect agree-

ment with the international standard of time. The counter of the reference clock

is always the same as that of the international time standard. 1=f z is called the

granularity gz of clock z.

Because the granularity of the reference clock is so small, the digitalization error

of the reference clock is usually be disregarded.

Given a primitive event e, clock(e) denotes the local clock ticks perceived by the

local system when the event occurs. z(e) is called the absolute time stamp of the

event e since z is the single reference clock in the distributed system.

De�nition 4.5 (Precision) Let z(clockk(i)) be the time of occurrence of the i�th tick

in site k measured by the reference clock z. The precision � is de�ned as follows:

� =Maxf8i8k8l : kz(colckk(i))� z(colckl(i))kg

The precision denotes the maximum o�set of the time di�erence between the re-

spective clock ticks in the interested clocks of the two clocks observed by the reference

clock and measured as the ticks of the reference clock.

If all nodes in a distributed system could be perfectly synchronized with the

reference time z which means � = 0, then it would be easy to measure and compare

any two primitive events by using the reference clock time as the time stamp for the

events and the total ordering of the time stamps is easy to reconstruct. However, in

a loosely coupled distributed system, every node has its own local clock ticks, such
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a perfect synchronization of clocks in not possible. The concept of global time is

introduced for a weakened notion of a universal time reference.

Given a set of nodes, each with its own local physical clock j and a granularity

gj. All the clocks are internally synchronized with a precision � if for any two clocks

j; k in the set of nodes and all microticks i in the reference clock, jz(colckk(i)) �

z(colckl(i))j < �.

Global time in a distributed system can be approximated by adjusting the granu-

larity of local clock measurement to a global clock granularity gg, that is, by selecting

a subset of the microticks of each local clock j for generating the local implementation

of a global notion of time. We need gg > � to ensure that two simultaneous events

receive time stamps distant at most � 1gg. gg can be chosen to be just greater than

� (for example, gg = �+") and then the global time of each site can be derived from

the local clock ticks of the site.

De�nition 4.6 (Global time) The global clock granularity gg is given. The global time

gk of a local clock tick lk is the local clock ticks expressed according to the standard

(Gregorian) calendar with respect to some time zone (e.g. UTC, Universal Time

Coordinated) and truncated to a global granularity gg.

gtk(ltk) = TRUNCgg(clockk(ltk))

Here the \TRUNC" function could be round , ceiling or 
oor which depends on the

application as long as it is consistent through out the system.

Example 4.1 Let j; k; l be a set of physical clocks in di�erent sites of the Distributed

system. Let z be the reference clock with granularity gz = 1=1000s. Consider mi-

crotick of i = 23991548127. Assume:



19

clockj :
granularity : gj = 1=100s = 10gz
observed by the reference clock z : z(clockj(i)) = 239915481268

clockk :
granularity : gk = 1=100s = 10gz
observed by the reference clock z : z(clockk(i)) = 239915481273

clockl :
granularity : gl = 1=100s = 10gz
observed by the reference clock z : z(clockl(i)) = 239915481261

Then � = 12gz.

Let gg = 100gz = 10gj = 10gk = 10gl, then the global time of microtick i is

2399154812 for all three physical clocks. Here TRUNC is integer division.

Let lt(e) be the local ticks of the event e and lg(e) be the corresponding global

time with global granularity gg, then the ordering of the time in distributed system

called 2gg � precedence can be derived based on the local and global time of each

site.

De�nition 4.7 (2gg-restricted temporal order) The global clock granularity gg is given.

2gg-restricted temporal order !2gg between primitive events e1 and e2 is de�ned as

follows:

1. If e1 and e2 are primitive events occurring at the same site and lt(e1) < lt(e2)

then e1!2gg e2.

2. If e1 and e2 are primitive events occurring at the distinct sites and gt(e1) <

gt(e2)� 1gg, then e1!2gg e2.

De�nition 4.8 (2gg�restricted concurrency) The global clock granularity gg is given.

2gg-restricted concurrency k2gg between primitive events e1 and e2 is de�ned as fol-

lows:

e1k2gge2 i� :(e1!2gg e2) and :(e2!2gg e1)
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Notice that the 2gg-restricted temporal order is irre
exive (ie, e1!2gg e1 is never

true) and transitive (ie, if e1 !2gg e2 and e2 !2gg e3 then e1 !2gg e3. Also,

the 2gg�restricted concurrency relation is not an equivalent relation since it is not

transitive. So, the!2gg is a valid strict partial ordering but not totally ordered which

is di�erent from the centralized system.

Example 4.2 Let j; k; l be a set of physical clocks in di�erent sites of the Distributed

system. Let z be the reference clock with granularity gz = 1=1000s. Suppose j; k; l

have been synchronized with gg = 10g, where g = 1=100s is the granularity of the

three clocks. Consider the following situation:

event : e1 : clockj : localtime : 23991548128 globaltime : 2399154812

event : e2 : clockj : localtime : 23991548129 globaltime : 2399154812

event : e3 : clockk : localtime : 23991548130 globaltime : 2399154813

event : e4 : clockl : localtime : 23991548140 globaltime : 2399154814

Then :

e1!2gg e2 , e1k2gge3 , e1!2gg e4 .

Notice the \restrictiveness" of the temporal order. If e1 and e2 are in di�erent

sites, the they need at least 1gg or > 10 local ticks in our example (depends on the

TRUNC function) to guarantee the ! 2gg relation.

4.3 Distributed Time Stamps

Each event in the centralized system is associated with a time stamp (or even

a counter which is advanced at the occurrence of each event) indicating when the

event occurs. The detection of composite events is based on the ordering of the time

stamp. In distributed systems, the time stamp of a global primitive event is a little

more complicated [16, 17]. The information about the site, local time as well as the
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the global time needs to be contained. Temporal relationship between time stamps

can be derived directly from the de�nition of time stamps and the 2gg � precedence.

De�nition 4.9 (Time stamps of the global primitive events ) A time stamp T (e) of a

global primitive event e with event type E is a function T : E ! (site; global; local),

where \site" is the site of occurrence of the primitive event, local = lt(e) and global =

gt(e).

If T (e) = (site; global; local), then we also use the syntax of the object-oriented

language to denote site = T (e):site; global = T (e):global and local = T (e):local

Temporal relationship between time stamps can be derived from the time stamp

and the 2gg � precedence.

De�nition 4.10 (Temporal Relationship of Global Primitive Events) On the basis of

the 2gg-precedence time model, the temporal relationship between two time stamps

T (e1) and T (e2) is de�ned as follows:

1. Happen-before:

T (e1) < T (e2) i� (T (e1):site = T (e2):site ^ T (e1):local < T (e2):local))

_ (T (e1):site 6= T (e2):site ^ T (e1):global < T (e2):global � 1gg)

2. Simultaneous:

T (e1) = T (e2) i� T (e1):site = T (e2):site and T (e1):local = T (e2):local

3. concurrent:

T (e1) � T (e2) i� :((T (e1) < T (e2)) _ (T (e2) < T (e1)))

The following proposition demonstrate the relationship between the local time

and the global time.
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Proposition 4.1 Let T (e1) and T (e2) be any two time stamps, then:

1. if T (e1):local < T (e2):local then T (e1):global � T (e2):global

2. if T (e1):local = T (e2):local then T (e1):global = T (e2):global

3. If T (e1) � T (e2) and T (e1):site 6= T (e2):site then

T (e2):global � 1gg � T (e1):global � T (e2):global + 1gg and

T (e1):global � 1gg � T (e2):global � T (e1):global + 1gg or

jT (e1):global � T (e2):globalj � 1

4. If T (e1) � T (e2) and T (e1):site = T (e2):site then T (e1):local = T (e2):local

Proof.

1. If T (e1):local < T (e2):local then TRUNCgg(T (e1):local) � TRUNCgg(T (e2):local))

by the property of the integer division.

2. If T (e1):local = T (e2):local then TRUNCgg(T (e1):local) = TRUNCgg(T (e2):local))

by the property of the integer division.

3. T (e1) � T (e2) and if T (e1):site = T (e2):site then T (e1):local = T (e2):local

which means T (e1):global = T (e2):global, the result holds. If T (e1):site 6=

T (e2):site then :((T (e1):global < T (e2):global�1gg)_(T (e2):global < T (e1):global�

1gg)), which implies ((T (e1):global � T (e2):global � 1gg) ^ (T (e2):global �

T (e1):global�1gg)). i.e., ((T (e2):global�T (e1):global � 1gg)^ (T (e2):global�

T (e1):global � 1gg)) which means jT (e1):global = T (e2):globalj � 1gg.

4. T (e1) � T (e2) and T (e1):site = T (e2):site then :((T (e1):local < T (e2):local_

T (e2):local < T (e1):local)). So, T (e1):local � T (e2):local ^ T (e2):local �

T (e1):local which means T (e1):local = T (e2):local.
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2

The above indicates that the distinction between simultaneous and concurrent

events is meaningful only for events from di�erent sites.

The following proposition tells us the relation between the temporal order � and

<. Notice the di�erences between = and �.

Proposition 4.2 Let T (e1), T (e2) and T (e3) be three time stamps, then

1. If T (e1) = T (e2) and T (e1) < T (e3) then T (e2) < T (e3) regardless the sites of

the events.

2. If T (e1) � T (e2) and T (e1) < T (e3) then T (e2) < T (e3) does not hold.

3. If T (e1) � T (e2) and T (e2) � T (e3) then T (e1) � T (e3) does not hold .

(T (e1):global = 1; T (e2):global = 2; T (e3):global = 3 can serve as the counter

example for the above two cases).

Proof. T (e1) = T (e2) implies T (e1):site = T (e2):site and T (e1):local =
T (e2):local So, we have T (e1):local = T (e2):local < T (e3):local if T(e3) site is same
and T (e1):global = T (e2):global < T (e3):global � 1gg if T(e3) site is di�erent. The
result holds. 2

Now we are ready to prove the strict partial ordering of <:

Theorem 4.1 (strict partial ordering of <) The < relation de�ned above is irre
exive

and transitive, so it is a strict partial ordering relation on the set of distributed

primitive time stamps.

Proof. First, prove the irre
ectivity, i.e., :(T (e) < T (e))8T (e):

It easy to see it is true since :(T (e):local < T (e):local) by the irre
ectivity of the

total ordering of local time.
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Second, prove the transitivity, i.e., if T (e1) < T (e2); T (e2) < T (e3) then T (e1) <

T (e3).

T (e1) < T (e2)) f
T (e1):local < T (e2):local if T (e1):site = T (e2):site:
T (e1):global < T (e2):global � 1gg if T (e1):site 6= T (e2):site:

T (e2) < T (e3)) f
T (e2):local < T (e3):local if T (e2):site = T (e3):site:
T (e2):global < T (e3):global � 1gg if T (e2):site 6= T (e3):site:

Case 1: T (e1):site = T (e2):site = T (e3):site. The conclusion holds, trivially.

Case 2: T (e1):site 6= T (e2):site 6= T (e3):site (including the two cases T (e1):site =

T (e3):site and T (e1):site 6= T (e3):site). It is also very easy to prove.

Case 3: T (e1):site = T (e2):site 6= T (e3):site. Then we have:

T (e1):local < T (e2):local) T (e1):global � T (e2):global

and T (e2):global < T (e3):global�1gg. So we can conclude: T (e1):global < T (e3):global�

1gg, which implies T (e1) < T (e3):

Case 4: T (e1):site 6= T (e2):site = T (e3):site.

Then we have: T (e1):global < T (e2):global � 1gg and

T (e2):local < T (e3):local) T (e2):global � T (e3):global

So we have T (e1):global < T (e2):global � 1gg � T (e3):global � 1gg which means
T (e1):global < T (e3):global � 1gg. The conclusion holds. 2

The above theorem ensures a well-de�ned ordering de�nition. But that � relation-

ship is NOT transitive, so it is NOT a equivalent relation while the simultaneous

relation = is an equivalent relation. The de�nition of Simultaneous is a special case

of Concurrent when sites are same.

Based on the de�nition of temporal order of the time stamps in distributed time

system, a notion of plus of the time stamp, open and closed interval formed by the

time stamps can be de�ned as follows:
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De�nition 4.11 (Plus) Let T(e) be any time stamps of global primitive event e with

local granularity gk . Then T (e) + T is de�ned as follows:

T (e) + T = (T (e):site; T (e):global + Tgg; T (e):local + Tk)

where T is the number of the units of global time with granularity gg to be added and

Tk is the calculated local time with gk which is equivalent to T.

For example:

Example 4.3 Let T (e) be a primitive time stamp, with T (e) = fsite1; 6; 65g. Suppose

gg = 1=10sec and gk = 1=100sec. Then T (e)+5sec = fsite1; 6+5� 10; 65+5� 100g.

De�nition 4.12 (weakened Less-than-equal relation for Primitive Time stamps) Let T(e1),

T(e2) be the time stamps of global primitive events e1 and e2. T(e1) is said to be

less-than-equal to T(e2) denoted T (e1)
<
� T (e2) :

T (e1)
<
� T (e2) i� (T (e1) < T (e2)) _ (T (e1) � T (e2)):

De�nition 4.13 (Open Interval of Primitive Time stamps in Distributed Systems) Let

T(e1), T(e2) be the time stamps of global primitive event e1 and e2. An event e with

time stamp T(e) is said to be in the open interval formed by T (e1) and T (e2) with

T (e1) < T (e2) denoted T (e) 2
�

( T (e1); T (e2)
�

) is de�ned as follow:

T (e) 2
�

( T (e1); T (e2)
�

) i� T (e1) < T (e) < T (e2):

Suppose T (e1); T (e2) are in di�erent sites, then T (e1) < T (e) < T (e2) implies:

T (e1):global < T (e):global � 1gg and

T (e):global < T (e2):global � 1gg

=) T (e1):global < T (e):global � 1gg < T (e2):global � 2gg

=) T (e1):global < T (e2):global � 3gg for a non-empty open interval
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Intuitively, the open interval

�

( T (e1):global; T (e2):global
�

) includes the points:

fT (e1):global + 2gg; T (e1):global + 3gg; : : : ; T (e2):global � 3gg; T (e2):global� 2ggg:

De�nition 4.14 (Closed Interval of Primitive Time stamps in Distributed Systems) Let

T(e1), T(e2) be the time stamps of global primitive event e1 and e2. A time stamp

T(e) is said to be in the closed interval formed by T (e1) and T (e2) ( requires T (e1)
<
�

T (e2) ) denoted T (e) 2
�

[ T (e1); T (e2)
�

] is de�ned as follow:

T (e) 2
�

[ T (e1); T (e2)
�

] i� T (e1)
<
� T (e)

<
� T (e2):

Suppose T (e1); T (e2) are in di�erent sites, then T (e1)
<
� T (e)

<
� T (e2) implies:

jT (e1):global � T (e):globalj � 1gg and

jT (e):global � T (e1):globalj � 1gg and

=) jT (e1):global� T (e2):globalj � 1gg or

T (e1) � T (e2) for a non-empty closed interval

Intuitively, the closed interval

�

[ T (e1):global; T (e2):global
�

] includes the points:

fT (e1):global � 1gg; T (e1):global; : : : ; T (e2):global; T (e2):global + 1ggg:

The open and closed intervals of given two time stamps of events is showed in the

Figure 4.1.

There are some interesting properties about the
<
� semantics which are very useful

when we derive the semantics of the time stamps of distributed composite events:

Proposition 4.3 Let T (e1), T (e2) and T (e3) be any three primitive time stamps, then:

1. (asymmetric) If T (e1) < T (e2), then :(T (e2) < T (e1)).
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( )

T(e1).global-1 T(e1).global T(e1).global+1 ... ... T(e2).global-1 T(e2).global T(e2).global+1

 ] 
 ~

[
~

Figure 4.1. Open and Closed interval formed by T(e1) and T(e2)

2. (antisymmetric) If T (e1)
<
� T (e2) and T (e2)

<
� T (e1) then T (e1) � T (e2).

3. Either T (e1) < T (e2), or T (e2) < T (e1) or T (e1) � T (e2) but no more than

two of them holds.

4. Either T (e1)
<
� T (e2), or T (e2)

<
� T (e1) or both.

5. If T (e1) < T (e2) and T (e2) � T (e3) then T (e1)
<
� T (e3) .

6. If T (e1) � T (e2) and T (e2) < T (e3) then T (e1)
<
� T (e3) .

7. If :(T (e1) < T (e2)) then T (e2)
<
� T (e1).

8. If :(T (e1) < T (e2)) and :(T (e2) < T (e1)) then T (e1) � T (e2).

Proof.

1. (asymmetric) Deny, suppose both T (e1) < T (e2) and T (e2) < T (e1).

Case1: T (e1):site = T (e2):site. Then T (e1):local < T (e2):local and T (e2):local <

T (e1):local. That contradicts to the asymmetric property of totally ordered lo-

cal time.

Case2: T (e1):site 6= T (e2):site. Then ((T (e1):global < T (e2):global � 1gg)

^(T (e2):global < T (e1):global�1gg)), which implies (T (e1):global > T (e2):global+

1gg). So we have: T (e2):global + 1gg < T (e2):global � 1gg. i.e., 1 < �1, which

is a contradiction.

2. (antisymmetric)

Case 1: T (e1):site = T (e2):site then

T (e1)
<
� T (e2)) T (e1):local � T (e2):local
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T (e2)
<
� T (e3)) T (e2):local � T (e3):local

=) T (e1):local = T (e2):local

=) T (e1) = T (e2)

=) T (e1) � T (e2)

Case 2: T (e1):site 6= T (e2):site then

T (e1)
<
� T (e2) ) T (e1) � T (e2) or T (e1) < T (e2)

) jT (e1):global� T (e2):globalj � 1gg

or T (e1):global < T (e2):global � 1gg

) T (e1):global � T (e2):global + 1gg

) T (e1):global � T (e2):global � 1gg

Similarly we have:

T (e2)
<
� T (e1) ) T (e2):global � T (e1):global � 1gg

=) jT (e1):global� T (e2):globalj � 1gg

=) T (e1) � T (e2)

3. In local and global time system, we have:

T (e1):local < T (e2):local or T (e2):local < T (e1):local or T (e1):local = T (e2):local

but no more than two holds and T (e1):global < T (e2):global�1gg or T (e2):global <

T (e1):global� 1gg or jT (e1):global�T (e2):globalj � 1gg but no more than two

holds. So, we have T (e1) < T (e2) or T (e2) < T (e1) or T (e1) � T (e2) but no

more than two holds by de�nition.

4. By 3. either T (e1) < T (e2) or T (e2) < T (e1) or T (e1) � T (e2) So, if T (e1) <

T (e2) then T (e1)
<
� T (e2); if T (e2) < T (e1) then T (e2)

<
� T (e1). If T (e1) �

T (e2) then both T (e1)
<
� T (e2) and T (e2)

<
� T (e1) .
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5.

T (e1) < T (e2) )

8><
>:

T (e1):local < T (e2):local if T (e1):site = T (e2):site:
) T (e1):global � T (e2):global

T (e1):global < T (e2):global if T (e1):site 6= T (e2):site

T (e2) � T (e3) )

8>>>>>><
>>>>>>:

T (e2):local = T (e3):local if T (e1):site = T (e2):site:
) T (e1):global = T (e2):global

jT (e2):global � T (e3):globalj � 1gg
) T (e3):global = T (e3):global � 1;

T (e3):global; T (e3):global + 1gg

The worst case against the conclusion of T (e1)
<
� T (e3) is when T (e1) is the

biggest and T (e3) is the smallest, which means

T (e1):global � T (e2):global( same site ) and

T (e3):global = T (e2):global � 1gg( di�erent sites )

=) T (e1):global � T (e3):global + 1gg

=) T (e1)
<
� T (e3)

6. The proof is similar to above.

7. If T (e1):site = T (e2):site then :(T (e1) < T (e2)) implies T (e2):local � T (e1):local.

If T (e2):local < T (e1):local then T (e2) < T (e1) If T (e2):local = T (e1):local

then T (e1) = T (e2), hence T (e2) � T (e1). So we have T (e2)
<
� T (e1).

If T (e1):site 6= T (e2):site then :(T (e1) < T (e2)) implies :(T (e2):global <

T (e1):global � 1gg), i.e., T (e2):global � T (e1):global + 1. If T (e2):global <

T (e1):global � 1 then T (e2) < T (e1) If T (e1):global � 1gg � T (e2):global �

T (e1):global + 1 then T (e2) � T (e1). So we have T (e2)
<
� T (e1).

8. :(T (e1) < T (e2) implies T (e2)
<
� T (e1) (by 7). similarly, :(T (e2) < T (e1)

implies T (e1)
<
� T (e2) . So, by antisymmetricity, we have T (e1) � T (e2).

2



CHAPTER 5
DISTRIBUTED COMPOSITE EVENT SEMANTICS

In this Chapter, the distributed composite time stamps and their ordering is

de�ned based on the primitive time stamp de�nition from the previous chapter. The

semantics of distributed composite operators of Sentinel is derived from the temporal

relationship of the distributed time stamps.

5.1 Time Stamp of a Distributed Composite Event

The time stamp of composite events is di�erent from that of primitive events in

the sense that the time stamp of a composite event may be a set of time stamps

instead of just one time stamp as is the case of primitive events. In the centralized

systems, the time stamp of a composite event is de�ned as the latest time occurrence

of the participating primitive events. Because of the partially ordered property of

the global time, the \latest" is not uniquely de�ned. That is, there exists more than

one global primitive time stamp that can be the \latest" and these \latest" ones are

concurrent to each other. This gives rise to multiple time stamps. We de�ne the

\maximum" time stamps in a set of time stamps to be the ones (may not be unique)

that are not less than any other time stamp in the set. Those time stamps from a

set called the \max" of the given set of time stamps and the time stamps in the set

of \max" is proven to be concurrent to each other.

De�nition 5.1 (Set of maximum Time Stamps) Given a set of time stamps ST , a

time stamp t 2 ST is called a maximum of ST i� (6 9t1 2 ST; t < t1) The set of maxi-

mum time stamps in ST is de�ned asmax(ST ) = ft 2 ST : t is a maximum of ST g

30
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Theorem 5.1 Given a set of primitive time stamps, ST, the time stamps in the max

set max(ST) are concurrent to each other, i.e., 8t1; t2 2 max(ST ); t1 � t2 where �

is the primitive concurrency relation de�ned earlier.

Proof. Given a set of primitive time stamps ST, let t1; t2 2 max(ST ). Then t1
is the maximum of ST, i.e., (6 9t 2 ST; t1 < t), so we have :t1 < t2. Similarly, we
have :(t2 < t1), which implies t1 � t2 by Proposition 4.3. 2

De�nition 5.2 (Time Stamp of the Distributed Composite Event) A time stamp of the

distributed composite event e denoted T (e) is a set of triples (site; global; local). Each

triple is a maximum of the set of time stamps of the constituent primitive event col-

lected when the composite event occurs.

We automatically have the property that the time stamps of a composite event are

concurrent to each other by theorem 5.1. i.e., given T (e) as the composite time stamp,

then 8t1; t2 2 T (e); t1 � t2 where � is the primitive concurrency relation de�ned in

the previous section.

Note that our de�nition of composite time stamps is di�erent from [11]. Our

de�nition is more precise in capturing the characteristics of the composite event time

stamps, because in our de�nition, the concept of the \latest" is stressed and enforced

and the concurrency within the time stamps is ensured by the theorem.

5.2 Partial Ordering on the Distributed Composite Time Stamps

Suppose <p is the strict partial order temporal relation on the set of distributed

composite time stamps. In order for <p to make sense, we have the following require-

ments:

1. If T (e1) <p T (e2) then at least 9t1 2 T (e1); 9t2 2 T (e2) such that t1 < t2

where < is the strict partial order temporal relation on primitive time stamps

de�ned in the previous section.
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2. <p satis�es the irre
exity and transitivity, i.e, it is a well-de�ned strict partial

ordering.

3. <p is the \least" restrictive in the sense that there does not exist any ordering<q

which is more restrictive than <p, ie, 6 9 <q 8T (e1); 8T (e2). if T (e1) <p T (e2)

then T (e1) <q T (e2).

A de�nition that satis�es requirements 1 and 2 is valid but may not be acceptable.

For example, let us de�ne: T (e1) <p T (e2) i� 8t1 2 T (e1); 8t2 2 T (e2); t1:global <

t2:global� 10gz. The above de�nition satis�es 1 and 2 but is not acceptable because

it is too \restrictive" in the sense that there are a lot of time stamps that cannot

be compared using the de�nition. It requires that all the constituent primitive time

stamps of T(e2) to be at least 10gg greater than all the ones in T(e1), which is too

restrictive and does not make sense. The third requirement is added to to ensure

that most pairs of time stamps can be compared.

Let <p be a partial ordering that satis�es the above requirements, we have:

T (e1) <p T (e2)) 9t1 2 T (e1); 9t2 2 T (e2); t1 < t2

T (e2) <p T (e3)) 9t2 2 T (e2); 9t3 2 T (e3); t2 < t3

by our requirement 1. Also, the transitivity needs to be satis�ed.

T (e1) <p T (e2); T (e2) <p T (e3)) T (e1) <p T (e3)

for which we need:

9t1 2 T (e1); 9t2 2 T (e2); t1 < t2 (5.1)

9t2 2 T (e2); 9t3 2 T (e3); t2 < t3 (5.2)

) 9t1 2 T (e1); 9t3 2 T (e3); t1 < t3 (5.3)

Because the value of t2 in (5.1) may be di�erent from the value of t2 in (5.2) (due

to the existantial quanti�cation), we can not conclude that the third equation holds.
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We need at least one of the 9 to be 8 in the above three equations. If not, there could

always exist cases when the transitivity property does not hold, i.e, the transitivity

may not be guaranteed. So, a de�nition of

T (e1) <p T (e2) i� (8t2 2 T (e2); 9t1 2 T (e1))(t1 < t2) or

T (e1) <q T (e2) i� (8t1 2 T (e1); 9t2 2 T (e2))(t1 < t2)

becomes the only two valid de�nitions with the \least restrictive" strict ordering

de�nition that satis�es the requirements speci�ed earlier. Any other valid de�nitions

will need at least one 8 and one 9 to ensure the transitivity which means that are

more restrictive. If we denote:

T (e1) >p T (e2) i� (8t2 2 T (e2); 9t1 2 T (e1))(t1 > t2) and

T (e1) >q T (e2) i� (8t1 2 T (e1); 9t2 2 T (e2))(t1 > t2)

then

T (e1) <p T (e2), T (e2) >q T (e1) and

T (e1) <q T (e2), T (e2) >p T (e1):

So, (<p; >q) and (<q; >p) are two dual pairs of ordering relation satisfying the above

three requirements. In this paper, (<p; >q) is chosen to be our de�nition of strict

ordering of the composite time stamps.

Notice that the de�nition of

T (e1) <p1 T (e2) i� (9t1 2 T (e1); 9t2 2 T (e2))(t1 < t2)

is not valid since it is not transitive.

There are some other interesting de�nitions that are valid but not the \least" restric-

tive:
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1. T (e1) <p2 T (e2) i� ( 8t1 2 T (e1); 8t2 2 T (e2))(t1 < t2) .

This one is valid but is more restrictive than <p. Here is an example: T (e1) =

f(site1; 8; 80); (site2; 7; 70)g and T (e2) = f(site3; 9; 90)g satis�es <p relation

but not the <p2 de�ned above.

2. Letmt1 be the time stamp in T (e1) with minimum global time. T (e1) <p3 T (e2)

i� 8t2 2 T (e2); (mt1 < t2) .

This one is also valid but is more restrictive than <p. Here is an example:

T (e1) = f(site1; 8; 80); (site2; 7; 70)g and T (e2) = f(site1; 8; 81); (site2; 7; 71)g

satis�es <p relation but not the <p3 de�ned above, since (site1; 8; 81) in T(e2)

is 6<p (site2, 7,70) in T (e1) which has the minimal global time .

Based on the above analysis, we have the following de�nition:

De�nition 5.3 Let T (e1) and T (e2) be the two distributed composite event time stamps.

Then the temporal relationship between T (e1) and T (e2) is de�ned as the following:

1. concurrency:

T (e1) � T (e2) i� (8t1 2 T (e1)8t2 2 T (e2))

(t1:site = t2:site ^ t1:local = t2:local)

_ (t1:site 6= t2:site^ j t1:local � t2:local j< 2gg)

OR i� (8t1 2 T (e1)8t2 2 T (e2))

t1 � t2

OR i� 8t2 2 T (e2); t2 2 C(T (e1));

where C(T (e1)) is the concurrent set of T (e1):

(It's easy to see the equivalence of the three concurrency de�nition above).
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2. happen before :

T (e1) < T (e2) i� (8t1 2 T (e1); 8t2 2 T (e2))(t1 � t2)

^(8t2 2 T (e2); t2 62 C(T (e1)))

OR i� (8t2 2 T (e2); 9t1 2 T (e1))(t1 � t2)

Proof of the equivalence of the above two de�nitions of happen before :

T (e1) < T (e2) i� (8t1 2 T (e1); 8t2 2 T (e2))(t1 � t2)

^(8t2 2 T (e2); t2 62 C(T (e1)))

i� (8t1 2 T (e1); 8t2 2 T (e2))(t1 � t2)

^(8t2 2 T (e2); 9t1 2 T (e1))(t1 6� t2)

i� (8t1 2 T (e1); 8t2 2 T (e2))(t1 � t2)

^(8t2 2 T (e2); 9t1 2 T (e1))(t1 < t2)

(t1 and t2 are primitive and if t1 � t2 and t1 6� t2 then t1 < t2)

i� (8t2 2 T (e2); 9t1 2 T (e1))(t1 < t2)

3. incomparable:

T (e1) 1 T (e2) i� :((T (e1) < T (e2)) _ (T (e1) > T (e2)) _ (T (e1) � T (e2)))

Theorem 5.2 The < de�ned above is irre
exive and transitive hence is a well-de�ned

strict partial ordering on the set of all distributed composite event time stamps.

Proof. Proof of irre
exiveness, i.e., :(T (e) < T (e)); 8T (e).

Deny, suppose T (e) < T (e), then by de�nition, 9t1 2 T (e); 8t 2 T (e); t < t1 which

includes t1. This implies t1 < t1 which contradicts to the irre
exiveness of < of the

primitive time stamps.
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Proof of transitivity: i.e., if T (e1) < T (e2), and T (e2) < T (e3) then T (e2) < T (e3).

T (e1) < T (e2) , (8t2 2 T (e2); 9t1 2 T (e1))(t1 < t2)

T (e2) < T (e3) , (8t3 2 T (e3); 9t2 2 T (e2))(t2 < t3)

=) (8t3 2 T (e3); 9t1 2 T (e1))(t1 < t3)

So, we have T (e1) < T (e3). 2

A semantics of
<
� can be de�ned as follow. Interesting enough, this de�nition can be

proved to be consistent with the de�nition of primitive
<
� very easily.

De�nition 5.4 (weakened-less-than-or-equal-to)

T (e1)
<
� T (e2) i� (8t1 2 T (e1)8t2 2 T (e2))(t1

<
� t2):

Theorem 5.3 T (e1)
<
� T (e2) i� T (e1) � T (e2) or T (e1) < T (e2).

Proof. =):

Suppose T (e1)
<
� T (e2) want to show:(T (e1) � T (e2)) _ (T (e1) < T (e2))

T (e1)
<
� T (e2)) 8t1 2 T (e1); 8t2 2 T (e2); t1

<
� t2

) 8t1 2 T (e1); 8t2 2 T (e2); t1 < t2 or t1 � t2

) (8t1 2 T (e1); 8t2 2 T (e2); t1 < t2) or (8t1 2 T (e1); 8t2 2 T (e2); t1 � t2)

) (8t2 2 T (e2); 9t1 2 T (e1); t1 < t2) or (8t1 2 T (e1); 8t2 2 T (e2); t1 � t2)

) (T (e1) < T (e2)) or (T (e1) � T (e1)):

(=: Suppose (T (e1) � T (e2)) _ (T (e1) < T (e2)) want to show: T (e1)
<
� T (e2)

(T (e1) < T (e2)) _ (T (e1) � T (e2)) ) 8t2 2 T (e2)9t11 2 T (e1)t11 < t2 (5.4)

or 8t1 2 T (e1)8t2 2 T (e2)t1 � t2 (5.5)

By de�nition of distributed time stamps, every two primitive time stamps are con-
current to each other, we have: 8t1 2 T (e1)t1 � t11. Combined with equation 5.4,
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we have: 8t2 2 T (e2); 8t1 2 T (e1); 9t11 2 T (e1)t1 � t11 and t11 < t2. Which

implies: 8t2 2 T (e2); 8t1 2 T (e1); 9t11 2 T (e1)t1
<
� t2 by proposition 4.3. i.e.

8t2 2 T (e2); 8t1 2 T (e1); t1
<
� t2. So, we have: T (e1)

<
� T (e2). From 5.5 we also

have: T (e1)
<
� T (e2). So, T (e1)

<
� T (e2) holds. 2

Our de�nition is di�erent from the [11]. The \happen before" de�nition in [11]

is not transitive even though the dissertation indicates otherwise. Here is counter

example: Let T (e1) = f(site1; 8; 80)g, T (e2) = f(site1; 9; 90); (site2; 8; 80)g, and

T (e3) = f(site2; 9; 90)g. It's easy to see that T (e1) < T (e2); T (e2) < T (e3), by their

de�nition, but T (e1) � T (e3). So, their de�nition of < is not a well-de�ned strict

partial order temporal relation. On the other hand our de�nition depends only on

the de�nition of the distributed primitive event time stamps. The concepts of \sites",

\global time" and \local time" are embedded in the de�nition of primitive event time

stamps and becomes transparent to composite events. One other obvious advantage

is that our de�nition is a mathematically well-de�ned ordering and hence ensure to

be the \best" by mathematical reasoning. A semantics of open and closed intervals,

needed for the complexity of Sentinel composite event operator can be derived easily

from the < ordering. Also, the temporal relation between any two distributed time

stamps is very easy to visualize via our graph presentation show below.

The time stamps in a distributed system can be represented as a two dimensional

grid with x-axis being the global time embedded with the local time and y-axis

being the sites in the distributed system. The following is an example indicating the

composite time stamp and its �, <;
<
� area. Let the global distributed composite

event be T (e) = f(Site3; 8; 81); (Site6; 7; 72)g . For any composite time stamp T (e1),

1. T (e1) � T (e) i� T (e1) lies between Line2 and Line3;

2. T (e1) < T (e) i� T (e1) lies before Line1 ;

3. T (e) < T (e1) i� T (e1) lies after Line4;
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4. T (e1)
<
� T (e) i� T (e1) lies before Line3 ; and

5. T (e)
<
� T (e1) i� T (e1) lies after Line2;

See Figure 5.1. A time stamp that crosses those lines indicates a incomparable

situation.

Analogously, the notation of Open and Closed interval can de�ned as follows:

Site1

  Site2

Site3

Site4

Site5

Site6

Site7

SIte8

6   7   8   9  5 10  11 4

Line1 Line2 Line3 Line4

<   ~   >

  <= >=

Global Time

Distributed Sites

71 73 80 82 Local Time

Figure 5.1. An example of composite event and its temporal area.

De�nition 5.5 (Open Interval of Composite Time stamps in Distributed Systems) Let

T(e1), T(e2) be the time stamps of global composite event e1 and e2. An event e with

time stamp T(e) is said to be in the open interval formed by T (e1) and T (e2) with

T (e1) < T (e2) denoted

T (e) 2
�

( T (e1); T (e2)
�

) i� T (e1) < T (e) < T (e2):
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De�nition 5.6 (Closed Interval of Composite Time stamps in Distributed Systems) Let

T(e1), T(e2) be the time stamps of global composite event e1 and e2. A time

stamp T(e) is said to be in the closed interval formed by T (e1) and T (e2) ( requires

T (e1)
<
� T (e2) ) denoted T (e) 2

�

[ T (e1); T (e2)
�

] i� T (e1)
<
� T (e)

<
� T (e2) .

The following are some properties derived from the de�nition which may not so easy

to visualize.

Proposition 5.1 Let T (e1); T (e2) and T (e3) be any three distributed composite time

stamps.

1. (asymmetric) If T (e1) < T (e2), then :(T (e2) < T (e1)).

2. (antisymmetric) If T (e1)
<
� T (e2) and T (e2)

<
� T (e1) then T (e1) � T (e2).

3. If T (e1) � T (e2) and T (e2) < T (e3) then T (e1)
<
� T (e3) .

4. Let T (e1); T (e2) be two global event time stamps such that T (e1) � T (e2) then

8t1 2 T (e1); 8t2 2 T (e2) we have jt1:global � t2:globalj � 1gg.

5. Let T (e1); T (e2) be two global event time stamps such that T (e1) 1 T (e2) then

8t1 2 T (e1); 8t2 2 T (e2) we have jt1:global � t2:globalj � 2gg.

Proof.

1. (asymmetric): Deny, suppose 9T (e1)andT (e2) satis�es both T (e1) < T (e2)

and T (e2) < T (e1), then

T (e1) < T (e2) ) 8t2 2 T (e2)9t11 2 T (e1); t11 < t2

T (e2) < T (e1) ) 8t1 2 T (e1)9t21 2 T (e2); t21 < t1

) 8t2 2 T (e2)9t11 2 T (e1); t11 < t2;

let t1 = t11; then 9t22 2 T (e2); t22 < t11

) 8t2 2 T (e2)9t11 2 T (e1); 9t22 2 T (e2); t11 < t2; and t22 < t11

) 8t2 2 T (e2)9t22 2 T (e2); t22 < t2
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This contradicts to the de�nition of composite time stamps, i.e., for any two

time stamps in T(e2), the must be concurrent to each other.

2. (antisymmetric):

T (e1)
<
� T (e2) ) 8t1 2 T (e1); 8t2 2 T (e2); t1

<
� t2:

T (e2)
<
� T (e1) ) 8t2 2 T (e2); 8t1 2 T (e1); t2

<
� t1:

) 8t1 2 T (e1); 8t2 2 T (e2); t1
<
� t2 and t2

<
� t1:

) 8t1 2 T (e1); 8t2 2 T (e2); t1 � t2

) T (e1) � T (e2):

3.

T (e1) � T (e2) ) 8t1 2 T (e1); 8t2 2 T (e2); t1 � t2:

T (e2) < T (e3) ) 8t3 2 T (e3); 9t2 2 T (e2); t2 < t3:

) 8t1 2 T (e1); 8t3 2 T (e3); 9t2 2 T (e2); t1 � t2 and t2 < t3

) 8t1 2 T (e1); 8t3 2 T (e3); t1
<
� t3

) T (e1)
<
� T (e3):

4. Deny, suppose 9t1 2 T (e1); t2 2 T (e2); jt1:global� t2:globalj > 1:. Without lost

of generality assuming t1:global < t2:global, we have:

t1:global < t2:global � 1, i.e. t1 < t2 disregard the sites of t1 and t2. That

contradicts the de�nition of T (e1) � T (e2)

5. Deny, suppose 9t1 2 T (e1); t2 2 T (e2); jt1:global � t2:globalj > 2.

Without lost of generality assuming t1:global < t2:global,

we have: t1:global < t2:global � 2.

8t20 2 T (2), we have: t2 � t20, that is, t2:global = t20:global � 1, t20:global,
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and t20:global + 1.

In any cases, we have t1:global < t2:global � 1, 8t20 in T (e2).

So, we have 8t20 2 T (e2); 9t1 2 T (e1); t1 < t20 disregard the sites of t1 and

t20, i.e., T (e1) < T (e2) by de�nition. That contradicts to the de�nition of

T (e1) 1 T (e2).

2

The following is a example demonstrating the temporal relationship of global event

time stamps.

Example 5.1 Let k; l;m be a set of physical clocks in di�erent sites of the Distributed

system with granularity g = 1=100s. Let z be the reference clock with granularity gz =

1=1000s. Assume the physical clocks are synchronized with precision � < 1=10s and

the global granularity is chosen to be gg = 1=10s. Let T (e1); T (e2); T (e3); T (e4); T (e5)

be the sets of time stamps of the global composite events e1; e2; e3; e4; e5:

T (e1) = f (k; 2399154827; 23991548276);

(m; 2399154827; 23991548277)g

T (e2) = f (l; 2399154827; 23991548276);

(k; 2399154827; 23991548277)g

T (e3) = f (m; 2399154827; 23991548276);

(l; 2399154827; 23991548277)g

T (e4) = f (k; 2399154828; 23991548288);

(l; 2399154827; 23991548277)g

T (e5) = f (k; 2399154829; 23991548298);

(l; 2399154828; 23991548287)g
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Then, T (e1) 1 T (e2) 1 T (e3), T (e4) � T (e3) and T (e3) < T (e5)

5.3 Distributed Composite Time Stamp Operation

In centralized systems, when a composite event is detected, a new time stamp

(t occ) indicating the latest time stamp (that made the composite event occur) along

with the event name, and event parameters are propagated to the parent nodes (if

any). Similarly, in distributed systems, when the composite event is detected, a set

of time stamps indicating the \latest" time stamps need to be generated and sent to

the parent node with the event type and parameters. This procedure of generating

a set of \latest" time stamps is de�ned as a Max operator. The resulting composite

time stamp generated by the Max operator also needs to satisfy the de�nition of the

distributed composite time stamps.

The Max operator can be speci�ed by di�erent procedures depending on the re-

lationship between two time stamps. Before de�ning the Max of two sets of time

stamps, the joining of concurrent and incomparable time stamps are de�ned as fol-

lows:

De�nition 5.7 (Joining procedure for concurrent time stamps) Let T(e1) and T(e2)

be two global time stamps such that T (e1) � T (e2). Then the joining time stamp of

T(e1) and T(e2) denoted T (e1) [ T (e2) is de�ned as:

T (e1) [ T (e2) = ftsjts 2 T (e1) or ts 2 T (e2)g:

The joining of T (e1) and T (e2) joins the corresponding component time stamps and

eliminates the duplicates which is exactly the same as the set union operation in

mathematics. The concurrency property is ensured by proposition 5.1.

De�nition 5.8 (Joining procedure on incomparable time stamps) Let T(e1) and T(e2)

be two global time stamps such that T (e1) 1 T (e2). Then the joining time stamp of



43

T(e1) and T(e2) denoted T (e1) [ T (e2) is de�ned as:

T (e1) [ T (e2) = ftsjts 2 T (e1) such that 8ts2 2 T (e2);:(ts < ts2)g

[

ftsjts 2 T (e2) such that 8ts1 2 T (e1);:(ts < ts1)g:

The \joining" of T (e1) 1 T (e2) is to keep the \latest" information of the two sets

of time stamps. The result composite time stamps after the join operation can be

proved to satisfy the de�nition of the composite time stamps. The above two joining

procedures are conceptually same as the joining in [11]. Our de�nition is more precise

and easy to understand.

De�nition 5.9 (the Maximum of time stamps) Let T (e1) and T (e2) be the two sets

of the time stamps of the distributed composite events, then the maximum of T (e1)

and T (e2) denoted Max(T (e1); T (e2)) is de�ned as follows:

Max(T (e1); T (e2)) =

8>>>>>>>><
>>>>>>>>:

T (e1) if T (e1) > T (e2)

T (e2) if T (e2) > T (e1)

T (e1) [ T (e2) if T (e1) and T (e2)
are concurrent or incomparable

Theorem 5.4 If T (e) = Max(T (e1); T (e2)) where T (e1) and T (e2) are any time

stamps then T (e) is a distributed composite time stamp with the primitive compo-

nents from T (e1) and T (e2), i.e., let ST = T (e1) [ T (e2) where [ is the ordinary

mathematics union operator, then T (e) = max(ST ).

Proof. If T (e1) < T (e2) or T (e2) < T (e1), it is trivial to see the result holds.
If T (e1) � T (e2), the result holds by proposition 5.1(4). If T (e1) 1 T (e2) ,then
the result holds by de�nition of T (e1) [ T (e2). Otherwise, if 9t1; t2; t1 < t2, then
t1; t2 can not be in the same set of time stamp (otherwise it contradicts the concur-
rence property within the time stamp). Suppose t1 2 T (e1) and t2 2 T (e2), then
9t1 2 T (e1); t2 2 T (e2); t1 < t2 which contradicts the de�nition of the [ operator in
De�nition 5.8. 2
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Example 5.2 Let the assumptions and T (e1); T (e2); T (e3); T (e4) and T (e5) be the

same as previous example. Then

T (e1) [ T (e2) = f (k; 2399154827; 23991548276);

(m; 2399154827; 23991548277);

(l; 2399154827; 23991548276)g

T (e3) [ T (e4) = f (m; 2399154827; 23991548276);

(l; 2399154827; 23991548277);

(k; 2399154828; 23991548288)g

T (e3) [ T (e5) = f (k; 2399154829; 23991548298);

(l; 2399154828; 23991548287)g

5.4 The Semantics of Distributed Composite Event Operators

A distributed event E (either primitive or composite is a function from the time

stamp domain onto the boolean values, True or False.

E : TS ! fTrue; Falseg

given by:

E(ts) =

(
T (rue) if an event of type E occurs with time stamp ts
F (alse) otherwise

Here the time stamp ts could be a set of time stamps formed by the Max opera-

tor collecting from the corresponding primitive event time stamps if E is a global

composite event. Based on the time stamp set operation de�ned in last section, the

semantics of the distributed composite event operators can be de�ned as follows:

1. OR(�): Disjunction of two events. Denoted E1�E2. Formally,

(E1�E2)(ts) = (E1(ts) ^ (� E2(ts)))
_(E2(ts) ^ (� E1(ts)))
_(9ts1; ts2)(E2(ts1) ^ E2(ts2)) ^ (ts = Max(ts1; ts2))
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2. AND(r): Conjunction of two events E1 and E2, denoted E1rE2. Formally,

(E1rE2)(ts) = (9ts1; ts2)(E1(ts1) ^ E2(ts2)) ^ (ts =Max(ts1; ts2))

3. ANY: The conjunction of events, denoted ANY (m;E1; E2; :::En). Formally,

ANY (m;E1; E2; :::; En)(ts) = (9ts1; ts2; :::; tsm)
(Ei(ts1) ^ Ej(ts2) ^ : : : ^ El(tsm)))
^(1 � i; j; : : : ; l � n)
^(i 6= j 6= : : : 6= l)
^(ts = max(ts1; ts2; : : : ; tsm))

4. SEQ(;): The sequence of two events E1 and E2, denoted E1;E2. Formally,

(E1;E2)(ts) = (9ts1)(E1(ts1) ^ E2(ts)) ^ (ts1 < ts)

5. Aperiodic Operators (A;A�):

Non-cumulative variant of an aperiodic event, denoted A(E1, E2, E3). Formally,

A(E1; E2; E3)(ts) = (9ts)(8ts2; ts1 � ts2 < ts)

(E1(ts1)^ � E3(ts2) ^ E2(ts))

The accumulative version, denoted A�(E1, E2, E3). Formally,

A�(E1; E2; E3)(ts) = (9ts1; ts1 < ts)(E1(ts1) ^ E3(ts))

6. Periodic Event Operators (P, P*): The non-cumulative version of periodic

event, denoted P (E1; T I[: parameters]; E3). Formally,

P (E1; T I[: parameters]; E3)(ts) = (9ts1)

(8ts2 2 [ts1; ts]; ts = ts1 + i � TI for some i )

(E1(ts1)^ � E3(ts2))

The cumulative version of periodic event, denoted P �(E1; T I[: parameters]; E3).

Formally,

P �(E1; T I[: parameters]; E3) = (9ts1)(ts > ts1)(E1(ts1) ^ E3(ts))
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where TI is a time speci�cation.

7. Not (:): The not operator, denoted :(E2)[E1, E3]. Formally,

:(E2)[E1; E3](ts) = (9ts1)(8ts2 2 [ts1; ts])(E1(ts1)^ � E2(ts2) ^ E3(ts))



CHAPTER 6
DISTRIBUTED COMPOSITE EVENT EVALUATION AND IMPLEMENTATION

Because of the message delay in distributed environments, the arrival order of the

events at GED may not correspond to the order of occurrence of the events. The

delays may be due to delays of the network, disruptions of the sites where the events

occur or disruption of the network. There are two possible policies of distributed

composite event evaluation discussed in [11]. One is Asynchronous Evaluation which

ignores the fact that there may be delayed events and evaluates global event tree

as soon as suitable events arrive at an observer site, and the other is Synchronous

Evaluation which waits for delayed events and evaluates global event tree only if all

relevant events have arrived at an observer site.

6.1 Synchronous Evaluation

De�nition 6.1 (Synchronous Evaluation) A distributed composite event node is eval-

uated synchronously, if each node is evaluated on the arrival of an event occurrence

from a child node provided that all event occurrences from other child nodes with

smaller time stamps have arrived.

Synchronous evaluation assumes the implementation of FIFO network delivery, that

is, the messages originating at any one site are delivered at any other site in the or-

der they were generated. FIFO message delivery can be easily achieved by TCP/IP.

Synchronous evaluation means that the evaluation of a node is delayed until all rele-

vant events with smaller time stamps have arrived at the global event detector. The

main advantage of synchronous evaluation is that it guarantees that the events are
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detected in parameter contexts. It is suitable for applications requiring a high de-

gree of consistency and reliability. The main disadvantage is that the evaluation can

be blocked for a long time, if there are site failures or networking congestion. An

other draw back is that the storage requirement can be very large depending on the

characteristics of arriving events.

6.2 Asynchronous Evaluation

De�nition 6.2 (Asynchronous Evaluation) A distributed composite event node is eval-

uated asynchronously, if each node is evaluated instantly on the arrival of an event

occurrence form the child node.

Asynchronous evaluation means that the composite nodes are evaluated irrespective

of networking delays or failures. When events arrive at a node, there may be other

events with smaller time stamps which have not yet arrived. But the composite event

is evaluated instantly. This means that the events are not necessarily evaluated in

the order of their occurrence. The main advantage of asynchronous evaluation is the

fast response time which is suitable for real time applications. The main draw back is

that it does not guarantee detection of all events in parameter context. The context

is enforced on current available events.

6.3 Evaluation Policies and Context Constrains

Even though the parameter context constraint is not globally guaranteed in asyn-

chronous evaluation, we still want to 
ush out the unwanted events based on the idea

of context constraints in a centralized environment. The context constraint has to be

loosened for the distributed case and the evaluation is based on the moment when

an event occurs. Before describing the algorithms based on the evaluation policies,

we need have a review about the context constraints.

The context constraint are motivated by a careful analysis of several classes of

applications [18] and are believed to be useful for a wide range of applications.
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� Recent: In this context, only the most recent occurrence of the initiator for

any event that has started the detection of that event is used. When an event

occurs, the event is detected and all the occurrences of events that cannot

be the initiators of that event in the future are deleted (or 
ushed). In this

context, not all occurrences of a constituent event will be used in detecting a

composite event. Furthermore, an initiator of an event (primitive or composite)

will continue to initiate new event occurrences until a new initiator occurs.

� Chronicle: In this context, for an event occurrence, the initiator, terminator

pair is unique. The oldest initiator is paired with the oldest terminator for

each event (i.e., in chronological order of occurrence). When an event X is

detected, its parameters are computed by using the oldest initiator and the

oldest terminator of E. However, the constituent events of an event X cannot

occur as a constituent event in any other occurrence of a composite event.

� Continuous: In this context, each initiator of an event starts the detection of

that event. A terminator event occurrence may detect one or more occurrences

of the same event. The initiator and the terminator are discarded after an event

is detected. This context is especially useful for tracking trends of interest on a

sliding time point governed by the initiator event. In this context, an initiator

will be used at least once for detecting that event.

There is a subtle di�erence between the chronicle and the continuous contexts.

In the former, pairing of the initiator is with a unique terminator of the event

whereas in the latter multiple initiators are paired with a single terminator of

that event.

� Cumulative: In this context, all occurrences of an event type are accumulated

as instances of that event until the event is detected. Whenever an event is
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detected, all the occurrences that are used for detecting that event are deleted.

Unlike the continuous context, an event occurrence does not participate in two

distinct occurrences of the same event in the cumulative context.

One advantage of the Synchronous evaluation policy is that it guarantees that the

event detection satis�es the parameter context constraint. The following is an exam-

ple algorithm of SEQ operator with Recent context:

SEQ(E1, E2):

if e1 signaled

if E2 != empty and if ( exists e2 in E2, e1 < e2 )

//all related e1 has arrived

//all e2 with e2<e1 can be evaluated now.

let SeqE2 = e2 in E2 such that e2 < e1

if SeqE2!= empty

for all e2 in SeqE2

let RE1 = e1 in E1 such that e1 < e2

//RE1 is the set of most recent e1<e2

for all e1 in RE1

propagate < e1, e2 > to parents

delete e2 in SeqSet form E2

insert e1

if e2 signaled

if E1 != empty and if exists e1 in E1 such that e2 < e1

//all relevant e1 has arrived, e2 can be evaluated now

let RE1 = e1 in E1 such that e1 < e2 and

//RE1 is the set of most recent e1< e2.

for all e1 in RE1
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propagate < e1, e2 > to parents

else insert e2

delete all e1 with maxming(e1)<maxming(e2)-9

Here maxming(T ) = maxg(T ) + ming(T ) where maxg(T)/ming(T) is the max-

imum/minimum global time ticks within composite time stamp T. We want to

show that if maxming(e1) < maxming(e2) � 9 and T (e2) � T (e3) then we can

guarantee that T (e1) < T (e3) which means e1 is no long useful which can be


ushed out. By proposition 5.1 we have maxg(T (e2)) � ming(T (e3)) � 1gg for

any two composite time stamps concurrent to each other. So, if T (e2) � T (e3),

we have kmaxming(T (e2))�maxming(T (e3))k � kmaxg(T (e2))�maxg(T (e3))k+

kming(T (e2))�ming(T (e3))k � 1gg + 1gg = 2gg.

Since maxming(T (e1)) < maxming(T (e2)� 9,

we have maxming(T (e1)) < maxming(T (e3)� 6 which means T (e1) < T (e3). Oth-

erwise, if T (e1) � T (e3) implies maxming(T (e1)) � maxming(T (e3)) < 3 and if

T (e1) 1 T (e3) implies maxming(T (e1))�maxming(T (e3)) < 5

Notice that each event has to wait until all relevant events with smaller time

stamps have arrived and each new arrival event may trigger one or more occurrence

of the composite events (irrespective of the event is initiator or terminator). The

context constraint can be enforced because when the event is evaluated, all events

that participate in the evaluation have already arrived. On the other hand, due to

concurrency of the events and delay of the propagation, the algorithm can become

very complicated and the number of events that need to be bu�ered may be large. The

algorithms for di�erent operators with Recent context can be found in the appendix.

From the previous section we can see that the de�nition of the contexts gives

us a general picture about how the events are collected and consumed. In the asyn-

chronous evaluation policy, because the events are evaluated based only on the partial
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knowledge of the current status, and because of the partial ordered composite time

stamps, the concept of \most recent" and \oldest" events need to be rede�ned. For

one thing, those \most recent" and \oldest" may not be unique any more because

of the existence of concurrent events. Furthermore, the current \most recent" and

\oldest" may not be valid if some events that have occurred earlier are delayed from

di�erent sites. One the other hand, event consumption becomes much more compli-

cated. Using the asynchronous policy, the event consumption is based on the current

status of the event occurrence (hence \unwanted" events at current stage may trigger

a valid composite event in the future).

But the de�nition of context itself do not tell us exactly what to do when each

event reaches the distributed event detector (or GED). For example, in recent context,

there is no strict rule dealing with the arrival of an event (initiator or terminator).

So, at least two policies can be considered.

1. When an initiator comes, it is just bu�ered and wait until the terminator to do

the evaluation, propagation as well as 
ushing of the unwanted events.

2. When an initiator comes, the list of the initiator is alway maintained to have

the most recent property (
ush out the out-of-dated initiator). When the event

terminator comes, it evaluate the event based on the event operator, and prop-

agate the triggered composite event to the parent node.

It is easy to see that given a sequence of the events, the second one will detect

more composite events than the �rst one. That is if an event is detected in the policy,

it must be detected in the second one, but the reverse may not hold. Which one is

\better" totally depends on the application. As an example, based on the above two

policies, we have the following two di�erent algorithms for SEQ operator:

1. SEQ(E1, E2):
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if e1 signaled

insert e1 to E1's list;

E1's list = Max ( E1's list );

if e2 signaled

if ( E1's list != empty )

for all e1 in E1's list , propagate < e1, e2 > to parents node.

2. SEQ(E1, E2):

if e1 signaled

insert e1;

if e2 signaled

let SEQSet = e1 in E1 such that e1 < e2

if ( SeqSet != empty )

let maxSeq = Max(SEQSet);

forall e1 in maxSeq, propagate < e1, e2 > to parents node.

delete all e1 in SeqSet;

Depending on the application, di�erent algorithms can be derived based on the eval-

uation policies and context constraint.

6.4 Implementation

Based on the evaluation policies discussed last section, we can have several di�er-

ent algorithms and implementation. Due to the complexity and delayed evaluation

properties of Synchronous evaluation, we choose the Asynchronous evaluation for

implementation.

6.4.1 Algorithm

The algorithm is based on the Asynchronous evaluation policy from last section.

As in last section, two di�erent consideration can be associated with asynchronous

evaluation policy. One is that when the event initiator comes, it is just bu�ered. The
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event evaluation and consuming are done when the event terminator occurs. We call

this \partial asynchronous" event evaluation policy. The \partial" here indicates the

initiator has to \wait" compared with the other one. This one is a simple rule and

easy to understand.

The other alternative is that when the event initiator comes, it starts to 
ush out

unwanted events (if any); When the event terminator occurs, it starts the evaluation

as well as consuming the unwanted events. The one is called \total asynchronous",

again, for the comparison of the above one. One good thing about this policy is that

it bu�ers least events and is very close to the local event detection algorithm.

Notice that the only di�erence between the above two is that the \total" one

starts doing the event consumption when the initiator comes while the \partial" one

waits until the terminator. Based on the context we have so far, only the Recent

context may result di�erent algorithm since only the \most recent" initiators need

to be kept. In other contexts, such as Chronicle, Continuous and Cumulative, all

initiators are kept for future (terminator) evaluation.

The following are the detailed description and the algorithms are in the appendix.

� Recent-partial: In this context, only the most recent occurrence of the initia-

tor for any event that has started the detection of that event is used. When the

initiator event occurs, the event is bu�ered; when the event terminator arrives,

it �nds the most recent set of concurrent events of the corresponding initiator

and other constituent events satis�es the composite operator, and propagates

to the parent nodes. At the same time, all the occurrences of events that cannot

be the initiators of that event in the future are deleted (or 
ushed). In this

context, not all occurrences of a constituent event will be used in detecting a

composite event. Furthermore, an initiator of an event (primitive or composite)

will continue to initiate new event occurrences until a new initiator occurs.
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� Recent-total: In this context, only the most recent occurrence of the initiator

for any event that has started the detection of that event is used. When an

initiator arrives, the list of the initiator is alway maintained to have the most

recent property (
ush out the out-of-date initiator). Notice again there could

be multiple \the most recent" initiators. When the event terminator arrives,

it paired with the initiators (already the \most recent" at that moment) and

other constituent events that satis�es the composite operator, and propagated

to the parent nodes. At the same time, all occurrences of events that cannot

be the initiators of that event in the future are deleted (or 
ushed). In this

context, not all occurrences of a constituent event will be used in detecting a

composite event. Furthermore, an initiator of an event (primitive or composite)

will continue to initiate new event occurrences until a new initiator occurs.

� Chronicle: In this context, for an event occurrence, the initiator, terminator

pair is unique. When an initiator comes, it is simply bu�ered. When the

event terminator comes, it is paired with the oldest concurrent initiators along

with the other constituent events that satisfy the operator and propagate to

the parents node. In the meanwhile, the oldest concurrent initiator and those

constituent events being propagated are 
ushed out.

� Continuous: In this context, each initiator of an event starts the detection of

that event. When the initiator occurs, it is simply bu�ered. A terminator event

occurrence may detect one or more occurrences of the same event. The initiator

and the terminator are discarded after an event is detected. When the termi-

nator occurs, it is paired with all initiator and other constituent and propagate

to parents node. In the meanwhile, the initiators and all the constituent events

being propagated are 
ushed out. This context is especially useful for tracking

trends of interest on a sliding time point governed by the initiator event.
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� Cumulative: In this context, all occurrences of an event type are accumulated

as instances of that event until the event is detected. When the initiator occurs,

it is simply bu�ered. Whenever the event terminator occurs and an event

is detected, all the initiator and all constituent events that satisfy the event

operator are cumulated and propagate to the parents node. In the meanwhile

all the occurrences that are used for detecting that event are deleted.

The main di�erence between the centralized algorithm and the asynchronous ones is

that There could be multiple concurrent initiators paired with the event terminator

and propagate to the parents.

The algorithms can be simpli�ed by

1. Keeping one out of possibly multiple concurrent time stamps to represent the

composite time stamp of the event. Notice that keeping one time stamp will

not e�ect the pseudo-algorithm.

2. Propagating just one constituent event out of possibly multiple concurrent ones

to the parent node. This one will a�ect those context which \most recent" or

\oldest" property need to hold when propagating the events. That means only

recent and chronicle context will be di�erent but continuous and cumulative

context will remain same in the algorithm.

The algorithms (only the recent and chronicle) are also in the appendix.

6.4.2 Data Structure

The detailed Global Event Detection architecture is in [19]. Here the main mod-

i�cation is discussed.

PrimTS and compTS data structures are added to hold the primitive time stamps

and composite time stamps. PrimTS structure consists of site, global time and local

time. CompTS structure is a linked list of the concurrent maximum of the constituent
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primTSs. These two structures are added into the L OF L LIST and are propagated

to the parents node when an event occurs. CompTS is used to compare and evaluate

the composite events.

The primTS and compTS is initialized when the primitive event occurs. The site

attribute is set to be the machine name and the local time is set to be the current

system time. The global time is calculated by truncating the local time with desired

precision.

When the composite event is evaluated, the compTS of the constituent event is the

time stamp to be compared. Based on the algorithm, if the composite event occurs,

the parameter list L OF L LIST of the constituent events are merged and compTS

are recomputed from the compTS of the constituent events to have the maximum

and concurrent property.



CHAPTER 7
CONCLUSIONS AND FUTURE WORK

This thesis presents a mathematical framework of ordered sets relation for dis-

tributed composite event detection. A new de�nition of distributed composite time

stamps is de�ned ensuring the \maximum" and \concurrency" properties of the con-

stituent primitive time stamps. The strict ordering relation on the time stamps for

comparison in a distributed system is chosen carefully to have the \least restrictive"

property and proved it to be well-de�ned. A \Max" operator which is well-integrated

with the de�nition of time stamps is introduced for handling and propagating the

time stamps. A number of properties are rigorously proved for a better understand-

ing of the semantics of distributed time stamps and the partial ordering. Finally,

using the formalism developed, the semantics of Sentinel composite event operators

is extended to the distributed environment. The main contributions of this thesis

are:

� Introduce the least restrictive strict partial ordering of the set of the composite

event time stamps.

� Introduce the max operator to describe the composite time stamps.

� Design algorithms for detecting composite events using di�erent evaluation poli-

cies and parameter contexts.

� Implement the composite event detection algorithm in GED.

The future work can be the following:
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� Re-examination of the event operators and context constraints for the real-

world applications. Identi�cation of the composite event operators and context

constraints are needed for the real world applications.

� Generalize the context constraints to arbitrary functions that can be used as

�lters.

� The relationship between the event evaluation policies and context constraints.

Applicability of evaluation policies to contexts. Some evaluation policies may

be meaningful in some contexts.

� Containing event logs in distributed environments to detect complex global

events (correlation of events).



APPENDIX
COMPOSITE EVENT DETECTION ALGORITHMS

In this appendix, we present the algorithms for the distributed event operators
construction and detection.

Algorithm: Synchronous Policy, Recent Context:

OR:
if e1 signaled
if E2 ! = empty
delete and propagate all e2 such that e2 < e1 to parents
if exists e2 in E2 such that e1 < e2
propagate e1 to parents

else insert e1
else insert e1

if e2 signaled
Same as e1

AND:
if e1 signaled
if E2 != empty
if exists e2 in E2 such that e1 < e2
//e2 up to dated , e1 can be evaluated with respect to e2
let RE2 = e2 in E2, e2< e1 and
//RE2 is the most recent set with respect to e1
if RE2 != empty
for all e2 in RE2, propagate < e1, e2 > to parents.
insert e1

delete all e2 with maxming(e2)<maxming(e1)-9
if e2 signaled
Same as e1

SEQ:
if e1 signaled
if E2 != empty and ( exists e2 in E2, e1 < e2 )
//all relevant related e1 has arrived
//all e20 with e20<e1 can be evaluated now.
let SeqE2 = e2 in E2 such that e2 < e1
if SeqE2!= empty
for all e2 in SeqE2
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let RE1 = e1 in E1 such that e1 < e2
//RE1 is the set of most recent e1<e2

for all e1 in RE1
propagate < e1, e2 > to parents
delete e2 in SeqSet form E2

insert e1

if e2 signaled
if E1 != empty and if exists e1 in E1 such that e2 < e1
//all relevant e1 has arrived, e2 can be evaluated now

let RE1 = e1 in E1 such that e1 < e2
//RE1 is the set of most recent e1< e2.
for all e1 in RE1
propagate < e1, e2 > to parents

else insert e2
delete all e1 with maxming(e1)<maxming(e2)-9

A, P:
if e1 signaled
if E2!=empty and if exists e2 in E2 such that maxming(e1)<maxming(e2)-9
//this wired condition is to ensure all related e1
//has arrived. this is due to E1< E3 the unpleasant .
let AE = e2 in E2 such that maxming(e2)<maxming(e1)-9
for all e2 in AE
let RE2 = e1 in E1 such that e1< e2
for all e1 in RE2

propagate < e1,e2> to parents
delete e2 from E2

else insert e1

if e2 signaled
if e1 != empty and if exists e1 in E1 such that maxming(e2)<maxming(e1)-9
//all relevant e1 has arrived. e2 can be evaluated now
let RE = e1 in E1 such that e1< e2 and e1 is the
for all e1 in RE, propagate < e1, e2> to parents

else insert e2

if e3 signaled
delete all e1 with maxming(e1)<maxming(e3)-9
delete all e2 with maxming(e2)<maxming(e3)-9

A*, P*
if e1 signaled
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if E3!=empty and if exists e3 in E3 such that e3 < e1
//all e30 with e30<e1 can be considered to evaluate now.
let Astar=e3 in E3 such that e3 < e1
if Astar != empty
for all e3 in Aster

if exists e2 in E2, e3<e2
//for this e3, e2 has already arrived
//e3 now ready for full evaluation
let RE1=e1 in E1, e1 is the most recent(maximum)one<e3
for all e1 in RE1, propagate

<e1,all e2 such that e1< e2<e3 ,e3> to parents
delete e3

insert e1;

if e2 signaled insert e2;

if e3 signaled
if E1 != empty and if exists e1 in E1 such that e3 < e1
if E2 != empty and if exists e2 in E2 such that e3 < e2
//all related e1 and e2 has arrived
//now e3 is ready to be evaluated
let RE1 =e1 in E1, e1 is the most recent(maximum)one<e3
for all e1 in RE1, propagate
<e1,all e2 such that e1< e2<e3 ,e3> to parents

else insert e3.
delete all e1 with maxming(e1)<maxming(e3)-9
delete all e2 with maxming(e2)<maxming(e3)-9

NOT:
if e1 signaled
if E3!=empty and if exists e3 in E3 such that e3 < e1
//all e30 with e30<e1 can be considered to evaluate now
let Astar=e3 in E3 such that e3 < e1
if Astar != empty
for all e3 in Aster
if exists e2 in E2, e3<e2
//for this e3, e2 has already arrived. e3 now ready for evaluation

let RE1=e1 in E1, e1 is the most recent(maximum)one<e3
for all e1 in RE1,

if no exists e2 such that e1< e2<e3
propagate <e1,e3> to parents
delete e3

insert e1;
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if e2 signaled insert e2;
if e3 signaled
if E1 != empty and if exists e1 in E1 such that e3 < e1 and
if E2 != empty and if exists e2 in E2 such that e3 < e2 and
//all related e1 and e2 has arrived
//now e3 is ready to be evaluated
let RE1 =e1 in E1, e1 is the most recent(maximum)one<e3
for all e1 in RE1,if no exists e2 such that e1< e2<e3
propagate <e1,e3> to parents

else insert e3.
delete all e1 with maxming(e1)<maxming(e3)-9
delete all e2 with maxming(e2)<maxming(e3)-9
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Algorithm: \Partial" Asynchronous Policy, Recent Context

AND(E1, E2):
if left event e1 is signaled
if E2's list is not empty,
let ANDE2=e2 in E2, e2< e1
let maxANDE2=Max(ANDE2);
forall e2 in maxANDE2

propagate < e1,e2> to parents node;
delete all e2 such that e2<e1;

insert e1;

if e2 signaled
if E1 != empty,
let ANDE1=e1 in E1, e1< e2
let maxANDE1=Max(ANDSet);
for all e1 in maxANDE1 , propagate < e1,e2> to parents node;

delete all e1, e1<e2;
insert e2;

OR(E1, E2):
if e1 signaled , propagate < e1 > to parents node.
if e2 signaled , propagate < e1 > to parents node.

SEQ(E1, E2):
if e1 signaled
insert e1;

if e2 signaled
let SEQSet = e1 in E1 such that e1 < e2
if ( SeqSet != empty )
let maxSeq = Max(SEQSet);
for all e1 in maxSeq, propagate < e1, e2 > to parents node.
delete all e1 in SeqSet and insert maxSeq (keep the initiator);

A, P(E1, E2, E3):
if e1 signaled
insert e1

if e2 signaled
let ASet = e1 in E1 such that e1 < e2
let maxASet = Max(ASet);
if maxAset != empty
for all e1 in maxASet propagate < e1, e2 > to parents node
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delete all e1 in ASet and insert maxASet (initator);

if e3 signaled
delete all e1 in E1 such that e1 < e3;

A*, P*(E1, E2, E3):
if e1 signaled
insert e1;

if e2 signaled,
insert e2;

if e3 signaled
let ASet = e1 in E1 such that e1 < e2
let maxASet = Max(ASet);
if maxASet != empty
for all e1 in maxASet,

let E2Set = e2 in E2, e1 < e2 < e3 ;
if E2Set != empty
propagate < e1, all e2 in E2Set, e3 > to parents node
delete all e1 < e3, all e2 < e3

NOT(E1, E2, E3):
if e1 signaled
insert e1;

if e2 signaled
insert e2 in E2;

if e3 signaled
let NOTSet = e1 in E1 such that e1 < e3
let maxNOTSet = Max(NOTSet);
if MaxNOTSet != empty
let e1 in MaxNOTSet;
if not exists e2 in E2 such that e1 < e2 <e3

then propagate < e1, e3 > to parents.
delete all e1 < e3 and all e2<e3
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Algorithm: \Total" Asynchronous Policy, Recent Context

AND(E1, E2):
if left event e1 is signaled
if E2's list is not empty,
forall e2 in E2 , propagate < e1,e2> to parents node;
insert e1 to E1's list;

E1's list = Max ( E1's list );

if e2 signaled
if E1's list is not empty,
for all e1 in E1 , propagate < e1,e2> to parents node;
insert e2 to E2's list;

E2's list = Max ( E2's list );

OR(E1, E2):
if e1 signaled , propagate < e1> to parents node.
if e2 signaled , propagate < e1> to parents node.

SEQ(E1, E2):
if e1 signaled
insert e1 to E1's list;
E1's list = Max ( E1's list );

if e2 signaled
if ( E1's list != empty )
for all e1 in E1's list such that e1 < e2,
propagate < e1, e2 > to parents node.

A, P(E1, E2, E3):
if e1 signaled
insert e1 to E1's list;
E1's list = Max ( E1's list );

if e2 signaled
if E1's list is not empty
for all e1 in E1's list such that e1 < e2,

propagate < e1, e2 > to parents node

if e3 signaled
delete all e1 in E1 such that e1 < e3;

A*, P*(E1, E2, E3):
if e1 signaled
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insert e1 to E1's list;
E1's list = Max ( E1's list );
delete all e2 with e1 < e2;

if e2 signaled,
if E1 is not empty and if for all e1 we have e1 < e2
insert e2;

if e3 signaled
if E2Less = e2 in E2 such that e2 < e3 is not empty
for all e1 in E1, propagate < e1, all e2 in E2Less, e3 > to parents node.

delete all e1 in E1, e2 in E2 such that e1 < e3 or e2 < e3.
else
for all e1 in E1, propagate < e1, e3 > to parents node.

delete all e1 in E1 such that e1 < e3.

NOT(E1, E2, E3):
if e1 signaled
insert e1 to E1's list;
E1's list = Max ( E1's list );

if e2 signaled
if E1 is not empty
delete all e1 in E1 such that e1 < e2

if e3 signaled
if E1 is not empty
for all e1 in E1 such that e1 < e3, propagate < e1, e3 > to parents.

delete all e1 < e3.
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Algorithms: Asynchronous Policy, Chronicle Context

OR(E1, E2):
if e1 signaled , propagate < e1 > to parents node.
if e2 signaled , propagate < e1 > to parents node.

AND(E1, E2):
if e1 signaled
if E2 != empty,
forevery e2 in E2 , propagate < e1,e2> to parents node;

delete e2 in E2;
else insert e1;

if e2 signaled
if E1 != empty,
for every e1 in E1 , propagate < e1,e2> to parents node;

delete e1 in E1;
else insert e2;

SEQ(E1, E2):
if e1 signaled
insert e1;

if e2 signaled
let SEQSet = e1 in E1 such that e1 < e2
if ( SeqSet != empty )
let minSeq = min(SEQSet);
for every e1 in minSeq, propagate < e1, e2 > to parents node.

delete all e1 in minSeq;

A, P(E1, E2, E3):
if e1 signaled
insert e1

if e2 signaled
let ASet = e1 in E1 such that e1 < e2
let minASet = Min(ASet);
if minAset != empty
for every e1 in minASet propagate < e1, e2 > to parents node

delete all e1 in minASet;

if e3 signaled
delete all e1 in E1 such that e1 < e3;

A*, P*(E1, E2, E3):
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if e1 signaled
insert e1;

if e2 signaled,
insert e2;

if e3 signaled
let ASet = e1 in E1 such that e1 < e2
let minASet = Min(ASet);
if minASet != empty
for every e1 in minASet,

let E2Set = e2 in E2, e1 < e2 < e3 ;
if E2Set != empty
propagate < e1, all e2 in E2Set, e3 > to parents node

delete all e1 < e3 and all e2 < e3

NOT(E1, E2, E3):
if e1 signaled
insert e1;

if e2 signaled
if E1 is not empty
delete all e1 such that e1 < e2;

if e3 signaled
let NOTSet = e1 in E1 such that e1 < e3
let minNOTSet = Min(NOTSet);
if minNOTSet != empty
let e1 in minNOTSet;
propagate < e1, e3 > to parents.

delete all e1 < e3
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Algorithm for the Asynchronous Policy, Continuous Context

OR(E1, E2):
if e1 signaled , propagate < e1 > to parents node.
if e2 signaled , propagate < e1> to parents node.

AND(E1, E2):
if e1 signaled
if E2 != empty,
for every e2 in E2 , propagate <e2,e1> to parents node;

ush E2's bu�er;

else insert e1;

if e2 signaled
if E1 != empty,
for every e1 in E1 , propagate < e1,e2> to parents node;

ush E1's bu�er;

else insert e2;

SEQ(E1, E2):
if e1 signaled
insert e1;

if e2 signaled
let SEQSet = e1 in E1 such that e1 < e2
if ( SeqSet != empty )
for every e1 in SeqSet, propagate < e1, e2 > to parents node.

delete all e1 in SeqSet;

A, P(E1, E2, E3):
if e1 signaled
insert e1

if e2 signaled
let ASet = e1 in E1 such that e1 < e2
if Aset != empty
for every e1 in ASet propagate < e1, e2 > to parents node

if e3 signaled
delete all e1 in E1 such that e1 < e3;

A*, P*(E1, E2, E3):
if e1 signaled
insert e1;
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if e2 signaled,
if E1 is not empty and E1's head < e2
insert e2;

if e3 signaled
let ASet = e1 in E1 such that e1 < e3
if ASet != empty
for every e1 in ASet,
let E2Set = e2 in E2, e1 < e2 < e3 ;
if E2Set != empty

propagate < e1, all e2 in E2Set, e3 > to parents node
else
propagate < e1, e3 > to parents node

delete all e1 < e3 and all e2 < e3

NOT(E1, E2, E3):
if e1 signaled
insert e1;

if e2 signaled
if E1 is not empty
delete e1 such that e1 < e2;

if e3 signaled
let NOTSet = e1 in E1 such that e1 < e3
if NOTSet != empty
for each e1 in NOTSet;

propagate < e1, e3 > to parents.
delete all e1 < e3
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Algorithm: Asynchronous Policy, Cumulative Context

OR(E1, E2):
if e1 signaled , propagate < e1 > to parents node.
if e2 signaled , propagate < e1 > to parents node.

AND(E1, E2):
if e1 signaled
if E2 != empty,
propagate < all e2 in E2, e1> to parents node;

ush E2's bu�er;

else insert e1;

if e2 signaled
if E1 != empty,
propagate < all e1 in E1,e2> to parents node;

ush E1's bu�er;

else insert e2;

SEQ(E1, E2):
if e1 signaled
insert e1;

if e2 signaled
let SEQSet = e1 in E1 such that e1 < e2
if ( SeqSet != empty )
propagate < all e1 in SEQSet, e2 > to parents node.
delete all e1 in SeqSet;

A, P(E1, E2, E3):
if e1 signaled
insert e1

if e2 signaled
let ASet = e1 in E1 such that e1 < e2
if Aset != empty
propagate < all e1 in ASet, e2 > to parents node
delete e1 in ASet;

if e3 signaled
delete all e1 in E1 such that e1 < e3;

A*, P*(E1, E2, E3):
if e1 signaled
insert e1;



73

if e2 signaled,
if E1 is not empty and E1's head<e2
insert e2;

if e3 signaled
let ASet = e1 in E1 such that e1 < e2
if ASet != empty
let E2Set = e2 in E2, e1< e2<e3 for all e1 in Aset
if E2Set != empty
propagate < all e1 in Aset, all e2 in E2Set, e3 > to parents node
delete all e1 < e3 and all e2 < e3

else
propagate < all e1 in Aset, e3 > to parents node
delete all e1 < e3

NOT(E1, E2, E3):
if e1 signaled
insert e1;

if e2 signaled
if E1 is not empty
delete all e1 such that e1 < e2;

if e3 signaled
let NOTSet = e1 in E1 such that e1 < e3
if NOTSet != empty
propagate < all e1 in NOTSet, e3 > to parents.
delete all e1 < e3
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Algorithm: Simpli�ed \Total" Asynchronous Policy, Recent Context

procedure Max1(Elist, e) : �nd the max one time stamp in Elist and e.

AND(E1, E2):
if left event e1 is signaled
if E2's list is not empty,
propagate < e1,e2> to parents node;

E1's list = Max1 ( E1's list, e1 );

if e2 signaled
if E1's list is not empty,
propagate < e1,e2> to parents node;

E2's list = Max1 ( E2's list, e2 );

OR(E1, E2):
if e1 signaled , propagate < e1 > to parents node.
if e2 signaled , propagate < e1 > to parents node.

SEQ(E1, E2):
if e1 signaled
E1's list = Max1 ( E1's list, e1 );

if e2 signaled
if ( E1's list != empty ) and (e1 = E1's head < e2 )
propagate < e1, e2 > to parents node.

A, P(E1, E2, E3):
if e1 signaled
E1's list = Max1 ( E1's list, e1 );

if e2 signaled
if E1's list is not empty and e1 = E1's head < e2
propagate < e1, e2 > to parents node

if e3 signaled
delete all e1 in E1 such that e1 < e3;

A*, P*(E1, E2, E3):
if e1 signaled
E1's list = Max1 ( E1's list, e1 );
delete all e2 with e1 < e2;

if e2 signaled,
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if E1 is not empty and if E1's head < e2
insert e2;

if e3 signaled and e1= E1's head < e3
if E2Less = e2 in E2 such that e2 < e3 is not empty
propagate < E1's head, all e2 in E2Less, e3 > to parents node;

ush E1, delete e2 in E2 such that e2 < e1;

else
propagate < E1's head, e3 > to parents node;


ush E1;

NOT(E1, E2, E3):
if e1 signaled
E1's list = Max1 ( E1's list, e1 );

if e2 signaled
if E1 is not empty

ush E1 if E1's head < e2

if e3 signaled
if E1 is not empty and E1's head < e3
propagate < E1's head, e3 > to parents


ush E1
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Algorithm: Simpli�ed \Total" Asynchronous Policy, Chronicle Context

min1(Elist): return the one of the event from Elist with the minimum time stamp.
minLess1(Elist, e): return the one of the event from Elist with the minimum time
stamp that less than e.
OR(E1, E2):

if e1 signaled , propagate < e1 > to parents node.
if e2 signaled , propagate < e1 > to parents node.

AND(E1, E2):
if e1 signaled
ifE2 != empty,
let e2 = min1(E2);
if ( e2 != NULL )
propagate < e1,e2> to parents node;

delete e2 in E2;
else insert e1;

if e2 signaled
if E1 != empty,
let e1 = min1(E1);
if ( e1 != NULL )
propagate < e1,e2> to parents node;

delete e1 in E1;
else insert e2;

SEQ(E1, E2):
if e1 signaled
insert e1;

if e2 signaled
let e1 = minLess1(E1, e2)
if ( e1 != NULL )
propagate < e1, e2 > to parents node.
delete e1 in E1;

A, P(E1, E2, E3):
if e1 signaled
insert e1

if e2 signaled
let e1 = minLess1(E1, e2)
if e1 != NULL
propagate < e1, e2 > to parents node;

delete e1 in E1;
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if e3 signaled
delete all e1 in E1 such that e1 < e3;

A*, P*(E1, E2, E3):
if e1 signaled
insert e1;

if e2 signaled,
if E1 is not empty and E1's head < e2
insert e2;

if e3 signaled
let e1 = minLess1(E1, e3);
if e1 != NULL
let E2Set = e2 in E2, e1 < e2 < e3 ;
if E2Set != empty
propagate < e1, all e2 in E2Set, e3 > to parents node

else propagate < e1, e3 > to parents node
delete e1, delete all e2 < e3

NOT(E1, E2, E3):
if e1 signaled
insert e1;

if e2 signaled
if E1 is not empty
delete all e1 such that e1 < e2;

if e3 signaled
let e1 = minLess1(E1, e3);
if e1 != NULL
propagate < e1, e3 > to parents.

delete e1;
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