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Active feature is typically incorporated into a DBMS by ECA (event-condition-

action) rule abstraction. The design of an active DBMS for a particular application entails 

the design of schema of the database for that application as well as ECA rules that 

correspond to business rules, constraints, invariance, and situations to be monitored in 

that application. Although schema design can be done statically based upon the 

application requirements, the design of ECA rules requires that the rules be validated with 

respect to transactions and applications, as there is semantic interaction between rules 

and applications. Furthermore, as the application evolves, there is a need for modifying 

(inserting, altering, or deleting) the business rules as the policies and other requirements 

of the application changes. 

This thesis continues our previous work on the visualization tool as well as our 

work on interfaces to ADBMSs along several dimensions. We envision our visualization 

tool as a general purpose one that is useful not only for the designer of ECA rules but also 

for visualizing the behavior of the ADBMS from an end users’ viewpoint. For the 



 vi

designer of the rules, the tool will behave as a debugger and a regression analysis tool at a 

higher level of abstraction as compared to conventional debugging tools (such as dbx). On 

one hand, the designer is interested in understanding events and rules relevant to a 

particular transaction/application, order of rule execution, interaction among rules, and 

potential cycles among the set of rules. The ability to interact with the tool is critical from 

a designer’s viewpoint. On the other hand, for an end user, the actual set of rules 

executed, the policies enforced for a particular application, and whether policies interact 

inconsistently are important.  

Whether it is a visualization tool or an application interface, multi-platform 

compatibility as well the ability to use the tool/interface from the web is critical. Also, in 

our opinion, a general-purpose mechanism for connecting interfaces on the web to 

applications running on different machines is very important.  

This thesis concentrates on two aspects: 1) architecture and development of a 

general-purpose lightweight proxy that enables us to support interfaces on the web. 2) 

design and development of an interactive visualization tool for ADBMSs. The tool is 

intended both as a debugging tool and a visualization tool and is developed in such a way 

that it can be easily used with other components of the Sentinel system. The tool allows 

the designer/user to set breakpoints on events occurrences and rule execution. It is also 

possible to enable or disable events and rules. The priority and other attributes of rules 

can be changed interactively to study the behavior of rule interaction among themselves 

and with transactions/applications. The tool also provides a facility to track potential 

cycles with respect to a rule or an event. 
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CHAPTER 1  
INTRODUCTION 

1.1 Active Database Systems and GUI tool 

Over the last decade database management systems (DBMSs) have evolved to 

meet the diverse requirement of the application domains. One of the extensions has been 

to monitor the user-defined situations specified to the application and notify the changes 

to the user automatically. Conventional DBMS, which do not have this capability, are 

considered passive. Commercial database systems currently provide limited active 

capability, such as the triggering of procedural code when database operations are 

performed on tables (e.g., insert, delete, and modify). The realization of full-featured 

active database capability would allow more sophisticated database support of 

nonstandard database applications, such as computer integrated manufacturing, office 

workflow control and others. 

Active capability in DBMSs can benefit from clever management of Event-

Condition-Action (ECA) rule abstraction, which consists of three components: an event, a 

condition, and an action. This research is based on the ECA rule environment in Sentinel, 

which is an object-oriented active DBMS.  

The introduction of active capability into a database system has added a new 

dimension to the validation or analysis tool. For the traditional DBMS, we used to have 

only schema design for the application and the main usage of the validation tool was just 
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browsing the data returned as a result of user request. In contrast, in active database 

systems, we have schema design as well as rule design for the application that uses active 

capability. The schema design for an applications can be done statically with respect to 

the application semantics; However, the design of ECA rules requires that the rules be 

validated with respect to transactions and applications, as there is semantic interaction 

between rules and applications. Besides, regression analysis is important in ADBMS. 

Addition and deletion of rules is needed as business rules change over a period of time in 

an application. A tool is needed to help the designer to understand the impact of changes 

in rules within application. The same tool should also help the end user understand the 

correction of rule executed for an application. 

The additional analysis feature for rule design includes the cycle detection utility. 

When an application has cyclic rule definitions, any transaction that triggers the cyclic 

rule set may not terminate in a normal way. This should be captured in the visualization 

tool so that user can use the additional debugging feature to inspect potential cycles in 

rule execution. 

1.2 Motivation 

The previous version [1] of the visualization tool supported only post-execution 

analysis of an application. There were no mechanisms to allow users to interrupt the rule 

execution and change the state of business rules at run time. But, for the rule analysis, it is 

critical that the visualization tool should not only show what is happening in LED(Local 

Event Detector) in terms of event occurrence and rule firing, but also allow user to enable 

or disable rule at the various rule execution points. 
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Another issue of user interfaces in Active DBMS is how we can connect the 

interfaces to a web-based distributed environment. Among today’s information 

technologies, it is apparent that the Internet has incredible potential to form the basis or 

foundation of an infrastructure. Internet has greatly expanded with a short time period, 

and it is still expanding at a high rate today. A more interesting issue of the Internet is the 

foundation of the client/server infrastructure. Internet can be explored to become a 

gateway for the applications between the different computing environment. But, the issue 

of interaction with a remote database application through the Internet has posed 

interesting problems for many practitioners and researchers, especially in the area of 

security, reliability, and performance of web-based database systems. The previous works 

tried to address this problem by introducing a 3-tier architecture and the concept of a 

proxy [1]. The idea behind a 3-tier architecture is to separate the service logic from the 

application logic. User application does not include the service logic to operate once it 

knows how to request the service from the systems, which have all the details of the 

service logic. The obvious benefit of this approach is that the boundaries of active 

database system are no longer limited to only one platform. This also saves a lot of time 

and effort in porting the system from one platform to another platform. But, the 

implementation could not completely generalize the approach to connect user interfaces 

to the web. Proxy developed in previous work was not extendible to solve some of the 

issues, because of the security restriction in web-based applet imposed by Java. In this 

work, Proxy concept has been extended to generalize GUI architecture for Sentinel on the 

web. 
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Another issue addressed in this thesis is the integration of nested transaction 

model into visualization tool. The previous work does not properly define output scheme 

of rule execution to reflect what is happening in LED. The output scheme was not 

extensible to show the nested subtransaction model and help the user easily understand or 

analyze the state of rule execution. After nested transaction model in LED was integrated 

in Sentinel, corresponding changes had to be made in LED to present the nested 

transaction model correctly into debugging environment. 

Termination is another issue that must be addressed by any active rule-debugging 

tool since common symptom of erroneous rules is recursive execution of rules that does 

not terminate. As rule behavior is usually determined at run time and each event and 

condition behavior of a rule is not fixed at compile time, it is hard to predict whether the 

rule execution results in non-terminating cycle. The prediction of rule execution is even 

more difficult when we take into account different event propagation contexts, and the 

semantics of event operators. A termination analysis utility has been implemented in this 

thesis will be discussed in detail. 
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CHAPTER 2  
OVERVIEW OF LED (LOCAL EVENT DETECTOR) 

Validation or analysis tools that we intend are closely related to the local event 

detection module because the tools essentially show what is happening in the LED. 

Therefore, it is necessary to give an overview of LED before we discuss the design issues 

of the tool for a better understanding of subsequent chapters. In this chapter, we overview 

the LED module of Sentinel. 

Sentinel is an integrated active DBMS incorporating ECA rules using the Open 

OODB Toolkit (from Texas Instruments). Sentinel allows users to specify events and rules 

at an abstract level using the snoop event and rule specification language, which is 

incorporated into an application written in C++. Any method of an object class can be a 

potential event generator (in our case, primitive event). To identify when the events are 

generated inside methods as primitive events, event modifiers were introduced in Snoop 

[2]. Event graphs are used to detect composite events that are defined by applying a set 

of operators to primitive events and composite events, recursively. 

In Sentinel, Several rules can be defined on the same event in different contexts, 

rather than duplicating event for each context. 
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2.1 Types of Event detected by LED 

2.1.1 Primitive Events 

Events are classified into i) primitive events which are pre-defined in the system 

and ii) composite events that are formed by applying a set of operators to primitive and 

composite events. Primitive events are further classified into domain specific (e.g., 

database), temporal, and explicit events. 

Database domain events correspond to database operations, such as retrieve, 

insert, update and delete in a RDB or a method invocation in an OODB. 

Temporal events are classified into absolute and relative events. An absolute 

temporal event is specified with an absolute value of time using the format 

<(hh/mm/ss)mm/dd/yy>. The field can be filled with wild card(*). A relative event is a 

unique point of time event which is defined by a reference event and an explicitly 

specified offset. The syntax for a relative event is event + <(hh/mm/ss)mm/dd/yy>. 

Explicit events are those events that are detected along with their parameters 

within application programs. Any method of an object class can be an explicit event. 

Once registered with the system, they can be used as primitive events. 

2.1.2 Composite Events 

Composite events that are formed by applying a set of operators to primitive and 

composite events, recursively. The operators of Snoop are OR, AND, ANY, Seq, Not, 

Aperiodic, and Periodic. Periodic and aperiodic operators were introduced to meet the 

requirements of process control, network management, and CIM applications [2]. 
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2.2 Composite Event Detection 

A sequence of primitive event occurrences (over a period of time) may make a 

composite event occur in LED. Hence, the local event detector needs to record the 

occurrence of each event and save its parameters so that they can be used to compute the 

parameter set of the composite event.  

Sentinel constructs an event tree for each composite event. The trees are merged 

to form an event graph to detect a set of composite events. Event propagation is 

performed in a bottom-up fashion. Leaf nodes of an event graph corresponds to primitive 

or external events. Internal nodes correspond to event sub-expressions. Each node has a 

list of subscribers to whom it has to notify when the event denoted by that node is 

detected. 

The notion of parameter contexts is introduced to capture application semantics 

for consuming event occurrences of composite events. The event detection can be varied 

according to the parameter context of the constituent events and the event. These 

contexts are precisely defined using the notion of initiator and terminator events. An 

initiator of a composite event is a constituent event, which can start the detection of the 

composite event, and a terminator is a constituent event, which completes the detection 

of an composite event occurrence. We have identified 4 contexts - Recent, Chronicle, 

Continuous, and Cumulative context, to meet the various characteristics of the 

applications. Each context [2] is summarized below. 

RECENT: In this context, only the recent occurrence of the initiator for any 

event that has started the detection of that event is used. An initiator of an event 
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(primitive or composite) will continue to initiate new event occurrence until a new 

initiator occurs. 

CHRONICLE: In this context, the initiator of the given event can be paired with 

a unique terminator of the event. The parameters are computed by using the oldest 

initiator and the oldest terminator of the event. This context preserves the chronological 

order of event pairings. 

CONTINUOUS: Each initiator of an event starts the detection of that event. 

Multiple initiator can be paired with a single terminator. 

CUMULATIVE: All occurrence of an event type are accumulated as instances of 

that event until a terminator is detected. When the terminator event is detected, all the 

occurrences that are used for detecting the event are packaged and propagated along the 

event graph. 

2.3 Rule Processing 

Rules are specified at class definition time as a part of an application. The class-

level rule specification is pre-processed into C++ statements and inserted into the 

application program. Sentinel also supports rule activation and deactivation at run time. 

When an event occurs in the database system, the rules that subscribe to that 

event are triggered. A simplistic approach would be to let all the rules that have been 

triggered by this event to run one at a time sequentially. The whole process can be done 

in the same transaction that triggered the event. The disadvantage of this approach is that 

it cannot support concurrent or parallel rule execution associated with one event in order 

to maximize the throughput. All the rule executions are serialized and executed 

sequentially. It also does not support any dynamic rule execution based on the priorities 
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of each rule. Briefly, in the nested transaction model, when an event occurs, the 

corresponding condition evaluation and action execution is treated as a separate thread 

and the thread execution in turn fires other rules as child sub-transaction. If an event is 

associated with several rules and rules have the same priority, then multiple threads are 

created and executed concurrently.  

Rules are typically specified with a priority. A scheduler, based on the rule 

priority, controls the execution of the rule thread. If several rules have the same priority, 

we have concurrent execution of the rules. This may result in conflicting access to the 

same data item. To deal with this problem, the nested transaction model executes a rule 

thread as a sub-transaction and uses the transaction synchronization scheme. Sentinel has 

a lock manager for the purpose of concurrency control. When the scheduler wakes up, it 

allows the rule with the highest priority to execute first. The order of rule execution can 

be varied according to the relative priority of its sibling rules. 

Coupling mode specifies the point of time after the event occurrence when 

condition evaluation and action execution begin. Sentinel supports both immediate and 

deferred coupling modes to specify the semantics of a rule execution. Immediate coupling 

mode rule is executed at the point where the event occurs, while deferred coupling mode 

rule is executed at the end of the transaction.  

Once an event is detected, a set of rules may be triggered. For each rule that 

qualifies, a separate thread is created in suspended state and inserted into the rule list [3]. 

The placement of rules in the list depends on the coupling mode, its parent and its 

priority. The rules are inserted in decreasing order of priority. Also the process-rule-list is 

sub-divided into two sections, one for rules with immediate coupling mode and the other 
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for rules with deferred coupling mode. All top level deferred rules triggered by rules 

executing with immediate coupling are put into cycle-1. All rules triggered from a 

deferred rule are assigned the next cycle number. 

After event notification inserts the associated rules into the rule list, it wakes the 

scheduler and the rules are scheduled based on their priorities and coupling mode. The 

scheduler traverses the process-rule-list to schedule the threads. Th ‘notify’ function 

waits until all triggered rules in the immediate coupling mode finish execution.  

Because rule execution proceeds in a depth first manner, if a fired rule has an 

immediate coupling mode, the state of parent transaction will be changed to 'wait' until 

the child sub-transactions finish their execution. Only after the execution of these rules, 

the suspended triggering transaction can continue. 

If the rules are created in deferred mode, threads for the rules are created but are 

not scheduled right away. The triggering rule proceeds normally and before the commit of 

the top-level transaction, all of the deferred rules are scheduled and executed. The 

triggering or top-level transaction does not commit until all deferred rules are executed. 

To process deferred rules, we define a rule which is triggered by the event - 

commitTransaction. This rule has an immediate coupling mode and has a priority of '-1'. '-

1' means that the execution of rule will start only after all immediate rule has been 

scheduled and finished. The execution sets the 'deferred-flag' flag so that scheduler can 

start to trigger the appropriate deferred rules in cycle-1 based on the scheduling 

algorithm. When a rule thread completes its execution, the corresponding rule node in the 

rule list is deleted. As a result, at the end of the top-level transaction, the rule list becomes 

empty [3]. 
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CHAPTER 3 
DESIGN ISSUES OF TOOL INTERFACE FOR ADBM 

3.1 Related Work 

In this chapter we provide a summary of the graphical user interfaces for active 

DBMSs found in current literature. This helps us identify the facilities for user interface 

or visualization tool for ADBMS and identify the limitations in those tools from our 

requirements. 

3.1.1 DEAR 

DEAR [4] keeps track of both rules and events. It automatically detects 

inconsistencies and potential conflicting interactions among rules. To provide a more 

focused tracking, DEAR has a "pruning" feature to reduce the scope of tree shown by the 

debugger. Debugging can be restricted to certain rules and/or events. For detection of 

inconsistencies and conflict interaction, DEAR can point out potential cycle by 

highlingting the branch where an event occurs twice. 

But, the approach taken by DEAR has a limitation that it works only for primitive 

events, such as insert, delete, update, and the rules defined over these events. DEAR 

creates a graph consisting of rules and event nodes, where event nodes alternate with rule 

nodes. An arc from an event node to a rule node means that the event triggers the rule. 

And an edge from a rule node to an event node means that the event was produced by the 

rules. The use of rules on primitive events makes the detection of cycles easier. In case of 



12 

 

composite event expression, such as AND, SEQ, A, A*, P, and P*, it is not always true 

that the event nodes alternate with rule nodes. Suppose we have e1, e2, and AND event 

of e1, e2, and we define a rule that triggers e1 when AND event occurs. The graph does 

not form a cycle with their approach. It seems that their approach does not consider the 

composite event expressions to keep the problem relatively simple. 

Second, they do not support interactive features that we feel is necessary for a 

debugger of this sort. In DEAR, events and rules are monitored and displayed at run-time 

without user interruption. The only user-initiated request that may alter the visualization 

is the “spy” command prior to execution. The extent of implementation is not clear from 

the literature. We are assuming that all of the features discussed are actually implemented 

in their system.7 

3.1.2 PEARD 

The debugging features of PEARD [5] also include detecting potential cycles in 

rule execution and a utility to examine different rule execution paths from the same point 

in the rule triggering process. This tool is similar to our visualization tool especially with 

respect to rule browsing, breakpoint setting, and rule enabling/disabling. It detects the 

cycle by counting the repeated event occurrences. But, this approach does not 

differentiate the external events generated by the applications and the internal events 

coming from the nested rule execution. So, the probability of false cycles is not negligible. 

3.1.3 SAMOS 

SAMOS [6] has been implemented based on a layered architecture where all the 

components that implement the active behavior are built as a layer "on top" of a 

conventional passive database system. For the prototype implementation of SAMOS it 
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uses the commercial object-oriented database management system ObjectStore. SAMOS 

has its own rule definition language similar to snoop in sentinel to specify ECA-rules. 

Event detection & notification is performed using the petri-net mechanism. In SAMOS, 

coupling modes are specified separately when the condition is evaluated with respect to 

the trigger transaction and when associated action is executed with respect to the 

condition evaluation. In Sentinel, condition evaluation and rule execution are treated as 

one sub-transaction, which is executed in a thread, and the coupling mode is defined 

between the event and the sub-transaction. SAMOS has several tools, such as a rule 

analyzer, a rule browser and a rule explanation component. The rule browser retrievers 

the rulebase by performing queries over the rulebase. It shows individual rules, events, 

actions and conditions, and allows the selection of items which meet various desired 

criteria. In addition, for a primitive event the event browser indicates the list of composite 

events it is participating in. When an event, condition, or action is selected from the rule 

body description, the appropriate browser is activated. The event browser displays the list 

of composite events an event participates in and the list of composite events. The 

condition browser shows the list of all conditions, the list of rules the selected condition 

belongs to, and also the body of any selected item, i.e., the corresponding source code.  

It also supports the detection of cyclic rules as part of utilities. The termination 

analyzer assists users in checking the termination of rules. It investigates rule definitions 

at compile time and determines whether rules could potentially trigger each other 

indefinitely, i.e., it detects and visualizes potential loops that could occur during the 

execution of an application. This information helps the rule designer to decide whether 

the rule set must be changed. One limitation they have is that they do not differentiate the 
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internal event from the external event because they do not support the nested transaction 

model. Therefore, the probability of false cycles is not negligible. It is also not clear from 

the literature how much of the visualization tool has been implemented. 

3.2 General design requirements of our approach 

Below, we enumerate some general design requirement for the visualization tool 

and Sentinel user interface. 

1. The tool should support different user perspective. Rule designers need to 

understand the details of the system’s modules, trace the execution, discover 

existing or potential errors and correct the errors if necessary. Their interests 

go well beyond a specific application’s running behavior. On the other hand, 

the end users are more interested in the running behavior of an application. 

The user interface is meant to highlight information related to an application 

without irrelevant data.  

2. Portability has become an important factor in present day’s software arena. 

Users should be able to run the tool in stand-alone on Unix or NT as well as in 

a web-based environment. In addition, running environment should be 

transparent to users in terms of usage. User should not be burdened with 

additional settings for each environment. Scalability of the architecture should 

be taken into account to make the tool available in multiple settings.  

3. The tool should provide multiple modes of usage so that the user can choose 

the mode that is appropriate for his/her need. The tool at the least needs to 

support run-time and post-analysis trace modes. In addition, the interactive 
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mode will be helpful to debug rule set at run time. A detailed description of 

each mode will be given in Chapter 5. 

4. The tool should be able to support visualizations of different applications as 

well as multiple visualization of the same application in a distributed setting. 

This will allow multiple users to observe and interactively debug the rules 

defined for different applications. Multiple visualization on different 

applications as well as multiple users should be supported by the tool. 

3.3 Specific Design Consideration for the Visualization tool  

When we consider the debugging context of sentinel, we need to take into account 

the following specific design consideration. 

1. Facilities for understanding of ECA rule abstraction: When an event triggers a 

rule and the rule executes the action, the task of the user interface is to demonstrate 

the situation changes and convey them to users graphically. It is advantageous to 

couple action-oriented GUIs with the rule system for better understanding of ECA 

abstraction. 

2. Attaching graphical objects to Sentinel objects: Each graphical object corresponds 

to an event node in the event graph of LED. Users can query or browse the objects 

simply by selecting the object with the mouse. This feature helps a user to check the 

component of each event and rule, not in the text form but in the graphic form and 

decide where to put break points or which event or rule is temporarily disabled in 

order to eliminate the potential infinite cycle. The process of debugging an active 

database application is not sequential and each operation is not executed sequentially, 
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as in a conventional programming language. Hence, an ability to browse is 

fundamental and important as part of the visualization of an active database. 

3. Rule and event interaction: The visualization tool is mainly used to help the user to 

see the interaction among rules and events in an ADMBS. When event(s) occur, the 

corresponding rules are triggered. And rule may raise an event, which in turn raises 

the rules to invoke other events. Without visual aid, this interaction is too complicated 

to analyze and understand. The causal relationship between event occurrence and rule 

execution should be explicitly shown to the user in order to understand the 

interaction.  

4. Presenting nested rule execution to user: In Sentinel, rule execution (i.e., condition 

and action portions of a rule) is done in a sub-transaction. Sub-transactions can be 

nested to arbitrary levels and are represented by a n-ary tree. The transaction tree 

grows in a top-down way.  The sibling sub-transaction is positioned side by side and 

child sub-transaction is located below the parent sub-transaction to show the 

relationship of each transaction. In addition, visualization tool should show the 

execution of rules graphically preserving the triggering order and current state 

(suspend or commit) of each sub-transaction. 

5. Rule debugging scope: A user can change the scope of rule that he/she wants to 

monitor. When a user has an interest in only particular rules and events, the tool 

should be able to eliminate the unnecessary parts from the user view so as not to 

disturb the interesting part. 

6. User intervention in application: We need a graphical tool that allows the user to 

intervene during the execution of application for debugging purpose. Users may want 
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to change the rule execution path by changing the order of priority, disabling/enabling 

some rules or events. This facility is similar to changing a variable value in dbx to 

observe what is going on. After we change a variable value in dbx, we can observe 

the change in control flow, or debug the specific function call routine at run time. 

Analogously, the tool should be able to provide mechanisms to change the 

characteristics of rules and events (enable/disable, change in priority, change in 

coupling mode etc.) at a level of abstraction that is appropriate for the active database 

usage. 

7. Presenting potential cyclic rule set to user: When the tool detects a cycle in rule 

execution, it should give a warning with an appropriate description to the user to help 

analyze the situation. The warning message includes the scope of rules and events 

which the user can concentrate on to find the loop. This feature assists users in finding 

the cyclic rule set.  

8. Using the Tool in a Distributed Environment: Allowing several tools to visualize 

and explore the same rule set simultaneously would be another interesting direction. 

Starting several (at least two) visualization tools or user interfaces, loaded with the 

same rule sets, but having different set of events to view by pruning operation or 

different aspect of rule set, would be helpful for debugging rule sets. Each 

visualization tool would be responsible for the actual visualization of corresponding 

rule set, but operations such as breakpoint, disable, enable operation or generating 

reports, etc, would be distributed to all other connected visualization tools or clients. 

User action would be packaged into message from the tool and sent to LED module. 
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9. Just-In-time display:  If we have only one process to receive the run-time 

information such as triggering event, firing rules, starting a new sub-transaction, the 

delay due to parsing the input, deciding what it should display, and drawing the result 

on canvas, may result in loss of some information or yield unwanted effects. There 

can be visible drawing latency and flicker. This becomes unsatisfactory when there 

are many images being updated frequently. A good animation should be smooth and 

flicker-free. To solve these kinds of problems, the tool should separate each job and 

assign it to a separate thread to work in parallel. The tool should have a receiving 

thread, a parsing thread, and drawing threads taking charge of each part. To get 

smoothness and flicker-free graphics, it is important to use the double buffering 

technique. Doubling buffering technique is frequently used in many 3D image-

rendering software. While one buffer is used to display on the screen, the rendering 

process writes the rendering result into the other buffer. The role of buffer is switched 

when the rendered buffer completes. In the same way, the tool should use two 

buffers, one for drawing image, one for showing the result. While drawing thread 

works on one image buffer, the other buffer is used to display on canvas. 

10. Scrolling: Sentinel uses the nested transaction model for rule execution. Nested rule 

execution can happen to any depth and concurrent rule execution can create any 

number of sibling sub-transactions. Sibling sub-transactions are positioned side by side 

and child nested transactions are positioned bellow the parent sub-transaction to show 

the relationship of each transaction graphically. So, it often happens that the currently 

executing transaction is drawn outside of canvas. Hence, the tool should give control 



19 

 

to the user to shift the view to any point on the virtual (or logical) canvas. Using 

horizontal and vertical scroll bar, a user can shift the view to anywhere he/she wants. 
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CHAPTER 4 
ISSUES OF EXPLANATION TOOL ON THE WEB 

First we discuss the different scenarios where we want to use the user interface 

for sentinel and identify the requirements. After that, we summarize the issues related to 

making our interfaces available on the web and explain how the proxy concept was 

extended to generalize the approach. In the last section, implementation choices and 

details of proxy will be presented. 

4.1 Transparency Requirement for User Interface 

Figure 4-1 shows two different environments where Java user interface interacts 

with sentinel applications. Figure 4-1(a) illustrates the typical environment where each 

application and GUI creates a socket to listen to the incoming message, communicating in 

both directions. Provided that the GUI knows where each application is executing and 

applications know where the GUI waits for notifications in some way, applications and 

GUI might run on the same machine or on different machine.  

Figure 4-1 (b) demonstrates the need for additional requirements for environments 

other than the one shown in Figure 4-1 (a). In short, a GUI should be able to run on top of 

a browser and communication channel between GUI and applications goes through web. 

This thesis defines ‘Distributed Web environment’ as follows. GUI element runs on web 

browser and applications run on remote machines, while bi-directional communication 

between GUI and sentinel applications is established through the web server.  
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The difficulty in supporting both scenarios uniformly is due to the differences in 

the communication model. In the first scenario, the communication follows the typical 

client/server model. GUI creates a socket to wait for incoming messages. The applications 

can reach the machine and port where GUI binds the socket. However, in the second 

scenario, a GUI on top of a browser cannot create a socket to wait for incoming message 

as in the first case. The communication model supports request/reply paradigm. A GUI 

on top of a browser can receive messages only when it requests or initiates an operation. 

So, applications cannot send asynchronous messages to a GUI as in the first case. 

 

Figure 4-1 Distributed Environment  vs Distributed Web environemnt 

This thesis proposes a generalized architecture that supports both scenarios and 

furthermore makes the approach transparent to the user. User interface can be executed 

on any standalone machine. In addition, when the same user interface is used through 

web, the same code can be used in the same way, without recompilation. We generalize 
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the communication channel between a GUI and applications to satisfy both scenarios 

uniformly. 

4.2 Proxy 

In the previous section, we discussed the one example scenario related to security 

restrictions of GUI on top of browser. In short, the restrictions are as follows: 

1. Current commercial browsers do not allow the downloaded applet to open a 

listening port for accepting connections. This restriction comes from the fact that 

Java applets run on a virtual machine in the browser, which insulates them from 

direct contact with the host system. This so-called ‘sandbox’ around the applet 

enforces restrictions that prevent it from interfering with the host. 

2. Applets on top of a browser cannot create a server socket as it is normally done 

and cannot receive messages without initiating a request. Messages can only be 

received after initiating a connection or interaction with the host web server. It 

cannot play a role as a server and wait for incoming messages 

3. Applets are not allowed to open network connections to any computer, other 

than the host that provided the class files. This is the host from where the html 

page and applets came from [7]. 

We apply a 3-tier architecture to overcome these 3 restrictions which are common 

in distributed web environment. For example, in Figure 4-1 (b), GUI on top of browser 

cannot create a server socket to wait for notification, cannot receive asynchronous 

messages, and directly communicate with applications if the applications execute behind 

the firewall. These are the reasons why we need to extend the proxy to overcome these 

restrictions. 
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The scenario in Figure 4-2 illustrates the need for proxy, which is related to the 

first and second restriction. Suppose a remote process running on another machine (than a 

Web-server host) wants to send a message to the applet. How does the process know 

where the applet is running? Java class files are treated as HTML files in web 

environment. So, After the Web server transfers the requested Java class file, it does not 

keep track of who is reading the HTML or executing the applet. This is the reason why 

applet cannot receive any asynchronous message unless it connects back to the web 

server host and registers itself. Again, if we have an intermediate server that keeps track 

of applets between remote processes and applets, then remote process can send 

asynchronous messages to these applets.  

 

Figure 4-2 Proxy 

Here is another scenario to illustrate the need for a proxy server. Suppose an 

applet GUI wants to send a message to a remote process running on another machine. 

This scenario is drawn in Figure 4-2. Because of the third restriction, the applet cannot 

establish a connection to the specific machine directly and cannot send a message. But, If 
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we have an intermediate proxy server between GUI and the application to which the 

applet would connect, then messages can be delivered or transferred through the proxy. 

In addition to security restrictions, we encountered another proxy issue in the 

web-based environment. We have Java applets as a front-end interface running on web 

browser. We want to let this applet launch the sentinel application either on the web 

server machine or on a remote machine. In other words, we want to have process control 

mechanisms similar to UNIX terminal on top of a browser. To achieve this goal, a proxy 

should have the capability to receive remote execution requests on behalf of the user 

through web channel and launch the specific process on the remote machine. Here, we 

have to consider security issues. We cannot let anyone access our URL and play with our 

applet, launching whatever he/she wants to run on our machine. This may damage our 

systems and lower the system capability. So, Usually in UNIX environments, to launch a 

process on a remote machine, systems ask user to give user name and password. This 

means only a legitimate user who has an account on the machine can launch a sentinel 

application. To circumvent this limitation, we restrict the kind of processes (actually this 

is just public links to processes), which user can invoke, and the proxy can launch only 

those processes after it receives the request. In summary, we developed our own proxy, 

which helps exchange message between applets and sentinel applications. Also, our proxy 

can launch sentinel applications on behalf of users in a limited way.  

4.3 Alternatives 

We can make the use of callback mechanism in CORBA [8] to accomplish our 

requirement. A callback reverses the client and server roles; it allows a client to become a 

server. Consequently any client can automatically receive callbacks. 
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Callback is a mechanism that allows one object in class A to call another object in 

class B that was passed when it was created to accomplish a job of its member function. 

The original purpose of a callback was to provide flexibility in the behavior of code. For 

example, you have file operations that list all the files with the extension of *.java, given 

a directory path. You may create a separate class to perform this specific operation. But, 

when you need a similar kind of utility that lists all the files with the extension of *.c; it is 

not a good design method to create another class for it in terms of code reusability. In 

Java, we can define one file operation class that lists all the files with some extension. 

When we define the class, the class does not know the filtering details. And we create 

separate class for each filtering operation that deals with filtering according to requested 

extension. We pass the instance B of that class to file operation object. Later, the object 

of file operation will call back the instance B when it needs a filtering method. 

This idea was extended in CORBA to make clients play the role of a server. A 

client would pass the object of its own interface to a server. When the server need to get 

the service of the client (in our case, receiving asynchronous message), it can get the 

service because the server has the proxy object to the client’s interface. Note that the 

proxy object in callback is not the same as proxy process in sentinel. A callback is an 

operation invocation made from a server to an object, which is implemented in a client. 

Such invocation allows servers to send information to clients without forcing clients to 

explicitly request the information [8]. 

The transmission of requests from a server to the client is possible because 

OrbixWeb maintains an open communications channel between client and server while 

both processes remain alive. 
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Many firewalls do not allow an application inside the firewall to receive 

connections from outside, so client applet downloaded to a machine behind such a 

firewall cannot use standard IIOP to receive callbacks from a server outside the firewall. 

OrbixWeb V3.0 introduces an optional extension to IIOP to allow the protocol to use bi-

directional connections. Client can receive requests from servers on the connection that 

the client originated to the server. 

It is possible to use OrbixWeb as underling communication infrastructure. But, 

this would add the system requirement (OrbixWeb product) to Sentinel for user 

interfaces. The original purpose of callback was to get access to client objects and invoke 

the methods of those objects. If we can avoid using another system and do similar work, it 

would be better not to use additional products.  Using OrbixWeb ( or a CORBA 

implementation) tools for this purpose would add additional processing overhead as well 

as significant increase in code size. Client applets only need a communication channel to 

get messages from Sentinel server side, show the message and send a user input to the 

server. So, we generalize the idea of how OrbixWeb works for callback service and 

implement our own callback service with socket communication. Actually, Our proxy can 

be viewed as a lightweight OrbixWeb daemon. 

4.4 Proxy Architecture 

We consider two alternative architectures to implement the proxy. The first 

architecture uses the fork, semaphore, and shared memory. The other one uses threads 

and one linked-list which stores the open connection. In this section, we present two 

different architectures and explain why we chose the second. 



27 

 

 

Figure 4-3 Comparison of Proxy Architecture 

Figure 4-3 (a) shows the first approach, using fork, semaphore, and shared 

memory. The proxy creates a child process for each client. It has one global semaphore to 

coordinate the child processes, and one inter-process shared memory to transfer message 

received by one child process to another child process. Initially, the child process is in 

wait state. When any child process receives a message from the client, it first put the 

message in the shared memory, wakes up the other child process that serves the other 

client, using the semaphore operation. At the same time, the awakened child process 

accesses the shared memory, gets the message and sends the message to the client it 

serves. Again, the state of child process is also changed into wait state after it sends the 

message to the destination. 

The second approach is shown in Figure 4-3(b). When a proxy receives the 

connection, it creates a daemon thread to serve each client and puts the socket 

connection with unique id into a global list. The socket connection that is on the list is not 

closed by the proxy until the client explicitly asks to close it or the client closes the other 
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end of the socket connection. Each daemon thread is given access privilege to look up the 

socket connection with a given id. When a proxy receives the request for transferring a 

message, it first looks up the list to find the destination socket connection with the id, 

which is contained in the message, and writes the message into that socket connection. 

This will wake up the client and the client processes the message according to its 

semantics. 

The first approach has been used for a while, but this architecture has several 

limitations. One is the size for shared memory. Each machine defines a minimum 

allocation size shared memory. If the size of shared memory requested does not match the 

requirement, the shared memory would not be granted. For this reason, the same proxy 

process may not work on other machine, which we experienced in the past. In some case, 

a machine may not have any more shared memory to grant. Then the first approach 

would not work at all. 

The other limitation is the number of semaphores required. The first approach uses 

a semaphore to coordinate the child processes. The number of semaphores needed is 

determined at run time. If we have 2 processes or 2-process groups to coordinate, then 

one semaphore would be sufficient. But, if we have 3 processes or 3-process groups to 

coordinate, one more semaphore is needed. In this way, the communication, such as 2-

way or 3-way, determines the number of semaphores needed. Therefore, we cannot make 

a general-purpose proxy using this architecture. 

Besides, the first approach cannot port directly to an NT operating system. The 

resources such as semaphore, shared memory and fork system calls are all specific to 
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each operating system. Also, the size of a process is also large when forked as compared 

to a thread and furthermore process switching is more expensive in case of a fork. 

All of the above limitations are overcome when we use the second approach. It 

does not employ semaphores and shared memory, so the size of the semaphore or 

availability of shared memory would not cause any malfunction. Only necessary function 

is coordination in accessing the list, but if we implement this approach in Java, we can 

make use of Java object monitor or synchronized keyword to prevent simultaneous access 

and manipulation of data structures. In addition, the same code can be used on multiple 

platforms. 
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CHAPTER 5 
IMPLEMENTATION OF VISUALIZATION TOOL 

First we briefly summarize the overall architecture of Sentinel to understand how 

the Visualization tool works and interacts with other functional modules. After that, this 

chapter discusses the implementation details of the visualization tool, adapted to the 

proxy architecture presented in chapter 4 to make the tool available both on a standalone 

machine as well as on the web. Finally, our approach to termination analysis that includes 

the composite events will be presented. 

5.1 Sentinel Architecture  

The sentinel architecture [9] shown in Figure 5-1 extends the passive Open OODB 

system. The Open OODB toolkit uses Exodus as storage manager and supports 

persistence of C++ Objects. Concurrency control and recovery for the top-level 

transaction are provided by the Exodus storage manager. Sentinel has extended the 

skeletal transaction manager of Open OODB to a full-fledged transaction manager to 

support the nested transaction model and maintain a separate lock table for providing 

concurrency control at the sub-transaction level. There is no recovery at the nested sub-

transaction level. 

Detection of primitive events is achieved in Sentinel by adding Notify (a method 

call to the event detector class) into the wrapper method generated by the Open OODB. 

A local event detector has been implemented to detect composite events. The event 
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detector is implemented as a class and each Open OODB application has a single instance 

of the local event detector. 

 

Figure 5-1 Sentinel Architecture 

A Snoop pre-processor is used to extend the user class definitions as well as 

application code. It processes the ECA rules specified in Snoop language as a part of a 

class definition or as part of an application. It converts the high-level event-rule 

specification into appropriate code for event detection, parameter computation, and rule 

execution. Snoop pre-processor also generates two additional files, one for the dynamic 

rule editor and another for the visualization tool. The file for the dynamic rule editor 

contains a list of potential events and keeps it current as the application is recompiled. 

This information is used by the dynamic rule editor for presenting the events and keeps it 
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current. Another file is generated for the interactive visualization tool. This file contains 

the static primitive/composite event and rule definitions in one application.  

The visualization tool communicates with the local event detector and the 

transaction manager. The runtime information about the event occurrence and rule 

execution is obtained from the local event detector. Also, from the transaction manager, 

the tool gets the transaction ids of sub-transactions within which the rules are executed. 

5.2 Interactive Visualization Tool 

The visualization tool has been extended to enable user interaction at run time. 

Interaction through a two-way communication channel, rather than passively receiving 

information, allows the user to make changes (enable, disable) on the rule set at run time. 

The user can set breakpoints during a debugging session so that the state of current 

rule/event execution can be inspected, and user can enable/disable rules or events at run 

time, like a conventional programming debugging tool. The user also can graphically 

contrast event graph constructed for the purpose of detecting the composite events with 

the state of a transaction at different rule execution points. Other debugging features 

include a utility for detecting potential cycles in rule execution and a utility to examine 

different rule execution paths from the same point in the rule triggering process.  

To support the various test modes, the tool supports 3 modes of operation: post-

analysis, real time analysis, and interactive-analysis. A mode is specified at compilation 

time with a proper switch to Spp (sentinel preprocessor) in an abstract fashion so that the 

user does not need to know how it works internally. The difference between the modes is 

how the rule execution information is supplied to the tool at run time and whether the 

mode accepts any user interaction during run time. 
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Post-analysis does not allow any interaction while the user application runs. 

Instead, the LED and transaction management module writes event occurrence and rules 

that are fired into a log file as they happen. The visualization tool reads the log file 

through the proxy server and simulates the event occurrence and rule executions. 

Besides, the user can select either step mode or continuous mode with post-analysis. Step 

mode will step through the log, stop at the next the stop and wait for the user to click the 

next button to continue the simulation. The unit of consecutive execution in the step 

mode is the interval between an event occurrence and rule execution. When continuous 

mode is chosen, the unit of trace is the entire application and the simulation goes through 

the log file consecutively until it finishes. Both options are desirable because the step 

mode enables the user to watch the system change on a finer scale, while the batch mode 

suits the situation when the user wishes to visualize and understand the result of an 

execution as a whole. 

Real time analysis does not allow any user interaction while the application 

executes. The difference between post-analysis and real-time analysis is when the tool 

displays rule execution on canvas. Real-time analysis is used to show the change of active 

database as it occurs. While the tool and the user application runs at the same time, the 

information about event occurrence, execution of rule is sent to the tool through socket 

connection. In other words, LED sends the information about events and rules execution 

to the proxy as they occur and the proxy in turn routes this information to the registered 

visualization tool. When the tool receives the message, the tool parses the message to 

figure out what it should show on canvas in a knowledgeable way and draw the result. 
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Finally, interactive-analysis allows the user to intervene during application 

execution. The user, typically, selects this mode to set breakpoints during a debugging 

session so that the state of current rule/event execution can be inspected, or to 

enable/disable rules or events at run time. The interactive feature is implemented using a 

socket connection, which is similar to the real time analysis scenario. 

 

Figure 5-2 Input to the Visualization Tool 

The visualization tool reads the static information about event trees and rule 

definitions, generated by spp (sentinel preprocessor) when the application is compiled, 

constructs the event graph, and stores the event and rule information in memory. The 
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runtime information such as rule activation and firing event is supplied in the form of a 

log file or socket connection according to the 3 different modes we have discussed. The 

data structure that captures the nested execution of rules is a n-ary tree. A transaction can 

have any number of sub-transactions and each sub-transaction in turn can have its own 

child sub-transactions. The root transaction is called the top-level transaction and all 

others are called sub-transactions. The transaction tree grows in a top-down way: it starts 

from the top-level transaction and spans to descendents. 

The transaction manager also generates the transaction ID, which is used to infer 

the parent and child relationship among transactions. The naming scheme for transactions 

is a general-purpose one to accommodate multiple levels and multiple sub-transaction. 

We support concurrent rule execution using the nested transaction model. The 

visualization tool should be able to show the concurrent rule execution of an application 

as it happens. Figure 5-3 shows two sample outputs, comparing serialized execution with 

concurrent execution. In Figure 5-3, STOCK_e2, STOCK_e3, and STOCK_e_AND 

which stands for the composite event STOCK_e2 and STOCK_e3 are defined. When 

STOCK_e3 occurs, the event propagates to STOCK_e_AND, and fires Rule R3, while 

STOCK_e_AND fires R4 at the same time. In serialized execution output, sub-

transactions 1001 and 1002 are serialized in terms of execution and commit. In contrast, 

sub-transactions 1001 and 1002 in concurrent execution output overlap in terms of 

execution and commit, which means the sub-transactions are executed at the same time. 

But, the causal relationship between the event and the sub-transaction is not represented 

clearly in the output. The tool needs to find out which event is associated with which sub-

transaction. For this purpose, we include event name with the sub-transaction ID when 
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the LED module generates sub-transaction messages to the tool. The final output format 

is discussed in the next section and the sample output is included in APPENDIX B. 

Toplevel 1 Toplevel 1 
Event STOCK_e2 6372064 Event STOCK_e2 6372064 
SubTransaction 1000 SubTransaction 1000 
Rule R2 6374352 Rule R2 6374352 
SubCommit 1000 SubCommit 1000 
Event STOCK_e3 6373840 Event STOCK_e3 6373840 
Event STOCK_e_AND 6374072 Event STOCK_e_AND 6374072 
SubTransaction 1002 SubTransaction 1001 
Rule R4 6376200 SubTransaction 1002 
SubCommit 1002 Rule R4 6376200 
SubTransaction 1001 Rule R3 6374504 
Rule R3 6374504 SubCommit 1001 
SubCommit 1001 SubCommit 1002 
........ ........ 

Figure 5-3 Serialized vs Concurrent Rule Execution 

5.2.1 Implementation details of the Visualization tool 

The previous version of the visualization tool did not support the nested sub-

transaction model in the real time as well as the interactive mode. LED just simulated the 

nested transaction by inserting sub-transaction and sub-commit with the predefined sub-

transaction ID when a rule was fired. The transaction ID was not the one generated by the 

transaction manager. The transaction ID only increased by one. Therefore we could not 

simulate the application that goes to more than 2 sub-transaction levels. In other words, 

we could not simulate and show the nested relationship between rules.  

Besides, the previous output scheme could not differentiate between the internal 

events generated by rule execution and external primitive events generated by the 

application method call. This was one of the reasons why termination analysis was 

difficult. But, with the nested transaction model, we can differentiate the two kinds of 
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events and reduce the possibility of false cycle detection. This will be discussed in more 

detail in termination analysis. 

The previous output scheme to static file or socket communication was somewhat 

ambiguous with respect to the relationship between triggering events and rules. Suppose 

an event triggers several rules and in turn these rules trigger new events. The 

interpretation and the relationship would be ambiguous in the trace generated earlier. The 

previous trace was not well defined to interpret and analyze the rule execution behavior 

for the user. We have reorganized the trace such that it is easier to interpret the 

relationship. The following output formats are generated from LED at run time and are 

acceptable to the visualization tool. 

1. Event EVENT_NAME O_ID 

2. SubTransaction T_ID 

3. Rule RULE_NAME O_ID EVENT_NAME 

4. SubCommit T_ID 

The first format indicates that EVENT_NAME event occurs at this moment. The 

second format means that a new sub-transaction has started. From T_ID, we can compute 

the current level of transaction. Usually this format is followed by a third format of output 

because a sub-transaction always is associated with a rule. The third format indicates the  

EVENT_NAME event that triggers a new rule. The fourth is to indicate the end of the 

current transaction. Between the second and the fourth, we can have any number of 

events, rules and child sub-transactions. The visualization tool shows the relationship 

between rules and events by drawing a line. Parent and child relationship between 

transactions is shown in tree forms and relative positions of the sub-transactions. 
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Figure 5-4 Execution of Visualization Tool 

When an event occurs, the visualization tool only changes the color of the event 

node on the canvas. The user will know from this color change that the event happens. 

When a rule is actually scheduled, LED sends a message with sub-transaction ID, and the 

tool determines the position where the sub-transaction will be drawn from the ID. LED 

will also include the event ID or name of the event in the Rule execution output so that it 

can display the relationship between the sub-transaction and the triggering event. This is 

needed because it is not always true that the sub-transaction is triggered by the previously 
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received event right before the sub-transaction. In other words, it can be triggered by any 

one of the previous events. 

To visualize a deferred rule execution separately from the immediate rule 

execution, the OODB_commitT primitive event is shown as an event in the visualization 

tool. The deferred rules are connected to the OODB_commitT primitive event when they 

are scheduled. In this way, the user can distinguish the rule executed in deferred mode 

from that of immediate mode. 

5.2.2 Changes to LED for visualization 

When an application is complied for run-time analysis or interactive analysis, the 

LED which is linked to the application registers itself to proxy at initialization time. We 

could have socket connection between application and visualization tool, without proxy. 

But, to be able to execute the tool in a distributed web environment easily as explained 

earlier, we chose the proxy architecture. This architecture can also support multiple views 

by multiple visualization tools. For one application, we can hook up applications to 

multiple visualization tools, each having a different subset of rules, with proxy acting as a 

coordinator among them. 

Also, we define the semantics of disabling a rule as follows. When all the rules 

subscribed to a particular event are disabled, then LED will stop detecting the event. We 

extend the global hash table to implement this semantics. LED has one global hash table 

to get access to each event node in the event graph. Originally the hash table was used to 

map to only primitive event nodes, which are leaf nodes in event tree. We have extended 

the hash table to map both primitive events and composite events to the corresponding 

event nodes in the event graph. For the primitive event, we construct a key to the hash 
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table uniquely from class name, signature, and modifier for primitive event. For the 

composite event, we use the event name to map to an event node. Note that only the 

composite event with event name specified in user application can be inserted into global 

hash table in order to facilitate the disable or enable by visualization tool. The 

intermediate composite event node for which the user does not give name in user 

application is not accessible through the hash table, in the current implementation. If the 

user wants to access the intermediate composite event node, the user has to give an 

explicit name for that composite event node. 

key #of rules 
e1  2 -> 1 -> 0 
e2 3 -> 2 -> 1 
e1_and_e2 2-> 1 -> 0 

Figure 5-5 Change of counter in hashtable 

Each entry in the hash table keeps track of the number of rules that subscribe to 

an event node. When a rule is associated with an event, the counter will be increased by 1 

if the event is a primitive event, or the counter for all constituent events will be increased 

by 1 if the event is a composite event. If the visualization tool disables a primitive event, 

the enable flag of the event is reset so that the LED will not detect this primitive event. If 

a composite event is disabled, the event tree is traversed down to the leaf and decrement 

the counter along the path. If a rule is disabled, the event tree is traversed down to the 

leaf and the counters along the path  are decremented. This was implemented by calling 

decreament_hash_entry for each child node which it subscribes to, which in turn calls 

decreament_has_entry of that node’s child if it is a composite node or decreases the 

counter if that child is a primitive event. When the counter of the primitive event 

becomes 0 after the associated rule is disabled (which means no associated rule is 
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enabled), LED stops detecting the primitive event. This is done by is_this_subscribe 

function module. Whenever the primitive event is raised, it first checks this function. This 

function will return true when enabled associated rules exist so the above semantics can 

work correctly. For example, suppose we have an event graph which consists of e1, e2, 

e1_and_e2, and R1, R2 is defined for different contexts of event e1_and_e2. And R3 is 

defined on e2. Figure 5-5 shows the result of the hash table after we sequentially disable 

R1 and R2. The primitive event e1 and the composite event e1_and_e2 will not be 

detected any more. However, e2 is detected, as there is still a subscribed rule on that. 

The reverse operation will be performed when a rule is enabled again by the 

visualization tool on behalf of the user. If the rule is associated with a primitive event, 

then the counter is finally increased by one. If the rule is associated with a composite 

event, the counter of all the constituents of the given composite event is increased by one. 

As a result, the primitive event starts detecting and propagating events. 

The increment and decrement of counters are performed in a recursive fashion to 

eliminate the need for additional data structure. It is done in a top down manner, while 

event propagation takes place in a bottom-up approach. As the Led is multi-threaded, 

access and updates to shared data structures are properly synchronized. 

Variables used by the visualization tool are set using environment variables, 

removing all the hard coding of port and host name from the application. This avoids 

recompilation of code when the machine on which the tool or the application is executed 

is changed. For a Sentinel application, the environment variables VHOST, VPORT, and 

CONCURRENCY are used to register with the proxy and interact with the visualization 

tool. VHOST is the machine where the proxy is running, VPORT is the port used by the 
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proxy. CONCURRENCY specifies the number of threads that can be scheduled at the 

same time. Users should be careful to set this variable correctly according the application 

semantics. For example, when the application has nested transactions and concurrent 

execution of rules, and the user sets the concurrency level to 1, then the application may 

not be executed according to our expectation. For a Sentinel application to register its 

identity to proxy and wait for a signal from the Visualization tool, the proper environment 

variables should be set. 

5.2.3 Java Proxy implementation 

As we explained earlier, we have identified the general-purpose proxy as an 

intermediate server, which can invoke the remote processes, and transmit asynchronous 

message across the platform boundary. These two utilities are integrated and combined 

into one proxy process written in Java.  

To get asynchronous messages from outside, the user interface (in this case, the 

visualization tool) should register itself with proxy. Also, in order to interact and 

exchange run time information with the visualization tool, the Sentinel application 

compiled with a proper spp switch also is required to register itself to proxy, as we 

explained earlier. In addition, to load the static information containing event and rule 

definition, the Input-loader also joins the communication channel. The request for static 

information from visualization tool will relay to input-loader through proxy, and after 

input loader reads the static file, it sends the event and rule definition back to 

visualization tool.  

Loading the static information could have been simply done by file read operation 

in the visualization tool, without the help of proxy. But, Accessing the static information 
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by file operation is not extendible. For example, suppose that the tool is executed in a 

distributed environment and the file containing the static information is not accessible 

because the file is on a remote site and the remote site is down or is not accessible 

temporarily. In this case, the tool could not load the static information about the 

application and could not continue the additional operation. Therefore, Adapting to the 

general proxy architecture described in Chapter 4, we separate the application logic from 

the service logic.  

When the proxy receives the registration information from an application or the 

visualization tool, it stores the connection with the registering-id into socket connection 

list. It also spawns a daemon thread to wait for incoming messages from each connection. 

Each daemon has its own identifier, which is the same as the registration identification, 

and socket connection as its member. The daemon is implemented as a thread so that it 

independently transfers the message. When the daemon (or Proxy) receive the message, 

the daemon will wake up, read the message, and find the socket connection where the 

message should be placed from the list, finally writing message to the connection or 

connections. 

In summary, Our proxy does not include any functional logic in its 

implementation. It just receive message from outside, find the destination group of 

processes or a process from the list, and finally transfers the message to that group of 

processes or a process. It also includes a utility to invoke the remote process in a remote 

machine to set up communication channel. 
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Figure 5-6 Communication channel in the Visualization Tool 

5.3 Termination Analysis 

The visualization tool is also extended to find potential cycles that could occur 

during the execution of an application and point out which rule subset is potentially 

leading to an infinite loop. This functionality is implemented as a sub-package of the 

visualization tool. This information helps the rule designer to find the cycle within the 

narrow scope of rules, instead of going over all defined rules. We will summarize why it is 

difficult to determine the cyclic rule set and show our approach to this issue. 

5.3.1 Non-deterministic behavior in rule execution 

One of the difficulties in performing termination analysis is the dynamic behavior 

of a rule, because its condition evaluation can vary according to the Active DB states, 

and its execution may change the database state. The change may cause some other rule’s 

condition to become true. In some cases, it can be the opposite, which means that the rule 

execution may change the state such that other triggered rules’ condition become false. 

This dynamic behavior becomes more complicated when we consider the priority and 
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rule-scheduling schemes. Rules may behave differently when scheduled in different 

orders, yielding unexpected results. Suppose we have two rules when an event occurs. 

We assume that the execution of the first rule will change the database state into a state, 

which will make the second rule’s condition true. If we execute the second rule first, both 

rules may not get executed. But, in the other order, both rules would be triggered. The 

same discussion applies to the priorities among rules. 

 

Figure 5-7 Cyclic Rule Set Example 

In addition, the rule behavior is very closely related to the semantics of the 

associated event, and the behavior of event propagation. Figure 5-7 shows an example of 

how these factors affect the termination analysis. Event tree shown in both diagrams 

consists of e1, e2, AND, and sequence events. Event e3 occurs by the execution of rule 

R2. The time when each event occurs is also shown as ti. Also, tk is assumed to be greater 

than tj if is greater than j. As the semantics of sequence event is to detect the event when 

left child event occurs before the right child event, LED will not detect the sequence 
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event in Figure 5-7 (a). As a result, R3 will not be fired in Figure 5-7 (a). As a result, there 

is no cycle in the graph in the first diagram. But, in the similar event tree in Figure 5-7 (b), 

the sequence event occurs repeatedly and fires rule R3. If we consider the dynamic 

behavior according to context, the problem becomes more complicated. For instance, we 

may have a different result if R3 is created in a context other than RECENT. 

Another difficulty is that the rule execution may change the database state in such 

a way that some cyclic rules may stop at some point. This cannot be determined before 

we actually run the application and find out these facts. For example, suppose we have a 

rule whose action is to deduct $100 from saving account only when saving account has 

more than $100. If this rule is part of a cycle, then the cycle eventually stops at some 

point. 

In some applications, the steady arrival of outside events may form a false 

triggering edge between events so we may end up with false cycle detection. All these 

discussion supports that we may end up with a false cycle detection in many cases. 

5.3.2 Our approach 

We consider two approaches to this problem, in our case. One is a passive 

approach, similar to a conventional programming debugger. The debugger just displays 

the execution trace and lets the user infer the details of the problem. The debugger does 

not find rule set that is potentially cyclic. Suppose an application in a conventional 

language has recursive function calls, for example, function A calls function B and 

function B in turn calls function A. A traditional debugger will trap the application 

execution when it reaches the maximum depth of execution set for the systems. The user 

will try to find the source of the problem from the change of stacks. From the stack 
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output, the user needs to get a better understanding of the problem. In the same way, the 

visualization tool just displays the stack frame change and the user himself/herself needs 

to infer the source of the problem and modify the rule definitions accordingly. 

The second one is an active approach, which displays the cyclic rules graphically 

to users at run time to help users visualize the nature of the problem. 

We chose the first approach for implementation on account of its simplicity. We 

will present our stack frame approach first and discuss the integration of the second 

approach within the tool in the next section. Our approach forms an event triggering 

graph using event/rule definition other than the condition evaluation, but assumes the 

condition evaluation information can be added by the run time trace, later. We use the 

event trees to form an event triggering graph and add the edges (or relationship) between 

events with event relationship from rule definition. 

Definitions 1 The event triggering graph (ETG) is a directed graph {V, E}, 

where each node vi in V corresponds to an event ei and E to the directed arcs <ei, ej>, 

which means that the relationship between ei and ej exists through composite event 

definition or rule execution.  

Even if we find a cycle in the graph, we cannot conclude that the set of rules will 

not terminate at run time. This is because we did not include the dynamic information, 

that is, condition evaluation. The condition evaluation is a computation that returns a true 

or a false according to the database state. Generally, the condition cannot add any edge to 

the event graph, statically. For example, suppose we have a condition for a rule R that 

will return false if the price is below $10 dollars. This information cannot be added in the 

event triggering graph statically. 
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Commercial systems typically use a counter to detect potential cycles. They 

detect loops by keeping counters on the number and depth of cascading rules, and 

suspending rule execution when the counters exceed given thresholds. This approach 

suffers from the following limitation. Setting a value for the counters is quite critical and 

difficult: If the threshold is too low, rule processing will stop and give a false cycle 

warning. If the threshold is too high, a loop may be detected only after expensive 

processing [10]. 

When the application shows a cyclic execution, the tool will have the repeated 

stack frames in memory. This situation is similar to recursive functional calls in traditional 

programming languages. The number of frames on the stack will increase indefinitely until 

there is no more memory available. In the same way, analyzing the stack frames and 

comparing with ETG, the user can easily identify cyclic rules.  

Definition 2 A stack frame contains all events triggered, and active rules at the 

same level ( i.e., current sub-transaction and its sibling sub-transactions). The stack frame 

will be freed when there are no more active rules. 

When the visualization tool reaches the maximum level that is set in the system, 

the kernel module will trap the application execution and stop it. The tool will dump the 

static cyclic rule set found from ETG and stack frames to users. From the output, the user 

can infer the details of the problem. The output generated by the utility significantly 

narrows the scope of rules, which the user should inspect to find cyclic rules when the 

application does not terminate normally. This is compared to backward reasoning rather 

than forward reasoning. Forward reasoning is to inspect all the facts and arrive at a 

conclusion while backward reasoning comes to a conclusion and finds out the supporting 
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facts. Forward reasoning can be very expensive if there are many rules defined in the 

system. In our case, we make a conclusion that there are cyclic rules in the output once 

the application does not terminate in a normal way, and then identify the cycle from the 

output generated by the utility. Instead of inspecting each event and rule to find cyclic 

rules, the user needs to analyze only the portion of rules and events pointed to by the 

utility. This approach saves time and effort especially when there are many rules and 

events to inspect. 

Algorithm for Cycle Detection 

make a event triggering graph G from the modified static file; 
load the dynamic file into buffer B. 
set clevel = 0; // clevel = current_frame_level` 
 
For(each line i from the dynamic file which is a snapshot of user application) { 
switch(i) { 
case (i is a kind of Event) : 
put that event into the current frame; 
break; 
  
case (i is an indication of a new subtransaction) : 
calcuate the level from the subransaction; 
Let k is the result of the previous calculation; 
change the current_frame_level to k; 
break; 
 
case (i is an indication of a subtransaction commit) : 
calcuate the level from the subcommit; 
Let k is the result of the previous calculation; 
distroy the frame of k level; 
change the current_frame_level to k-1; 
break; 
 
case (i is a kind of Rule) : 
put that rule into the current_frame_level; 
for(i = 0, COUNTER=0; i < clevel; i++) { 
j = i+1; 
while(j <= clevel) { 
if(frame[i] == frame[j]) COUNTER++; 
if((COUNTER = THRESHOLD)  
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&&(the events in each frame are subset of cyclic set in static analysis)){     
We detect the cyclic rules; 
Give warning the user to check the rule sets; break 
      } 
j++; 
}// end of while 
    } 
}  
 

An Example 

 When the user runs the application that has the events and rules shown in Figure 

5-7 (b), the application will not terminate in a normal way because it reaches the 

maximum depth defined in sentinel and the kernel module in sentinel sends a terminate 

signal to the application. This fact is visualized and shown to the user as shown in Figure 

5-4. Note that sub-transaction 1000 and 1000000 are committed (this is shown as red 

boxes in the visualization tool), and the other sub-transactions are terminated without 

committing.  

Then, the user runs the cycle detection utility to find the potential cycle rules. The 

utility first constructs the event triggering graph (the graph is the same as Figure 5-7(b)) 

from static information of the application and finds cycles (one of them consists of e1, 

AND, SEQ) in the graph. It also finds repeated stack patterns as shown in Figure 5-8(c) 

when it analyzes the run time information. Figure 5-8 shows the change of stack frames in 

the utility, which uses a dynamic run time information (This is included in the 

APPENDIX B as a sample trace) of the same application. In the Figure 5-8, (a), (b), and 

(c) corresponds to the stack frmes contents when the trace has been processed up to (a), 

(b), and (c) respectively in the trace shown in APPENDIX B.  As a result, the tool gives 

those patterns and cycles in the graph to the user as a possible cyclic rule set. Note that 
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the events in a cycle are the subset of events in the repeated pattern (e.g., e1, AND, and 

SEQ). 

 

Figure 5-8 Changes of Stack Frames with APPENDIX B as Run Time information 

5.3.3 Visualization of the Cyclic Rules 

The previous stack frame approach is passive in terms of supporting the analysis 

of cyclic rules because the tool needs user’s reasoning processing with ETG and the stack 

output to find the cycles. The tool would be user-friendly if it is able to show the cyclic 

behavior to users at run time, in the same way it shows the rule execution and event 

occurrence. Besides, the stack frame approach has a limitation. It needs an arbitrary 

numbers of stack frames to be grouped to detect repeating patterns. For example, Figure 

5-9 shows 3 simple different cyclic rules and the change of their stack frames at run time. 
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Note that the cyclic rule path length determines the number of stack frames to identify 

the repeated pattern. Of course, the examples in Figure 5-9 are simple cases so it is easy 

to identify the groups. But, in the real applications, which also have composite events and 

concurrent rule execution, this grouping is not easy for users. 

 

Figure 5-9 Grouping stacks to identify the repeated patterns 

Figure 5-10 shows one of ways visualizing cyclic rules to users. Each event and 

rule is treated as a type. It does not show the instance level of event occurrence and rule 

firing.  

 

Figure 5-10 Visualization of Cyclic Rules as Types 

The graph can be generated statically, but needs to be verified at run time. The 

visualization tool currently generates event graph statically from event definition and 
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displays the rule execution at the instance level to visualize the nested execution of rules. 

The edges between events and rules are generated at run time. 

 

Figure 5-11 Visualization of cyclic rules in instance level 

Figure 5-11 shows the visualization of cyclic rules at the instance level, which 

overcomes the disadvantages of the display scheme in Figure 5-10. Instead of displaying 

the n-ary tree, the tool positions the same rules at different transaction level side by side. 

In other words, when the tool detects the same rule execution at different transaction 

level, the tool assumes a cyclic mode, which is differentiated from display mode of rule 

execution as a transaction hierarchy explained earlier. To visualize cyclic rules such as 

the one shown in Figure 5-11, the tool should be able to identify the rule that generates a 

certain event and to identify the event that triggers certain rules. In other words, to draw 

the edge between R1 and e2 and edge between e2 and R2 in Figure 5-11, the tool should 

be able to identify, from the run time trace, which event is generated by the execution of 

a rule and which rule is triggered by an event. The tool would obtain this information 

from LED and draw direct edges between events and rules in the above graph at run time. 
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Current implementation generates messages for the second case. From the message “Rule 

RULE_NAME O_ID EVENT_NAME”, the tool can find the identity of the event that 

triggers a rule. In addition, the information to draw an edge from a rule to an event also 

can be easily obtained from LED by generating the current transaction ID with event 

occurrence. From the transaction ID, the tool is able to know which rule generates an 

event and show it graphically.  

 

 



55 

 

CHAPTER 6 
CONCLUSION AND FUTURE WORK 

This thesis significantly extends the previous visualization tool developed for 

Sentinel. The Previous work was primarily concerned with the static analysis and did not 

incorporate the nested sub-transaction model in the tool. There was no cycle detection 

mechanism either. The visualization tool has been changed to incorporate the nested sub-

transaction model, and extended to have user interaction at run time. The functionality 

includes setting breakpoints, disabling events and rules, and enabling events & rules at 

run time. The work encompasses the utility to narrow the rule set and events to look for 

cycles when the application does not finish normally. A user can reduce the scope of 

debugging rules and events by pruning irrelevant trees from the tool. 

Besides, this thesis presents a general way to extend active capability to the web-

based distributed environment. The work extended the previous 3-tier architecture and 

redesigned the proxy to make web-based GUI possible. The redesigning of proxy has 

considered making remote process invocation possible to set up the communication 

among processes, also. 

Currently the visualization tool supports interaction with LED module. The same 

can be extended to interaction with GED module easily. Running multiple visualization 

tools, for example, one for each application and one for GED, will be helpful to analyze 

the rule execution at a global level. One challenging work involves detecting cyclic rule 

sets across applications. Two independent applications work as producer and consumer in 
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GED and they may contain a cyclic rule in a global view, but may not have any cyclic 

local rule set. If a tool can help in detecting these cycles, it would be useful for 

application designer to redesign rules when it is necessary. 

The other feature we can think of in the tool is rule modification functionality at 

run time. Currently, we are able to only enable/disable rules at run time. It would be 

helpful for rule designer to be able to change the condition, action part, and priority of a 

certain rule at run time. 
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APPENDIX A 
A PROTOTYPE IMPLEMENTATION OF JAVA LED 

As explained in the previous chapters, the platform independent features were a 

strong reason for choosing Java as the primary language for developing user interfaces. 

While we explored the Java language features, we noticed many new language features 

that would overcome some of the limitations in C++. In this chapter, we analyze the 

limitation of LED implementation in C++ and discuss features in Java that can be applied 

to improve the event detection process. Finally, we discuss the detailed prototype 

implementation of Java LED, in terms of event propagation. 

1. Limitation of LED in C++ 

Parameter contexts were introduced to categorize the event detection as well as 

parameter computation. Each composite node maintains separate lists for each context 

and each child. For example, An ‘And’ node keeps 4 separate lists for the left child (One 

for each context computation) and another 4 lists for the right child. In order to propagate 

the same event for distinct contexts and independent parameter computation, the same 

parameter information was duplicated in several places. This approach increases storage 

requirement as the event graph grows without providing any additional advantage.  

Sharing of parameter values across context scan reduce storage overhead significantly. In 

C++, when we allocate memory for a data structure or a class, we have to free the 
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memory explicitly. Because we use the event propagation tree to detect the composite 

event, not freeing the memory appropriately could easily lead to memory leaks. 

Another disadvantage of the LED implementation in C++ is that it has difficulty 

in passing complex data types as parameters. It only supports passing only simple data 

types (e.g., integer, float, character, and string by value) as parameter. This limitation 

comes from run-time type information in C++. C++ does not have any base class to point 

or reference for later manipulation. Current implementation in C++ keeps 4 member 

types (INT, CHAR, STRING, FLOAT, TEMPORAL) for passing the parameter even if 

only one of them is actually used. No other complex class or data structure, which may be 

defined in user application, can be passed as a parameter. 

In addition, the language feature also limits Rule representation in C++. Currently, 

condition and action in C++ are implemented as global function and passed to LED. LED 

cannot access the code for condition and action, which is not in user program space. 

Suppose that we have action part of code stored in implementation repository. LED may 

want to execute those codes at run time. In C++, LED cannot use those codes if user did 

not link and load those codes in application when starting the application. 

2. Java language features for LED 

The most frequently reported problem in C++ is memory leak. Users always 

should pair memory allocation with memory free operation explicitly in C or C++. There 

is no automatic mechanism to free the memory even if the machine is short of memory. 

On the contrary, Java uses a technique called garbage collection to automatically detect 

objects that are no longer being used (an object is no longer in use when there are no 

more references to it) and to free them [14]. It is a technique that has been around for 



59 

 

years in languages such as Lisp. The Java interpreter knows what objects it has allocated. 

It knows which variables refer to which objects, and which objects refer to which other 

objects. Thus, Java can figure out when any other object or variable no longer refers to an 

allocated object. 

LED implementation in C++ has difficulty in passing complex data types as 

parameters. But, passing complex data type or user defined class as a parameter is the 

easiest one in Java because Java has a superclass Object and type-upcasting is done 

automatically. Complex data type or user defined class is upcasted to Object and passed 

around easily. 

In addition, Java has new feature to enable a dynamic rule creation and loading. 

When a user defines action and condition part using a rule editor, for example, the rule 

editor will create files making a new class and put those files into some directory. After 

that, Java compiler can be invoked to compile and move the new rule definitions into rule 

repository. Then, using reflection or dynamic extension, new rules can be made available 

to user application. In other words, Java allows us to dynamically extend the program at 

runtime. Java programs can dynamically extend themselves by choosing, at runtime, 

classes and interfaces to load and use. It means we don’t have to know about all the 

classes and interfaces of user application programs at compile time. Using dynamic 

extension feature in Java, we can pass the string type as a name of new action type or 

condition type in rule constructor in user application. Then, the rule class loads this new 

type in JVM so that it is available to the application. Because the type name is handled as 

a String at runtime, the program can be written such that actual contents of the Strings do 

not need to be known at compile time. 



60 

 

To make dynamic extension possible, Java has two kinds of class loader - the 

primordial class loader and class loader objects. Whenever the JVM loads a class or 

interface, it uses either the primordial class loader or a class loader object. Every type that 

a JVM loads, it creates an instance of class java.lang.Class to represent the type to the 

rest of the application. When you start the application, JVM finds out what class you 

need, load those classes, and create an instance for each class. 

Java also supports dynamic method call binding. Connecting a method call to a 

method body is called binding. When binding is performed before the program is run (by 

compiler and linker), it’s called early binding. Structural language such as C, Pascal, 

supports these kind of binding. The core idea of dynamic binding is “send a message to an 

object and let the object figure out the right thing to do”. This is called “late binding”. It is 

also called run-time binding because the binding occurs at run-time based on the type of 

object. 

Of course, C++, one of object oriented languages, supports some kind of late 

binding, using virtual function, which was exploited in our C++ version of LED. But, this 

is a very limited way when we compare the Java late binding mechanism. Java extends 

late binding in such a way that some sort of type information can be stored in every 

object. And it also introduces an abstract class and interface, a new feature to support the 

core object model, which was not in C++.  

An Abstract class is used to manipulate a set of class through a common interface. 

All-derived method calls that match the signature of the base-class declaration will be 

called using dynamic binding mechanism. An Abstract class is a good way to express only 
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the interface and not a particular implementation. This language feature was exploited 

and explained in detail when we discuss the class design for JAVA LED prototype. 

The interface keyword takes the abstract concept one step further. An interface is 

a collection of abstract methods and constants. One thing we should note is that interface 

is considered as a new type in Java. In other words, When we create an instance of an 

interface, it is considered as an object. This follows the core object model. The interface 

is used to establish “protocol” between classes. 

3. Design and Implementation of prototype Java LED 

In the previous section, we discuss new features in Java that is useful for LED 

implementation. As a prototype, we focus on event propagation in binary operators for 

various contexts and implement those operators for Java LED to overcome a memory 

problem in C++ and improve event detection process. First, we show the design issues 

and then discuss the implementation details. 

3.1 Design 

Each composite node in C++ LED maintains separate lists for each context and 

each child. For example, An ‘And’ node keeps 4 separate lists for the left child (One for 

each context computation) and another 4 lists for the right child. So, the same parameters 

can be duplicated at most 4 different list nodes. 

In Java LED, this duplication has been eliminated. Each composite node has one 

parameter context table for each child node. An event with parameter information 

propagated from the child is associated with 4 context bits, one for each context. 

Whenever the event is propagated from child, it is stored in the table and sets one of the 



62 

 

appropriate bits according to the event context. After an event is propagated and 

consumed, it is treated as a garbage entry if the associated context bit of the event 

becomes 0000. The bits indicate that there is no event left  to be used for detection of 

event node. Garbage entry is collected and freed from data structure according to merge 

and propagation algorithm. For example, the context bits for e1
1 of AND node in (c) of 

Figure 6-1 becomes 0000 (which means it is no longer needed) after event propagation is 

performed. As a part of algorithm, the event e1
1 is discarded from the parameter context 

table. 

The overall class hierarchy was designed to incorporate the new Java features 

such as dynamic method call binding, and reflection. C++ supports multiple inheritance of 

method implementations from more than one superclass at a time. Using this feature, LED 

in C++ version has a RULE class, which inherits from Reactive class and Notifiable class. 

This feature has been omitted in Java because it may introduce many complexities. 

Instead, Java encourage us to use interface so that we have to reconsider the class 

hierarchy according Java language features, without losing any features of C++ version. 

We make use of these features when we redesigned the class hierarchy. In short, a class 

in Java can only inherit method implementations from a single superclass, but it can 

inherit method declarations from any number of interfaces. 

The prototype Java LED concentrated on event propagation algorithm for binary 

operator. Figure 6-1 shows overall class hierarchy and the relationship between classes 

and interfaces. Oval shapes, shaded rectangles, and plain rectangles represent interfaces, 

abstract classes, and implementation classes respectively. The prototype has two 

interfaces (Notifiable and Executable), and two abstract classes (Table and Event). Table 
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data structure was introduced to store the context information merged and propagated 

from the child node. Abstract Event class has a subscribed event list as a member, which 

contains all the references to the subscribed events. When the event is detected and 

propagated, LED traverses this list and gets reference to abstract table of subscribed 

events. We create table as an abstract class because parameter context table and event 

node has a mutual reference relationship. In other words, An event node needs reference 

of the parameter context tables of the subscribed events when the event is detected and 

propagated up to event tree. And a parameter context table needs to know what kind of 

event the table is associated with to decide the semantics of merge & propagation.  

Up-direction arrow means a relationship between interface and implementation. 

As mentioned earlier, each event node has a subscribed event list as a member, which 

contains all the references to the subscribed events. Because the list may contain different 

kinds of event classes such as ‘Primitive’, ‘AND’, ‘SEQ’, and ‘OR’, the subscribed 

events are upcasted to Notifiable when they are accessed for the purpose of event 

propagation. Note that Java treats interface as a type. All subscribed events implement 

Notifiable interface so that the event node does not need to check run-time type and cast 

in order to call proper method of each subscribed event.  

The arrow from Rule to Event class means a subscription relationship. When a 

rule instance subscribes to an event object and event occurs, the corresponding rule 

object will be triggered. Down-direction arrow means an inheritance relationship between 

classes. Because an abstract class in Java usually declares abstract methods with no 

implementation details and expect the subclasses will implement the corresponding 

method, abstract Event class just declares the Notifiable interface. Actual implementation 
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for Notifiable interface is done in the lower level classes like Primitive, AND, SEQ, and 

OR. In other words, these event operator classes inherit from Event class and implement 

their own operation of merge and propagation according to their semantics. Abstract 

Table class is impelemented by PCTable class, which is the data structure for merge 

computation. Also, this data structure checks garages and delete from the table after 

propagation to overcome a memory leak problem.  

Finally, Rule has Executable interface and Notifiable interface, because rule class 

itself can be an event generator and can be notified from the associated event. 

 

Figure 6-1 Overview of Class Hierarchy for Java LED 

3.2 Merge and Propagation Algorithm 

First we give simple example of event propagation and then generalize the 

algorithm.  The example and algorithm follows the definition of each context given in 

Chapter 2. 

In Figure 6-1 event tree for AND node consists of primitive e1, e2 and the time 

sequence of event occurrence were indicated with the arrows and time value t1, t2 and t3 

(t1 < t2 < t3). At time t1, the event e1 was propagated but no additional propagation would 
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not be performed because the left table of AND node is empty. At time t2, the event e1 

occurred, again. This changes the recent context bit of the previous event parameter like 

Figure 6-1 (b). At time t3 when e2 occurs, the complex merge and propagation operation 

is performed in AND node. For explanation purpose, Figure 6-1(c) shows the 

intermediate computation and the result together. The merge operation would be different 

according to the semantics of context and operator. Notice the bit change in left and right 

table of AND node after merge. e1
1 in Figure 6-1 (c) is garbage-collected and freed from 

left table of AND. 

 

Figure 6-2 Example of event propagation in AND composite event 

Now, we are ready to give generalized merge and propagation algorithm. The 

algorithm works in 2 steps, one for propagation, and one for merge in each composite 

node. 

Algorithm 1 Merge & Propagation Algorithm 

1. Propagate from child to parent & adjust existing bits in the parents 
2. When merge( Check for combine and propagate TS and bits) 

Propagate merged events and their bits 
Readjust or Modify existing bits from where it is propagated 
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Garbage collection when it becomes 0000 

Note that there are common behaviors for binary operators. First, when a newly 

detected event is propagated within RECENT context, the previous recent event in the 

parent event node will be no longer used for merge within Recent context. Instead, the 

newly detected event and parameter will be used for merge and propagation in the parent 

node. For instance, in Figure 6-1 (b), we can observe that the recent context bit of e1
1 is 

clear and the recent context bit of e1
2set after propagation. Secondly, when a composite 

event is propagated within RECENT context, the constituent events are not consumed in 

the recent context, while in the other contexts (CHRONICLE, CONTINUOUS, and 

CUMULATIVE) the events are consumed and the corresponding context bits are clear. 

For example, in Figure 6-1 (c), recent context bit of e2
1 is still 1 but other context bits are 

reset after propagation. This is because an initiator of an event (primitive or composite) 

will continue to initiate new event occurrence until a new initiator occurs in recent 

context. Thirdly, because all occurrence of an event type are accumulated in cumulative 

context as instances of that event until a terminator is detected, all the occurrences that 

are used for detecting the event are packaged and propagated up to event tree. This is 

shown as e1
1 e1

2 e2
1 in Figure 6-1 (c) with cumulative context bit set. When terminator 

event e2
1 occurs, the cumulative context computation in AND accumulates e1

1, e1
2, and 

e2
1, and propagate the result up to tree. This cumulative behavior is commonly shown in 

all operators. 

The algorithm significantly reduced the duplicate pointers and does not require 4 

separate list for each child of composite node to do parameter computation. The garbage 

collection is performed as a part of merge operation to reduce the overhead for the next 
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operation, and overcome memory leak in C++. The parameter type can be any user-

defined type or class. For the primitive type such as float, int, string, and char, Sentinel 

package provides the wrapper to convert those into object internally and convert back, so 

user does not need to care about conversion details. 
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APPENDIX B 
SAMPLE TRACE FILES 

Toplevel 1 
Event STOCK_e1 6363832 
SubTransaction 1000 
Rule R2 6367792 STOCK_e1 
Event STOCK_e_3 6365376 
SubTransaction 1000000 
Rule R0 6367688 STOCK_e_3  (a) 
SubCommit 1000000 
SubCommit 1000   (b) 
Event STOCK_e2 6365096 
Event STOCK_e_AND 6365608 
Event STOCK_e_SEQ 6367432 
SubTransaction 1001 
Rule R3 6367944 STOCK_e_SEQ 
Event STOCK_e1 6363832 
Event STOCK_e_AND 6365608 
Event STOCK_e_SEQ 6367432 
SubTransaction 1001000 
Rule R3 6367944 STOCK_e_SEQ 
Event STOCK_e1 6363832 
Event STOCK_e_AND 6365608 
Event STOCK_e_SEQ 6367432 
SubTransaction 1001001 
Rule R2 6367792 STOCK_e1 
Event STOCK_e_3 6365376 
SubTransaction 1001000000 
Rule R3 6367944 STOCK_e_SEQ 
Event STOCK_e1 6363832 
Event STOCK_e_AND 6365608 
Event STOCK_e_SEQ 6367432 
SubTransaction 1001000001 
Rule R2 6367792 STOCK_e1 
Event STOCK_e_3 6365376 
SubTransaction 1001000000000 
Rule R3 6367944 STOCK_e_SEQ 
Event STOCK_e1 6363832 
Event STOCK_e_AND 6365608 
Event STOCK_e_SEQ 6367432 
SubTransaction 1001000000001 
Rule R2 6367792 STOCK_e1 
Event STOCK_e_3 6365376  (c) 
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