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ABSTRACT

DESIGN AND IMPLEMENTATION OF
WINDOWED OPERATORS
AND SCHEDULER FOR

STREAM DATA

Publication No.

Satyajeet Sonune, MS

The University of Texas at Arlington, 2003

Supervising Professor: Dr. Sharma Chakravarthy

The new processing requirements of streaming applications like financial
tickers, network monitoring, traffic management and sensor monitoring are forcing are-
examination of approaches and techniques used in traditional DBMS due to its inability
to operate on streaming data as they would require potentially unlimited resources for
collecting, storing and processing real time unbounded streamed data in timely manner.
Hence the need of a system is realized whose computation can keep up with the data
flow to provide rea time response to streamed queries by processing endless data

streams on the fly.



This thesis addresses the design and implementation of a Query Processing
Architecture for stream data, modeled as a client server architecture comprising of
various modules such as Instantiator, Stream Operators and Scheduler.. A data-flow
operator/queue graph is used for representing a query plan. Instantiator has the
responsibility of initializing and instantiating stream operators on accepting user queries
from the client over a predefined set of protocols. Aggregates and Nested Join operators
have been designed to operate on continuous streams that provide continuous output
using the window concept. A new operator called Split has been introduced to divide
single heterogeneous stream into multiple homogeneous streams based on application
logic. A scheduler has been included so that different scheduling approaches (e.g.,
round robin, dataflow, weighted round robin) can be tried to understand their effect on
response time, memory usage etc. Experiments have been performed by to measure
average tuple latency, total query time and memory usage (main and secondary) for

different data rates and input stream sizes.
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CHAPTER 1
INTRODUCTION

Traditional database management systems (DBMSs) are repositories, in which
all datato be managed is stored on secondary storage and updated as appropriate. . They
utilize a request-response paradigm wherein the user poses a logical query, which is
evaluated by the query engine. Traditional DBMSs are not suited for most of streaming
applications, which are needed for many newer applications. Examples of streaming
applications are: financial tickers, network monitoring and traffic management, network
security, click stream processing, and sensor monitoring. There are many reasons why
traditional DBM Ss cannot be used to support streaming applications. Some of them are
listed below:

1. Itisnot practically feasible to store continuous data streams in a traditional
DBMS, asthey are not designed for rapid and continuous storage of data.

2. Operators of traditional DBMSs are not designed to handle continuous
queries on unbounded streams. Operators such as “Join” and “Aggregate’” may block
forever as the input streams arrive continuously.

3. Traditiona DBMSs are always expected to produce precise answers. In
streaming, where data stream may arrive asynchronously at arapid rate, answer may be

computed with incomplete information and hence may not be exact.



4. Traditional DBMSs do not support real--time processing of tuples. They
cannot be used for network monitoring and network security applications, which have a
low tolerance for stale data.

5. Streaming data may be lost, garbled or arrive asynchronously. Traditional
DBMSs are not designed to handle such variations in input data and may produce
incorrect results.

On the other hand, a Data Stream Management System (DSMS) is designed
and developed keeping stream characteristics in mind and attempt to address the
problems mentioned above. Some of the important characteristics of DSMSs are as
follows:

1. DSMSs can handle continuous streams of data. Data is processed on the fly
and results are generated. It does not have to store raw data on the disk. Once data is
processed it is either discarded or archived. Thus the resource limitation problem of
storing each and every piece of information, as is done in traditional DBMS is solved.
Important data may be archived.

2. Monitoring applications are easily supported by DSMSs. In fact they are
targeted for trigger-oriented applications. Sensor networks are being widely deployed
for measurement, detection and surveillance applications. In a factory warehouse, one
may want to trigger an alarm if the sensor reading goes beyond some threshold value.
Every application can potentially monitor multiple streams of data.

3. DSMSs provide a new set of operators, which can operate on continuous

streams without blocking. Traditional “Join” and other “aggregate”’ operators, which are



difficult to use for streams are modified to efficiently handle streaming data. They
operate on windows that define the boundaries for input data sets. Continuous
operations are supported by “dliding” these windows and changing their size. Results
are evaluated on the unit of a window of data and the processing repests for further
evaluation.

4. The data arrival rate of streams may sometimes exceed the data processing
rate. Thus input queues may start losing data. In such Stuations, sampling and
histogram techniques may be used in order to produce approximate results. DSMS also
computes results even when data is lost, garbled or arrives asynchronoudly.

5. They provide real--time response to streamed queries. A query submitted to
the system is run continuously against streaming data. Thus, output is produced
continuously and incrementally at the end of every window. Updates of routing tables,
network security and monitoring traffic are some of the applications served by the real
time response of DSMSs.

It is important to understand the characteristics of streaming data and streaming
queries in order to understand and justify the need for a Data Stream Management
System. Streaming data display following characteristics.

1. Streaming data to be operated on are not available from disk or main
memory; rather they arrive continuously and online.

2. Streaming data are potentially unbounded in size. They are continuously

generated by sensor class of devices.



3. Streaming data may be lost, stale, garbled or may be intentionaly omitted
for processing. When input rate is high, it is sometimes necessary to shed load by
dropping less important data. Sampling [1] is a common technique used to handle heavy
input rates.

4. Data streams may be correlated with data stored in traditional databases.
Hence, we cannot preclude processing stream data along with traditional data. For
example, a Streaming Join operator may combine streams with stored relations.

Streaming queries can be broadly classified into:

Predefined Queries, and
Ad-Hoc Queries

Predefined queries are queries, which are available to the system before any
relevant data has arrived.

Ad-Hoc Queries are submitted to the system when the data stream has aready
started. Hence query referring to past information is dfficult to evaluate unless the
system supports storage of past information. Since Ad-Hoc [2] queries are not known
beforehand, query optimization, finding common sub-expressions, etc., adds complexity
to the system.

Predefined and Ad-Hoc Queries are further classified into:

One-Time queries or snap-shot queries
Continuous queries

One-Time Queries



These queries are evaluated only once over a given window. Once the query is
evaluated, it is removed from the system. It generates output only once at the end of the
window.

Continuous queries:

These queries are evaluated continuously as data streams arrive. The results are
produced incrementally and continuously at the end of every new window. Most queries
in streaming applications are continuous. Results may be stored or updated as streaming
data arrives, or output may itself be streamed.

The above summarizes data streams, their behavior and their characteristics. It
also clearly explains why traditional DBMSs are not suitable for streaming applications.
DSMS is specifically designed for rapid and continuous loading of individua data
items, and directly support continuous queries that are typical of data stream
applications.

The rest of the thesis is organized as follows. In Section 2, the achitecture of
DSMS is explained. Some of the important modules highlighted in this architecture are
Instantiator, operators, buffer manager, scheduler, alternate plan generator, and run time
optimizer. Design of the system architecture gives a broader picture of the entire system
without going into implementation details. In Section 3 we review recent projects on
data stream processing, as well as a plethora of past research in areas related to data
streams, such as  Aurora, Psoup, Fjords, Eddies and CACQ. This section also attempts
to explain new problems the proposed system has addressed in realizing a complete

architecture. Chapter 4 discusses the design issues of the entire system.  For every



module, it explains the design issues, the aternatives corsidered and the proposed
solution. The functionalities of each module and their inter-relationships are described.
Chapter 5 describes implementation details and emphasizes  problems
encountered while implementing the system. Experimental results and performance
evaluation to validate the system and measure its performance are provided.
We conclude in Chapter 6 by giving an overview of our contributions and a

summary of directions for future work.



CHAPTER 2
DSMS ARCHITECTURE
DSMS is modeled as a client-server architecture in which client accepts input
from the user, maps it into a form understood by a server and sends the processed input
along with other necessary information to the server over a predefined set of protocols.
Server, on fetching a request, instantiates its various components, such as operators,
buffers and scheduler, executes it and sends the result back to the client. The various

components are shown in Figure 2.1.
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Figure 2.1 DSMS Architecture



This chapter provides a brief overview of various modules constituting the
system:

2.1 DSMS Client:

Client provides graphical user interface to pose queries to the system. It not only
checks correctness of queries with respect to syntax and semantics but also modifies
them into a form acceptable by the server for processing. It constructs a plan object that
represents a single complete query from user specifications. It also generates
intermediate schema when base schema is dtered by operators such as project or join
which shrinks and expands schema, respectively. Resolving same stream attribute
names into unique names to resolve any conflicts is an added functionality supported by
the client. Once the input is processed completely with al needed information
generated, it is sent to the server over a defined set of protocols. Communication
between client and server is command driven and protocol oriented. A generic model of
communication is established in which the client serds a command followed by a
request. In order to identify a request, client sends a unique command before sending
the actual request. Once the server receives the command, it expects specific request
corresponding to the previoudy received command from a client. Client then sends the
request to be processed by the server. Server, based on the command received,
processes the request and generates the output. Following are the types of services that
are offered.

Query Input

Schema Input



Read Schema

Stop Query

Execute Query

Client can be of following types:

Norn-Web based client: Since DSMS is developed in java; user interface
may be designed in Swings or AWT components to allow users to construct queries.

Web-based client: In order to have worldwide accessibility, web-based
interface is provided to the user for defining queries. All the client functionality
explained above are incorporated in a web server. DSMS client is a web-based client.

2.2 Instantiator:

Instantiator has the responsibility of initializing and instantiating streaming
operators and their associated buffers on accepting user queries from the client. It isa
sequence of operator nodes. Client constructs a plan object, which is a sequence of
operator nodes where every node describes an operator completely. This operator
hierarchy defines the direction of data flow starting from leaves to root. Instantiator
traverses the query tree in a bottom-up fashion and does the following for each operator
node.

1. Creates an instance of the Operator and initialize it on reading operator node
data.

2. Associate input and output queues (or buffers) with desired parameters to

operators for consuming and producing tuples.



3. Inherit window specifications for window-based operators, such as
Aggregate and Join.

4. Every operator is an independent entity and expects predicate condition in a
predefined form. Instantiator extracts the information from the operator node and brings
it into the form required by each operator.

5. Associate a scheduler with the operator to facilitate communication for
scheduling.

The plan object is traversed in post order to ensure that child operators are
instantiated prior to parent operator that is required to respect query semantics as data
flows from leaves to root. Instantiator does not start the operator, rather it does al the
necessary initialization (stepl to step 5) and places it in the ready queue during post
order traversal to be scheduled by a scheduler.

2.3DSMS Server:

Thisis responsible for executing user requests, and producing desired output. It
provides integration and interaction of various modules such as Instantiator, operators,
buffer manager and scheduler for efficiently producing correct output. It performs the
following functions:

1. Accepts command and request from a client that describes the task to be
carried out.

2. It provides details of available streams and schema definitions to clients so
that they can pose relevant queries to the system. It also allows new streams to register

with the system.
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3. It initidizes and instartiates operators constituting a query and schedules
them. It also stops a query, which in turn stops all operators associated with the query
on receiving command for query termination.

4. Associate input streams with base buffers to start data flow in the system. It
also associates buffers with operators as defined in operator node. Inter-operator queues
are used to buffer the output of one operator, which acts as an input to one or more
operators at the next level of query tree. All these operations are performed by the
Instantiator module of the server.

5. Start scheduler to schedule operators for doing necessary computation and
produce the result to the client.

2.4 Alternate Plan Generator:

Once the user submits a query, a plan object is constructed. A plan object is
nothing but a partially ordered tree that indicates the order in which operators need to be
instantiated. If a single plan object is traversed in post-order, it generates only one
possible instantiation order. If the operators are instantiated in that order, it might result
in un-optimized output, as the order of instantiation may not be most efficient.
Consider a plan object in which Join is performed prior to Select where Select has low
selectivity. Here it would have been more appropriate to execute Select prior to Join,
which would have produced better result. Thus the need for Alternate plan generator is
realized which can generate all possible equivalent alternate plans that ensure the same
output. The gain may be magnified when it comes to optimizing a globa plan by

selecting one of the aternate plans in which most number of operators in an aternate
11



plan merges with the existing operators in the globa plan to share memory and
computation.

Merging enhances computation sharing and hence facilitates faster response
time. Optimizer can make use of aternate plan generator in order to dynamically select
an aternate plan when the result produced by the previous plan does not satisfy the
quality of service requirements. The best aternate plan (local optimal) of a query tree
may not be the most optimal with respect to a globa plan. An dternate plan is
considered the best when most of its operators are merged with the existing global plan.
That plan if considered aone without a global plan may not be the most favorable plan.
Devising efficient heuristics that generate good plansis arich area for future research.

2.5 Operators:

Streaming operators are specially designed to handle streaming data. They
operate on continuous streams using the window concept (to avoid blocking) providing
continuous and incremental output. There is a close association between buffers
(queues) and operators. Every operator has at the most two input queues and one or
more output queues. An operator reads from its input queues, performs needed
operation based on its semantics and produces result in its output queue. Buffers are
shared among operators. The output queue of one operator may become the input queue
of one or more operators at the next level of the query execution plan. It isimportant to
design an operator as a controllable entity so that its priorities and various states can be
controlled by different entities (such as user, buffer, scheduler, optimizer, etc.,) in a

system. Operators can either be in Ready, Run, Suspend or Stop state during the course
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of their execution. Transition from one state to another is controlled either by an
operator itself or by a scheduler. An operator’s priority can be controlled by a scheduler,
user or optimizer to satisfy quality of service requirements.

Operators are classified as windowed and non-windowed operators depending
on whether they have a window associated with their computation. Split, Select and
Project are non-windowed operators. Aggregate and Join are windowed operators as
they need a window to define their input boundaries; otherwise they may block forever
because streaming data is potentially unbounded in size. Windows are further classified
into two types: Digoint and Overlap. In the digoint case, end time of current window
coincides with the start time of next window. Thus two successive windows do not
overlap. In a overlap window, start time of the next window falls prior to the end time
of the current window. Thus two successive windows always have some common
region (or overlap area) and hence the name.

2.5.1 Non-windowed operators:

1. Sdlect: It has one input queue and one output queue. If the incoming tuple
satisfies the given condition, it outputs the tuple to its output queue else it ignores the
tuple. The condition to be checked is given by the user as part of a query.

2. Split: It is similar to select with the only difference that select evaluates
only one condition while split evaluates multiple condition. Split has one input queue
and multiple output queues, one for each condition. An incoming tuple is checked
against al the conditions. If it satisfies the condition, it is placed in the corresponding

output queue else next condition is eval uated.
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3. Project: This operator is analogous to the Project operator of traditional
DBMS. It projects only the desired attributes at the outpui.

2.5.2 Windowed Operators:

1. Aggregate: These operators need a window for their computation. They
operate on a window worth of data, performs the needed aggregate operation and
produces output at the end of every window. Currently supported aggregate operations
are: Min, Max, Average, Sum and Count.

2. Join: This is a blocking operator and hence operates on a window. Two
shades of nested loop join are being supported, with reuse and without reuse. It
performs join on timestamp ordered tuples collected at its left and right input queues to
produce timestamp ordered joined tuples without duplicates. In the case of without
reuse, every window is computed independently without making use of the result of the
previous window. In reuse, the overlapped region of the current window and the next
window is reused (overlapped region is not computed again) for the computation of
next window.

2.6 Buffer Manager:

Buffers are the intermediate storage structures used by the operators. All
operators in a query tree are connected using buffers. Buffers are implemented as
queues. Buffers are of two types. Bounded and Unbounded. A Bounded buffer has an
upper limit on the number of elements it can store, which can be specified while
instantiating a buffer. When the specified limit is reached, successive elements are

stored on disk preventing any loss of data. This is in contrast to load shedding [3]
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techniques in other systems in which the accuracy of the result is reduced by shedding
load at peak time. Buffers are shared among operators. Every buffer internally
maintains a common pointer for all operators which points to latest elements read by all
operators. All elements including and prior to that are safely discarded which creates
main memory buffer space. These buffer spaces can be filled by reading elements from
the disk in the order in which they were stored. To accomplish this, buffer incorporates
minimal persistent logic to store and retrieve elements to and from the secondary
storage as and when needed.

An unbounded buffer has no limit and continue to grow until main memory is
exhausted. This makes it a main memory steam processing system. Buffers support two
useful operations: dequeue and enqueue.

Deqgueue: It removes the top element from the buffer. If the top element is the
last element, buffer becomes empty. It makes sense to suspend all operators waiting on
the buffer to save CPU cycles. Hence operators attempting to read from an empty buffer
are suspended. An element is dequeued only if it isread by al operators sharing it.

Enqueue: A new tuple can be added to the buffer using enqueue operation. If
buffer was empty before, it sends resumption signal to all operators upon which they are
placed in a ready queue of the scheduler. If the buffer is bounded and the upper limit
has already reached, new tuples are added to the secondary memory.

Enqueue and Dequeue operations must be synchronized to ensure correctness as

the same location may be accessed by both operations at the same time.
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2.7 Scheduler:

Scheduling algorithms developed for real time systems attempt to execute the
tasks with the maximum expected utility in order to meet QoS constraints. Each tuple
entering a system represents a task but it is not workable as the total number of tasks
would be too large for a scheduler. Similarly a query can be considered a task but
scheduler is bound to lose the flexibility of scheduling, as the granularity offered by a
guery may not be acceptable. Thus the most effective way is to perform scheduling at
the operator level. Aurora [4] aso implements operator scheduling. It schedule
operators based on its state and priority. Scheduler naintains a ready queue, which
decides the order in which operators are scheduled. This queue is initially populated by
the Instantiator while traversing query tree in post order. It chooses an operator for
execution, ascertain what processing is required and process them. Operators must be in
a ready state in order to be scheduled. One of the following conditions may occur
during the running state of the operator.

1. Operator may finish its execution completely upon which it immediately
informs scheduler so that the operator waiting next in the ready queue can be scheduled
asearly as possible. Itsreference is deleted from the scheduler.

2. During the execution, operator itself may be suspended because of
unavailability of resources. This would remove the operator reference from the ready

gueue. When all resources become available, then it is again placed at the end of the

ready queue.
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3. Time quantum of the operator has expired but operator has not yet
completed its operation. Scheduler still suspends the execution of the operator and puts
the operator at the end of the ready queue to provide fair chance to all operators
ensuring starvation avoidance.

Following are the scheduling policies implemented in DSMS based on time
quantum:

1. Round-Robin: When all queries and all operators are assigned the same
time quantum. Scheduling order is decided by the ready queue. This policy is not likely
to dynamically adapt to quality of service requirements as all operators have the same
priority.

2. Weighted round-robin: Here different time quanta are assigned to different
operators based on their requirements. Operators are scheduled round robin but few
operators may get more time-share over others. This policy could be useful to improve
the response time and overall performance by assigning higher priorities to deserving
operators. For example operators at leaf nodes can be given more priority as they are
close to data sources. Similarly, Join operator, which is more complex and time
consuming, can be given higher priority than Select.

2.8 Run-Time Optimizer:

It is needed in aDSMS for run time optimization based on the quality of service
observed. It aims at maximizing the output rate of query evaluation plans. QoS may be
end-to-end delay (this delay is the difference in time when the tuple entered the system

and when it is seen at the output), number of tuples produced per unit time, or strict
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query deadline (user deadline indicating that query must output result before the
specified time to be meaningful) for output. To ensure QoS, optimizer may take the
following steps:

1. It may ask the scheduler to increase the priority of a query, which needs
immediate service. It may also ask scheduler to assign more time quantum to specific
operators and/or specific queries.

2. It may ask aternate plan generator to provide a suitable plan from the set of
plans available that is better with respect to a global plan running in the system. The
aternate plan may not be the best plan if considered aone, but may be the best for the
globa plan. The idea is to minimize the estimated cost of evaluating a query execution
plan.

3. Run time optimizer can identify performance bottlenecks of an already
executing plan and ways to overcome them. Either it can maximize the performance
estimate for the entire plan or it can locally maximize the output rate at operator level.

Run time optimizer is expected to use al these parameters intelligently to
improve QoS. It is supposed to continuously monitor the output and compare with the
QoS requirement. If the QoS is respected, it may reduce resource utilization to achieve
the same QoS. If the QoS requirement is not met then above heuristics are applied to

accomplish the desired goa. This module is a good candidate for future research.
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CHAPTER 3
RELATED WORK
This chepter presents an overview of the work done in data streams that
addresses various issues in streaming applications and focus on the overall design and
characteristics of various systems to handle the challenging problems in data streams.

3.1 Monitoring Streams

Aurora [5] supports continuous query processing, as opposed to a traditional
DBMS, in which queries are evaluated continuously over the incoming data stream.
They have implemented monitoring applications, which are difficult to implement in
traditional DBMS which was developed primarily for business applications. Aurora
support trigger oriented monitoring applications that require a large number of triggers
and hence support active technology very well. They extend their work from Stream
Group [6] that addresses many issues in stream processing. It can support continuous
queries, ad-hoc query and views (a path defined with no connected application) at the
same time. Aurora can handle a variety of stream data that could be lost, stale or
garbled. The emphasis is on quality of service requirements, which are crucia to real-
time applications, such as sensor-based monitoring and financial data analysis.

Aurora is fundamentally a data-flow system and uses the popular boxes and
arrows paradigm found in most process flow and workflow systems. Tuples flow

through a loop-free, directed, graph of processing operations (i.e., boxes). Ultimately,
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output streams are presented to applications, which must be programmed to deal with
the asynchronous nature of tuples in an output stream. It has a connection point that
supports dynamic modification to the network and it also has potential for persistent
storage. New boxes (operators) can be added to or deleted from a connection point and
it provides access to the recent past, which is beneficia to a new application that
connects to the network.

There are few optimization techniques proposed in Aurora. It alows them to
insert/move map (project) operations to the earliest possible points in the network,
thereby shrinking the size of the tuples that must be subsequently processed. Filter
operations can sometimes be pushed down the query tree through joins. Combining
Boxes is another optimization technique. For example, two filtering goerations can be
combined into a single, more complex filter that can be more efficiently executed than
the two boxes it replaces.

Aurora aso supports run-time network to process data flows through a
potentially large workflow diagram. The scheduler picks a box for execution, ascertains
what processing is required, and passes a pointer to the box description (together with a
pointer to the box state) to the multi-threaded box processor. The QoS evaluator
continually monitors system performance and activates the load shedder, which sheds
load till the performance of the system, reaches an acceptable level.

The job of the Aurora Storage Manager (ASM) is to store all tuples required by

an Aurora network. ASM must manage storage for the tuples that are being passed
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through an Aurora network, and it must also maintain extra tuple storage that may be
required at connection points.

Aurora exploits the benefits of nonlinearity in both intra-box and inter-box
tuple processing primarily through train scheduling, which attempts to queue as many
tuples as possible without processing, to process complete trains at once, and to pass
them to the subsequent boxes without having to go to disk.

This architecture can be extended to support distributed processing. There are
various issues in distributed processing such as load shedding, distribution of query
plans and collection of results from distributed nodes. They should increase scalability,
energy use and bandwidth efficiency. They make the assumption that all tasks are
assumed to be present in the main memory and are scheduled and executed in their
entirety. Thus they should find the techniques, which allow disk swapping when the
amount of information is too large to be accommodated in the main memory.

3.2 PSoup: A system for Streaming Queries over Streaming Data

Psoup [7] is a system that combines the processing of ad hoc and continuous
queries by treating data and queries symmetrically, alowing new queries to be applied
to old data and new data to be applied to old queries. PSoup also supports intermittent
connectivity by separating the computation of query results from the delivery of those
results and materializing them, thereby improving throughput and query response times.
PSoup is flexible enough to make use of other architectures like eddies to adapt
dynamically to the processing of input streams. They make use of efficient data

structure called RB-trees, which reduces the time required for indexing at the desired

21



location for making a search. PSoup efficiently supports other complex operations such
as processing of composite tuples and aggregate operations. PSoup alows the
processing of data as well as queries on the fly still producing the correct output. Earlier
approaches supported arrival of either of the two but not both and hence it is a
considerable improvement over the existing mechanisms. PSoup is intelligent enough
to share computation thereby conserving resources and improving efficiency. They are
generally used in maintaining incrementa results. They have also optimized multi-
query evaluation by using appropriate algorithms to join the data and query streams.
They have aso developed techniques to share both the computation and storage of
different query results.

This system stores the queries and data in structures called State Modules
(SteMs). There is one Query SteM for all the query specifications in the system, and
there is one Data SteM for each data stream. The results are materialized in a Results
Structure. They defined tree different systems based on their storage requirement:
NoMaterialization (NoMat): the storage cost is equal to the space taken to store the base
data streams plus the size of the structures used to store the queries themselves. PSoup-
Partial: in addition to costs incurred by NoMat, PSoup-P also includes the cost of the
Results Structure. PSoup-complete (PSoup-C): like PSoup-P, PSoup-C includes the
cost of storing the results in addition to the costs included by NoMat systems. PSoup-C
always stores the current results of standing queries at a given time. Lazy evaluation (as

used in NoMat) suffers from poor response time while having no maintenance costs.
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Eager evaluation (as done in PSoup-C) offers excellent response time but has increased
mai ntenance costs.

The system can be improved by having multiple query stems as we have for
data streams. This will increase the complexity of the system but it will also increase the
query throughput as multiple data streams can be handled simultaneously by different
query stems. Psoup is currently implemented as a main memory system. But the system
can be improved to archive data streams to disk and support queries over them. Both
queries and data can be stored onto the disk. They should come up with a scheduling
mechanism to support de-scheduling of queries to disk, which are not frequent.
Similarly queries that are invoked often should be given higher priority by the
scheduler. This system is suitable for data recharging and monitoring applications that
intermittently connect to a server to retrieve the results of a query.

3.3 Continuously Adaptive Continuous Queries Over Streams

The CACQ [8] system is presented on the basis of eddy, a continuously adaptive
guery-processing operator, which continuously reorders operators in a query plan as it
runs; and the Telegraph adaptive dataflow engine as a platform to be used for the
continuous query engine. Since earlier approaches used only static query plans, this
architecture offers significant performance and robustness gains relative to existing
continuous query system and is more aggressive in its ability to share computation and
storage across queries over streams.

CACQ is developed from the Telegraph project [9] design and incorporates

many significant innovations that make it better suited to continuous query processing
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over streams than other continuous query systems. Their work is dightly different from
Continuously queries over data streams [10] They use the eddy operator to adapt
continuously to the changing query workload, data delivery rates, and overall system
performance. They explicitly encode the work, which has been performed on a tuple, its
lineage, within the tuple, allowing operators from many queries to be applied to asingle
tuple. They use an efficient predicate index for applying different selections to a single
tuple. They also split joins into unary operators caled SteMs (State Modules) that allow
pipelined join computation and sharing of state between joins in different queries.

It makes use of Eddies [11] which route tuple through operators (lineage) in a
query dynamically and hence it is possible to modify the order of operations in a query
plan while the query is in flight. The eddy determines the order in which to apply
operators by observing their recent cost and selectivity and routing tuples accordingly.

This contrasts with systems based on static query plans, in which the state of
intermediate tuples is implicit in the query plan. Query operatorsin a static plan operate
on tuples of a single lineage. In CACQ this ability is extended to multiple overlapping
queries, maximizing the sharing of work and state across queries.

Users may issue queries that join data from distinct but overlapping subsets of
sources. They use a space-efficient generalization of doubly pipelined joins within eddy
framework. Eddy encapsulates the logic for computing joins over the incoming sources
using SteMs. This allows them to incrementally compute a join over any subset of the

sources and stream the results to the user.
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They have also implemented a variant of the eddy ticket scheme. In their
variant, a grouped-filter or SteM is given a number of tickets equa to the number of
predicates it applies, and penalized a number of tickets equal to the number of
predicates it applies when it returns a tuple back to the eddy. In this way, they favor
low-selectivity via tickets and quick work via backpressure.

They present the first continuous query implementation based on a continuously
adaptive query processing scheme. Their eddy-based design provides significant
performance benefits, not only because of its ability to adapt, but also because of the
aggressive cross-query sharing of work and space thet it enables. By breaking the
abstraction of shared relational algebra expressions, their CACQ implementation is able
to share physical operators — both selections and join — a a very fine grain. These
features are augmented with a grouped-filter index to simultaneously evaluate multiple
selection predicates.

3.4 Fjord

They introduced Ford [12] which is a hybrid approach for push and pull
architecture. It combines push based sensor sources with traditional sources that
produce data via blocking, pull based iterator interface. They introduce the concept of
sensor proxies, which is responsible for communication between query processors and
the physical sensors by doing simple aggregation over sensor data and relaying tuples to
appropriate query operators and conserving sensor power by not transmitting sensor
data that falls beyond certain threshold values. Fjord architecture does multiple sensor

gueries on sensors, still conserving sensor resources [13] and maintaining high query
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throughput. This architecture can be easily adapted to support different types of query
languages for querying streaming data. Fjords have been implemented in rea life
applications like Traffic Analysis and it can scale to a large number of queries. Sensors
are efficiently utilized by sending control messages to adjust their sample rates and their
power consumption is also controlled effectively. Operators need not have to worry
about the push or pull based architecture. They are thus comparatively less complex.
Single Fjord can support multiple queries and it allows alocating streaming tuple only
once, which is shared by multiple queries by query folding thereby conserving
resources. They have introduced the concept of transition model, which sometimes
needs to be scheduled more frequently as compared to other modules as the queries on
those modules may be more frequent as compared to others. But operating system has
coarse control over thread scheduling and is not useful when scheduling needs some
prioritization. They have their own scheduler that handles thread scheduling with
prioritization.

Fjords provide support for integrating streaming data that is pushed into the
system with disk-based data, which is pulled by traditional operators. Fjords also alow
combining multiple queries into a single plan and explicitly handle operators with
multiple inputs and outputs.

The key advantage of Fjords is that they allow distributed query plans to use a
mixture of push and pull connections between operators. Push or pull isimplemented by
the queue. By integrating non-blocking operators into Fjords, they take full advantage

of Fjords ability to mix push and pull semantics within a query plan. Another major
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component of sensor query solution is the sensor proxy, which acts as an interface
between a single sensor and the Fjords querying that sensor.

The history of the stream is not relevant. This means that streaming tuples need
only be placed in the query processor’'s memory once, and that selection operators over
the same source can apply multiple predicates at once. Fjords explicitly enable this
sharing by instantiating streaming scan operators with multiple outputs that allocate
only a single copy of every streaming tuple; new queries over the same streaming
source are folded into an existing Fjord rather than being placed in a separate Fjord.

These solutions are an important part of the Telegraph Query Processing
System, which seeks to extend traditional query processing capabilities to a variety of
nontraditional data sources. Telegraph, when enhanced with Fjords, enables query
processing over networks of wireless and battery powered devices that cannot be
queried viatraditional means.

3.5 Eddies

Eddies [11] support dynamic reordering of a query plan in which they identify
“moments of symmetry” during which operators can be easily reordered when they are
subjected to changes in cost, selectivity and the arrival rate of tuples. Moments of
symmetry alow reordering of inputs not only to a single binary operator but it
generalizes the problem to solve any number of binary joins by using the commutative
property of ajoin. They provide runtime adaptavity and a reduction in code complexity,
which is not possible with traditional plans. They can be used as an optimizer, which

does not need a traditional query optimizer with a complex code. They are aso used
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with traditional optimizers to improve adaptability within pipelines. It alows the system
to adapt dynamically to fluctuations in computing resources, data characteristics and
user preferences. This alows each tuple to have flexible ordering of query operators
when eddies are combined with appropriate join agorithm. Eddies have a flexible
prioritization scheme to process tuples from its priority queue. Their priority scheme is
simple to implement and ensures that eddies are not clogged with new tuples. Eddies
implements an intelligent lottery scheme for variable selectivity, which is smple to
implement and produces effective results. Eddies solves the problem of limiting
concurrency due to barriers by using the concept of Rivers and alows /O and
computation to perform simultaneoudly. It is developed to work efficiently in large-
scale system with unpredictable and fluctuating environment. It takes into account the
problems caused by hardware, data and user interface complexity in large-scale
systems.

An eddy module directs the flow of tuples from the inputs through the various
operators to the output, providing the flexibility to alow each tuple to be routed
individually through the operators. The routing policy used in the eddy determines the
efficiency of the system. An eddy’s tuple buffer is implemented as a priority queue with
a flexible prioritization scheme. An operator is always given the highest-priority tuple
in the buffer that has the corresponding Ready bit set. In a simple priority scheme,
tuples enter the eddy with low priority, and when they are returned to the eddy from an

operator they are given high priority which ensures that tuples flow completely through
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the eddy before new tuples are consumed from the inputs, ensuring that the eddy does
not become “clogged” with new tuples.

Eddies have the limitation that they can be used efficiently when we favor join
algorithm with frequent moments of symmetry, adaptive or non-existent barriers and
minimal ordering constraints that are generally needed in various join algorithms such
as Merge Join and Nested Loop Join. Thus they are effective only in Ripple Join. Their
implementation s not fully dynamic. They still make use of some static mechanisms
like “pre-optimization” “phase, choices of join agorithm and access methods.
Resources are often not utilized properly in not so promising aternatives like
implementing sort-merge join or other joins which do not satisfy the requirements for
the eddies to be most effective. They should further use parallelism and adaptavity
available in Rivers. Reoptimizing queries with intra-operator parallelism requires
repartitioning data. But there is no efficient technique so far for adaptively adjusting the
degree of partitioning for each operator in the query plan.

They want to apply their work to the generic space of dataflow programming.
These include applications such as multimedia analysis and transcoding, and the
composition of scalable, reliable Internet services. They want to use eddies as the main
scheduling mechanism and rivers to serve as a generic parallel dataflow engine in that
environment.

3.6 Dynamic Regrouping of Continuous Queries

They have proposed an approach for incremental grouping to efficiently group

new continuous queries without having to regroup existing queries thus significantly
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reducing the cost of execution. They have also proposed another approach called
dynamic regrouping to increase the overall quality of regrouping which otherwise
would have deteriorated by continuously adding and removing queries from the group
statically. This dynamic approach increases the overall performance of the system.
Their regrouping method, when applied in conjunction with the incremental grouping,
obtains a reasonable improvement over the incremental grouping method at a low extra
overhead in regrouping time. They consider multiple query optimizations as opposed to
single query optimization and their regrouping mechanism [14] can handle newly
arrived queries. The incremental grouping in conjunction with dynamic regrouping
results in a high quality grouping at afairly low cost. It can optimize large continuous
workload and hence can be applied to a large-scale system. Regrouping is done very
efficiently and does not impose significant burden on the system.

It maintains intermediate files incrementally by materializing the results, which
avoids re-computation of the entire plan when any failure occurs. This model is quite
simple and introduces simple metric to evaluate cost estimation called update
frequency, which at any node is the sum of the update frequencies of al its children.
Delete operation in global query optimization is not at al complex. The node count is
simply reduced by 1 and the rest of the tree is automatically rearranged.

Incremental group optimization attempts to find the optimal solution to the new
query submitted from al possible solutions. The overal cost for the new query is the
sum of the costs of al new nodes added. They run top-down local exhaustive search, to

find an optimal incremental plan for a new query. In dynamic regrouping algorithm,
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they construct links between existing nodes and nodes that were added since the last re-
grouping and then a minima weighted solution is found from the current solution by
removing redundant nodes.

This algorithm assumes that the amount of physical memory available isinfinite
and all nodes can fit in the physica memory. But this is not true when the number of
installed continuous queries becomes very large. It makes use of update frequency for
estimating the cost of that node which is an approximate method as the accurate method
for computing cost is very difficult. The algorithm developed for an incrementa plan is
not efficient as it tries to find all possible sub query plan in an exhaustive top down
manner to check whether a sub query node exists.

3.7 NiagaraCQ

They have developed an Internet-scale continuous query system, which supports
millions of queries using group optimization on the assumption that many continuous
queries on the Internet will have some similarities. Previous group optimizations were
not highly scalable as they could group only a small number of queries at the same time.
A new “incremental grouping” methodology that makes group optimization more
scalable than the previous approaches was proposed which can be applied to very
general group optimization methods. NiagaraCQ [15] groups continuous queries based
on the observation that many web queries share similar structure. In this system, both
timer-based and change-based continuous queries can be grouped together for event
detection and group execution, a capability not bund in other systems. Incremental

evaluation of continuous queries, use of both pull and push models for detecting
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heterogeneous data source changes and a caching mechanism assist in making the
system scalable.

Grouped queries can share common computation, tend to fit in memory and can
reduce the 1/0 cost significantly. Grouping on selection predicates can eliminate alarge
number of unnecessary query invocations. They use an incremental group optimization
strategy with dynamic re-grouping. New queries are added to existing query groups,
without having to regroup already installed queries. They also use a query-split scheme
that requires minimal changes to a general-purpose query engine.

NiagaraCQ caches query plans, system data structures, and data files as all
information required by continuous queries and intermediate results will not fit in
memory by considering the scalability of the system. Grouped query plans tend to be
memory resident since we assume that the number of query groups is relatively small
and saveslots of disk I/Os.

There are various phases of continuous query processing, which includes:
continuous query installation during which, the query is parsed and the query plan is fed
into the group optimizer for incremental grouping. In continuous query deletion a
unique name is generated for every user-defined continuous query. A user can use this
name to retrieve the query status or to delete the query. Queries are automatically
removed from the system when they expire. Continuous query execution sends query id
and relevant files to the Continuous Query Manager. The Continuous Query Manager

invokes the Niagara query engine to execute the triggered queries.
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A prototype version of NaigaraCQ includes a Group Optimizer, Continuous
Query Manager, Event Detector, and Data Manager. Incremental group optimization
support queries containing only selection and join. They should share computation for
expensive operators, such as aggregation. “Dynamic regrouping” is another interesting

future direction they may explore.
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CHAPTER 4

DESIGN ISSUES FOR A DSMS

4.1 DSMS SCHEMA

In traditional DBMSs, “schema’ refers to the organization of data in relational
databases, where data is contained in tables. Schemas are used for describing a database
in terms of names and the characteristics of the data items. Although the definition of
schema in streams is similar to that of a conventional DBMS, it describes continuous,
unbounded and time varying streams instead of describing fixed tables. Stream schema
consists of various attributes (or fields) and each attribute of the stream is described by
its name, data type and position within the stream. The following section explains how
such schemas are defined:

A DSMS's schema stores complete information about all streams supported by
the system. A new stream will not be recognized until it is registered with the system.
This involves storing a new stream definition in DSMS schema. All streams have their
schema information maintained in persistent storage so that it can be recovered in the
event of a system crash. The data structures used for storing schema information can
grow and shrink dynamically, which provides complete flexibility for addition and

deletion of schema.
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From the Figure 4.1, it is observed that stream names are stored as keys with
their corresponding values as lists which in turn contain references to attribute and
position tables. The attribute table describes attributes of a stream by its name, data type
and position in schema while the position table provides the same information based on

positions and hence attribute details can be accessed by specifying either attribute name

or its pogition in the corresponding stream.
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4.2 Buffer

Buffers are the intermediate storage structures used by operators. Buffers
connect al operators in a query tree. An operator reads a tuple from an input buffer,
processes it and passes output to the output buffer. Buffers are implemented as a queue.
They support two basic operations for queue management viz. enqueue and dequeue.
4.2.1 Buffer Types:

Buffers are of two types:
Bounded, and
Unbounded
Bounded Buffer:

A bounded buffer has an upper limit on the number of elements it can store,
which can be specified while instantiating it. It can be modified as and when the need
arises. When the specified limit is reached, successive elements are stored in disk
preventing any loss of data. Since limited memory resources are available for use by the
system, this feature is useful in controlling the buffer size as a part of certain buffer
management policies.

Unbounded Buffer:

In contrast to bounded buffers, an unbounded buffer continues to grow until
main memory is exhausted. There is virtually no limit on the number of elements that
can be stored. For initial implementation, experimentation and testing of DSMS,

unbounded buffers were used heavily.
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4.2.2 Buffer Access by Operators:

Buffers are shared among multiple operators as shown in Figure 4.2. Since
operators can read elements from shared buffers independently, each operator maintains
itsown reading pointer that points to next element to be read.

In addition, each buffer internally maintains a common pointer for all operators
that points to the latest element read by all operators. All elements including and prior
to the common read element are safely discarded thus creating main memory buffer
space. These buffer spaces can be filled by reading elements from the disk in the order
in which they were stored. To accomplish this, the buffer incorporates minimal
persistent logic to store and retrieve elements to and from the secondary memory as and

when needed.

Crutpnt Buffer

Inpit Buffer /

Crutpnt Buffer

Crutpnt Buffer

I

Figure 4.2 Buffers and Operators

4.2.3 Buffer Operations
Dequeue: Degueue removes the top element from the buffer. If the top element
is the last element, the buffer becomes empty. It would be preferable to suspend all
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operators waiting on the buffer to save CPU cycles. Hence, operators attempting to read
from an empty buffer are suspended. An element is dequeued only if all sharing
operators read it. Once an element is removed, elements can be brought from secondary
storage to fill the main memory buffer space.

Enqueue: A new tuple can be added to the buffer using an enqueue operation. If
the buffer was empty before, it sends a resume signal to all operators upon which they
are placed in the ready queue of the scheduler. If the buffer is bounded and the upper
limit has already been reached, new tuple are added to secondary memory.

An element can be read by multiple operators simultaneously but can be written
by only one operator at a time to maintain data consistency. Enqueue and Dequeue
operations must be synchronized to ensure correctness as the same location may be
accessed by both operations at the same time.

4.2.4 Persistence Logic:

Bounded buffers can store a limited number of elements as set by its
upper bound. If the data arrival rate increases the data consumption rate, a bounded
buffer would soon be exhausted. To prevent loss of data, incoming elements must be
stored in secondary memory. This data can be read into main memory as and when
buffer space is released. This functionality is provided in the Enqueue operation that
writes elements in a file sequentialy [16] to ensure that they are read in the main
memory in the order of their arrival. This ordering is essential for windowed operators

as they expect tuples to be timestamp ordered in order work correctly.

38



Since /O operations are expensive, it is not recommended to fetch tuples from
secondary memory each time a tuple is dequeued. The dequeue operation starts a
separate thread to read elements from secondary memory only if n% or more tuples are
removed from main memory buffers. For all the experiments, n is set to 50.

4.3 Stream Operators

Operators of traditional DBMSs are not designed to produce real--time response
to queries over high volume, continuous, and time varying data streams. The
processing requirements of real time data streams are different from traditional
applications and demand a re-examination of the design of conventional operators for
handling long running queries to produce results continuously and incrementally.
Blocking operators (an operator is said to be blocking if it cannot produce output unless
al the input is used ) like Aggregates and Join may block forever on their input as
streams are potentially unbounded. Thus we realize the need to design and develop
Stream Operators by considering stream characteristics, which can accommodate the
dynamic aspect of query plan generation and scheduling for processing streamed
queries.

A query-processing graph is comprised of operators connected via queues as

shown below:
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Every operator has at the most two input queues but can have any number of
output queues. Streaming data are buffered in these input queues. An operator reads
data from these input queues takes the appropriate actions and generates results that are
buffered in the output queue. The visualization is provided in Figure 4.3. The output
gueue of one operator becomes a shared input queue for other operators waiting at the
next higher level of the query tree (a tree generated based on the query input which
decides the order in which operators are instantiated) for consuming input.

4.3.1 Operator Design:

It is absolutely essential to design an operator as a manageable unit so that it can
be controlled by different entities in a system such as the user, the buffer manager and
the scheduler. An operator is instantiated dynamically along with its input and output
gueues. Every operator is implemented as a separate thread, which is scheduled by a
scheduler, placed at the head of scheduler’s ready queue. Scheduling decisions are
purely based purely on two important properties possessed by an operator, which are as
follows:
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4.3.1.1 Priority:

The majority of streaming applications demand real time output for different
kinds of queries with varying requirements. To suit these requirements, priorities are
associated with queries indicating their urgency. During query execution, prioritiescan
be changed either by a scheduler, a run-time optimizer or a user to increase the overall
performance of the system. The following are the entities, which are likely to change
the priorities.

User:

Queries with strict deadline must be completed before the specified time to be
meaningful. These queries and all operators constituting these queries are given higher
priority by the user. Consider a snapshot query (one time query) that needs to be
evaluated immediately. For example, “ Retrieve the highest temperature recorded
between 10p.m and 10:05 p.m.” . Such snapshot queries generally enjoy higher priority
over long running queries. User can also change priorities of queries dynamically at run
time.

Scheduler:

The scheduler plays an important role in improving the overall efficiency of a
system with regard to memory utilization, tuple latency, run time resource utilization,
query throughput and quality of service requirements. All these parameters are
controlled by adjusting the operator’s priority. For example, an operator at the bottom
of a query tree is assigned higher priority as compared to an operator at the top, since

base operators are flooded with input streams (Leaf nodes are expected to handle huge
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streams of data since they are closer to the ource. As we traverse the tree from leaf to
root, the amount of data to be handled reduces drastically due to the selectivity of
intermediate operators). It may aso change the priority based upon the resources
allocated to the operator. For example, if anoperator is given higher priority but al the
resources needed for its operation are not available then its priority may be reduced.
Also it is meaningful to assign higher priority to an operator with higher fan-out over
one that feeds its output to a few nodes or none. Priorities can also be assigned based on
operator complexity and functionality. Join may need more time quantum than Select,
as its operation is more complex and time consuming.

Run time Optimizer:

Run time Optimizer may not change the priority of an operator itself but directs
the scheduler to change the priority of an operator. It verifies whether the desired QoSis
met and accordingly asks scheduler to change the query plan and/or priorities associated
with the query (which in turn affects priorities of corresponding operators). For
example, if a response time (end--to--end query processing time) is x and QoS isy, any
ideal system would expect x < y. The run time optimizer continuously monitors the
output and compares it with the defined QoS. If the desired QoS is not met, it tunes the

system to achieve the desired QoS requirements. One of the tuning parameters is the

priority.
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4.3.1.2 State:

Operators are schedulable entities. They have different states of execution
during their lifetime. Operators can be in one of the following four states during their
course of execution.

Ready
Run
Suspend
Stop

Trangition from one state to another is determined by the operator’s priority,
availability of resources and scheduling schemes used. The state transitions are shown

in Figure 4.4 and described below:

Figure 4.4 Operator State Diagram

Ready:
When the user submits a query, constituent operators and their input and output

queues are initialized and instantiated upon which they are placed a the end of
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scheduler’s ready queue. An operator previously suspended transitions into this state
when all resources needed for its execution are available.

Run:

An operator goes into this state when it is selected by the scheduler for
execution. Thisis the state in which operator performs its actual operation. Operator can
switch to the ready state if its assigned time quantum has not elapsed or it may be
suspended if al resources needed for its execution are not available.

Suspend (Wait):

A running operator can be suspended for the following reasons:

It may be pre-empted by a higher priority operator.
All resources needed for its operation are not available. (Input queues are
empty).

Stop:

This state indicates that all queries requiring this operator are completely
processed. The operator is removed from the system when it is stopped.

It is essentiad to provide APIs for defining operator state, operator priority,
scheduler instance and output queues. These commonalities have been identified for all
operators and have led to the design of an operator hierarchy consisting of a generic
parent operator and specialized child operators. The parent operator provides APIs to
support the functionality mentioned above while the children possess additional
functionality besides those inherited from the generalized parent operator. This design

avoids code replication to multiple operators and provides easy development and
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maintenance of code. The output queue is also defined in the base operator but input
gueue is defined in specialized operators. This is because all operators except “Join”
needs only one input queue. The output queue is defined in base operator because any
operator can have any number of output queues associated with it.

The operator hierarchy can be represented as shown in Figure 4.5:

Crperator

Split Join Lggresate

Figure 4.5 Operator Hierarchy

4.3.2 Operator Types:
Based on whether operators need window bounds for their computation or not,
they are further classified as:
Non Windowed Operators
Windowed Operators
Non windowed operators:
They do not depend on windows for their computation. These operators work on

one tuple a a time and generate the required output. They are non-blocking operators
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(operators are said blocking when they cannot produce output unless a complete set of
input is available). Split is a nonwindowed operator.

Windowed Operators:

As streaming data is potentially unbounded in size, blocking operators, such as
Aggregate and Join may block forever if their input bounds are not defined. Hence the
concept of a window is introduced which produces a bounded set of tuples from
unbounded streams. Once a window is processed, the window dides so that the
operation can be performed for the next set of data and is repeated until the query is
ended. The following are the windowed operators supported by our DSMS:

Aqggregate
Nested Loop Join
4.3.3 Non Windowed Operators

4.3.3.1 Split Operator

Select evaluates only one condition while split evaluates multiple conditions.
Split has one input queue and multiple output queues: -- one for each condition. The
need for a Split operator was identified to logicaly divide the streams based on
application logic. One application of the Split operator would be to divide a single
composite (heterogeneous) stream into multiple homogeneous streams (all elements in
each stream are of the same type). A list of conditions is maintained and the incoming
tuples are subjected to condition evaluation sequentiadly. If the tuple satisfies the
condition, it is sent to the corresponding output queue else the same tuple is evaluated

for the next condition. This is repeated until all elements in the condition list are

46



checked or the tuple satisfies one of the conditions after which the next tuple is
considered for evaluation. If a tuple doesn’t satisfy any of the conditions, it is put in the
default output buffer. The Split operator is better understood using Figure 4.6.

4.3.3.1.1 Design Alternatives:

The complexity of this operator lies in the condition evauation and its
efficiency is proportional to the efficiency of the tool used for condition evaluation. The
conditions have to be interpreted at run time and cannot be compiled into code. We
have tried to implement our own condition evaluator but encountered several problem
relating to cost, complexity and efficiency. Moreover we realizes that it was not as
powerful and as efficient as FESI (Free Ecma Script Interpreter) which has its own
condition evaluator that supports virtually all any Java expression consisting of
relational, logical and many other operators. FESI has been chosen because it has
already been tested for correctness and efficiency. FESI reduces code complexity and
provides higher level of abstraction for evaluating a condition. FESI APIs for condition

evaluation alleviates us from building our own expression evaluator.
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TupleH

....... Tiple2

Tuple1

The Split operator has multiple conditions to evaluate. Every time a condition is
evaluated, a schema needs to be accessed in order to replace the attribute name
mentioned in the condition string with the corresponding attribute position to read field
values at that position from the incoming tuple. There are two aternatives for handling
this situation. One of the alternativesis to access the schema every time a new condition
is evaluated. If there are *N’ conditions, the schema needs to be accessed ‘N’ times. The
other alternative is to access schema just once and subsequently sets all the attributes of
the input stream with the corresponding attribute positions. Accessing a schema is a

time consuming operation and hence the latter is preferred wherein all the attributes of

Input Quewe

Condition 1

Condition 2

Condition 3

Condition I

Conditon Liet

Figure 4.6 Split Operator

Tuplell | ... Tipled | Tuplel

TupleM | ....... Tuple5 | Tple2

TupleQ | ... Tipled | Tuple3
Oluiput Queues

input stream are set regardless of whether they are needed in the condition list or not.
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4.3.3.1.2 Interaction between Buffer and Scheduler:

Split operator communicates with two other important modules, namely, the
buffer manager and the scheduler. It registers itself with its input and output queues
(buffers), and with the scheduler to facilitate communication among them. The
scheduler starts or resumes the operator if it was not aready started and runs it for the
assigned time dice. Its interaction with the buffer is important and introduces the
interesting issue of operator suspension and resumption. CPU cycles are wasted when
an operator attempts to read from an empty buffer. It B appropriate if the operator is
suspended when the resources are not available. Either the buffer can suspend the
operator or the operator can suspend itself under these circumstances. Buffers are
shared by many operators and if the buffer takes the responsibility of invoking operators
then al operators are ssimultaneously suspended and awakened (placed in the ready
queue). This approach is efficient but entails extra processing responsibilities for the
buffer manager, which aready performs some complex tasks. The other alternative is
to provide this control to the operator itself thus causing every operator to suspend
independently. While not as efficient as the first approach, it does help to reduce the
load on buffers. This trade-off was deemed necessary and control was assigned to
operators rather than buffers.

The agorithm for Split is as follows:

While (end time of query is not reached) {

If (input queue is not empty)

Read tuple from input queue.
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While (al conditions are not eval uated)
Read the next condition string.
Set operands of the condition string by the corresponding
tuple field values to generate modified condition string.
Evaluate the modified condition string using Fesi
Interpreter.
If (condition is satisfied)
Send tuple to the output queue associated with the
present condition.
Break.
If (none of the conditions are satisfied)

Send tuple to default output queue.

Dequeue read tuple
Else
Wait on the input queue (operator suspended)
}
4.3.4 Windowed Operators

Operators such as Select, Split and Project work on a single tuple at a time and
do not need complete set of input tuples to be available. However the Join and
Aggregate operations such as Average, Sum, Min and Max need a complete set of input

before they can produce any output. In streams, data arrives continuously and blocking
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operators may block forever waiting for an unbounded stream to terminate. The
solution to this problem is to define a window that marks the beginning and end of input
bounds. All tuples faling within the window becomes the input set for blocking
operators. The results are produced incrementally at the end of every window. The
window itself can be defined in a number of ways. The following are the possible
combinations of windows [17] which can be defined for a query. They are as follows:
4.3.4.1 Window Types
There following are the different types of physical window viz.
Snapshot window
Landmark window
Sliding window
Reverse landmark
Reverse dliding
A diding window has two types. overlap and digoint sliding windows.
Snapshot Window:
Thisis asingle fixed window. Its beginning and end time are fixed, as shown in
Figure 4.7. Queries using a snapshot window produce output only once at the end of
window. These are aso called one-time queries. Once the output is produced, the query
is removed from the system. Example of such a query: Select all devices that were

turned on between 5 P.M. and 6 P.M on Jun5 2003.
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WE Window Start
WE: Window End

W WE

Figure 4.7 Snapshot Window

Landmark window

This window has a fixed begin time and a variable end time. Windows are
continuously formed until either the query end time is reached or the query is
terminated explicitly, as shown in Figure 4.8. An example of such a query is:
Continuously select all the passengers that entered at the airport from 5 P.M. on June

5, 2003 every hour.

SRS SWE

TE2E EWZE

TS OWindow One Start): 5 pom.
TWI1E (Window One End): & pom.

TWaE CWindow Two Start): 5 pom
W2E (Window Two End): 7 pom.

Figure 4.8 Landmark Window

It can be observed thet window is continuously expanding in the forward

direction as the start timeis fixed. Initial size of the window is 1 hr, between 5 P.M and
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6 P.M. Next window sizeis 2 hrs, between 5 P.M and 7 P.M and this runs indefinitely.
These queries are also called long running queries. We can also give the time to end the
query. For example: Continuously select all the passengers entered at the airport from 5
P.M. on June 5, 2003 every hour until 6 A.M on June 6 2003. Thus 6 A.M on June 6
2003 is the terminating time for the query.

Reverse Landmark Window:

This classification is a mirror image of Landmark Window explained above.
This window has its start time fixed but end time moving in the reverse direction. See
Figure 4.9. Example of such a query is. Continuously select all passengers entered at the

airport starting from 6 p.m. on June 6 2003 to 3 p.m. on June 6 2003 every hour.

2R TA2E
TA1E CWhindows One Start): & potn

SA1E CWhindow One End): 5 oo
TA2E OWhindow Twe Start): & oot
SAZ2E CWhindow Tweoe End): 4 pom.

Figure 4.9 Reverse Landmark

Sliding Window:
This window has both its end points moving and hence the name dliding
window. Thisis aso along running query.

Sliding windows are again divided into 2 types:
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Digoint diding window and_Reverse Digjoint

Overlap Sliding window and Reverse Overlap
Digoint diding window: In this, successive windows never overlap. The
endTime of the current window becomes the beginTime of the next window, as shown
in Figure 4.10. Thus two successive windows never overlap and hence the name digoint
diding window. An example of digoint diding window is. Show me the common

items purchased in 2 departmental stores every hour starting from 5 P.M onwards.

TW2S WO E
WS OWindow One Start): 5 pom.

WE CWindeow One End): 6 pom
TW2E OWindow Two Start): & pom
TWEE OWindew Two End): 7 pom.

Figure 4.10 Digjoint Sliding Window

Reverse Digoint: In reverse digoint, window shifts in the reverse direction
while respecting the digoint constraint, as shown in Figure 4.11. It is the mirror image
of a Digoint Window. An example of a digoint diding window is. Give me the
common items purchased in 2 departmental stores every hour starting from now (say

now is 6 p.m. on June 6, 2003) to 1 p.m. on June 6, 2003.
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Figure 4.11 Reverse Digoint

Overlap diding window: In this variation, two adjacent windows may overlap,
as shown in Figure 4.12. The start time of next window is aways lower than the end
time of current window. An example of an Overlap windowed query is. Give me the
average temperature recorded for every one hour by a thermostat every 10 minutes

from now.

TW2E W2ZE

1S CWindow One Start): & pom.
WMAE CWindow One End): 7:p.om.
F2E CWindow Twe Start): €:10 pom.
2E CWindow Twe End): 710 pomo

Figure 4.12 Overlap Sliding Window

Reverse Overlap Sliding: It dides in the reverse direction, as shown in Figure

4.13. It is the mirror image of the overlap diding window. Example of Overlap
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windowed query is. Give me the average temperature recorded for every one hour by a
thermostat every 10 minutes from now (6 p.m. on June 6, 2003) to 4 p.m. on June 6,

2003.

T2E WZE

TS CANindow Oine Start): & pom
SH1E OWindow One End): 7 pom.
S22 OWindow Two Start): 6:10 gt
TAWZE OWindow Twe Endl: 7:10 pom.

Figure 4.13 Reverse Overlap Sliding

4.3.4.2 Representation of windows
All types of windows except Snapshot can move in both directions. They can
expand in forward as well as in reverse direction. Thus we realize the need for
windowed representation such that all types of windows can be uniquely represented
and identified. We have proposed the following representation, which takes care of all
possible combination of windows.
if (windows == Physical) {
beginWindow
endWindow
hopSize (startTime, endTime)

endQuery
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}

where beginWindow, endWindow, startTime, endTime and endQuery of
Physical Window are absolute or relative time. Relative time can be given by using the
keyword Now () where Now () returns the current system time.

Consider the query example for digoint sliding window. Give me the common
items purchased in 2 departmental stores every hour starting from5 P.M until 9p.m.

The windowed representation for the same is as follows:

Window = = Physical {

Begin window = 5 p.m. (June 5, 2003)
End Window = 6 p.m. (June 5, 2003)
Hop Size (1 hr, 1 hr)

End query = 9 p.m. (June 5, 2003)

}

Consider the query example for reverse landmark window. Continuously select
all passengers entered at the airport starting from 6 p.m. on June 6 2003 to 3 p.m. on
June 6 2003 every hour.

The windowed representation for the same is as follows:

Window = = Physical {

Begin window = 6 p.m. (June 6, 2003)
End Window = 5 p.m. (June 6, 2003)
Hop Size (O hr, -1 hr) (-1 indicates backward moving window)

End query = 3 p.m. (June 6, 2003)
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}

Reverse (or backward) windows can be used for historical queries (when one
wants to query on past data). Currently only forward queries are supported. However
this design has the flexibility to support backward (or reverse) queries as well.

4.3.4.3 Nested Join

This join algorithm can be compared with classic nested join of RDBMS in
which for two joining relations, every element from one relation is compared with all
elements in the other relation to check whether the join condition is satisfied. Whenever
a match is found, tuples are joined and produced at the output. This algorithm does the
same but operate on Sreams, as shown in Figure 4.14. Since join is a blocking operator
(blocking operators cannot produce output until entire set of input is available) it needs
a window for its computation, which defines its input boundaries. It produces results
continuously which are consumed by higher operators. It does not wait for the entire
window to elapse to produce the output. This operator registers itself with query
window class, which defines window bounds for input streams. It adso has APls for
generating diding and digoint windows based on window specifications and controls
their movements accordingly. It detects query termination and declares the end of
computation. These windows are not defined at the query level and hence different
operators of the same query may be working on different windows at the same time.
Nested join is a binary join with two input queues associated with it. These queues
(buffers) are populated by streams, which may be same or different to feed input to the

join operator. When a new tuple arrives at one input queue, it is joined with all the

58



tuples faling in the current window bound of another queue that satisfy the join
condition. This action is atomic which ensures duplicate avoidance at output. It is not
only essential for input tuples to be timestamp ordered but also the output produced by
joining input tuples must be timestamp ordered to ensure that higher windowed
operators which are continuously consuming inputs (which are the output from lower
windowed operators) aso produce correct results. Implementation section explains how
timestamp ordering is respected for join output.

Design Alternatives:

Two threads instead of single thread:

This operator could have been implemented using two threads viz. |eft thread
and right thread. Left thread reads tuples from left input queue and scans all tuples in
the right input queue to find the matched tuples and the right thread behaves
analogously. The idea of using two threads was to achieve some degree of parallelism.
But if two threads are not synchronized and join computation is not done atomically,
duplicate tuples will be produced. Atomic action for left thread involves reading tuple
from the left externa buffer provided it has a lower timestamp from its corresponding
right tuple, computing join on the tuples residing in the right internal buffers (every join
operator has two interna buffers, one corresponding to each external buffer. Join
computation is done on these internal buffers) and eventually placing itself in the left
internal buffer. To ensure the output to be timestamp ordered, threads may have to
block at the input unless it finds a corresponding tuple with a higher timestamp. Also

left thread had access to right externa buffers and right thread had access to left
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external buffers, something that can be achieved using a single thread. Thus the entire
purpose of having two threads for achieving some degree of paralelism is defeated.

Hence the final version of join operator isimplemented using a single thread.

If a tuple with timestamp ‘t1’ arrives at left input queue prior to tuple with
timestamp ‘t2’ at right input queue, such that ‘t1’ > ‘t2’, ‘t1’ should block at its input
gueue (input queue is externa queue) and alow ‘t2' to perform join to ensure
timestamp ordering for output tuples. Another aternative § to compute join without
blocking at input. This would produce correct results but the output may not be
timestamp ordered. In order to get output sorted by timestamp, they may be subjected to
sorting algorithm making the overal join computation expensive. Hence this approach
is ruled out.

Determining window bounds:

In order to work correctly, join expects tuples to be timestamp ordered.
Whenever it reads a tuple whose timestamp is greater than the current window bound, it
marks the end of window boundary assuming that tuples following it will aso fall
beyond the current window as tuples are timestamp ordered. Another alternative is to
compute the difference between the timestamp of current tuple and the timestamp of
current start window. If the differerce is less than the window width, tuple falls in the
window else it is outside the current window. This approach does not need tuples to be
timestamp ordered. We are following the first approach and expect tuples to be

timestamp ordered.
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Types of Nested Join:

There are two versions of nested join: with reuse and without reuse. They are

meaningful only for overlapped windows.

SWZE SAZE

Figure 4.14 Nested Join

4.3.4.3.1 Nested Join with reuse:

Here the startTime (W2S) of next window is lower than the endTime (W1E) of
current window. The first window is processed completely but the result of common
time dice between current and next window (W2S and W1E) is materialized for the
computation of next window. Prior to rext window processing, results materialized by
current window are re-copied to the output queue for the next window to ensure that
next window result is timestamp ordered. In the next window computation, left window
joins tuples residing between W1E and W2E in left input queue with tuples faling in
W2S and W2E of right input queue and right window behave analogoudly. This
computation is appended to previous materialized result to produce complete and

correct next window output. Since common computation is shared in two successive
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windows, this shade is called Nested Join with Reuse. The effect of this join on memory
and processing cost is explained as follows:

Memory: In thisagorithm, tuples are discarded from external buffer as soon as
they are consumed since they are stored internaly in the operator itself for the
computation of next window and duplicates are avoided, as the common time dlice is
not recomputed. External buffers are flooded with stream data, which should be
consumed and discarded at rapid rate to avoid disk operations. This shade does exactly
the same at the expense of operator’ s internal memory.

Processing cost: Processing logic is efficient and simple to implement. The
beauty of this shade is that it does not have to remember and revert back to the past on
external buffers for the computation of next window. External buffer pointers always
move forward as elements are read only once. Overlapped region is not recomputed
which increases throughput enormously when shared portion is significant in a large
window.

4.3.4.3.2 Nested Join without reuse:

This is another shade of nested loop join, which does not make use of
overlapped region of two successve windows and computes every window
independently of each other. Hence current window does not store the result of common
computation for the next window. It is not efficient with respect to memory and
computation, which can be explained as follows:

Memory: Since the windows are computed independently, tuples, which are

already seen by current window, cannot be discarded. Only tuples prior to W2S can be
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safely removed but tuples falling between W2S and W1E cannot be removed, as they
are needed for the computation of next window. In without reuse, internal memory is
cleared on processing current window, since keeping elements in internal buffer would
result in duplicates as tuples falling in common time slice are recomputed. Thus without
reuse leads to memory wastage and to make matter worse external buffers continue to
grow eventually leading to disk operations if the overlap region is significant in a large
window for processing bursty streaming data arriving at rapid rate.

Processing cost: Processing cost is significant as the overlapped region is
recomputed. Join is an expensive operation and re-computing significant portion over
large and multiple windows decreases response time significantly. Also computation
logic is more complex as it has to remember and access past information on external
gueues for next window (to the past of external queues) computation once the end of
current window is reached.

The algorithm for Nested Join (with and without reuse) is as follows:

while (operator is alive) {

if (either left or right input buffer is empty)
suspend join operator.
else{
fetch left tuple from left buffer.
fetch right tuple from right buffer.
if (timestamp of |eft tuple < timestamp of right tuple) {

if left tuple falsin the current window {
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computel eftJoin
}
else{
leftWindow Processed
}
HI it (timestamp of left tuple < timestamp of right tuple)
else{ // start processing right tuple

if right tuple falsin the current window {

computeRightJoin
}
else {

rightWindowProcessed
}

}HI else (timestamp of |eft tuple < timestamp of right tuple)
if (leftWindowProcessed & & rightWindowProcessed) {
purge input buffers for discarding old tuples.
set window buffer pointers (depending on with or without
reuse).
generate next window.
if (next window > end query)
stop the operator.

} /it (leftWindowProcessed & & rightWindowProcessed) {



HI ese

} // while (operator is aive)

computeleftJoin and computeRightJoin performs join operation on left and
right tuple by removing common joining attribute from the right tuple and assigning
lower timestamp followed by higher timestamp as the last two fields to the resultant
tuple to ensure that output is timestamp ordered.

4.3.4.4 Aggregate Operators

Aggregate operators are blocking operators and hence need window for their
computation. They operate on awindow worth of data and produce output at the end of
every window. Aggregate operations supported by this system are sum, min, max,
average and count.  Aggregate operators register themselves with a query-window
class. This class is responsible for creating and manipulating windows. It defines the
window boundaries and controls the forward and backward movement of windows
based on hop-size by creating next and previous windows. Aggregate operator can see
windows independently of other operators in a system since query-window APIs can be
called at instance level. Its interaction with scheduler and buffer is similar to Split.

Design Alternative:

As explained above, there is a generic operator class and all other operators are
derived from this generic class. Earlier it was thought to have another class, which
resides between generic parent operator class and specialized children operator classes.
This intermediate class was termed as ‘Aggregate’ class, which could have supported

generalized functionality for all aggregate operators. This included, providing methods
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for associating input and output queues, defining a query window to work on, caling
purging logic to discard unwanted tuples from an input queue and setting a field for
aggregation. But this option was ruled out for the following reasons:

1. It was different from the general operator hierarchy consisting of two levels.
Thus with three levels of operator hierarchy, natural flow of computation and
program logic would have lost.

2. It does not significantly reduce code complexity and hardly adds to efficiency.
The algorithm for Aggregate is as follows:

While (query is alive) { Read tuple from input buffer.

If (tuple fallsin the current window)
Perform necessary aggregation on the specified field.

Else{
Output aggregation result (current window has el apsed).
Purge elements, which can be safely discarded.
Compute the next window.
If (the end time of next window is greater than end query time)

Stop the operator.

}

All aggregate operators are reusing the common computation (overlapped region) since

it saves processing time. For average operation, two variables are used to keep track of
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sum and count of aggregate fields as and when tuples are added. At the end of every
window, average is computed.

4.4 DSMS Client-Server M odel

DSMS is modeled as two tier client-server architecture with client defined as a
reguestor of services and server as the provider of services. Client provides a graphical
user interface to alow users to request services from the server. Some of the offered
services include generation of schema for new streams, processing a plan object (a data
flow graph consisting of operators and their associated queues) and requesting
definitions of already existing schemas. These requests need some processing a the
client to make it protocol specific and the processed request is eventually sent to the
server by following the protocol defined for client-server communication. Server is a
powerful and complex program, which integrates and controls its various modules such
as Instantiator, operators, buffer and scheduler to execute client requests in a timely
manner based on quality of service specifications. Server response can either be used to
display results to clients or they can be used to trigger events providing active support.
The communications between Client and Server can be better visualized from Figure

4.15.
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Figure 4.15 Client-Server Communication Model

Client-Server application communicates over the network using sockets.
CORBA is another dternative that is generally used object components written by
different vendors want to interoperate across networks and operating systems. Since our
client and server are implemented in java, socket based communication is proposed as
a less complex and straightforward alternative RMI allows programmers to distribute
computing across networked environment. It defines a set of remote interfaces to create
remote objects which client can invoke with the same syntax that it uses to invoke
methods on local objects. As our server is not distributed, this no longer remains a
suitable mode of establishing client-server communication.

4.4.1 DSMISClient:

Client isa simple program used for collecting user requests and presenting them
to server for processing. Client can be of following types:

Non-web based client: This client does not make use of web features and
hence lack worldwide accessibility. Since DSMS is developed in java, user interface

can be designed in Swings or AWT components to alow users to construct queries. It
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may allow users to perform basic operations such as defining new streams, instantiating
or stopping a query, deleting a schema, etc.

Web based client: Web based interface is provided for constructing queries
and submitting other requests. User constructs queries by moving across the web pages.
Client may need some processing for requests, which are incorporated in a web server.
DSMS client is a web-based client.

Operators need requests in a specific form to be instantiated. They aso demand
availability of schema definitions of their input streams to work correctly. Request
modification and schema generation can be done at the client side or at the server side.
Since server is more complex, these functionalities are provided at the client. This
distribution of processing allows the client to offer a user-friendy environment and
alows the server to be relatively less complex.

Client has following responsihilities:

1. It constructs a plan object (a data flow operator-queue graph) from the user
input, which defines the order of operator instantiation depending on the direction of
data flow. It is a sequence of operator nodes where each node completely describes the
corresponding operator.

2. It provides user interface to accept request from clients. User may request
server to stop a query, delete an existing schema, add a new schema and besides
submitting a query. Quality of service specifications and priorities associated with

queries can aso be specified.
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3. It participates with server in command driven communication protocol.
Requests are sent and response collected from the server to be presented to users.

4. Client generates intermediate schema when operators in a query tree
produces rew streams. Join and Project always present new stream as former expands
and the latter shrinks the base schema. Hence a new schema definition needs to be
registered with the server to support the new streams being generated. Client has the
responsibility of creating and registering new schema with the server.

5. An operator may take input from two different streams with one or more
same attribute names. Client resolves these attribute names so that next operator
uniquely identifies attributes in the resultant stream.

6. Client may also do some validation checks on the syntax and semantics of
guery submitted.

4.4.2 DSVIS Server:

This program is responsible for executing user requests, and producing desired
output. All stream management services are handled by the server. Server is mainly
responsible for collecting, storing and processing unbounded streamed data in timely
manner producing real time response to user queries. It integrates and instantiates
various modules including operators, buffers and scheduler to ensure that computation
keeps up with the data flow rate and quality of service requirements are respected as
delayed response may be totally unacceptable. Some of the services offered by DSMS
Server are as follows:

1. Addition and Deletion of Schema
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2. Query Instantiation and termination

3. Operator initialization and instantiation

4. Accepting priorities and quality of service specifications for queries.

5. Associate input and output queues with the operators.

It is important to understand the protocol followed for client-server
communication. In order to identify a request, client sends a unique command before
sending the actual request. Once the command is received by the server, it expects
specific request corresponding to the command from a client. Client then sends the
request to be processed by a server. Server, based on the command received, processes
the request and dispatches the response to the client. It performs the following
functions:

1. Accepts command and request from a client, which describes the task to be
carried out.

2. Retrieve all stream names and their schema definition so that user can pose
relevant queries. Server response provides details about all available streams so that
user can formulate queries accordingly.

3. Client can request the server to dther start or stop a query. Client sends a
plan object for query instantiation. Server initializes and instantiates operators
constituting a query and schedules them for execution. Client may also want to
explicitly terminate a running query in a system. The query is stopped which in turn

stops al the operators associated with the query. It is then removed from the system.
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4. It allows deletion and addition of schemas. It registers new stream and its
schema definition. This may be used to support other stream producing sources. It
deletes existing schema when application no longer needs it. This provides complete
flexibility of changing base schema.

5. Associate input buffers with base streams. In a query tree, output queue of
one operator becomes an input queue for the next operator. Hence buffer association of
al intermediate operators in a query tree is defined. But buffer linkages with their
corresponding streams must be explicitly given for base operators. This information is
passed by a client to be stored in a server.

6. It initializes operator by reading operator data node which contains all
initialization specifications and defines window boundaries for them. Initiaization aso
involves associating input and output queues and binding to defined scheduler.

7. Start scheduler to schedule operators for doing necessary computation and
generates result.

4.5 Scheduler

Scheduler plays an important role in improving the overall efficiency of system
with regards to memory utilization, tuple latency, run time resource utilization, query
throughput and quality of service requirements. All these parameters cannot be satisfied
by a single scheduling scheme. For example chain scheduling [18] defined in the
literature is superior to FIFO scheduling with respect to memory consumption while
FIFO outperforms chain scheduling in terms of overal tuple latency. It is difficult to

design an optimal scheduling strategy, which can dynamicaly change scheduling
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algorithm to improve overal efficiency of the system, as continuous streams are
unpredictable and bursty. Scheduling schemes of traditional DBMS are not used as they
are designed for predefined and periodic task, which are completely different from the
stream characteristics in which processing cycle varies continuougly.

Tuple latency and query throughput are the most important criteria in
processing streamed queries for providing real--time response. The scheduling scheme
proposed in DSMS are FIFO in which tuples are processed in the order of their arrival
and weight based round robin in which operators are scheduled round robin but with
different weights (time slice) based on priority. Thus the only parameter, which can
affect the overall performance of the system, is priority, which must be intelligently
assigned to operators so as to create a perfect balance between memory space and
processing time, still ensuring real time response to streamed queries. The scheduler is
developed for real time systems, which attempt to execute the higher priority task with
the maximum expected utility in order to meet quality of service requirements.

4.5.1 Parameters for Priority Assignment:

The criteria for assigning priorities to operators depend on the critical and
sensitive parameters of the system which are enumerated bel ow:

Memory: The arrival rate of data stream may exceed the data processing rate
due to high volume and bursty traffic. These variations in data rate may buffer tuplesin
memory and it may even exceed total main memory causing the system to swap pages
from the disk. This can also increase the overall response time since the waiting time of

tuples in buffer increases as buffer size increases according to queuing analysis [19].
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Situation become worse when join operator expect current window worth of data in
main memory to be effective. Hence it makes sense to assign more time quantum to
join, as they are more complex and time consuming than select which discards input
tuples as soon as they are consumed. This nontuniform distribution of weights would
cause join to be scheduled for longer period so that more tuples are processed and
consumed from main memory buffers.

Query-Throughput: When memory is not a critical factor, we must emphasize
on improving the tuple latency to maximize query throughput. Operators at leaves are
closer to data sources, which are flooded with continuous and rapid data streams. Hence
they should be scheduled more frequently to create buffer space for incoming tuples and
to produce output to be fed to higher operators in atree. Selectivity reduces input tuples
for processing as we progress higher up in atree. To improve the overal performance
of the system, utilization of leaf operators must be higher than non leaf operators and
hence they should be scheduled more frequently.

CPU Utilization: As we know, an operator can feed its output to multiple
operators. In order to improve the response time, such operators must be scheduled
more frequently as operators with higher fan out ensure that other operators waiting on
it are not blocked waiting for input, which improves overall system utilization.

Priorities can be assigned either by users as a part of query to indicate whether
they need immediate service or they may be assigned by a scheduler depending on
resource availability and quality of service requirements. Once the priority is assigned,

scheduler ensures that the priority of an operator never falls below the initial assigned
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priority. It may increase the priority to improve system performance and query
execution throughput but it cannot decrease the priority from the initial assigned value.
Scheduler is the highest priority thread running in a system that picks an operator for
execution from the head of its ready queue, ascertain what processing is required and
process them for the assigned time. Operators must be in aready state in order to be
scheduled. One of the following conditions may occur during the running state of the
operator.

1. Operate may finish its execution prior to its assigned time quantum. It
informs scheduler who removes the operator from ready queue and schedule next
operator at the head of ready queue.

2. Operator may block waiting for the availability of resources. For example,
its input queue may be empty upon which operator is suspended. It informs scheduler
about its suspension, which in turn releases its execution and removes the operator from
the ready queue. Whenever resources become available, operators are brought into
ready state and placed at the end of ready queue.

3. An operator may not have finished its operation but its assigned time
guantum is expired. The Scheduler suspends the execution of the operator and placesits
at the end of ready queue to facilitate fair scheduling.

4.5.2 Design Alternatives:

It is important to decide the granularity of scheduling entities. It may be

scheduled at tuple levels but would be practically infeasible as the number of tuplesis

huge in data streams. There is always some cost incurred in switching from one entity to
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another, which at tuple level is intolerable. Another interesting possibility is to schedule
queries. Thisis acceptable but often reduces flexibility when it comes to optimization of
global execution plan. At query level, optimizations are difficult since entire query
overlap is difficult to achieve. Hence the best solution lies in scheduling operators,

which has granularity that is in between tuples and queries. Different operators can be
assigned different priorities which helps in achieving best results. Join can be provided
a higher priority than select which is better as compared to assigning same priorities to
both at query level. Similarly operators having greater fan out can be assigned higher
priorities than operators having low fan-out. Thus considering granularity at operators is
the best possible aternative.

4.5.3 Scheduling Palicies:

@Schedul er Thread
G [ G

Tail Head

Figure 4.16 Scheduler

DSMS scheduler supports the following scheduling policies based on time
quantum assigned to operator:

1. Round robin scheduling (BottomUp): In this scheduling scheme, equal
weights are assigned to all operators. They are scheduled in the order in which they are

instantiated. Figure 4.16 illustrates a ready queue in which operators are placed, as they
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are instantiated. This queue is traversed sequentially to schedule operators. Every
operator is scheduled for the same time quantum. This is not effective for queries
having strict deadlines if system is overloaded, as it virtually does no optimization.

2. Weighted Round robin scheduling: It assigns different weights to different
operators based on priorities. Higher the priority of operator, higher is the weight (time
quantum) assigned to it. This is more effective than its counterpart as various
parameters like tuple latency, query throughput and quality of service requirements can
be controlled by assigning appropriate weights to different operators. For example a
system with higher weights assigned to join than select would definitely perform better
with respect to memory utilization than a system with both operators sharing equal
weights under stress. Similarly assigning higher weights to leaf operators than non-leaf

operators would increase the system utilization.
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CHAPTER 5

IMPLEMENTATION

5.1 DSMS SCHEMA

DSMS schema stores complete information about all streams registered with the
system. A new stream will be recognized only when its definition is stored in the DSMS
schema. Schema information of all the streams is maintained in a persistent storage for
recovery in case the system crashes. Hashtables and vectors are the data structures used
to store schema information in memory. Hashtables store information as a key-value
pair. The stream-name is stored as a key and a vector, containing the complete
information about that stream as a value. The Hash table and vector is termed as
StreamHashtable and StreamV ector respectively.

The first element in a stream vector is a pointer to another hash table (termed
AttributeHashtable), containing the complete description about the attributes of the
corresponding stream. AttributeHashtable contains attribute-name as the key and a
vector (termed attribute position vector) containing details about that attribute as the
value. Attribute details include its name, data-type (which may be varchar, number or
boolean) and its position in the stream. Since vectors can grow dynamically, additional

details about the attributes can be added if necessary.
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Attribute Hashtable

Stream Hashtable
Steam Stream Ohject
Mame
51
Atir | Pos
Ohj | Obj
52
Atir | Pos
Ohj | Obj
Atir | Pos
Ohj | Obj
o Atir | Pos
Ohj | Obj

The second element of the Stream Vector is also a pointer to a hash table
(termed PositionHashtable) containing attribute description based on positions. In

Position Hash table, positions of attributes are stored as a key and its value is a pointer

79

|

Stream Vector

Atir Reference to Ohject
Name
Al
A2
An
Attribute Position
Vector
+
Al Varchai
Position | Reference to Ohject
Pl
| a4
Pn
Position Hashtable

Figure 5.1 DSMS Schema Data Structure




to the same AttributePositionVector described above. Essentialy both
AttributeHashtable and  PositionHashtable point to the same  vector
(AttributePositionVector) that describes the attribute with respect to its name data-type
and position in the stream. The complete setup is shown in Figure 5.1

All Streams are registered as key-value pairs in a Hash table to improve
searching time. Given a StreamName, its complete information can be accessed quickly

as dl links are maintained through Hashtables, which needs O (1) time for searching.

5.2 Buffer

High-speed streaming data are buffered in queues, which are consumed by
operators connected to it. The output of one operator is buffered in its output queue,
which may be the inpu queue of the next operator in a query tree. Buffer decides the
input —output relationship among operators. A single buffer is implemented as a queue
using a vector. This data structure can grow or shrink dynamically as elements are
added or consumed. Buffer may be bounded or unbounded depending upon its upper
limit specification. An unbounded vector grows until the main memory is exhausted
since its upper limit is unspecified.

Buffer supports two operations. enqueue and dequeue. Operator consumes data
elements by calling dequeue which returns corresponding data object to operator and

removes its reference from the queue. Operators attempting to read from an empty
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gueue are suspended to save CPU cycles. Enqueue operation adds elements in the queue
and sends notify signals to resume all operators waiting on it. These two APIs are
synchronized to maintain data consistency. Synchronization acquires lock on the entire
object but allows non-synchronized APIs to execute simultaneously with synchronized
APls.

Minimal persistence logic is aso supported to handle bursty, asynchronous and
high-speed data streams. Elements are added in a file in sequential order when main
memory buffer size is reached. Two files are maintained for each buffer of which only
one will be used for storing elements at any point of time. When the maximum file size
is reached for the currently active file, the other file is opened to continue storing
elements. Dequeue removes element references from queues when consumed by
operators creating main memory buffer space. File operations are not recommended for
each dequeue and hence this operation starts a separate thread to read elements from
corresponding files only if fifty percent or more tuples are removed from main memory
buffers.

5.3 Streamed Operators

5.3.1 Solit:
This operator expects a list of conditions that are evaluated against a stream of
tuples. Incoming tuples are subjected to sequential condition evaluation. If the tuple

satisfies the condition, it is sent to the output queue associated with that condition else
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the same tuple is evaluated for the next condition in the list and this process is repeated
until the list is exhausted. Condition string is typicaly a combination of attribute name,
relational and/or logical operators ad constants. For example, “tbRoom = “b” and
tbDeviceld > 5”.

The complexity of Split lies in evaluating the above condition string, which
involves replacing attribute names (tbRoom, tbDeviceld) with corresponding tuple field
values. This modification is needed for it to be correctly interpreted by Free Ecma
Script Interpreter (FESI), a tool that can evaluate any valid java expressiors. It makes
use of the following methods to generate the modified string.

5.3.1.1 Important APIsin Split:

findPositionofOperands: Split has multiple conditions to evaluate. Every time a
condition is evaluated, a schema needs to be accessed in order to replace the attribute
name mentioned in the condition string with the corresponding tuple field values from
the incoming tuple. If there are ‘N’ conditions, schema needs to be accessed ‘N’ times.
The other alternative is to access the schema just once and set all the attributes of the
input streams with the corresponding tuple field positions. The latter is preferred
because accessing schema is a time consuming operation. However sometimes it results
in setting attribute names with their corresponding field positions even if it is not

specified in any of the condition list.
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Since the Stream Name is always known to operators (this is passed when
operators are instantiated), this APl accesses schema definition of the corresponding
stream to find the position of operands. Once the positions of operands are obtained by
executing the above API, these attributes are replaced dynamically by corresponding
tuple field values, which results in a modified string comprising only of constants and
operators. This modified string is ultimately subjected to condition evauator (FESI),
which returns true if the condition is satisfied.

Free Ecma Script Interpreter (Fesi):

FESI, used as a condition evaluator in this system is a powerful utility that
evaluates any valid java expressions dynamically at run time. The setMember () method
of FESI accepts two arguments. The first argument is a key and the second argument is
avalue. In the condition string, it replaces all occurrences of keys with their values. In
this case, attribute names are provided as keys and actua field contents from tuples are
provided as values. Thus it sets the attributes to their actual values from the tuples. The
position to be substituted for attributes are obtained from the schema once. The value
at the corresponding field from the tuple is fetched and set for the respective operand.

5.3.1.2 Split Example

The following example illustrates how a condition string is modified:

Let the condition string be “ tbRoom = “ b” and tbDeviceld > 5“.

Let the schema name is tbDeviceRoom and the schemais asin Figure 5.2:
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Attributes M Posttion
thDeviceld Number 1
thDeviceDescription Varchar 2
tbRoom Varchar ;
thEoomDescription WVarchar 4
Figure 5.2 tbDeviceRoom Schema
FunctionName Input to the Function Chatpiit obtained
JindPositionafCOverands thDeviceld )
thDevice Description 2
teRocm 3
thFoamDescripiion 4

Figure 5.3 APIs Input and Output

The “setMember ()” method sets the operands to their actual values from the
tuples. The values to be substituted for operands are obtained from their position in the
schema. The value at the corresponding field from the tuple is fetched and set for the

respective operand.
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Let us suppose that the first tuple read from the input queue is asin Figure 5.4:

7 Lamp b roomb

Figure 5.4 Stream Tuple

Original condition string was:

“tbRoom = “b” and tbDeviceld> 5" .

The position of “tbRoom” is 3 and position of “tbDeviceld” is 1 in the schema.

Thus third field is fetched from the tuple for tbRoom that is “b” and first field is
fetched from the tuple for tbDeviceld that is 7.

The modified condition string on setting the operands with their respective tuple
valuesis:

“b” =="b” and 7> 5. Thisdtring isinput to the eval () method of FESI, which
accepts a condition string as a parameter. It returns true as the condition is satisfied. The
tuple is then sent to the output queue associated with this condition.

5.3.1.3 Design Issues:

findPositionofOperands method is called just once to access the schema
information to find the position of attributes so that they can be set to their
corresponding tuple field values. This avoids accessing schema for each and every tuple

which otherwise would have been very expensive as tuples in stream arrive in bulk.
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Once this method is called, split runs continuously and evaluates the condition string
against data stream until the query is ended.

However calling the setMember () for every incoming tuple cannot be avoided
because the string can be evaluated but not constructed dynamically. The string cannot
be modified to aform that eliminates the need of setMember ().

Consider the same example string “ tbRoom = “b” and tbDeviceld > 5 “. If this
isreplaced by v [3] + “ ='b and * + v [1] + “>5”, it prompts an error since the values
of v [3] and v [1] are till not available as the tuples are yet to be read. If the same
string isreplaced as“v[3] = “b” andv[1] > 5“, thenit takesv [3] and v [1] as string
constants. In either case, string cannot be constructed dynamically and hence
setMember () needs to be called for every tuple.

5.3.2 Join operator

It is a nonblocking operator working on windows to produce results
incrementally and continuously for continuous queries without waiting for the window
to elapse. It is implemented as a single thread with two internal buffers, one
corresponding to each of its external queues. Every new tuple from one stream is joined
with all the tuples satisfying the join condition and falling in the current window from
the opposite stream and then stored in the corresponding internal vector. Both join and
insertion phases for one tuple must be executed prior to processing next tuple to

produce correct results. If two new tuples are read, one from each of is externd
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gueues, the one with lower timestamp is considered for join to produce output in the
timestamp order.

Query Window: It is important to understand the window concept prior to
implementation specific details of the join operator. It was necessary to define windows
at query level, which requires every operator to register with the query window class.
This approach was however not used since making a procedure call to query window
and changing window bounds every time a window is altered was expensive. A better
solution is to fetch the initial window specifications from query window only once, and
manipulate them locally for modifying the windows rather than making procedure calls
to them.

A Query Window class provides window specifications such as window start
time, window end time, hop size and end query time. It generates APIs to set and
retrieve the same. Operators can use APIs of this class to fetch initia window
specifications and manipulate windows of other operators independently allowing

different operators of the same query to see different windows at the same time.
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5.3.2.1 Nested Join Implementation without reuse:
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Figure 5.5 Nested Join without Reuse

Figure 5.5 indicates that join has two external buffers (left input queue and right
input queue) and two internal buffers. The need for internal buffers is explained shortly.
Windows are defined on these buffers with an assumption that these buffers always
have the same window bound. A new window is generated only when all tuples faling
in left and right window are processed completely. To start the operation, first the

window bound is obtained from Query Window class along with other window
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information. In the left buffer it is represented as LW1S and LW1E. In the right buffer
window bounds are represented as RW1S and RWI1E. Tuples are read from these
queues and checked whether they fall in the current window. In this system, tuples are
timestamp ordered. Buffer position of the first tuple that falls in the current window is
marked. Hence all elements prior to this position are irrelevant in the current window.
This position is called HighesstCommonReadElement (HCRE). Purging logic is used on
the buffer in which lowest value of HCRE among al the operators is calculated and all
elements are purged up to that position. Lowest value of HCRE is considered instead of
highest, as it is not correct to remove tuples, which are not yet processed by other
operators sharing the buffer. Lowest value of HCRE guarantees that none of the purged
elements would be needed by any operators sharing the buffer. Thus first window is
defined for providing input bounds and purging logic is implemented to remove stale
tuples before starting the actual join computation.

Every buffer has a CurrentUnreadElementPointer (CUEP) which points to the
current element to be read from the buffer. Every operator sharing the buffer hasits own
copy of CUEP maintained by the buffer. The join sequence is:

1. If any of the buffers are empty, suspend the operator.

2. Assume that the tuple is read from left buffer first. From the figure, its

timestamp is *2'. Read the corresponding tuple from right buffer with timestamp as‘1’.
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3. Compare the two timestamp and pick the tuple for join having smaller
timestamp. In this case, it is ‘1. Output produced must essentially be timestamp
ordered. Since this tuple belongs to the right external buffer, it is checked against all the
tuples in the left interna vector that satisfy the join predicate. If a match is found, it
joins the tuple and produces the result at the output queue. The joined tuple has the
joining attribute removed from the right tuple (since it is same as the joining attribute of
the left tuple) and the resultant tuple has lower timestamp followed by the higher
timestamp in the last two fields. It is then added in the right internal buffer (since the
tuple under consideration was read from right external buffer).

4. Asthetuple with timestamp ‘1’ considered for join belongs to right external
buffer, its CUEP isincremented by 1. CUEP of left buffer remains unaltered.

5. LWIE and LW2S are the two timestamps of interest. Find the first tuple
whose timestamp hits LW2S and mark that position as Start Next Window Pointer
(SNWP). The computation of the current window is terminated once a tuple hits the
LW1E timestamp.

Repeat steps 1 to 5 until tuples are found in each buffer with their timestamp
exceeding the current end window bound. The steps are common for both the shades of
nested Join. Prior to beginning the computation for the next window, following steps

are taken which are different in two versions.
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Nested Join without Reuse: Here the computations of the current window are
not used for the computation of next window. Every window is computed
independently of each other. Hence it does the following:

1. CUEPIisset to SNWP. Thisisuseful in case of overlap window. For digoint
window, CUEP is same as SNWP.

2. Since next window does not make use of current window, all internal
buffers are cleared.

3. Purging logic is called which sets CUEP as the HCRE.

4. Next window is generated. If the end time of next window is greater than

end query, operator is stopped else next window is computed.
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5.3.2.2 Nested Join with reuse:

Ottt Caens

REWIE RWIS

SMWE

CITER 1.2

LWIE FE 2

— 1,

| 15 | o | T | 5 | 2 4’
1,

| 1= | 11 | g | 4 1 | 4,
2,

5,

7L

[N ) R R R R RV
ot M & &
o | va - ta

CUEFR

LmEI LW2As BEecopr
|15|9|?|5i2| Elements

e 4.5

4,7

|13|11|3|4|1| =8

— 7.8

4.9

30

511

711

211

Figure 5.6 Nested Join with Reuse

As shown in above Figure 5.6, it makes use of window computation of the
current window for the computation of next window. It is true only for overlap windows
as digoint windows do not have any computation to share. It does the following:

1. Computation of overlapped region is stored in a temporary data structure

within the operator for the current window. As soon as the current window is
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processed, all resultant tuples of overlapped area are copied as it is in the output queue
for next window computation and hence the name reuse.

2. Interna buffers are not completely cleared. Only those elements are cleared
whose timestamps are less than LW2S. Internal buffers cannot be completely cleared
because they represent elements falling in overlapped area. These elements from
internal buffers avoid reading from external buffers. They are needed so that they can
be joined with new elements falling in next window.

3. CUEP is not set to point to SNWP rather it points to LW1E. Elements
falling between SNWP and LW1E are present in internal buffers to be considered for
join.

4. Purging logic is called which sets HCRE to LW1E.

5. Next window is generated. If the end time of next window is greater than
end query, operator is stopped el se next window is computed.

5.3.2.3 Important issues in Join:

Internal Buffers:

Internal buffers are used to avoid multiple scan on external buffers for every
join computation and hence reduces load on them. In the absence of internal buffers,
every new tuple read from one external buffer would have been scanned with all the
tuples in the other external buffer falling in current window, significantly increasing the

load on them. Internal buffers also increase the memory space utilization. Purging logic
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would not have been able to purge tuples from external queues if internal buffers were
absent, as they may be needed by the next overlap window. Streaming data, which is
unpredictable and bursty, would grow the queue size to a point at which disk operations
could not have been avoided. The only role of interna buffersisto buffer stream data to
be read by operators. Once tuples are read into interna buffers, purging logic can safely
remove elements from external queues. This would reduce disk swapping significantly
thus improving the response time. This is helpful especially with reuse join
computation.

Boundary tuples:

This is a boundary condition, which needs to be considered for ensuring
correctness. In digoint windows, for reuse and without reuse, when the first tuple is
encountered, which falls beyond the current window bound, it is not considered for join
for the current window. But it should be the first element to be considered for next
window computation. But CUEP has already shifted by 1 and points to the tuple next to
it. In order to ensure that the boundary tuple is considered for the next window, it is
stored in a temporary variable. As we begin computing next window, this tuple is read
from the temporary variable and computed prior to computation of other tuples.

Timestamp Ordering:

Join is awindowed operator and expects tuples to be timestamp ordered in order

to determine end of current window computation. As soon as it encounters a tuple with
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timestamp greater than end time of current window, it declares end of current window
computation as following tuples are guaranteed to fall beyond the current window due
to timestamp ordering. Hence join operator should also produce tuples which are
ordered by timestamp to ensure that higher windowed operators also execute correctly.

This agorithm produces joined tuples, which are ordered by higher timestamps.
A tuple is blocked a the input and is not considered for join until it finds a
corresponding tuple with higher timestamp from the opposite stream. When it is joined
with tuples present in interna buffers, resultant tuples are generated with lower
timestamp followed by higher timestamp as the last two fields. Higher windowed
operators consider last field (higher timestamp), which is guaranteed to be timestamp
ordered.

Duplicate tuple avoidance:

Tuples read from left externa buffer are not placed in the left internal buffer
until they are joined with all tuples satisfying join predicate in the right internal buffer.
This is done as an atomic action. If two tuples arrive with the same timestamp in left
and right external buffers, they will be processed in sequence. Atomic action ensures
that two tuples are not processed simultaneously which otherwise would have resulted
in duplicates. Since tuples read from external buffers are considered one at a time for

performing join with tuplesin an internal buffer, duplicates are never produced.
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5.3.3 Methodol ogy for Experimental Evaluation

All the experiments were run on an unloaded machine with dual 2.4 GHz Xeon
processors, 2GB RAM and Red Hat Linux 8.0 as the operating system. The data set for
performance evaluation is obtained from the MavHome (A smart Home being
developed at UTA for predicting the behavior of inhabitants) [20] live feed collected
over aperiod of time. The live feed is stored in our database that is modified to generate
synthetic data stream. This synthetic data stream is fed to this system. Delay between
two corsecutive tuples follows Poisson distribution. In order to evauate the
performance differences of two variation of “Join” explained above with respect to
memory utilization, average tuple latency and query lifetime, several experiments were
performed by varying the window sizes and their overlap. Prior to “Join” experiments,
it is important to understand the behavior of varying data rate (Poisson distribution) on
tuple latency and processing time. The following experiment is performed with asingle
query having a single operator (Nested Join Re-compute), to avoid any false reporting
of time due to system overload by running multiple queries and operators or by any
other factor. Sliding window of size 1000 tuples is chosen with the number of windows
as five. The data set is uniform (all windows have same number of tuples). The data rate
is varied from 5 tuples/sec to unbounded where unbounded represent no delay between

two consecutive tuples or flooding the data into the system.
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5.3.3.1 Analysis of Total processing time and Average tuple latency by varying data
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Figure 5.7 Average Tuple Latency for Varying Data Rate

Average Tuple Latency: Tuple latency is defined as the difference of the
timestamp at which tuple is produced at the output and the timestamp at which it

entered the system. Average tuple latency is then calculated as the average of tuple

latencies of all output tuples. In Figure 5.7, it is observed that as data rate increases,
average tuple latency also increases. This is because, initialy when the data rate is low,

operator processes tuples immediately and there are virtualy no tuples waiting in the
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buffer. Tuples are processed as soon as they enter the system. But & the arrival rate
increases, more tuples are produced within the same interval. If it exceeds the
processing time, tuples are buffered in the queue increasing the waiting time. Hence we
can say that average tuple latency is proportional to data rate (arrival rate) of streams.

Total Processing Time:
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Figure 5.8 Total Processing Time for Varying Data Rate

The total processing time is defined as the difference of time at which the query
is terminated and the time at which it is started. From the Figure 5.8, it can be observed

that the behavior is totally different from average tuple latency. As the data rate
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increases, total processing time decreases and eventually it becomes constant regardless
of the data rate. Initially when data rate is low, operator utilization is less as quite often
operator is suspended due to unavailability of tuples because of low data rate. As data
rate increases, operator utilization increases and hence the throughput and total
processing time decrease. At one point, the arrival rate becomes equal to the processing
rate upon which the total tuple processing time becomes constant because operator
utilization cannot be increased beyond its maximum processing capability and the total
number of input tuples for processing is also fixed.

Maximum input buffer count reached: Join operator has two input buffers that
collect stream data either from base streams or from its child operators. Since “join” is
the only operator present, this parameter indicates the maximum number of elements
present in the buffer at any point in time during the entire query processing. This
parameter is again dependent on data rate. Initially when the datarate is low, processing
rate is higher than the arrival rate and hence there was no or less accumulation of tuples
in the buffer. As data rate increases, more tuples accumulate in the buffer and the

maximum count of input buffer increases proportionally.
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Max Input Buffer Count for Varying Data Rate
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Figure 5.9 Max Input Buffer Reached for Varying Data Rate

5.3.3.2 Analysis of Average Tuple Latency, Total processing Time and Internal
memory used for Nested Join Re-compute and Reuse
To compare the performance of Nested Loop Re-compute Vs Reuse, the data

rate is 70 tuples/sec and the percentage overlap is increased from 10% to 75%. The
percentage overlap is the most critical factor in performance evaluation. It is expected

that as the percentage overlap increases, the performance of Reuse over Re-compute

100



also increases provided the data set is uniform. This is because the higher the window
size and higher the percentage overlap, more is the common computation exploitation.

Effect on Total processing Time by varying percentage overlap:
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Figure 5.10 Total Processing Time by Varying Percentage Overlap

This parameter is calculated as the difference of timestamp of first operator
instantiation from the timestamp of last operator instantiation for the respective query.
Since Nested Join is the only operator running it is the difference of the time it is

terminated and the time at which it is started. Since “Reuse” avoids re-computation of
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the overlap region, it is expected that higher the window size and window overlap, the
higher is the saving on processing provided the number of tuples falling in the window
are proportional to window size. The same effect is observed in Figure 5.10. Initialy
when the window overlap is small, the difference in the processing cost of both the
shades is negligible, as the common computation is not exploited significantly. As the
overlap increases, “Reuse” outperforms “Without Reuse” with a significant margin
since the saving on common computation is considerable. Since the data set is uniform,
it is possible to compare the two shades across the percentage overlap. The performance
of Re-compute is almost constant as it processes the same number of tuples in every

window each time since it does not exploit common computation.

Average tuple latency: This parameter is computed by averaging the tuple
lifetime (difference of time at which a tuple entered the system from the time at which it
exited the system) of all the tuples seen by the root operator. In Reuse, the result of
common computation is immediately placed at the output queue of the next window by
the current window and hence the tuple of common computation virtually has no
latency added in the next window. It preserves the latency of the previous window and
this saving is accumulated at each window computation that promotes reduction in the
overal tuple latency in Reuse as shown in Figure 5.11. The latency of Re-compute is

almost constant as it produces each window independently at the same rate. Datarate is
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75 tuples/sec and data set is 1000 tuples per window that gives the same performance to

Re-compute variation.
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Figure 5.11 Average Tuple Latency by varying percentage overlap

Analysis of Memory Usage:
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Figure 5.12 Interna Memory used by varying percentage overlap

The improvement on average tuple latency and query lifetimein “Reuse” comes
at the cost of memory. The current window identifies the common computation that is
copied in the temporary storage to be used for the next window computation. This
temporary storage overhead is avoided in “Re-compute” as every window is computed
independently. Moreover the internal memory in “Re-compute” is cleared for each
window computation while in “Reuse” overlapping elements are preserved in an

internal memory. The total memory cost in “Reuse” involves the cost of the internal
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memory and temporary storage that are avoided in “Re-compute’. So internal memory
usage in “Reuse’ will always be greater than or equal to the usage of “Re-compute’ as
observed in Figure 5.12. The interna memory used by Re-compute is again constant as
the amount of memory used depends on the number of tuples being processed per
window which is constant since the data set is uniform and the window sizeis fixed.

5.4 Client-Server Model

This client server model is based on request-response paradigm in which clients
submit requests, which are processed at the server, and the results of execution are sent
back to client as response. As mentioned in the design chapter, DSMS client is designed
as a web--enabled client that uses web server to provide useful nctionalities that
includes generation of new schema, processing user query input, submitting requests to
server and dispatching results to users. DSMS Server isa program dedicated for stream
processing which is continuously listening at a specific port to accept any number of
client connections. This socket-based connection allows client and server to exchange
request-response objects based on a pre-defined communication protocol. Once the
client is connected, it sends a command object which indicates the type of service
requested over the socket wrapped with object input and output streams. There is a
unigue command defined for each service. Once the command is received, server
expects the corresponding request object. For each service, the protocol clearly defines

how the request object is processed and how the response is sent to the client. Server,
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upon accepting the request object, starts a new thread for processing the request and
goes into listening mode to accept new client connections. Once the request is
processed, response is dispatched to the client over the same socket connection.

5.4.1 Client Implementation:

The core functionality of DSMS client lies in constructing a data flow operator-
buffer graph (plan object) from user query. Client must also preserve operator
instantiation order to respect query semantics. Thus a data structure is needed which not
only contains complete information about all operators but aso maintains their
instantiation order for the query to be meaningful. The solution to this problem is a
query tree, which is dynamically constructed by adding operator nodes to existing tree
as specified in a query. Thus a query tree is a sequence of operator nodes where every
node completely describes an operator. These nodes are linked to describe parent-child
relationship. If an operator node ‘A ‘at level nl is linked to an operator node ‘B’ at
level n, ‘A’ is said to be a child of ‘B’. A link is created from operator ‘A’ to operator
‘B’ when output queue of ‘A’ becomes the input queue of ‘B’. This tree is constructed
bottom up as and when the client adds the operators.

5.4.1.1 Data Flow Operator Buffer Query Tree

As evident from Figure 5.13, an operator node is a data structure consisting of
following members:

1. OperatorData
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2. Referenceto left child

3. Reference to right child
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Figure 5.13 Plan Object (Query Tree)

OperatorData in turn is a data structure which completely describes an operator
with respect to its operator type, input parameters (filtering condition for select
operator, fields to be projected for project, etc;), input and output queues associated
with an operator, input streams to be operated on, and query window specifications.
References to left and right child are self-explanatory. For leaf nodes they are null. Any
operator, which does not have its left or right child defined, has its corresponding

reference set to null. These references are used to define links, which in turn constructs
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the ertire query tree. Client needs to generate following additional information prior to
sending plan object to server for processing:

1. Client has complete knowledge about the operators and their instantiation
order in a query. When they encounter project or join which changes base schema, they
create new schema definitions to support new streams generated as the output of these
operators. These schema definitions are registered with server prior to query
instantiation so that they are available to next higher operators.

2. While generating new schema definitions, it resolves name conflicts, which
may occur due to same attribute names of two different input streams by generating
unique attribute names in the resulting stream.

5.4.2 Server Implementation

DSMS server implementation is explained as follows:

In order to facilitate socket based TCP communication, DSMS Server is
extended from an abstract class called TCPServer, which implements generic
functionality for client server communication. It allows server to mount on a specific
port so that applications can connect to it. Once the client is connected, a NetStream
object is created over the client socket to enable object-based communication over the
network. This is accomplished by defining a class called NetStream, which extends
seridlizable interface without which persistent object based communication is not

possible. It wraps character input and output streams of the socket defined for client
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server communication by object input and object output streams to write or read java
objects to and from a byte stream. The key feature of serialization is that if an object
refers to another object, referenced object is also serialized. This process is recursive
and helps in seridizing the entire query tree by just passing the root reference. It is
important to understand client server communication protocol, which can be clearly
explained by taking a simple example of specific service being requested from a client.
Assume that client wants to register a new schema definition with the server. It goes
through the following steps.

1. Since it is a command driven protocol, every request has a unique
command, which is sent to the server prior to actual request.

2. Server on accepting the command is prepared to receive corresponding
request object. In this case it a list consisting of two elements. stream name and its
schema definition.

3. Server accepts the list and registers this stream by populating its stream data
structure.

The protocol is concerned only about one to one correspondence between the
services being requested and the command defined for that. It does not care whether

command is a string specifying a service being requested or an integer value.
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5.4.2.1 Instantiator:

Server has another important module called Instantiator, which deals with
initialization and instantiation of operators, buffers and scheduler. Its main
responsibility is to extract information from operator data node contained in plan
object, initialize operators with obtained information, associate buffers among operators
defined by data flow links, place operators in the ready queue of the associated
scheduler and eventually schedule them for execution. Some of the initializations done
by the Instantiator prior to operator instantiation are:

1. Operators at intermediate level operate on streams provided as output by
their children. However it is not true for base operators, as they need to know on which
stream to work on from the available streams. Instantiator has the responsibility of
clearly defining the association between streams and input buffers for base operators.

2. All operators are designed as independent entities, which expect input in
specific form. Thus input specifications submitted by a user needs to be modified to an
acceptable form. For example, join operator expects following inputs:

position of left join attribute in its input stream
position of right join attribute in its input stream
data type of attribute

relational operators constituting the condition
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Consider a join condition set in OperatorData structure for input parameter by
theclient as:

tbDevice.ld > thdeviceDescription.ld

Server aready has the schema definition stored prior to operator instantiation,
which is provided by the client. Instantiator accesses the schema in order to find the
attribute positions of tbDeviceld and tbdeviceDescription.ld. Once the attribute
positions are found, join is instantiated with the desired parameters.

3. Operators like Project and Join generate new streams. Project shrinks and
join expands their input sreams. Hence prior to higher operator instantiation, their input
buffers must be associated with new streams generated by preceding operators.

Server reads configuration file for initializing buffer, scheduler and operators. It
defines initiad main memory buffer size, initial secondary memory buffer size, and time
dlice to be assigned for scheduling and source and system timestamp fields of various
operators. These initializations are followed by Instantiator initializations as explained
above to start the complete execution process.

5.5 Scheduler

Operators are scheduled based on their state and priority. An operator is
scheduled for execution only if it is in ready state. Scheduler is the highest priority
thread, which picks operator reference from the head of the ready queue, starts the

operator thread and schedules it for assigned time quantum. When the time quantum is
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elapsed, control is returned to scheduler upon which next operator is scheduled.
Operator execution may also be interrupted by scheduler prior to assigned time quantum
because of unavailability of resources. Since every operator isimplemented as a thread,
cost incurred in context switching by scheduling algorithm may be high. This cost could
have been avoided by making the entire query as a single thread. But it would have
been difficult to achieve globa optimization with respect to query throughput,
optimization of global query plans, tuple response time, memory utilization and quality
of service requirements as they can be best achieved by keeping the granularity at
operator level which provides more control and flexibility for the system to adjust and
adapt.
5.5.1 Implementation of scheduling policies:

Two policies have been implemented for scheduling which are as follows:

Plan object is traversed in post order to ensure that child operators are
instantiated prior to parent operators respecting query semantics, they are
simultaneoudly placed in a ready queue of the scheduler to maintain FIFO ordering.

Scheduling algorithms is explained below.
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Figure 5.14 Weighted Round Robin Scheduling
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5.5.1.1 Round robin scheduling:

It picks the first operator from the ready queue. If the operator is not aive (if it
is not scheduled earlier), start the operator thread and execute it for assigned time
quantum. If the time quantum is elapsed and the operator has not finished its operation
completely, place the operator reference at the end of the ready queue. Thus all
operators are guaranteed to be scheduled avoiding starvation. If the operator state
indicates that it is alive (if it was scheduled earlier and is currently at ready state),
resume the operator thread. Operator transitions from one state to another during the

course of execution, which is explained as follows:
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If the operator is currently being scheduled and finds some of the resources
unavailable, for example its input buffer is empty; it trandtions from run state to
suspended state.

If al resources become available for the suspended operator, it transitions
from suspended state to ready state and is placed at the end of scheduler’s ready queue.

When an operator is picked for execution by the scheduler, it transitions
from ready state to run state.

An operator is scheduled for the specified time quantum. If an operator
finishes its operation and its reference is completely removed from the system.

5.5.1.2 Weighted Round Robin scheduling:

This is analogous to round robin but assigns different weights to different
operators based on priority. Higher priority operators are assigned higher weights and
hence scheduled for longer time. Starvation refers to a situation in which some
operators or operator path are never served since there are always higher priority
operators ahead of them. Starvation is avoided in this scheme as once the operator is
scheduled and its time quantum has elapsed; it is aways placed at the end of the ready
gueue, regardless of the priority of the operator. Thus every operator is guaranteed to be
scheduled in time 't', where ‘t’ is the sum of time quanta of all operators ahead of it in
the scheduler’s ready queue. Figure 5.14 shows the visualization of Weighted Round

Robin scheduling. It provides more flexibility to the system to adjust and adapt to
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satisfy quality of service requirements and attempts to provide optimal response to
different optimization goas by assigning priorities accordingly. For example |eaf
operators can be assigned higher priority to improve system utilization, operators with
higher fanout and join operators can enjoy higher priority to avoid memory
bottlenecks.

5.5.2 Implementation alternatives:

Another scheduling algorithm called priority based scheduling scheme was
proposed according to which operators were scheduled strictly based on priorities. This
was a pre-emptive scheduling in which a newly entered higher priority operator
interrupts a lower priority operator. Since java threads has 10 priorities varying from 1-
10 with 1 being the lowest and 10 being the highest, a list of ten entries is maintained
with one entry per priority. Every entry in turn is a list containing operator references
whose priority is same as the priority corresponding to the entry. Thislist was traversed
in the highest priority order. It is common to have more than one operators with the
same priority during which the operators are traversed and scheduled sequentialy
within the inner operator list. The obvious problem with this scheme is starvation. If
there are long running queries with long running operators, scheduler will schedule
operators in FIFO only at the highest priority level and lower priority operators may

never get a chance to execute. This is not appropriate for data streams where real time
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response and strict deadlines are absolutely essential for the response to be meaningful.
Hence priority based scheduling scheme was ruled out.
5.5.3 Scheduling Experiments:

All the experiments were run on unloaded machine with 2 Xeon processor,
2.4GHz, 2GB RAM and Red Hat Linux 8.0 as the operating system. The data set for
performance evaluation is obtained from the MavHome (A smart Home being
developed at UTA for predicting the behavior of inhabitants) live feed collected over a
period of time. The live feed is stored in our database that is modified to generate
synthetic data stream. This synthetic data stream is fed to this system. Delay between
two consecutive tuples follows Poisson distribution. In these experiments, the effect of
varying data set on average tuple latency and total processing time is observed in
various scheduling schemes (simple round robin, weighted and data flow). It is run
using a single query with four operators in the system. The buffer assigned to each
operator can contain at the most 1000 tuples. The data rate is fixed, 70 tuples/sec. The
data set is varied from 500 tuples/window to 1500 tuples/window.

Effect on varying data set on Average Tuple Latency and Total processing time
in various scheduling schemes:

It is observed from the Figure 5.15 that as the size of the data set increases the
“Average Tuple Latency” and the “Tota Processing Time’ increases. Higher the

number of tuples in a window, the more is the buffer utilization. This increases waiting
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time in the buffer that is proportional to the number of tuples residing in the window.

Also the query lifetime depends on the number of tuples to be processed.
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Figure 5.15 Effect on Average Tuple Latency by varying dataset

As data set increases, the number of tuples for processing increases which in
turn increases the total processing time. It is important to understand the effect of
various scheduling schemes. The performance of Data flow scheduling is better than
the other scheduling schemes. It is a greedy approach in which operator is scheduled as
soon as it has data to process else it is suspended. It makes use of operator system’s
scheduler. Weighted round robin is superior to simple round robin as the weights are

assigned meaningfully to operators in the system. The “Select” operators that directly
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consume data from leaves are given higher priority than “Project”. “Join” which is more
complex and time consuming than “Select” is given still higher priority. In “Simple

round robin” all operators have the same priority that affects the overall performance.
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Figure 5.16 Effect Total Processing Time by varying dataset

Effect of Buffer Size on Average Tuple latency and Total Processing Time in

various scheduling schemes:
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The data set is fixed (1000 tuples’window). The data rate is fixed to 70
tuples/sec. This experiment involves single query with four operators. The main
memory assigned to operators is increased from 500 tuples per buffer to infinite buffer.
In each experiment their effect on Average Tuple latency and Total Processing Time is
observed. Different scheduling algorithms (round robin and weighted round robin) are
run to understand the behavior of “Average Tuple Latency” and “Total Processing

Time” with respect to availability of main memory.
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Figure 5.17 Effect on Average Tuple Latency by varying buffer size
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As expected the average tuple latency and total processing time is inversely
proportional to memory. Higher the memory available to operators, the lower is the
average tuple latency and total processing time since no/ffew disk operations are
involved. As the buffer sizes associated with operators are reduced, tuples that cannot
be accommodated in main memory buffer are persisted on disk thus increasing the

average tuple latency and total processing time, the trend observed in Figure 5.18.
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Figure 5.18 Effect on Total processing Time by varying dataset
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This effect was observed by varying the scheduling schemes. It is observed
again that data flow greedy approach outperforms the other two scheduling schemes.
Also weighted scheduling outperforms simple scheduling in all the cases. “Join” which
is more complex and time consuming than “ Select” is assigned a higher priority. Since
“Select” operators are closer to data source in query tree, they are assigned higher
priority than “Project” as they need to cope up with high-speed streams. This
meaningful distribution of priorities to operators generates better result as observed in
the Figure 5.18. Simple scheduling scheme assign fixed priority to operators, hence
cannot be used effectively to satisfy QoS requirements.

5.5.4 Interesting issues in Scheduling:

Scheduler is a thread, which removes operator reference from the ready queue
and schedules operator for execution for assigned time quantum. Once it starts the
operator thread, it cals wait () method and goes to deep. Consider round robin
scheduling in which every operator is assigned the same time quantum say 10. If an
operator finishes its operation on consuming 5 time quanta, it would be more
appropriate if scheduler thread wakes up immediately rather than sleeping for another 5
time quanta (completing its full waiting time). If deep () method had been used,
scheduler thread would have woken up after 10 time quanta while wait () method allows
it to wake up as soon as operator finishes its operation thus saving time and improving

efficiency.
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Operators must register themselves with a scheduler, which facilitates
communication between two entities. Operator has a setScheduler () method in which
scheduler instance is passed which binds operator to the specific scheduler. Similarly
operator instances are passed in the ready queue of the scheduler, which alows
complete access to operator including its state and priority.

Round robin scheduler and priority scheduler are extended from abstract class
called Scheduler, which contains the following generic functionality:

1. addReadyQueue (Operator optReference)

2. removeReadyQueue (Operator optReference)

3. run()

All three methods are abstract methods, which are implemented in specialized
schedulers. Their implementation differs from one scheduler to another based on
scheduling policies. Even the time that could be read as a configuration parameter either
from afile or from a command line is assigned in the parent class.

These scheduling schemes are static and cannot be adapted to changing
optimization goals under changing system states dynamically. Scheduling operators and
changing their priorities adaptively at run time to satisfy quality of service requirements

and making the best possible use of run time resources is the ultimate goal.
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CHAPTER 6
CONCLUSION AND FUTURE WORK

This work includes the design and implementation of query processing
architecture for processing continuous streams to provide real time response to streamed
queries. This architecture is push based in which tuples are processed as and when they
arrive unlike traditional DBMS that pulls data from the disk. Adding a window clause
to standard SQL is one of the proposed extensions to the query model of traditiond
DBMS. New sets of specialized nonblocking operators have been designed to operate
on streams that produce results incrementally and continuoudly. “Split” operator is
designed to partition an incoming stream into multiple outgoing streams based on some
application logic. One of the fundamental issues in data streams is timestamp ordering.
All windowed operators such as “Join” and “Aggregate” not only consume tuples in
timestamp order but they produce tuples also in timestamp order for higher windowed
operators.

Scheduler is designed with three scheduling schemes to schedule streamed
operators to satisfy QoS requirements. Flow based scheduling start operators as soon as
they are instantiated relying on operating system’s scheduling. Simple round robin

assign fixed weight to all operators of all queries and schedules them in a round robin
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manner thereby avoiding starvation. Weighted round robin scheme is more redlistic in
satisfying QoS as different operators of the same query can have different priorities.

Another important aspect is the interface provided by this system. Query is
represented by a data flow graph consisting of operators connected with gqueues.
Instantiator traverses this plan object in post order and instantiates operators respecting
the query definition. DSMS server provides a set of services such as addition and
deletion of schema, and instantiation and termination of queries and operators.

As far as future work is concerned, there is much to be done. Alternate plan
generator needs to be developed to produce aternate equivalent plans which can be
used by the run time optimizer to merge an incoming plan with the globa plan running
in the system to share computation and memory. Run time optimizer is needed to
monitor the output for QoS requirements. It can tune all the components of the system
to satisfy desired QoS requirements. The current scheduling schemes are static and
needs to be modified to support adaptive scheduling by dynamically assigning priorities
to operators depending on the system load. The ultimate god is to make the scheduling
algorithm to be an optimal one, which can change its optimization goal under different

system states, and take the QoS requirements into consideration.
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