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ABSTRACT 

 

DESIGN AND IMPLEMENTATION OF 

WINDOWED OPERATORS  

AND SCHEDULER FOR 

STREAM DATA 

 

Publication No. ______ 

 

Satyajeet Sonune, MS 

 

The University of Texas at Arlington, 2003 

 

Supervising Professor:  Dr. Sharma Chakravarthy  

The new processing requirements of streaming applications like financial 

tickers, network monitoring, traffic management and sensor monitoring are forcing a re-

examination of approaches and techniques used in traditional DBMS due to its inability 

to operate on streaming data as they would require potentially unlimited resources for 

collecting, storing and processing real time unbounded streamed data in timely manner. 

Hence the need of a system is realized whose computation can keep up with the data 

flow to provide real time response to streamed queries by processing endless data 

streams on the fly. 



 vi 

This thesis addresses the design and implementation of a Query Processing 

Architecture for stream data, modeled as a client server architecture comprising of 

various modules such as Instantiator, Stream Operators and Scheduler.. A data-flow 

operator/queue graph is used for representing a query plan. Instantiator has the 

responsibility of initializing and instantiating stream operators on accepting user queries 

from the client over a predefined set of protocols. Aggregates and Nested Join operators 

have been designed to operate on continuous streams that provide continuous output  

using the window concept. A new operator called Split has been introduced  to divide 

single heterogeneous stream into multiple homogeneous streams based on application 

logic. A scheduler has been included so that different scheduling approaches (e.g., 

round robin, dataflow, weighted round robin)  can be tried to understand their effect on 

response time, memory usage etc.   Experiments have been performed by to measure  

average tuple latency, total query  time and memory usage (main and secondary) for 

different data rates and input stream sizes.   
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CHAPTER 1  

INTRODUCTION 

Traditional database management systems (DBMSs) are  repositories, in which 

all data to be managed is stored on secondary storage and updated as appropriate. . They 

utilize a request-response paradigm wherein the user poses a logical query, which is 

evaluated by the query engine. Traditional  DBMSs are not suited for most of streaming 

applications, which are needed for many newer applications.  Examples of streaming 

applications are: financial tickers, network monitoring and traffic management, network 

security, click stream processing,  and sensor monitoring. There are many reasons why 

traditional DBMSs cannot be used to support streaming applications. Some of them are 

listed below:   

1. It is not practically feasible to store continuous data streams in a traditional 

DBMS, as they are not designed for rapid and continuous   storage of data. 

2. Operators of traditional DBMSs are not designed to handle continuous 

queries on unbounded streams. Operators such as  “Join” and “Aggregate” may block 

forever as the input streams arrive continuously.  

3. Traditional DBMSs are always expected to produce precise answers. In 

streaming, where data stream may arrive asynchronously at a rapid rate, answer may be 

computed with incomplete information and hence may not be exact. 
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4. Traditional DBMSs do not support real- time processing of tuples.  They 

cannot be used for network monitoring and network security applications, which have a 

low tolerance for stale data. 

5. Streaming data may be lost, garbled or arrive asynchronously. Traditional 

DBMSs are not designed to handle such variations in input data and may produce 

incorrect results. 

On the other hand,  a Data Stream Management System (DSMS) is designed 

and developed keeping stream characteristics in mind and attempt to address  the 

problems mentioned above. Some of the important characteristics of DSMSs are as 

follows: 

1. DSMSs can handle continuous streams of data. Data is processed on the fly 

and results are generated. It does not have to store raw data on the disk. Once data is 

processed it is either discarded or archived. Thus the resource limitation problem of 

storing each and every piece of information, as is done in traditional DBMS is solved. 

Important data may be archived. 

2. Monitoring applications are easily supported by DSMSs. In fact they are 

targeted for trigger-oriented applications. Sensor networks are being widely deployed 

for measurement, detection and surveillance applications. In a factory warehouse, one 

may want to trigger an alarm if the sensor reading goes beyond some threshold value. 

Every application can potentially monitor multiple streams of data. 

3. DSMSs provide a new set of operators, which can operate on continuous 

streams without blocking. Traditional “Join” and other “aggregate” operators, which are 
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difficult to use for streams are modified to efficiently handle streaming data. They 

operate on windows that define the boundaries for input data sets. Continuous 

operations are supported by “sliding” these windows and changing their size. Results 

are evaluated on the unit of a window of data and the processing repeats  for further 

evaluation. 

4. The data arrival rate of streams may sometimes exceed the data processing 

rate. Thus input queues may start losing data. In such situations, sampling and 

histogram techniques may be used in order to produce approximate results. DSMS also 

computes results even when data is lost, garbled or arrives asynchronously. 

5. They provide real- time response to streamed queries. A query submitted to 

the system is run continuously against streaming data. Thus, output is produced 

continuously and incrementally at the end of every window. Updates of routing tables, 

network security and monitoring traffic are some of the applications served by the real 

time response of DSMSs. 

It is important to understand the characteristics of streaming data and streaming 

queries in order to understand and justify the need for  a Data Stream Management 

System. Streaming data display  following characteristics: 

1. Streaming data to be operated on are not available from disk or main 

memory; rather they arrive continuously and online. 

2. Streaming data are potentially unbounded in size. They are continuously 

generated by sensor class of  devices. 
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3. Streaming data may be lost, stale, garbled or may be intentionally omitted 

for processing. When input rate is high, it is sometimes necessary to shed load by 

dropping less important data. Sampling [1] is a common technique used to handle heavy 

input rates. 

4. Data streams may be correlated with data stored in traditional databases.  

Hence, we cannot preclude processing stream data along with traditional data. For 

example, a Streaming Join operator may combine streams with stored relations. 

Streaming queries can be broadly classified into: 

• Predefined Queries, and 

• Ad-Hoc Queries 

Predefined queries are queries, which are available to the system before any 

relevant data has arrived. 

Ad-Hoc Queries are submitted to the system when the data stream has already 

started. Hence query referring to past information is difficult to evaluate unless the 

system supports storage of past information. Since Ad-Hoc [2] queries are not known 

beforehand, query optimization, finding common sub-expressions, etc., adds complexity 

to the system. 

Predefined and Ad-Hoc Queries are further classified into: 

• One-Time queries or snap-shot queries 

• Continuous queries 

One-Time Queries:  
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These queries are evaluated only once over a given window. Once the query is 

evaluated, it is removed from the system. It generates output only once at the end of the 

window.  

Continuous queries:  

These queries are evaluated continuously as data streams arrive. The results are 

produced incrementally and continuously at the end of every new window. Most queries 

in streaming applications are continuous. Results may be stored or updated as streaming 

data arrives, or output may itself be streamed.  

The above summarizes data streams, their behavior and their characteristics. It 

also clearly explains why traditional DBMSs are not suitable for streaming applications. 

DSMS is specifically designed for rapid and continuous loading of individual data 

items, and directly support continuous queries that are typical of data stream 

applications. 

The rest of the thesis is organized as follows. In Section 2, the architecture of 

DSMS is explained. Some of the important modules highlighted in this architecture are 

Instantiator, operators, buffer manager, scheduler, alternate plan generator, and run time 

optimizer. Design of the system architecture gives a broader picture of the entire system 

without going into implementation details. In Section 3 we review recent projects on 

data stream processing, as well as a plethora of past research in areas related to data 

streams, such as   Aurora, Psoup, Fjords, Eddies and CACQ. This section also attempts 

to explain new problems the proposed system has addressed in realizing a complete 

architecture. Chapter 4 discusses the design issues of the entire system.   For every 
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module, it explains the design issues, the alternatives considered and the proposed 

solution. The functionalities of each module and their inter-relationships are described. 

Chapter 5 describes implementation details and emphasizes  problems 

encountered while implementing the system. Experimental results and performance 

evaluation to validate the system and measure its performance are provided.  

We conclude in Chapter 6 by giving an overview of our contributions and a 

summary of directions for future work.  
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CHAPTER 2  

DSMS ARCHITECTURE 

DSMS is modeled as a client-server architecture in which client accepts input 

from the user, maps it into a form understood by a server and sends the processed input 

along with other necessary information to the server over a predefined set of protocols. 

Server, on fetching a request, instantiates its various components, such as   operators, 

buffers and scheduler, executes it and sends the result back to the client. The various 

components are shown in Figure 2.1. 

 

Figure 2.1 DSMS Architecture 
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This chapter provides a brief overview of various modules constituting the 

system: 

2.1 DSMS Client:   

Client provides graphical user interface to pose queries to the system. It not only 

checks correctness of queries with respect to syntax and semantics but also modifies 

them into a form acceptable by the server for processing. It constructs a plan object that 

represents a single complete query from user specifications. It also generates 

intermediate schema when base schema is altered by operators such as project or join 

which shrinks and expands schema, respectively. Resolving same stream attribute 

names into unique names to resolve any conflicts is an added functionality supported by 

the client. Once the input is processed completely with all needed information 

generated, it is sent to the server over a defined set of protocols. Communication 

between client and server is command driven and protocol oriented. A generic model of 

communication is established in which the client sends a command followed by a 

request. In order to identify a request, client sends a unique command before sending 

the actual request. Once the server receives the command, it expects specific request 

corresponding to the previously received command from a client.  Client then sends the 

request to be processed by the server. Server, based on the command received, 

processes the request and generates the output. Following are the types of services that 

are offered. 

• Query Input 

• Schema Input 
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• Read Schema 

• Stop Query 

• Execute Query 

Client can be of following types: 

• Non-Web based client:  Since DSMS is developed in java; user interface 

may be designed in Swings or AWT components to allow users to construct queries. 

• Web-based client: In order to have worldwide accessibility, web-based 

interface is provided to the user for defining queries. All the client functionality 

explained above are incorporated in a web server. DSMS client is a web-based client.  

2.2 Instantiator:   

Instantiator has the responsibility of initializing and instantiating streaming 

operators and their associated buffers on accepting user queries from the client. It is a 

sequence of operator nodes. Client constructs a plan object, which is a sequence of 

operator nodes where every node describes an operator completely. This operator 

hierarchy defines the direction of data flow starting from leaves to root. Instantiator 

traverses the query tree in a bottom-up fashion and does the following for each operator 

node. 

1. Creates an instance of the Operator and initialize it on reading operator node 

data. 

2. Associate input and output queues (or buffers) with desired parameters to 

operators for consuming and producing tuples.  
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3. Inherit window specifications for window-based operators, such as  

Aggregate and Join. 

4. Every operator is an independent entity and expects predicate condition in a 

predefined form. Instantiator extracts the information from the operator node and brings 

it into the form required by each operator. 

5. Associate a scheduler with the operator to facilitate communication for 

scheduling.  

The plan object is traversed in post order to ensure that child operators are 

instantiated prior to parent operator that is  required to respect query semantics as data 

flows from leaves to root. Instantiator does not start the operator, rather it does all the 

necessary initialization (step1 to step 5) and places it in the ready queue during post 

order traversal to be scheduled by a scheduler.  

2.3 DSMS Server:   

This is  responsible for executing user requests, and producing desired output. It 

provides integration and interaction of various modules such as Instantiator, operators, 

buffer manager and scheduler for efficiently producing correct output. It performs the 

following functions: 

1. Accepts command and request from a client that describes the task to be 

carried out. 

2. It provides details of available streams and schema definitions to clients so 

that they can pose relevant queries to the system. It also allows new streams to register 

with the system. 



 

11 

3. It initializes and instantiates operators constituting a query and schedules 

them. It also stops a query, which in turn stops all operators associated with the query 

on receiving command for query termination. 

4. Associate input streams with base buffers to start data flow in the sys tem. It 

also associates buffers with operators as defined in operator node. Inter-operator queues 

are used to buffer the output of one operator, which acts as an input to one or more 

operators at the next level of query tree. All these operations are perfo rmed by the 

Instantiator module of the server. 

5. Start scheduler to schedule operators for doing necessary computation and 

produce the result to the client. 

2.4 Alternate Plan Generator:   

 
Once the user submits a query, a plan object is constructed. A plan object is 

nothing but a partially ordered tree that indicates the order in which operators need to be  

instantiated. If a single plan object is traversed in post-order, it generates only one 

possible instantiation order. If the operators are instantiated in that order, it might result 

in un-optimized output, as the order of instantiation may not be  most efficient. 

Consider a plan object in which Join is performed prior to Select where Select has low 

selectivity. Here it would have been more appropriate  to execute Select prior to Join, 

which would have produced better  result. Thus the need for Alternate plan generator is 

realized which can generate all possible equivalent alternate plans that ensure the same 

output. The gain may be magnified when it comes to optimizing  a global plan  by 

selecting one of the alternate plans in which most number of operators in an alternate 
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plan merges with the existing operators in the global plan to share memory and 

computation.  

Merging enhances computation sharing   and hence facilitates faster response 

time. Optimizer can make use of alternate plan generator in order to dynamically select 

an alternate plan when the result produced by the previous plan does not satisfy the 

quality of service requirements. The best alternate plan (local optimal) of a query tree 

may not be the most optimal with respect to a global plan. An alternate plan is 

considered the best when most of its operators are merged with the existing global plan. 

That plan if considered alone without a global plan may not be the most favorable plan. 

Devising efficient heuristics that generate good plans is a rich area for future research.  

2.5 Operators:  

Streaming operators are specially designed to handle streaming data. They 

operate on continuous streams using the window concept  (to avoid blocking) providing 

continuous and incremental output. There is a close association between buffers 

(queues) and operators. Every operator has at the most two input queues and one or 

more output queues. An operator reads from its input queues, performs needed 

operation based on its semantics and produces result in its output queue. Buffers are 

shared among operators. The output queue of one operator may become the input queue 

of one or more operators at the next level of the  query execution plan. It is important  to 

design an operator as a controllable entity so that its priorities and various states can be 

controlled by different entities (such as  user, buffer, scheduler, optimizer, etc.,) in a 

system. Operators can either be in Ready, Run, Suspend or Stop state during the course 
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of their execution. Transition from one state to another is controlled either by an 

operator itself or by a scheduler. An operator’s priority can be controlled by a scheduler, 

user or optimizer to satisfy quality of service requirements. 

Operators are classified as windowed and non-windowed operators depending 

on whether they have a window associated with their computation. Split, Select and 

Project are non-windowed operators. Aggregate and Join are windowed operators as 

they need a window to define their input boundaries; otherwise they may block forever 

because streaming data is potentially unbounded in size.  Windows are further classified 

into two types: Disjoint and Overlap. In the disjoint case, end time of current window 

coincides with the start time of next window. Thus two successive windows do not 

overlap. In a overlap window, start time of the next window falls prior to the end time 

of the current window. Thus two successive windows always have some common 

region (or overlap area) and hence the name.   

2.5.1 Non-windowed operators:  

1. Select:  It has one input queue and one output queue. If the incoming tuple 

satisfies the given condition, it outputs the tuple to its output queue else it ignores the 

tuple. The condition to be checked is given by the user as part of a query. 

2. Split:  It is similar to select with the only difference that select evaluates 

only one condition while split evaluates multiple condition.  Split has one input queue 

and multiple output queues, one for each condition. An incoming tuple is checked 

against all the conditions. If it satisfies the condition, it is placed in the corresponding 

output queue else next condition is evaluated.  
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3. Project: This operator is analogous to the Project operator of traditional 

DBMS.  It projects only the desired attributes at the output. 

2.5.2 Windowed Operators: 

1. Aggregate: These operators need a window for their computation. They 

operate on a window worth of data, performs the needed aggregate operation and 

produces output at the end of every window. Currently supported  aggregate operations  

are: Min, Max, Average, Sum and Count.  

2. Join: This    is a blocking operator and hence operates on a window. Two 

shades of nested loop join are being supported, with reuse and without reuse. It 

performs join on timestamp ordered tuples collected at its left and right input queues to 

produce timestamp ordered joined tuples without duplicates. In the case of without 

reuse, every window is computed independently without making use of the result of the 

previous window. In reuse, the overlapped region of the current window and the next 

window is reused (overlapped region is not computed again) for the computation of 

next window.   

2.6 Buffer Manager:   

Buffers are the intermediate storage structures used by the operators. All 

operators in a query tree are connected using buffers. Buffers are implemented as 

queues.  Buffers are of two types: Bounded and Unbounded. A Bounded buffer has an 

upper limit on the number of elements it can store, which can be specified while 

instantiating a buffer. When the specified limit is reached, successive elements are 

stored on  disk preventing any loss of data. This is in contrast to  load shedding [3] 
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techniques in other systems in which the accuracy of the result is reduced  by shedding 

load at peak time. Buffers are shared among operators. Every buffer internally 

maintains a common pointer for all operators which points to latest elements read by all 

operators. All elements including and prior to that are safely discarded which creates 

main memory buffer space. These buffer spaces can be filled by reading elements from 

the disk in the order in which they were stored. To accomplish this, buffer incorporates 

minimal persistent logic to store and retrieve elements to and from the secondary 

storage  as and when needed. 

An unbounded buffer has no limit and continue to grow until main memory is 

exhausted. This makes it a main memory steam processing system. Buffers support two 

useful operations: dequeue and enqueue.  

Dequeue: It removes the top element from the buffer. If the top element is the 

last element, buffer becomes empty. It makes sense to suspend all operators waiting on 

the buffer to save CPU cycles. Hence operators attempting to read from an empty buffer 

are suspended. An element is dequeued only if it is read by all operators sharing it.   

Enqueue: A new tuple can be added to the buffer using enqueue operation. If 

buffer was empty before, it sends resumption signal to all operators upon which they are 

placed in a ready queue of the scheduler. If the buffer is bounded and the upper limit 

has already reached, new tuples are added to the secondary memory.  

Enqueue and Dequeue operations must be synchronized to ensure correctness as 

the same location may be accessed by both operations at the same time.  
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2.7 Scheduler:   

Scheduling algorithms developed for real time systems attempt to execute the 

tasks with the maximum expected utility in order to meet QoS constraints. Each tuple 

entering a system represents a task but it is not workable as the total number of tasks 

would be too large for a scheduler. Similarly a query can be considered a task but 

scheduler is bound to lose the flexibility of  scheduling, as the granularity offered by a 

query may not be  acceptable. Thus the most effective way is to perform  scheduling at 

the  operator level. Aurora [4] also implements operator scheduling. It schedule 

operators based on its state and priority. Scheduler maintains a ready queue, which 

decides the order in which operators are scheduled. This queue is initially populated by 

the  Instantiator while traversing query tree in post order. It chooses  an operator for 

execution, ascertain what processing is required and process them. Operators must be in 

a ready state in order to be scheduled. One of the following conditions may occur 

during the running state of the operator. 

1. Operator may finish its execution completely upon which it immediately 

informs scheduler so that the operator waiting next in the ready queue can be scheduled 

as early as possible. Its reference is  deleted from the scheduler. 

2. During the execution, operator itself may be suspended because of 

unavailability of resources. This would remove the operator reference from the ready 

queue. When all resources become available, then it is again placed at the end of the 

ready queue. 
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3. Time quantum of the operator has  expired but operator has not yet 

completed its operation. Scheduler still suspends the execution of the operator and puts 

the operator at the end of the ready queue to provide fair chance to all operators 

ensuring starvation avoidance. 

Following are the scheduling policies implemented in DSMS based on time 

quantum: 

1. Round-Robin:  When all queries and all operators are assigned the same 

time quantum. Scheduling order is decided by the ready queue. This policy is  not likely  

to dynamically adapt to quality of service requirements as all operators have the same 

priority. 

2. Weighted round-robin:  Here different time quanta are assigned to different 

operators based on their requirements. Operators are scheduled round robin but few 

operators may get  more time-share over others. This policy could be useful to improve 

the response time and overall performance by assigning higher priorities to deserving 

operators. For example operators at leaf nodes can be given more priority as they are 

close to data sources. Similarly, Join operator, which is more complex and time 

consuming, can be given higher priority than Select. 

2.8 Run-Time Optimizer:  

It is needed in a DSMS for run time optimization based on the quality of service 

observed. It aims at maximizing the output rate of query evaluation plans. QoS may be 

end-to-end delay (this delay is the difference in time when the tuple entered the system 

and when it is seen at the output), number of tuples produced per unit time, or strict 
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query deadline (user deadline indicating that query must output result before the 

specified time to be meaningful) for output. To ensure QoS, optimizer may take the 

following steps: 

1. It may ask the scheduler to increase the priority of a query, which needs 

immediate service. It may also ask scheduler to assign more time quantum to specific 

operators and/or specific queries.  

2. It may ask alternate plan generator to provide a suitable plan from the set of 

plans available that is better  with respect to a global plan running in the system. The 

alternate plan may not be the best  plan if considered alone, but may be the best for the 

global plan. The idea is to minimize the estimated cost of evaluating a query execution 

plan.  

3.  Run time optimizer can  identify performance bottlenecks of an already 

executing plan and ways to overcome them. Either it can maximize the performance 

estimate for the ent ire plan or it can locally maximize  the output rate at operator level. 

Run time optimizer is expected to use all these parameters intelligently to 

improve QoS. It is supposed to continuously monitor the output and compare with the 

QoS requirement. If the QoS is respected, it may reduce resource utilization to achieve 

the same QoS. If the QoS requirement is not met then above heuristics are applied to 

accomplish the desired goal. This module is a good candidate for future research. 
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CHAPTER 3  

RELATED WORK 

This chapter presents an overview of the work done in data streams that 

addresses various issues in streaming applications and focus on the overall design and 

characteristics of various systems to handle the challenging problems in data streams. 

3.1 Monitoring Streams 

Aurora [5] supports continuous query processing, as opposed to a traditional 

DBMS, in which queries are evaluated continuously over the incoming data stream. 

They have  implemented monitoring applications, which are difficult to implement in 

traditional DBMS which was developed primarily  for business applications. Aurora 

support trigger oriented monitoring applications that require a large number of  triggers 

and hence support active technology very well. They extend their work from Stream 

Group [6] that addresses many issues in stream processing. It can support continuous 

queries, ad-hoc query and views (a path defined with no connected application) at the 

same time. Aurora can handle a variety of stream data that could be lost, stale or 

garbled. The emphasis is on quality of service requirements, which are crucial to real-

time applications, such as  sensor-based monitoring  and financial data analysis.  

Aurora is fundamentally a data-flow system and uses the popular boxes and 

arrows paradigm found in most process flow and workflow systems. Tuples flow 

through a loop-free, directed, graph of processing operations (i.e., boxes). Ultimately, 
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output streams are presented to applications, which must be programmed to deal with 

the asynchronous nature of tuples in an output stream. It has a connection point that 

supports dynamic modification to the network and it also has  potential for persistent 

storage. New boxes (operators) can be added to or deleted from a connection point and 

it provides access to the recent past, which is beneficial to a new application that 

connects to the network. 

There are few optimization techniques proposed in Aurora. It allows them to 

insert/move map (project) operations to the earliest possible points in the network, 

thereby shrinking the size of the tuples that must be subsequently processed. Filter 

operations can sometimes be pushed down the query tree through joins. Combining 

Boxes is another optimization technique. For example, two filtering operations can be 

combined into a single, more complex filter that can be more efficiently executed than 

the two boxes it replaces.  

Aurora also supports run-time network to process data flows through a 

potentially large workflow diagram. The scheduler picks a box for execution, ascertains 

what processing is required, and passes a pointer to the box description (together with a 

pointer to the box state) to the multi-threaded box processor. The QoS evaluator 

continually monitors system performance and activates the load shedder, which sheds 

load till the performance of the system, reaches an acceptable level. 

The job of the Aurora Storage Manager (ASM) is to store all tuples required by 

an Aurora network. ASM must manage storage for the tuples that are being passed 
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through an Aurora network, and it must also maintain extra tuple storage that may be 

required at connection points.  

Aurora exploits the benefits of non- linearity in both intra-box and inter-box 

tuple processing primarily through train scheduling, which attempts to queue as many 

tuples as possible without processing, to process complete trains at once, and to pass 

them to the subsequent boxes without having to go to disk. 

This architecture can be extended to support distributed processing. There are 

various issues in distributed processing such as  load shedding, distribution of query 

plans and collection of results from distributed nodes. They should increase scalability, 

energy use and bandwidth efficiency. They make the assumption  that all tasks are 

assumed to be present in the main memory and are scheduled and executed in their 

entirety. Thus they should find the techniques, which allow disk swapping when the 

amount of information is too large to be accommodated in the main memory.   

3.2 PSoup: A system for Streaming Queries over Streaming Data 

Psoup [7] is a system that combines the processing of ad hoc and continuous 

queries by treating data and queries symmetrically, allowing new queries to be applied 

to old data and new data to be applied to old queries. PSoup also supports intermittent 

connectivity by separating the computation of query results from the delivery of those 

results and materializing them, thereby improving throughput and query response times. 

PSoup is flexible enough to make use of other architectures like eddies to adapt 

dynamically to the processing of input streams. They make use of efficient data 

structure called RB-trees, which reduces the time required for indexing at the desired 
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location for making a search. PSoup efficiently supports other complex operations such 

as  processing of composite tuples and aggregate operations. PSoup allows the 

processing of data as well as queries on the fly still producing the correct output. Earlier 

approaches supported arrival of either of the two but not both and hence it is a 

considerable improvement over the existing mechanisms. PSoup is  intelligent enough 

to share computation thereby conserving resources and improving efficiency. They are 

generally used in maintaining incremental results. They have also optimized multi-

query evaluation by using appropriate algorithms to join the data and query streams. 

They have also developed techniques to share both the computation and storage of 

different query results.  

This system stores the queries and data in structures called State Modules 

(SteMs).  There is one Query SteM for all the query specifications in the system, and 

there is one Data SteM for each data stream. The results are materialized in a Results 

Structure. They defined three different systems based on their storage requirement: 

NoMaterialization (NoMat): the storage cost is equal to the space taken to store the base 

data streams plus the size of the structures used to store the queries themselves. PSoup-

Partial: in addition to costs incurred by NoMat, PSoup-P also includes  the cost of the 

Results Structure. PSoup-complete (PSoup-C): like PSoup-P, PSoup-C includes   the 

cost of storing the results in addition to the costs included  by NoMat systems. PSoup-C 

always stores the current results of standing queries at a given time. Lazy evaluation (as 

used in NoMat) suffers from poor response time while having no maintenance costs. 
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Eager evaluation (as done in PSoup-C) offers excellent response time but has increased 

maintenance costs.   

The system can be improved by having multiple query stems as we have for 

data streams. This will increase the complexity of the system but it will also increase the 

query throughput as multiple data streams can be handled simultaneously by different 

query stems. Psoup is currently implemented as a main memory system. But the system 

can be improved to archive data streams to disk and support queries over them. Both 

queries and data can be stored onto the disk. They should come up with a scheduling 

mechanism to support de-scheduling of queries to disk, which are not frequent. 

Similarly queries that are invoked often should be given higher priority by the 

scheduler. This system is suitable for data recharging and monitoring applications that 

intermittently connect to a server to retrieve the results of a query.  

3.3 Continuously Adaptive Continuous Queries Over Streams 

The CACQ [8] system is presented on the basis of eddy, a continuously adaptive 

query-processing operator, which continuously reorders operators in a query plan as it 

runs; and the Telegraph adaptive dataflow engine as a platform to be used for the 

continuous query engine. Since earlier approaches used only static query plans, this 

architecture offers significant performance and robustness gains relative to existing 

continuous query system and is more  aggressive  in its ability to share computation and 

storage across queries over streams. 

CACQ is developed from the Telegraph project [9] design and incorporates 

many significant innovations that make it better suited to continuous query processing 
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over streams than other continuous query systems. Their work is slightly different from 

Continuously queries over data streams [10] They use the eddy operator to adapt 

continuously  to the changing query workload, data delivery rates, and overall system 

performance. They explicitly encode the work, which has been performed on a tuple, its 

lineage, within the tuple, allowing operators from many queries to be applied to a single 

tuple. They use an efficient predicate index for applying different selections to a single 

tuple. They also split joins into unary operators called SteMs (State Modules) that allow 

pipelined join computation and sharing of state between joins in different queries.  

It makes use of Eddies [11] which route tuple through operators (lineage) in a 

query dynamically and hence it is possible to modify the order of operations in a query 

plan while the query is in flight. The eddy determines the order in which to apply 

operators by observing their recent cost and selectivity and routing tuples accordingly.  

This contrasts with systems based on static query plans, in which the state of 

intermediate tuples is implicit in the  query plan. Query operators in a static plan operate 

on tuples of a single lineage. In CACQ this ability is extended to multiple overlapping 

queries, maximizing the sharing of work and state across queries.  

Users may issue queries that join data from dis tinct but overlapping subsets of  

sources. They use a space-efficient generalization of doubly pipelined joins within eddy 

framework. Eddy encapsulates the logic for computing joins over the incoming sources 

using SteMs. This allows them to incrementally compute a join over any subset of the 

sources and stream the results to the user.  
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They have also implemented a variant of the eddy ticket scheme. In their 

variant, a grouped-filter or SteM is given a number of tickets equal to the number of 

predicates it applies, and penalized a number of tickets equal to the number of 

predicates it applies when it returns a tuple back to the eddy. In this way, they favor 

low-selectivity via tickets and quick work via backpressure.  

They present the first continuous query implementation based on a continuously 

adaptive query processing scheme. Their eddy-based design provides significant 

performance benefits, not only because of its ability to adapt, but also because of the 

aggressive cross-query sharing of work and space that it enables. By breaking the 

abstraction of shared relational algebra expressions, their CACQ implementation is able 

to share physical operators – both selections and join  – at a very fine grain. These 

features are augmented with a grouped-filter index to simultaneously evaluate multiple 

selection predicates. 

3.4 Fjord 

They introduced Fjord [12] which is a hybrid approach for push and pull 

architecture. It combines push based sensor sources with traditional sources that 

produce data via blocking, pull based iterator interface. They introduce the concept of 

sensor proxies, which is responsible for communication between query processors and 

the physical sensors by doing simple aggregation over sensor data and relaying tuples to 

appropriate query operators and conserving sensor power by not transmitting sensor 

data that falls beyond certain threshold values. Fjord architecture does multiple sensor 

queries on sensors, still conserving sensor resources [13] and maintaining high query 
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throughput. This architecture can be easily adapted to support different types of query 

languages for querying streaming data. Fjords have been implemented in real life 

applications like Traffic Analysis and it can scale to a large number of queries. Sensors 

are efficiently utilized by sending control messages to adjust their sample rates and their 

power consumption is also controlled effectively. Operators need not have to worry 

about the push or pull based architecture. They are thus comparatively less complex. 

Single Fjord can support multiple queries and it allows allocating streaming tuple only 

once, which is shared by multiple queries by query folding thereby conserving 

resources. They have introduced the concept of transition model, which sometimes 

needs to be scheduled more frequently as compared to other modules as the queries on 

those modules may be more frequent as compared to others. But operating system has 

coarse control over thread scheduling and is not useful when scheduling needs some 

prioritization. They have their own scheduler that handles thread scheduling with 

prioritization.  

Fjords provide support for integrating streaming data that is pushed into the 

system with disk-based data, which is pulled by traditional operators. Fjords also allow 

combining multiple queries into a single plan and explicitly handle operators with 

multiple inputs and outputs.  

The key advantage of Fjords is that they allow distributed query plans to use a 

mixture of push and pull connections between operators. Push or pull is implemented by 

the queue. By integrating non-blocking operators into Fjords, they take full advantage 

of Fjords’ ability to mix push and pull semantics within a query plan. Another major 
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component of sensor query solution is the sensor proxy, which acts as an interface 

between a single sensor and the Fjords querying that sensor.  

The history of the stream is not relevant. This means that streaming tuples need 

only be placed in the query processor’s memory once, and that selection operators over 

the same source can apply multiple predicates at once. Fjords explicitly enable this 

sharing by instantiating streaming scan operators with multiple outputs that allocate 

only a single copy of every streaming tuple; new queries over the same streaming 

source are folded into an existing Fjord rather than being placed in a separate Fjord.  

These solutions are an important part of the Telegraph Query Processing 

System, which seeks to extend traditional query processing capabilities to a variety of 

nontraditional data sources. Telegraph, when enhanced with Fjords, enables query 

processing over networks of wireless and battery powered devices that cannot be 

queried via traditional means. 

3.5 Eddies 

Eddies [11] support dynamic reordering of a query plan in which they identify 

“moments of symmetry” during which operators can be easily reordered when they are 

subjected to changes in cost, selectivity and the arrival rate of tuples. Moments of 

symmetry allow reordering of inputs not only to a single binary operator but it 

generalizes the problem to solve any number of binary joins by using the commutative 

property of a join. They provide runtime adaptavity and a reduction in code complexity, 

which is not possible with traditional plans. They can be used as an optimizer, which 

does not need a traditional query optimizer with a complex code. They are also used 
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with traditional optimizers to improve adaptability within pipelines. It allows the system 

to adapt dynamically to fluctuations in computing resources, data characteristics and 

user preferences. This allows each tuple to have flexible ordering of query operators 

when eddies are combined with appropriate join algorithm. Eddies have a flexible 

prioritization scheme to process tuples from its priority queue. Their priority scheme is 

simple to implement and ensures that eddies are not clogged with new tuples. Eddies 

implements an intelligent lottery scheme for variable selectivity, which is simple to 

implement and produces effective results. Eddies solves the problem of limiting 

concurrency due to barriers by using the concept of Rivers and allows I/O and 

computation to perform simultaneously. It is developed to work efficiently in large-

scale system with unpredictable and fluctuating environment. It takes into account the 

problems caused by hardware, data and user interface complexity in large-scale 

systems.   

An eddy module directs the flow of tuples from the inputs through the various 

operators to the output, providing the flexibility to allow each tuple to be routed 

individually through the operators. The routing policy used in the eddy determines the 

efficiency of the system. An eddy’s tuple buffer is implemented as a priority queue with 

a flexible prioritization scheme. An operator is always given the highest-priority tuple 

in the buffer that has the corresponding Ready bit set. In a simple priority scheme, 

tuples enter the eddy with low priority, and when they are returned to the eddy from an 

operator they are given high priority which ensures that tuples flow completely through 
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the eddy before new tuples are consumed from the inputs, ensuring that the eddy does 

not become “clogged” with new tuples. 

Eddies have the limitation that they can be used efficiently when we favor join 

algorithm with frequent moments of symmetry, adaptive or non-existent barriers and 

minimal ordering constraints that are generally needed in various join algorithms such 

as  Merge Join and Nested Loop Join. Thus they are effective only in Ripple Join. Their 

implementation is not fully dynamic. They still make use of some static mechanisms 

like “pre-optimization” “phase, choices of join algorithm and access methods. 

Resources are often not utilized properly in not so promising alternatives like 

implementing sort-merge join or other joins which do not satisfy the requirements for 

the eddies to be most effective. They should further use  parallelism and adaptavity 

available in Rivers. Reoptimizing queries with intra-operator parallelism requires 

repartitioning data. But there is no efficient technique so far for adaptively adjusting the 

degree of partitioning for each operator in the query plan. 

They want to apply their work to the generic space of dataflow programming. 

These include applications such as multimedia analysis and transcoding, and the 

composition of scalable, reliable Internet services. They want to use eddies as the main 

scheduling mechanism and rivers to serve as a generic parallel dataflow engine in that 

environment. 

3.6 Dynamic Regrouping of Continuous Queries 

They have proposed an approach for incremental grouping to efficiently group 

new continuous queries without having to regroup existing queries thus significantly 
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reducing the cost of execution. They have also proposed another approach called 

dynamic regrouping to increase the overall quality of regrouping which otherwise 

would have deteriorated by continuously adding and removing queries from the group 

statically. This dynamic approach increases the overall performance of the system. 

Their regrouping method, when applied in conjunction with the incremental grouping, 

obtains a reasonable improvement over the incremental grouping method at a low extra 

overhead in regrouping time. They consider multiple query optimizations as opposed to 

single query optimization and their regrouping mechanism [14] can handle newly 

arrived queries. The incremental grouping in conjunction with dynamic regrouping 

results in a high quality grouping  at a fairly low cost. It can optimize large continuous 

workload and hence can be applied to a large-scale system. Regrouping is done very 

efficiently and does not impose significant burden on the system. 

It maintains  intermediate files incrementally by materializing the results, which 

avoids re-computation of the entire plan when any failure occurs. This model is quite 

simple and introduces simple metric to evaluate cost estimation called update 

frequency, which at any node is the sum of the update frequencies of all its children. 

Delete operation in global query optimization is not at all complex. The node count is 

simply reduced by 1 and the rest of the tree is automatically rearranged.   

Incremental group optimization attempts to find the optimal solution to the new 

query submitted from all possible solutions. The overall cost for the new query is the 

sum of the costs of all new nodes added. They run top-down local exhaustive search, to 

find an optimal incremental plan for a new query.  In dynamic regrouping algorithm, 
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they construct links between existing nodes and nodes that were added since the last re-

grouping and then a minimal weighted solution is found from the current solution by 

removing redundant nodes. 

This algorithm assumes that the amount of physical memory available is infinite 

and all nodes can fit in the physical memory. But this is not true when the number of 

installed continuous queries becomes very large. It makes use of update frequency for 

estimating the cost of that node which is an approximate method as the accurate method 

for computing cost is very difficult. The algorithm developed for an incremental plan is 

not efficient as it tries to find all possible sub query plan in an exhaustive top down 

manner to check whether a sub query node exists. 

3.7 Niagara CQ 

They have developed an Internet-scale continuous query system, which supports 

millions of queries using group optimization on the assumption that many continuous 

queries on the Internet will have some similarities. Previous group optimizations were 

not highly scalable as they could group only a small number of queries at the same time. 

A new “incremental grouping” methodology that makes group optimization more 

scalable than the previous approaches was proposed which can be applied to very 

general group optimization methods. NiagaraCQ [15] groups continuous queries based 

on the observation that many web queries share similar structure. In this system, both 

timer-based and change-based continuous queries can be grouped together for event 

detection and group execution, a capability not found in other systems. Incremental 

evaluation of continuous queries, use of both pull and push models for detecting 
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heterogeneous data source changes and a caching mechanism assist in making the 

system scalable. 

Grouped queries can share  common computation, tend to fit in memory and can 

reduce the I/O cost significantly. Grouping on selection predicates can eliminate a large 

number of unnecessary query invocations. They use an incremental group optimization 

strategy with dynamic re-grouping. New queries are added to existing query groups, 

without having to regroup already installed queries. They also use a query-split scheme 

that requires minimal changes to a general-purpose query engine.  

NiagaraCQ caches query plans, system data structures, and data files as all 

information required by continuous queries and intermediate results will not fit in 

memory by considering the scalability of the system. Grouped query plans tend to be 

memory resident since we assume that the number of query groups is relatively small 

and saves lots of disk I/Os.  

There are various phases of continuous query processing, which includes: 

continuous query installation during which, the query is parsed and the query plan is fed 

into the group optimizer for incremental grouping. In continuous query deletion a 

unique name is generated for every user-defined continuous query. A user can use this 

name to retrieve the query status or to delete the query. Queries are automatically 

removed from the system when they expire. Continuous query execution sends query id 

and relevant files to the Continuous Query Manager. The Continuous Query Manager 

invokes the Niagara query engine to execute the triggered queries. 



 

33 

A prototype version of NaigaraCQ includes a Group Optimizer, Continuous 

Query Manager, Event Detector, and Data Manager. Incremental group optimization 

support queries containing only selection and join. They should share computation for 

expensive operators, such as aggregation. “Dynamic regrouping” is another interesting 

future direction they may explore. 
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CHAPTER 4  

DESIGN ISSUES FOR A DSMS 

4.1 DSMS SCHEMA 

In traditional DBMSs, “schema” refers to the organization of data in relational 

databases, where data is contained in tables. Schemas are used for describing a database 

in terms of names and the characteristics of the data items. Although the definition of 

schema in streams is similar to that of a conventional DBMS, it describes continuous, 

unbounded and time varying streams instead of describing fixed tables. Stream schema 

consists of various attributes (or fields)  and each attribute of the stream is described  by 

its name, data type and position within the stream. The following section explains how 

such schemas are defined: 

A DSMS’s schema stores complete information about all streams supported by 

the system. A new stream will not be recognized until it is registered with the system. 

This involves storing a new stream definition in DSMS schema. All streams have their 

schema information maintained in  persistent storage so that it can be recovered in  the 

event of a system crash.  The data structures used for storing schema information can 

grow and shrink dynamically, which provides complete flexibility for addition and 

deletion of schema.  
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Figure 4.1 DSMS Schema 

 

From the Figure 4.1, it is observed that stream names are stored as keys with 

their corresponding values as lists which in turn contain references to attribute and 

position tables. The attribute table describes attributes of a stream by its name, data type 

and position in schema while the position table provides the same information based on 

positions and hence attribute details can be accessed by specifying either attribute name 

or its position in the correspond ing stream. 
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4.2 Buffer 

Buffers are the intermediate storage structures used by operators. Buffers 

connect all operators in a query tree. An operator reads a tuple from an input buffer, 

processes it and passes output to the output buffer. Buffers are implemented as a queue. 

They support two  basic operations for queue management viz. enqueue and dequeue.  

4.2.1 Buffer Types: 

Buffers are of two types: 

• Bounded, and  

• Unbounded 

Bounded Buffer:  

 A bounded buffer has an upper limit on the number of elements it can store, 

which can be specified while instantiating it. It can be modified as and when the need 

arises. When the specified limit is reached, successive elements are stored in disk 

preventing any loss of data. Since limited memory resources are available for use by the 

system, this feature is useful in controlling the buffer size as a part of certain buffer 

management policies. 

Unbounded Buffer: 

In contrast to bounded buffers, an unbounded buffer continues to grow until 

main memory is exhausted. There is virtually no limit on the number of elements that 

can be stored. For initial implementation, experimentation and testing of DSMS, 

unbounded buffers were used heavily. 
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4.2.2 Buffer Access by Operators:  

 Buffers are shared among multiple operators as shown in Figure 4.2. Since 

operators can read elements from shared buffers independently, each operator maintains  

its own reading pointer that points to next element to be read.  

In addition, each buffer  internally maintains a common pointer for all operators 

that points to the latest element read by all operators. All elements including and prior 

to the common read element are safely discarded thus creating main memory buffer 

space. These buffer spaces can be filled by reading elements from the disk in the order 

in which they were stored. To accomplish this, the buffer incorporates minimal 

persistent logic to store and retrieve elements to and from the secondary memory as and 

when needed. 

 
Figure 4.2 Buffers and Operators 

 

4.2.3 Buffer Operations 

Dequeue: Dequeue removes the top element from the buffer. If the top element 

is the last element, the buffer becomes empty. It would be preferable to suspend all 
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operators waiting on the buffer to save CPU cycles. Hence, operators attempting to read 

from an empty buffer are suspended. An element is dequeued only if all sharing 

operators read it. Once an element is removed, elements can be brought from secondary 

storage to fill the main memory buffer space. 

 Enqueue: A new tuple can be added to the buffer using an enqueue operation. If 

the buffer was empty before, it sends a resume  signal to all operators upon which they 

are placed in the ready queue of the scheduler. If the buffer is bounded and the upper 

limit has already been reached, new tuple are added to secondary memory.  

An element can be read by multiple operators simultaneously but can be written 

by only one operator at a time to maintain data consistency. Enqueue and Dequeue 

operations must be synchronized to ensure correctness as the same location may be 

accessed by both operations at the same time.  

4.2.4 Persistence Logic: 

 Bounded buffers can store a limited number of elements as set by its 

upper bound. If the data arrival rate increases the data consumption rate, a bounded 

buffer would soon be exhausted. To prevent loss of data, incoming elements must be 

stored in secondary memory. This data can be read into main memory as and when 

buffer space is released. This functionality is provided in the Enqueue operation that 

writes elements in a file sequentially [16] to ensure that they are read in the main 

memory in the order of their arrival. This ordering is essential for windowed operators 

as they expect tuples to be timestamp ordered in order work correctly.  
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Since I/O operations are expensive, it is not recommended to fetch tuples from 

secondary memory each time a tuple is dequeued.  The dequeue operation starts a 

separate thread to read elements from secondary memory only if  n%  or more tuples are 

removed from main memory buffers.  For all the experiments, n is set to 50. 

4.3 Stream Operators 

Operators of traditional DBMSs are not designed to produce real- time response 

to  queries over high volume, continuous, and time varying data streams. The 

processing requirements of real time data streams are different from traditional 

applications and demand a re-examination  of the design of conventional operators for 

handling long running queries to produce results continuously and incrementally. 

Blocking operators (an operator is said to be blocking if it cannot produce output unless 

all the input is used ) like Aggregates and Join may block forever on their input as 

streams are potentially unbounded. Thus we realize the need to design and develop 

Stream Operators by considering stream characteristics, which can accommodate the 

dynamic aspect of query plan generation and scheduling for processing streamed 

queries. 

A query-processing graph is comprised of operators connected via queues as 

shown below: 
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Figure 4.3 Operator Buffer Query Tree 

 
 

Every operator has at the most two input queues but can have any number of 

output queues. Streaming data are buffered in these input queues. An operator reads 

data from these input queues takes the appropriate actions and generates results that are 

buffered in the output queue. The visualization is provided in Figure 4.3. The output 

queue of one operator becomes a shared input queue for other operators waiting at the 

next higher level of the query tree (a tree generated based on the query input which 

decides the order in which operators are instantiated) for consuming input.  

4.3.1 Operator Design:  

It is absolutely essential to design an operator as a manageable unit so that it can 

be controlled by different entities in a system such as the user, the buffer manager and 

the scheduler. An operator is instantiated dynamically along with its input and output 

queues. Every operator is implemented as a separate thread, which is scheduled by a 

scheduler, placed at the head of scheduler’s ready queue. Scheduling decisions are 

purely based purely on two important properties possessed by an operator, which are as 

follows: 



 

41 

4.3.1.1 Priority: 

The majority of streaming applications demand real time output for different 

kinds of queries with varying requirements. To suit these requirements, priorities are 

associated with queries indicating their urgency. During query execution, priorities can 

be changed either by a scheduler, a run-time optimizer or a user to increase the overall 

performance of the system. The following are the entities, which are likely to change 

the priorities. 

User:  

Queries with strict deadline must be completed before the specified time to be 

meaningful. These queries and all operators constituting these queries are given higher 

priority by the user. Consider a snapshot query (one time query) that needs to be 

evaluated immediately. For example, “Retrieve the highest temperature recorded 

between 10p.m and 10:05 p.m.”. Such snapshot queries generally enjoy higher priority 

over long running queries. User can also change priorities of queries dynamically at run 

time. 

Scheduler:  

The scheduler plays an important role in improving the overall efficiency of a 

system with regard to memory utilization, tuple latency, run time resource utilization, 

query throughput and quality of service requirements. All these parameters are 

controlled by adjusting the operator’s priority. For example, an operator  at the bottom 

of a query tree is assigned higher priority as compared to an operator  at the top, since 

base operators are flooded with input streams (Leaf nodes are expected to handle huge 
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streams of data since they are closer to the source. As we traverse the tree from leaf to 

root, the amount of data to be handled reduces drastically due to the selectivity of 

intermediate operators). It may also change the priority based upon the resources 

allocated to the operator. For example, if an operator is given higher priority but all the 

resources needed for its operation are not available then its priority may be reduced. 

Also it is meaningful to assign higher priority to an operator with higher fan-out over 

one that feeds its output to a few nodes or none. Priorities can also be assigned based on 

operator complexity and functionality. Join may need more time quantum than Select, 

as its operation is more complex and time consuming. 

Run time Optimizer:   

Run time Optimizer may not change the priority of an operator itself but directs 

the scheduler to change the priority of an operator. It verifies whether the desired QoS is 

met and accordingly asks scheduler to change the query plan and/or priorities associated 

with the query (which in turn affects priorities of corresponding operators). For 

example, if a response time (end- to- end query processing time) is x and QoS is y, any 

ideal system would expect x < y. The run time optimizer continuously monitors the 

output and compares it with the defined QoS. If the desired QoS is not met, it tunes the 

system to achieve the desired QoS requirements. One of the tuning parameters is the 

priority. 
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4.3.1.2 State:  

Operators are schedulable entities. They have different states of execution 

during their lifetime. Operators can be in one of the following four states during their 

course of execution. 

• Ready 

• Run 

• Suspend 

• Stop 

Transition from one state to another is determined by the operator’s priority, 

availability of resources and scheduling schemes used.  The state transitions are shown 

in Figure 4.4 and described below: 

 
Figure 4.4 Operator State Diagram 

 

Ready: 

When the user submits a query, constituent operators and their input and output 

queues are initialized and instantiated upon which they are placed at the end of 
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scheduler’s ready queue. An operator previously suspended transitions into this state 

when all resources needed for its execution are available. 

Run:  

An operator goes into this state when it is selected by the scheduler for 

execution. This is the state in which operator performs its actual operation. Operator can 

switch to the ready state if its assigned time quantum has not elapsed or it may be 

suspended if all resources needed for its execution are not available. 

Suspend (Wait):  

A running operator can be suspended for the following reasons: 

• It may be pre-empted by a higher priority operator. 

• All resources needed for its operation are not available. (Input queues are 

empty).  

Stop: 

This state indicates that all queries requiring this operator are completely 

processed. The operator is removed from the system when it is stopped.  

It is essential to provide APIs for defining operator state, operator priority, 

scheduler instance and output queues. These commonalities have been identified for all 

operators and have led to the design of an operator hierarchy consisting of a generic 

parent operator and specialized child operators. The parent operator provides APIs to 

support the functionality mentioned above while the children possess additional 

functionality besides those inherited from the generalized parent operator. This design 

avoids code replication to multiple operators and provides easy development and 
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maintenance of code. The output queue is also defined in the base operator but input 

queue is defined in specialized operators. This is because all operators except “Join” 

needs only one input queue. The output queue is defined in base operator because any 

operator can have any number of output queues associated with it.  

The operator hierarchy can be represented as shown in Figure 4.5: 

 

 
Figure 4.5 Operator Hierarchy 

 

4.3.2 Operator Types:  

Based on whether operators need window bounds for their computation or not, 

they are further classified as: 

• Non Windowed Operators  

• Windowed Operators  

Non windowed operators:  

They do not depend on windows for their computation. These operators work on  

one tuple at a time and generate the required output. They are non-blocking operators 



 

46 

(operators are said blocking when they cannot produce output unless a complete set of 

input is available). Split is a non-windowed operator. 

Windowed Operators:  

As  streaming data is potentially unbounded in size, blocking operators, such as  

Aggregate and Join may block forever if their input bounds are not defined. Hence the 

concept of a window is introduced which produces a bounded set of tuples from 

unbounded streams. Once a window is processed, the window slides so that the 

operation can be performed for the next set of data and  is repeated until the query is 

ended. The following are the windowed operators supported by our DSMS: 

• Aggregate  

• Nested Loop Join  

4.3.3 Non Windowed Operators 

4.3.3.1 Split Operator 

Select evaluates only one condition while split evaluates multiple conditions.  

Split has one input queue and multiple output queues: -- one for each condition. The 

need for a Split operator was identified to logically divide the streams based on 

application logic. One application of the Split operator would be to divide a single 

composite (heterogeneous) stream into multiple homogeneous streams (all elements in 

each stream are of the same type). A list of conditions is maintained and the incoming 

tuples are subjected to condition evaluation sequentially. If the tuple satisfies the 

condition, it is sent to the corresponding output queue else the same tuple is evaluated 

for the next condition. This is repeated until all elements in the condition list are 
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checked or the tuple satisfies one of the conditions after  which the next tuple is 

considered for evaluation. If a  tuple doesn’t satisfy any of the conditions, it is put in the 

default output buffer.  The Split operator is better understood using Figure 4.6. 

4.3.3.1.1 Design Alternatives:  

The complexity of this operator lies in the condition evaluation and its 

efficiency is proportional to the efficiency of the tool used for condition evaluation. The 

conditions have to be interpreted at run time and cannot be compiled into code. We 

have tried to implement our own condition evaluator but encountered several problem 

relating to cost, complexity and efficiency. Moreover we realizes that it was not as 

powerful and as efficient as FESI (Free Ecma Script Interpreter) which has its own 

condition evaluator that supports virtually all any Java expression consisting  of 

relational, logical and many other operators. FESI has been chosen because it has 

already been tested for correctness and efficiency. FESI reduces code complexity and 

provides higher level of abstraction for evaluating a condition. FESI APIs for condition 

evaluation alleviates us from building our own expression evaluator. 
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Figure 4.6 Split Operator 

 

The Split operator has multiple conditions to evaluate. Every time a condition is 

evaluated, a schema needs to be accessed in order to replace the attribute name 

mentioned in the condition string with the corresponding attribute position to read field 

values at that position from the incoming tuple. There are two alternatives for handling 

this situation. One of the alternatives is to access the schema every time a new condition 

is evaluated. If there are ‘N’ conditions, the schema needs to be accessed ‘N’ times. The 

other alternative is to access schema just once and subsequently sets all the attributes of 

the input stream with the corresponding attribute positions. Accessing a schema is a 

time consuming operation and hence the latter is preferred wherein all the attributes of 

input stream are set regardless of whether they are needed in the condition list or not. 
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4.3.3.1.2 Interaction between  Buffer and Scheduler:  

Split operator communicates with two other important modules, namely, the 

buffer manager and the scheduler. It registers itself with its input and output queues 

(buffers), and with the scheduler to facilitate communication among them. The 

scheduler starts or resumes the operator if it was not already started and runs it for the 

assigned time slice. Its interaction with the buffer is important and introduces the 

interesting issue of operator suspension and resumption. CPU cycles are wasted when 

an operator attempts to read from an empty buffer. It is appropriate if the operator is 

suspended when the resources are not available. Either the buffer can suspend the 

operator or the operator can suspend itself under these circumstances. Buffers are 

shared by many operators and if the buffer takes the responsibility of invoking operators 

then all operators are simultaneously suspended and awakened (placed in the ready 

queue). This approach is efficient but entails extra processing responsibilities for the 

buffer manager, which already performs some complex tasks.  The other alternative is 

to provide this control to the operator itself thus causing every operator to suspend 

independently. While not as efficient as the first approach, it does help to reduce the 

load on buffers. This trade-off was deemed necessary and control was assigned to 

operators rather than buffers. 

 The algorithm for Split is as follows: 

While (end time of query is not reached) { 

If (input queue is not empty) 

Read tuple from input queue. 
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  While (all conditions are not evaluated)  

Read the next condition string. 

Set operands of the condition string by the corresponding 

tuple field values to generate modified condition string. 

Evaluate the modified condition string using Fesi 

Interpreter. 

   If (condition is satisfied) 

Send tuple to the output queue associated with the 

present condition. 

   Break. 

If (none of the conditions are satisfied) 

Send tuple to default output queue. 

 

  Dequeue read tuple 

Else 

Wait on the input queue (operator suspended) 

} 

4.3.4 Windowed Operators 

Operators such as  Select, Split and Project work on a single tuple at a time and 

do not need complete set of input tuples to be available. However the Join  and 

Aggregate operations such as Average, Sum, Min and Max need a complete set of input 

before they can produce any output. In streams, data arrives continuously and blocking 
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operators may block forever  waiting for an unbounded stream to terminate.  The 

solution to this problem is to define a window that marks the beginning and end of input 

bounds. All tuples falling within the window becomes the input set for blocking 

operators. The results are produced incrementally at the end of every window. The 

window itself can be defined in a number of ways. The following are the possible 

combinations of windows [17] which can be defined for a query. They are as follows: 

4.3.4.1 Window Types 

There following are the different types of physical window viz. 

• Snapshot window 

• Landmark window 

• Sliding window 

• Reverse landmark 

• Reverse sliding 

A sliding window has two types: overlap and disjoint sliding windows. 

Snapshot Window:   

This is a single fixed window. Its beginning and end time are fixed, as shown in 

Figure 4.7. Queries using a snapshot window produce output only once at the end of 

window. These are also called one-time queries. Once the output is produced, the query 

is removed from the system.  Example of such a query: Select all devices that were 

turned on between 5 P.M. and 6 P.M on Jun5 2003. 
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Figure 4.7 Snapshot Window 

 

Landmark window  

This window has a fixed begin time and a variable end time. Windows are 

continuously formed until either the query end time is reached or the query is 

terminated explicitly, as shown in Figure 4.8. An example of such a query is: 

Continuously select all the passengers that entered at the airport from 5 P.M. on June 

5, 2003 every hour.  

 

 
Figure 4.8 Landmark Window 

 

It can be observed that window is continuously expanding in the forward 

direction as the start time is fixed. Initial size of the window is 1 hr, between 5 P.M and 
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6 P.M. Next window size is 2 hrs, between 5 P.M and 7 P.M and this runs indefinitely. 

These queries are also called long running queries. We can also give the time to end the 

query. For example: Continuously select all the passengers entered at the airport from 5 

P.M. on June 5, 2003 every hour until 6 A.M on June 6 2003. Thus 6 A.M on June 6 

2003 is the terminating time for the query.   

Reverse Landmark Window: 

This classification is a mirror image of Landmark Window explained above. 

This window has its start time fixed but end time moving in the reverse direction. See 

Figure 4.9. Example of such a query is: Continuously select all passengers entered at the 

airport starting from 6 p.m. on June 6 2003 to 3 p.m. on June 6 2003 every hour. 

 

 
Figure 4.9 Reverse Landmark 

 
Sliding Window:  

This window has both its end points moving and hence the name sliding 

window. This is also a long running query. 

Sliding windows are again divided into 2 types:  
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• Disjoint sliding window and Reverse Disjoint 

• Overlap Sliding window and Reverse Overlap 

Disjoint sliding window: In this, successive windows never overlap. The 

endTime of the current window becomes the beginTime of the next window, as shown 

in Figure 4.10. Thus two successive windows never overlap and hence the name disjoint 

sliding window.  An example of disjoint sliding window is: Show me the common 

items purchased in 2 departmental stores every hour starting from 5 P.M onwards.   

 

 
Figure 4.10 Disjoint Sliding Window 

 
 

Reverse Disjoint:  In reverse disjoint, window shifts in the reverse direction 

while respecting the disjoint constraint, as shown in Figure 4.11. It is the mirror image 

of a Disjoint Window. An example of a disjoint sliding window is: Give me the 

common items purchased in 2 departmental stores every hour starting from now (say 

now is 6 p.m. on June 6, 2003) to 1 p.m. on June 6, 2003.   
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Figure 4.11 Reverse Disjoint 

 

Overlap sliding window:  In this variation, two adjacent windows may overlap, 

as shown in Figure 4.12. The start time of next window is always lower than the end 

time of current window. An example of an Overlap windowed query is:  Give me the 

average temperature recorded for every one hour by a thermostat every 10 minutes 

from now. 

 

 
Figure 4.12 Overlap Sliding Window 

 

 

Reverse Overlap Sliding: It slides in the reverse direction, as shown in Figure 

4.13. It is the mirror image of the overlap sliding window. Example of Overlap 
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windowed query is:  Give me the average temperature recorded for every one hour by a 

thermostat every 10 minutes from now (6 p.m. on June 6, 2003) to 4 p.m. on June 6, 

2003. 

 

 
Figure 4.13 Reverse Overlap Sliding 

 

4.3.4.2 Representation of windows 

All types of windows except Snapshot can move in both directions. They can 

expand in forward as well as in reverse direction.  Thus we realize the need for 

windowed representation such that all types of windows can be uniquely represented 

and identified. We have proposed the following representation, which takes care of all 

possible combination of windows.  

if (windows == Physical) { 

 beginWindow  

 endWindow 

 hopSize (startTime, endTime) 

 endQuery 
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} 

where beginWindow, endWindow, startTime, endTime and endQuery of 

Physical Window are absolute or relative time. Relative time can be given by using the 

keyword Now () where Now () returns the current system time.  

Consider the query example for disjoint sliding window. Give me the common 

items purchased in 2 departmental stores every hour starting from 5 P.M until 9p.m.   

The windowed representation for the same is as follows: 

Window = = Physical { 

 Begin window = 5 p.m. (June 5, 2003) 

 End Window = 6 p.m. (June 5, 2003) 

 Hop Size (1 hr, 1 hr) 

 End query = 9 p.m. (June 5, 2003) 

} 

Consider the query example for reverse landmark window. Continuously select 

all passengers entered at the airport starting from 6 p.m. on June 6 2003 to 3 p.m. on 

June 6 2003 every hour. 

The windowed representation for the same is as follows: 

Window = = Physical { 

 Begin window = 6 p.m. (June 6, 2003) 

 End Window = 5 p.m. (June 6, 2003) 

 Hop Size (0 hr, -1 hr)   (-1 indicates backward moving window) 

 End query = 3 p.m. (June 6, 2003) 
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} 

Reverse (or backward) windows  can be used for historical queries (when one 

wants to query on past data). Currently only forward queries are supported. However 

this design has the flexibility to support backward (or reverse) queries as well.  

4.3.4.3 Nested Join 

This join algorithm can be compared with classic nested join of RDBMS in 

which for two joining relations, every element from one relation is compared with all 

elements in the other relation to check whether the join condition is satisfied. Whenever 

a match is found, tuples are joined and produced at the output. This algorithm does the 

same but operate on Streams, as shown in Figure 4.14. Since join is a blocking operator 

(blocking operators cannot produce output until entire set of input is available) it needs 

a window for its computation, which defines its input boundaries. It produces results 

continuously which are consumed by higher operators. It does not wait for the entire 

window to elapse to produce the output. This operator registers itself with query 

window class, which defines window bounds for input streams. It also has APIs for 

generating sliding and disjoint windows based on window specifications and controls 

their movements accordingly. It detects query termination and declares the end of 

computation. These windows are not defined at the query level and hence different 

operators of the same query may be working on different windows at the same time. 

Nested join is a binary join with two input queues associated with it. These queues 

(buffers) are populated by streams, which may be same or different to feed input to the 

join operator. When a new tuple arrives at one input queue, it is joined with all the 
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tuples falling in the current window bound of another queue that satisfy the join 

condition. This action is atomic which ensures duplicate avoidance at output. It is not 

only essential for input tuples to be timestamp ordered but also the output produced by 

joining input tuples must be timestamp ordered to ensure that higher windowed 

operators which are continuously consuming inputs (which are the output from lower 

windowed operators) also produce correct results. Implementation section exp lains how 

timestamp ordering is respected for join output. 

Design Alternatives: 

Two threads instead of single thread:   

This operator could have been implemented using two threads viz. left thread 

and right thread. Left thread reads tuples from left input queue and scans all tuples in 

the right input queue to find the matched tuples and the right thread behaves 

analogously. The idea of using two threads was to achieve some degree of parallelism. 

But if two threads are not synchronized and join computation is not done atomically, 

duplicate tuples will be  produced. Atomic action for left thread involves reading tuple 

from the left external buffer provided it has a lower timestamp from its corresponding 

right tuple, computing join on the tuples residing in the right internal buffers (every join 

operator has two internal buffers, one corresponding to each external buffer. Join 

computation is done on these internal buffers) and eventually placing itself in the left 

internal buffer.  To ensure the output to be timestamp ordered, threads may have to 

block at the input unless it finds a corresponding tuple with a higher timestamp. Also 

left thread had access to right external buffers and right thread had access to left 
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external buffers, something that can be achieved using a single thread. Thus the entire 

purpose of having two threads for achieving some degree of parallelism is defeated. 

Hence the final version of join operator is implemented using a single thread. 

 

If a tuple with timestamp ‘t1’ arrives at left input queue prior to tuple with 

timestamp ‘t2’ at right input queue, such that ‘t1’ > ‘t2’, ‘t1’ should block at its input 

queue (input queue is external queue) and allow ‘t2’ to perform join to ensure 

timestamp ordering for output tuples. Another alternative is to compute join without 

blocking at input. This would produce correct results but the output may not be 

timestamp ordered. In order to get output sorted by timestamp, they may be subjected to 

sorting algorithm making the overall join computation expensive. Hence this approach 

is ruled out. 

Determining window bounds: 

 In order to work correctly, join expects tuples to be timestamp ordered. 

Whenever it reads a tuple whose timestamp is greater than the current window bound, it 

marks the end of window boundary assuming that tuples following it will also fall 

beyond the current window as tuples are timestamp ordered. Another alternative is to 

compute the difference between the timestamp of current tuple and the timestamp of 

current start window. If the difference is less than the window width, tuple falls in the 

window else it is outside the current window. This approach does not need tuples to be 

timestamp ordered. We are following the first approach and expect tuples to be 

timestamp ordered. 
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Types of Nested Join: 

There are two versions of nested join: with reuse and without reuse. They are 

meaningful only for overlapped windows.  

 

 
Figure 4.14 Nested Join 

 

 

4.3.4.3.1 Nested Join with reuse: 

Here the startTime (W2S) of next window is lower than the endTime (W1E) of 

current window. The first window is processed completely but the result of common 

time slice between current and next window (W2S and W1E) is materialized for the 

computation of next window. Prior to next window processing, results materialized by 

current window are re-copied to  the output queue for the next window to ensure that 

next window result is timestamp ordered. In the next window computation, left window 

joins tuples residing between W1E and W2E in left input queue with tuples falling in 

W2S and W2E of right input queue and right window behave analogously. This 

computation is appended to previous materialized result to produce complete and 

correct next window output. Since common computation is  shared in two successive 
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windows, this shade is called Nested Join with Reuse. The effect of this join on memory 

and processing cost is explained as follows: 

Memory:  In this algorithm, tuples are discarded from external buffer as soon as 

they are consumed since they are stored internally in the operator itself for the 

computation of next window and duplicates are avoided, as the common time slice is 

not recomputed. External buffers are flooded with stream data, which should be 

consumed and discarded at rapid rate to avoid disk operations. This shade does exactly 

the same at the expense of operator’s internal memory.  

Processing cost: Processing logic is efficient and simple to implement. The 

beauty of this shade is that it does not have to remember and revert back to the past on 

external buffers for the computation of next window. External buffer pointers always 

move forward as elements are read only once. Overlapped region is not recomputed 

which increases throughput enormously when shared portion is significant in a large 

window. 

4.3.4.3.2 Nested Join without reuse: 

This is another shade of nested loop join, which does not make use of 

overlapped region of two successive windows and computes every window 

independently of each other. Hence current window does not store the result of common 

computation for the next window. It is not efficient with respect to memory and 

computation, which can be explained as follows: 

Memory: Since the windows are computed independently, tuples, which are 

already seen by current window, cannot be discarded. Only tuples prior to W2S can be 
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safely removed but tuples falling between W2S and W1E cannot be removed, as they 

are needed for the computation of next window. In without reuse, internal memory is 

cleared on processing current window, since keeping elements in internal buffer would 

result in duplicates as tuples falling in common time slice are recomputed. Thus without 

reuse leads to memory wastage and to make matter worse external buffers continue to 

grow eventually leading to disk operations if the overlap region is significant in a large 

window for processing bursty streaming data arriving at rapid rate.  

Processing cost: Processing cost is significant as the overlapped region is 

recomputed. Join is an expensive operation and re-computing significant portion over 

large and multiple windows decreases response time significantly. Also computation 

logic is more complex as it has to remember and access past information on external 

queues for next window (to the past of external queues) computation once the end of 

current window is reached. 

The algorithm for Nested Join (with and without reuse) is as follows: 

while (operator is alive) { 

if (either left or right input buffer is empty) 

  suspend join operator. 

else { 

  fetch left tuple from left buffer. 

  fetch right tuple from right buffer. 

  if (timestamp of left tuple < timestamp of right tuple) { 

   if left tuple falls in the current window { 
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    computeLeftJoin 

} 

else { 

   leftWindow Processed 

} 

}// if (timestamp of left tuple < timestamp of right tuple) 

else { // start processing right tuple 

   if right tuple falls in the current window { 

    computeRightJoin 

} 

else { 

    rightWindowProcessed 

} 

}// else (timestamp of left tuple < timestamp of right tuple) 

  if (leftWindowProcessed && rightWindowProcessed) { 

   purge input buffers for discarding old tuples.  

set window buffer pointers (depending on with or without 

reuse). 

   generate next window. 

   if (next window > end query)  

    stop the operator. 

  } // if (leftWindowProcessed && rightWindowProcessed) { 
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}// else  

} // while (operator is alive)  

computeLeftJoin and computeRightJoin performs join operation on left and 

right tuple by removing common joining attribute from the right tuple and assigning 

lower timestamp followed by higher timestamp as the last two fields to the resultant 

tuple to ensure that output is timestamp ordered.  

4.3.4.4 Aggregate Operators 

Aggregate operators are blocking operators and hence need window for their 

computation. They operate on a window worth of data and produce output at the end of 

every window. Aggregate operations supported by this system are sum, min, max, 

average and count.   Aggregate operators register themselves with a query-window 

class. This class is responsible for creating and manipulating windows. It defines the 

window boundaries and controls the forward and backward movement of windows 

based on hop-size by creating next and previous windows. Aggregate operator can see 

windows independently of other operators in a system since query-window APIs can be 

called at instance level. Its interaction with scheduler and buffer is similar to Split.  

Design Alternative: 

 As explained above, there is a generic operator class and all other operators are 

derived from this generic class.   Earlier it was thought to have another class, which 

resides between generic parent operator class and specialized children operator classes. 

This intermediate class was termed as ‘Aggregate’ class, which could have supported 

generalized functionality for all aggregate operators. This included, providing methods 
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for associating input and output queues, defining a query window to work on, calling 

purging logic to discard unwanted tuples from an input queue and setting a field for 

aggregation. But this option was ruled out for the following reasons: 

1. It was different from the general operator hierarchy consisting of two levels. 

Thus with three levels of operator hierarchy, natural flow of computation and 

program logic would have lost.  

2. It does not significantly reduce code complexity and hardly adds to efficiency. 

The algorithm for Aggregate is as follows: 

 While (query is alive) {Read tuple from input buffer. 

If (tuple falls in the current window) 

Perform necessary aggregation on the specified field. 

Else { 

Output aggregation result (current window has elapsed).  

Purge elements, which can be safely discarded. 

Compute the next window.  

If (the end time of next window is greater than end query time) 

Stop the operator. 

 } 

} 

All aggregate operators are reusing the common computation (overlapped region) since 

it saves processing time. For average operation, two variables are used to keep track of 
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sum and count of aggregate fields as and when tuples are added. At the end of every 

window, average is computed. 

4.4 DSMS Client-Server Model 

DSMS is modeled as two tier client-server architecture with client defined as a 

requestor of services and server as  the provider of services. Client provides a graphical 

user interface to allow users to request services from the server. Some of the offered 

services include generation of schema for new streams, processing a plan object (a data 

flow graph consisting of operators and their associated queues) and requesting 

definitions of already existing schemas. These requests need some processing at the 

client to make it protocol specific and the processed request is eventually sent to the 

server by following the protocol defined for client-server communication. Server is a 

powerful and complex program, which integrates and controls its various modules such 

as  Instantiator, operators, buffer and scheduler to execute client requests in a timely 

manner based on quality of service specifications. Server response can either be used to 

display results to clients or they can be used to trigger events provid ing active support. 

The communications between Client and Server can be better visualized from Figure 

4.15. 
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Figure 4.15 Client-Server Communication Model 

 

Client-Server application communicates over the network using sockets. 

CORBA is another alternative that is generally used object components written by 

different vendors want to interoperate across networks and operating systems. Since our 

client and server are  implemented in java, socket based communication is proposed as 

a less complex and straightforward alternative  RMI allows programmers to distribute 

computing across networked environment. It defines a set of remote interfaces to create 

remote objects which client can invoke with the same syntax that it uses to invoke 

methods on local objects. As our server is not distributed, this no longer remains a 

suitable mode of establishing client-server communication.  

4.4.1 DSMS Client:   

Client is a simple program used for collecting user requests and presenting them 

to server for processing. Client can be of following types: 

• Non-web based client: This client does not make use of web features and 

hence lack worldwide accessibility. Since DSMS is developed in java, user interface 

can be designed in Swings or AWT components to allow users to construct queries. It 
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may allow users to perform basic operations such as  defining new streams, instantiating 

or stopping a query, deleting a schema, etc.    

• Web based client: Web based interface is provided for constructing queries 

and submitting other requests. User constructs queries by moving across the web pages. 

Client may need some processing for requests, which are incorporated in a web server. 

DSMS client is a web-based client.  

Operators need requests in a specific form to be instantiated. They also demand 

availability of schema definitions of their input streams to work correctly. Request 

modification and schema generation can be done at the client side or at the server side. 

Since server is more complex, these functionalities are provided at the client. This 

distribution of processing allows the client to offer a user- friendy environment and 

allows the server to be relatively less complex. 

Client has following responsibilities: 

1. It constructs a plan object (a data flow operator-queue graph) from the user 

input, which defines the order of operator instantiation depending on the direction of 

data flow. It is a sequence of operator nodes where each node completely describes the 

corresponding operator. 

2. It provides user interface to accept request from clients. User may request 

server to stop a query, delete an existing schema, add a new schema and besides 

submitting a query. Quality of service specifications and priorities associated with 

queries can also be specified. 
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3. It participates with server in command driven communication protocol. 

Requests are sent and response collected from the server to be presented to users. 

4. Client generates intermediate schema when operators in a query tree 

produces new streams. Join and Project always present new stream as former expands 

and the latter shrinks the base schema. Hence a new schema definition needs to be 

registered with the server to support the new streams being generated. Client has the 

responsibility of creating and registering new schema with the server. 

5. An operator may take input from two different streams with one or more 

same attribute names. Client resolves these attribute names so that next operator 

uniquely identifies attributes in the resultant stream.  

6. Client may also do some validation checks on the syntax and semantics of 

query submitted.   

4.4.2 DSMS Server: 

This  program is responsible for executing user requests, and producing desired 

output. All stream management services are handled by the server. Server is  mainly 

responsible for collecting, storing and processing unbounded streamed data in timely 

manner producing real time response to user queries. It integrates and instantiates 

various modules including operators, buffers and scheduler to ensure that computation 

keeps up with the data flow rate and quality of service requirements are respected as 

delayed response may be totally unacceptable. Some of the  services offered by DSMS 

Server are as follows: 

1. Addition and Deletion of Schema 
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2. Query Instantiation and termination 

3. Operator initialization and instantiation 

4. Accepting priorities and quality of service specifications for queries. 

5. Associate input and output queues with the operators. 

It is important to understand the protocol followed for client-server 

communication. In order to identify a request, client sends a unique command before 

sending the actual request. Once the command is received by the server, it expects 

specific request corresponding to the command from a client.  Client then sends the 

request to be processed by a server. Server, based on the command received, processes 

the request and dispatches the response to the client. It performs the following 

functions: 

1. Accepts command and request from a client, which describes the task to be 

carried out. 

2. Retrieve all stream names and their schema definition so that user can pose 

relevant queries. Server response provides details about all available streams so that 

user can formulate queries accordingly. 

3. Client can request the server to either start or stop a query. Client sends a 

plan object for query instantiation. Server initializes and instantiates operators 

constituting a query and schedules them for execution. Client may also want to 

explicitly terminate a running query in a system. The query is stopped which in turn 

stops all the operators associated with the query. It is then removed from the system. 



 

72 

4. It allows deletion and addition of schemas. It registers new stream and its 

schema definition. This may be used to support other stream producing sources. It 

deletes existing schema when application no longer needs it. This provides complete 

flexibility of changing base schema. 

5. Associate input buffers with base streams. In a query tree, output queue of 

one operator becomes an input queue for the next operator. Hence buffer association of 

all intermediate operators in a query tree is defined. But buffer linkages with their 

corresponding streams must be explicitly given for base operators. This information is 

passed by a client to be stored in a server.  

6. It initializes operator by reading operator data node which contains all 

initialization specifications and defines window boundaries for them. Initialization also 

involves associating input and output queues and binding to defined scheduler. 

7. Start scheduler to schedule operators for doing necessary computation and 

generates result. 

4.5 Scheduler 

Scheduler plays an important role in improving the overall efficiency of system 

with regards to memory utilization, tuple latency, run time resource utilization, query 

throughput and quality of service requirements. All these parameters cannot be satisfied 

by a single scheduling scheme. For example chain scheduling [18] defined in the 

literature is superior to FIFO scheduling with respect to memory consumption while 

FIFO outperforms chain scheduling in terms of overall tuple latency. It is difficult to 

design an optimal scheduling strategy, which can dynamically change scheduling 
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algorithm to improve overall efficiency of the system, as continuous streams are 

unpredictable and bursty. Scheduling schemes of traditional DBMS are not used as they 

are designed for predefined and periodic task, which are completely different from  the 

stream characteristics in which processing cycle varies continuously.  

 Tuple latency and query throughput are the most important criteria in 

processing streamed queries for providing real- time response. The scheduling scheme 

proposed in DSMS are FIFO in which tuples are processed in the order of their arrival 

and weight based round robin in which operators are scheduled round robin but with 

different weights (time slice) based on priority. Thus the only parameter, which can 

affect the overall performance of the system, is priority, which must be intelligently 

assigned to operators so as to create a perfect balance between memory space and 

processing time, still ensuring real time response to streamed queries. The scheduler is 

developed for real time systems, which attempt to execute the higher priority task with 

the maximum expected utility in order to meet quality of service requirements.  

4.5.1 Parameters for Priority Assignment: 

The criteria for assigning priorities to operators depend on the critical and 

sensitive parameters of the system which are enumerated below:  

Memory:   The arrival rate of data stream may exceed the data processing rate 

due to high volume and bursty traffic. These variations in data rate may buffer tuples in 

memory and it may even exceed total main memory causing the system to swap pages 

from the disk. This can also increase the overall response time since the waiting time of 

tuples in buffer increases as buffer size increases according to queuing analysis [19]. 



 

74 

Situation become worse when join operator expect current window worth of data in 

main memory to be effective. Hence it makes sense to assign more time quantum to 

join, as they are more complex and time consuming than select which discards input 

tuples as soon as they are consumed. This non-uniform distribution of weights would 

cause join to be scheduled for longer period so that more tuples are processed and 

consumed from main memory buffers.  

Query-Throughput:  When memory is not a critical factor, we must emphasize 

on improving the tuple latency to maximize query throughput. Operators at leaves are 

closer to data sources, which are flooded with continuous and rapid data streams. Hence 

they should be scheduled more frequently to create buffer space for incoming tuples and 

to produce output to be fed to higher operators in a tree. Selectivity reduces input tuples 

for processing as we progress higher up in a tree. To improve the overall performance 

of the system, utilization of leaf operators must be higher than non- leaf operators and 

hence they should be scheduled more frequently. 

CPU Utilization: As we know, an operator can feed its output to multiple 

operators. In order to improve the response time, such operators must be scheduled 

more frequently as operators with higher fan out ensure that other operators waiting on 

it are not blocked waiting for input, which improves overall system utilization. 

Priorities can be assigned either by users as a part of query to indicate whether 

they need immediate service or they may be assigned by a scheduler depending on 

resource availability and quality of service requirements. Once the priority is assigned, 

scheduler ensures that the priority of an operator never falls below the initial assigned 
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priority. It may increase the priority to improve system performance and query 

execution throughput but it cannot decrease the priority from the initial assigned value. 

Scheduler is the highest priority thread running in a system that picks an operator for 

execution from the head of its ready queue, ascertain what processing is required and 

process them for the assigned time.  Operators must be in a ready state in order to be 

scheduled. One of the following conditions may occur during the running state of the 

operator.  

1. Operate may finish its execution prior to its assigned time quantum. It 

informs scheduler who removes the operator from ready queue and schedule next 

operator at the head of ready queue. 

2. Operator may block waiting for the availability of resources.  For example, 

its input queue may be empty upon which operator is suspended. It informs scheduler 

about its suspension, which in turn releases its execution and removes the operator from 

the ready queue. Whenever resources become available, operators are brought into 

ready state and placed at the end of ready queue. 

3. An operator may not have finished its operation but its assigned time 

quantum is expired. The Scheduler suspends the execution of the operator and places its 

at the end of ready queue to facilitate fair scheduling.  

4.5.2 Design Alternatives: 

It is important to decide the granularity of scheduling entities. It may be 

scheduled at tuple levels but would be practically infeasible as the number of tuples is 

huge in data streams. There is always some cost incurred in switching from one entity to 
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another, which at tuple level is intolerable. Another interesting possibility is to schedule 

queries. This is acceptable but often reduces flexibility when it comes to optimization of 

global execution plan. At query level, optimizations are difficult since entire query 

overlap is difficult to achieve. Hence the best solution lies in scheduling operators, 

which has  granularity that is in between tuples and queries. Different operators can be 

assigned different priorities which helps in achieving best results. Join can be provided 

a higher priority than select which is better as compared to assigning same priorities to 

both at query level. Similarly operators having greater fan out can be assigned higher 

priorities than operators having low fan-out. Thus considering granularity at operators is 

the best possible alternative.   

4.5.3 Scheduling Policies:  

 

 

 

 

 

 

DSMS scheduler supports the  following scheduling policies based on time 

quantum assigned to operator: 

1. Round robin scheduling (Bottom-Up):  In this scheduling scheme, equal 

weights are assigned to all operators. They are scheduled in the order in which they are 

instantiated. Figure 4.16 illustrates a ready queue in which operators are placed, as they 

 
Figure 4.16 Scheduler 



 

77 

are instantiated. This queue is traversed sequentially to schedule operators. Every 

operator is scheduled for the same time quantum. This is not effective for queries 

having strict deadlines if system is overloaded, as it virtually does no optimization. 

2. Weighted Round robin scheduling: It assigns different weights to different 

operators based on priorities. Higher the priority of operator, higher is the weight (time 

quantum) assigned to it. This is more effective than its counterpart as various 

parameters like tuple latency, query throughput and quality of service requirements can 

be controlled by assigning appropriate weights to different operators. For example a 

system with higher weights assigned to join than select would definitely perform better 

with respect to memory utilization than a system with both operators sharing equal 

weights under stress. Similarly assigning higher weights to leaf operators than non- leaf 

operators would increase the system utilization. 
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CHAPTER 5  

IMPLEMENTATION 

5.1 DSMS SCHEMA 

DSMS schema stores complete information about all streams registered with the 

system. A new stream will be recognized only when its definition is stored in the DSMS 

schema. Schema information of all the streams is maintained in a persistent storage for 

recovery in case the system crashes. Hashtables and vectors are the data structures used 

to store schema information in memory. Hashtables store information as a key-value 

pair. The stream-name is stored as a key and a vector, containing the complete 

information about that stream as a value. The Hash table and vector is termed as 

StreamHashtable and StreamVector respectively.  

The first element in a stream vector is a pointer to another hash table (termed 

AttributeHashtable), containing the complete description about the attributes of the 

corresponding stream. AttributeHashtable contains attribute-name as the key and a 

vector (termed attribute position vector) containing details about that attribute as the 

value. Attribute details include its name, data-type (which may be varchar, number or 

boolean) and its position in the stream. Since vectors can grow dynamically, additional 

details about the attributes can be added if necessary.  
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Figure 5.1 DSMS Schema Data Structure 

 

The second element of the Stream Vector is also a pointer to a hash table 

(termed PositionHashtable) containing attribute description based on positions. In 

Position Hash table, positions of attributes are stored as a key and its value is a pointer 
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to the same AttributePositionVector described above. Essentially both 

AttributeHashtable and PositionHashtable point to the same vector 

(AttributePositionVector) that describes the attribute with respect to its name data-type 

and position in the stream.  The complete setup is shown in Figure 5.1 

All Streams are registered as key-value pairs in a Hash table to improve 

searching time. Given a StreamName, its complete information can be accessed quickly 

as all links are maintained through Hashtables, which needs O (1) time for searching. 

 

5.2 Buffer 

High-speed streaming data are buffered in queues, which are consumed by 

operators connected to it. The output of one operator is buffered in its output queue, 

which may be the input queue of the next operator in a query tree. Buffer decides the 

input –output relationship among operators. A single buffer is implemented as a queue 

using a vector. This data structure can grow or shrink dynamically as elements are 

added or consumed. Buffer may be bounded or unbounded depending upon its upper 

limit specification. An unbounded vector grows until the main memory is exhausted 

since its upper limit is unspecified.  

Buffer supports two operations: enqueue and dequeue. Operator consumes data 

elements by calling dequeue which returns corresponding data object to operator and 

removes its reference from the queue. Operators attempting to read from an empty 
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queue are suspended to save CPU cycles. Enqueue operation adds elements in the queue 

and sends notify signals to resume all operators waiting on it. These two APIs are 

synchronized to maintain data consistency. Synchronization acquires lock on the entire 

object but allows non-synchronized APIs to execute simultaneously with synchronized 

APIs.  

Minimal persistence logic is also supported to handle bursty, asynchronous and 

high-speed data streams. Elements are added in a file in sequential order when main 

memory buffer size is reached. Two files are maintained for each buffer of which only 

one will be used for storing elements at any point of time. When the maximum file size 

is reached for the currently active file, the other file is opened to continue storing 

elements. Dequeue removes element references from queues when consumed by 

operators creating main memory buffer space. File operations are not recommended for 

each dequeue and hence this operation starts a separate thread to read elements from 

corresponding files only if fifty percent or more tuples are removed from main memory 

buffers.   

5.3 Streamed Operators 

5.3.1 Split: 

This operator expects a list of conditions that are evaluated against a stream of 

tuples. Incoming tuples are subjected to sequential condition evaluation. If the tuple 

satisfies the condition, it is sent to the output queue associated with that condition else 



 

82 

the same tuple is evaluated for the next condition in the list and this process is repeated 

until the list is exhausted. Condition string is typically a combination of attribute name, 

relational and/or logical operators and constants. For example, “tbRoom = “b” and 

tbDeviceId > 5”.  

The complexity of Split lies in evaluating the above condition string, which 

involves replacing attribute names (tbRoom, tbDeviceId) with corresponding tuple field 

values.  This modification is needed for it to be correctly interpreted by Free Ecma 

Script Interpreter (FESI), a tool that can evaluate any valid java expressions. It makes 

use of the following methods to generate the modified string. 

5.3.1.1 Important APIs in Split: 

findPositionofOperands:  Split has multiple conditions to evaluate. Every time a 

condition is evaluated, a schema needs to be accessed in order to replace the attribute 

name mentioned in the condition string with the corresponding tuple field values from 

the incoming  tuple. If there are ‘N’ conditions, schema needs to be accessed ‘N’ times. 

The other alternative is to access the schema just once and set all the attributes of the 

input streams with the corresponding tuple field positions. The latter is preferred 

because accessing schema is a time consuming operation. However sometimes it results 

in setting attribute names with their corresponding field positions even if it is not 

specified in any of the condition list.  
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Since the Stream Name is always known to operators (this is passed when 

operators are instantiated), this API accesses schema definition of the corresponding 

stream to find the position of operands. Once the positions of operands are obtained by 

executing the above API, these attributes are replaced dynamically by corresponding 

tuple field values, which results in a modified string comprising only of constants and 

operators. This modified string is ultimately subjected to condition evaluator (FESI), 

which returns true if the condition is satisfied. 

Free Ecma Script Interpreter (Fesi):  

FESI, used as a condition evaluator in this system is a powerful utility that 

evaluates any valid java expressions dynamically at run time. The setMember () method 

of FESI accepts two arguments. The first argument is a key and the second argument is 

a value. In the condition string, it replaces all occurrences of keys with their values. In 

this case, attribute names are provided as keys and actual field contents from tuples are 

provided as values. Thus it sets the attributes to the ir actual values from the tuples. The 

position  to be substituted for attributes are obtained from  the schema once. The value 

at the corresponding field from the tuple is fetched and set for the respective operand. 

5.3.1.2 Split Example 

The following example illustrates how a condition string is modified: 

Let the condition string be “tbRoom = “b” and tbDeviceId > 5 “. 

Let the schema name is tbDeviceRoom and the schema is as in Figure 5.2: 
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Figure 5.2 tbDeviceRoom Schema 

 

 

 

 

 
Figure 5.3 APIs Input and Output  

 
 

The “setMember ()” method sets the operands to their actual values from the 

tuples. The values to be substituted for operands are obtained from their position in the 

schema. The value at the corresponding field from the tuple is fetched and set for the 

respective operand.  
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Let us suppose that the first tuple read from the input queue is as in Figure 5.4: 

 
Figure 5.4 Stream Tuple 

 

Original condition string was: 

“tbRoom = “b” and tbDeviceId > 5 “. 

The position of “tbRoom” is 3 and position of “tbDeviceId” is 1 in the schema.  

Thus third field is fetched from the tuple for tbRoom that is “b” and first field is 

fetched from the tuple for tbDeviceId that is 7.  

The modified condition string on setting the operands with their respective tuple 

values is: 

“b” ==”b” and 7 > 5.  This string is input to the eval () method of FESI, which 

accepts a condition string as a parameter. It returns true as the condition is satisfied. The 

tuple is then sent to the output queue associated with this condition.  

5.3.1.3 Design Issues: 

findPositionofOperands method is called just once to access the schema 

information to find the position of attributes so that they can be set to their 

corresponding tuple field values. This avoids accessing schema for each and every tuple 

which otherwise would have been very expensive as tuples in stream arrive in bulk. 
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Once this method is called, split runs continuously and evaluates the condition string 

against data stream until the query is ended.  

However calling the  setMember () for  every incoming tuple cannot be avoided  

because the string can be evaluated but not constructed dynamically. The string cannot 

be modified to a form that eliminates the need of setMember ().   

Consider the same example string “tbRoom = “b” and tbDeviceId > 5 “. If this 

is replaced by v [3] + “ = ‘b’ and “ + v [1] + “>5”, it prompts an error since the values 

of v [3] and v [1] are still not available as the tuples are yet to be read.  If the same 

string is replaced as “v [3] = “b” and v [1] > 5 “, then it takes v [3] and v [1] as string 

constants. In either case, string cannot be constructed dynamically and hence 

setMember () needs to be called for every tuple.  

5.3.2 Join operator  

It is a non-blocking operator working on windows to produce results 

incrementally and continuously for continuous queries without waiting for the window 

to elapse. It is implemented as a single thread with two internal buffers, one 

corresponding to each of its external queues. Every new tuple from one stream is joined 

with all the tuples satisfying the join condition and falling in the current window from 

the opposite stream and then stored in the corresponding internal vector. Both join and 

insertion phases for one tuple must be executed prior to processing next tuple to 

produce correct results.  If two new tuples are read, one from each of its external 
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queues, the one with lower timestamp is considered for join to produce output in the 

timestamp order.  

Query Window: It is important to understand the window concept prior to 

implementation specific details of the join operator. It was necessary  to define windows 

at query level, which requires  every operator to register with the query window class. 

This approach was however not used  since making a procedure call to query window 

and changing window bounds every time a window is altered was expensive. A better 

solution is to fetch the initial window specifications from query window only once, and 

manipulate them locally for modifying the windows rather than making procedure calls 

to them. 

A Query Window class provides window specifications such as window start 

time, window end time, hop size and end query time. It generates APIs to set and 

retrieve the same. Operators can use APIs of this class to fetch initial window 

specifications and  manipulate windows of other operators independently allowing 

different operators of the same query to see different windows at the same time.   
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5.3.2.1 Nested Join Implementation without reuse:   

 

 
Figure 5.5 Nested Join without Reuse 

 

Figure 5.5 indicates that join has two external buffers (left input queue and right 

input queue) and two internal buffers. The need for internal buffers is explained shortly. 

Windows are defined on these buffers with an assumption that these buffers always 

have the same window bound. A new window is generated only when all tuples falling 

in left and right window are processed completely. To start the operation, first the 

window bound is obtained from Query Window class along with other window 
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information. In the left buffer it is represented as LW1S and LW1E. In the right buffer 

window bounds are represented as RW1S and RW1E. Tuples are read from these 

queues and  checked whether they fall in the current window. In this system, tuples are 

timestamp ordered. Buffer position of the first tuple that falls in the current window is 

marked. Hence all elements prior to this position are irrelevant in the current window. 

This position is called HighestCommonReadElement (HCRE). Purging logic is used on 

the buffer in which lowest value of HCRE among all the operators is calculated and all 

elements are purged up to that position. Lowest value of HCRE is considered instead of 

highest, as it is not correct  to remove tuples, which are not yet processed by  other 

operators sharing the buffer. Lowest value of HCRE guarantees that none of the purged 

elements would be needed by any operators sharing the buffer. Thus first window is 

defined for providing input bounds and purging logic is implemented to remove stale 

tuples before starting the actual join computation.  

Every buffer has a  CurrentUnreadElementPointer (CUEP) which points to the 

current element to be read from the buffer. Every operator sharing the buffer has its own 

copy of CUEP maintained by the buffer. The join sequence is: 

1. If any of the buffers are empty, suspend the operator.  

2. Assume that the tuple is read from left buffer first. From the figure, its 

timestamp is ‘2’. Read the corresponding tuple from right buffer with timestamp as ‘1’. 
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3. Compare the two timestamp and pick the tuple for join having smaller 

timestamp. In this case, it is ‘1’. Output produced must essentially be timestamp 

ordered. Since this tuple belongs to the right external buffer, it is checked against all the 

tuples in the left internal vector that satisfy the join predicate. If a match is found, it 

joins the tuple and produces the result at the output queue. The joined tuple has the 

joining attribute removed from the right tuple (since it is same as the joining attribute of 

the left tuple) and the resultant tuple has lower timestamp followed by the higher 

timestamp in the last two fields. It is then added in the right internal buffer (since the 

tuple under consideration was read from right external buffer). 

4. As the tuple with timestamp ‘1’ considered for join belongs to right external 

buffer, its CUEP is incremented by 1. CUEP of left buffer remains unaltered. 

5. LW1E and LW2S are the two timestamps of interest. Find the first tuple 

whose timestamp hits LW2S and mark that position as Start Next Window Pointer 

(SNWP). The computation of the current window is terminated once a tuple hits the 

LW1E timestamp. 

Repeat steps 1 to 5 until tuples are found in each buffer with their timestamp 

exceeding the current end window bound. The steps are common for both the shades of 

nested Join. Prior to beginning the computation for the next window, following steps 

are taken which are different in two versions.  
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Nested Join without Reuse:  Here the computations of the current window are 

not used for the computation of next window. Every window is computed 

independently of each other. Hence it does the following: 

1. CUEP is set to SNWP. This is useful in case of overlap window. For disjoint 

window, CUEP is same as SNWP.  

2. Since next window does not make use of current window, all internal 

buffers are cleared.  

3. Purging logic is called which sets CUEP as the HCRE.  

4. Next window is generated. If the end time of next window is greater than 

end query, operator is stopped else next window is computed.  
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5.3.2.2 Nested Join with reuse: 

 

 
Figure 5.6 Nested Join with Reuse 

 

As shown in above Figure 5.6, it makes use of window computation of the 

current window for the computation of next window. It is true only for overlap windows 

as disjoint windows do not have any computation to share. It does the following: 

1. Computation of overlapped region is stored in a temporary data structure 

within the operator for the  current window. As soon as the current window is 
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processed, all resultant tuples of overlapped area are copied as it is in the output queue 

for next window computation and hence the name reuse. 

2. Internal buffers are not completely cleared. Only those elements are cleared 

whose timestamps are less than LW2S. Internal buffers cannot be completely cleared 

because they represent elements falling in overlapped area. These elements from 

internal buffers avoid reading from external buffers. They are needed so that they can 

be joined with new elements falling in next window. 

3. CUEP is not set to point to SNWP rather it points to LW1E. Elements 

falling between SNWP and LW1E are present in internal buffers to be considered for 

join.  

4. Purging logic is called which sets HCRE to LW1E.  

5. Next window is generated. If the end time of next window is greater than 

end query, operator is stopped else next window is computed.  

5.3.2.3 Important issues in Join: 

Internal Buffers: 

Internal buffers are used to avoid multiple scan on external buffers for every 

join computation and hence reduces load on them. In the absence of internal buffers, 

every new tuple read from one external buffer would have been scanned with all the 

tuples in the other external buffer falling in current window, significantly increasing the 

load on them. Internal buffers also increase the memory space utilization. Purging logic 
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would not have been able to purge tuples from external queues if internal buffers were 

absent, as they may be needed by the next overlap window. Streaming data, which is 

unpredictable and bursty, would  grow the queue size to a point at which disk operations 

could not have been avoided. The only role of internal buffers is to buffer stream data to 

be read by operators. Once tuples are read into internal buffers, purging logic can safely 

remove elements from external queues. This would reduce disk swapping significantly 

thus improving the response time. This is helpful especially with reuse join 

computation.  

Boundary tuples: 

This is a boundary condition, which needs to be considered for ensuring 

correctness. In disjoint windows, for reuse and without reuse, when the first tuple is 

encountered, which falls beyond the current window bound, it is not considered for join 

for the current window. But it should be the first element to be considered for next 

window computation. But CUEP has already shifted by 1 and points to the tuple next to 

it. In order to ensure that the boundary tuple is considered for the next window, it is 

stored in a temporary variable. As we begin computing next window, this tuple is read 

from the temporary variable and computed prior to computation of other tuples. 

Timestamp Ordering: 

Join is a windowed operator and expects tuples to be timestamp ordered in order 

to determine end of current window computation. As soon as it encounters a tup le with 
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timestamp greater than end time of current window, it declares end of current window 

computation as following tuples are guaranteed to fall beyond the current window due 

to timestamp ordering. Hence join operator should also produce tuples which are 

ordered by timestamp to ensure that higher windowed operators also execute correctly.  

This algorithm produces joined tuples, which are ordered by higher timestamps. 

A tuple is blocked at the input and is not considered for join until it finds a 

corresponding tuple with higher timestamp from the opposite stream. When it is joined 

with tuples present in internal buffers, resultant tuples are generated with lower 

timestamp followed by higher timestamp as the last two fields. Higher windowed 

operators consider last field (higher timestamp), which is guaranteed to be timestamp 

ordered. 

Duplicate tuple avoidance: 

Tuples read from left external buffer are not placed in the left internal buffer 

until they are  joined with all tuples satisfying join predicate in the right internal buffer. 

This is done as an atomic action. If two tuples arrive with the same timestamp in left 

and right external buffers, they will be processed in sequence. Atomic action ensures 

that two tuples are not processed simultaneously which otherwise would have resulted 

in duplicates. Since tuples read from external buffers are considered one at a time for 

performing join with tuples in an internal buffer, duplicates are never produced.  
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5.3.3 Methodology for Experimental Evaluation 

All the experiments were run on an unloaded machine with dual  2.4 GHz Xeon 

processors,  2GB RAM and Red Hat Linux 8.0 as the operating system.  The data set for 

performance evaluation is obtained from the MavHome (A smart Home being 

developed at UTA for predicting the behavior of inhabitants) [20] live feed collected 

over a period of time. The live feed is stored in our database that is modified to generate 

synthetic data stream. This synthetic data stream is fed to this system. Delay between 

two consecutive tuples follows Poisson distribution. In order to evaluate the 

performance differences of two variation of “Join” explained above with respect to 

memory utilization, average tuple latency and query lifetime, several  experiments were 

performed by varying the window sizes and their overlap. Prior to “Join” experiments, 

it is important to understand the behavior of varying data rate (Poisson distribution) on 

tuple latency and processing time.  The following experiment is performed with a single 

query having a single operator (Nested Join Re-compute), to avoid any false reporting 

of time due to system overload by running multiple queries and operators or by any 

other factor. Sliding window of size 1000 tuples is chosen with the number of windows  

as five. The data set is uniform (all windows have same number of tuples). The data rate 

is varied from 5 tuples/sec to unbounded where unbounded represent no delay between 

two consecutive tuples or flooding the data into the system. 
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5.3.3.1 Analysis of Total processing time and Average tuple latency by varying data 

rate:  

 

 

 
Figure 5.7 Average Tuple Latency for Varying Data Rate 

 

Average Tuple Latency: Tuple latency is defined as the difference of the 

timestamp at which tuple is produced at the output and the timestamp at which it 

entered the system. Average tuple latency is then calculated as the average of tuple 

latencies of all output tuples. In  Figure 5.7, it is observed that as data rate increases, 

average tuple latency also increases. This is because, initially when the data rate is low, 

operator processes tuples immediately and there are virtually no tuples waiting in the 
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buffer. Tuples are processed as soon as they enter the system. But as the arrival rate 

increases, more tuples are produced within the same interval. If it exceeds the 

processing time, tuples are buffered in the queue increasing the waiting time. Hence we 

can say that average tuple latency is proportional to data rate (arrival rate) of streams.  

Total Processing Time:   

 
Figure 5.8 Total Processing Time for Varying Data Rate 

 

The total processing time is defined as the difference of time at which the query 

is terminated and the time at which it is started. From the Figure 5.8, it can be observed 

that the behavior is totally different from average tuple latency. As the data rate 
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increases, total processing time decreases and eventually it becomes constant regardless 

of the data rate. Initially when data rate is low, operator utilization is less as quite often 

operator is suspended due to unavailability of tuples because of low data rate. As data 

rate increases, operator utilization increases and hence the throughput and total 

processing time decrease. At one point, the arrival rate becomes equal to the processing 

rate upon which the total tuple processing time becomes constant because operator 

utilization cannot be increased beyond its maximum processing capability and the total 

number of input tuples for processing is also fixed.  

Maximum input buffer count reached:  Join operator has two input buffers that 

collect stream data either from base streams or from its child operators. Since “join” is 

the only operator present, this parameter indicates the maximum number of elements 

present in the buffer at any point in time during the entire query processing. This 

parameter is again dependent on data rate. Initially when the data rate is low, processing 

rate is higher than the arrival rate and hence there was no or less accumulation of tuples 

in the buffer. As data rate increases, more tuples accumulate in the buffer and the 

maximum count of input buffer increases proportionally. 
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Figure 5.9 Max Input Buffer Reached for Varying Data Rate 

 

 

5.3.3.2 Analysis of Average Tuple Latency, Total processing Time and Internal 

memory used for Nested Join Re-compute and Reuse  

To compare the performance of Nested Loop Re-compute Vs Reuse, the data 

rate is 70 tuples/sec and the percentage overlap is increased from 10% to 75%. The 

percentage overlap is the most critical factor in performance evaluation. It is expected 

that as the percentage overlap increases, the performance of Reuse over Re-compute 
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also increases provided the data set is uniform. This is because the higher the window 

size and higher the percentage overlap, more is the common computation exploitation.  

Effect on Total processing Time by varying percentage overlap: 

 

 
Figure 5.10 Total Processing Time by Varying Percentage Overlap 

 

This parameter is calculated as the difference of timestamp of first operator 

instantiation from the timestamp of last operator instantiation for the respective query. 

Since Nested Join is the only operator running it is the difference of the time it is 

terminated and the time at which it is started. Since “Reuse” avoids re-computation of 
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the overlap region, it is expected that higher the window size and window overlap, the 

higher is the saving on processing provided the number of tuples falling in the window 

are proportional to window size. The same effect is observed in Figure 5.10. Initially 

when the window overlap is small, the difference in the processing cost of both the 

shades is negligible, as the common computation is not exploited significantly. As the 

overlap increases, “Reuse” outperforms “Without Reuse” with a significant margin 

since the saving on common computation is considerable. Since the data set is uniform, 

it is possible to compare the two shades across the percentage overlap. The performance 

of Re-compute is   almost constant as it processes the same number of tuples in every 

window each time since it does not exploit common computation.   

 

Average tuple latency: This parameter is computed by averaging the tuple 

lifetime (difference of time at which a tuple entered the system from the time at which it 

exited the system) of all the tuples seen by the root operator. In Reuse, the result of 

common computation is immediately placed at the output queue of the next window by 

the current window and hence the tuple of common computation virtually has no 

latency added in the next window.  It preserves the latency of the previous window and 

this saving is accumulated at each window computation that promotes reduction in the 

overall tuple latency in Reuse as shown in Figure 5.11. The latency of Re-compute is 

almost constant as it produces each window independently at the same rate. Data rate is 
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75 tuples/sec and data set is 1000 tuples per window that gives the same performance to 

Re-compute variation.  

 

 
Figure 5.11 Average Tuple Latency by varying percentage overlap 

 

Analysis of Memory Usage:  
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Figure 5.12 Internal Memory used by varying percentage overlap 

 

The improvement on average tuple latency and query lifetime in “Reuse” comes 

at the cost of memory. The current window identifies the common computation that is 

copied in the temporary storage to be used for the next window computation. This 

temporary storage overhead is avoided in “Re-compute” as every window is computed 

independently. Moreover the internal memory in “Re-compute” is cleared for each 

window computation while in “Reuse” overlapping elements are preserved in an 

internal memory. The total memory cost in “Reuse” involves the cost of the internal 



 

105 

memory and temporary storage that are avoided in “Re-compute”. So internal memory 

usage in “Reuse” will always be greater than or equal to the usage of “Re-compute” as 

observed in Figure 5.12. The internal memory used by Re-compute is again constant as 

the amount of memory used depends on the number of tuples being processed per 

window which is constant since the data set is uniform and the window size is fixed.  

5.4 Client-Server Model 

This client server model is based on request-response paradigm in which clients 

submit requests, which are processed at the server, and the results of execution are sent 

back to client as response. As mentioned in the design chapter, DSMS client is designed 

as a web- enabled client that uses web server to provide useful functionalities that 

includes generation of new schema, processing user query input, submitting requests to 

server and dispatching results to users. DSMS Server is a  program dedicated for stream 

processing which is continuously listening at a specific port to accept any number of 

client connections. This socket-based connection allows client and server to exchange 

request-response objects based on a pre-defined communication protocol. Once the 

client is connected, it sends a command object which indicates the type of service 

requested over the socket wrapped with object input and output streams. There is a 

unique command defined for each service. Once the command is received, server 

expects the corresponding request object. For each service, the protocol clearly defines 

how the request object is processed and how the response is sent to the client. Server, 
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upon accepting the request object, starts a new thread for processing the request and 

goes into listening mode to accept new client connections. Once the request is 

processed, response is dispatched to the client over the same socket connection. 

5.4.1 Client Implementation:  

The core functionality of DSMS client lies in constructing a data flow operator-

buffer graph (plan object) from user query. Client must also preserve operator 

instantiation order to respect query semantics. Thus a data structure is needed which not 

only contains complete information about all operators but also maintains their 

instantiation order for the query to be meaningful. The solution to this problem is a 

query tree, which is dynamically constructed by adding operator nodes to existing tree 

as specified in a query. Thus a query tree is a sequence of operator nodes where every 

node completely describes an operator. These nodes are linked to describe parent-child 

relationship. If an operator node ‘A ‘at level n-1 is linked to an operator node ‘B’ at 

level n, ‘A’ is said to be a child of ‘B’.  A link is created from operator ‘A’ to operator 

‘B’ when output queue of ‘A’ becomes the input queue of ‘B’. This tree is constructed 

bottom up as and when the client adds the operators.  

5.4.1.1 Data Flow Operator Buffer Query Tree 

As evident from Figure 5.13, an operator node is a data structure consisting of 

following members: 

1. OperatorData  
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2. Reference to left child 

3. Reference to right child 

 
Figure 5.13 Plan Object (Query Tree) 

 

OperatorData in turn is a data structure which completely describes an operator 

with respect to its operator type, input parameters (filtering condition for select 

operator, fields to be projected for project, etc;), input and output queues associated 

with an operator, input streams to be operated on, and query window specifications. 

References to left and right child are self-explanatory. For leaf nodes they are null. Any 

operator, which does not have its left or right child defined, has its corresponding 

reference set to null. These references are used to define links, which in turn constructs 
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the entire query tree. Client needs to generate following additional information prior to 

sending plan object to server for processing: 

1. Client has complete knowledge about the operators and their instantiation 

order in a query. When they encounter project or join which changes base schema, they 

create new schema definitions to support new streams generated as the output of these 

operators. These schema definitions are registered with server prior to query 

instantiation so that they are available to next higher operators. 

2. While generating new schema definitions, it resolves name conflicts, which 

may occur due to same attribute names of two different input streams by generating 

unique attribute names in the resulting stream.  

5.4.2 Server Implementation 

DSMS server implementation is explained as follows: 

In order to facilitate socket based TCP communication, DSMS Server is 

extended from an abstract class called TCPServer, which implements generic 

functionality for client server communication. It allows server to mount on a specific 

port so that applications can connect to it. Once the client is connected, a NetStream 

object is created over the client socket to enable object-based communication over the 

network. This is accomplished by defining a class called NetStream, which extends 

serializable interface without which persistent object based communication is not 

possible. It wraps character input and output streams of the socket defined for client 
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server communication by object input and object output streams to write or read java 

objects to and from a byte stream. The key feature of serialization is that if an object 

refers to another object, referenced object is also serialized. This process is recursive 

and helps in serializing the entire query tree by just passing the root reference. It is 

important to understand client server communication protocol, which can be clearly 

explained by taking a simple example of specific service being requested from a client. 

Assume that client wants to register a new schema definition with the server. It goes 

through the following steps: 

1. Since it is a command driven protocol, every request has a unique 

command, which is sent to the server prior to actual request.  

2. Server on accepting the command is prepared to receive corresponding 

request object. In this case it a list consisting of two elements: stream name and its 

schema definition. 

3. Server accepts the list and registers this stream by populating its stream data 

structure. 

The protocol is concerned only about one to one correspondence between the 

services being requested and the command defined for that. It does not care whether 

command is a string specifying a service being requested or an integer value. 
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5.4.2.1 Instantiator:  

Server has another important module called Instantiator, which deals with 

initialization and instantiation of operators, buffers and scheduler. Its main 

responsibility is to extract information from operator  data node contained in plan 

object, initialize operators with obtained information, associate buffers among operators 

defined by data flow links, place operators in the ready queue of the associated 

scheduler and eventually schedule them for execution. Some of the initializations done 

by the Instantiator prior to operator instantiation are: 

1. Operators at intermediate level operate on streams provided as output by 

their children. However it is not true for base operators, as they need to know on which 

stream to work on from the available streams. Instantiator has the responsibility of 

clearly defining the association between streams and input buffers for base operators. 

2. All operators are designed as independent entities, which expect input in 

specific form. Thus input specifications submitted by a user needs to be modified to an  

acceptable form. For example, join operator expects following inputs: 

• position of left join attribute in its input stream 

• position of right join attribute in its input stream 

• data type of attribute 

• relational operators constituting the condition 
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Consider a join condition set in OperatorData structure for input parameter by 

the client as: 

tbDevice.Id > tbdeviceDescription.Id   

Server already has the schema definition stored prior to operator instantiation, 

which is provided by the client. Instantiator accesses the schema in order to find the 

attribute positions of tbDevice.Id and tbdeviceDescription.Id. Once the attribute 

positions are found, join is instantiated with the desired parameters. 

3. Operators like Project and Join generate new streams. Project shrinks and 

join expands their input streams. Hence prior to higher operator instantiation, their input 

buffers must be associated with new streams generated by preceding operators.  

Server reads configuration file for initializing buffer, scheduler and operators. It 

defines initial main memory buffer size, initial secondary memory buffer size, and time 

slice to be assigned for scheduling and source and system timestamp fields of various 

operators. These initializations are followed by Instantiator initializations as explained 

above to start the complete execution process. 

5.5 Scheduler 

Operators are scheduled based on their state and priority. An operator is 

scheduled for execution only if it is in ready state. Scheduler is the highest priority 

thread, which picks operator reference from the head of the ready queue, starts the 

operator thread and schedules it for assigned time quantum. When the time quantum is 
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elapsed, control is returned to scheduler upon which next operator is scheduled. 

Operator execution may also be interrupted by scheduler prior to assigned time quantum 

because of unavailability of resources. Since every operator is implemented as a thread, 

cost incurred in context switching by scheduling algorithm may be high. This cost could 

have been avoided by making the entire query as a single thread. But it would have 

been difficult to achieve global optimization with respect to query throughput, 

optimization of global query plans, tuple response time, memory utilization and quality 

of service requirements as they can be best achieved by keeping the granularity at 

operator level which provides more control and flexibility for the system to adjust and 

adapt.  

5.5.1 Implementation of scheduling policies: 

Two policies have been implemented for scheduling which are as follows: 

Plan object is traversed in  post order to ensure that child operators are 

instantiated prior to parent operators respecting query semantics; they are 

simultaneously placed in a ready queue of the scheduler to maintain FIFO ordering. 

Scheduling algorithms is explained below. 
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Figure 5.14 Weighted Round Robin Scheduling 

 

5.5.1.1 Round robin scheduling:  

It picks the first operator from the ready queue. If the operator is not alive (if it 

is not scheduled earlier), start the operator thread and execute it for assigned time 

quantum. If the time quantum is elapsed and the operator has not finished its operation 

completely, place the operator reference at the end of the ready queue. Thus all 

operators are guaranteed to be scheduled avoiding starvation. If the operator state 

indicates that it is alive (if it was scheduled earlier and is currently at ready state), 

resume the operator thread. Operator transitions from one state to another during the 

course of execution, which is explained as follows: 
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• If the operator is currently being scheduled and finds some of the resources 

unavailable, for example its input buffer is empty; it transitions from run state to 

suspended state. 

• If all resources become available for the suspended operator, it transitions 

from suspended state to ready state and is placed at the end of scheduler’s ready queue.  

• When an operator is picked for execution by the scheduler, it transitions 

from ready state to run state. 

• An operator is scheduled for the specified time quantum. If an operator 

finishes its operation and its reference is completely removed from the system. 

5.5.1.2 Weighted Round Robin scheduling:   

This is analogous to round robin but assigns different weights to different 

operators based on priority. Higher priority operators are assigned higher weights and 

hence scheduled for longer time. Starvation refers to a situation in which some 

operators or operator path are never served since there are always higher priority 

operators ahead of them. Starvation is avoided in this scheme as once the operator is 

scheduled and its time quantum has elapsed; it is always placed at the end of the ready 

queue, regardless of the priority of the operator. Thus every operator is guaranteed to be 

scheduled in time 't’, where ‘t’ is the sum of time quanta of all operators ahead of it in 

the scheduler’s ready queue. Figure 5.14 shows the visualization of Weighted Round 

Robin scheduling. It provides more flexibility to the system to adjust and adapt to 
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satisfy quality of service requirements and attempts to provide optimal response to 

different optimization goals by assigning priorities accordingly.  For example leaf 

operators can be assigned higher priority to improve system utilization, operators with 

higher fan-out and join operators can enjoy higher priority to avoid memory 

bottlenecks. 

5.5.2 Implementation alternatives: 

Another scheduling algorithm called priority based scheduling scheme was 

proposed according to which operators were scheduled strictly based on priorities. This 

was a pre-emptive scheduling in which a newly entered higher priority operator 

interrupts a lower priority operator. Since java threads has 10 priorities varying from 1-

10 with 1 being the lowest and 10 being the highest, a list of ten entries is maintained 

with one entry per priority. Every entry in turn is a list containing operator references 

whose priority is same as the priority corresponding to the entry. This list was traversed 

in the highest priority order. It is common to have more than one operators with the 

same priority during which the operators are traversed and scheduled sequentially 

within the inner operator list. The obvious problem with this scheme is starvation. If 

there are long running queries with long running operators, scheduler will schedule 

operators in FIFO only at the highest priority level and lower priority operators may 

never get a chance to execute. This is not appropriate  for data streams where real time 
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response and strict deadlines are absolutely essential for the response to be meaningful. 

Hence priority based scheduling scheme was ruled out. 

5.5.3 Scheduling Experiments: 

All the experiments were run on unloaded machine with 2 Xeon processor, 

2.4GHz, 2GB RAM and Red Hat Linux 8.0 as the operating system.  The data set for 

performance evaluation is obtained from the MavHome (A smart Home being 

developed at UTA for predicting the behavior of inhabitants) live feed collected over a 

period of time. The live feed is stored in our database that is modified to generate 

synthetic data stream. This synthetic data stream is fed to this system. Delay between 

two consecutive tuples follows Poisson distribution.  In these experiments, the effect of 

varying data set on average tuple latency and total processing time is observed in 

various scheduling schemes (simple round robin, weighted and data flow). It is run 

using a single query with four operators in the system. The buffer assigned to each 

operator can contain at the most 1000 tuples. The data rate is fixed, 70 tuples/sec. The 

data set is varied from 500 tuples/window to 1500 tuples/window.   

Effect on varying data set on Average Tuple Latency and Total processing time 

in various scheduling schemes:   

It is observed from the Figure 5.15 that as the size of the data set increases the 

“Average Tuple Latency” and the “Total Processing Time” increases. Higher the 

number of tuples in a window, the more is the buffer utilization. This increases waiting 
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time in the buffer that is proportional to the number of tuples residing in the window. 

Also the query lifetime depends on the number of tuples to be processed.  

 
Figure 5.15 Effect on Average Tuple Latency by varying dataset  

 

As data set increases, the number of tuples for processing increases which in 

turn increases the total processing time. It is important to understand the effect of 

various scheduling schemes.  The performance of Data flow scheduling is better than 

the other scheduling schemes. It is a greedy approach in which operator is scheduled as 

soon as it has data to process else it is suspended. It makes use of operator system’s 

scheduler. Weighted round robin is superior to simple round robin as the weights are 

assigned meaningfully to operators in the system. The “Select” operators that directly 
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consume data from leaves are given higher priority than “Project”. “Join” which is more 

complex and time consuming than “Select” is given still higher priority. In “Simple 

round robin” all operators have the same priority that affects the overall performance.  

 

 
Figure 5.16 Effect Total Processing Time by varying dataset  

 

 

Effect of Buffer Size on Average Tuple latency and Total Processing Time in 

various scheduling schemes:   
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The data set is fixed (1000 tuples/window). The data rate is fixed to 70 

tuples/sec. This experiment involves single query with four operators. The main 

memory assigned to operators is increased from 500 tuples per buffer to infinite buffer. 

In each experiment their effect on Average Tuple latency and Total Processing Time is 

observed. Different scheduling algorithms (round robin and weighted round robin) are 

run to understand the behavior of “Average Tuple Latency” and “Total Processing 

Time” with respect to availability of main memory.  

 
Figure 5.17 Effect on Average Tuple Latency by varying buffer size 
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As expected the average tuple latency and total processing time is inversely 

proportional to memory. Higher the memory available to operators, the lower is the 

average tuple latency and total processing time since no/few disk operations are 

involved. As the buffer sizes associated with operators are reduced, tup les that cannot 

be accommodated in main memory buffer are persisted on disk thus increasing the 

average tuple latency and total processing time, the trend observed in Figure 5.18. 

 
Figure 5.18 Effect on Total processing Time by varying dataset 
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This effect was observed by varying the scheduling schemes. It is observed 

again that data flow greedy approach outperforms the other two scheduling schemes. 

Also weighted scheduling outperforms simple scheduling in all the cases. “Join” which 

is more complex and time consuming than “Select” is assigned a higher  priority.  Since 

“Select” operators are closer to data source in query tree, they are assigned higher 

priority than “Project” as they need to cope up with high-speed streams. This 

meaningful distribution of priorities to operators generates better result as observed in 

the Figure 5.18.  Simple scheduling scheme assign fixed priority to operators, hence 

cannot be used effectively to satisfy QoS requirements. 

5.5.4 Interesting issues in Scheduling: 

Scheduler is a thread, which removes operator reference from the ready queue 

and schedules operator for execution for assigned time quantum. Once it starts the 

operator thread, it calls wait () method and goes to sleep. Consider round robin 

scheduling in which every operator is assigned the same time quantum say 10. If an 

operator finishes its operation on consuming 5 time quanta, it would be more 

appropriate if scheduler thread wakes up immediately rather than sleeping for another 5 

time quanta (completing its full waiting time). If sleep () method had been used, 

scheduler thread would have woken up after 10 time quanta while wait () method allows 

it to wake up as soon as operator finishes its operation thus saving time and improving 

efficiency.   



 

122 

Operators must register themselves with a scheduler, which facilitates 

communication between two entities. Operator has a setScheduler () method in which 

scheduler instance is passed which binds operator to the specific scheduler. Similarly 

operator instances are passed in the ready queue of the scheduler, which allows  

complete access to operator including its state and priority.   

Round robin scheduler and priority scheduler are extended from abstract class 

called Scheduler, which contains the following generic functionality: 

1. addReadyQueue (Operator optReference) 

2. removeReadyQueue (Operator optReference) 

3. run () 

All three methods are abstract methods, which are implemented in specialized 

schedulers. Their implementation differs from one scheduler to another based on 

scheduling policies. Even the time that could be read as a configuration parameter either 

from a file or from a command line is assigned in the parent class.  

These scheduling schemes are static and cannot be adapted to changing 

optimization goals under changing system states dynamically. Scheduling operators and 

changing their priorities adaptively at run time to satisfy quality of service requirements 

and making the best possible use of run time resources is the ultimate goal.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

This work includes the design and implementation of query processing 

architecture for processing continuous streams to provide real time response to streamed 

queries. This architecture is push based in which tuples are processed as and when they 

arrive unlike traditional DBMS that pulls data from the disk. Adding a window clause 

to standard SQL  is one of the proposed extensions to the query model of traditional 

DBMS. New sets of specialized non-blocking operators have been designed to operate 

on streams that produce results incrementally and continuously. “Split” operator is 

designed to partition an incoming stream into multiple outgoing streams based on some 

application logic. One of the fundamental issues in data streams is timestamp ordering. 

All windowed operators such as “Join” and “Aggregate” not only consume tuples in 

timestamp order but they produce tuples also in timestamp order for higher windowed 

operators.  

Scheduler is designed with three scheduling schemes to schedule streamed 

operators to satisfy QoS requirements. Flow based scheduling start operators as soon as 

they are instantiated relying on operating system’s scheduling. Simple round robin 

assign fixed weight to all operators of  all queries and schedules them in a round robin 
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manner thereby avoiding starvation. Weighted  round robin scheme is more realistic in 

satisfying QoS as different operators of the same query can have different prio rities.  

Another important aspect is the interface provided by this system. Query is 

represented by a data flow graph consisting of operators connected with queues. 

Instantiator traverses this plan object in post order and instantiates operators respecting 

the query definition. DSMS server provides a  set of services  such as addition and 

deletion of schema, and instantiation and termination of queries and operators. 

As far as future work is concerned, there is much to be done. Alternate plan 

generator needs to be developed to produce alternate equivalent plans which can be 

used by the run time optimizer to merge an incoming plan with the global plan running 

in the system to share computation and memory. Run time optimizer is needed to 

monitor the output for QoS requirements. It can tune all the components of the system 

to satisfy desired QoS requirements.  The current scheduling schemes are static and 

needs to be modified to support adaptive scheduling by dynamically assigning priorities 

to operators depending on the system load. The ultimate goal is to make the scheduling 

algorithm to be an optimal one, which can change its optimization goal under different 

system states, and take the QoS requirements into consideration. 
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