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Database management systems (DBMS) are moving from the traditional systems

to more advanced systems that represent real-world problems. These systems are

required to react to situations without user or application intervention. This is the

very goal an active DBMS strives to achieve and Sentinel is being developed at

the University of Florida to support all the functionalities of an active DBMS. The

active capability is brought about by the powerful rule based system, which includes

event detection coupled with rule processing. We already have an event detection

mechanism that detects both local and global events. This thesis deals with the

scheduling of rules that have been triggered by the detection of an event and the

satisfaction of the condition clause of the rule. Scheduling is required to satisfy the

priority associated with each rule as well as to schedule rule execution based on their

relative priorities. Scheduling is also required to take care of the coupling mode

(Immediate, deferred and detached) semantics of the triggered rule.

Scheduling is suÆcient to handle priority-based rule execution. However, when

several rules can be executed in parallel and when rules are deferred, we need an

v



extended transaction model to generate the rule execution semantics. The paral-

lel/concurrent execution brings along concurrency control issues that needs to be

addressed. In this thesis, the nested transaction model is used for that. In addition

the transaction semantics is extended to handle deferred execution of rules. Nested

transactions ensure that concurrent rule execution is serialized using the nested trans-

action semantics.
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CHAPTER 1
INTRODUCTION

There has been a lot work going on in the �eld of Active DBMS as it supports

many real world applications that cannot be handled well using conventional DBMS.

Conventional DBMS's perform updates and executes queries using a demand

based mechanism, either when application programs are executed or when inter-

active users perform some operation. This was one of the features an Active DBMS

improves upon, by monitoring and reacting to pre-de�ned situations automatically

without user/application intervention. This feature lends the name Active to a DBMS

and those DBMS's without this capability are called passive.

The mechanism to bring about this active capability is the use of ECA rules. The

E stands for events, which are the indicators that needs to be reacted to. These events

can be one occurrence of a particular method called primitive events or a group of

such methods which happen in a certain sequence and are called composite events.

When such an event takes place a boolean condition, which is a query based on the

state of the database, is executed. If the condition evaluates to true, an action is

executed which might or might not a�ect the state of the database.

An Active DBMS o�ers three new features over a conventional DBMS:

� Rule Interface: This allows applications to de�ne ECA rules.

� Event Detector: This is the entity which monitors applications as well as the

database to detect the occurrence of primitive events. These primitive events

can then be grouped based on some prede�ned criteria to detect composite

events.

1
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� Action Execution: The rules are scheduled and executed based on the execution

semantics of the ECA rule

Sentinel is an active OODBMS, it uses Snoop [1] as its event/rule speci�cation

language and provides various parameter contexts or event-consumption modes for

detecting composite events to meet the requirements of a wide range of real-world

applications.

As mentioned earlier a set of rules have to be speci�ed to provide active capability.

These rules include the event, condition and action speci�cation as well as other

relevant information, such as rule priority and coupling mode.

This theses concentrates on the scheduling of rules once an event has been detected

and the rules subscribing to those events are identi�ed. The scheduler allows the

condition and action execution based on some scheduling policies.

Rule execution as part of a transaction is di�erent from rule execution in expert

systems. There are di�erent problems encountered here which includes rule priorities

and coupling mode.

When a rule is speci�ed the user has to specify a priority associated with it.

Thus in case there is more than one rule triggered by an event, an ordering has to be

imposed on rule execution using priorities. In an application, when a rule is executed,

the action portion of the rule in turn could trigger an event (and possibly a rule).

Thus there are cases where there are several levels of nested execution of rules. The

scheduler has to decide the order of rule execution based on relative priorities of rules.

Another important factor to be considered is the coupling mode. We support

two coupling modes: immediate, where the condition-action is executed as soon as

the event occurs, and deferred, where the parent transaction rule continues execution

even after the rules are triggered. The rules are then activated at the end of the

triggering transaction.
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It has already been stated that there can be more than one rule associated with an

event and an action can generate an event in turn. This situation is best implemented

if you can allow more than one rule to execute at the same time. The semantics of rule

execution can be accomplished using an extended nested transaction model [2]. This

thesis focuses on the implementation of rule execution using the nested transaction

model implemented for open OODB.

In our implementation, each rule is going to be executed as a thread and multiple

threads can be active at the same time. There has to be some concurrency control

mechanism that makes sure that the same data is not accessed by more than one

thread and changed. This leads to inconsistencies that needs to be avoided. In our

system, each thread of execution is a sub-transaction. The use of nested transactions

brings about many advantages as described in chapter 4.

The use of rule priorities and coupling modes for the execution of rules has been

addressed in this thesis. The scheduler that has been implemented provides rule

execution semantics and achieves concurrency using nested transactions.



CHAPTER 2
RELATIVE WORK ON RULE PROCESSING

Di�erent systems use di�erent approaches for rule processing. One system that

uses rules as its basic concept of processing is a production system, of which OPS5

is a typical example.

2.1 Architecture of a Production System

The components of a production system model are the same as that of a procedu-

ral model, only di�ering in the details of these components. In a procedural model,

a program is an ordered sequence of instructions. The program manager carries out

these instructions in serial order except when explicitly speci�ed as part of a pro-

gram instruction. In contrast, a production-system program consists of an unordered

collection of basic units called rules [3].

The production system architecture typically includes components that are as

shown in 2.1:

� data memory: acts as a global database containing symbols that represents facts

and assertions about the problem. In this type of system data are instances of

objects. These objects are either physical objects or facts related to the domain

of application or conceptual objects (such as goals) related to the problem

solving strategy [3].

� rule memory: the whole program is made up of a set of rules. Each rule is made

up of two parts. The Condition which describes the data con�guration for which

the rules is applied. Thus if the data con�guration matches the condition part,

the condition turns out to be true else the condition is False. The second part

4
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of the rule is an Action part, which is reached if the Condition is evaluated

to true. The action is usually some set of instructions that change the data

con�guration.

� inference engine: This is the rule manager. The rules are �red depending upon

the data memory con�guration at that particular instance. The inference engine

chooses the most suitable rule that applies based on a particular matching

criteria. This process is also called conict resolution.

2.2 Inference Engine

As shown in 2.1 the inference engine is the most powerful part of a production

system. It can be described as a �nite-state machine with a cycle consisting of three

action states: match-rules, select-rules and execute-rules [3].

In the �rst part, match-rule, the engine �nds all the rules that satisfy the contents

of the data memory at that instant using a comparison algorithm built into the

inference engine. All rules that match become part of the conict set and are all

potential rules for execution. The same rule can appear multiple times in the conict

set if it matches di�erent data items. The next stage is when the engine applies

a selection strategy (also termed resolution strategy and varies among the di�erent

production-system models) and determines the rule to be executed. The last stage

is the rule execution stage where the rule selected, is executed. The execution of a

rule changes the data memory and thus a di�erent set of rules will be selected and

executed. We can see that computation in a production-system is data driven instead

of instruction driven which is the most common approach.

As we can see from the working of the inference engine, the conict resolution

stage is of utmost importance. OPS5 handles conict resolution in two ways. One

method is to use the idea of recency. Here when a number of rules match di�erent

elements of the working memory, the choice is narrowed down to those rules that
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match the most recently updated memory element. Each memory element has a

time tag associated with it, and when modi�ed, the time tag changes. So basically

the rules that match memory elements with the most recent time tags are preferred

over older ones.

Another part of conict resolution is the idea of speci�city. Each condition has

one or more elements that needs to be matched with the elements in the memory. If

there are more than one rule in the conict set, each rule condition is checked and

the one that has most elements matching is chosen. This step usually comes after

the recency check, so there are only a limited number of rules that are in the conict

set.

Another way of reducing the conict set is rule ordering. Here the rules in the

rule set are ordered as desired by the user and the �rst rule that matches an element

in the data memory is selected.

Thus production systems like OPS5 have a di�erent approach to programming.

The rule based approach has given us a lot of insight into how rules are incorporated

into a system and how they are processed.

2.3 Active Databases

An active database needs to have the capability to dynamically react to changes

in the database, this makes them similar to an OPS5 like system. The basic di�erence

lies in the fact that the rules in OPS5 are triggered by comparing the data memory

with rules in the rule-base while in an active database the rule is triggered when a

speci�ed event occurs. The execution of the method is an indicator of occurrence of

an event which initiates the �ring of a rule.

An active DBMS generally follows the ECA pattern of rule processing. ECA

consists of events, conditions and actions. The condition and action part are similar

to that in OPS5, what is di�erent is how the rule is �red.
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Unlike in OPS5, there is a notion of a transaction in a database system. Rules

get triggered within transactions and the rule processing itself should conform to the

transaction semantics. It should also allow coupling modes and priorities for the sake

of exibility and expressiveness.

Rules are not an essential part of the system unlike OPS5. Rules are triggered

only when the event detector detects an event that is part of a rule speci�cation.

The rule speci�cation is done by the user at the start of an application. The user

has to specify the event, condition, action and other attributes such as priority and

coupling mode.

2.4 Rule Execution in Sentinel

Rule execution in Sentinel is done as part of a series of steps, the �rst being pre-

processing. After the application is written and the rules de�ned, the code is run

through a pre-processor that inserts code for event detection based on the method

name which was given as part of the rule speci�cation. This event speci�cation is

then wrapped and the rule processor code is called after the event is detected.

During the execution of the application, when it reaches an event method, the

corresponding event occurs. The condition to be checked, as in OPS5, could be some

data value stored in the database. If this condition evaluates to true then, as in

OPS5, the action part is executed.

Similar to OPS5, there may be more than one rule that quali�es for execution,

which is the case when more than one rule speci�cation has the same event method

that triggers it. Unlike OPS5, there is no conict resolution as priorities are provided

at rule speci�cation time. The user can specify the order in which the rules execute.

This is done by assigning priorities to each rule and the rule with the highest priority

is executed �rst followed by lower priority rules, in that order.
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Also each rule is executed in a speci�c coupling mode (more in chapter 3) i.e. the

rule can execute immediately after it was triggered or at the end of the transaction

that triggered it.

Conventional top level transactions proceed serially while rules can execute con-

currently. Using a nested transaction model allows sub-transactions to execute con-

currently but unlike conventional nested transactions, rules are not processed as if

they are all equal. Each rule has a priority and the order of rule execution depends

on their priorities.

Each rule is executed as a separate thread and is part of a sub-transaction. The

need for making it a sub-transaction is to preserve concurrent rule execution semantics

(explained in detail in chapter 4).
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Figure 2.1. Architecture of a Production System Model



CHAPTER 3
ECA RULES

The design of any Active DBMS involves specifying rules as these are fundamental

to provide reactive capability. Rules have many components that need to be speci�ed

individually. The primary components are: event, condition and action. Below, we

examine their roles and speci�cations.

3.1 Events

Events are instantaneous, atomic (happens completely or not at all) occurrences

[4]. Events represent state changes that are induced by database operations. Each

message sent to an object is a potential event. Events are classi�ed into

� Primitive events: are the simplest form of events detected by the system. Prim-

itive events are the building blocks from which composite events are formed and

detected.

� Composite events: are formed by applying a set of operators to primitive and

composite events constructed so far.

Primitive events are further classi�ed into database, temporal and external events.

� Database events correspond to database operations, such as retrieve, insert,

update and delete (in the relational model) and methods (in the object-oriented

model).

� Temporal events are either absolute, speci�ed with an absolute value of time

or relative, where we have a reference point and an o�set. The reference point

10
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may be an event, (including an absolute event) and the o�set is a time string

indicating the duration after the event speci�ed occurs.

� External events are those events that are detected along with their parameters

by application programs (i.e., outside the DBMS) and are only managed by the

DBMS. Once registered with the system, they can be used as primitive events.

Composite events provide a powerful mechanism for expressing events. Many

applications are not well served by primitive events alone. For example, an appli-

cation may require that event E be expressed as the conjunction of events E1 and

E2. A composite event is derived by applying event operators to primitive events.

The operators are disjunction, conjunction, sequence, non-occurrence, aperiodic and

periodic.

Sentinel uses Snoop as the event speci�cation language. It can specify both local

and global events. Two event detection mechanisms, namely, a local event detector

and a global event detector, are implemented to monitor the behavior of local events

as well as global events across applications.

3.2 Rules

The primary structure de�ning an ECA rule is, the condition which is evaluated

when the rule is triggered, and the action which is executed if the condition is satis�ed.

The condition evaluation and action execution can immediately follow the trig-

gering event as in-line expansion of the triggering transaction. However this is not

always desirable, as in the case where the rule has to enforce an integrity constraint.

A transaction may have a series of operations, each possibly changing the state of a

database . Suppose some data is modi�ed during such an operation and an event is

triggered. If this event �res an integrity rule immediately, the integrity check is done

when the database is in an inconsistent state. Ideally in this case the rule need to be
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executed at the end of the transaction inspite of the event occurring in the middle of

the transaction [2].

3.3 Coupling Modes

Coupling modes are introduced to specify the relative time lapse between an event

detection and the testing of the condition associated with the event. The same can

be done between the condition evaluation and the action execution. In our system

the condition and action form a single transaction so the coupling mode applies only

to the event detection with respect to the condition and action execution as one unit.

There are three coupling modes:

� Immediate: When an event is detected, the transaction is suspended immedi-

ately and the condition associated with the event detected is executed. If the

condition evaluates to true, the action part of the rule is executed else the trig-

gering transaction continues. This feature has been implemented using threads.

The triggering transaction executes as a thread and when an event is detected,

the \Notify" creates threads for all the rules that this event subscribes to. The

triggering transaction then waits for the completion of all the created threads.

� Deferred: When an event is detected, the rules that subscribe to this event are

noted and threads are created for them but the threads are not scheduled or

executed. The triggering transaction proceeds normally and before its commit,

all of the deferred rules are executed. The triggering transaction has to wait

for the deferred rules to complete before it commits. When a deferred rule is

triggered from a triggering transaction (cycle-0), the rule is said to execute in

cycle-1. All deferred rules created within the top-level transaction are part of

cycle-1. All rules in cycle-1 execute at the end of the triggering transaction.

Further, if any deferred rule is triggered within the action part of a cycle-1 rule,

then that rule becomes part of cycle-2. In general all deferred rules created in
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cycle-n become part of cycle-n+1. At the end of the execution of all cycle-n

rules, cycle-n+1 rules start executing and this process continues until there are

no more new cycles created at any stage.

� Decoupled: Here the rule execution is done in a separate transaction from the

triggering transaction. The two transactions can be either totally independent

or be 'causally dependent' where the commit of the spawned transaction de-

pends on the commit of the triggering transaction. This theses does not address

the implementation of this coupling mode.

3.4 Rule Processing

The scheduler has to take the coupling mode into account when triggering rules.

The coupling mode of the rule is speci�ed during rule speci�cation. When a rule is

triggered by an event, the scheduler has to order the execution of rules based on their

coupling mode.

Another important aspect of rule scheduling, is the use of rule priority. Each rule

is given a priority with which it should execute. The priority is given at the time of

rule speci�cation.

The scheduler has to manage a possible set of complex rule hierarchies. This case

arises when an event subscribes to more than one rule. Thus when the event occurs

there are multiple rules that are spawned (each a thread of execution, in our design).

Each of these rules have a coupling mode and individual priority value. The rules

have to be executed based on their relative priorities and coupling modes and the

action part of the rule in turn might trigger an event spawning more rules.

Assume there are three rules A with priority 8, B with priority 8 and C with

priority 5, that are triggered when an event E occurs. The scheduler allows rules

A and B to execute concurrently. Now if A's action in turn triggers rules A1 with

priority 4 and A2 also with priority 4 and at the same time B's action triggers rule



14

B1 with priority 6. Then (if all the rules are in immediate coupling mode) we have

A1, A2 and B1 all executing at the same time inspite of their varying priorities. This

is because all their triggering rules were executing with the same priority. Thus rules

are executed not just based on their individual priorities but also relative to their

parents.

Rule management also involves keeping track of activated and deactivated rules.

Re-activating rules involves deciding whether the rule will get triggered by events

that occurred prior to its activation. Based on the given priority, one can group a

set of rules (e.g. integrity rules) and assign execution semantics automatically. For

example, integrity rules need to be triggered in the deferred mode as the database

state can be inconsistent within a transaction. Also, if rules are treated as shared

objects (like any other shared data), then modi�cation of rules need to be supported.

This entails subjecting rules to the same concurrency control mechanism used for

any other shared data. Otherwise, rules have to be treated as meta-data whose

manipulation is deemed di�erent from shared data.

3.5 Rule Execution Model

Here we describe a rule execution model as proposed in Widom and Finkelstein

[5]. Here the rules are activated automatically as a result of database state transi-

tions caused by externally generated operation blocks [5]. Operation blocks include

a stream of data manipulations onto the database system grouped as one. This op-

eration block always �nishes execution and is indivisible. There can be a level of

abstraction which supports concurrent processing, thus we can have multiple users

who are transparent to one another. During execution of an operation block, data

items may be updated, deleted, or inserted.

When a stream of operation blocks are submitted for execution, the execution

begins in a state S0 and continues as shown in �gure 3.1
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Figure 3.2. Single rule execution semantics

Here T1, T2 ... are transition labels; E1, E2 ... are e�ects of the transitions.

The transition e�ect can be shown as a triple [U,D,I] denoting the three possible

operations on the database: update, delete and insert. Each state in the execution

sequence as shown above corresponds to a state in which a transaction begins execu-

tion. Thus there is a one-to-one correspondence between transition and transactions

for externally generated operations.

3.5.1 A Single Rule

Let's take a single rule R de�ned as follows:

R: when trans-pred

where predicate

then op-block

This can be shown as in �gure 3.2.

Now consider a transition T with e�ect E, we say that rule R is triggered by

transition T if R's transition predicate, which acts like a trigger, is true. Triggering

is only the �rst step. For the action part of the rule to execute, the condition must

also hold. The condition of the rule may be with reference to the current state of the

database or the logical transition tables.

If rule R's condition holds, the action part of rule R is executed. This action

is given top priority and is executed �rst. This is the case even if there are other
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Figure 3.3. Extended rule execution

externally-generated operation block, ready to execute. Execution of rule R's action

in this case causes a new transition Tr as shown in �gure 3.3

Though transition Tr is caused by a rule rather by an externally-generated oper-

ation block, Tr is just like any other transition. It is an operation block producing

an e�ect and a new state. Thus the transition generated by a rule's action execution

can trigger other rules or even the same rule again.

3.5.2 Multiple Rules

The semantics for multiple rule execution is similar to that for a single rule, the

interaction of externally generated operation blocks and rules is as follows:

� Execute the operation block thus creating a transition

� Execute rules (creating transitions) until there are no more to execute

� Go to top.

Let T1 be a transition in step-1 with e�ect E1. Let there be rules R1, R2, R3,

...., Rn be generated as a result. These form part of set P, \pending rules". Out

of the pending set a rule is selected based on some selection criteria. If rule Ri is

chosen then it is removed from the set P and is executed. If Ri's condition holds then

the action part is executed else another rule is taken out of P (again based on the

same selection criteria) and the condition part is tested, if satis�ed, the action part

is executed.

Now the set P is updated, by removing Ri from it and adding any rules that were

produced as a result of Ri's execution. The next step is to select a rule Rj from the set
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P and continue the same operation. One question that needs to be answered is what

is the state of the database. Is it the initial state before Ri started executing or the

state after Ri's execution? This could make a di�erence because the condition part

of Rj may satisfy the one state and not the other. It is better to have the database

state to be that after the execution of Ri since that would be the most recent state

and there is no point using an outdated state.

3.6 Rule Speci�cation in Sentinel

Rules are instances of a system de�ned Rule class. The Rule class is derived from

the system de�ned Noti�able class, thereby enabling rule objects to be noti�ed of the

primitive events generated by reactive objects.

Rules can be classi�ed into class level and instance level rules depending on their

applicability. Class level rules are applicable to all instances of a class whereas in-

stance level rules are applicable to particular instances. Since class level rules model

the behavior of a particular class, they are declared within the class de�nition itself.

On the other hand, instance level rules are declared in the application code. Rules,

regardless of where they are declared, are translated to noti�able rule objects.

There are mainly two di�erences between class level and instance level rules.

First, class level rules are applicable to all instances of a class, throughout program

execution (when enabled). Instance level rules, however, are applied to a varying

subset of instances. Secondly and more importantly, a class level rule can only be

applied to one type of object (e.g. to only person objects). Instance level rules are

more powerful since they can be potentially applied to di�erent types of objects.

Instance level rules can thus monitor situations spanning di�erent classes. This is

accomplished by the rule subscribing to the di�erent types of objects to be monitored.
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3.7 Sentinel Architecture

The Sentinel architecture proposed in this section extends the passive Open

OODB system [6]. The Open OODB Toolkit uses Exodus as the storage manager and

supports persistence of C++ objects. Concurrency control and recovery are provided

by the Exodus storage manager. A full C++ pre-processor is used for transforming

the user class de�nitions as well as the application code. Extensions incorporated for

making the Open OODB active, are:

� Speci�cation of ECA rules either as a part of the class de�nition or as part of

an application; this is pre-processed (by using an enhanced C++ pre-processor)

into appropriate code for event detection and rule execution,

� Detection of primitive events by using the sentry mechanism of the Open

OODB. Sentry mechanism provides a wrapper method that permits us to invoke

noti�cation of an event to the composite event detector,

� A composite event detector for detecting composite events in various contexts

[7]. There is a composite event detector for each Open OODB application or

client (each application of Open OODB is a client to the Exodus server),

Figure 3.4 shows how the class lattice of the Open OODB has been extended. The

classes outside the dotted box have been introduced to make Open OODB active.

In order to satisfy the above requirements in an object-oriented framework, we

use the architecture shown in Figure 3.5. The architecture supports the following

features: i) detection of primitive events, ii) detection of composite events, iii) pa-

rameter computation of composite events, and iv) clean separation of composite event

detection with application execution.

The primitive event detection is based on the design proposed by Anwar et al.[8].

Both primitive and composite events can be signaled as soon as they are detected.
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Notifiable

Figure 3.4. Class Lattice of Sentinel

However, the detection of a composite event may span a time interval as it involves

the detection and grouping of its constituent events in accordance with the parameter

context speci�ed. We have modi�ed the Open OODB to support the detection of

primitive events. A clean separation of the detection of primitive events (as an integral

part of the database) from that of composite events allows one to i) implement a

composite event detector as a separate module and ii) introduce additional event

operators without having to modify the detection of primitive events.

Each application has a local event detector to which all primitive events are

signaled. In addition each application will have a thread that handles the execution

of rules whose events span applications (a global event-handler thread).

When a primitive event occurs it is sent to the local event detector and the

application waits for the signaling of rules that are detected in the immediate mode.



20

2  -  Composite  event  detection  for  immediate  rules
4  -  Causally  dependent  commit   signaled
6  -  Rules  executed  as  subtransactions

1

2

3

6

Transaction
begin

end
Transaction

1

2

3

6

Transaction
begin

end
Transaction

P
r

v

i

i
t
i

e

m

D
e
t
e
c
t
o
r

E
v
e
n
t

P
r

v

i

i
t
i

e

m

D
e
t
e
c
t
o
r

E
v
e
n
t

4 4

Global   Event   Detector

G
lo

b
al

  E
ve

n
ts

Forked process

5 - Inter-application  events  detected

3 - pre-commit and abort signaled 

1 - Primitive Event signaled

G
lo

b
al

  E
ve

n
ts

5

Application  1
Event Detector

Extended LED

Local Composite

Application 1’

detached rule

to execute

Forked process

Application n’
to execute
detached rule

Extended LED

Local Composite
Event Detector

Application  N

5

Figure 3.5. Sentinel Architecture

The global event detector communicates with the local event detectors for receiving

events detected locally and with the application's global event handler for signaling

the detection of global events for executing tasks based on global events. Again there

is a clean separation between the events detected by the local event detector and

the global event detector. Finally, as the local event detector and the application

share the same address space and our event detection uses an event graph similar to

operator trees, it is possible to combine rule evaluation with event detection (when

the coupling mode permits and rules are non-procedural) and optimize the entire tree

as a whole.
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A noti�able rule object subscribes to a set of reactive objects. All the primitive

events generated by those reactive objects are propagated to the rule object via the

noti�cation mechanism. The noti�able rule object records only those primitive events

of interest and discards the rest.

The Noti�able Class

The primary objective for de�ning the noti�able class is allowing objects to receive

and record primitive events generated by reactive objects. The rule class is a subclass

of the noti�able class, thus rule objects receive and record primitive events generated

by reactive objects.

The Reactive Class

In order for a class to provide reactive capabilities it requires a facility for spec-

ifying which of its methods generate primitive events, a mechanism for propagating

generated primitive events along with their parameters to noti�able objects, and

a method for noti�able objects to request the acquisition of information regarding

generated primitive events.

The requesting mechanism is termed as the subscription mechanism and the prop-

agation of generated primitive events is termed as the noti�cation mechanism.

Due to the fact that potentially many classes may require reactive capabilities, i.e.

the subscription and noti�cation mechanism, a class was de�ned whose sole objective

is the provision of these reactive capabilities. This class is named the reactive class.



CHAPTER 4
NESTED TRANSACTIONS

A transaction is the basic unit of atomic, consistent and reliable computation in a

database system. Although rule execution can be treated as part of the transaction,

this approach: i) Sequentializes rule execution (hence there can be no concurrent rule

execution) and ii) increases the duration of the top-level transaction, this may hold

system resources for a long time. The problem with a long transaction is that it holds

system resources for that duration and if aborted, the whole transaction has to be

redone. All these factors indicate that we need a mechanism that avoids the above

pitfalls. This brings nested transactions into the picture as proposed by Eliot and

Moss [9] and shown to be useful in the context of rule processing by Chakravarthy

et al. [2].

4.1 Motivation

The motivation for using Nested transactions can be summarized as follows:

� We can achieve decomposition and �ner grained control of concurrency and

recovery, the very reason why traditional transactions are unsuitable.

� Intra-transaction parallelism allows execution of a long transaction into concur-

rently running smaller parts thus bringing about an increase in overall eÆciency

and decreasing response time.

� Intra-transaction recovery allows sub-transactions to fail independently of each

other and independently of the parent transaction. Thus uncommitted sub-

transactions can be aborted and rolled back without any side e�ects to other

22
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sub-transactions. This brings down the recovery expense mainly in terms of

time.

� System modularity allows the modules of a transaction program to be designed

and implemented independently and they facilitate a simple and safe compo-

sition of the transaction program. It also achieves encapsulation (information

hiding), failure limitation and security

� Distribution of implementation allows the use of distributed algorithms that

achieves a exible control structure for concurrent execution. Distribution can

be in terms of data or in terms of processing both bringing a positive e�ect on

eÆciency. It allows cost-e�ective use of hardware (processors, I/O devices) and

improves responsiveness. Distribution of data i.e. replication of data makes

data more available.

4.2 Role of Nested Transactions in Rule Processing

In the ECA paradigm, an event occurs which is followed by the testing of a con-

dition. Based on the outcome of the condition evaluation, the action associated with

that condition is executed. This whole process can be done in the top-level trans-

action but that would encounter some of the problems explained above about long

running transactions. It is thus preferable to break up that long transaction into sub-

transactions. In our model we have the condition and action execution in a separate

thread. The whole execution is part of a sub-transaction. Concurrent execution of

rules will be diÆcult unless there is a mechanism that provides correctness semantics

for their concurrent execution.

Hence we resort to nested transactions is to handle the situation where one event

triggers more than one rule. This implementation schedules rules such that if one

event triggers more than one rule and they have the same priority value, then the
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scheduler allows concurrent execution of these rules. This may bring about conicts

with respect to data access. To deal with data conicts, we let each rule thread to

execute as a sub-transaction and the nested transaction synchronization scheme is

used to handle the conicts. Moreover there can be multiple levels of nesting where

the action part of a rule could in turn trigger more rule executions and here again

the nested transaction model helps in preserving data consistency.

4.3 The Nested Transaction Model

The most important issues that needs to be addressed in our design is the con-

currency control issues with respect to nested transactions. For this, we need to

understand the overall picture of the nested transaction model before we proceed.

This description follows the de�nition of [9].

A transaction in this schema can have any number of sub-transactions and each

sub-transaction in turn can have its own sub-transactions. This gives the transaction

model, a tree like structure. The root transaction is called the top-level transaction

and all others are called sub-transactions. Transactions having sub-transactions are

called parents and the sub-transactions are called children. Also there is a concept

of superiors and inferiors or ancestors and descendants. The set of all descendants of

a transaction forms the sphere of that transaction.

As shown in the �gure 4.1, A is the top-level transaction, B and I are its children

and all other transaction are its descendants. C is the parent of D, F and G. D, E,

F and G are inferiors of C. Also D, C, B and A are superiors of E. The sphere shows

the sphere of control of C with all its descendants.

This nested hierarchy can also be seen as a collection of nested spheres of control

with the top-level transaction as part of the outermost sphere and acting as an

interface to the outside world.
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Figure 4.1. Nested Transaction Model
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The ACID properties hold for the top-level transaction but not necessarily for

the sub-transactions. Sub-transactions terminate by either aborting or committing.

If it aborts it does not pose a problem to the rest of the hierarchy, that is, other

sibling sub-transactions need not be aborted. Instead that sub-transaction and all

its descendants try to recover. But the commit of all sub-transactions are dependent

on the commit of all superiors, all the way up to the top-level transaction. Thus

the sub-transaction is atomic and isolated. It need not be consistent, especially in

the case where the parent transaction needs results of several child transactions to

perform some consistency preserving actions.

As mentioned in the advantages of using nested-transactions, intra-transaction

parallelism is among the most important. There are four levels of intra-transaction

parallelism that we can achieve.

� Neither parent/child nor sibling parallelism: This is actually a misnomer be-

cause this state has no intra-transaction parallelism at all. Only one transaction

can be active in a sphere at a time. Thus there is no worry about concurrency

here. Only systems that have synchronization between processes provide this

kind of parallelism. This means that two top-level transactions can be running

at the same time on two separate processes s in the same system.

� Sibling parallelism: Here the parallelism is supported among siblings. Thus

the parent is suspended and all its siblings can simultaneously execute. Thus

transactions can share objects with the parent without need for any concurrency

control mechanism, but there has to be some concurrency control scheme for

objects shared among siblings.

� Only parent/child concurrency: In this kind of parallelism each parent can

concurrently execute with one of its children. Thus only transactions along a
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single path in the hierarchy execute concurrently. This simpli�es matters as

far as concurrency control, as only transactions along the same path need be

synchronized.

� Parent/child as well as sibling concurrency: This kind of parallelism allows

any combination of transactions and sub-transactions to execute in parallel.

This is de�nitely supports maximum parallelism but at the same time the most

diÆcult to implement. The amount of overhead to achieve concurrency control

is enormous and usually not worth the e�ort.

4.4 Concurrency Control in Nested Transactions

The synchronization details that we want to achieve are the following

� A notion of serializability should exist among top-level transactions i.e. one

transaction should be able to perform updates without interference from any

other transaction trying to perform an update or retrieve. This means that a

strict two-phase locking protocol needs to be followed for synchronizing among

transactions.

� Within a nested transaction we should be able to achieve as much parallelism

as possible but making sure that there is concurrency control to maintain ac-

ceptable data consistency demands.

The locking rules in our nested transaction implementation follow closely with

the one proposed in [9]. Any transaction can acquire a lock on an object in a speci�c

mode (Read/Shared or Write/eXclusive) and it holds the lock in the same mode until

its termination (commit or abort) or until it explicitly upgrades the lock.

Also a transaction can retain a lock besides holding a lock. Parent transactions

retain a lock held by a sub-transaction when it commits by just inheriting the lock.



28

A retained lock is like a place holder, the transaction that retains a lock actually has

no access to the object it locks, all it does is to ensure correctness with respect to

acquiring locks.

A retained X lock for instance ensures that transactions outside the sphere of

control of the retainer cannot acquire the lock but its descendants can, based on

some locking rules discussed below.

4.5 Basic Locking Rules

� i) Transaction T can acquire a lock in X-mode if

{ no other transaction holds the lock in any mode

{ all transactions retaining a lock in X or S mode are ancestors of T

� ii) Transaction T can acquire a lock in S-mode if

{ no other transaction holds the lock in X-mode

{ all transactions that retain a lock in X-mode are ancestors of T.

� iii) When a sub-transaction commits, the lock it holds or retains are inherited

by its parent. The parent retains a lock in the same mode that T held it. If

the parent P already retains a lock when the sub-transaction commits then the

new retain mode of the parent P is given by

new mode of P = MAX (old mode of P, mode of T)

where S < X i.e. a shared (Read) lock is considered smaller than an eXclu-

sive(Write) lock.

� iv) When a transaction aborts, it releases all locks it held or retained. If any of

its superiors held or retained a lock, they continue to do so.
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Thus the rules stated above only allow upward inheritance of locks at commit time.

A parent can therefore inherit the locks held by its children only when they commit,

an abort does not a�ect the inheritance of locks.

4.6 How Nested Transaction Scheme Fits into Our System

As mentioned before this implementation allows parallel rule execution based on

priorities and coupling modes of the rules involved. Thus in an application there can

be a number of active threads, each a rule executing on data in the database. This

is the classic scenario where nested transactions come into the picture. Each rule

thread should be executed as a nested transaction to take care of the concurrency

issues that have been discussed.

The nested transaction model has been developed by Bhadani[10]. This uses

an anchored hash table that keeps information about every user level object that a

transaction acquires. This is then referred to whenever a transaction needs to acquire

an object and based on the locking rules described above, a decision is made as to

whether the requesting transaction can be given the lock or not.

This code was written for the Sun OS environment which uses the zeitgeist sys-

tem. This code required modi�cations to port it to the Solaris environment and the

OpenOODB system that we currently use. The porting mainly involved rewriting

the thread routines with respect to the Solaris thread package that has quite a few

changes over the Sun thread package.

4.7 Our Nested transaction model

Our nested transaction model supports only sibling parallelism. This o�ers the

most parallelism second only to parent/child as well as sibling concurrency. The most

convenient mechanism to achieve concurrency control, is locking and our implemen-

tation is also based on locking. We have two modes of synchronization:
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� Read: where multiple transactions can Share the object and none of them try

to modify the object.

� Write: only one transaction can have eXclusive control over the object and is

not shared with any other transaction.

4.7.1 Original Model

The original implementation was tied to the Zeitgeist system. This has been

ported to the OpenOODB system. The transaction calls are the same in both sys-

tems. They are begin, commit and abort transaction.

4.7.2 Transaction Calls

The following are the operations that take place when transaction calls are made

to OpenOODB:

� Begin transaction: This starts an OpenOODB transaction and any \fetches"

of objects in the database within a transaction has to notify the lock manager

and the transaction is given the object based on the locking rules discussed

in section-4.4. Update of an object is performed in process memory. If the

transaction terminates normally, usually with an explicit commit transaction,

then the modi�ed objects are written back to the persistent store. If there is an

abort transaction none of the modi�ed objects are written back to the persistent

store. Each access to an object needs to consult with the lock manager to decide

whether it can get access to that object based on the locking rules.

� Commit transaction: The objects held in process memory that have been mod-

i�ed is written back to the persistent store. Locks held by the transaction on

that object are released and a check is done for any other transaction that is

waiting to hold a lock on that object. The lock is given again based on the

locking rules.
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� Abort transaction: None of the objects held by that transaction are written

back to the persistent store and all locks held by the transaction are released.

4.7.3 Lock Manager

The lock manager is a very important component of the nested transaction model.

It is the lock manager that maintains concurrency control. The main data structure

in the lock manager is an anchored hash table. The data structure used by the

lock manager has to serve two di�erent purposes, i) given an object which can be

uniquely identi�ed, it should be possible to �nd out all the transactions that hold a

lock on that object, ii) for a transaction that can be uniquely identi�ed, it should

be possible to �nd out all the objects on which it holds a lock. To get these two

kinds of information we can have two di�erent data structures one for each purpose.

Instead using the anchored hash table, we can achieve both needs using a single data

structure.

The hashing is done on the object (the object-id and the storage group number)

and each object has an anchor node. If more than one object hashes to the same

bucket then a linked list at that bucket is maintained. Also for each access of that

object by a transaction, a separate node is created which is anchored on the ob-

ject node. Thus a separate linked list from each anchor (object) is formed for all

transactions that hold a lock on that object.

A list of all transactions is maintained which links nodes in the anchored hash

table with the same transaction-id are connected as a list. This is helpful in tracking

the transaction and all the objects held by it.

The anchored hash table is shown in Figure 4.2.
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4.7.4 Extensions of the Model

The nested transaction model as mentioned before has a tree like structure with

the parent transaction as the root and the sub-transactions as its children. To de-

termine whether a transaction (or sub-transaction) can be given a lock to an object

the lock manager has to check all ancestors of the transaction and come to a decision

based on the holdmodes.

To make the task of looking for parent nodes in the hash table easier we introduced

a naming scheme for transactions and sub-transactions. All top level transactions are

named in numerical order. A sub-transaction is named using the following formula:

child tid = (parent tid << 4) + child counter

child counter = child counter + 1

\<<" indicates binary shift, to the left. This makes it easy to �nd immediate children

of a sub-transaction, simply by using the \>>" operator.

The semaphores and threads used in the previous model were that of Sun OS.

The whole system has been ported to Solaris, the thread and semaphores had to be

converted to Solaris that have di�erent capabilities, more of which is described in

chapter-5.

The enhanced thread capabilities of the operating system has also been used to

improve the granting of locks. When a sub-transaction requests a lock from the lock

manager, it either receives the lock based on the locking rules discussed before or

does not. In the latter case we change the mode of that sub-transaction to the 'wait'

mode and put it at the end of the transaction list. We thus achieve a �rst-come-�rst-

serve ordering for the blocking sub-transactions. The sub-transaction is now in a

dormant state and execution can proceed only on acquiring the lock, this is achieved

by blocking on a unique semaphore. When the transaction (or sub-transaction) that

was holding the lock commits or aborts, it frees the lock. The lock manager then
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scans the list of sub-transactions waiting for a lock on that object and un-blocks

the �rst semaphore on which that sub-transaction is blocking. If there are more

sub-transactions waiting for a lock on that object they are added further down the

transaction list and as mentioned above are un-blocked on a �rst-come-�rst-serve

basis.

There were a number of �xes that were made to the system to support the nested

transaction model. The lock manager was re-visited and parts of the code re-written

to improve functionality. Also �xed the transaction and sub-transaction constructors

and the commit for transactions. OpenOODB's fetch methods had to be changed,

to add a call to the lock-manager which inserts the object into the hash table along

with other transaction information.

All dependencies to the earlier Zeitgeist system have been removed, including

transaction calls, and have been changed to OpenOODB calls. The transaction calls

have already been discussed above.



CHAPTER 5
RULE SCHEDULER : DESIGN AND IMPLEMENTATION

5.1 Why Do We Need Rule Scheduling ?

As mentioned in chapter 3, when an event occurs in the database system, the

rules that subscribe to that event are triggered. A simplistic approach at this stage

would be to let all the rules that have been triggered by this event to run one after

another (i.e., serially using a conict resolution mechanism). This approach does

not usr parallelism or maximize throughput. It would be bene�cial to let the rules

execute in parallel, thereby reducing the overall execution time for that transaction.

Each rule has a priority associated with it. If a set of rules is executed by an

event the rules have to be triggered based on their relative priorities. Thus the rule

scheduler has to �re rules based on the priority of that rule with respect to its sibling

rules. The scheduler has to allow rules with the highest priority to execute �rst and

after their completion, the scheduler has to allow the next rule (or set of rules) with

lower priority to execute.

The role of coupling modes has already been described in chapter 3. Our system

supports both Immediate and deferred coupling modes. The coupling mode is speci-

�ed at the time of rule creation. Rules have to be scheduled based on their coupling

modes. If a rule has been triggered from within a transaction and the rule has an

immediate coupling mode, then the transaction from which the rule was spawned has

to wait and the rule should be given processor time for execution. Only at the end

of the rule execution can the triggering transaction continue.

If the rule has a deferred coupling mode, then the triggering transaction can

continue and the triggered rule has to wait for the completion of the main transaction
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for it to be scheduled. The important issue here is that the deferred rule has to run

at the end of the triggering transaction but the triggering transaction cannot commit

until all the deferred rule are executed. This needs careful scheduling of rules.

5.2 Design Issues

Thus the major factors to be taken into consideration while designing the sched-

uler is the priority and coupling mode issues. What needs to be taken into account

is the possibility of an event triggering many rules, at the same time, with di�erent

priorities and coupling modes at the same time. The scheduler would �rst have to

segregate the rules based on their coupling modes because immediate and deferred

rules have to be treated di�erently. Thus, even if a deferred rule has a higher priority

than an immediate rule, the immediate rule has to be spawned �rst.

After the segregation, the scheduler has to suspend the main transaction. The

main/triggering transaction and the triggered rules (sub-transactions) are all di�erent

threads of operation. The scheduler can thus use thread related functions (discussed

later) to suspend and continue rule processing. The triggering of a set of immediate

rules is achieved by thread operations. The triggering of rules have to be done based

on priority. Thus the scheduler has to keep track of all the rules that have been

triggered and spawn the rules one after the other based on their priority.

The deferred rule semantics are quite di�erent from those of the immediate rules.

The scheduler has to keep track of all the deferred rules spawned by that transaction

as the actual execution of the rule can take place only after the completion of the

spawning transaction, just before it commits.

At the end of the transaction, all the deferred rules that were created from within

the transaction can start executing in order of their priorities. This again is done

by the scheduler using thread functionalities. The execution of these deferred rules

in turn could trigger more rules. If the rule triggered has an immediate coupling
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mode, then the deferred rule that triggered it has to wait for its completion. In

case of a deferred rule, we follow the cycles of execution policy, where all deferred

rules spawned by the top-level transactions and their sub-transactions have to �nish

execution before any of the second cycle of deferred rules can start. The deferred

rules spawned by this cycle are processed in the next cycle. Thus at any time there

can be only two cycles of deferred rules.

From the above we can see that, one of the most important functions of the

scheduler is to keep track of the stage of execution of each rule. Based on this

knowledge alone, the scheduler decides when to allow each rule to execute. A set of

operating modes associated with each rule is maintained to keep track of the state

a rule is in. Four operating modes are possible in our scenario: ready - when the

rule is triggered and is ready to execute, wait - when the rule spawns another rule

in the immediate coupling mode and is waiting for that rule to �nish execution,

executing- when the rule is currently executing, and �nished - when the rule has

�nished processing. The �nished operating mode is used by the scheduler to make

sure that all the rules in the immediate coupling mode have �nished executing. The

scheduler can then allow the triggering transaction to continue. The �nished mode

also helps the scheduler to know if all the rules in a deferred cycle have �nished

executing. Similarly a wait indicates that the scheduler has more immediate rules

generated by that rule to execute.

By the time a transaction completes, the scheduler has no more rules to sched-

ule. It is woken up when another transaction is executed (maybe within the same

application) which triggers another set of rules.
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5.3 Threads

The scheduler has to provide a variety of functions that help in achieving our

model of parallel and prioritized rule execution and to incorporate the handling of

di�erent coupling modes. The tool that we use to achieve these goals are threads.

Having decided to choose threads to execute rules concurrently, the question was

which multi-threading system do we use. The choice was between POSIX threads

or pthreads and Solaris threads. After a detailed study of the two, it was clear that

at a higher level there were no real fundamental di�erences between the two. There

were no incompatabilities, i.e. what could be expressed in one system could also be

expressed in the other though it may involve a di�erent approach. What stood out

though were key API related issues that were di�erent from one another. The key

di�erences between the two API's can be summarized as follows:

� Features in Solaris threads API but not in pthreads API

{ Suspending and continuing threads: This feature allows any thread in an

address space to suspend or continue any other thread using a thread-id

which is unique to every thread

{ Reader/writer locks: This feature helps when applications need to syn-

chronize data access using the reader/writer approach where threads can

hold the lock in either mode. This is best suited if there are more readers

than writers in the system.

{ Setting concurrency: The user can specify the number of threads in the

system at any given time.

� Features in pthreads API but not in Solaris threads API

{ Attrribute objects: It is possible to specify an attribute object that can be

shared among a group of threads or synchronization variables. This makes
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programs more portable and allows a group of pre-de�ned attributes that

are used by every thread in the system.

{ Cancellation semantics: Using an API call, a related set of threads can

be cancelled or stopped and the state of the system can be restored to

the original state. This is particularly useful if more than one thread is

trying to complete one task. At the end of the task, a cancel can be called

stopping execution of all threads.

{ Scheduling policies: pthreads supports FIFO as well as round-robin schedul-

ing policies

The most important feature that was needed by the scheduler was the ability to start

and stop threads (rules) based on their priorities and coupling modes. This feature

could be easily implemeted using the Solaris thread API but doing it using pthreads

would be more complicated. The main advantages of pthreads, the attribute objects

was really not needed by the scheduler as the thread attributes (like thread priority)

were not largely used. The same reason can be applied for the cancellation semantics

too. The scheduling policies provided by pthreads are of no use, as we are doing all

the scheduling.

Solaris threads support the concept of multi-threading. Multi-threading has a

variety of bene�ts including performance gains from multiprocessing hardware (par-

allelism), increased application throughput, enhanced process-to-process communi-

cation, mainly because it removes the diÆculties of IPC and can use shared data

structures instead [11].

On the other hand, threads can also produce many problems that are diÆcult

to handle. The most important of which is the concurrency issue. As mentioned

earlier, the communication between threads in the same address space can be achieved

with the help of shared data structures but this can lead to inconsistent values as
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two threads might be simultaneously accessing the same data and corrupt it in the

process.

Threads provide a couple of ways of circumventing this problem. These are called

synchronization objects and include mutex locks, condition variables, reader/writer

locks, and semaphores.

� Mutex locks: The most basic synchronization mechanism, mutual exclusion

locks, ensures that only one thread can either execute a crtical section of code

or access shared data at one time.

� Condition variables: A thread can block until a condition is statis�ed. The

condition testing must be done under the protection of a mutex lock. When the

condition is false the thread blocks. Another thread can change the condition

and can signal the associated condition variable causing all threads wating on

the condition variable to wake up.

� Reader/writer locks: This approach is best suited where data can either be

locked for update or just for reading. These locks are slower than mutexes but

can improve performance if they protect data that are not frequently written

but can be read concurrently by many threads. There is no real acquisition

order when there are many threads waiting for a read/write lock. But to avoid

starvation, Solaris tends to favor writers over readers.

� Semaphores: Uses the classic P and V operations to allow synchronization.

This can be used just like the condition variables but is not as well structured.

This implementation uses mutex locks as well as condition variables to support

synchronization among the threads. Mutex locks have been used because at any

given time there may be multiple threads executing in the system, each trying to

access the shared data structure. The data structure is accessed either to add or
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delete information. Our goal is to make sure that only one thread can access the

data structure at one time, in other words making the access mutually exclusive.

The scheduler also accesses the main data structure without updating it. It may

seem as though the reader/writer locks are more suitable but the 'read' operation

does not really need to see the latest view of the data structure. This is so because

the scheduler iterates over the data structure in an in�nite loop and if it misses an

update, it would see it on the next iteration. Using reader/writer locks would hurt

performance if the data-structure has to be locked every time the scheduler loops

through it. Condition variables are used to block transaction's from committing

until all the rules that it spawned �nish execution.

5.4 Thread Functions Used in This Implementation

thr-create: creates a new thread, parameters include: the start routine and ags,

which are

� Detached - The thread-id and other resources can be used as soon as the thread

terminates.

� Suspended - Suspends the thread as soon as it gets created, has to be explicitly

continued

� Bound - Permanently binds the new thread to an LWP (light weight process)

thr-self: returns the thread id of the calling thread.

thr-suspend: blocks the execution of the thread speci�ed by its id.

thr-continue: unblocks a blocked thread

thr-kill: sends a signal to a thread

thr-join: wait for the termination of a thread(s).

thr-yield: yield execution to a thread of same or higher priority in the system

thr-exit: terminates execution of the thread
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mutex-lock: locks a mutex variable initially created

mutex-trylock: lock with a non-blocking mutex

mutex-unlock: unlock the locked mutex

5.5 Scheduler Design

The design of the scheduler is based on the capabilities provided by the Solaris

thread package, as described above. Each rule triggered during the execution of an

application has to be a separate thread. The execution of the thread is controlled by

the scheduler depending on its priority (its own priority and its priority relative to

its parent), and coupling mode.

Every event found in the application is wrapped with a 'Notify' by the preproces-

sor. 'Notify' identi�es all the rules that correspond to the event and creates a thread

for each rule. The thread is created using the thr create function:

thr create(NULL,0, &do action, param, THR SUSPENDED, &tid[Count])

The �rst two arguments correspond to the stack for the thread. The stack is not

used by the threads in this implementation. The function that is executed as the

body of every rule-thread is called 'do-action'. 'param' is the argument list sent to

'do-action', which includes the 'RULE' object and the paramter list obtained from

'Notify'. 'THR SUSPENDED' indicates that the thread is created in a suspended

state, the scheduler wakes it up at the approppriate time. Finally tid is an array of

thread-id's and tid[Count] generates an id based on the value of Count, which is a

global variable that is incremented for every thread spawned in that address space.

The data structures used within Notify, including the event graph, are global and

can be accessed by all the threads in the system. To make sure these data structures

are consistent, we lock them using mutex locks whenever a thread updates or traverses

them.
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The 'Notify' then calls insert rule as follows,

insert rule(tid[Count],this->get priority(),thr self(),mode);

This call inserts a new node in the data-structure (discussed in the following section)

corresponding to the rule being triggered. The �rst argument is the thread-id of

the new thread generated. The second argument is the priority which was speci�ed

during RULE construction. 'thr self' gets the thread-id of the spawning process and

mode speci�es whether the rule has an immediate or deferred coupling mode. The

function 'do-action', checks the validity of the condition for that rule and if true it

performs the action function speci�ed by the rule. This whole thread of execution

is wrapped within a sub-transaction. The reason being that there is a possibility

of a number of rule threads executing at the same time. And running each thread

as a sub-transaction ensures the correctness of concurrently executing rules. The

nested transaction semantics is enforced by the nested transaction manager which is

independent of thread execution.

5.6 Main Data Structure Used

There are a number of parameters that have to be known when forming a thread

to execute a rule, namely, its parent rule id, priority and coupling mode. To store all

this information we use a data structure called the process-rule-list. Each node in the

list corresponds to one rule that has been triggered. When creating an instance of

the process-rule-list node for a new rule, it has to be supplied with the parent thread

id, coupling mode and priority.

The id's of the rules are the thread id's that are obtained when creating a thread

for that rule. The system assigns a unique id (of type thread-t) to every thread it

creates. Rules triggered in the top-level transaction have the parent id as 1. Rules

triggered from within a rule execution get the parent id by doing a thr-self() from

the executing thread.
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Figure 5.1. process-rule-list

The priority and coupling mode can be obtained from the rule object as they are

provided during creation. The default priority is the lowest possible priority (which

is 1) and the default coupling mode is immediate.

Also associated with each rule is an operating mode which captures the state of

rule execution. There are four possible states : Ready, Wait, Executing and Finished.

Deferred rules have an extra data member, the cycle number. All top level deferred

rules and those triggered by rules executing with Immediate coupling modes are

assigned cycle-1. All rules triggered from a deferred rule are assigned the next cycle

number.

5.7 Overall Picture

In an application the user speci�es the rules associated with their respective event

methods. These rules have a priority and a coupling mode speci�ed by the user. The

preprocessor inserts a Notify call inside the wrapper to detect these events at run

time. The notify creates a thread whose body of execution is the condition and action

part of the rule. An instance of the process-rule-list is created (which is basically a

node in the list) and inserted into the list. The thread-id is obtained when creating

the thread and the parents thread-id is obtained using the thr-self() thread API call.

At the end of every notify, the scheduler is woken up. The scheduler now traverses

the process-rule-list performing actions which will be described later. At the end of

the notify, the function 'wait-for-immchild' is called. 'wait-for-immchild' is a function

that waits until all triggered rules in the 'Immediate' coupling mode �nish execution.
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The commit of a transaction is an event at which time a pre-de�ned rule is trig-

gered. This rule has an immediate coupling mode and has a priority of '-1'. This

priority is chosen to di�erentiate this rule from others generated by the application.

The action of this rule �rst puts the scheduler to sleep and then calls the func-

tion 'process-defrules'. The scheduler is put to sleep because the function 'process-

defrules' does a consistency check on the process-rule-list making sure that there are

no other immediate rules except the one with priority '-1'. The function also sets

the 'deferred-ag' which indicates to the scheduler that deferred rules can now be

processed. After setting the ag, 'process-def-rules' wakes up the scheduler which

triggers the appropriate rules based on the scheduling algorithm. The commit waits

for the completion of all deferred rules before the application can proceed. A condi-

tion variable is used on which the action of the commit rule waits. This condition

variable is triggered by the scheduler once all the rules in that transaction complete

processing.

As briey mentioned in section 5.2 and 5.3, concurrent access is needed for the

process-rule-list. Many threads have to access or/and modify the process-rule-list.

This could lead to inconsistencies. Mutex locks have been used to avoid incorrect

update of this list. When any part of the process-rule-list is under modi�cation, the

mutex-variable is locked and is released at the end of the operation. This ensures

that no other thread can modify the process-rule-list as that thread in turn would

try to lock the mutex-variable, which is not possible and that thread would be put

on block until the �rst thread unlocks the mutex-variable.

As shown in �gure 5.2, the application proceeds normally until it reaches a method

call that is detected as an Event. This part is taken care of by the snoop preprocessor,

which parses through the application code searching for method calls that match

event methods already declared in the speci�cation �le.
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Figure 5.2. Implementation overview

Once an event is noti�ed, a set of rules maybe triggered. This is done in the Rule

Processing stage as shown in the �gure 5.2. For each rule that quali�es, a separate

thread is created and inserted into the rule list. Recall that, the thread is created in

the suspended state.

The notify now calls the function wait-for-immchild. This function wakes the

scheduler and the rules are executed based on their priorities and coupling modes.

This function then looks at the process-rule-list and based on the current thread-id

(got by using thr-self()) �nds if there are any rules triggered by this thread in the

Immediate coupling mode. If there are, then the function waits for the completion

of those threads (using thr-join).

When the scheduler activates a rule, it wakes up the thread associated with

the thread-id in the process-rule-list. The thread routine is enclosed within a sub-

transaction for reasons already mentioned. The thread checks the condition of the

rule and executes the action associated with the rule if the condition evaluates to

true.
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To process deferred rules, we de�ne a rule which is triggered by the event - com-

mitTransaction. The action part of this rule calls a function process-de�rules, as

shown in �gure 5.2. This function activates all the rules in cycle-1 of the process-

rule-list. It then waits for the completion of deferred rules, if any, that was spawned

by this transaction. When a rule thread completes its execution the corresponding

rule node in the rule list is deleted and at the end of the top-level transaction, the

rule list is empty.

5.8 Inserting Rule Nodes

When a rule is triggered in the application, the rule-node that is created as men-

tioned above has to be inserted into the process-rule-list. The placement of rules

in the list depends on the coupling mode, its parent and its priority. The rules are

inserted in decreasing order of priority. Also the process-rule-list is sub-divided into

two sections, one for rules with Immediate coupling mode and the other for rules

with deferred coupling mode. Thus in a scenario consisting of rules in both coupling

modes, the head rule-node is an Immediate-top-level rule with the highest priority.

If the rule has been triggered from within the action of another rule then the

parent rule is searched for and the new rule is placed after the parent in the process-

rule-list. Again if there are more than one child rule for a parent, then the placement

is based on the relative priorities of the sibling rules. The operating mode of all new

rules inserted into the process-rule-list is 'Ready'. In case of rules with immediate

coupling mode when a rule is inserted the parents operating mode is changed to

'Wait'. The parent rule has to wait for the termination of all child rules before it

can proceed since its coupling mode is Immediate. This is not the case for rules that

trigger rules in the deferred coupling mode

The basic pattern of rule insertion based on priority is retained for deferred rules.

The main di�erence is that the placement is based on cycles. All deferred rules
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triggered by the top-level transaction and those triggered by rules in the immediate

mode are part of 'cycle-1'. A rule with a deferred coupling mode triggered during the

execution of any cycle-n (n > 0) rule is placed at the end of all rules in cycle-n. The

rule becomes part of the next cycle of rules, cycle-(n+1). The placement of rules in

a cycle is based on its priority if the coupling mode is deferred. If a rule in any of

the deferred cycles triggers a rule with an immediate coupling mode then that rule

is inserted next to its parent although the parent's coupling mode is deferred. Here

again the the triggering rule has to wait for the completion of all the rules that it

triggers which have an immediate coupling mode.

Figure 5.3 shows a possible scenario of the process-rule-list after inserting rule

nodes for each rule triggered. The top level rules that are triggered from the applica-

tion are R1, R2 and R3. Notice that the parents of these top level rules are given the

value 1. This is the default id of the 'main()' thread and indicates that the rule has

been spawned from the main thread and are top level rules. R1 and R2 are rules that

are in the immediate coupling mode while R3 has a deferred coupling mode. Thus

the main transaction waits for the completion of R1 and R2's execution from which

they were triggered. The transaction then continues and at commit time, allows R3

to execute.

Notice that R1 and R2 are placed in the list based on their relative priorities, here

R1 has a higher priority than R2. R3 is placed at the end of all Immediate rules and

becomes part of cycle-1. This is done inspite of R3 having a higher priority than R2,

because R3 has a deferred coupling mode while R2 has an immediate coupling mode.

R11, R12 and R13 have been spawned from the action execution of R1. R11 and

R12 have been placed after R1 in the rule list while R13 has been placed in cycle-1

of the deferred section as it has a deferred coupling mode. R11 and R12 have been

placed based on their relative priorities. Similarly R21 and R23 are rules triggered



49

R
1

R
11

R
12

R
21

R
3

R
13

R
23

1

I
I

I
I

I
D

D
D

10
12

5
7

8
9

8
7

9

I
D

R
13

1

1
1

1
R

2
R

1
R

2
R

23

R
23

6

R
13

R
2

R
ul

e 
lis

t 

C
ou

pl
in

g
 m

od
e

Pr
io

ri
ty

Pa
re

nt
R

1
R

1

C
yc

le
 -

 1
C

yc
le

 -
 2

Figure 5.3. Rule List scenario



50

from R2 and are placed at speci�c points in the table based on the placement of the

parent and the coupling mode.

In the present scenario let us assume that the deferred rules have started execu-

tion. Rule R3 starts executing following which rule R13 executes, this is based on

their priorities. As we can see during the execution of rule R13 it spawned another

rule R131. R131 is then put at the end of all rules in cycle-1 and becomes part of

cycle-2. The execution of R131 has to be started only after execution of all rules in

cycle-1.

Another point that is of importance is that rule R231 which is spawned from R23

has an immediate coupling mode. It is still added to cycle-1 because it got spawned

by a rule executing in a deferred coupling mode. Thus it is placed after R23 in the

rule list inspite of its coupling mode. So R23 has to wait for the completion of R231's

execution before continuing.

5.9 Scheduler

The scheduler runs in an in�nite loop acting on the process-rule-list. Though in

an in�nite loop, the scheduler (which is a thread) can be suspended and awakened

by any other thread in the system.

The scheduler starts at the head of the process-rule-list. If the Head points to a

rule with priority '-1' and there are no deferred rules in the list, it means that all rules

that were triggered within that transaction have completed execution, the scheduler

then sends a signal to the triggering transaction informing it of the status. If this

is not true, the scheduler checks for the 'deferred-ag'. The 'deferred-ag' indicates

to the scheduler if the transaction has started processing deferred rules. If this is

true, the scheduler looks at the operating modes of the rules in the �rst cycle. An

operating mode of ready indicates that the rule is ready to execute, the scheduler

awakens that thread allowing rule execution. An operating mode of 'WAIT' indicates
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that the rule is waiting for the completion of rules that are in the immediate coupling

mode. This process is repeated for all rules in the �rst cycle. If the 'deferred-ag' is

not set to true, the scheduler looks for immediate rules in the process-rule-list.

The scheduler operates on rules in the process-rule-list based on its operating

mode. Starting from the header, if the operating mode is 'Ready' the scheduler �res

the rule execution and all the following top-level rules that have the same priorities.

Whenever a rule is �red the operating mode of that rule in the process-rule-list is

changed to 'Executing'.

If the operating mode is 'Wait' it means that the thread is on wait, which further

means that there are some child rules that need processing. This is done recursively

in a function called child-recurse().

The operating mode 'Finish' symbolizes the completion of the rule processing of

that particular rule. What needs to be checked in this case is whether all Immediate

rules have completed. If they have then all deferred rules in the �rst cycle can be

executed based on their priorities. If all Immediate rules have not been processed

then based on their priority, they are allowed to execute.

The scheduler acts similarly on all top level rules making sure that rules in the

rule queue are processed.

child-recurse()

This function is called by the scheduler when it �nds the operating mode of

one of the rules to be 'wait'. This function takes care of nested rules. Once again

processing is based on the operating modes of the child rules. The highest priority

child rules which have the operating mode as 'Ready' are �red and the operating

mode is changed to 'Executing'. There could be one more level of nesting where

the child rules are themselves in the 'Wait' state because more rules are triggered
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during their execution. This would mean that we have to make a recursive call to

child-recurse().

As discussed earlier, after every noti�cation the thread waits for all the rules it

spawned in the immediate coupling mode to �nish execution. The method is called

'wait-for-immchild'. This function searches the process-rule-list for the triggering

rule. This can be done using the thr-self() function call which returns the thread-id

of the executing thread, using which the list can be searched for that thread-id. Once

found the scheduler traverses from that point on doing a thr-join() on every following

thread-id whose parent is the current thread-id. If the current thread is the main

transaction, the thread-id is going to be 1. In this case the whole list has to be

searched for rules with parent-id 1, having an immediate coupling mode.

The function 'process-de�-rules' is called by the action of the commitTransaction

rule. This function �rst checks to see if there are any deferred rules that have been

generated by the transaction. If there are no rules the function returns, otherwise it

traverses the list of deferred rules in the �rst cycle and starts their execution in order

of their priorities. The 'deferred-ag' is set to true. This tells the scheduler that the

deferred rules can now be processed.



CHAPTER 6
EXAMPLE APPLICATION SHOWING RULE SCHEDULING

This is an application which uses Sentinel's rule de�nition language and OQL

(Object query language). It uses OpenOODB's transaction calls which in turn calls

Sentinel's transaction manager, which supports the nested transaction semantics that

have been described earlier. The motivation behind this example is to show the fea-

tures of the rule scheduler and how it operates on multiple, nested rules generated by

the application. It also shows how the rule scheduler handles priorities and coupling

modes of rules.

6.1 Event and Rule De�nitions

The application is based on a Hospital application written for Sentinel.

class MedicalRecord {
....
....
// Event definitions
event end(event_setRegNum) void set_reg_num(int reg_num);
event end(event_getRegNum) int get_regist_num();
event end(event_get_date) char* get_date();

// Rule definitions
rule R01[event_setRegNum,true_condition,action_getRegNum,RECENT,6,IMMEDIATE];
rule R02[event_setRegNum,true_condition,action_update,RECENT,3,IMMEDIATE];
rule R03[event_setRegNum,true_condition,action_getDate,RECENT,8,DEFERRED];

rule R04[event_getRegNum,true_condition,action_update,RECENT,8,IMMEDIATE];
rule R05[event_getRegNum,true_condition,action_update,RECENT,8,DEFERRED];

rule R06[event_get_date,true_condition,action_update,RECENT,5,DEFERRED];
rule R07[event_get_date,true_condition,action_update,RECENT,9,IMMEDIATE];
};

The class MedicalRecord has three methods that raise an event if invoked. 'set reg num'

raises event 'event setRegNum', 'get regist num' raises event 'event getRegNum' and

53
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'get date' raises event 'event get date'. 'end' indicates that the rule has to be trig-

gered after the event method is called. The other option would be 'begin', where

the rules are triggered before actually calling the event method. We have de�ned six

rules subscribing to these three events. The rule de�nition includes the following in-

formation : R01 is the rule's name which is triggered by event event setRegNum, the

condition to be checked is de�ned by function 'true condition' and if true the action

to be performed is de�ned by function 'action getRegistNum'. The next argument

de�nes the context which in this case is 'RECENT', which is followed by the rule

priority, 6 in this case and the last argument de�nes the coupling mode, which is

immediate here. Thus rules R01, R02 and R03 subscribe to event event setRegNum,

R04 and R05 subscribe to event event getRegNum, and R06 and R07 subscribe to

event event get date.

6.2 Condition and Action Functions

The conditions and actions for all the rules de�ned in the previous sections have

to be de�ned.

int true_condition(L_OF_L_LIST *n1_list)
{

return 1;
}

From the rule de�nitions we can see that all rules execute the same condition,
'true condition'. To make things simple we just return true when the condition is
executed, this ensures that all the rules will be triggered.

void action_getRegistNum(L_OF_L_LIST *n1_list)
{

....
l1 = n1_list->getFirst();
l2 = l1->get_head();
u = (MedicalRecord *) l2->get_reactive_obj();

u->get_regist_num();
....

}

void action_update(L_OF_L_LIST *n1_list)
{
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....

....
}

void action_getDate(L_OF_L_LIST *n1_list)
{

....
LIST_OF_LIST *l1;
LIST_NODE *l2;

l1 = n1_list->getFirst();
l2 = l1->get_head();

u = (MedicalRecord *) l2->get_reactive_obj();

u->get_date();
....

}

Action function 'action getRegistNum' gets the reactive object which it extracts

from the argument. It then calls method regist num() which as de�ned earlier is a

method from class MedicalRecord. This raises the event 'event getRegNum, to which

rules R04 and R05 subscribe. Action function 'action getDate' calls on method date

which generates event 'event get date' to which rules R06 and R07 subscribe. Action

function 'action update' does not raise any event.

6.3 Main Application

The main application consists of just one transaction where a MedicalRecord

object is fetched from the database and a member method is called.

main()
{

.....

.....
OpenOODB->beginTransaction();

medrec = (MedicalRecord*) OpenOODB->fetch("medical-record");

medrec.set_reg_num(11111);

OpenOODB->commitTransaction();
}
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This program is run through the preprocessor which detects set reg num as an

event. We also detect beginTransaction and commitTransaction as events. The

Noti�es are set for each event and the application is compiled. On execution the

MedicalRecord object is fetched and the method set reg num is called. After execu-

tion of set reg num the Notify for that event is executed. Within the Notify, three

threads are created, one for each rule. Three nodes of the process-rule-list are also

created and are inserted into the process-rule-list.

Priority
Coupling mode
Operating mode
Parent Thread-id

Next Next Next NULL

Head

Parent Thread-idParent Thread-id

Operating mode Operating mode

Coupling mode Coupling mode
Priority Priority

Thread-id Thread-id

NULL

   Thread-id             5

6

IMM
READY
1

Cycle number -    0
 1Parent Thread-id

IMM
3

6

Cycle number -   0

7

5

DEFF
READY

 1
Cycle number -       1

READY

R01 R02 R03

Cycle - 0 Cycle - 1

Deferred-Head1

Figure 6.1. Process-rule-list

From the �gure 6.1 we see that rule R01 has thread-id 5, priority 3, and parent 1

which is a top level transaction. Rule R02 with thread-id 6 is placed after rule R01

because of its lower priority. Rule R03 with thread-id 7 is put into another list since

it has a deferred coupling mode. This rule R03 becomes part of cycle-1 of deferred

rules. The operating mode for each rule is 'READY'.

The next call within Notify is 'wait-for-immchild'. This suspends the top-level

transaction and wakes up the scheduler. The scheduler traverses the process-rule-

list and awakens thread with thread-id 5. This is the only rule that can execute,

as rule with thread-id 6 has a lower priority and rule with thread-id 7 is in the

deferred mode. The execution of rule R01 starts and the operating mode is changed

to 'EXE' or executing. The body of the thread �rst executes the condition given

by function 'true condition' which returns true. The rule continues and executes



57

the action which is the function 'action getRegistNum'. As seen above, the function

'action getRegistNum' calls the method get regist num. Remember, get regist num

detects event 'event getRegNum', which spawns two rules R04 and R05.
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Parent Thread-id
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Cycle number -     0
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8
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Figure 6.2. Process-rule-list

The Notify for this event creates two more threads, with thread-id 8 for rule R04

and thread-id 9 for R05. Thread 8 is placed after thread-5 which represents rule R01,

that triggered it. Thread 9 is placed before thread 7 in the deferred rule list, it does

not really matter if its placed before or after thread 7 because both have to same

priority and will be executed simultaneously. This can be seen in �gure 6.2. As soon

as rule R04 is inserted into the list, its parent's operating mode, rule with thread-id

5, is changed to 'WAIT'. 'wait-for-immchild' is again called within this Notify. The

scheduler gets woken and �nding rule R01 in the 'WAIT' state, it calls 'child-recurse'.

'child-recurse' gets to rule R04 and allows it to execute changing its mode to 'EXE'.

The body of R04 executes 'true condition' which again returns true and goes on to

execute action 'action update'. Once 'action update' �nishes executing, it deletes its

node from the process-rule-list. Now thread 5 representing rule R01 continues, as

thread 8 was the only rule that it had spawned with an immediate coupling mode.

The current state of the process-rule-list is shown in �gure 6.3.

Rule R01 �nishes processing and its node in the process-rule-list is removed. The

scheduler now �nds only rule R02 in the immediate rule list. It awakens its thread

which executes 'true condition' followed by 'action update'. The top-level transaction
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Figure 6.3. Process-rule-list

can now continue as both the rules R01 and R02 with immediate coupling mode have

�nished execution.

The application �nally reaches the commitTransaction. As mentioned before,

commitTransaction is an event and is wrapped with a Notify. A pre-de�ned rule is

triggered for the commitTransaction, it has a priority of -1 di�erentiating it from all

other rules in the system. It has an immediate coupling mode, the condition of the

rule is always true and the action calls function 'process-deferred'. This rule is placed

at the head of the process-rule-list and has thread-id 10.

The scheduler is woken up and it continues thread 10 because it has an immediate

coupling mode. The action, i.e. function 'process-deferred' is called. This function

calls the 'process-de�-rules' function whose operations have been described in detail

in chapter-5, after which it blocks on a condition variable. This condition variable

is signaled by the scheduler once all rules spawned by this transaction completes

execution. 'process-de�-rules' traverses the deferred rule list and awakens thread 9

which corresponds to rule R05 and thread 7 which corresponds to rule R03, as they

have the same priority. The condition and action of both rules are executed. This

can be seen in �gure 6.4.

After execution of rule R05 the node is removed from the list. Thread 7 or rule

R03 continues execution. The action calls function 'action getDate'. Looking at

the body of 'action getDate' we can see that it calls function get date. This raises



59

Head

Priority
IMMCoupling mode

Operating mode

Next NULL

 1
Cycle number -       0
Parent Thread-id

Thread-id

-1

10
Priority

DEFFCoupling mode

Thread-id

8

9

Next

Cycle number -        1
Parent Thread-id 5
Operating mode EXE

Thread-id

Priority

Coupling mode

Operating mode
Parent Thread-id
Cycle number -       1
Next NULL

DEFF

7

 1
EXE

WAIT

8

Cycle - 1Cycle - 0

Commit Rule R03 R05

Deferred-Head1

Figure 6.4. Process-rule-list

event, 'event get date' and within its Notify, it creates two thread. One with thread-

id 11 representing rule R07 and the other with thread-id 12 representing rule R08.

Thread 11 has been placed after thread 7 because the rule has an immediate coupling

mode. The operating mode of rule R03 is changed to 'WAIT'. Thread 12 or rule R8

is part of the next cycle of deferred rules, in this case cycle-2. Rule R03 executes

'wait-for-immchild' and the scheduler seeing the 'WAIT' calls 'child-recurse'. This

function as mentioned before awakens thread 11 or rule R07, which executes condition

'true condition' and action 'action update'. This can be see in �gure 6.5.

Head

Priority
IMMCoupling mode

Operating mode

Next NULL

 1
Cycle number -       0
Parent Thread-id

Thread-id

-1

10

WAIT

Priority

DEFFCoupling mode

Thread-id

Next

Cycle number -        1
Parent Thread-id
Operating mode EXE

Thread-id

Priority

Coupling mode

Operating mode
Parent Thread-id
Cycle number -       1
Next

DEFF

5

7

 1

Priority

DEFFCoupling mode

Thread-id

Next

Parent Thread-id
Operating mode

NULL

11

7
WAIT READY

12

5

7
Cycle number -        2

NULL

9

Deferred-Head-1 Deferred-Head-2

Cycle - 0 Cycle - 1

Commit Rule R05

Cycle - 2

R07 R08

Figure 6.5. Process-rule-list

After it is done the node for rule R07 is deleted and the parent rule R03 continues.

Once R03 �nishes execution, the scheduler traversing along the process-rule-list �nds

no more rules in cycle-1. It thus awakens rules in cycle-2. In this case only one rule

R08 exists which is continued. Now this becomes the top cycle and the next cycle
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is NULL. Thus at any time there can only be two cycles of deferred rule execution.

This is shown in �gure 6.6. Once its condition and action �nishes executing, the node

is removed from the process-rule-list.
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Figure 6.6. Process-rule-list

The scheduler now �nds no more rules to execute so it sends a signal to the waiting

function 'process-deferred'. The signal is received and the rule �nishes execution

leaving the process-rule-list empty. The transaction now commits and the application

proceeds.



CHAPTER 7
PERFORMANCE ANALYSIS

This chapter outlines some of the tests done to measure performance of the system

using the rule scheduler. The scheduler allows concurrent execution of rules if they

have the same priority. These tests try to show the improved performance achieved

by multi-threading the rule execution.

To show the e�ect of multi-threading we need to run an application on machines

with more than one processor. One option would be to run the same application

on a single processor machine, then on a machine with 2 processors and so on. The

problem with this approach is that the performance di�erences are harder to measure

owing to the di�erent con�gurations of the processors on each machine. Moreover we

need to have machines with di�erent number of processors to run them on.

The other approach is to run them on one machine and simulate di�erent pro-

cessing conditions. This is the approach taken here. The tests were run on a machine

with eight processors. To simulate the di�erent number of processors, the applica-

tion was modi�ed such that at run time it was possible to restrict the number of

concurrent threads allowed to run.

The application itself consists of a simple event triggering thousand rules. The

rules were de�ned as follows :

for(int j=0; j<1000; j++)
{

RULE *test_rule = new RULE("test_rule",MedicalRecord_event_date,
true_cond,action_compute,RECENT);

temp_rule->set_priority(10);
temp_rule->set_mode(IMMEDIATE);

}
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The above rule de�nition creates 1000 rule de�nitions for the event 'event date'

of class MedicalRecord. The condition of the rule is 'true cond' and the action is

'action compute', the priority is set to 10 for all the rules and all of them have an

immediate coupling mode.

The condition 'true cond' always returns a true. The action 'action compute' is

as follows :

void action_compute(L_OF_L_LIST *n1_list)
{

int i,j;
printf("In action-compute, thread %d \n",thr_self());
for (i = 1 ; i<10000 ; i++)
{

for(j = 1; j < 1000; j++)
{

i*j%i;
i*i/j*j;
i^(j%10);

}
}

}

The action function is just a CPU intensive process involving nested loops and math-

ematical computations, this ensures that the threads run for a considerable amount

of time bringing out any concurrency control issues.

The application is �rst run such that just one thread is allowed to execute at one

time. To allows this to happen, the scheduler had to be modi�ed to allow only a

speci�c number of rules (threads) to continue at one time, even if more rules were

eligible to execute. This �rst case emulates a uni-processor environment where there

is no possible concurrent execution. Next the number of threads allowed to execute

concurrently was increased from two and so on upto fourteen. For each execution

scenario the CPU time and the total time for the application to execute fully were

calculated.

The results are plotted on the graph in �gure 7.1.
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Figure 7.1. Performance analysis 1

The chart shows that the CPU time is almost exactly the same for all the test

scenarios. The total time taken though shows signi�cant improvement from a sin-

gle processor mode to a dual processor mode. This improvement in time steadily

increases all the way till a six processor mode. After which the the time taken by

increasing the number of concurrently executing threads does not show any improve-

ment. This is so because the machine, as mentioned before, has six processors and

irrespective of how many threads are started, only six can execute concurrently at

one time.
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To test the e�ect of I/O operations on rule processing, the action of the rule was

changed as follows:

void action_compute(L_OF_L_LIST *n1_list)
{

int i,j;
printf("In action-compute, thread %d \n",thr_self());

TestClass *testc1= (TestClass*) OpenOODB->fetch("objs1");
TestClass *testc2 = (TestClass*) OpenOODB->fetch("objs2");
TestClass *testc3 = (TestClass*) OpenOODB->fetch("objs3");

}

Each rule triggered fetches 3 objects from the database. What we are trying to

see here is, if the I/O operations serialize the rule execution as they all have to fetch

the same object at the same time. The performance graph got from the experiment

is shown in �gure 7.2.
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Figure 7.2. Performance analysis 2



65

We notice from the graph that the performance was not really a�ected by the I/O

operations. This was true because, the storage manager stores the fetched object in

a cache after each fetch operation. Subsequent fethces need not get the object from

the disk. Instead they are read directly from cache memory and so the performance

comes out to be quite similar to the previous experiment.



CHAPTER 8
CONCLUSION

This theses extends the rule processing already present in Sentinel. So far rules

are processed serially in some order without using the priority conformation.

The scheduler designed and implemented in this theses supports the semantics

of rule execution within a transaction. It allows multiple rules associated with the

same event to run concurrently if they have the same priorities. This is achieved by

multi-threading the rule execution. Each rule executes as a separate thread.

Every rule can be assigned a priority. This allows a well de�ned order of rule

execution among rules in the same level (or sibling rules). Sibling rules withe same

priority execute simultaneously.

Rules can be assigned coupling modes. This allows applications to preserve (or

even check) the consistency of a transaction by executing rules at the end of the

transaction. This is done to preserve consistency. Such rules can be executed with a

deferred coupling mode. Other rules can execute with an immediate coupling mode,

where the rules are executed as soon as they are triggered.

Another important topic addressed is the Nested transaction scenario that has

been used in this implementation. The most important e�ect that comes about by

using nested-transactions is concurrency control for rules that are executing concur-

rently. Thus when there are no concurrency issues, the scheduler can safely execute

as many threads as possible in parallel.
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As part of the theses, a couple of applications were developed to test the working of

the scheduler. Multiple levels of nesting was achieved and the performance improved

by multi-threading the rule processing.

APPENDIX A

In this section we present the algorithms to insert and delete a rule node into the

rule list as discussed in the previous chapter.

void insert rule(thread id, int priority, int parent, int coupling mode)

//All arguments belong to the new rule node that has to be inserted

if (coupling mode == IMM)

if (parent == top level tx)

if (Header == NULL)

Header = this

return

if (this priority >= Header->priority)

this next = Header

Header = this rule

else

Search among the top level rules and insert this rule

based on its relative priority.

else

search for parent �rst among immediate rules and

place this rule among its siblings relative to its priority

Change the parents operating mode to 'WAIT'

If parent not found among immediate rules �nd it in the

�rst cycle of deferred rule and insert likewise, again
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changing the parents operating mode to 'WAIT'

else if (coupling mode == DEFF)

Get the head of deferred rules of the �rst cycle

if (Def Header1 == NULL)

Def Header1 = this

else if (parent == top level tx)

if (this priority >= Def Header1->priority)

this rule >next = Def Header1

Def Header1 = this rule

else

place it relative to other top level rules

with respect to its priority

else if (parent != top level tx)

search for parent among Immediate rules

if (parent is found)

insert the rule based on its priority among all

deferred rules in the �rst cycle

else if (parent is not found)

this cycle num = Def Header1->cycle num + 1

If (Def Header2 == NULL)

Def Header2 = this rule

return

if (this priority >= Def Header2->priority)

this rule >next = Def Header2

Def Header2 = this rule

else



69

insert this rule in the next cycle based on its

relative priority

void delete rule(thread t this id)

if (Header != NULL and Header->tid == this id)

temp = Header

Header = Header->next

delete temp

else if (Def Header1 != NULL and Def Header->tid == this tid)

temp = Def Header1

Def Header1 = Def Header1->next

if (Def Header1 == NULL)

if (Def Header2 != NULL)

Def Header1 = Def Header2

Def Header2 = NULL

delete temp

else

Search �rst among immediate and if not found there,

then among �rst cycle of deferred rules for this id and delete it
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APPENDIX B

The scheduler operates as a Solaris thread. The thread is created at the beginning

of the application. The thread operates in an in�nite loop but can be made to sleep

or waken up by any other thread

'Header' is the head of the immediate rules and 'Def Header1' and 'Def Header2'

are the heads of the two cycles of deferred rules.

void scheduler()

while (1)

if (Header != NULL and Def Header1 == NULL and Header->operating mode != REA

send signal to commit rule, and free waiting condition

variable, set def ag=0

if (def ag == 1)

// this inidcates if deferred rules can be processed

def rule = Def Header1

if (def rule->operating mode == WAIT)

child recurse(def rule->tid)

this cycle = def rule->get cycle()

while (def rule != NULL and def rule->cycle == this cyle)

if (def rule->operating mode == READY)

continue the thread execution using its tid

change operating mode to EXE

def rule = def rule->next

switch (Header->operating mode)

case Ready :

continue execution of this thread and change
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operating mode to Executing

search the rule queue for all other top level

rules with same priority, continue the

thread execution and change the operating mode to Executing

break

case Executing :

Yield thread execution, this allows

rules to continue execution

break

case Wait :

if (Header->next == NULL)

Error message and exit

call child recurse(this tid)

break

default : Error and exit

end case

for all top level rules

if (operating mode == Wait)

call child recurse(this tid)
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child recurse takes care of all child rules of the rule with thread id 'tid' which is

passed as an argument to this function

child recurse(tid)

search for tid in the rule queue

The search has to be made �rst in the Immediate rule list

then in the �rst cycle of the deferred rules

for the �rst child rule do :

switch (operating mode)

case Ready :

continue the thread, change the operating mode to

Executing and do the same for sibling rules with

the same priority

break

case Executing :

check the operating mode for sibling rules with

same prio

if (operating mode == Wait)

call child recurse(tid)

break

case Wait :

call child recurse (this tid)

// calling child recurse to process child rules of this rule

// since the operating mode is Wait.

break

end case
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'wait for immchild()' is called within the Notify. This waits for any rule spawned

by the execution of this rule, which has an immediate coupling mode.

void wait for immchild()

wake scheduler()

imm ag = 0

imm rule = Header

while (imm rule != NULL)

if (thr self() == top level tx)

if (imm rule != NULL and imm rule->parent == 1)

// That is, if the parent is a top level tx

imm ag = 1

while (thr join(imm rule->tid) == 0)

// thr join waits for the completion of the thread speci�ed by tid

imm rule = Header

else if (imm rule != NULL)

imm rule = imm rule->next

else if (imm rule->tid == thr self())

imm rule = imm rule->next

if (imm rule != NULL and imm rule->parent == thr self())

imm ag = 1

while(thr join(imm rule->tid) == 0)

imm rule = Header

else if (imm rule != NULL)

imm rule = imm rule->next

else imm rule = imm rule->next

if (imm ag == 0)
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// If the rule is in the deferred rule list

def rule = Def Header1

while (def rule != NULL)

if (def rule->tid == thr self())

def rule = def rule->next

if (def rule != NULL and def rule->parent == thr self())

while(thr join(def rule->tid) == 0)

def rule = Def Header1

else def rule = def rule->next

else def rule = def rule->next
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'process de� rules' is called within the commit rule. This function starts execu-

tion of deferred rules.

void process de� rules()

if (Header == NULL)

return

else

if (Header->priority != 1)

if (Header->next != NULL)

Give out ALERT message and exit

// At this point there can be no immediate rules being processed

// The only immediate rule allowed is the commit rule, which calls

// this function as part of its action

else

Give out ALERT message and exit

def rule = Def Header1

while (def rule != NULL and def rule->couple mode == DEF)

if ( def rule->operating mode == READY)

continue execution of the thread using the tid

change its operating mode to EXE

def rule = def rule->next

def ag = 1

wake scheduler()
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