

1

RELATIONAL DATABASE ALGORITHMS AND THEIR OPTIMIZATION FOR

GRAPH MINING

The members of the Committee approve the masters
thesis of Ramji Beera

Sharma Chakravarthy ____________________________________
Supervising Professor

Diane Cook ____________________________________

Lawrence Holder ____________________________________

1

RELATIONAL DATABASE ALGORITHMS AND THEIR OPTIMIZATION FOR
GRAPH MINING

by

RAMJI BEERA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2003

1

To My Parents, Family and Friends

 iv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Dr. Sharma

Chakravarthy, for giving me an opportunity to work on this challenging topic and

providing me ample guidance and support through the course of this research.

I would like to thank Dr. Diane Cook and Dr. Lawrence Holder for serving on

my committee.

I am grateful to Anoop Sanka, Raman Adaikkalavan, Hari Prasad

Yalamanchali, Naveen Pandrangi, Nishanth Reddy Vontela, and Ramanathan

Balachandran for their invaluable help and advice during the implementation of this

work. I would like to thank all my friends in the ITLAB for their help, support and

encouragement.

I would like to acknowledge the support of the Office of Naval Research, the

SPAWAR System Center-San Diego & by the Rome Laboratory (grant F30602-01-

2-0543), and by NSF (grants IIS-0123730 and IIS-0097517).

 April 14, 2003

 v

ABSTRACT

RELATIONAL DATABASE ALGORITHMS AND THEIR OPTIMIZATION FOR
GRAPH MINING

Publication No.____

Ramji Beera, M.S.

The University of Texas at Arlington, 2002

Supervising Professor: Sharma Chakravarthy

Data mining aims at discovering important and previously unknown patterns from

datasets. Database mining performs mining directly on data stored in Data Base Management

Systems. Several SQL-based approaches for (association rule) mining have been studied in

the literature.

The main focus of this thesis is on the design and development of algorithms for

graph mining (Subdue) using relational DBMS. We develop several approaches for

discovering the repetitive substructures in a graph. Each approach is analyzed and optimized

further to improve its performance. Two different approaches, cursor-based and User

Defined approaches are studied in this thesis. The experiments evaluate these approaches and

compare their performance with the main memory algorithm for a graph-based data mining

(Subdue). The larger goal of this thesis is to achieve scalability.

viii

The University of Texas at Arlington in Partial Fulfillment... 1

ACKNOWLEDGMENTS.. iv

ABSTRACT.. v

CHAPTER 1.. 1

INTRODUCTION... 1

CHAPTER 2.. 5

RELATED WORK ... 5

2.1 Structural Data Representation.. 5
2.2 Parameters for Control Flow... 6
2.3 Compression Using Minimum Description Length .. 7
2.4 Compression using the Size .. 8
2.5 Inexact Graph Match... 9
2.6 The substructure Discovery Algorithm... 10

2.6.1 Notations ... 11
2.6.2 Flow... 11
2.6.3 Halting Conditions .. 12
2.6.4 Next Iterations ... 13

CHAPTER 3.. 15

CURSOR-BASED APPROACH .. 15

3.1 Using static SQL in C programs ... 16
3.2 Cursor Declarations... 17
3.3 Discovery Algorithm... 18

3.3.1 Initialization of data .. 19
3.3.2 Substructure Discovery ... 21
3.3.3 Input data generation... 31
3.3.4 Performance .. 33
3.3.5 Conclusion... 35

CHAPTER 4.. 36

UDF-BASED APPROACH .. 36

4.1 Functions in UDB system ... 37
4.2 Creating an External Scalar Function.. 38

4.2.1 Description of the Syntax.. 40
4.3 UDF’s over Cursors .. 46

4.3.1 Implementation Details ... 46

 ix
4.4 Experiment Results and Conclusion ... 51

CHAPTER 5.. 53

ENHANCED CURSOR-BASED APPROACH (ECBA)... 53

5.1 Why a new Approach.. 53
5.1.1 Graph Representation.. 53
5.1.2 Graph Extension Revisited.. 55

5.2 Initialization of Data.. 57
5.3 Algorithm .. 59

5.3.1 Flow of the algorithm.. 60
5.3.2 Discovering the single edge substructures .. 61
5.3.3 Extending to two-edge substructures .. 68
5.3.4 Generalization ... 74
5.3.5 Halting conditions ... 79
5.3.6 Limitations to the algorithm.. 80

CHAPTER 6.. 82

PERFORMANCE ANALYSIS AND OPTIMIZATIONS... 82

6.1 Configuration File ... 82
6.2 Writing Log File.. 84
6.3 Use of Correlated queries.. 85

6.3.1 Input data set generation for testing .. 86
6.4 Using the Minus operator.. 90
6.5 Indexing Techniques ... 92
6.6 Updating without the Minus operator ... 94
6.7 Achieving Scalability .. 97

CHAPTER 7.. 102

CONCLUSIONS AND FUTURE WORK ... 102

7.1 Conclusion and Future Work .. 102
BIOGRAPHICAL INFORMATION .. 104

x

FIGURE 2-1 INPUT FILE FOR SUBDUE .. 6
FIGURE 2-2 INEXACT GRAPH MATCH.. 10
FIGURE 3-1 TUPLES IN EDGES TABLE ... 20
FIGURE 3-2 TUPLES IN VERTICES TABLE ... 20
FIGURE 3-3 JOINED_1 TABLE ... 21
FIGURE 3-4 JOINED_1 TABLE AFTER COUNT ATTRIBUTE UPDATED.................... 22
FIGURE 3-5 GRAPH.. 23
FIGURE 3-6 JOINED_1 TABLE ... 24
FIGURE 3-7 JOINED_2 TABLE ... 25
FIGURE 3-8 JOINED_1 TABLE ... 26
FIGURE 3-9 AN EXAMPLE GRAPH WITH INCOMING EDGES 28
FIGURE 3-10 A TUPLE IN JOINED_4 TABLE... 30
FIGURE 3-11 CONSTRUCTED GRAPH FROM THE TUPLE... 31
FIGURE 3-12 THE SUBSTRUCTURES EMBEDDED IN THE GRAPH 34
FIGURE 5-1 JOINED_3 TABLE CONTAINING ALL THE 3 EDGE SUBSTRUCTURES

... 54
FIGURE 5-2 GRAPHS FOR THE TUPLES IN TABLE... 54
FIGURE 5-3 AN EXAMPLE FOR GRAPH EXTENSION... 55
FIGURE 5-4 GRAPH EXTENSION EXAMPLE .. 56
FIGURE 5-5 JOINED_BASE TABLE... 58
FIGURE 5-6 AN EXAMPLE GRAPH... 61
FIGURE 5-7 VERTICES TABLE .. 62
FIGURE 5-8 EDGES TABLE .. 63
FIGURE 5-9 JOINED_BASE TABLE... 64
FIGURE 5-10 FREQUENT_1 TABLE .. 65
FIGURE 5-11 UPDATED FREQUENT_1 TABLE... 66
FIGURE 5-12 UPDATED JOINED_BASE TABLE ... 66
FIGURE 5-13 JOINED_BEAM_1 TABLE.. 68
FIGURE 5-14 JOINED_2 TABLE ... 70
FIGURE 5-15 FREQUENT_2 TABLE .. 72
FIGURE 5-16 FREQUENT_BEAM_2 TABLE... 73
FIGURE 5-17 JOINED_BEAM_2 TABLE.. 74
FIGURE 5-18 EXACT GRAPH MATCH.. 77
FIGURE 5-19 FREQUENT_BEAM_4 TABLE... 80
FIGURE 5-20 JOINED_BEAM_4 TABLE.. 80
FIGURE 6-1 EMBEDDED SUBSTRUCTURE... 87
FIGURE 6-2 OUTPUT FOR SUBDUE FOR DATA SET T1KV5KE.................................. 89
FIGURE 6-3 FREQUENT_4 TABLE TUPLES... 89

 xi
TABLE 3-1 CONFIGURATION OF THE DATABASE – SUBDUEDB............................. 33
TABLE 3-2 CONFIGURATION OF THE SYSTEM .. 33
TABLE 3-3 TIMINGS COMPARISON... 34
TABLE 3-4 INDIVIDUAL TIMINGS FOR CURSOR-BASED APPROACH..................... 34
TABLE 6-1 PARAMETER SETTINGS... 87
TABLE 6-2 TIMINGS USING THE CORRELATED QUERY.. 88
TABLE 6-3 TEST RESULTS USING THE MINUS OPERATOR....................................... 91
TABLE 6-4 TIMINGS COMPARISON WITH INDEXING... 93
TABLE 6-5 TIMINGS WITHOUT USING THE MINUS OPERATOR 95
TABLE 6-6 COMPARING THE FINAL TIMES .. 96
TABLE 6-7 COMPARISON OF OVERALL TIMES.. 97
TABLE 6-8 COMPARISON OF TIMINGS... 99
TABLE 6-9 GRAPHICAL COMPARISON OF THE APPROACHES............................... 100
TABLE 6-10 GRAPHICAL COMPARISON OF THE APPROACHES............................. 101

 xi

1

CHAPTER 1

INTRODUCTION

Database technology has been used with great success in traditional data processing.

But with the ability to store enormous amounts of business data, it is important to find a way

to mine that directly from the database and extract nuggets to leverage for business

advantage. If the data can be mined directly, it can used to find abstractions or relations that

improve the understanding of the data and help in making business decisions.

The large amounts of data that can be collected and stored entail that we figure out a

way to interpret the data and discover interesting patterns within the data. Much of the

research has addressed techniques for discovering interesting concepts from relations in

databases. The techniques developed so far have dealt with data using non-structural and

attribute value representations. The research has addressed issues that involve data relevance,

missing data, noise and uncertainty, and utilization of domain knowledge[1]. Some of the

popular data mining techniques are: classification and association rule miningClassification

rule mining is a process of grouping items based on a classifying attribute. A model is then

built based on the values of other attributes to classify each item to a particular class.

Association Rule mining is the process of identifying the dependency of one item(s) with

respect to the occurrence of other item(s). A majority of the mining algorithms were built for

data stored in flat file systems. Since current database systems are dominated by relational

databases the ability to perform data mining using standard SQL queries[2] will ease the

implementation of data mining. SQL techniques have been successfully used for

implementing for association rule mining[3].

In contrast to earlier work, recent data mining projects have been collecting structural

data, which describe relations among the data objects. So, there is a need for techniques and

 2

algorithms that would decipher the relationships among data objects. A graph mining

approach to data mining is different from conventional mining approaches such as

association rules and clustering. Graph mining uses the natural structure of the application

domain and mines directly over that structure (unlike others where the problem has to be

mapped to transactions or other representations). Graphs can be used to represent structural

relationships in many domains (web, protein structures, groups of related actions, etc).

Subdue is a mining approach that works on a graph representation.

The goal of Subdue’s[4] approach to mining is to find common and repetitive

substructures within the data. The motivation for this process has been to find interesting

substructures that would be able to compress the data and to identify substructures that would

enhance the interpretation of the data. The Subdue substructure discovery is a process of

identifying the concepts describing interesting and repetitive substructures within the

structural data. Once a substructure is discovered, a pointer to the instances of the

substructure is used to simplify the data.

The Subdue system discovers the interesting and repetitive substructures in the data

using the principle of Minimum Description Length [1]. Subdue replaces the best

substructure discovered using MDL by a single pointer and makes passes over the data, thus

producing a hierarchical description of the structural data. Subdue, also uses the concept of

inexact graph match to bound the algorithm computationally.

Although Subdue provides us a tool for finding the interesting and repetitive

substructures within the data, it is limited by the fact that it is a main memory algorithm. The

algorithm constructs the entire graph in main memory and then mines it using a search

algorithm. This poses problems when the data size is very large, which is usually the case for

mining applications. The algorithm needs to be mapped to a persistent representation of the

 3

graph to overcome main memory limitations. One of the approaches for providing

persistence and scalability would be to use database techniques that are capable of handling

large data sizes[10].

Computations over databases were not developed with arbitrary algorithms in mind.

Hence, databases do not provide functionality to support “mining” in the traditional. Existing

query languages such as SQL are computationally incomplete, as they do not provide all the

primitive programming language constructs. The data structures are also limited to a set or a

table in the cause of relational database management systems. So in order to provide

computational-completeness, SQL constructs can be in a host programming language such as

C or JAVA. C was chosen over Java because all the code of Subdue has been written in C.

This thesis provides an approach to substructure discovery in a database environment

and uses DB2 as the DBMS. The thesis addresses mapping and representation of the

substructures to tuples in the database and describes how the discovery is achieved purely

through SQL-based approaches. The main focus of the thesis is on developing algorithms to

discover repetitive substructures and their optimization. The algorithms have to be carefully

designed to achieve this functionality and be able to work for larger data sets. The SQL

queries developed have to be carefully analyzed and optimized to achieve the desired

performance, which is comparable or even better than main memory algorithm. Although

parallel versions of the main memory have been developed to speed up the computation and

handle large data sets, they suffer from loss of information when the data set is partitioned.

The roadmap of this thesis is as follows: Chapter 2 discusses the back-ground and

related work done in the field of data mining and the approaches used for mining structural

data. Chapter 3 summarizes the first approach taken for the substructure discovery using the

cursors. Chapter 4 summarizes the approach taken using the User Defined Functions (UDF)

in DB2. Chapter 5 summarizes the second approach taken and includes various optimizations

 4

of the base approach. Chapter 6 discusses various performance related optimizations and

their comparison for data sets of different sizes as well as with main memory approach

performance. Chapter 7 concludes the thesis and the future work.

5

CHAPTER 2

RELATED WORK

This chapter describes the Subdue main memory algorithm. It discusses how

substructures are discovered in a systematic way. It also discusses how Subdue uses the

graph isomorphism and inexact graph match concepts to make it a polynomial-time

algorithm. It also discusses briefly the concept of Minimum Description Length (MDL) and

the size-based evaluation principles used for graph compression. It summarizes the various

parameters used by the Subdue algorithm, their relevance, and what they mean conceptually.

2.1 Structural Data Representation

The substructure discovery system represents the data as a labeled graph. Objects in

the data represent vertices or small sub graphs and the relationships between them are

represented as edges. A substructure is a connected sub-graph within the graph. Figure 2-1

shows a sample input for Subdue. An instance of the substructure in the graph is a set of

vertices and edges that match the substructure theoretically.

 The input to Subdue is a file, which describes the graph. All the vertices are listed

first followed by the edges. Each vertex has a unique vertex number, and a label. Each edge

has an edge label and the vertex numbers, to which it connects, from source to destination.

The edge can be an undirected edge (u) or a directed edge (d). An edge with label e is

regarded as a directed edge unless it the -undirected flag is specified at the command prompt,

which will cause all edges to be treated as undirected.

 6

Figure 2-1 Input file for Subdue

2.2 Parameters for Control Flow

The input to the discovery process is taken from the file and the graph is constructed

using these values. A number of parameters control the working of the algorithm. They are

briefly described below:

1. Beam: This parameter specifies the maximum number of substructures kept in the

substructure list to be expanded. Others are discarded. The default is 4.

2. Limit: This parameter specifies the maximum number of substructures to be

evaluated in each iteration. The default value is (Number of Vertices + Edges)/2.

3. Size: This parameter specifies the minimum and maximum size to be reported to the

user after the discovery, and maximum size also acts as a halting condition for

Subdue. The size here indicates the number of vertices in the substructure.

4. Overlap: This parameter guides the algorithm to consider overlapping of the instances

of the substructures. Two instances of a substructure are said to overlap is they have a

vertex common to each other. Overlap plays significant role in calculating the

compression value because with overlap we have to maintain extra information.

5. Nsubs: This parameter reports the best n substructures discovered.

6. Output: This parameter controls the screen output of Subdue. The various values are

 7

1) Print the best substructure in that iteration.

2) Prints the best n substructures, where n is the number specified in the

nsubs parameter.

3) Print the best n substructures, and intermediate substructures as they

are discovered.

4) Print the best n substructures along with their instances and

intermediate substructures as they are discovered.

5) Only for Supervised Subdue: prints the substructures found in the

negative graph along with the output printed by – 4 option.

7. Iterations: The Number of iterations to be made over the input graph. The best

substructure from iteration i pass will be used to compress the graph for next iteration

i+1. Default is 1.

8. Prune: With this argument Subdue will discard the child substructure which has lesser

value than the parent substructure. This will substantially reduce the search space.

2.3 Compression Using Minimum Description Length

The minimum description length principle, described by Rissanen[5], states that the

best theory to describe a set of data is a theory that minimizes the description length of the

whole data set. The MDL principle has been used in various applications such as decision

tree induction, image processing and various learning models of non-homogenous

engineering domains. This is used for evaluating a substructure discovered by checking the

number of bits needed if it is used in compressing the graph.

Subdue’s implementation of MDL principle is in the context of graph compression

using a substructure. Here, the best substructure is one that minimizes DL(G) + DL(G|S)

where S is the discovered substructure, G is the input graph, DL(S) is the number of bits

 8

required to encode the substructure discovered, and DL(G|S) is the number of bits required to

encode the input graph G after it has been compressed using the substructure S[4].

Let DL (G) = N (G) = number of bits needed to represent the graph.

So, N (G) returns the number of bits to represent the graph. If the graph is compressed using

a substructure S in the graph which has i instances, then the number of bits needed to

represent the compressed data would be

 N (G) = N (S) + N (G/S).

The term N (G/S) represents the number of bits needed to represent the graph after

compressing the graph by substituting all the instances of the sub-graph by just one vertex.

The compression is better if there are more instances of the substructure in the graph. The

compression achieved would be

 Compression = 1 - (MDL of compressed graph)/ (MDL of the original graph)

 = 1 - (N (S) + N (G/S))/N (G)

Subdue outputs the best substructures based on the above compression value.

2.4 Compression using the Size

The compression achieved by a substructure can also be evaluated using the size

parameter as well. Size of a graph is defined as the number of vertices plus the number of

edges in the graph. Mathematically:

Size (G) = Number of vertices (G) + Number of edges (G)

So assuming there is no overlap between the instances of a substructure, the size of graph

after compressing with the substructure would be

Size (G/S) = (Number of Vertices (G) – i*Number of Vertices (S) + i) + (Number of

 Edges (G) – i*Number of Edges (S)),

 9

where i is the number of instances of the substructure S. This is an approximation of the

MDL theory. This theory though uses simple and more efficient method of coding it does not

capture the optimal coding used by MDL.

2.5 Inexact Graph Match

Although exact graph match can be used to find interesting substructures in the graph,

most of the substructures in the graph may be slight alterations of a substructure. This

difference can be attributed to the noise and distortion or might just illustrate the slight

differences between the substructures in general. Comparing two graphs exactly has been

shown to be an NP complete problem.

In order to deal with inexact graph matches, an approach developed by Bunke and

Allerman[6] is used, where each distortion is assigned a cost. A distortion is a basic

transformation such as deletion, insertion and substitution of vertices and edges. So, as long

as the cost of difference between two graphs falls within a user given threshold the graphs are

considered isomorphic. Employing computational constraints such as bound on the number

of substructures considered and the number of partial mappings considered during the inexact

graph match, keeps the Subdue algorithm to run in polynomial time.

An example of inexact graph match is shown below. The Figure 2-2 shows the two

graphs that are compared.

 10

 Graph1 Graph2

Figure 2-2 Inexact graph match

Assuming that an edge label is concatenation of the vertex labels, the two graphs

would be different by a cost of two, namely the edge label AD and AC are different and the

vertex labels C and D do not match. If a user had a threshold of two then the two graphs will

be considered isomorphic.

2.6 The substructure Discovery Algorithm

Below, the algorithm used for Subdue [4] is presented.

1) Subdue(Graph, BeamWidth, MaxBest, MaxSubSize, Limit)

2) ParentList = { }

3) ChildList = { }

4) BestList = { }

5) ProcessedSubs = 0

6) Create a substructure from each unique vertex label and

its single-vertex instances; insert the resulting

substructures in ParentList

7) while ProcessedSubs <= Limit and ParentList is not empty

do

8) while ParentList is not empty do

9) Parent = RemoveHead(ParentList)

A C D

B

A

B

 11

10) Extend each instance of Parent in all possible

ways

11) Group the extended instances into Child

substructures

12) for each Child do

13) if SizeOf(Child) <= MaxSubSize then

14) Evaluate the Child

15) Insert Child in ChildList in order by

value

16) if Length(ChildList) > BeamWidth then

Destroy the substructure at the end of

ChildList

17) ProcessedSubs = ProcessedSubs + 1

18) Insert Parent in BestList in order by value

19) if Length(BestList) > MaxBest then

Destroy the substructure at the end of BestList

20) Switch ParentList and ChildList

21) return BestList

2.6.1 Notations

ParentList (): It consists of substructures to be expanded. Initially it is empty. The

number of elements in the Parent List is guided by the beam width.

ChildList (): It consists of substructures that are expanded. Initially it is empty.

BestList (): It consists of best substructures found so far.

ProcessedSubs (): It represents the number of substructures processed so far, hence it

acts as one of the halting conditions.

2.6.2 Flow

The algorithm starts with the initializations of the Parent List, Child List and the Best

List to empty sets. The parent list that contains the substructures to be expanded is populated

 12

with all the unique vertex labels in the graph which are sorted by their out degree. So each

vertex is represented in the parent list as a unique substructure based on their label.

 The inner while loop plays the vital role in the algorithm. Each substructure is taken

from the parent list and expanded in all possible ways. This is done by adding an edge and a

vertex to the instance, or just an edge if both the vertices are already present in the instance

does this. The first instance of each unique expansion becomes a definition for a new child

substructure. All the child instances that were expanded in this way become the instances of

that child substructure. Some of the child instances, which were expanded in a different way

but match the substructure within a threshold using the inexact graph match, are also

included in the instances of that child substructure.

Each of the child substructures is then evaluated using the MDL heuristic and inserted

into the Child List based on this heuristic. The beam width is enforced on the Child List, all

the substructures after the beam width are removed and thus do not participate in the future

extensions. The Best List also uses the same mechanism to keep its cardinality to the limit

specified. Once the Best List and the Child List are updated, the Parent List is swapped with

the Child List, which would be then used to make the next round of extensions. The

algorithm’s run time is guided by the user specified beam width and the Limit. The inexact

graph match [6] is used to bound the run time.

2.6.3 Halting Conditions

There are many halting conditions for the algorithm. All of these parameters have a

default value, which can be changed by the user. The most significant of these parameters is

the Limit, which is basically the limit on the number of substructures processed so far.

Although the default is set to (Number of vertices + Number of Edges)/2 the user can give a

value that has a bearing on the output of the program.

 13

One of the other halting conditions is the pruning parameter, which is more of a

graph-dependent parameter unlike the limit, which is just a number. Initially in the discovery

process, the number of instances of each substructure is usually very large, but as the

discovery process continues the size of the substructure increases and thus the number of

instances reduce. Using the pruning mechanism, which discards child substructures with

values less than the parents, we can have a halting condition when there would be no child

substructures left after pruning. Without the pruning argument the child list is always kept

full no matter what the value of the substructure is as compared to the parent substructure.

Another way of halting the algorithm is using the size parameter, which controls the

maximum size of a substructure. For example, a maximum size of 5 guides the algorithm to

not explore a substructure of size greater than 5 (number of vertices). In the Child List none

of the substructures with size greater than 5 are inserted and thus emptying the Child and the

Parent List. The minimum size parameter does not have a bearing on the halting but it has an

effect on the substructures inserted inside the Best List. The minimum size also guides the

output to show only those substructures, which have a size greater than or equal to the size

mentioned as the minimum size.

2.6.4 Next Iterations

After finding the best substructure, which would compress the graph in the first

iteration, this substructure would be actually used to compress the graph by replacing each of

the substructures in the graph by a single node. Although each of the substructures is

compressed to a single node, it still needs to maintain other information about the edges

connecting the rest of the graph. Once the graph is constructed, this graph would be used for

the next iteration as the input graph for finding interesting substructures. This process can

continue depending on the number of iterations the user might specify or either the algorithm

 14

fails to find a substructure, which can compress the graph. So according to the algorithm it

might never even go to a second iteration if it is never able to find a substructure, which can

compress the graph in that iteration.

15

CHAPTER 3

CURSOR-BASED APPROACH

This chapter introduces the first of the approaches taken for Subdue discovery process

using a relational DBMS. It includes the basics of writing static SQL in C programs. The

basic idea in this approach is to use the cursor operations in DB2 to update the count (number

of instances) of each substructure. The algorithm starts with initializing the data from the

input. All the single-edge substructures are stored in the Joined_1 table. Cursors are used to

compute the count of each substructure. The count attribute indicates the number of instances

of the substructure. The count attribute is used to prune the substructures containing only a

single instance. Single-instance substructures cannot create larger substructures of counts

greater than one if exact graph match is used. The substructures are expanded by a single

edge and stored in a different table. The expansion is done using the join operator in SQL.

The above algorithm is repeated for the extended substructures. The halting condition would

be to reach the maximum size of the substructure, which is a user-specified number.

The reason behind choosing this approach is that SQL is not a computationally

complete language and hence the Subdue main memory algorithm cannot be applied in a

database context. Mapping the graphs representation to the existing structures (tuples and

tables) in the database is important. Concepts from databases, such as cursors, UDF’s and

stored procedures have to be used to achieve the functionality.

 16

3.1 Using static SQL in C programs

DB2 UDB (Universal Database) [7] provides two ways in which an application

program can interact with a database, called static SQL and dynamic SQL. In static SQL, the

application developer must know exactly what SQL statements are needed and embed these

SQL statements directly into an application program. The program is then processed by the

DB2 pre-compiler, which converts each SQL statement into an optimized access plan and

stores the plan in the database. In the application program the original SQL statements are

replaced by calls to run time routines that load and execute the access plans. Static SQL

provides good performance because it optimizes the SQL statements at compile time and

prepares the access plan. The alternative to static SQL is dynamic SQL, which presents SQL

statements to the database at run time.

Each SQL statement has to be prefixed by the two words EXEC SQL. Host variable

is the name of the variable declared in the program in which SQL statement is embedded.

The name of a host variable is distinguished from the column name with a colon prefix to the

host variable. Since the database columns and host variables are not in the same name space,

host variables can be named after the column names with which they compare. All the

declarations of host variables must be declared in a declare section: these variables are

specially marked for processing by the compiler. A simple example of using host variables

and embedded SQL is shown below.

• Inserting a new row into a table called SUPPLIERS from input host

variables
EXEC SQL

INSERT INTO SUPPLIERS(suppno,name,address)

VALUES (:suppno,:sname,:saddr)

 17

3.2 Cursor Declarations

A cursor is like a name associated with an SQL query. A cursor declaration is used to

declare the name of the cursor and to specify its associated query. Three statements OPEN,

FETCH and CLOSE operate on the cursors. An OPEN statement prepares the cursor for

retrieval of the first row in the result set. A FETCH statement retrieves one row of the result

set into some designated variables in the host program. After each fetch, the cursor is

positioned on the row of the result set that was just fetched. FETCH statement is usually

executed repeatedly until all the rows of the result are fetched. A CLOSE statement releases

all the resources used by the cursor when it is no longer needed. In addition to their use in

retrieving query results into host programs, cursors can play a role in updating (including

deleting) rows of data in the database. A special form of the UPDATE statement called the

positioned update statement can be used to update exactly one row in the database based on

the position of the cursor. In a positioned update, instead of a search condition, the where

clause contains the phrase current of followed by a cursor name. The DELETE operation

works in a similar way.

The syntax of a cursor declaration is shown below [7]

DECLARE--cursor-name—CURSOR {WITH HOLD}

{WITH RETURN TO CLIENT/TO CALLER}

FOR statement-name

The following example shows a series of statements for using a cursor.

EXEC SQL

DECLARE c1 CURSOR FOR

SELECT vertexname,vertexno

FROM edges

 18

FOR DELETE ;

EXEC SQL OPEN c1;

EXEC SQL FETCH c1 into :vertexname,:vertexno;

If(vertexno>10)

EXEC SQL

DELETE FROM edges

WHERE CURRENT OF c1;

3.3 Discovery Algorithm

The steps of the algorithm remain the same for the database approach. The first step is

to find substructures of length n and sort them based on their count. The count of a

substructure corresponds to the number of substructures that exactly match the current

substructure. These substructures of size n will be used for the extensions to generate

substructures of size n + 1. In this algorithm beam and limit are not used.

Pseudo Code for this algorithm is given below:
1) Subdue-DB(input file, size)
2) Load vertices into vertices table;

3) Load edges into edges table;

4) join vertices and edges table to create and populate

joined_1 table

5) i = 2

6) WHILE(i<size)

7) Compute Joined_i table (substructures of size

i) from two copies of joined_i-1 table

8) DECLARE Cursor c1 on Joined_i

9) DECLARE Cursor c2 on Joined_i

10) WHILE (c1)

11) FETCH c1 into g1

12) WHILE(c2)

13) FETCH c2 into g2

14) If (Isomorphic (g1, g2) =0)

15) Update Joined_i

 19

16) Set count = count + 1

17) Where current of c1

18) Delete from c1 where count = 1

20) i++

3.3.1 Initialization of data

The algorithm starts with initialization of data. The input is read from a delimited

ASCII file and loaded into the specific tables. The input file created from the graph generator

is not compatible for loading the tuples in the table. A function called change_db accepts the

input file for Subdue and creates two files, the vertex file and the edge file. The file created is

a delimited ASCII file, which consists of streams of data values- ordered by row and by

column within each row. The comma delimiter separates column values and the new line

character separates each row.

Below is an example of a delimited ASCII file, which loads all the edges into the

edges table.

1,2,e1

3,2,e1

4,3,e2

5,6,e1

7,6,e1

8,7,e2

9,10,e1

 Once the data is loaded into the tables, the table has values as shown in Figure 3-1.

 20

Vertex1 Vertex2 EdgeName

1 2 E1

3 2 E1

4 3 E2

5 6 E1

7 6 E1
Figure 3-1 Tuples in EDGES table

The Vertices table is also loaded in the same way. The Vertices table is shown in Figure 3-2.

VertexNo VertexLabel

1 A

2 B

3 C

4 A
Figure 3-2 Tuples in Vertices table

 The next step in the algorithm is the initialization of the Joined_1 table. The Joined_1 table

will consist of all the substructures of size one, size being the number of edges. The new

table Joined_1 has been created because the edges table does not contain information about

the vertex labels. So the Edges table and the Vertex table are joined to get the Joined_1 table.

The SQL query for doing this would be
Insert into Joined_1(Vertex1, Vertex2, Vertex1name,

Vertex2name, edgename)

 21

(

Select e.Vertex1, e.Vertex2, v1.VertexLabel,

v2.VertexLabel, e.EdgeName

From Edges e, Vertices v1, Vertices v2

Where e.Vertex1 = v1.VertexNo and e.vertex2

= v2.VertexNo

)

The resultant table Joined_1 table is shown in Figure 3-3.

Vertex1 Vertex2 Vertex1Name Vertex2Name EdgeName

1 2 A B E1

3 2 C B E1

4 3 A C E2

5 6 B D E1

7 6 E D E1
Figure 3-3 Joined_1 table

3.3.2 Substructure Discovery

The substructure discovery algorithm starts with one-edge substructures unlike in

Subdue, which starts with all the unique vertex labels. In the database version, each instance

of the substructure is represented as a tuple in the table. The next step in the algorithm is

getting the counts of the individual substructures. The count attribute indicates the number of

substructures that are similar or exactly match the substructure under consideration. In SQL,

there is no way of distinguishing one substructure from another, since each of the

substructures is represented by a tuple in the table. In this method the count of each

substructure is updated by comparing it with every other substructure. This was the first

method developed for the database environment and has n squared complexity, where n is the

 22

number of tuples in the table. In order to compare each tuple with every other tuple, cursors

are used to retrieve the information for each tuple. The SQL query to retrieve the information

can be expressed as,

Declare Cursor graph1 for

Select Vertex1, Vertex2, Vertex1Name,

Vertex2Name, EdgeName

From Joined_1

Similarly, another cursor, graph2 is declared on the same table. Each tuple in the Joined_1

would be compared to every other tuple in the table, using the isomorphism code found in

Subdue. With the information taken from the cursor, a graph is constructed. Since the

substructure is a single edge, the graph would be a single-edge graph. For a given

substructure, the count of that substructure is increased by one if any other substructure is

isomorphic to this one. After this pass, each tuple will have an attribute count, which

indicates the number of substructures to which it is isomorphic. At the end of this pass, the

table Joined_1 will have the values shown in Figure 3-4.

Vertex1 Vertex2 Vertex1Name Vertex2Name EdgeName Count

1 2 A B E1 2

3 2 C B E1 1

4 3 A C E2 3

5 6 B D E1 1

7 6 E D E1 1
Figure 3-4 Joined_1 table after count attribute updated

The count essentially captures the number of instances of that substructure, so a count of five

means the substructure has five occurrences in the graph. The tuples with count one are

 23

substructures with only instance and hence any bigger graph that contains this edge will have

a count of one, so these tuples are removed from the table. So in the Joined_1 table only

those tuples with count greater than one are retained.

3.3.2.1 Two-Edge Substructures

In a main memory approach, every substructure, which is necessarily a sub-graph,

can be defined as a structure in the programming language. Extensions to two or more edges

are generated by growing the substructure appropriately. In the database environment as

there are no structures, the only information to be used will be the single edge substructures,

which are basically tuples in the Joined_1 table. The number of attributes of the table needs

to be increased to capture substructures of increased size.

The Joined_1 table is joined with itself to get the Joined_2 table, which will have all

the substructures with two edges. The tuples in this table would have the information about

all the two-edge substructures that includes the edge names and vertex names. The SQL

query needs to generate all possible two-edge substructures with no duplicates. The single-

edge substructure can be extended to two-edge substructures either on the first or second

vertex. Hence there will be two queries, one each for extending on each vertex, to generate

the two-edge substructures. Also the queries need to make sure that duplicates are not

generated.

For example consider the graph shown in Figure 3-5,

Figure 3-5 Graph

A(1) B(2)

C(3)

A(4) C(5)

B(5)

 24

For the graph in Figure 3-5, the joined_1 table after updating the count attribute has

the following values.

Vertex1 Vertex2 Vertex1Name Vertex2Name EdgeName Count

1 2 A B AB 2

1 3 A C AC 2

4 5 A C AC 2

4 6 A B AB 2

Figure 3-6 Joined_1 table

The query to generate all the possible two edge substructures is shown below. This

query does not eliminate the duplicates.
Insert into

Joined_2(Vertex1,Vertex2,Vertex3,Vertex1Name,Ve

rtex2Name,Vertex3Name,

Edge1Name,Edge2Name,Ext1,count)

(

Select

(j1.vertex1,j1.vertex2,j2.vertex2,j1.

vertex1name,j1.vertex2name,j2.vertex2

name,j1.edge1name,j2.edge1name,1,0)

From Joined_1 j1, Joined_1 j2

Where j1.vertex1=j2.vertex1 and

j1.vertex2!=j2.vertex2

Union

Select

(j1.vertex1,j1.vertex2,j2.vertex2,j1.

vertex1name,j1.vertex2name,j2.vertex2

name,j1.edge1name,j2.edge1name,2,0)

From Joined_1 j1, Joined_1 j2

Where j1.vertex12=j2.vertex1

 The resulting Joined_2 table is shown in Figure 3-7

 25

Figure 3-7 Joined_2 table

The table Joined_2 has an attribute Ext, which aids in constructing the graph. Every

tuple in the Joined_2 table represents a two-edge substructure. The attributes of the table

vertex numbers, labels and edge labels give the information about the substructure. But the

attribute ext describes the direction of each edge in the graph. In the Joined_1 table the edge

is always from the first to the second vertex. But in the Joined_2 table though the first edge is

from vertex one to vertex two we cannot say that for the second edge. The information

known is that the vertex three is part of the edge but the direction and the connecting vertex

is not known. For this reason the ext attribute is maintained. For example, if the ext is 1 then

the edge is from vertex 1 to vertex 3. In general in an N edge graph if Exti is j then the i+1th

edge is from the vertex number in the attribute vertex j to the vertex number in the attribute

vertex i+2.

The first and second tuples are duplicates in the above table, and so are the tuples

fourth and the fifth. Hence when the count is updated it would be wrongly updated to 4 for

each tuple, because every tuple is isomorphic to every other tuple. To overcome this problem

the criterion for extension needs to be changed. Instead of extending two different tuples to

the same substructure we restrict the extension to only one tuple. In the where condition

instead of having j1.vertex2 != j2.vertex2, having j1.vertex2 < j2.vertex2 would ensure there

are no duplicates generated by the join. By having the less than condition we are limiting the

 26

extension to only one tuple. The condition also satisfies the completeness of the algorithm,

that is, all substructures are generated. The completeness is ensured because only one of the

tuples A->B or tuple A->C is extended to the other. For the above example, the resulting

table would be

Figure 3-8 Joined_1 table

The count of each tuple is then updated, to two in this example. If there are any tuples

with a count of one they are deleted from the table.

3.3.2.2 Generalization

For higher extensions, substructures having more than two edges need to be

generated. The substructures with n number of edges are stored in the Joined_n table, the

attributes in that table would be n+1 vertex numbers, n+1 vertex names, n edges, n-1

extensions and one attribute for the count. The extensions are needed to know the

connectivity within the graph. For example, in a three-edge substructure if the extensions

have the value twos and three, it means that the second edge is from vertex two to vertex

three and the third edge is from vertex three to vertex four. The information contained in

vertex names and edge names are also important because they aid in constructing the graph

and play an important role in detecting isomorphism. The vertex numbers are needed for the

higher extensions.

A generalized query for generating the n edge substructures can be expressed as
Insert into Joined_n

 27

Vertex1,Vertex2…..VertexN+1,Vertex1Name,Vertex2

Name…..VertexN+1Name

Edge1Name,Edge2Name…..EdgeNName,Ext1,Ext2…..Ext

N-1,0

(

Select

j1.Vertex1,j1.Vertex2….j1.vertexN,j2.

vertex2,j1.Vertex1Name,j1.Vertex2Name

…j1.vertexNName,j2.vertex2name,j1.edg

e1Name,j1.edge2name….j1.EdgeN-

1Name,j2.edgename,j1.Ext1,j1.Ext2…..j

1.ExtN-2,p,0

From Joined_N-1 j1, Joined_1 j2

Where j1.vertexP= j2.vertex1 and

j1.vertexP+1 <

2.vertex2…j1.VertexN<j2.Vertex2

)

The number P varies from 1 to N. Since an N-1-edge substructure can be extended from any

of the n possible vertices, the number of queries needed would be n. The number P in the

above query achieves this functionality. The idea here is that an edge could be added to the

existing substructure to get a larger substructure.

3.3.2.3 Negative Extensions

All the above queries assume that all edges are outgoing from a vertex, but we need

to handle graphs with incoming edges.

For example consider the graph shown in Figure 3-9:

 28

Figure 3-9 An example graph with incoming

edges

In the above graph all the edges are coming into the vertex B. In the first pass all the

single edges are detected correctly as AB, CB and DB but in the second pass there are no

edges going either out of A or B or any other vertex, so extending by the query described

above, would result in no tuples in the Joined_2 table although there are several 2-edge

substructures. In order to overcome this problem, in addition to extending edges, which are

going out from the vertex, the query should also extend by those edges that are coming into

the vertex. Distinction has to be made between an edge going out from a vertex and an edge

coming into the vertex, since the difference cannot be inferred from the vertex number or the

label. We use the extension number to differentiate them. For all the edges coming in, the

extension number will be negative. For example if the ext1 attribute has a value –2 that

means the second edge is from vertex 3 to vertex 2 and if the ext1 has attribute value 2 then

A

D

C

B

 29

the edge is from vertex 2 to vertex 3. In general if the extension i is –j, then the edge i+1 is

from vertex i+2 to j. The query for generating all the edges can be expressed as,
Insert into Joined_N

Vertex1,Vertex2…..VertexN+1,Vertex1Name,Vertex2

Name…..VertexN+1Name

Edge1Name,Edge2Name…..EdgeNName,Ext1,Ext2…..Ext

N-1,0

(

Select

j1.Vertex1,j1.Vertex2….j1.vertexN,j2.

vertex2,j1.Vertex1Name,j1.Vertex2Name

…j1.vertexNName,j2.vertex2name,j1.edg

e1Name,j1.edge2name….j1.EdgeN-

1Name,j2.edgename,j1.Ext1,j1.Ext2…..j

1.ExtN-2,-p,0

From Joined_N-1 j1, Joined_1 j2

Where j1.vertexP= j2.vertex2 and j1.vertex1

< j2.vertex2….j1.VertexP-1<j2.Vertex2

)

P is a variable from 2 to N

3.3.2.4 Constructing the graph

In order to use the isomorphism code, two graphs have to be constructed in the form

of strings and given as input to the isomorphism code. The string should be similar to the

input given to Subdue except that the information is not a file input but a string. For

constructing the graph from the tuple, the needed information are the vertices and the edges

in the graph. Since the tuple stores all the vertex numbers and the vertex labels, they are

loaded as it is, but for the edges, the edge names are known but it does not give the

information as to how the graph is connected between the vertices. The extensions, which are

maintained as attributes in the table help in constructing the graph. For example, if the ext3

 30

attribute has value 1, that means the fourth edge is from the vertex number in attribute vertex

one to vertex number in attribute vertex five. For example, consider a tuple in the Joined_4

table, which contains all of the four-edge substructures. V in the table stands for the Vertex,

E stands for Edge and Ex stands for extension. No stands for number and Na stand for name

Figure 3-10 A tuple in Joined_4 table

From the information in the table the graph can be constructed as follows. First, all

the vertex numbers and their labels are enumerated as shown below

V 1 A

V 2 B

V 3 C

V 4 D

V 5 C

The second part of creating the graph is deriving the information about the edges. The

first edge is written without any information from the table because the direction is always

from the first vertex to second vertex. For the rest of the edges, depending on the extension

number the edge direction is determined. If the extension number is negative, then the edge is

coming into the vertex, else it is going out. Since the extension 2 and 3 are negative they are

the edges coming into the respective vertices.

So the edges for the above tuple are

 31

D 1 2 AB

D 1 3 AC

D 4 2 DB

D 5 4 CD

The constructed graph is shown in Figure 3-11.

Figure 3-11 Constructed graph from the tuple

Once the graphs are constructed they can be used as input to the isomorphism code,

which returns a floating-point number indicating how different the graphs are. So if the

returned number is zero, they are isomorphic.

3.3.3 Input data generation

The input graphs have been created using the graphgen code developed by the AI

group at UTA [8]. The program reads the parameters from a file and creates a graph. The file

has the following parameters, each described on a new line.

1) Number of vertices in the graph

2) Number of edges in the graph

3) Number of distinct vertex labels

4) Number of distinct edge labels

5) Number of substructures to be embedded in the graph

A B

C D C

 32

6) Number of patterns to embed in the graph

For each pattern

i. Number of instances

ii. Number of vertices

For each pattern vertex

o Each vertex label of form v#, where # is less than the

number mentioned in the parameter 3

iii. Number of edges

For each pattern edge

o The edge label of form e#, where # is less than the

number mentioned in 4.

o The first vertex that this edge is attached to. An integer

ranging from 0 to (8.) minus one.

o The second vertex that this edge is attached to. An

integer ranging from 0 to (8.) minus one.

The substructures of size three and size four have been embedded in the graphs. The

number of instances of each of the substructures has been set to 3% the number of edges in

the graph. The substructures that were embedded inside the graph have been described in

Figure 3-12. The number of vertices is set to half the number of edges, and the number of

distinct vertex labels and edge labels have been set to half the number of vertices and edges,

respectively.

 33

3.3.4 Performance

This being the first approach, we wanted to get a feel for the time taken by the

database approach and how it compares with the main memory approach (Subdue 4.3.a.1) for

the same graph. Since there was no pruning in this approach the comparison is not exactly

the same, as the main memory implements all the basic pruning techniques by using the

beam and the limit.

Table 3.1 shows the configuration of the database we used for running the test cases.

Table 3-1 Configuration of the Database – SubdueDB

PageSize 4KB

LogFileSize 40000*PageSize(4KB)

Database DB2(UDB)

Version 6.1

Table 3-2 Configuration of the system

RAM 348MB

Hardware SUNW,Ultra-5_10

OS version 5.6

Compiler GCC

Experiments were performed to compare the run times of each of the two approaches,

main memory and database. Table 3-3 shows the total times taken by both Subdue and the

database approach for the respective data sets. From the results we can clearly see that the

database approach is no comparison to the main memory approach. This can be attributed to

 34

the UPDATE operation we are doing, which is one of the most expensive operations in a

database.

Table 3-4 shows the individual timings taken by the database algorithm. Table 3-4

shows the timings for the Subdue approach. The timings have been divided for each size (of

the sub-graph), namely 1 edge, then 2 edge, and so on. For the one-edge pass the timings are

given for the cursor operations and deletion time. For the higher edges the time taken for

extension, cursor and delete operations are also mentioned. The data set is represented as

TnVmE where n represents the number of vertices and m represents the number of edges.

Figure 3-12 The substructures embedded in the graph

Table 3-3 Timings comparison
Data Set Database Subdue
T50V100E 5.63 0.17
T250V500E 117.27 3.56
T500V1000E 470.44 13.21
T1000V2000E Segmentation fault 45.11

Table 3-4 Individual timings for Cursor-based approach

 35

3.3.5 Conclusion

From the performance point of view, the database algorithm does not do very well.

The best case input for the algorithm would be only one occurrence of all the edges, which

would make the algorithm, stop after the first pass because there would be no tuples

participating in the next pass. The worst-case input for the algorithm would be a large

number of repeating edges and a large number of instances of each substructure. Although

performance-wise the algorithm does not perform as good as the main memory,

functionality-wise, it discovers all the substructures. The user can also mention a threshold

for graph isomorphism, which would make the algorithm to check for substructures, which

need not be exact graph match but can differ by the threshold specified by the user.

From the results it is evident that a large amount of time was used for the first pass.

The reason for this is that the graph generator generates the output in such a way that all the

substructures are first embedded and then fills the remaining graph with edges appearing

only once and thereby reducing the number of tuples participating in the higher extensions.

This entails that for improvement; subsequent approaches should focus on minimizing the

time taken for updating the counts. The maximum data set that completed successfully was

the 1000 edges graph. The next data set could not complete because of a segmentation fault.

The segmentation fault occurred in the isomorphism code, the number of comparisons made

for a 2000 edge graph would be 2000*2000, so the program (or the data space/buffer used for

this purpose) runs out of memory.

36

CHAPTER 4

UDF-BASED APPROACH

This chapter explores an alternative to the cursor-based approach described in the

previous section. User-defined functions (or UDFs) are unique to DB2 and were introduced

to provide better interaction between SQL statements and language (C, C++, Java) code. The

idea is to offer a tighter integration between relational and algorithmic approaches that is not

provided efficiently by the cursor-based approach. In this approach, user-defined functions

can be invoked as part of SQL statements, tables can be returned from those functions, and

memory allocation as well as complex data structures (that cannot be created using SQL) can

be created in UDFs. Also, UDF’s execute in two modes: fenced and unfenced. In the fenced

mode, user code is executed in a separate address space to ensure that it does not crash the

database server. This is also somewhat inefficient, as the data needs to be passed from one

address space to another. In the unfenced mode, the user code is executed as part of the

database server address space. The performance is better (as data is passed within the same

address space) but at the risk of crashing the system. Typically, the user code is debugged

using the fenced mode and then executed in the unfenced mode to achieve better

performance.

We wanted to explore this approach to determine its effectiveness as compared to the

previous approach. Our preliminary results are reported in this chapter.

37

4.1 Functions in UDB system

1) Built-in Functions

Some functions are built into the code of the UDB system. These functions are

found in the SYSIBM schema. Some of the functions are

��Arithmetic and String operators: +, -, *, /, || etc

��Scalar functions: substr, concat, length, days and so on

��Column functions: avg, count, min, max, stdev, sum, variance

In addition to the built in functions in the SYSIBM schema, many other functions are shipped

with UDB, in the SYSFUN schema. Although these functions are shipped with the system,

they are not implemented directly by system code. They are implemented as preinstalled

external functions [7].

2) System-generated Functions

These functions are automatically generated when a distinct type is created

and are found in the same schema as the distinct type. They include casting

functions and the comparison operators for the distinct type [7].

3) User-Defined Functions

The user, using a statement called CREATE FUNCTION [7], which names

the new function and specifies its semantics, explicitly creates these functions.

UDF’s are further classified into the following sub categories

��Sourced Functions

A sourced function duplicates the semantics of another function,

called its source function. A sourced function can be an operator, a

scalar function, or a column function. Sourced functions are

38

particularly useful for allowing a distinct type to selectively inherit

the semantics of its source type.

��External scalar functions

An external scalar function that is written by a user in a host

programming language and that returns a scalar value. External

functions can be written in C or JAVA. The CREATE FUNCTION

statement for an external scalar function tells the system where to

find the code that implements the function. The name of the

function can be an operator like ‘+’. The external function can do

computation on the parameters passed to it but cannot access or

modify the database.
��External table Functions

A UDF can return a table rather than just a scalar value.

Similar to the external scalar function the table function is written

in C or JAVA, and cannot contain any embedded SQL statements.

The program should return a tuple to the result table each time it is

called, and must indicate the end of the result table by a special

return code.

SQL supports the concept of function overloading. This means that several functions

can have the same name, as long as they are different schemas or take different types of

parameters.

4.2 Creating an External Scalar Function

An external function is a function whose implementation is written in some host

programming language. The ability to create own external functions is a powerful feature in

39

UDB. To enhance the usefulness of built in data types by adding new functions that operate

on them is a very powerful feature in DB2 because SQL by itself is not a complete

programming language. The external functions are defined and installed in the database.

These functions can be shared among all the database applications, which will avoid

duplicating the code in each application. External functions can be used wherever built in

functions are used.

The syntax of a CREATE FUNCTION [7] statement to create an external scalar is as

follows:
>>-CREATE FUNCTION--function-name---------------------------->

>----(--+------------------------------------+---)---*------>

'----data-type1--+-------------+--+--'

>----RETURNS--+-data-type2--+-------------+-----------------+>

'-data-type3--CAST FROM--data-type4--+-------+-'

>----*----+--------------------------+--*-------------------->

'-SPECIFIC--specific-name--'

>-----EXTERNAL--+----------------------+---*---------------->

'-NAME--+-'string'---+-'

'-identifier-'

>----LANGUAGE--+-C----+--*---PARAMETER STYLE--+-DB2SQL------>

+-JAVA-+ '-DB2GENERAL-'

'-OLE--'

(1) .-FENCED-----.

>----*----+-DETERMINISTIC-------+--*----+------------+--*---->

'-NOT DETERMINISTIC---' '-NOT FENCED-'

.-NOT NULL CALL--.

>-----+----------------+--*--NO SQL--*----------------------->

'-NULL CALL------'

.-NO SCRATCHPAD--.

40

>-----+-NO EXTERNAL ACTION-+--*----+----------------+--*----->

'-EXTERNAL ACTION----' '-SCRATCHPAD-----'

.-NO FINAL CALL--. .-ALLOW PARALLEL----.

>-----+----------------+--*----+-------------------+--*------>

'-FINAL CALL-----' '-DISALLOW PARALLEL-'

.-NO DBINFO--.

>-----+------------+--*-------------------------------------><

'-DBINFO-----'

4.2.1 Description of the Syntax
• Function name

The name of the function being defined. It is a qualified or an unqualified name that

designates a function. The unqualified form of function-name is an SQL identifier (with a

maximum length of 18 characters). The name, including the implicit or explicit qualifiers,

together with the number of parameters and the data type of each parameter must not identify

a function described in the catalog. The unqualified name, together with the number and data

types of the parameters, while of course unique within its schema, need not be unique across

schemas.
• Data type1

Identifies the number of input parameters of the function, and specifies the data type

of each parameter. One entry in the list must be specified for each parameter that the function

will expect to receive. No more than 90 parameters are allowed. It is possible to register a

function that has no parameters. In this case, the parentheses must still be coded, with no

intervening data types. For example,

 CREATE FUNCTION changename() ...

41

No two identically named functions within a schema are permitted to have exactly the

same type for all corresponding parameters. It can also specify the data type of the parameter.
• RETURNS

This mandatory clause identifies the output of the function.
• Data Type 2

Specifies the data type of the output. In this case, exactly the same considerations

apply as for the parameters of external functions described above under data-type1 for

function parameters.
• Data Type 3 CAST FROM Data Type 4

Specifies the data type of the output. This form of the RETURNS clause is used to

return a different data type to the invoking statement from the data type that was returned by

the function code. For example,

 CREATE FUNCTION GET_PAY_DATE(CHAR(6))

 RETURNS DATE CAST FROM CHAR(10)

The function code returns a CHAR(10) value to the database manager, which, in turn,

converts it to a DATE and passes that value to the invoking statement. The data-type4 must

be castable to the data-type3 parameter.
• SPECIFIC specific-name

Provides a unique name for the instance of the function that is being defined. This

specific name can be used when sourcing on this function, dropping the function, or

commenting on the function. It can never be used to invoke the function. The name,

including the implicit or explicit qualifier, must not identify another function instance that

exists at the application server. The specific-name may be the same as an existing function-

name.

If specific-name is not specified, the database manager generates a unique name.
• EXTERNAL

42

This clause indicates that the CREATE FUNCTION statement is being used to

register a new function and tells the system how to find the C function that serves as its

implementation. This function must be compiled, linked and placed in a directory on the

server machine, from which it can be dynamically loaded by the database system when

needed. The most complete form of an EXTERNAL clause gives the full path name of the

binary file that implements the function, followed by a “!”, followed by the name of the

proper entry point in that file. For example, the following clause tells the system where the

function isomorph is implemented in the file myudf.c

EXTERNAL NAME ‘/cse/home/ramji/udfs/myudf!isomorph’

If no path name is specified the system looks for the function in the sqllib/function

directory associated with the database.
• LANGUAGE

This mandatory clause is used to specify the language interface convention to which

the user-defined function body is written.

C

This means the database manager will call the user-defined function as if it were a C

function. The user-defined function must conform to the C language calling and linkage

convention as defined by the standard ANSI C prototype.

JAVA

This means the database manager will call the user-defined function as a method in a

Java class.
• PARAMETER STYLE

This clause is used to specify the conventions used for passing parameters and

returning the value from functions. With language C, PARAMETER STYLE DB2SQL

43

should be specified and with language JAVA, PARAMETER STYLE DB2GENERAL

should be specified.
• DETERMINISTIC or NOT DETERMINISTIC

This mandatory clause specifies whether the function always returns the same results

for given argument values (DETERMINISTIC) or whether the function depends on some

state values that affect the results (NOT DETERMINISTIC). That is, a DETERMINISTIC

function must always return the same result from successive invocations with identical

inputs. Optimizations taking advantage of the fact that identical inputs always produce the

same results are prevented by specifying NOT DETERMINISTIC. An example of a NOT

DETERMINISTIC function would be a random-number generator. An example of a

DETERMINISTIC function would be a function that determines the square root of the input.
• FENCED or NOT FENCED

This clause specifies whether or not the function is considered "safe" to run in the

database manager operating environment's process or address space (NOT FENCED), or not

(FENCED).

If a function is registered as FENCED, the database manager insulates its internal

resources (e.g. data buffers) from access by the function. Most functions will have the option

of running as FENCED or NOT FENCED. In general, a function running as FENCED will

not perform as well as a similar one running as NOT FENCED. SYSADM authority,

DBADM authority or a special authority (CREATE_NOT_FENCED) is required to register a

user-defined function as NOT FENCED.
• NOT NULL CALL or NULL CALL

This optional clause may be used to avoid a call to the external function if any of the

arguments is null. If NOT NULL CALL is specified and if at execution time any one of the

function's arguments is null, the user-defined function is not called and the result is the null

value. If NULL CALL is specified, then regardless of whether any arguments are null, the

44

user-defined function is called. It can return a null value or a normal (non-null) value. But

responsibility for testing for null argument values lies with the UDF.
• NO SQL

This mandatory clause indicates that the function cannot issue any SQL statements.
• NO EXTERNAL ACTION or EXTERNAL ACTION

This mandatory clause specifies whether or not the function takes some action that

changes the state of an object not managed by the database manager. Specifying

EXTERNAL ACTION prevents optimizations that assume functions have no external

impacts. For example, sending a message, ringing a bell, or writing a record to a file.
• NO SCRATCHPAD or SCRATCHPAD

This optional clause may be used to specify whether a scratchpad is to be provided

for an external function. If SCRATCHPAD is specified, then at first invocation of the user-

defined function, memory is allocated for a scratchpad to be used by the external function.

This scratchpad has the following characteristics:

It is 100 bytes in size.

It is initialized to all X'00''s.

It is persistent. Its content is preserved from one external function call to the next.

Any changes made to the scratchpad by the external function on one call will be there on the

next call. The database manager initializes scratchpads at the beginning of execution of each

SQL statement. The database manager may reset scratchpads at the beginning of execution of

each sub query. The system issues a final call before resetting a scratchpad if the FINAL

CALL option is specified.
• NO FINAL CALL or FINAL CALL

When a function is used in an SQL statement, the function may be called multiple

times during the processing of the statement, depending on how it is used. This optional

clause specifies whether the function is called one extra time at the end of processing the

45

SQL statement. The purpose of such a final call is to enable the external function to free any

system resources it has acquired. It can be useful in conjunction with the SCRATCHPAD

keyword in situations where the external function acquires system resources such as memory

and anchors them in the scratchpad.
• ALLOW PARALLEL or DISALLOW PARALLEL

This optional clause specifies whether, for a single reference to the function, the

invocation of the function can be parallelized. In general, the invocations of most scalar

functions should be parallelizable, but there may be functions (such as those depending on a

single copy of a scratchpad) that cannot. If either ALLOW PARALLEL or DISALLOW

PARALLEL is specified for a scalar function, then DB2 will accept this specification.
• DBINFO

This optional clause causes UDB to pass an extra parameter to the function,

containing a pointer to a data structure containing information such as the current database,

current author id, and the name of the table and column that is being modified by the current

statement.

An example of a CREATE FUNCTION statement,
CREATE FUNCTION isomorph(VertexNo,VertexName)

RETURNS INT

EXTERNAL NAME ‘/cse/home/ramji/udfs/myudf !

isomorph’

DETERMINISTIC

NO EXTERNAL ACTION

NULL CALL

LANGUAGE C

PARAMETER STYLE DB2SQL

NO SQL;

46

4.3 UDF’s over Cursors

One of the main reasons for choosing DB2, as the database is the functionality of

UDF’s provided by the database. UDF’s are one of the most powerful tools that allow the

user to program in a host programming language like C or JAVA. Although the first

approach taken provided good functionalities, the running time of the approach was very

large to continue using the approach. One of the main overheads in using that approach was

that of cursors, although when the algorithm is pushed to the limit it runs out of memory in

the isomorphism code, the time taken by the cursors is also one of the main overheads.

Cursors are one of the main overheads when working in a static SQL code, the usage of the

cursors has to be minimized as much as possible. But the reason behind using the cursors has

been that each tuple in the table has to be computed against every other tuple in the table to

get the count of each of the substructures that are isomorphic. In order to substitute the

cursors by some other application, the application should provide the functionality of

retrieving the values of the attributes and work on them. The next consideration in choosing

the UDF's should be the run time of the UDF’s over cursors. The UDF’s would run much

faster than the cursors because they are just like the system built functions but written by the

user and stored in the specific directory, and the user determines it can be used.

4.3.1 Implementation Details

The information needed to compute the isomorphism between two graphs is their

vertex labels, edge labels and the connectivity between the edges. The basic working of the

algorithm still remains the same except that instead of using cursors, UDF's are used to

compute the number of instances of each of the substructure. The pseudo code for the

algorithm is given below:

47

1) Subdue-DB(input file,size)
 2) Load vertices into vertices table;

3) Load edges into edges table;

4) Load joined_1 table : join vertices and edges

table

5) i=2;

6) WHILE(i<size)

7) Load Joined_i table (substructures of size

i) from joined_i-1 table

8) IsomorphismUDF(Joined_i,Joined_i);

9) Update_count;

10) Delete from Joined_I where count=1;

The flow of the algorithm is same as that of the cursor approach except that the

updating of the counts of the substructures is implemented using the UDF's. The

mapping and the extensions of the substructures are same as that of the cursor

approach.

The UDF would take in as inputs the attributes of the table namely the vertex numbers,

vertex names, edge names and the extensions and returns the number of instances of

each of the substructure. The UDF is a table UDF, which would return exactly the

number of substructures in the Joined_1 table that is basically the number of instances

of that substructure. The way it is done is that each of the tuple in the Joined_1 table is

compared with every other tuple in the table to count the number of instances of that

substructure in the graph.

4.3.1.1 Table UDF's in DB2

Table UDF's work in a different way than the scalar external UDF's. An example for

creating a table UDF isomorph_2() is described below,
create function isomorph_2

48

(integer,varchar(20),integer,varchar(20),varchar(20),inte

ger,varchar(20),integer,varchar(20),varchar(20),integer)

returns table (instances integer)

specific isomorph_2_apr18

external name 'myudf!isomorph_2'

language c

parameter style DB2SQL

variant

not fenced

scratchpad

final call

no SQL

disallow parallel

no external action

The main difference between the CREATE FUNCTION statement for an external

scalar function and table function lies in the returns clause. In the case of a table function, it

specifies a column name and data type for each of the columns of the table to be returned by

the function. The isomorph_2 is a table function that integers and varchars as input. It returns

a table, which has column instances of type integer. The clause final call is necessary for a

table function. The disallow parallel is also necessary because a table function runs on a

single node. The rest of the parameters are same as any normal external scalar function.

The isomorph_2 is implemented in the following way:

void SQL_API_FN isomorph_2
(
long *vertex1,
char *vertex1name,
long *vertex2,
char *vertex2name,
char *edge1,
long *vertex3,
char *vertex3name,
long *vertex4,
char *vertex4name,
char *edge2,
long *count,
long *instances,
short *vertex1_ind,
short *vertex1name_ind,

49

short *vertex2_ind,
short *vertex2name_ind,
short *edge1_ind,
short *vertex3_ind,
short *vertex3name_ind,
short *vertex4_ind,
short *vertex4name_ind,
short *edge2_ind,
short *count_ind,
short *instances_ind,
char *sqlstate,
char *fnname,
char *specificname,
char *message,
SQLUDF_SCRATCHPAD *scratchpad,
SQLUDF_CALL_TYPE *calltype)

{
long *pad=(long *)scratchpad->data;

switch(*calltype)
{
 case SQL_TF_OPEN:
 *pad=0;
 break;
 case SQL_TF_FETCH:
 see_last++;
 cost=check(vertex1,vertex1name,vertex2,vertex2name,edge1,vertex3,vertex3name,vertex4

,vertex4name,edge2);
 if(cost==0.00)
 count_instances++;
 if(see_last<*(count))
 {
 strcpy(sqlstate,"02000");
 }
 else
 {
 if(*pad<1)
 {
 (*pad)++;
 *instances=count_instances;
 strcpy(sqlstate,"00000");
 return;
 }

 strcpy(sqlstate,"02000");
 see_last=0;
 count_instances=0;
 }
 break;

case SQL_TF_CLOSE:
break;
}
}

float check(long *vertex1,char *vertex1name,long *vertex2,char *vertex2name,char *edge1,long

*vertex3,char *vertex3name,long *vertex4,char
*vertex4name,char *edge2)
{
graphptr g1,g2;

50

char *temp=(char *)malloc(3000*sizeof(char));
char *graph1=(char *)malloc(3000*sizeof(char));
char *graph2=(char *)malloc(3000*sizeof(char));
float f1=0;
NumLabels=0;
LabelList=NULL;
Directed=TRUE;
Threshold=1.0;
sprintf(temp,"v %d %s\n",*vertex1,vertex1name);
strcat(graph1,temp);
sprintf(temp,"v %d %s\n",*vertex2,vertex2name);
strcat(graph1,temp);
sprintf(temp,"d %d %d %s\n",*vertex1,*vertex2,edge1);
strcat(graph2,temp);
sprintf(temp,"v %d %s\n",*vertex3,vertex3name);
strcat(graph2,temp);
sprintf(temp,"v %d %s\n",*vertex4,vertex4name);
strcat(graph2,temp);
sprintf(temp,"d %d %d %s\n",*vertex3,*vertex4,edge2);
strcat(graph2,temp);
g1=read_graph(graph1);
g2=read_graph(graph2);
f1 = fm(g1,g2,max_node(g1->nv),0);
return f1;
}

The SQL query, which can be used to call the function, is explained below.

Select t1.instances

From joined_1 j1,joined_1 j2

,table(isomorph_2(j1.vertex1,j1.vertex1name,j1.verte

x2,j1.vertex2name,j1.edge1,j2.vertex1,j2.vertex1name

,j2.vertex2,j2.vertex2name,j2.edge1,100)) as t1

This query returns the number of instances of each of the substructure in the table,

which has 100 tuples in the table.

The isomporh_2 function takes as input all the information for comparing all the

single edges substructures. The two vertex numbers, two vertex names and the edge name

from each of the table are the input for the function. The count variable is the number of

tuples in the table. Instances variable is for the output to be written to the table. The indicator

variables are for checking if the input value is a null or not.

When a table function is invoked in an SQL statement, a series of calls is made to the

C program that implements the table function. The first of these is the OPEN_CALL, with

51

the final call indicator set to the value SQL_TF_OPEN. The OPEN call allows the table

function to perform preliminary actions such as allocating memory, and initializing

scratchpad. No data is returned by the OPEN call. Following the OPEN call, the system calls

the table function with a series of FETCH calls, with the final call indicator set to

SQL_TF_FETCH. On each of these calls, the table function is expected to return one of the

rows to the result table. But by doing that the number of tuples returned to the table will be

the cross product of the two tables. Since one tuple is to be returned for each of the tuple in

the table, we don’t return a tuple till we see count number of tuples. So till the see_last is

less than count we copy the SQL state 02000 which will make the system call the function

again for the same tuple. Once we have processed all the tuples of one table and compared

that to one tuple of the other table the SQL state is set to 00000, which tells the system to

return a tuple to the result table. For every call of the function the check() function is called

to check for isomorphism and if the function returns a value 0 the count of that substructure

is incremented by 1. Similar functions have been written for two edge and three edge

substructures.

4.4 Experiment Results and Conclusion

The functions were tested for inputs of cardinality of 100 to 500. The function

resulted in the correct output for cardinality until 500, but when tested for 500 the function

resulted in an SQL0430N error. We have tried to fix this error in many ways. This is one area

of difficulty when working with UDF’s because there are no debugging tools provided by the

database. Simple debugging tools like printf cannot be used because the UDF runs as

background process where stdout does not have any meaning. When the function returns an

error code of SQL0430N and it is run without fixing the error the system just hangs. So after

testing out with trials, the function that seems to be causing the error was identified as the

52

isomorphism function fm(). The error being that memory allocated to some variables is not

being freed properly. The function when called returns output for few tuples in the table and

then terminates. We also came to a conclusion that dynamic memory allocation can be a

problem in UDF’s. The memory allocation has to be done in a specific way when using

UDFs. All scratchpad memory needs to be allocated at the beginning and released at the end.

Since that may not be happening in that exact way in the fm() function, the system returns

errors.

The advantage of using UDF’s are that they are much faster than the cursors,

although not much testing could be done on UDF’s but UDF’s do not have the client/server

overhead since they run in the database environment and work just like normal SQL queries.

The disadvantages of UDF’s are that they are difficult to code, they are non-standard, and

there are no easy ways of debugging a UDF. All of the code written must be logically

correct; otherwise there might be a chance of yielding incorrect values or sometimes hang the

system. The logical flow of the system cannot be tested nor can the intermediate values of

various parameters be checked.

53

CHAPTER 5

ENHANCED CURSOR-BASED APPROACH (ECBA)

This chapter identifies the major drawbacks in the cursor-based approach and how

rewriting the SQL expressions and maintaining additional tables can overcome these

drawbacks. This chapter also describes the intuition behind this approach, which involves the

SQL-based queries to get the counts of the substructures without using the CURSORS. The

chapter also describes how the graphs are compared without calling the isomorphism code.

5.1 Why a new Approach

The previous two approaches though provides correct functionality, do not provide an

acceptable performance. The need for a better algorithm to get the counts of the substructures

is critical for improving the performance. The UDFs though provide a better and faster way

of attaining this functionality are very hard to code and test. So any new approach should try

to obtain the counting of the substructures using an SQL query rather than relying on cursors

to speed up the algorithm.

5.1.1 Graph Representation

Consider Figure 5-1 which shows how a substructure of 3 edges is stored in the

database. The vertex numbers are represented as VNo, vertex names as VNa, edge names as

ENa, and the extensions as Ex

54

Figure 5-1 Joined_3 table containing all the 3 edge substructures

There are three tuples in the table of which the first two are isomorphic. The graph

representations of these tuples are shown in Figure 5-2.

 Tuple 1 Tuple 2 Tuple 3

Figure 5-2 Graphs for the tuples in table

 From the representation one can come to conclusion that the vertex numbers are not

used for comparing graphs for isomorphism. The first and the second tuples are not only

isomorphic but are exact graphs. So there is a way of counting the instances of the

substructure if the graph match is exact instead of an inexact graph match using SQL instead

of cursors. The vertex names, edge names and the extensions form a signature for the graph.

But to attain this type of matching the extensions have to be taken care so that all the graphs

55

are expanded in all possible ways unlike in the first approach where we expand to one

substructure in only one possible way. The generalization is explained in section 5.3.4.1.

Figure 5-3 shows how a single edge substructure is expanded to a two-edge substructure in

the first approach and how it should have been done to do an exact graph match.

Figure 5-3 An example for graph extension

In Figure 5-3 all the single edge substructures would be 1->2 and 1->3. In the first

approach only the substructure 1->2 will be expanded to two-edge substructure but not the

other tuple since the second vertex number is lesser. So the way extensions are performed

need to be changed in order to use SQL for updating the counts.

5.1.2 Graph Extension Revisited

The graphs are now extended in all possible ways irrespective of their vertex

numbers, but care is taken to generalize the expansion. Consider the graph shown in Figure

5-4.

1 2

3

56

Figure 5-4 Graph extension example

For all the single edge graphs, the first vertex is treated as the root. The root is

assigned a level 1 and the vertex to which it is connected is assigned a level 2. When the

substructure is expanded a new edge and vertex are added. Depending on the vertex from

which the edge was expanded the new vertex is assigned a level. If it were expanded on the

first vertex then it has a level 2 else a level 3. The two edge substructures are 1->2->4 and 1-

>(2,3). Now for the substructure 1->(3,2) the new edge was added from a level 1 and for 1-

>2->4 the new edge was added from level 2. The next expansion is dependent on the

previous level of expansion. If the previous level of expansion was 2 then the next expansion

has to be on level 2 or more, so no expansion can take place at level 1. This expansion

guarantees that all the substructures are discovered and does not generate duplicates. The

generalized SQL query for expansion would look like:

Insert into Joined_N

Vertex1,Vertex2…..VertexN+1,Vertex1Name,Vertex2Name…

..VertexN+1Name,Edge1Name,Edge2Name…..EdgeNName,Ext1

,Ext2…..ExtN-1,0

(

1

3
2

4

57

Select

j1.Vertex1,j1.Vertex2….j1.vertexN,j2.verte

x2,j1.Vertex1Name,j1.Vertex2Name…j1.vertex

NName,j2.vertex2name,j1.edge1Name,j1.edge2

name….j1.EdgeNName,j2.edgename,j1.Ext1,j1.

Ext2…..j1.ExtN-2,p,0

From Joined_N-1 j1, Joined_base j2

Where j1.vertexP= j2.vertex1 and j1.vertexP+1 <

j2.vertex2….j1.VertexN<j2.Vertex2 and

j.extN-2<=p and j.extN-2>0

)

The variable P in the where condition can vary from 1 to N, as the substructure can be

expanded on any of the vertices. The condition j.extN-2 <=P satisfies the criterion of levels

discussed above. The query is the same as the query used in the cursor based approach except

that instead of Joined_1 table in the FROM statement there is Joined_base table. The reason

for this would be explained in the next section. The query assumes that the edges are going

out of a vertex, so to cover substructures where edges are coming in, the query used in the

cursor-base approach is used.

5.2 Initialization of Data

The input is a file, which contains all the vertices and the edges in the graph. This

information is loaded into the database as the Vertices and the Edges tables. The Vertices

table will have the information about all the vertices, namely their vertex numbers and their

labels. The edges table will have the information about the edges, namely the vertex numbers

of the edge and the edge label. As we have already noted the vertex labels are needed for

making any graph comparison. Since the edges table does not have the vertex labels, a new

58

table is created which has all the single edge substructures. This table is named as the

Joined_base table and the query to create this table is shown below:

Insert into

Joined_base(vertex1,vertex2,vertex1name,vertex2

name,edge)

(

Select

v1.vertexNo,v2.vertexNo,v1.vertexname,v2.v

ertexName,e.edgename

From edges e, vertices v1, vertices v2

Where e.vertex1=v1.vertexNo and e.vertex2

=v2.vertexNo

)

This table forms the basis for the rest of the algorithm. Since the extension of

substructures takes place by adding an edge to an existing substructure, the base table has to

be used for extending. An example of the Joined_base table is shown in Figure 5-5

Vertex1 Vertex2 Vertex1Name Vertex2Name Edge

1 2 A B AB

1 3 A C AC

2 4 B X FOO

5 4 Z X BAR
Figure 5-5 Joined_base table

59

5.3 Algorithm

The idea behind developing the new algorithm is to use a different scheme for

updating the counts of the substructures. The pseudo code for the algorithm is explained

below:
1) Subdue-DB(input file, size)

2) Load vertices into vertices table;

3) Load edges into edges table;

4) Load joined_base table : join vertices and

edges table

5) WHILE(i<size)

6) Load Joined_i table (substructures of size

i)

7) From beam_joined_i-1 , Joined_base

8) Create Frequent_i table

9) DECLARE Cursor c1 on Frequent_I order by

count

10) DECLARE Cursor c2 on Frequent_i

11) WHILE(c1.count<beam)

12) FETCH c1 into g1

13) WHILE(c2)

14) FETCH c2 into g2

15) If(!Isomorphic(g1 , g2) =0)

16) Insert c1 into

frequent_beam_i

17) Insert into beam_joined_I

From frequent_beam_i,joined_i

18) i++

The main difference between this approach and the other approaches discussed is that

SQL statements update the count of the substructures. Cursors are not used for updating the

counts. With this approach, the concept of beam can also be implemented.

60

5.3.1 Flow of the algorithm

The algorithm starts with initializing the vertices and the edges table. The

Joined_base table is loaded by making a join on the vertices and the edges table. The

Joined_base table contains all the single edge substructures including the vertex labels,

vertex number connecting the edges and the edge names. This table forms the base for any

substructure expansions in the future.

The algorithm proceeds with finding all the single edge substructures and their

counts. The Joined_1 table is loaded from the vertices and the edges table. The Joined_1

table contains the instances of all the single edge substructures. This table does not have the

count attribute that maintains the number of instances of the substructure. The Frequent_1

table is created to store the substructures of size 1 and their counts. So the Frequent_1 table

does not have the information of the vertex numbers. In order to get the counts of the

substructures the Joined_1 table is projected on the attributes vertex labels and edge labels

and grouped by the same attributes. By doing a group by we are creating a signature for each

of the substructure and collecting the counts of the substructures that have the same

signature. For example an edge A->B with edge name AB will have a signature AAB. Hence

all the exact instances of this substructure are grouped as one tuple with their count updated.

Once the Frequent_1 table is created the concept of beam is implemented. The

substructures are sorted on the attribute count and the best beam numbers of substructures are

inserted into a table Frequent_beam_1. So only the substructures in the Frequent_beam_1

table will be expanded to larger substructures. But since the Frequent_beam_1 table does not

maintain the attributes vertex numbers it cannot be used to expand to larger substructures.

This Frequent_beam_1 table is joined with Joined_1 table, which has all the instances of

single edge substructures to generate the instances of the substructures present in the table.

61

These tuples are loaded into the table Joined_beam_1. The Joined_beam_1 table can be

joined with Joined_base table to generate the two edge substructures.

This halting condition for the algorithm would be when the size of the substructure

reaches the user specified max size. Another halting condition would be when there are no

substructures left in the table for expanding.

5.3.2 Discovering the single edge substructures

We will consider the graph shown in Figure 5-6 in explaining the algorithm.

Figure 5-6 An example graph

For the graph shown in the Figure 5-6, the vertices and the edges table are shown in

the Figure 5-7 and 5-8 respectively.

62

Figure 5-7 Vertices table

63

Figure 5-8 Edges table

The Joined_base, which is created by joining the vertices and the edges table, is

shown in the Figure 5-9. This table will form the base table for expanding the substructures.

64

Figure 5-9 Joined_base table

The Joined_1 table that has all the single edge substructures is just a replica of the

Joined_base table. So the table would be the same as shown in Figure 5-9. Using the query

shown below we create the Frequent_1 table that has the substructures of size 1 and contains

the counts of each individual substructure.
Insert into Frequent_1 (Vertex1Name, Vertex2Name,

EdgeName, count)

Select

j.vertex1name,j.vertex2name,j.edgenam

e,count(*)

From Joined_1

65

Group by

j.vertex1name,j.vertex2name,j.edgenam

e

The frequent_1 table has all the single edge substructures with their counts updated in

the count attribute By grouping the edge substructures on their vertex names and edge name,

we have essentially grouped the instances of each substructure and thus updating their

counts. The Frequent_1 table created is shown in Figure 5-10.

Figure 5-10 Frequent_1 table

The next step in the algorithm would be deleting all the single instance substructures

from the Frequent_1 table. These instances are also deleted from the Joined_base table. Since

the Joined_base table will be used for expansions to larger substructures, we do not want to

expand a substructure by an edge, which has only one instance. The updated Frequent_1

table and the Joined_base table are shown in Figure 5-11 and Figure 5-12 respectively. The

query to delete tuples from Joined_base, which have single instance, is shown below:

66

 Exec sql delete

From joined_base j

where(j.vertex1name, j.vertex2name, j.edge1) in

(select t.vertex1name, t.vertex2name,

t.edge1

From Frequent_1 t

Where t.count1=1)

The query to delete tuples of single instance from frequent_1 is shown below:
Exec sql

Delete From Frequent_1

Where count1=1

Figure 5-11 Updated Frequent_1 table

Figure 5-12 Updated Joined_base table

67

5.3.2.1 Implementing Beam for single-edge substructures

In order to implement the concept of beam, the number of substructures that will be

extended to two edge substructures should be restricted to the beam size. The Frequent_1

table has all the substructures of size 1. So of these substructures beam number of

substructures is to be selected for future expansions. So the substructures are sorted on the

attribute count. By choosing the count attribute for sorting we are essentially implementing

the compression based on size compared to MDL. Since the compression achieved by the

substructure is directly proportional to the number of instances of the substructure, and we

are dealing with substructures of same size we sort it base on the count attribute. The cursors

are used to insert the beam number of tuples from Frequent_1 table into Frequent_1_beam

table. The tuples are inserted in the descending order based on their counts. So if the beam

were only three then the first three tuples from the Frequent_1 table are inserted into the

Frequent_1_beam table.

The Frequent_beam_1 table has beam number of tuples in the table. These

substructures form the best 3 substructures to compress the graph of those size substructures.

At this stage the algorithm finishes processing all the single edge substructures. In order to

expand the single edge substructures to two edge substructures, the tuples in the

Frequent_beam_1 table cannot be used because they do not have an attribute for the vertex

numbers. So in order to extend to a two-edge substructure the instances of the substructures

in the Frequent_beam_1 table have to be gathered. The Joined_1 table has the instances of

not only the substructures in the Frequent_beam_1 table but also the instances of all the

single edge substructures. So by making a join with the Joined_1 table with the

requient_beam_1 table we can gather all the instances of the substructures in the

Frequent_beam_1 table, which can be used to expand to two-edge substructures. The so

68

gathered substructures are loaded into new table Joined_beam_1 table. The query to load

tuples into Joined_beam_1 is shown below:
Exec SQL insert into

Joined_beam_1(vertex1, vertex2,

Vertex1name, vertex2name, edge1)

(

Select j.vertex1, j.vertex2, j.vertex1name,

j.vertex2name, j.edge1

From joined_1 j, frequent_beam_1 f

Where f.vertex1name = j.vertex1name and

j.vertex2name = f.vertex2name and

j.edge1 = f.edge1
)

The resulting Joined_beam_1 table is shown in Figure 5-13. Only the tuples in this

table will participate in the higher extensions. These tuples represent the instances of the

substructures in the Frequent_beam_1 table.

Figure 5-13 Joined_beam_1 table

5.3.3 Extending to two-edge substructures

The Joined_beam_1 table contains all the instances of the single edge substructure as

shown in Figure 5-13. The single edge substructure can be expanded to a two-edge

69

substructure on any of the two vertices in the edge. All the possible single edge substructures

are listed in the Joined_base table. So by making a join with the Joined_base table we can

always extend a given substructure by one edge. In order to make an extension one of the

vertices in the substructure has to match vertex in the Joined_base table. The following query

extends a single edge substructure in all possible ways,
Insert into

Joined_2(Vertex1,Vertex2,Vertex3,Vertex1Na

me,Vertex2Name,Vertex3Name,

Edge1Name,Edge2Name,Ext1)

(

Select

j1.vertex1,j1.vertex2,j2.vertex

2,j1.vertex1name,j1.vertex2name,

j2.vertex2name,j1.edge1name,j2.e

dge1name,1

From Joined_1 j1, Joined_base j2

Where j1.vertex1=j2.vertex1 and

j1.vertex2!=j2.vertex2

Union

Select

j1.vertex1,j1.vertex2,j2.vertex2

,j1.vertex1name,j1.vertex2name,j

2.vertex2name,j1.edge1name,j2.ed

ge1name,2

From Joined_1 j1, Joined_base j2

Where j1.vertex12=j2.vertex1

Union

(

select j.vertex1, j.vertex2,

j1.vertex1, j.vertex1name,

j.vertex2name, j1.vertex1name,

j.edge1, j1.edge1, -2

From joined_1 j,joined_base j1

Where j.vertex2 = j1.vertex2 and

j.vertex1!=j1.vertex1

70

)

This above query has three sub queries within it. The first query extends the

substructure by adding an edge going out of the first vertex if any. The second sub query

extends the substructures by adding an edge going out of the second vertex. The third sub

query extends the substructure by adding an edge coming into the second vertex. These

queries take care of generating all the possible two edge substructures. All the resulting two

edge substructures are stored in the Joined_2 table.

The resulting table Joined_2 is shown in Figure 5-14.

Figure 5-14 Joined_2 table

The attributes needed to store all the information about the substructure has increased

from a single edge substructure. Apart from the edge name, vertex names newly added, in

order to describe the substructure an extra attribute Ext1 is used. The Ext1 attribute describes

how the new edge was added to the existing substructure. For example, consider the first

tuple in the table Joined_2 table. The Ext1 is 1, meaning the new edge was added on the first

vertex and the direction of the edge is going out of the first vertex. In the last tuple the Ext1

is –2 indicating that the new edge was added on the second vertex and the direction is

coming into the vertex.

71

5.3.3.1 Updating the counts for two-edge substructures

All the two-edge substructures for consideration are listed in the table Joined_2. In

order to update the counts of each substructure, the instances of each substructure have to be

grouped into one single substructure. This can be achieved by using the group by statement

in the SQL. But care should be taken not to group by instances of a substructure with

instances of another substructure. The following query describes how the instances of the

substructure can be grouped by.

Insert into

Frequent_2(vertex1name,vertex2name,

vertex3name,edge1,edge2,ext1,

count1)

(

Select vertex1name, vertex2name,

vertex3name, edge1, edge2,

ext1, count (*)

From Joined_2

Group by

vertex1name,vertex2nam

e, vertex3name,

edge1, edge2, ext1)

)

The substructures are grouped by the vertex names, edge names and the ext1. By

grouping by the vertex names and the edge names we have created a signature for the

substructure. By including the attribute ext1, we are grouping all the substructures, which

were expanded in an exact way and have the same labels. This comparison we are doing is an

exact graph match. The generalization for any graph is explained in the section 5.3.4.1. The

72

resulting Frequent_2 table is shown in Figure 5-15. Each tuple represents a substructure and

the count1 attribute represents the number of instances of the substructure. The count1

represents the number of instances of that substructure

Figure 5-15 Frequent_2 table

5.3.3.2 Implementing beam for two edge substructures

The Frequent_2 table consists of all of the two edge substructures with their number

of instances updated. For implementing the beam concept, we need to restrict the number of

substructures being expanded to beam. SQL does not provide a functionality of selecting

some X number of tuples from a table. The selection is always done on a condition on an

attribute value. For this reason if we have to select the first three tuples from a table we make

use of the cursors. The cursors fetch tuples from a table in an order and hence we can restrict

to fetching the required number of tuples.

In the Frequent_2 table shown in Figure 5-15 the first and third tuples are actually the

same substructures. But since they were expanded in a different way they are not considered

the instances of the same substructure. They are treated, as two different substructures. The

explanation for a generalized version is explained in the section 5.3.4.1. So Care should be

taken while inserting the tuples from the Frequent_2 table into a new table Frequent_beam_2.

73

The same substructures should not be inserted into the Frequent_beam_2 table because these

will be the substructures that will be expanded in the future expansions.
Declare graph1_cursor cursor for

Select

vertex1name,vertex2name,vertex3name,e

dge1,edge2,ext1,count1

From Frequent_2

Order by Count1 desc

A similar cursor is declared on the Frequent_2 table. The first tuple is inserted into

the Frequent_beam_2 table. When the second substructure is fetched from the table it will be

compared with the tuples already present in the Frequent_beam_2 table. If there are any

substructures, which is the same as this substructure then that substructure will not be added

to the Frequent_beam_2 table. By doing this we are restricting the substructures in the

Frequent_beam_2 table to be distinct and not the same substructure.

. The Frequent_beam_2 table thus created is shown in Figure 5-16.

Figure 5-16 Frequent_beam_2 table

5.3.3.3 Creating the Joined_beam_2 table

In order to expand to a three-edge substructure from a two-edge substructure we have

to create a table for storing the instances of the substructures that are going to get expanded.

74

So the instances of the beam number of substructures are loaded into a new table

Joined_beam_2 table. The query to achieve this functionality is shown below.
.
Insert into

Joined_beam_2(vertex1name,vertex1,vertex2name

,vertex2,vertex3name,vertex3,edg

e1, edge2,ext1)

(

Select j.vertex1name,j.vertex1,

j.vertex2name,j.vertex2,

j.vertex3name,j.vertex3,j.edge1,

j.edge2, j.ext1

From Frequent_beam_2 f,Joined_2 j

Where f.vertex1name=j.vertex1name and

f.vertex2name=j.vertex2name and

f.vertex3name=j.vertex3name and

f.edge1=j.edge1 and

f.edge2=j.edge2 and

f.ext1=j.ext1

)

The resulting Joined_beam_2 is shown in the Figure 5-17.

Figure 5-17 Joined_beam_2 table

5.3.4 Generalization

In this section the generalization for the larger substructures is explained. The n-1

edge substructures are stored in the Joined_beam_n-1 table. In order to expand to n edge

75

substructures an edge is added to the existing n-1 edge substructure. So the Joined_beam_n-1

table is joined with the Joined_base table to add an edge to the substructure. The query to

generate the Joined_n table containing all the instances of an n-edge substructure is shown

below:
Insert into Joined_N

Vertex1,Vertex2…..VertexN+1,Vertex1Name,Vertex2

Name…..VertexN+1Name

Edge1Name,Edge2Name…..EdgeNName,Ext1,Ext2…..Ext

N-1,0

(

Select

j1.Vertex1,j1.Vertex2….j1.vertexN,j2.

vertex2,j1.Vertex1Name,j1.Vertex2Name

…j1.vertexNName,j2.vertex2name,j1.edg

e1Name,j1.edge2name….j1.EdgeN-

1Name,j2.edgename,j1.Ext1,j1.Ext2…..j

1.ExtN-2,-p,0

From Joined_N-1 j1, Joined_1 j2

Where j1.vertexP= j2.vertex2 and j1.vertex1

< j2.vertex2….j1.VertexP-1<j2.Vertex2

)

P is a variable from 2 to N

A Joined_n table will have the following attributes to describe the substructure

• N+1 vertex numbers, describing the various vertex numbers

• N+1 vertex labels, describing the vertex labels

• N edges labels, describing the edge labels

• N-1 extension number, describing which vertexes connecting that edge

76

5.3.4.1 Generating the Frequent_n table

The Joined_n contains only the instances of the n edge substructure. In order to group

the substructures, which are exact we create a table Frequent_n which would group all the

exact graphs and update their counts. The query to creating the Frequent_n table is shown

below:
 Insert into

Frequent_n

(Vertex1name,Vertex2name…..VertexN+1n

ame,Edge1,Edge2,…….EdgeN,Ext1,Ext2….E

xtN-1)

(

Select

j.vertex1name,j.vertex2name…j.vertexN

+1name,j.edge1,j.edge2..j.edgeN,j.ext

1,j.ext2..j.extN-1

From Joined_N-1 j

Group by j.vertex1name,j.vertex2name…j.vertexN

+1name,j.edge1,j.edge2..j.edgeN,j.ext

1,j.ext2..j.extN-1

)

By grouping the vertex names and edge names we have grouped all the labels of the

substructure. But for two substructures to be exact the graphs have to be expanded in the

exact way. Consider the graph shown in the Figure 5-18. The two graphs are exactly the

same assuming that they have the same edge names. Let us assume these are two occurrences

of the same substructures in the graph.

77

Figure 5-18 Exact graph match

The expansion starts from a single edge in our algorithm and proceeds with adding an

edge to the existing substructure. Let us represent the expansion as ABCABBC2, meaning

the vertex names are A, B, C and the edge AB was expanded to edge BC on the second

vertex B. This will form the signature for the substructure. So the graphs shown in the Figure

5-18 could have been expanded to in many ways. The following are some possibilities

ABDCABADBC12

ADBCABADBC13

ABDCABADBC12

This means the different vertex labels in the graph are A, B, D, and C and the edges

in the substructure are AB, AD, and BC. The extensions tell how the graph looks like, the

first edge is from vertex1 to vertex2 and then 1 means the second edge is from vertex1 to

vertex3 and the number 2 means the third edge is from vertex2 to vertex4. The instances of

A

D
B

C

A

D
B

C

78

the substructures that have the exact signature are grouped together. So although the

substructures might be theoretically the same, they are only grouped together if they were

expanded in the exact same fashion starting from the first vertex. So functionality wise we

are grouping the exact instances of the substructure to get their counts.

5.3.4.2 Implementing the beam for n-edge substructures

Once the Frequent_n table is loaded, we have all the substructures of size n with their

counts updated. In order to implement the beam we create a table Frequent_beam_n, which

will contain exactly beam number of substructures of size n. A cursor is declared on the

Frequent_n table to sort them on the attribute count. The cursor fetches a tuple from the

Frequent_n table and inserts that tuple into the Frequent_beam_n table. After inserting the

first tuple into Frequent_beam_n table another tuple is fetched from Frequent_n table. This

substructure is compared with the already inserted substructure in the Frequent_beam_n table

and if they are found to be exact then this substructure is not inserted into the table. The

comparison is done using the isomorphism code. This would continue till we insert exactly

beam number of tuples into Frequent_beam_n table

The Frequent_beam_n table contains only the substructures of size n. In order to

extend to n+1 edge substructures the vertex numbers of the substructures are needed. Since

the Frequent_beam_n table does not contain the vertex numbers of the substructures the

instances of these substructures have to be collected. So we create a new table

Joined_beam_n to store the instances of these substructures. The Joined_n table contains all

the instances of the n edge substructures. So by joining the Frequent_beam_n table and the

Joined_n table we can get the instances of the substructures in the Frequent_beam_n table.

The query for loading the Joined_beam_n is shown below:
Insert into

79

Joined_beam_n (ATTRIBUTES)

(

Select j.vertex1name … j.vertexN+1name,

j.vertex1..j.vertexN+1,

j.edge1…j.edgeN,

j.ext1..j.extN-1

From Frequent_beam_N f,Joined_N j

Where f.vertex1name=j.vertex1name…

f.vertexN+1name=j.vertexN+1name

and f.edge1= j.edge1…

f.edgeN=j.edgeN and

f.ext1=j.ext1…

and f.extN-1=j.extN-1

)

5.3.5 Halting conditions

There are two halting conditions for the algorithm. One of the user specified

parameter is the max size. Once the algorithm discovers all the substructures of the max size

the program terminates. Another halting condition would be when there are no tuples in the

Joined_n table. This necessarily means that there are no more substructures discovered of

size n.

For example if the max size for the graph shown in Figure 5-6 is specified as 4, the

algorithm terminates after discovering the 4 edge substructures. The Frequent_beam_4 table

is shown in the Figure 5-19 for this graph. The algorithm has correctly discovered the

substructure we have embedded. The instances of this substructure are shown in the Figure 5-

20. This is also the table Joined_beam_4

80

Figure 5-19 Frequent_beam_4 table

Figure 5-20 Joined_beam_4 table

5.3.6 Limitations to the algorithm

Some of the limitations to the current algorithm are discussed in this section.

1. Number of columns: There is a limitation to the number of columns a table

can have in the database DB2. The maximum number of columns we can have

in the system is only 500. Joined_n table would need 4n+1 attributes for

describing the n edge substructure. The vertex names would need n+1

attributes, the vertex numbers would need n+1 attributes, the edge would need

n attributes and the extensions would need n-1 attributes. So only the

algorithm could discover a 124-edge substructure.

2. Cursors: We use the cursors for implementing the beam. The

host variables are declared for exchanging data between the database and the

host programming language using the cursors. DB2 does not support declaring

array of host variables and hence the generalization for the algorithm was not

81

achieved. Separate host variable had to be declared for each pass. Right now

the algorithm works for a maximum size of 6.

82

CHAPTER 6

PERFORMANCE ANALYSIS AND OPTIMIZATIONS

This chapter assesses the various approaches taken before we arrived at the final

approach discussed in the previous chapter. The various SQL queries involved in the

discovery process that have an affect on the run time are discussed. This chapter also

discusses how the various SQL statements affect the performance and how they were

optimized to achieve better performance.

The previous chapter discussed how the beam was implemented using the

Frequent_beam_n table. The Joined_beam_n contains all the instances of the substructures in

the Frequent_beam_n table. Although this was the final approach discussed, there were many

other SQL alternatives that were explored in implementing this. The various approaches that

were taken in implementing this functionality are discussed in this chapter.

6.1 Configuration File

The configuration file is useful for automating the performance evaluation. It consists

of a number of parameters, which once specified correctly, can be used for running the

algorithm in an unattended mode. It can also be used for running the algorithm on several

datasets with varying configurations without any user intervention. The variables defined in

the configuration file are:

DBMS Type$User Name$Password$Table Name$MaxSize$Beam$Approach

Number$LogFile$Debug (value 0 or 1)$Log Results to file (value 0 or 1)$Level of logging

RDBMS Name: The RDBMS name (Oracle or DB2) where the input relation is present.

Database Name: The database that contains your input relation.

83

UserId: The user who has access over the input relation.

Password: The password associated with the UserId – needed to connect to the database.

Table Name: The name of the input relation.

Approach Number: The approach number to be used for the algorithm. It is an integer value.

All the approaches and their optimizations are given a unique integer value to identify

them.

Max Size: An integer to specify maximum size of substructure to be discovered.

Beam: An integer to specify the beam.

Debug: If true, then prints the debug statements.

Log file name: The name of the log file into which the results would be written.

Log level: An integer number to specify the level of logging needed.

For each experiment, the values of all these variables are written in a single line in the

order of the variables shown above and are separated by a “$” sign. Thus if the configuration

file contains several such lines, the algorithms will be invoked that many times. To skip a

line, the line should start with the word “REM”. Below is an example of some mining

configurations.

REM Experiment on DB2. Approach -ECBA

DB2$subduedb$graphmining$graphmining$T5KV10KE$4$5$10$false$T5KV10KES4A4B10

.txt$1

Here the first line is ignored as it starts from the word “REM”. For second line values are

used as follows:

RDBMS to use: DB2

Database Name: Subduedb

UserID: graphmining

Password: graphmining

84

Input Table: T5K10KE.

Approach Number: 4 (For ECBA)

Max Size: 5

Beam: 10

Debug: False (don’t print debug statements)

Log file Name: T5KV10KES4A4B10.txt

Log level: 1 (write the overall time taken).

6.2 Writing Log File

Graph mining is a time-consuming process and at times it happens that for certain

mining configurations, mining a given dataset may take several hours. Since we have to

compare the performances of these approaches with others, after a given time limit, if the

approach does not complete, the discovery process has to be killed. Also for the purpose of

studying these algorithms, we need to know about their progress while running a data set.

Hence it is very important to note the time at each step of the algorithm and produce a log

file containing enough information. This log file can then be processed to generate the useful

information such as the number of passes completed, time taken for each pass. For this

purpose, we generate a log file. The log is written after finishing the algorithm on a data set.

This log contains all the individual timings for the SQL queries and the final time taken. .

Below is a sample content of these logging files.

Size1 Size2 Size3 Size4 Total

0.990 1.200 2.230 2.650 7.070

The log file contains the individual times taken for processing substructures of that

size.

85

6.3 Use of Correlated queries

The first approach taken to implement the beam was using a correlated query. The

Frequent_n table contains all the substructures of size n. The Frequent_beam_n table

contains all the substructures that have to be expanded for generating the n+1-edge

substructures. The Joined_n table contains all the instances of the n-edge substructures. If the

beam number is set to P and if there are K tuples in the Frequent_n table then the K-P

substructures do not participate in generating the n+1-edge substructures. Hence if the

instances of the tuples, which are not going to participate in generating the n+1-edge

substructures, are deleted from the Joined_n table then we are left with only the instances of

the substructures, which will be expanded to n+1-edge substructures. Hence the tuples from

the Frequent_n table that do not form the beam are inserted into a new table EdgeN_subs. By

removing the instances of these substructures from the Joined_n table, we attain the

functionality needed. This query for doing this is shown below

Delete from joined_N as j

where Exists

(

Select f.vertex1name

From edgeN_subs f

Where f.vertex1name=j.vertex1name and

f.vertex2name=j.vertex2name…

f.vertexN+1name=j.vertexN+1name and

f.edge1=j.edge1 and f.edge2=j.edge2…

f.edgeN=j.edgeN and f.ext1=j.ext1

…f.extN-1=j.extN-1

)

86

The above query is a correlated query because the sub-query contains an identifier

that represents a row of the outer query. In the above query the identifier j (Joined_n table) is

from the outer query.

6.3.1 Input data set generation for testing

The graph generator used for testing some of the results had been developed by Dr.

Holder [9]. The generator accepts many parameters before it constructs the graph. Some of

them are listed below.

��Number of vertices in the graph.

��Number of edges in the graph.

��Number of Vertex labels. The vertex labels can be given a

probability with which they appear in the graph. The sum of the

probabilities must add up to 1.

��Number of edge labels. This is similar to the vertex labels.

��Connectivity. Connectivity is the number of external connections

on each instance of the substructure.

��Coverage. Coverage is the percentage of the final graph to be

covered by the instances of the substructures.

��Overlap. Overlap is the percentage of the total instances that

overlap.

��Substructure definition to be embedded in the graph. The different

vertices in the substructure followed by the edges.

Graphs have been constructed with number of edges twice as many as the vertices in

the graph. The overlap was set to 0.0 because the database algorithm does not implement the

87

concept of overlap. The connectivity was set to 5. Ten different vertex labels and edge labels

have been included each with a probability of 0.1. The coverage was set to 0.2. The graphs

have been created to test the scalability and the performance of the algorithm. The embedded

substructure is shown in the Figure 6-1.

Figure 6-1 Embedded substructure

Table 6-1 Parameter Settings

Parameters Subdue Database

Size 4 4

Beam 4,10 4,10

Overlap True True

Table 6-1 shows the various parameters on which the Subdue algorithm and the

database algorithm were run. Overlap was set to true in the main memory approach because

the database approach currently does not support the non-overlap option. The run times for

88

the algorithms are shown in table 6-2.

The timings were noted for updating the Joined_n table, where n ranges from 1 to 4,

and the time taken for discovering substructures of size n while varying the beam. The

overall timings for each graph are shown in the column labeled “final 4”. The same test cases

were run on Subdue and the timings are also shown in table 6-2. We can see from the results

that Subdue outperforms the database version. The overall times taken for the algorithm

show that the time was not increasing linearly. The update operation for pass 4 was taking

the maximum amount of the time. This can be attributed from the fact that there would be a

greater number of tuples in the Joined_4 table. For the test case, T1KV5KE, one of the best

substructures found in Subdue is in Figure 6-2. This is one of the substructures embedded in

the graph. The frequent_4 table, which contains all the four edge substructures and their

counts, are shown in Figure 6-3. As the Figure shows, the number of instances found in both

algorithms is the same. The number of instances of the substructure is represented as

Table 6-2 Timings using the correlated query

89

attribute C1 in Figure 6-3. We use this information to validate that the database algorithm

works correctly. In order to improve the performance of the database algorithm, the query for

updating the Joined_4 table needs to be optimized.

Figure 6-2 Output for Subdue for data set T1KV5KE

Figure 6-3 Frequent_4 table tuples

90

6.4 Using the Minus operator

As discussed above, the correlated query is a very costly operation. The challenge is

to remove the correlated query but still achieve the functionality. Instead of deleting tuples

from the table Joined_n, we create a new table Joined_beam_n. This table is used to store

the tuples, which are the instances of the substructures in the table Frequent_beam_n. The

EdgeN_subs table contains all the substructures, which do not participate in future

extensions. So when EdgeN_subs is joined with the Joined_n table it will result in all the

instances of the substructures that do not participate in the future extensions. If we define a

set, which contains all the instances of the substructures that are not going to participate in

the future extensions then we can subtract this set of tuples from the original set of tuples

(Joined_n) to result in instances of the substructures that are going to participate in the future

extensions. The Minus operator in DB2 can achieve this functionality of the subtract

operation. So after subtracting we can store the result set in the table Joined_beam_n. The

query to do this is shown below. This avoids the correlated queries.
Insert into Joined_beam_n ATTRIBUTES

(

Select ATTRIBUTES

From Joined_n

MINUS

Select ATTRIBUTES

From Joined_n,edgeN_subs f

Where f.vertex1name=j.vertex1name and

f.vertex2name=j.vertex2name…

f.vertexN+1name=j.vertexN+1name

and f.edge1=j.edge1 and

f.edge2=j.edge2… f.edgeN=j.edgeN

and f.ext1=j.ext1 …f.extN-

1=j.extN-1

)

91

The program is again tested on the same inputs. The results are tabulated in table 6-3.

The results show that there has been a considerable improvement in run time of the

algorithm. If we take the data set T1KV5KE then the time taken for update in the fourth pass

for the previous approach was 77.74 seconds compared to 13.1 seconds for this approach.

Although this approach does not perform as well as the main memory approach, there has

been considerable improvement in time over the previous approach. If we look at the time

taken for update 4 then it constitutes more than 75% of the overall time taken. So effort must

be taken to still improve the performance of this query. The best substructure discovered by

Subdue for the data set T1KV5KE is shown in the Figure 6-2. The best four-edge

substructures discovered by this database approach are shown in Figure 6-3.

Table 6-3 Test results using the Minus Operator

92

6.5 Indexing Techniques

An index is an access method that can be created on a table, using one or more

columns of the table as the key columns of the index. An index provides a fast way to find

rows of the table. Indexes can greatly improve the performance of queries that search for a

particular column value or range of values, as well as for joining. An index always provides a

logical ordering on the rows of the table. The ordering property of an index is useful in

processing queries with ORDER BY and GROUP BY clauses, and is some kind of join

algorithms. An example for creating index is shown below.

Create Index v1 on vertices (vertexno,vertexname);

The above statement creates an index v1 on the table vertices with column names

vertexno and vertexname. There is always an overhead of creating and maintaining an index.

Whenever a tuple is inserted or deleted from a table the corresponding operation has to be

done on the index also.

Since there is a join operation involved in the query we are trying to optimize it by

creating an index on those attributes involved in the where clause. The index is created in the

following way on table Joined_n

Create Index j_N
On Joined_N (vertex1name..vertexN+1name,

edge1..edgeN,ext1..extN-1);

The indexes are created after loading the table because otherwise there would be an

overhead of updating the index every time a new tuple is inserted into the table. The same

tests were re run to see the effect on the run time. The results have been tabulated in the table

6-4. Indexes were created only on the tables Joined_3 and the Joined_4, because the run time

for these operations formed the major part of the overall time taken by the program.

93

Table 6-4 Timings comparison with Indexing

In the initial data sets there was not much of an improvement because there is an

overhead of creating the index, which is shown in the column Index Time. The first Index

time is the time taken to create the index on the Joined_3 table and the second one is the time

taken to create the index on Joined_4 table. The timings show a considerable improvement in

the run time of the algorithm, especially the update operation of the Joined table. For

example, for the data set T5KV10KE and beam =10, the time taken by the update operation

is 3.76 seconds compared to 167.7 seconds taken by the previous approach. We can also see

that the index on the Joined_3 table did not have much of an improvement on the algorithm.

Although there has been a huge improvement in the performance from the previous

approach, the performance of Subdue’s main memory algorithm is still better than the

database approach. For example, the overall time taken by the data set T5KV10KE using

beam size 4 for Subdue is just 8.7 seconds, compared to the 33.1 seconds taken by the

database algorithm.

94

6.6 Updating without the Minus operator

This approach is the one discussed in chapter 5. The assumption while implementing

this approach is that the beam number is a very small number compared to the number of

substructures. Instead of creating the table EdgeN_subs that have all the instances of the

substructures that do not participate in the future extensions, we create a table

Frequent_beam_n table that contains the substructures that are going to participate in the

future extensions. Hence, the Frequent_beam_n table will have at most beam number of

tuples, which would be much smaller than the table Frequent_n itself. It would be just

enough to gather all the instances of the substructures, which are in the table

Frequent_beam_n table. Since the Joined_n table contains all the instances of the

substructures of size n, we can gather the instances of the substructures in Frequent_beam_n

table by joining the Frequent_beam_n table with Joined_n table. The query to achieve this is

shown below:
Insert into Joined_beam_n ATTRIBUTES

(

Select ATTRIBUTES

From Joined_n j, Frequent_beam_n f

Where f.vertex1name=j.vertex1name and

f.vertex2name=j.vertex2name…

f.vertexN+1name=j.vertexN+1name

and f.edge1=j.edge1 and

f.edge2=j.edge2… f.edgeN=j.edgeN

and f.ext1=j.ext1 …f.extN-

1=j.extN-1

)

 The run times of this approach are shown in table 6-5.

95

Table 6-5 Timings without using the Minus operator

There is a definite decrease in the time taken by this approach compared to the

previous approach. For example, consider the pass 3 of the data set T1KV5KE; the time

taken for by the previous approach is 30.87 seconds compared to the 7.1 seconds taken by

this approach. The improvement has been in the update times, which is just 0.11 seconds

taken by this approach compared to 23.21 seconds of the previous approach. The graphical

comparison graphs for the overall timings for all the approaches are shown in the table 6-6

and 6-7. The timings are shown on the logarithmic scale, as the range is very large.

96

Table 6-6 Comparing the Final times

97

Table 6-7 Comparison of overall times

6.7 Achieving Scalability

The above tests could only help in making a comparison within the approaches but

could not establish any proof of scalability of the approaches. The code used for generating

the test cases could not create test cases large enough to test for higher data sets. Another

graph generator described in section 3.3.4 has been used for testing the algorithm further.

The generator was able to create data sets of size 1,600,000 edges and 800,000 vertices. Tests

have been done on these data sets on main memory as well as the last approach discussed

above. The results are shown in table 6- 8.

The final timings and their comparison with Subdue are shown. The number of

instances of the substructures discovered by both the algorithms turned out to be the same.

The crossover point for the algorithm timing takes place at as low as 100 edges. The main

memory algorithm took more than 60,000 seconds to initialize the T400KV1600KE graph

98

and took more than 20 hours to initialize the T800KV1600E data set. We could not go

beyond the T800KV1600KE data set for testing because the graph generator could not

produce the required graph. The run time for the data set T800KV1600KE using the

database version with a beam size of 10 is 12,703 seconds. The time taken by the Subdue

algorithm for a data set of T50KV100KE and a beam size of 10 is 71,192 seconds. One of the

main reasons for such improvement has been using pure SQL statements to achieve the

functionality. The graphical comparison of the approaches is shown in tables 6-9 and 6-10.

99

Table 6-8 Comparison of Timings

100

Table 6-9 Graphical comparison of the approaches

101

Table 6-10 Graphical Comparison of the Approaches

102

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusion and Future Work

In this thesis we have developed several algorithms for graph-based data mining

using relational databases. The idea behind graph-based data mining was to find interesting

and repetitive substructures in a graph. Initial efforts included mapping graphs into a

database and achieve the functionalities of Subdue. One of the main challenges was the

representation of the substructures in a database and discovering these substructures. Our

first algorithm developed achieved the functionality required but lacked scalability. The next

challenge is to achieve the scalability and apply the concept of beam. The ECBA implements

the graph discovery in pure SQL statements and uses indexing techniques to improve the

performance of the algorithm. We were able to run graph mining on data sets that have 800K

vertices and 1600K edges. The algorithms developed were able to achieve the functionality

desired (scalability). The algorithms were able to find substructures and their number of

instances correctly. Much functionality like beam and max size was successfully

implemented in this thesis.

 We are still in the process of implementing the concept of overlap. For considering

the issues involved in overlap the instances of the substructure have to be carefully analyzed

to see if there exists a common vertex between the two instances. One of the important

concepts while dealing with graphs is detecting cycles. The current algorithm though detects

the cycles correctly but after detecting the cycles it still loops within the cycle. Cycles need

to be carefully handled and reported. We are also in a process of implementing a concept like

MDL, which would report compression achieved by a substructure in a database system.

103

REFERENCES

1. Cook, D.J. and L.B. Holder, Substructure Discovery Using Minimum

Description Length and Background Knowledge. Artificial Intelligence Research,

1994. 1: p. 231-255.

2. Sarawagi, S., S. Thomas, and R. Agrawal. Integrating Mining with Relational

Database Systems: Alternatives and Implications. in SIGMOD. 1998. Seattle.

3. Thomas, S., Architectures and optimizations for integrating Data Mining

algorithms with Database Systems, in CSE. 1998, University of Florida: Gainesville.

4. Cook, D.J. and L.B. Holder, Graph-Based Data Mining. IEEE Intelligent

Systems, 2000. 15(2): p. 32-41.

5. Rissanen, J. Stochastic Complexity in statistical inquiry. in World Scientific

Publishing Company. 1989.

6. Bunke, H. and G. Allerman, Inexact graph match for structural pattern

recognition. pattern recognition letters, 1983. 1(4): p. 245-253.

7. Chamberlin, D., A Complete Guide to DB2 Universal Database. 1998:

Morgan Kaufmann Publishers, Inc.

8. Noble, C., Graphgen.

9. Holder, L.B., Subgen.

104

BIOGRAPHICAL INFORMATION

Ramji Beera was born on May 28, 1979 in Hyderabad, India. He received his

Bachelor of Technology degree in Computer Science and Engineering from Indian Institute

of Technology, Madras, India in May 2000. In the Fall of 2000, he started his graduate

studies in Computer Science and Engineering at The University of Texas, Arlington. He

received his Master of Science in Computer Science and Engineering from The University of

Texas at Arlington, in August 2003. His research interests include graph based mining and

Business Intelligence.

	Structural Data Representation
	Parameters for Control Flow
	Compression Using Minimum Description Length
	Compression using the Size
	Inexact Graph Match
	The substructure Discovery Algorithm
	Notations
	Flow
	Halting Conditions
	Next Iterations

	Using static SQL in C programs
	Cursor Declarations
	Discovery Algorithm
	Initialization of data
	Substructure Discovery
	Two-Edge Substructures
	Generalization
	Negative Extensions
	Constructing the graph

	Input data generation
	Performance
	Conclusion

	Functions in UDB system
	Creating an External Scalar Function
	Description of the Syntax

	UDF’s over Cursors
	Implementation Details
	Table UDF's in DB2

	Experiment Results and Conclusion
	Why a new Approach
	Graph Representation
	Graph Extension Revisited

	Initialization of Data
	Algorithm
	Flow of the algorithm
	Discovering the single edge substructures
	Implementing Beam for single-edge substructures

	Extending to two-edge substructures
	Updating the counts for two-edge substructures
	Implementing beam for two edge substructures
	Creating the Joined_beam_2 table

	Generalization
	Generating the Frequent_n table
	Implementing the beam for n-edge substructures

	Halting conditions
	Limitations to the algorithm

	Configuration File
	Writing Log File
	Use of Correlated queries
	Input data set generation for testing

	Using the Minus operator
	Indexing Techniques
	Updating without the Minus operator
	Achieving Scalability
	Conclusion and Future Work

