RELATIONAL DATABASE ALGORITHMS AND THEIR OPTIMIZATION FOR

GRAPH MINING

The members of the Committee approve the masters
thesis of Ramji Beera

Sharma Chakravarthy

Supervising Professor

Diane Cook

Lawrence Holder

RELATIONAL DATABASE ALGORITHMS AND THEIR OPTIMIZATION FOR
GRAPH MINING

by
RAMJ BEERA

Presented to the Faculty of the Graduate School of
The University of Texas at Arlington in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXASAT ARLINGTON
May 2003

To My Parents, Family and Friends

ACKNOWLEDGMENTS

First and foremost, | would like to thank my advisor, Dr. Sharma
Chakravarthy, for giving me an opportunity to work on this challenging topic and
providing me ample guidance and support through the course of this research.

| would like to thank Dr. Diane Cook and Dr. Lawrence Holder for serving on
my committee.

| am grateful to Anoop Sanka, Raman Adakkalavan, Hari Prasad
Yalamanchali, Naveen Pandrangi, Nishanth Reddy Vontela, and Ramanathan
Balachandran for their invaluable help and advice during the implementation of this
work. | would like to thank all my friends in the ITLAB for their help, support and
encouragement.

| would like to acknowledge the support of the Office of Naval Research, the
SPAWAR System Center-San Diego & by the Rome Laboratory (grant F30602-01-

2-0543), and by NSF (grants 11S-0123730 and 1S-0097517).

April 14, 2003

ABSTRACT

RELATIONAL DATABASE ALGORITHMS AND THEIR OPTIMIZATION FOR
GRAPH MINING

Publication No.

Ramji Beera, M.S.
The University of Texas at Arlington, 2002

Supervising Professor: Sharma Chakravarthy

Data mining aims at discovering important and previously unknown patterns from
datasets. Database mining performs mining directly on data stored in Data Base M anagement
Systems. Several SQL-based approaches for (association rule) mining have been studied in
the literature.

The main focus of this thesis is on the design and development of algorithms for
graph mining (Subdue) using relational DBMS. We develop several approaches for
discovering the repetitive substructures in a graph. Each approach is analyzed and optimized
further to improve its performance. Two different approaches, cursor-based and User
Defined approaches are studied in this thesis. The experiments eval uate these approaches and
compare their performance with the main memory algorithm for a graph-based data mining

(Subdue). The larger goal of thisthesisisto achieve scalability.

[Fhe University of Texas at Arlington in Partial Fulfillment..............c.cccoveveveveverveverennnne.. 1

IACKNOWLEDGMENTS.......coovoveeieietieieteeeteteeeteeee ettt teeeteteeneteseseseenesesssenseneseaneses iv|
SR V|
[N e = Y ——— 1]
[TNTRODUCTTON ... ooooooooocooocooocooocooocoooeoeeeeeeeeeeeeeeeeeeeeneeseeeeseeeeeeeeeeeeeneeeseeeeseeeeeeeeeeeeeees 1]
(S N = 2 5|
[TRELATED WORK ..ooooooooooocoocoocoooooooocoooeeeeeeeeneeeeesseneeneeneeneeneeneeneeneeneeneeeseeneeseeneeeneenee 5]

[P.1 Structural Data REPIrESENTALION.........c.cveueevereeieteereieteereeeteeteeieteeteeteeeteerenereeresneseenas 5

[P2 Parameters fOr CONrOl FIOWooowoeeeeeeeeeeeeeeeeeeeeeeeeeeeseesereeensesnsenenesnceeseseeacas 6

.3 Compression Using Minimum Description Lengthcccccvevcvveevivecvcccivcciennes 7

P4 COMPression USING the SIZE.......ccuviivieiiieiieceeeeeeeee e 8

P.5 IneXact Graph MalCh...........c.ooiuviiieiiiecieeeece et eeeas 9

.6 The substructure Discovery AlQOrthm...........ocooveeeiiieiieiiieeeeeeeeeeeee 10

R.6.1 [N o) o) PP PPTPPP 1]

D 6.2 [o Y2 11

P.6.3 Halting CONAITIONSccveiiiiiiieiieeeiieeeiieeeeee et e eeteeeeteeeeveeeeteeeenreeesnreeeennes 12

P.6.4 INEXE TEI A ONS.....cuvieeieceeeee ettt e e e et eeneeenteeeneeereasneeas 13
CHAPTER B.ooooooooooooooooooooooooneosoioseesneesesseesemesesssmsseeosessesemssenseeeeeseenssesseessenen 15|
CURSOR-BASED APPROACH ...ttt e sesesessessesesesisesseseseesssessessesessessesesasssas 15|

3.1 Using static SQL iN C PrOgramScuecveerueeeeseerieeieseeseeseeseesseesseesseseessesssesseeses 16

3.2 CUISOr DECIAratiONS.......cc.eoiuiiiiieeeeeee et e et e e eneeennas 17

3.3 DiSCOVENY AIGOMTNM.......eeiuiiiiieceeiecee ettt e eteeereeeneeennes 18

3.3.1 INITTAlTZAHON OF JAAc..veceeeceeeeeceeeee e ereeas 19

3.3.2 SUDSETUCIUIE DISCOVEIY ..o eeeeieeeeeeaesseeenesssneeesssnnneeessssseesessssneees 21

3.3.3 [Y s Loy T 31

3.3.4 PEITOMMANCE ... it e e s e e s e eeesreenreeneas 33

3.3.5 [©o g Tox 117 Lo PO PP PP 35
NI 36|
IUDF-BASED APPROACH ...ttt ittt sesesetesessesesessesseseseesssessessesessessesesaessans 36

A1 FUNCHONS TN UDB SYSIEMcveeiicic ettt eae e nae e 37

1.2 Creating an External Scalar FUNCHON............ccvviveiiiiiiiciececcecceeeee e 38

1.2.1 DesCription Of the SYNEAXc..cccuveeveeeiieiieceieeetieccteeeteecteeceeeeeeeteeeeeeereesneeas 40

.3 UDF SOVEN CUMNSOIScveuvveeiveeeeeteieteeeeteteeeteseeieteeeeteeseeseenesessesessesesessesessesesessesens 46

n3.1 IMPlEMENtatiON DELAIIS............c.eeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeereeseeererenserersereraesens 46

B4 Experiment Results and CONCIUSIONcoveveevveveevieeereeetiereeeeeeeeeereteeeseeereeenenenens 51|
O T e = T 53|
ENHANCED CURSOR-BASED APPROACH (ECBA) o.oooooooocoocooooeoocooeoneeneeeeeeneen 53]
5.1 WhY 2NEW ADPDPIOBCN.........cuiriectieecteseisceseecsesessesssssessssesssssssssssssssssesnsessnsnsesnssssnacs 53
BT Grapn REDrESEMAON.cococevevereeeererereeeeerereneeeererenennennenenenenennsnennenen. 53
b.1.2 Graph EXteNSiON REVISITEA..........cc.ueeeeuiiieiieieiieceiie e eeee et e eeteeesereeesreeeans 55
E.Z INItialiZAEION OF DAAL.......c.ceveeeeeeeeeteeeeeeeeeeteeeeeeteeeeeteeteeee et e et eeeeaeeteeennereenens 57
I N e e T T T 59
5.3.1 FlOW Of the @l QOTTENMc.oeeeeeeeeeeeeeeeeeseeeeeeeseeeeeeeseeanenesnesncneeneane 60
b.3.2 Discovering the single edge SUDSLIUCTUNESccvecveceeceece e 61
5.3.3 Extending to two-edge SUDSITUCIUNESccveeiuiieieieeceeeeee e 68
5.3.4 [T 1= o 74
b.3.5 HaltiNG CONAITIONS ..ot seeas 79
b.3.6 Limitations to the algorithm............occcuueeiiveeeiiiiiiiiiieeeieeeeeeeeeeeeeeeeeeeeeeaeas 80
CHAPTER B oo oo oeeeeeeee oo 82|
PERFORMANCE ANALY SISAND OPTIMIZATIONS.........coooiveeireieieteteeereeevenees 82|
6.1 Configuration File. ... 82
AR e e N L= —— 84
6.3 USE Of COrrelalet QUEITES.ooiiueeiiiiiiiiieeeeiie e e eeiteeeseeiveeeeseseeeseesssesssseseeeesans 85
b.3.1 Input data set generation fOr tESHINGccveeveeeereeeeceeceeceseereeeeseenee e 86
5.4 USING the MINUS OPENGIONcuveeeeeceeeeeee e e e e eneeennas 90
B.5 INeXiNg TECANIQUEScoveeceieeieeteeeeeeeeeeee ettt re e e e ereeereens 92
6.6 Updating without the MiNUS OPEIAEONccveiueeiiieeiieeeeeeeeeeeee e 94
5.7 AChIEVING SCAADNITTY ..ottt eeeee e s e eeeeeseneeeesessneeeessnneees 97|
[TCHAPTER Toooeoooeooooooooecooveooecoeoeeeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeneeeneesseeeeeeeeeeseeseeenseeens 102]
[ICONCLUSIONS AND FUTURE WORKcoouiiviiiieeciieeieieteteeessieieressensneeeresessensees 102

1 Conclusion and FUUNE WOrK ... 102|
IOGRAPHICAL INFORMATIONcooiiiiiiiiiiie et 104

FIGURE 2-1 INPUT FILE FOR SUBDUEcoooooooooooeeoseeseereeerseeseeeeeseeeeeeeeeeeeeeereeneees 6
FIGURE 2-2 INEXACT GRAPH MATCH..........ooooooooreeseeseeeeeeeeeeseereeereeeeeeereeereeeseereecennr 10
FIGURE 3-1 TUPLES IN EDGES TABLEooooocooooooooisoosiossissrosseseseeserseeseeeseeseeseeeneeen 20
FIGURE 3-2 TUPLES IN VERTICES TABLE -..co..oooroosriorssrosssessesseeseeeeseseeeseeseseseeseeeees 20
FIGURE 3-3JOINED L TABLE ..o 21]
FIGURE 3-4 JOINED 1 TABLE AFTER COUNT ATTRIBUTE UPDATED.................... 22
FIGURE 3-5 GRAPH........cooooooooooooooooooosocosessesseoseeseeoseeeseseeeseeseeseeneesseeseesneeseeseeen 23
FTGURE 3-6 JOINED L TABLE ..o oeeoesos oo onseseeseeseesenseeseeseesenseeseessenn 24
FIGURE 3-7 JOINED 2 TABLE ...ooocooeoiiooiosieessessssssssosereeesseeeeeseeesseeeeesseeseeeseeeseeseeeeeeseeeas 25
FIGURE 3-8 JOINED 1 TABLE ..o, 26
FIGURE 3-9 AN EXAMPLE GRAPH WITH INCOMING EDGES.............ocooorermeeeseeeeeee 28
FIGURE 3-10 A TUPLE IN JOINED 4 TABLE.............coooooooooseeoseeeseeseerseereeeeceseeesseessecs 30
FIGURE 3-11 CONSTRUCTED GRAPH FROM THE TUPLE..........coooooooooiiosiiiniseenrin 31
FIGURE 3-12 THE SUBSTRUCTURES EMBEDDED IN THE GRAPHcoooceorevieneees 34
FIGURE 5-1 JOINED 3 TABLE CONTAINING ALL THE 3 EDGE SUBSTRUCTURES]
Lottt ettt et e et ettt et et sreeeeeteetereeertereetentereereaeentsreseententereaeenteresrenens 54
IGURE 5-2 GRAPHS FOR THE TUPLES IN TABLEoooooooooosoosieoiisiesnienrennen 54
IGURE 5-3 AN EXAMPLE FOR GRAPH EXTENSIONoooooooooooosoooososoiooeoneoesoones 55|
FIGURE 5-4 GRAPH EXTENSION EXAMPLE ...coocoocooiciseeseeeseeeeeseeseeseeseeeseeeseeeseeeeeeeeeas 56
FIGURE 5-5 JOINED BASE TABLE ..., 58
FIGURE 5-6 AN EXAMPLE GRAPHoooooooocooooooooooseeeseeseeseeeeeneeseeereenseeseceeeneeeeeeeeeene 61
FIGURE 5-7 VERTICES TABLEcooocoooeosereseseeeseeseesseeseeeeeeeeeeeeeseeneeeseeeseeeeeesee 62
FIGURE 5-8 EDGES TABLEcoocoocooooiooossooiiosrossesssseeeseessesseesseessenseeseeseeseeseeseeseeeneen 63
FIGURE 5-9 JOINED BASE TABLE -...coo.cooosooicossossreosesesseseseesesseseeeeeeesesseeseeesseseeeeeeeeeees 64
FIGURE 5-10 FREQUENT L TABLE ..ooooooooooooooooooooooooooooeooo oo 65
FIGURE 5-11 UPDATED FREQUENT 1 TABLE.............c..ooooooomeeemeerseereeeseeeeceeeereeereeeee 66
FIGURE 5-12 UPDATED JOINED BASE TABLEoocoooooocooiooosiosneosnesseseiserennen 66
FIGURE 5-13 JOINED BEAM L TABLE. ... sesesses e sesenssnesenn 63
FIGURE 5-14 JOINED 2 TABLE .oooooooocooiosieessesssssessrosereeesseeessseeesseeeeeseeeseeeeeeeseesseeeeeeseeeas 70
FIGURE 5-15 FREQUENT 2 TABLE ..o 72
FIGURE 5-16 FREQUENT BEAM 2 TABLE..............cooooooooosereeeseeeseeeeseeeceeeeeeeeeeeeeene 73
FIGURE 5-17 JOINED BEAM 2 TABLE...............ooooooroseeseeeseeeeseeseeseeseeeneeeeeeseeerseesecenns 74
FIGURE 5-18 EXACT GRAPH MATCHoooooooooeooosooooissesiissresseeseseeseesseeseeseesseseeseen 77
FIGURE 5-19 FREQUENT BEAM 4 TABLE ..o eeesssessesessesesseene 80
FIGURE 5-20 JOINED BEAM 4 TABLE.......cooooooooooooooooooooooio, 80
FIGURE 6-1 EMBEDDED SUBSTRUCTURE................cooorseeereeeeceseeseerseeereeeeceeeereeereeee 87
FIGURE 6-2 OUTPUT FOR SUBDUE FOR DATA SET TIKV5KE oooooooocooococoocce 89
FIGURE 6-3 FREQUENT 4 TABLE TUPLES.........oooooooin 89

TABLE 3-1 CONFIGURATION OF THE DATABASE —SUBDUEDB.............................. 33
TABLE 3-2 CONFIGURATION OF THE SYSTEMcccocviiiiiiiii 33
TABLE 3-3 TIMINGS COMPARISON ..ottt 34
TABLE 3-4 INDIVIDUAL TIMINGS FOR CURSOR-BASED APPROACH..................... 34
TABLE 6-1 PARAMETER SETTINGS........oivoieeveceeveeceeeeecereseecereecsrereeeerenesneneienennnenenes 87]
TABLE 6-2 TIMINGS USING THE CORRELATED QUERYccocooiiiiiiiiiiie, 88
TABLE 6-3 TEST RESULTS USING THE MINUS OPERATOR........ccocoviiiiiiiiiiicien 91
TABLE 6-4 TIMINGS COMPARISON WITH INDEXING.........o..coorrsmeesseeeseeeeeeesseeeseeenes 93
TABLE 6-5 TIMINGS WITHOUT USING THE MINUS OPERATORocooveiiiiiiicee, 95
TABLE 6-6 COMPARING THE FINAL TIMES........cccooooiiiii 96
TABLE 6-7 COMPARISON OF OVERALL TIMES.........coooiiiiiiiiiiiieecees 97
TABLE 6-8 COMPARISON OF TIMINGS...........ccoooiiiiiiiiiii 99
TABLE 6-9 GRAPHICAL COMPARISON OF THE APPROACHES..............ccccoevnennnne. 100
TABLE 6-10 GRAPHICAL COMPARISON OF THE APPROACHES............cccccoeinenne 101

Xi

CHAPTER 1

INTRODUCTION

Database technology has been used with great success in traditional data processing.
But with the ability to store enormous amounts of business data, it isimportant to find a way
to mine that directly from the database and extract nuggets to leverage for business
advantage. If the data can be mined directly, it can used to find abstractions or relations that
improve the understanding of the data and help in making business decisions.

The large amounts of data that can be collected and stored entail that we figure out a
way to interpret the data and discover interesting patterns within the data. Much of the
research has addressed techniques for discovering interesting concepts from relations in
databases. The techniques developed so far have dedt with data using non-structural and
attribute value representations. The research has addressed issues that involve data relevance,
missing data, noise and uncertainty, and utilization of domain knowledge[1]. Some of the
popular data mining techniques are: classification and association rule miningClassification
rule mining is a process of grouping items based on a classifying attribute. A model is then
built based on the values of other attributes to classify each item to a particular class.
Association Rule mining is the process of identifying the dependency of one item(s) with
respect to the occurrence of other item(s). A maority of the mining agorithms were built for
data stored in flat file systems. Since current database systems are dominated by relational
databases the ability to perform data mining using standard SQL queries[2] will ease the
implementation of data mining. SQL techniques have been successfully used for
implementing for association rule mining[3].

In contrast to earlier work, recent data mining projects have been collecting structural
data, which describe relations among the data objects. So, there is a need for techniques and

1

2

algorithms that would decipher the relationships among data objects. A graph mining
approach to data mining is different from conventional mining approaches such as
association rules and clustering. Graph mining uses the natural structure of the application
domain and mines directly over that structure (unlike others where the problem has to be
mapped to transactions or other representations). Graphs can be used to represent structural
relationships in many domains (web, protein structures, groups of related actions, etc).

Subdue is a mining approach that works on a graph representation.

The goa of Subdue g4] approach to mining is to find common and repetitive
substructures within the data. The motivation for this process has been to find interesting
substructures that would be able to compress the data and to identify substructures that would
enhance the interpretation of the data. The Subdue substructure discovery is a process of
identifying the concepts describing interesting and repetitive substructures within the
structural data. Once a substructure is discovered, a pointer to the instances of the
substructure is used to simplify the data.

The Subdue system discovers the interesting and repetitive substructures in the data
using the principle of Minimum Description Length [1]. Subdue replaces the best
substructure discovered using MDL by a single pointer and makes passes over the data, thus
producing a hierarchical description of the structural data. Subdue, also uses the concept of
inexact graph match to bound the algorithm computationally.

Although Subdue provides us a tool for finding the interesting and repetitive
substructures within the data, it is limited by the fact that it is a main memory algorithm. The
algorithm constructs the entire graph in main memory and then mines it using a search
algorithm. This poses problems when the data size is very large, which is usually the case for

mining applications. The agorithm needs to be mapped to a persistent representation of the

3

graph to overcome man memory limitations. One of the approaches for providing
persistence and scalability would be to use database techniques that are capable of handling
large data sizeg[10].

Computations over databases were not developed with arbitrary agorithms in mind.
Hence, databases do not provide functionality to support “mining” in the traditional. Existing
query languages such as SQL are computationally incomplete, as they do not provide all the
primitive programming language constructs. The data structures are aso limited to a set or a
table in the cause of relational database management systems. So in order to provide
computational -completeness, SQL constructs can be in a host programming language such as
C or JAVA. C was chosen over Java because all the code of Subdue has been writtenin C.

This thesis provides an approach to substructure discovery in a database environment
and uses DB2 as the DBMS. The thesis addresses mapping and representation of the
substructures to tuples in the database and describes how the discovery is achieved purely
through SQL-based approaches. The main focus of the thesisis on developing agorithms to
discover repetitive substructures and their optimization. The algorithms have to be carefully
designed to achieve this functionality and be able to work for larger data sets. The SQL
queries developed have to be carefully analyzed and optimized to achieve the desired
performance, which is comparable or even better than main memory agorithm. Although
parallel versions of the main memory have been developed to speed up the computation and
handle large data sets, they suffer from loss of information when the data set is partitioned.

The roadmap of this thesis is as follows: Chapter 2 discusses the back-ground and
related work done in the field of data mining and the approaches used for mining structural
data. Chapter 3 summarizes the first approach taken for the substructure discovery using the
cursors. Chapter 4 summarizes the approach taken using the User Defined Functions (UDF)

in DB2. Chapter 5 summarizes the second approach taken and includes various optimizations

4

of the base approach. Chapter 6 discusses various performance related optimizations and
their comparison for data sets of different sizes as well as with main memory approach

performance. Chapter 7 concludes the thesis and the future work.

CHAPTER 2

RELATED WORK

This chapter describes the Subdue main memory agorithm. It discusses how
substructures are discovered in a systematic way. It also discusses how Subdue uses the
graph isomorphism and inexact graph match concepts to make it a polynomial-time
algorithm. It also discusses briefly the concept of Minimum Description Length (MDL) and
the size-based evaluation principles used for graph compression. It summarizes the various

parameters used by the Subdue algorithm, their relevance, and what they mean conceptually.

2.1 Structural Data Representation

The substructure discovery system represents the data as a labeled graph. Objects in
the data represent vertices or small sub graphs and the relationships between them are
represented as edges. A substructure is a connected sub-graph within the graph. Figure 2-1
shows a sample input for Subdue. An instance of the substructure in the graph is a set of
vertices and edges that match the substructure theoretically.

The input to Subdue is a file, which describes the graph. All the vertices are listed
first followed by the edges. Each vertex has a unique vertex number, and a label. Each edge
has an edge label and the vertex numbers, to which it connects, from source to destination.
The edge can be an undirected edge (u) or a directed edge (d). An edge with label e is
regarded as a directed edge unlessit the -undirected flag is specified at the command prompt,

which will cause all edges to be treated as undirected.

V1A
V2B
VicC
D12AB
D13AC

#1) B2

Figure 2-1 Input file for Subdue

2.2 Parametersfor Control Flow

The input to the discovery process is taken from the file and the graph is constructed
using these values. A number of parameters control the working of the algorithm. They are
briefly described below:

1. Beam: This parameter specifies the maximum number of substructures kept in the
substructure list to be expanded. Others are discarded. The default is 4.

2. Limit: This parameter specifies the maximum number of substructures to be
evaluated in each iteration. The default value is (Number of Vertices + Edges)/2.

3. Size: This parameter specifies the minimum and maximum size to be reported to the
user after the discovery, and maximum size also acts as a halting condition for
Subdue. The size here indicates the number of vertices in the substructure.

4. Overlap: This parameter guides the algorithm to consider overlapping of the instances
of the substructures. Two instances of a substructure are said to overlap isthey have a
vertex common to each other. Overlap plays significant role in calculating the
compression value because with overlap we have to maintain extrainformation.

5. Nsubs: This parameter reports the best n substructures discovered.

6. Output: This parameter controls the screen output of Subdue. The various values are

1) Print the best substructure in that iteration.

2) Prints the best n substructures, where n is the number specified in the
nsubs parameter.

3) Print the best n substructures, and intermediate substructures as they
are discovered.

4) Print the best n substructures along with their instances and
intermediate substructures as they are discovered.

5) Only for Supervised Subdue: prints the substructures found in the
negative graph aong with the output printed by — 4 option.

7. lterations: The Number of iterations to be made over the input graph. The best
substructure from iteration i pass will be used to compress the graph for next iteration
i+1. Defaultis 1.

8. Prune: With this argument Subdue will discard the child substructure which has lesser

value than the parent substructure. Thiswill substantially reduce the search space.

2.3 Compression Using Minimum Description Length

The minimum description length principle, described by Rissanen[5], states that the
best theory to describe a set of data is a theory that minimizes the description length of the
whole data set. The MDL principle has been used in various applications such as decision
tree induction, image processing and various learning models of non-homogenous
engineering domains. This is used for evaluating a substructure discovered by checking the
number of bits needed if it is used in compressing the graph.

Subdue’s implementation of MDL principle is in the context of graph compression
using a substructure. Here, the best substructure is one that minimizes DL(G) + DL(G|S)

where S is the discovered substructure, G is the input graph, DL(S) is the number of bits

8

required to encode the substructure discovered, and DL(GIS) is the number of bits required to
encode the input graph G after it has been compressed using the substructure S[4].
Let DL (G) = N (G) = number of bits needed to represent the graph.

So, N (G) returns the number of bits to represent the graph. If the graph is compressed using
a substructure S in the graph which has i instances, then the number of bits needed to
represent the compressed data would be

N (G) =N (S) + N (G/S).
The term N (G/S) represents the number of bits needed to represent the graph after
compressing the graph by substituting all the instances of the sub-graph by just one vertex.
The compression is better if there are more instances of the substructure in the graph. The
compression achieved would be

Compression = 1 - (MDL of compressed graph)/ (MDL of the original graph)

=1-(N(S) + N (G/S)/N (G)

Subdue outputs the best substructures based on the above compression value.

24 Compression using the Size

The compression achieved by a substructure can also be evaluated using the size
parameter as well. Size of a graph is defined as the number of vertices plus the number of
edgesin the graph. Mathematically:

Size (G) = Number of vertices (G) + Number of edges (G)
So assuming there is no overlap between the instances of a substructure, the size of graph
after compressing with the substructure would be

Size (G/S) = (Number of Vertices (G) —i* Number of Vertices (S) + i) + (Number of

Edges (G) — i* Number of Edges (S)),

9

where i is the number of instances of the substructure S. This is an approximation of the
MDL theory. This theory though uses simple and more efficient method of coding it does not

capture the optimal coding used by MDL.

2.5 Inexact Graph Match

Although exact graph match can be used to find interesting substructures in the graph,
most of the substructures in the graph may be dlight alterations of a substructure. This
difference can be attributed to the noise and distortion or might just illustrate the slight
differences between the substructures in general. Comparing two graphs exactly has been
shown to be an NP compl ete problem.

In order to deal with inexact graph matches, an approach developed by Bunke and
Allerman[6] is used, where each distortion is assigned a cost. A distortion is a basic
transformation such as deletion, insertion and substitution of vertices and edges. So, as long
as the cost of difference between two graphs falls within a user given threshold the graphs are
considered isomorphic. Employing computational constraints such as bound on the number
of substructures considered and the number of partial mappings considered during the inexact
graph match, keeps the Subdue algorithm to run in polynomial time.

An example of inexact graph match is shown below. The Figure 2-2 shows the two

graphs that are compared.

A—>»C A—>»D
v v

B B
Graphl Graph2

Figure 2-2 Inexact graph match

10

Assuming that an edge label is concatenation of the vertex labels, the two graphs

would be different by a cost of two, namely the edge label AD and AC are different and the

vertex labels C and D do not match. If auser had a threshold of two then the two graphs will

be considered isomorphic.

2.6 Thesubstructure Discovery Algorithm

1)
2)
3)
4)
5)
6)

Below, the algorithm used for Subdue [4] is presented.

Subdue(G aph, BeanmW dth, MaxBest, MaxSubSize, Limt)
Par ent Li st ={ }

ChildList = { }

BestList ={ }

ProcessedSubs =0

Create a substructure from each uni que vertex | abel and
its single-vertex instances; insert the resulting
substructures in ParentlLi st

7) whil e ProcessedSubs <= Limt and ParentList is not enpty

do

8) while ParentList is not enpty do

9)

Parent = RenoveHead(ParentList)

10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)

26.1

2.6.2

11

Ext end each instance of Parent in all possible
ways
G oup the extended instances into Child
substructures
for each Child do
if SizeO(Child) <= MaxSubSi ze t hen
Eval uate the Child
Insert Child in ChildList in order by
val ue
if Length(ChildList) > BeamWdth then
Destroy the substructure at the end of
Chi | dLi st
ProcessedSubs = ProcessedSubs + 1
Insert Parent in BestList in order by val ue
if Length(BestList) > MaxBest then
Destroy the substructure at the end of BestList
Switch ParentList and Chil dLi st
return BestList

Notations

ParentList (): It consists of substructures to be expanded. Initialy it is empty. The
number of elementsin the Parent List is guided by the beam width.

ChildList (): It consists of substructures that are expanded. Initially it is empty.
BestList (): It consists of best substructures found so far.

ProcessedSubs (): It represents the number of substructures processed so far, hence it

acts as one of the halting conditions.

Flow

The agorithm starts with the initializations of the Parent List, Child List and the Best

List to empty sets. The parent list that contains the substructures to be expanded is popul ated

12

with al the unique vertex labels in the graph which are sorted by their out degree. So each
vertex is represented in the parent list as a unique substructure based on their label.

The inner while loop plays the vital role in the algorithm. Each substructure is taken
from the parent list and expanded in all possible ways. This is done by adding an edge and a
vertex to the instance, or just an edge if both the vertices are already present in the instance
does this. The first instance of each unique expansion becomes a definition for a new child
substructure. All the child instances that were expanded in this way become the instances of
that child substructure. Some of the child instances, which were expanded in a different way
but match the substructure within a threshold using the inexact graph match, are aso
included in the instances of that child substructure.

Each of the child substructures is then evaluated using the MDL heuristic and inserted
into the Child List based on this heuristic. The beam width is enforced on the Child List, all
the substructures after the beam width are removed and thus do not participate in the future
extensions. The Best List also uses the same mechanism to keep its cardinality to the limit
specified. Once the Best List and the Child List are updated, the Parent List is swapped with
the Child List, which would be then used to make the next round of extensions. The
algorithm’s run time is guided by the user specified beam width and the Limit. The inexact

graph match [6] is used to bound the run time.

2.6.3 Halting Conditions

There are many halting conditions for the algorithm. All of these parameters have a
default value, which can be changed by the user. The most significant of these parametersis
the Limit, which is basically the limit on the number of substructures processed so far.
Although the default is set to (Number of vertices + Number of Edges)/2 the user can give a

value that has a bearing on the output of the program.

13

One of the other halting conditions is the pruning parameter, which is more of a
graph-dependent parameter unlike the limit, which is just a number. Initially in the discovery
process, the number of instances of each substructure is usually very large, but as the
discovery process continues the size of the substructure increases and thus the number of
instances reduce. Using the pruning mechanism, which discards child substructures with
values less than the parents, we can have a halting condition when there would be no child
substructures left after pruning. Without the pruning argument the child list is always kept
full no matter what the value of the substructure is as compared to the parent substructure.

Another way of halting the algorithm is using the size parameter, which controls the
maximum size of a substructure. For example, a maximum size of 5 guides the algorithm to
not explore a substructure of size greater than 5 (number of vertices). In the Child List none
of the substructures with size greater than 5 are inserted and thus emptying the Child and the
Parent List. The minimum size parameter does not have a bearing on the halting but it has an
effect on the substructures inserted inside the Best List. The minimum size also guides the
output to show only those substructures, which have a size greater than or equal to the size

mentioned as the minimum size.

2.6.4 Next Iterations

After finding the best substructure, which would compress the graph in the first
iteration, this substructure would be actually used to compress the graph by replacing each of
the substructures in the graph by a single node. Although each of the substructures is
compressed to a single node, it still needs to maintain other information about the edges
connecting the rest of the graph. Once the graph is constructed, this graph would be used for
the next iteration as the input graph for finding interesting substructures. This process can

continue depending on the number of iterations the user might specify or either the algorithm

14

fails to find a substructure, which can compress the graph. So according to the algorithm it
might never even go to a second iteration if it is never able to find a substructure, which can

compress the graph in that iteration.

CHAPTER 3

CURSOR-BASED APPROACH

This chapter introduces the first of the approaches taken for Subdue discovery process
using a relational DBMS. It includes the basics of writing static SQL in C programs. The
basic idea in this approach is to use the cursor operations in DB2 to update the count (number
of instances) of each substructure. The algorithm starts with initializing the data from the
input. All the single-edge substructures are stored in the Joined_1 table. Cursors are used to
compute the count of each substructure. The count attribute indicates the number of instances
of the substructure. The count attribute is used to prune the substructures containing only a
single instance. Single-instance substructures cannot create larger substructures of counts
greater than one if exact graph match is used. The substructures are expanded by a single
edge and stored in a different table. The expansion is done using the join operator in SQL.
The above algorithm is repeated for the extended substructures. The halting condition would
be to reach the maximum size of the substructure, which is a user-specified number.

The reason behind choosing this approach is that SQL is not a computationally
complete language and hence the Subdue main memory algorithm cannot be applied in a
database context. Mapping the graphs representation to the existing structures (tuples and
tables) in the database is important. Concepts from databases, such as cursors, UDF's and

stored procedures have to be used to achieve the functionality.

15

16
3.1 Usingstatic SQL in C programs

DB2 UDB (Universal Database) [7] provides two ways in which an application
program can interact with a database, called static SQL and dynamic SQL. In static SQL, the
application developer must know exactly what SQL statements are needed and embed these
SQL statements directly into an application program. The program is then processed by the
DB2 pre-compiler, which converts each SQL statement into an optimized access plan and
stores the plan in the database. In the application program the original SQL statements are
replaced by calls to run time routines that load and execute the access plans. Static SQL
provides good performance because it optimizes the SQL statements at compile time and
prepares the access plan. The alternative to static SQL is dynamic SQL, which presents SQL
statements to the database at run time.

Each SQL statement has to be prefixed by the two words EXEC SQL. Host variable
is the name of the variable declared in the program in which SQL statement is embedded.
The name of ahost variable is distinguished from the column name with a colon prefix to the
host variable. Since the database columns and host variables are not in the same name space,
host variables can be named after the column names with which they compare. All the
declarations of host variables must be declared in a declare section: these variables are
specially marked for processing by the compiler. A simple example of using host variables
and embedded SQL is shown below.

+ Inserting a new row into a table called SUPPLIERS from input host

variables
EXEC SQL

| NSERT | NTO SUPPLI ERS(suppno, nane, addr ess)
VALUES (: suppno, : snane, : saddr)

17

3.2 Cursor Declarations

A cursor is like a name associated with an SQL query. A cursor declaration is used to
declare the name of the cursor and to specify its associated query. Three statements OPEN,
FETCH and CLOSE operate on the cursors. An OPEN statement prepares the cursor for
retrieval of the first row in the result set. A FETCH statement retrieves one row of the result
set into some designated variables in the host program. After each fetch, the cursor is
positioned on the row of the result set that was just fetched. FETCH statement is usually
executed repeatedly until all the rows of the result are fetched. A CLOSE statement releases
all the resources used by the cursor when it is no longer needed. In addition to their use in
retrieving query results into host programs, cursors can play a role in updating (including
deleting) rows of data in the database. A specia form of the UPDATE statement called the
positioned update statement can be used to update exactly one row in the database based on
the position of the cursor. In a positioned update, instead of a search condition, the where
clause contains the phrase current of followed by a cursor name. The DELETE operation
worksin asimilar way.

The syntax of acursor declaration is shown below [7]

DECLARE- - cur sor - name—€URSCOR { W TH HOLD}
{WTH RETURN TO CLI ENT/ TO CALLER}

FOR st at enent - nane

The following example shows a series of statements for using a cursor.

EXEC SQL

DECLARE cl CURSOR FOR
SELECT vertexnane, vertexno
FROM edges

FOR

EXEC SQL OPEN c1,;
EXEC SQ. FETCH cl1l into :vertexnaneg, :vertexno;
| f(vertexno>10)

EXEC SQL

18
DELETE ;

DELETE FROM edges
VWHERE CURRENT OF cl;

3.3 Discovery Algorithm

The steps of the algorithm remain the same for the database approach. The first step is

to find substructures of length n and sort them based on their count. The count of a

substructure corresponds to the number of substructures that exactly match the current

substructure. These substructures of size n will be used for the extensions to generate

substructures of size n + 1. In this algorithm beam and limit are not used.

Pseudo Code for this algorithm is given below:

Subdue-DB(input file, size)

Load vertices into vertices table;

Load edges into edges table;

join vertices and edges table to create and popul ate

1)
2)
3)
4)

5)
6)
7)

8)

9)
10)
11)
12)
13)
14)
15)

joined 1 table

i =2
VWHI LE(i <si ze)
Comput e Joined i table (substructures of size
i) from two copies of joined i-1 table
DECLARE Cursor cl on Joined_i
DECLARE Cursor c2 on Joined_i
VH LE (cl)
FETCH cl into gl
WH LE(c2)
FETCH c2 into g2

If (lsonorphic (gl, g2) =0)
Updat e Joi ned_i

19

16) Set count = count + 1
17) Wer e current of cl
18) Del ete fromcl where count = 1

20) i ++

3.3.1 |Initialization of data

The agorithm starts with initialization of data. The input is read from a delimited
ASCII file and loaded into the specific tables. The input file created from the graph generator
is not compatible for loading the tuples in the table. A function called change_db accepts the
input file for Subdue and creates two files, the vertex file and the edge file. The file created is
a delimited ASCII file, which consists of streams of data values- ordered by row and by
column within each row. The comma delimiter separates column values and the new line
character separates each row.

Below is an example of a delimited ASCII file, which loads al the edges into the
edgestable.

12el

3,2,el

4,3,e2

5,6,el

7,6,el1

8,7,e2

9,10,e1

Once the datais loaded into the tables, the table has values as shown in Figure 3-1.

20

Vertex1 Vertex2 EdgeName
1 2 El
3 2 El
4 3 E2
5 6 El
7 6 El

Figure 3-1 Tuplesin EDGES table

The Verticestable is also loaded in the same way. The Vertices table is shown in Figure 3-2.

VertexNo VertexLabel
1 A
2 B
3 C
4 A

Figure 3-2 Tuplesin Vertices table

The next step in the algorithm is the initialization of the Joined_1 table. The Joined 1 table
will consist of all the substructures of size one, size being the number of edges. The new
table Joined_1 has been created because the edges table does not contain information about
the vertex labels. So the Edges table and the Vertex table are joined to get the Joined_1 table.

The SQL query for doing this would be

| nsert into Joined_1(Vertexl, Vertex2, Vertexlnane,
Vert ex2nanme, edgenane)

21
(

Sel ect e. Vertexl, e.Vertex2, vl1. VertexLabel,
v2. VertexLabel , e. EdgeNane

From Edges e, Vertices vl, Vertices v2

Wher e e.Vertexl = vl1. VertexNo and e.vertex?2
= v2. Vert exNo

)

The resultant table Joined_1 table is shown in Figure 3-3.

Vertexl Vertex2 VertexIName Vertex2Name EdgeName
1 2 A B El
3 2 C B El
4 3 A C E2
5 6 B D El
7 6 E D El

Figure 3-3 Joined 1 table

3.3.2 Substructure Discovery

The substructure discovery algorithm starts with one-edge substructures unlike in
Subdue, which starts with all the unique vertex labels. In the database version, each instance
of the substructure is represented as a tuple in the table. The next step in the agorithm is
getting the counts of the individual substructures. The count attribute indicates the number of
substructures that are similar or exactly match the substructure under consideration. In SQL,
there is no way of distinguishing one substructure from another, since each of the
substructures is represented by a tuple in the table. In this method the count of each
substructure is updated by comparing it with every other substructure. This was the first

method developed for the database environment and has n squared complexity, where nisthe

22

number of tuplesin the table. In order to compare each tuple with every other tuple, cursors
are used to retrieve the information for each tuple. The SQL query to retrieve the information

can be expressed as,

Decl are Cursor graphl for

Sel ect Vertexl, Vertex2, VertexlNane,
Vert ex2Nane, EdgeNane
From Joi ned_1

Similarly, another cursor, graph2 is declared on the same table. Each tuple in the Joined 1
would be compared to every other tuple in the table, using the isomorphism code found in
Subdue. With the information taken from the cursor, a graph is constructed. Since the
substructure is a single edge, the graph would be a single-edge graph. For a given
substructure, the count of that substructure is increased by one if any other substructure is
isomorphic to this one. After this pass, each tuple will have an attribute count, which
indicates the number of substructures to which it is isomorphic. At the end of this pass, the

table Joined_1 will have the values shown in Figure 3-4.

Vertexl Vertex2 VertexIName Vertex2Name EdgeName Count
1 2 A B El 2
3 2 C B El 1
4 3 A C E2 3
5 6 B D El 1
7 6 E D El 1

Figure 3-4 Joined 1 table after count attribute updated

The count essentially captures the number of instances of that substructure, so a count of five

means the substructure has five occurrences in the graph. The tuples with count one are

23

substructures with only instance and hence any bigger graph that contains this edge will have
a count of one, so these tuples are removed from the table. So in the Joined_1 table only

those tuples with count greater than one are retained.

3.3.21 Two-Edge Substructures

In a main memory approach, every substructure, which is necessarily a sub-graph,
can be defined as a structure in the programming language. Extensions to two or more edges
are generated by growing the substructure appropriately. In the database environment as
there are no structures, the only information to be used will be the single edge substructures,
which are basically tuples in the Joined_1 table. The number of attributes of the table needs
to be increased to capture substructures of increased size.

The Joined_1 table is joined with itself to get the Joined 2 table, which will have all
the substructures with two edges. The tuples in this table would have the information about
al the two-edge substructures that includes the edge names and vertex names. The SQL
query needs to generate all possible two-edge substructures with no duplicates. The single-
edge substructure can be extended to two-edge substructures either on the first or second
vertex. Hence there will be two queries, one each for extending on each vertex, to generate
the two-edge substructures. Also the queries need to make sure that duplicates are not
generated.

For example consider the graph shown in Figure 3-5,

A(L> B(2)—» A(4)—» C(5)

v v

C(3) B(5)

Figure 3-5 Graph

the following values.

24

For the graph in Figure 3-5, the joined 1 table after updating the count attribute has

Vertex] Vertex2

1 2 A
1 3 A
4 5 A
4 6 A

VertexIName Vertex2Name EdgeName Count

B AB 2
C AC 2
C AC 2
B AB 2

Figure 3-6 Joined 1 table

The query to generate al the possible two edge substructures is shown below. This

guery does not eliminate the duplicates.

| nsert

into

Joi ned_2(Vertexl, Vertex2, Vert ex3, Vert ex1Nane, Ve
rt ex2Name, Vert ex3Nane,
EdgelNane, Edge2Nane, Ext 1, count)

(

Sel ect

From
Wher e

Uni on
Sel ect

From
Wher e

(j1l.vertexl,jl.vertex2,j2.vertex2,j1.
vertexlnane, | 1l.vertex2nane, 2. vertex2
nane, j 1. edgelnane, j 2. edgelnane, 1, 0)
Joined_1 j1, Joined_ 1 j2
j1.vertexl=j2.vertexl and
j1.vertex2!=j2.vertex2

(j1l.vertexl,jl.vertex2,j2.vertex2,j1.
vertexlnane, | 1l.vertex2nane, 2. vertex2
namne, j 1. edgelnane, | 2. edgelnane, 2, 0)
Joined_ 1 j1, Joined 1 j2

] 1.vertexl2=j2.vertexl

The resulting Joined 2 tableis shown in Figure 3-7

25

Vertexlname Vertex2name Vertex3name Vertex] Vertex2 Vertex3 FEdgel FEdge2 Ext Count

A B C 1 2 3 AB AC 1 0
A C B 1 3 2 AC AB 1 0
A C B 4 5 6 AC AB 1 0
A B C 4 6 5 AB AC 1 0

Figure 3-7 Joined 2 table

The table Joined 2 has an attribute Ext, which aids in constructing the graph. Every
tuple in the Joined 2 table represents a two-edge substructure. The attributes of the table
vertex numbers, labels and edge labels give the information about the substructure. But the
attribute ext describes the direction of each edge in the graph. In the Joined 1 table the edge
is always from the first to the second vertex. But in the Joined_2 table though the first edgeis
from vertex one to vertex two we cannot say that for the second edge. The information
known is that the vertex three is part of the edge but the direction and the connecting vertex
is not known. For this reason the ext attribute is maintained. For example, if the ext is 1 then
the edge is from vertex 1 to vertex 3. In general in an N edge graph if Exti isj then the i+1th
edge is from the vertex number in the attribute vertex j to the vertex number in the attribute
vertex i+2.

The first and second tuples are duplicates in the above table, and so are the tuples
fourth and the fifth. Hence when the count is updated it would be wrongly updated to 4 for
each tuple, because every tuple is isomorphic to every other tuple. To overcome this problem
the criterion for extension needs to be changed. Instead of extending two different tuples to
the same substructure we restrict the extension to only one tuple. In the where condition
instead of having jl.vertex2 !=j2.vertex2, having jl.vertex2 < j2.vertex2 would ensure there

are no duplicates generated by the join. By having the less than condition we are limiting the

26

extension to only one tuple. The condition also satisfies the completeness of the algorithm,
that is, all substructures are generated. The completeness is ensured because only one of the
tuples A->B or tuple A->C is extended to the other. For the above example, the resulting

table would be

Vertexlname VertexZname Vertex3name WVertex] Vertex2 Vertex3 FEdgel FEdge2 Ext Count
A B C 1 2 3 AB AC 1 0
A C B 4 5 6 AC AB 1 0

Figure 3-8 Joined 1 table

The count of each tuple is then updated, to two in this example. If there are any tuples

with acount of one they are deleted from the table.

3.3.22 Generalization

For higher extensions, substructures having more than two edges need to be
generated. The substructures with n number of edges are stored in the Joined n table, the
atributes in that table would be n+1 vertex numbers, n+1 vertex names, n edges, n-1
extensions and one attribute for the count. The extensions are needed to know the
connectivity within the graph. For example, in a three-edge substructure if the extensions
have the value twos and three, it means that the second edge is from vertex two to vertex
three and the third edge is from vertex three to vertex four. The information contained in
vertex names and edge names are also important because they aid in constructing the graph
and play an important role in detecting isomorphism. The vertex numbers are needed for the
higher extensions.

A generalized query for generating the n edge substructures can be expressed as
I nsert into Joined n

27

Vertexl, Vertex?2.... VertexN+1, Vert ex1Nane, Vert ex?2
Name.... Vert exN+1Name
EdgelNane, Edge2Nane... . EdgeNNane, Ext 1, Ext 2... . Ext

N1,0

(

Sel ect
j1.Vertexl,j1l. Vertex2...j1l.vertexN, j2.
vertex2,j 1. VertexlNane, 1. Vert ex2Nane
.J 1. vertexNNane, | 2. vert ex2nane, | 1. edg
elNane, j 1. edge2nane...j 1. EdgeN-
1Nane, j 2. edgenane, j 1. Ext 1, 1. Ext2....]
1.ExtN-2,p, 0

From Joined N1 j1, Joined 1 j2

VWher e j1.vertexP= j2.vertexl and
j1.vertexP+l <
2.vertex2.j 1. VertexN<j 2. Vertex2

)

The number P varies from 1 to N. Since an N-1-edge substructure can be extended from any
of the n possible vertices, the number of queries needed would be n. The number P in the
above query achieves this functionality. The idea here is that an edge could be added to the

existing substructure to get alarger substructure.

3.3.2.3 Negative Extensions
All the above queries assume that all edges are outgoing from a vertex, but we need
to handle graphs with incoming edges.

For example consider the graph shown in Figure 3-9:

28

Figure 3-9 An example graph with incoming
edges

In the above graph all the edges are coming into the vertex B. In the first pass all the
single edges are detected correctly as AB, CB and DB but in the second pass there are no
edges going either out of A or B or any other vertex, so extending by the query described
above, would result in no tuples in the Joined 2 table although there are several 2-edge
substructures. In order to overcome this problem, in addition to extending edges, which are
going out from the vertex, the query should aso extend by those edges that are coming into
the vertex. Distinction has to be made between an edge going out from a vertex and an edge
coming into the vertex, since the difference cannot be inferred from the vertex number or the
label. We use the extension number to differentiate them. For all the edges coming in, the
extension number will be negative. For example if the extl attribute has a value —2 that

means the second edge is from vertex 3 to vertex 2 and if the ext1 has attribute value 2 then

29

the edge is from vertex 2 to vertex 3. In genera if the extension i is—, then the edge i+1 is

from vertex i+2 to j. The query for generating all the edges can be expressed as,
| nsert into Joined N
Vertexl, Vertex2.... VertexN+1, Vert ex1Nane, Vert ex2
Nanme.... Vert exN+1Name
EdgelNane, Edge2Nane... . EdgeNNane, Ext 1, Ext 2... . Ext

N1,0

(

Sel ect
J1.Vertexl,j1. Vertex2...j1l. vertexN, j2.
vertex2,j 1. VertexlNane, 1. Vertex2Nane
.Jj 1. vertexNNane, j 2. vert ex2nane, j 1. edg
elNane, j 1. edge2nane...j 1. EdgeN-
1Nane, j 2. edgenane, j 1. Ext 1, 1. Ext2....]
1. ExtN-2,-p, 0

From Joined_N-1 j1, Joined_ 1 j2

VWher e j1l.vertexP=j2.vertex2 and j1l.vertexl
< j2.vertex2..j1. VertexP-1<j2.Vertex2

)

Pisavariablefrom2to N

3.3.2.4 Constructing the graph

In order to use the isomorphism code, two graphs have to be constructed in the form
of strings and given as input to the isomorphism code. The string should be similar to the
input given to Subdue except that the information is not a file input but a string. For
constructing the graph from the tuple, the needed information are the vertices and the edges
in the graph. Since the tuple stores all the vertex numbers and the vertex labels, they are
loaded as it is, but for the edges, the edge names are known but it does not give the
information as to how the graph is connected between the vertices. The extensions, which are

maintained as attributes in the table help in constructing the graph. For example, if the ext3

30

attribute has value 1, that means the fourth edge is from the vertex number in attribute vertex
one to vertex number in attribute vertex five. For example, consider a tuple in the Joined_4
table, which contains all of the four-edge substructures. V in the table stands for the Vertex,

E stands for Edge and Ex stands for extension. No stands for number and Na stand for name

Viko Vilo ViMe WVdiHo VR0 ViHa Vs ¥Vie Vd4Na Vibe ElMe EIHa E3Ha EdHa Exl ExZ Ed ©

1 2 3 1 3 A B ©C D C AB AC DB CD 1 -2 4 0

Figure 3-10 A tuplein Joined_4 table

From the information in the table the graph can be constructed as follows. First, al
the vertex numbers and their labels are enumerated as shown below

V1A

V2B

V3C

V4D

V5C

The second part of creating the graph is deriving the information about the edges. The
first edge is written without any information from the table because the direction is always
from the first vertex to second vertex. For the rest of the edges, depending on the extension
number the edge direction is determined. If the extension number is negative, then the edgeis
coming into the vertex, else it is going out. Since the extension 2 and 3 are negative they are

the edges coming into the respective vertices.

So the edges for the above tuple are

31

D12AB
D13AC
D42DB
D54CD

The constructed graph is shown in Figure 3-11.

Figure 3-11 Constructed graph from the tuple

Once the graphs are constructed they can be used as input to the isomorphism code,
which returns a floating-point number indicating how different the graphs are. So if the

returned number is zero, they are isomorphic.

3.3.3 Input data generation

The input graphs have been created using the graphgen code developed by the Al
group at UTA [8]. The program reads the parameters from a file and creates a graph. Thefile
has the following parameters, each described on anew line.

1) Number of verticesin the graph

2) Number of edgesin the graph

3) Number of distinct vertex labels

4) Number of distinct edge labels

5) Number of substructures to be embedded in the graph

32

6) Number of patternsto embed in the graph
For each pattern
i. Number of instances
ii. Number of vertices
For each pattern vertex
0 Each vertex label of form v#, where # is less than the

number mentioned in the parameter 3

iii. Number of edges
For each pattern edge

0 The edge label of form e#, where # is less than the
number mentioned in 4.

0 Thefirst vertex that this edge is attached to. An integer
ranging from O to (8.) minus one.

0 The second vertex that this edge is attached to. An
integer ranging from 0O to (8.) minus one.

The substructures of size three and size four have been embedded in the graphs. The
number of instances of each of the substructures has been set to 3% the number of edges in
the graph. The substructures that were embedded inside the graph have been described in
Figure 3-12. The number of vertices is set to half the number of edges, and the number of
distinct vertex labels and edge labels have been set to half the number of vertices and edges,

respectively.

33

3.3.4 Performance

This being the first approach, we wanted to get a feel for the time taken by the
database approach and how it compares with the main memory approach (Subdue 4.3.a.1) for
the same graph. Since there was no pruning in this approach the comparison is not exactly
the same, as the main memory implements al the basic pruning techniques by using the
beam and the limit.

Table 3.1 shows the configuration of the database we used for running the test cases.

Table 3-1 Configuration of the Database — SubdueDB

PageSize 4KB

LogFileSize 40000* PageSize(4KB)
Database DB2(UDB)

Version 6.1

Table 3-2 Configuration of the system

RAM 348MB

Hardware SUNW,Ultra-5 10
OS version 56

Compiler GCC

Experiments were performed to compare the run times of each of the two approaches,
main memory and database. Table 3-3 shows the total times taken by both Subdue and the
database approach for the respective data sets. From the results we can clearly see that the

database approach is no comparison to the main memory approach. This can be attributed to

34

the UPDATE operation we are doing, which is one of the most expensive operations in a
database.

Table 3-4 shows the individua timings taken by the database algorithm. Table 3-4
shows the timings for the Subdue approach. The timings have been divided for each size (of
the sub-graph), namely 1 edge, then 2 edge, and so on. For the one-edge pass the timings are
given for the cursor operations and deletion time. For the higher edges the time taken for
extension, cursor and delete operations are also mentioned. The data set is represented as
TnVmE where n represents the number of vertices and m represents the number of edges.

A e

.9

Figure 3-12 The substructures embedded in the graph

Table 3-3 Timings comparison

Data Set Database Subdue
T50V 100E 5.63 0.17
T250V500E 117.27 3.56
T500V 1000E 470.44 13.21
T1000V 2000E Segmentation fault 4511

Table 3-4 Individua timings for Cursor-based approach

Dat= |Cr 1 [Dell |Ext 2) Cor 2 [Del 2 |Est 3| Cur 3 | Del 3 | Est 4) Cur d | Del 4 | Total
TSOVIO0E 1435 (003 |04 |021 |000 012 |03 002 J013 |041 [000)543
LAAa00kE | 5402 |2l D2 | 4.8 1AL oy £ 5 ooz oy L | ooz 1172}
TSOOVIQO0E | 32149 (064 | 036 | 137 (004 | 018 | 2782 | 002 018 | 4019 | 004) 47044
TIEVZEE Segmentaton Faalt

35

3.3.5 Conclusion

From the performance point of view, the database algorithm does not do very well.
The best case input for the algorithm would be only one occurrence of al the edges, which
would make the algorithm, stop after the first pass because there would be no tuples
participating in the next pass. The worst-case input for the algorithm would be a large
number of repeating edges and a large number of instances of each substructure. Although
performance-wise the agorithm does not perform as good as the man memory,
functionality-wise, it discovers all the substructures. The user can also mention a threshold
for graph isomorphism, which would make the algorithm to check for substructures, which
need not be exact graph match but can differ by the threshold specified by the user.

From the results it is evident that a large amount of time was used for the first pass.
The reason for this is that the graph generator generates the output in such a way that all the
substructures are first embedded and then fills the remaining graph with edges appearing
only once and thereby reducing the number of tuples participating in the higher extensions.
This entails that for improvement; subsequent approaches should focus on minimizing the
time taken for updating the counts. The maximum data set that completed successfully was
the 1000 edges graph. The next data set could not complete because of a segmentation fault.
The segmentation fault occurred in the isomorphism code, the number of comparisons made
for a 2000 edge graph would be 2000* 2000, so the program (or the data space/buffer used for

this purpose) runs out of memory.

CHAPTER 4

UDF-BASED APPROACH

This chapter explores an aternative to the cursor-based approach described in the
previous section. User-defined functions (or UDFs) are unique to DB2 and were introduced
to provide better interaction between SQL statements and language (C, C++, Java) code. The
ideais to offer atighter integration between relational and algorithmic approaches that is not
provided efficiently by the cursor-based approach. In this approach, user-defined functions
can be invoked as part of SQL statements, tables can be returned from those functions, and
memory allocation as well as complex data structures (that cannot be created using SQL) can
be created in UDFs. Also, UDF' s execute in two modes: fenced and unfenced. In the fenced
mode, user code is executed in a separate address space to ensure that it does not crash the
database server. This is aso somewhat inefficient, as the data needs to be passed from one
address space to another. In the unfenced mode, the user code is executed as part of the
database server address space. The performance is better (as data is passed within the same
address space) but at the risk of crashing the system. Typically, the user code is debugged
using the fenced mode and then executed in the unfenced mode to achieve better
performance.

We wanted to explore this approach to determine its effectiveness as compared to the

previous approach. Our preliminary results are reported in this chapter.

36

37

4.1 Functionsin UDB system
1) Built-in Functions
Some functions are built into the code of the UDB system. These functions are
found in the SY SIBM schema. Some of the functions are
= Arithmetic and String operators: +, -, *, /, || etc
= Scalar functions: substr, concat, length, days and so on
= Column functions: avg, count, min, max, stdev, sum, variance
In addition to the built in functions in the SY SIBM schema, many other functions are shipped
with UDB, in the SY SFUN schema. Although these functions are shipped with the system,
they are not implemented directly by system code. They are implemented as preinstalled
external functions[7].
2) System-generated Functions
These functions are automatically generated when a distinct typeis created
and are found in the same schema as the distinct type. They include casting
functions and the comparison operators for the distinct type [7].
3) User-Defined Functions
The user, using a statement called CREATE FUNCTION [7], which names
the new function and specifies its semantics, explicitly creates these functions.
UDF s are further classified into the following sub categories
= Sourced Functions
A sourced function duplicates the semantics of another function,
called its source function. A sourced function can be an operator, a

scadar function, or a column function. Sourced functions are

38

particularly useful for alowing a distinct type to selectively inherit
the semantics of its source type.
= External scalar functions

An externa scalar function that is written by a user in a host
programming language and that returns a scalar value. Externa
functions can be written in C or JAVA. The CREATE FUNCTION
statement for an external scalar function tells the system where to
find the code that implements the function. The name of the
function can be an operator like ‘+'. The external function can do
computation on the parameters passed to it but cannot access or

modify the database.
= External table Functions

A UDF can return a table rather than just a scalar vaue.
Similar to the external scalar function the table function is written
in C or JAVA, and cannot contain any embedded SQL statements.
The program should return a tuple to the result table each timeit is
called, and must indicate the end of the result table by a special
return code.
SQL supports the concept of function overloading. This means that several functions
can have the same name, as long as they are different schemas or take different types of

parameters.

4.2 Creating an External Scalar Function
An external function is a function whose implementation is written in some host

programming language. The ability to create own externa functions is a powerful feature in

39

UDB. To enhance the usefulness of built in data types by adding new functions that operate
on them is a very powerful feature in DB2 because SQL by itself is not a complete
programming language. The external functions are defined and instaled in the database.
These functions can be shared among all the database applications, which will avoid
duplicating the code in each application. External functions can be used wherever built in
functions are used.

The syntax of a CREATE FUNCTION [7] statement to create an external scalar is as

follows:
>>- CREATE FUNCTI ON--function-name---------------------------- >
e G S e >
'----data-typel--+------------- +o -t
>----RETURNS- - +-dat a-type2--+------------- e +>
' -dat a-type3-- CAST FROM -data-type4--+------- +-
S e e e e e e e iaaoao- o e K oo >
' - SPECI FI C- - speci fi c- name- -’
>----- EXTERNAL- - +--------mmmmmm oo o - - e >
"-NAME- - +-"string ---+-"'
‘-identifier-'
>- - - - LANGUAGE- - +- C- - - - +- - *- - - PARAMETER STYLE- - +- DB2SQL- - - - - - >
+- JAVA- + ' - DB2GENERAL- '
" OLE- -
(1) .- FENCED- - - - - .
> ---% .- +-DETERMNISTIC ------ S O O —— to-Fo >
' -NOT DETERM NI STI C-- - ' - NOT FENCED-'
.-NOT NULL CALL--.
Fecemeem e Ho-*ooNO SQL--*-ccmmmmccmiee e >
'-NULL CALL------

. - NO SCRATCHPAD- - .

S +- NO EXTERNAL ACTI ONF - - <« 2o o mccm oo o mcea oo T >
' - EXTERNAL ACTI ON----° ' - SCRATCHPAD- - - - -
.-NO FINAL CALL--. .- ALLOW PARALLEL- - - - .

S S o e F e e e e e e oo S >
' FINAL CALL----- ' ' - DI SALLOW PARALLEL-"
.- NO DBI NFO- - .

S oo o ><
' - DBINFO- - - - -

4.2.1 Description of the Syntax
* Function name

The name of the function being defined. It is a qualified or an unqualified name that
designates a function. The unqualified form of function-name is an SQL identifier (with a
maximum length of 18 characters). The name, including the implicit or explicit qualifiers,
together with the number of parameters and the data type of each parameter must not identify
afunction described in the catalog. The unqualified name, together with the number and data
types of the parameters, while of course unique within its schema, need not be unique across

schemas.
» Datatypel

Identifies the number of input parameters of the function, and specifies the data type
of each parameter. One entry in the list must be specified for each parameter that the function
will expect to receive. No more than 90 parameters are allowed. It is possible to register a
function that has no parameters. In this case, the parentheses must still be coded, with no
intervening data types. For example,

CREATE FUNCTION changename() ...

41

No two identically named functions within a schema are permitted to have exactly the

same type for all corresponding parameters. It can aso specify the data type of the parameter.
e RETURNS

This mandatory clause identifies the output of the function.
« DataType2

Specifies the data type of the output. In this case, exactly the same considerations
apply as for the parameters of external functions described above under data-typel for

function parameters.
 DataType3 CAST FROM Data Type 4

Specifies the data type of the output. This form of the RETURNS clause is used to
return a different data type to the invoking statement from the data type that was returned by
the function code. For example,

CREATE FUNCTION GET_PAY_DATE(CHAR(6))
RETURNS DATE CAST FROM CHAR(10)

The function code returns a CHAR(10) value to the database manager, which, in turn,

converts it to a DATE and passes that value to the invoking statement. The data-type4 must

be castable to the data-type3 parameter.
» SPECIFIC specific-name

Provides a unique name for the instance of the function that is being defined. This
specific name can be used when sourcing on this function, dropping the function, or
commenting on the function. It can never be used to invoke the function. The name,
including the implicit or explicit qualifier, must not identify another function instance that
exists at the application server. The specific-name may be the same as an existing function-
name.

If specific-name is not specified, the database manager generates a unique name.
« EXTERNAL

42

This clause indicates that the CREATE FUNCTION statement is being used to
register a new function and tells the system how to find the C function that serves as its
implementation. This function must be compiled, linked and placed in a directory on the
server machine, from which it can be dynamicaly loaded by the database system when
needed. The most complete form of an EXTERNAL clause gives the full path name of the
binary file that implements the function, followed by a “!”, followed by the name of the
proper entry point in that file. For example, the following clause tells the system where the
function isomorph is implemented in the file myudf.c

EXTERNAL NAME */cse/home/ramyji/udfs/myudf!isomor ph’

If no path name is specified the system looks for the function in the sgllib/function

directory associated with the database.
« LANGUAGE

This mandatory clause is used to specify the language interface convention to which
the user-defined function body is written.

C

This means the database manager will call the user-defined function asif it werea C
function. The user-defined function must conform to the C language calling and linkage
convention as defined by the standard ANSI C prototype.

JAVA

This means the database manager will call the user-defined function as a method in a

Javaclass.
« PARAMETERSTYLE

This clause is used to specify the conventions used for passing parameters and

returning the value from functions. With language C, PARAMETER STYLE DB2SQL

43

should be specified and with language JAVA, PARAMETER STYLE DB2GENERAL

should be specified.
e DETERMINISTIC or NOT DETERMINISTIC

This mandatory clause specifies whether the function always returns the same results
for given argument values (DETERMINISTIC) or whether the function depends on some
state values that affect the results (NOT DETERMINISTIC). That is, a DETERMINISTIC
function must always return the same result from successive invocations with identical
inputs. Optimizations taking advantage of the fact that identical inputs always produce the
same results are prevented by specifying NOT DETERMINISTIC. An example of a NOT
DETERMINISTIC function would be a random-number generator. An example of a

DETERMINISTIC function would be a function that determines the square root of the inpui.
* FENCED or NOT FENCED

This clause specifies whether or not the function is considered "safe" to run in the
database manager operating environment's process or address space (NOT FENCED), or not
(FENCED).

If a function is registered as FENCED, the database manager insulates its internal
resources (e.g. data buffers) from access by the function. Most functions will have the option
of running as FENCED or NOT FENCED. In general, a function running as FENCED will
not perform as well as a similar one running as NOT FENCED. SYSADM authority,
DBADM authority or a specia authority (CREATE_NOT_FENCED) isrequired to register a

user-defined function as NOT FENCED.
e NOT NULL CALL or NULL CALL

This optional clause may be used to avoid a call to the externa function if any of the
arguments is null. If NOT NULL CALL is specified and if at execution time any one of the
function's arguments is null, the user-defined function is not called and the result is the null

value. If NULL CALL is specified, then regardless of whether any arguments are null, the

44

user-defined function is called. It can return a null value or a normal (non-null) value. But

responsibility for testing for null argument values lies with the UDF.
* NOSQL

This mandatory clause indicates that the function cannot issue any SQL statements.
» NOEXTERNAL ACTION or EXTERNAL ACTION

This mandatory clause specifies whether or not the function takes some action that
changes the state of an object not managed by the database manager. Specifying
EXTERNAL ACTION prevents optimizations that assume functions have no external

impacts. For example, sending a message, ringing a bell, or writing arecord to afile.
* NO SCRATCHPAD or SCRATCHPAD

This optional clause may be used to specify whether a scratchpad is to be provided
for an external function. If SCRATCHPAD is specified, then at first invocation of the user-
defined function, memory is alocated for a scratchpad to be used by the external function.
This scratchpad has the following characteristics:

Itis 100 bytesin size.

Itisinitialized to al X'00"s.

It is persistent. Its content is preserved from one external function call to the next.
Any changes made to the scratchpad by the external function on one call will be there on the
next call. The database manager initializes scratchpads at the beginning of execution of each
SQL statement. The database manager may reset scratchpads at the beginning of execution of
each sub query. The system issues a fina call before resetting a scratchpad if the FINAL

CALL option is specified.
* NOFINAL CALL or FINAL CALL

When a function is used in an SQL statement, the function may be called multiple
times during the processing of the statement, depending on how it is used. This optiona

clause specifies whether the function is called one extra time at the end of processing the

45

SQL statement. The purpose of such afinal call isto enable the external function to free any
system resources it has acquired. It can be useful in conjunction with the SCRATCHPAD
keyword in situations where the external function acquires system resources such as memory

and anchors them in the scratchpad.
e ALLOW PARALLEL or DISALLOW PARALLEL

This optiona clause specifies whether, for a single reference to the function, the
invocation of the function can be parallelized. In general, the invocations of most scalar
functions should be parallelizable, but there may be functions (such as those depending on a
single copy of a scratchpad) that cannot. If either ALLOW PARALLEL or DISALLOW

PARALLEL is specified for a scalar function, then DB2 will accept this specification.
 DBINFO

This optional clause causes UDB to pass an extra parameter to the function,
containing a pointer to a data structure containing information such as the current database,
current author id, and the name of the table and column that is being modified by the current
statement.

An example of a CREATE FUNCTION statement,
CREATE FUNCTI ON i sonor ph(Vert exNo, Ver t exNane)

RETURNS | NT

EXTERNAL NAME ‘/cse/ honme/ranji/udfs/ nyudf !
i sonor ph’

DETERM NI STI C

NO EXTERNAL ACTI ON

NULL CALL

LANGUAGE C

PARAVETER STYLE DB2SQL

NO SQL;

46

43 UDF'sover Cursors

One of the main reasons for choosing DB2, as the database is the functionality of
UDF's provided by the database. UDF's are one of the most powerful tools that allow the
user to program in a host programming language like C or JAVA. Although the first
approach taken provided good functionalities, the running time of the approach was very
large to continue using the approach. One of the main overheads in using that approach was
that of cursors, although when the algorithm is pushed to the limit it runs out of memory in
the isomorphism code, the time taken by the cursors is also one of the main overheads.
Cursors are one of the main overheads when working in a static SQL code, the usage of the
cursors has to be minimized as much as possible. But the reason behind using the cursors has
been that each tuple in the table has to be computed against every other tuple in the table to
get the count of each of the substructures that are isomorphic. In order to substitute the
cursors by some other application, the application should provide the functionality of
retrieving the values of the attributes and work on them. The next consideration in choosing
the UDF's should be the run time of the UDF's over cursors. The UDF's would run much
faster than the cursors because they are just like the system built functions but written by the

user and stored in the specific directory, and the user determinesit can be used.

4.3.1 Implementation Details

The information needed to compute the isomorphism between two graphs is their
vertex labels, edge labels and the connectivity between the edges. The basic working of the
agorithm still remains the same except that instead of using cursors, UDF's are used to
compute the number of instances of each of the substructure. The pseudo code for the

algorithm is given below:

47

1) Subdue-DB(input file,size)

2) Load vertices into vertices table;

3) Load edges into edges table;

4) Load joined_1 table : join vertices and edges
tabl e

5) i =2;

6) VHI LE(i <si ze)

7) Load Joined_i table (substructures of size

i) fromjoined_ i-1 table

8) | sonor phi smMJUDF(Joi ned_i, Joined_i);

9) Updat e_count ;

10) Del ete from Joined_ | where count=1;

The flow of the agorithm is same as that of the cursor approach except that the
updating of the counts of the substructures is implemented using the UDF's. The
mapping and the extensions of the substructures are same as that of the cursor
approach.

The UDF would take in as inputs the attributes of the table namely the vertex numbers,
vertex names, edge names and the extensions and returns the number of instances of
each of the substructure. The UDF is a table UDF, which would return exactly the
number of substructures in the Joined_1 table that is basically the number of instances
of that substructure. The way it is done is that each of the tuple in the Joined_1 tableis
compared with every other tuple in the table to count the number of instances of that

substructure in the graph.

4.3.1.1 TableUDF'sinDB2
Table UDF's work in a different way than the scalar external UDF's. An example for

creating atable UDF isomorph_2() is described below,
create function isonorph_2

48

(i nteger, varchar (20),integer, varchar(20), varchar(20),inte
ger, varchar (20), i nteger, varchar (20), varchar (20), i nteger)

returns table (instances integer)

specific isonorph_2 aprl8

external name 'nmyudf!isonorph_ 2

| anguage c

paranmeter style DB2SQ

vari ant

not fenced

scrat chpad

final cal

no SQL

di sal | ow paral | el

no external action

The main difference between the CREATE FUNCTION statement for an externa
scalar function and table function lies in the returns clause. In the case of atable function, it
specifies a column name and data type for each of the columns of the table to be returned by
the function. The isomorph_2 is atable function that integers and varchars as input. It returns
a table, which has column instances of type integer. The clause final call is necessary for a
table function. The disallow parallel is also necessary because a table function runs on a
single node. Therest of the parameters are same as any normal external scalar function.

Theisomorph_2 isimplemented in the following way:

void SQL_API_FN isomorph_2
(

long *vertex1,

char *vertexlname,

long *vertex2,

char *vertex2name,
char *edgel,

long *vertex3,

char *vertex3name,

long *vertex4,

char *vertex4name,

char *edge2,

long *count,

long *instances,

short *vertex1_ind,
short *vertexlname_ind,

49

short *vertex2_ind,

short *vertex2name_ind,
short *edgel_ind,

short *vertex3_ind,

short *vertex3name_ind,
short *vertex4_ind,

short *vertex4name_ind,
short *edge2_ind,

short *count_ind,

short *instances_ind,

char *sqlstate,

char *fnname,

char *specificname,

char *message,
SQLUDF_SCRATCHPAD *scratchpad,
SQLUDF_CALL_TYPE *calltype)

{

long *pad=(long *)scratchpad->data;

switch(*calltype)
{
case SQL_TF_OPEN:
*pad=0;
break;
case SQL_TF_FETCH:
see_last++;
cost=check(vertexl1,vertexlname,vertex2,vertex2name,edgel,vertex3,vertex3name,vertex4
,vertex4name,edge?2);
if(cost==0.00)
count_instances++;
if(see_last<*(count))
{
strcpy(sqglstate,"02000");

else
{

if(*pad<1)

{

(*pad)++;

*instances=count_instances;

strcpy(sqglstate,”00000");

return;

3
strcpy(sqglstate,"02000");
see_last=0;
count_instances=0;

}
break;

case SQL_TF_CLOSE:
break;

3

h

float check(long *vertexl,char *vertexlname,long *vertex2,char *vertex2name,char *edgel,long
*vertex3,char *vertex3name,long *vertex4,char
*vertex4name,char *edge?2)

graphptr g1,92;

50

char *temp=(char *)malloc(3000*sizeof(char));
char *graphl=(char *)malloc(3000*sizeof(char));
char *graph2=(char *)malloc(3000*sizeof(char));
float f1=0;

NumLabels=0;

LabelList=NULL;

Directed=TRUE;

Threshold=1.0;

sprintf(temp,"v %d %s\n",*vertex1,vertexlname);
strcat(graphl,temp);

sprintf(temp,"v %d %s\n",*vertex2,vertex2name);
strcat(graphl,temp);

sprintf(temp,"d %d %d %s\n",*vertex1,*vertex2,edgel);
strcat(graph2,temp);

sprintf(temp,"v %d %s\n",*vertex3,vertex3name);
strcat(graph2,temp);

sprintf(temp,"v %d %s\n",*vertex4,vertex4name);
strcat(graph2,temp);

sprintf(temp,"d %d %d %s\n",*vertex3,*vertex4,edge2);
strcat(graph2,temp);

gl=read_graph(graphl);

g2=read_graph(graph2);

f1 = fm(g1,92,max_node(gl->nv),0);

return f1;

T

The SQL query, which can be used to call the function, is explained below.

Sel ect t1l.instances

From joined 1 jl,joined 1 j2
,tabl e(isonmorph_2(j1.vertexl,jl.vertexlnane,jl.verte
x2,] 1. vertex2nane,j l. edgel, 2. vertexl, 2. vertexlnane
,] 2.vertex2,j2.vertex2nane, 2. edgel, 100)) as t1l

This query returns the number of instances of each of the substructure in the table,
which has 100 tuplesin the table.

The isomporh_2 function takes as input al the information for comparing al the
single edges substructures. The two vertex numbers, two vertex names and the edge name
from each of the table are the input for the function. The count variable is the number of
tuples in the table. Instances variable is for the output to be written to the table. The indicator
variables are for checking if the input valueis anull or not.

When atable function isinvoked in an SQL statement, a series of calls is made to the

C program that implements the table function. The first of these is the OPEN_CALL, with

51

the final call indicator set to the value SQL_TF OPEN. The OPEN call alows the table
function to perform preliminary actions such as alocating memory, and initializing
scratchpad. No data is returned by the OPEN call. Following the OPEN call, the system calls
the table function with a series of FETCH calls, with the final call indicator set to
SQL_TF_FETCH. On each of these calls, the table function is expected to return one of the
rows to the result table. But by doing that the number of tuples returned to the table will be
the cross product of the two tables. Since one tuple is to be returned for each of the tuple in
the table, we don’t return a tuple till we see count number of tuples. So till the see last is
less than count we copy the SQL state 02000 which will make the system call the function
again for the same tuple. Once we have processed all the tuples of one table and compared
that to one tuple of the other table the SQL state is set to 00000, which tells the system to
return a tuple to the result table. For every call of the function the check() function is called
to check for isomorphism and if the function returns a value O the count of that substructure
is incremented by 1. Similar functions have been written for two edge and three edge

substructures.

44 Experiment Resultsand Conclusion

The functions were tested for inputs of cardinality of 100 to 500. The function
resulted in the correct output for cardinality until 500, but when tested for 500 the function
resulted in an SQLO430N error. We have tried to fix this error in many ways. Thisis one area
of difficulty when working with UDF’ s because there are no debugging tools provided by the
database. Simple debugging tools like printf cannot be used because the UDF runs as
background process where stdout does not have any meaning. When the function returns an
error code of SQLO430N and it is run without fixing the error the system just hangs. So after

testing out with trials, the function that seems to be causing the error was identified as the

52

isomorphism function fm(). The error being that memory allocated to some variables is not
being freed properly. The function when called returns output for few tuples in the table and
then terminates. We also came to a conclusion that dynamic memory allocation can be a
problem in UDF's. The memory allocation has to be done in a specific way when using
UDFs. All scratchpad memory needs to be allocated at the beginning and released at the end.
Since that may not be happening in that exact way in the fm() function, the system returns
errors.

The advantage of using UDF's are that they are much faster than the cursors,
although not much testing could be done on UDF's but UDF's do not have the client/server
overhead since they run in the database environment and work just like normal SQL queries.
The disadvantages of UDF's are that they are difficult to code, they are non-standard, and
there are no easy ways of debugging a UDF. All of the code written must be logicaly
correct; otherwise there might be a chance of yielding incorrect values or sometimes hang the
system. The logical flow of the system cannot be tested nor can the intermediate values of

various parameters be checked.

CHAPTER 5

ENHANCED CURSOR-BASED APPROACH (ECBA)

This chapter identifies the major drawbacks in the cursor-based approach and how
rewriting the SQL expressions and maintaining additional tables can overcome these
drawbacks. This chapter also describes the intuition behind this approach, which involves the
SQL -based queries to get the counts of the substructures without using the CURSORS. The

chapter also describes how the graphs are compared without calling the isomorphism code.

51 Why anew Approach

The previous two approaches though provides correct functionality, do not provide an
acceptable performance. The need for a better algorithm to get the counts of the substructures
is critical for improving the performance. The UDFs though provide a better and faster way
of attaining this functionality are very hard to code and test. So any new approach should try
to obtain the counting of the substructures using an SQL query rather than relying on cursors

to speed up the algorithm.

5.1.1 Graph Representation

Consider Figure 5-1 which shows how a substructure of 3 edges is stored in the
database. The vertex numbers are represented as VNo, vertex names as VNa, edge names as

ENa, and the extensions as Ex

53

54

ViNe VIMNo ViNoe V4No Vina VINa V3iNa V4Na EINa EINa E3Na Exl Ex2
1 z 3 4 A B C I AB BC DO 2 -3
5 ({1 7 8 A B C D AR BC DC

]
()

13 14 18 19 E F i3 H EF FG GH 2 3

Figure 5-1 Joined 3 table containing al the 3 edge substructures

There are three tuples in the table of which the first two are isomorphic. The graph

representations of these tuples are shown in Figure 5-2.

B(f)

Tuple1 Tuple 2 Tuple 3
Figure 5-2 Graphs for the tuples in table

From the representation one can come to conclusion that the vertex numbers are not
used for comparing graphs for isomorphism. The first and the second tuples are not only
isomorphic but are exact graphs. So there is a way of counting the instances of the
substructure if the graph match is exact instead of an inexact graph match using SQL instead
of cursors. The vertex names, edge names and the extensions form a signature for the graph.

But to attain this type of matching the extensions have to be taken care so that all the graphs

55

are expanded in all possible ways unlike in the first approach where we expand to one
substructure in only one possible way. The generalization is explained in section 5.3.4.1.
Figure 5-3 shows how a single edge substructure is expanded to a two-edge substructure in

the first approach and how it should have been done to do an exact graph match.

Figure 5-3 An example for graph extension
In Figure 5-3 all the single edge substructures would be 1->2 and 1->3. In the first
approach only the substructure 1->2 will be expanded to two-edge substructure but not the
other tuple since the second vertex number is lesser. So the way extensions are performed

need to be changed in order to use SQL for updating the counts.

5.1.2 Graph Extension Revisited

The graphs are now extended in al possible ways irrespective of ther vertex
numbers, but care is taken to generalize the expansion. Consider the graph shown in Figure

5-4.

56

Figure 5-4 Graph extension example

For al the single edge graphs, the first vertex is treated as the root. The root is
assigned a level 1 and the vertex to which it is connected is assigned a level 2. When the
substructure is expanded a new edge and vertex are added. Depending on the vertex from
which the edge was expanded the new vertex is assigned a level. If it were expanded on the
first vertex then it has alevel 2 else alevel 3. The two edge substructures are 1->2->4 and 1-
>(2,3). Now for the substructure 1->(3,2) the new edge was added from alevel 1 and for 1-
>2->4 the new edge was added from level 2. The next expansion is dependent on the
previous level of expansion. If the previous level of expansion was 2 then the next expansion
has to be on level 2 or more, so no expansion can take place at level 1. This expansion
guarantees that all the substructures are discovered and does not generate duplicates. The

generalized SQL query for expansion would look like:

I nsert into Joined N
Vertexl, Vertex2.... VertexNt+l, Vert ex1Nane, Vert ex2Nane...
.. Vert exN+1Nane, EdgelName, Edge2Nane... . EdgeNNane, Ext 1
,Ext2....ExtN-1,0

57

Sel ect
j1.Vertexl,j1l. Vertex2...j1l.vertexN, j2.verte
x2,] 1. Vertex1Nane, j1l. Vertex2Nane.} 1. vertex
NNane, j 2. vert ex2nane, j 1. edgelNane, j 1. edge2
nane...j 1. EdgeNNane, j 2. edgenane, j 1. Ext 1, 1.
Ext2....j1. ExtN-2,p, 0

From Joined N1 j1, Joined_base j2

Wher e jl.vertexP=j2.vertexl and j1l.vertexP+1l <
j2.vertex2...] 1. VertexN<j 2. Vertex2 and
j.extN-2<=p and j.extN 2>0

)

The variable P in the where condition can vary from 1 to N, as the substructure can be
expanded on any of the vertices. The condition j.extN-2 <=P satisfies the criterion of levels
discussed above. The query is the same as the query used in the cursor based approach except
that instead of Joined 1 table in the FROM statement there is Joined base table. The reason
for this would be explained in the next section. The query assumes that the edges are going
out of a vertex, so to cover substructures where edges are coming in, the query used in the

cursor-base approach is used.

52 Initialization of Data

The input is a file, which contains all the vertices and the edges in the graph. This
information is loaded into the database as the Vertices and the Edges tables. The Vertices
table will have the information about all the vertices, namely their vertex numbers and their
labels. The edges table will have the information about the edges, namely the vertex numbers
of the edge and the edge label. As we have already noted the vertex labels are needed for

making any graph comparison. Since the edges table does not have the vertex labels, a new

58

table is created which has all the single edge substructures. This table is named as the

Joined base table and the query to create this table is shown below:

| nsert into

Joi ned_base(vertexl, vertex2, vertexlnane, vertex2
nanme, edge)
(
Sel ect
vl.vertexNo, v2. vertexNo, vl. vert exnane, v2.v
ert exNane, e. edgenane
From edges e, vertices vl, vertices v2
VWher e e.vertexl=vl.vertexNo and e.vertex2
=v2.vertexNo
)

This table forms the basis for the rest of the algorithm. Since the extension of

substructures takes place by adding an edge to an existing substructure, the base table has to

be used for extending. An example of the Joined_base table is shown in Figure 5-5

Vertex2 VertexIName Vertex2Name
2 A B
3 A C
4 B X
4 V4 X

Figure 5-5 Joined base table

Edge
AB
AC
FOO
BAR

53 Algorithm

59

The idea behind developing the new algorithm is to use a different scheme for

updating the counts of the substructures. The pseudo code for the agorithm is explained

below:
1)
2)
3)
4)

5)
6)

7)
8)
9)

10)
11)
12)
13)
14)
15)
16)

17)

18)

Subdue-DB(i nput file, size)
Load vertices into vertices table;
Load edges into edges table;
Load joined_base table : join vertices and
edges tabl e
VHI LE(i <si ze)

i ++

Load Joined_i table (substructures of size

i)
From beam joined i-1 , Joined _base
Create Frequent i table

DECLARE Cursor cl on Frequent | order by
count
DECLARE Cursor c2 on Frequent i

VWH LE(c1. count <beam)

FETCH cl into gl
VH LE(c2)

FETCH c2 into g2
I f(!lIsonmorphic(gl , g2) =0)
I nsert cl into
frequent _beam i

I nsert into beam j oi ned_|I

From frequent _beam., | oi ned_i

The main difference between this approach and the other approaches discussed is that

SQL statements update the count of the substructures. Cursors are not used for updating the

counts. With this approach, the concept of beam can also be implemented.

60

5.3.1 How of the algorithm

The algorithm starts with initializing the vertices and the edges table. The
Joined base table is loaded by making a join on the vertices and the edges table. The
Joined base table contains all the single edge substructures including the vertex labels,
vertex number connecting the edges and the edge names. This table forms the base for any
substructure expansions in the future.

The agorithm proceeds with finding al the single edge substructures and their
counts. The Joined_1 table is loaded from the vertices and the edges table. The Joined 1
table contains the instances of al the single edge substructures. This table does not have the
count attribute that maintains the number of instances of the substructure. The Frequent_1
table is created to store the substructures of size 1 and their counts. So the Frequent_1 table
does not have the information of the vertex numbers. In order to get the counts of the
substructures the Joined 1 table is projected on the attributes vertex labels and edge labels
and grouped by the same attributes. By doing a group by we are creating a signature for each
of the substructure and collecting the counts of the substructures that have the same
signature. For example an edge A->B with edge name AB will have a signature AAB. Hence
al the exact instances of this substructure are grouped as one tuple with their count updated.

Once the Frequent_1 table is created the concept of beam is implemented. The
substructures are sorted on the attribute count and the best beam numbers of substructures are
inserted into a table Frequent_ beam 1. So only the substructures in the Frequent_beam 1
table will be expanded to larger substructures. But since the Frequent_beam 1 table does not
maintain the attributes vertex numbers it cannot be used to expand to larger substructures.
This Frequent_beam_1 table is joined with Joined 1 table, which has all the instances of

single edge substructures to generate the instances of the substructures present in the table.

61

These tuples are loaded into the table Joined _beam 1. The Joined beam 1 table can be
joined with Joined_base table to generate the two edge substructures.

This halting condition for the agorithm would be when the size of the substructure
reaches the user specified max size. Another halting condition would be when there are no

substructures left in the table for expanding.

5.3.2 Discovering the single edge substructures

We will consider the graph shown in Figure 5-6 in explaining the agorithm.

Figure 5-6 An example graph

For the graph shown in the Figure 5-6, the vertices and the edges table are shown in

the Figure 5-7 and 5-8 respectively.

-

1G
2H
31
417
Sk
6 A
T
BE
oA
1nc
11 B
12D
13F
4B
15D

15 record(s) selected..

VERTEXNO VEETEXNAME

Figure 5-7 Verticestable

62

63

1 2 gh
3 2ih

3 41ij

& | 5k

1 G
7 2 ch
3 Bie

3 10 ke
G T ae

¥ & ac

oG 10 ae
i 11 ab
12 Tde
8 13 ef
oG 14 ah
15 10 de
11 12 bd
13 12 fd
13 14 1ih
14 15 bd

20 recond|s) selected.

Figure 5-8 Edgestable

The Joined_base, which is created by joining the vertices and the edges table, is

shown in the Figure 5-9. This table will form the base table for expanding the substructures.

VERTEX1 VERTEX:= EDcEL VERTEX]1 NAME
VERTEX=MNAME
1 Z gh = H
1 6 oga = A
3 Z ih I H
3 4 17 I J
i 2 1ie I E
4 5 jk J K
5 10 ke K [
& 7 ac A [
& 11 ab A =]
7 zZ <ch [H
2 13 et E F
=] 2 ae A BE
=] 10 ac A C
9 14 ahb =Y B
ii 12 bd B D
1= 7 do D [
1= 1z £d F D
1= 14 fh F =]
14 15 bd =] D
15 10 de D C

20 record(s) selected.

Figure 5-9 Joined base table

The Joined_1 table that has all the single edge substructures is just a replica of the
Joined base table. So the table would be the same as shown in Figure 5-9. Using the query
shown below we create the Frequent_1 table that has the substructures of size 1 and contains

the counts of each individual substructure.

| nsert into Frequent 1 (VertexlNanme, Vertex2Nane,
EdgeNanme, count)
Sel ect

j .vertexlnane,j.vertex2nane, .edgenam
e, count (*)
From Joi ned_1

65

G oup by
j .vertexlnane,j.vertex2nane, .edgenam
e

The frequent_1 table has all the single edge substructures with their counts updated in
the count attribute By grouping the edge substructures on their vertex names and edge name,
we have essentially grouped the instances of each substructure and thus updating their

counts. The Frequent_1 table created is shown in Figure 5-10.

-
"
0

L= I BT T

VERTEE1HAME VERTEI:Z HAME EMzEL COUHTL
A B a b 2
A L A 2
L]] Il 2
¥ 0 P 2
A E aE 1
- H ch 1
E F mf 1
F B fh 1
F O fd 1
A oA 1
H ok i
E i 1
1
1
1
1

=
[=]
- g
o=

1o recprd(=) asleactad.

Figure 5-10 Frequent_1 table

The next step in the algorithm would be deleting al the single instance substructures
from the Frequent_1 table. These instances are also deleted from the Joined_base table. Since
the Joined_base table will be used for expansions to larger substructures, we do not want to
expand a substructure by an edge, which has only one instance. The updated Frequent 1
table and the Joined_base table are shown in Figure 5-11 and Figure 5-12 respectively. The

guery to delete tuples from Joined_base, which have single instance, is shown below:

66

Exec sql delete
From j oi ned_base |
where(j.vertexlnane, j.vertex2name, j.edgel) in
(sel ect t.vertexlnane, t.vertex2nane,
t.edgel
From Frequent _1 t
Wher e t.count 1=1)

The query to delete tuples of single instance from frequent_1 is shown below:
Exec sq
Del et e From Frequent _1
Wher e count 1=1

VERTEXZ 1NAME VERTEXEZ NAME EDGEL COUNTL

A E ah Z
F Z ac 2
E D bd z
D C da 2

4 record(s) selected.

VERTEZ1 VERTEXZ EDGEL VERTEX1 MAME
VERTEXZNAME
= 7 ac & C
) 11 ak A B
] 10 ac A z
=] 14 ahk A E
11 12 bd B D
1z T ode D -
14 15 bd B D
15 10 de D -
8 record(s) selected.

Figure 5-12 Updated Joined_base table

67

5.3.2.1 Implementing Beam for single-edge substructures

In order to implement the concept of beam, the number of substructures that will be
extended to two edge substructures should be restricted to the beam size. The Frequent_1
table has all the substructures of size 1. So of these substructures beam number of
substructures is to be selected for future expansions. So the substructures are sorted on the
attribute count. By choosing the count attribute for sorting we are essentially implementing
the compression based on size compared to MDL. Since the compression achieved by the
substructure is directly proportional to the number of instances of the substructure, and we
are dealing with substructures of same size we sort it base on the count attribute. The cursors
are used to insert the beam number of tuples from Frequent_1 table into Frequent 1 beam
table. The tuples are inserted in the descending order based on their counts. So if the beam
were only three then the first three tuples from the Frequent_1 table are inserted into the
Frequent_1 beam table.

The Frequent_beam 1 table has beam number of tuples in the table. These
substructures form the best 3 substructures to compress the graph of those size substructures.
At this stage the algorithm finishes processing al the single edge substructures. In order to
expand the single edge substructures to two edge substructures, the tuples in the
Frequent_beam 1 table cannot be used because they do not have an attribute for the vertex
numbers. So in order to extend to a two-edge substructure the instances of the substructures
in the Frequent_beam 1 table have to be gathered. The Joined 1 table has the instances of
not only the substructures in the Frequent_beam 1 table but also the instances of all the
single edge substructures. So by making a join with the Joined 1 table with the
requient beam 1 table we can gather al the instances of the substructures in the

Frequent_beam 1 table, which can be used to expand to two-edge substructures. The so

68

gathered substructures are loaded into new table Joined beam 1 table. The query to load

tuplesinto Joined _beam 1 is shown below:
Exec SQ insert into
Joi ned_beam 1(vertexl, vertex2,
Vertexlnane, vertex2nanme, edgel)

(
Sel ect j.vertexl, j.vertex2, j.vertexlnane,
] .vertex2nane, |.edgel
From joined_1 j, frequent_beam 1 f
Wher e f.vertexlnanme = j.vertexlnanme and
] .vertex2nane = f.vertex2nane and
j .edgel = f.edgel
)

The resulting Joined_beam_ 1 table is shown in Figure 5-13. Only the tuples in this
table will participate in the higher extensions. These tuples represent the instances of the

substructures in the Frequent_beam 1 table.

VERTEEL VERTEZIX:Z El%EL VERTEL1NAME YERTEXZNAME
[T ac B o

[11 ahb i E

9 10 mc A c

3 i4 ab B, E

11 12 bd E 1]

14 15 bd L]]

& recordis) aslsctad.

Figure 5-13 Joined_beam_1 table

5.3.3 Extending to two-edge substructures

The Joined beam 1 table contains all the instances of the single edge substructure as

shown in Figure 5-13. The single edge substructure can be expanded to a two-edge

69

substructure on any of the two vertices in the edge. All the possible single edge substructures
are listed in the Joined base table. So by making a join with the Joined base table we can
aways extend a given substructure by one edge. In order to make an extension one of the
vertices in the substructure has to match vertex in the Joined_base table. The following query

extends a single edge substructure in all possible ways,
| nsert into
Joi ned_2(Vertexl, Vertex2, Vert ex3, Vert ex1Na
me, Vert ex2Nane, Vert ex3Nane,
EdgelNane, Edge2Nane, Ext 1)

(

Sel ect
jl.vertexl,jl.vertex2,j2.vertex
2,j 1. vertexlnane,j l. vertex2nane,
j 2. vertex2nane, | l. edgelnane, 2. e
dgelnane, 1

From Joined_1 j1, Joined_base |2

Wher e j1.vertexl=j2.vertexl and
j1.vertex2! =] 2. vertex2

Uni on

Sel ect
j1l.vertexl,jl.vertex2,j2.vertex2
,J 1. vertexlnane,jl. vertex2nane,]
2.vertex2nane, j 1. edgelnane, | 2. ed
gelnane, 2

From Joined_1 j1, Joined_base |2

Wher e j1.vertexl2=j2.vertexl

Uni on

(

sel ect j.vertexl, j.vertexz,
j1.vertexl, |.vertexlnane,
] .vertex2nane, j1.vertexlnane,
j .edgel, j1l.edgel, -2

From joined_1 j,joined base j1

VWher e j.vertex2 = jl.vertex2 and

j.vertexl! =j 1. vertexl

70

)

This above query has three sub queries within it. The first query extends the
substructure by adding an edge going out of the first vertex if any. The second sub query
extends the substructures by adding an edge going out of the second vertex. The third sub
query extends the substructure by adding an edge coming into the second vertex. These
queries take care of generating al the possible two edge substructures. All the resulting two
edge substructures are stored in the Joined_2 table.

The resulting table Joined_2 is shown in Figure 5-14.

VEFTEZE]l SEFRTEXZI WVERTESD EIGElL EDE:Z YERTESLNAAE VERTECZNAFE VERTECZNARHE EXTL

= Ll L, -] a0 A b = 1
L 7 11 & & & C B 1
5 L4 10 -] a0 A b = 1
5 L0 14 el] A C E 1
[Ll 12 -] bd & B L 4
11 12 7] o] B (] [F
5 L4 13 -] bd A b L F
13 L5 10] do B (i} [2
2 7 12 & de & C I -2
5 L0 15 el o A C (&} 2

10 recordis) selected.

Figure 5-14 Joined_2 table

The attributes needed to store al the information about the substructure has increased
from a single edge substructure. Apart from the edge name, vertex names newly added, in
order to describe the substructure an extra attribute Ext1 is used. The Ext1 attribute describes
how the new edge was added to the existing substructure. For example, consider the first
tuple in the table Joined_2 table. The Extl is 1, meaning the new edge was added on the first
vertex and the direction of the edge is going out of the first vertex. In the last tuple the Extl
is —2 indicating that the new edge was added on the second vertex and the direction is

coming into the vertex.

71

5.3.3.1 Updating the counts for two-edge substructures

All the two-edge substructures for consideration are listed in the table Joined_2. In
order to update the counts of each substructure, the instances of each substructure have to be
grouped into one single substructure. This can be achieved by using the group by statement
in the SQL. But care should be taken not to group by instances of a substructure with
instances of another substructure. The following query describes how the instances of the

substructure can be grouped by.

| nsert into
Frequent _2(vertexlnane, vertex2nane,

vertex3nane, edgel, edge2, ext 1,

count 1)

(

Sel ect vertexlnane, vertex2nane,
vert ex3nane, edgel, edgeZ?,
extl, count (*)

From Joi ned_2

Group by

vert exlnane, vertex2nam
e, vertex3nane,
edgel, -edge2, extl)

The substructures are grouped by the vertex names, edge names and the extl. By
grouping by the vertex names and the edge names we have created a signature for the
substructure. By including the attribute extl, we are grouping all the substructures, which
were expanded in an exact way and have the same labels. This comparison we are doing is an

exact graph match. The generalization for any graph is explained in the section 5.3.4.1. The

72

resulting Frequent_2 table is shown in Figure 5-15. Each tuple represents a substructure and
the countl attribute represents the number of instances of the substructure. The countl

represents the number of instances of that substructure

VERTEX1NAME VERTEXZMNAME VERTEI3INAME EDGE1 EDSEEZ COUNT1 EXTL

& E C akh ac z 1
A B D ah bd 2 2
2 . E ac ah z 1
F: Z D ac deo z -z
E D Z bd deo z z

5 record({s) selected.

Figure 5-15 Frequent_2 table

5.3.3.2 Implementing beam for two edge substructures

The Frequent_2 table consists of all of the two edge substructures with their number
of instances updated. For implementing the beam concept, we need to restrict the number of
substructures being expanded to beam. SQL does not provide a functionality of selecting
some X number of tuples from a table. The selection is always done on a condition on an
attribute value. For this reason if we have to select the first three tuples from a table we make
use of the cursors. The cursors fetch tuples from atable in an order and hence we can restrict
to fetching the required number of tuples.

In the Frequent_2 table shown in Figure 5-15 the first and third tuples are actualy the
same substructures. But since they were expanded in a different way they are not considered
the instances of the same substructure. They are treated, as two different substructures. The
explanation for a generalized version is explained in the section 5.3.4.1. So Care should be

taken while inserting the tuples from the Frequent_2 table into a new table Frequent_beam_2.

73

The same substructures should not be inserted into the Frequent_beam 2 table because these

will be the substructures that will be expanded in the future expansions.
Decl are graphl_cursor cursor for

Sel ect
vertexlnane, vert ex2nane, vert ex3nane, e
dgel, edge2, ext 1, count 1

From Frequent _2

O der by Count 1 desc

A similar cursor is declared on the Frequent_2 table. The first tuple is inserted into
the Frequent_beam_2 table. When the second substructure is fetched from the table it will be
compared with the tuples already present in the Frequent_beam 2 table. If there are any
substructures, which is the same as this substructure then that substructure will not be added
to the Frequent_beam 2 table. By doing this we are restricting the substructures in the
Frequent_beam 2 table to be distinct and not the same substructure.

. The Frequent_beam_2 table thus created is shown in Figure 5-16.

VERTEZLNAME VERTEXINAME VERTEEIZMAME EDGEL EDEEZ COUNTL EXT1

A B i ah]} z 2

A [o . Tl (] 2 1

A [D el da z =2
A pecopd(®) salecksd,

Figure 5-16 Frequent_beam_2 table

5.3.3.3 Creating the Joined_beam 2 table
In order to expand to a three-edge substructure from a two-edge substructure we have

to create a table for storing the instances of the substructures that are going to get expanded.

74

So the instances of the beam number of substructures are loaded into a new table

Joined beam 2 table. The query to achieve this functionality is shown below.

I nsert into
Joi ned_beam 2(vertexlnane, vertexl, vertex2nane
,vertex2, vertex3nane, vert ex3, edg
el, edge2, extl)

Sel ect vertexlnane, |.vertexl,
vertex2nane, | .vertex2,
vertex3nane,j.vertex3,|.edgel
edge2, j.extl
From Frequent _beam 2 f, Joined_2 |
VWher e f.vertexlnane=j.vertexlname and
f.vertex2nanme=j.vertex2nanme and
f.vertex3nanme=j.vertex3nanme and
f
f
f

j.
j.
j.
j.

. edgel=j . edgel and
. edge2=j . edge2 and
.extlsj.extl

)
The resulting Joined_beam_2 is shown in the Figure 5-17.

VERTEZL WVERTEXZ VERTEQ EDGEE VERTEELNAAE VERTECZHAME VERTECINAME #EXTL
ah
al
bd
bd
dc
dc

T 11
1D L4
11 L2
14 L5
T 12
il L3

Wwedh oon g oh
RERERER
™M
—
b e e D e fe
MmO M
e e
d Bl B =

6 pecordia) selected,

Figure 5-17 Joined beam_ 2 table

5.34 Generalization
In this section the generalization for the larger substructures is explained. The n-1

edge substructures are stored in the Joined beam n-1 table. In order to expand to n edge

75

substructures an edge is added to the existing n-1 edge substructure. So the Joined beam n-1
table is joined with the Joined base table to add an edge to the substructure. The query to
generate the Joined n table containing all the instances of an n-edge substructure is shown

below:
| nsert into Joined N
Vertexl, Vertex2.... VertexN+1, Vert ex1Nane, Vert ex2
Nane... . Vert exN+1Nanme
EdgelNane, Edge2Nane... . EdgeNNane, Ext 1, Ext 2... . Ext

N1,0

(

Sel ect
j1.Vertexl,j1l. Vertex2...j1l.vertexN, j2.
vertex2,j 1. VertexlNane, 1. Vertex2Nane
.J 1. vertexNNane, j 2. vert ex2nane, j 1. edg
elNane, j 1. edge2nane...j 1. EdgeN-
1Nane, j 2. edgenane, j 1. Ext 1, 1. Ext2....]
1. ExtN-2,-p, 0

From Joined N1 j1, Joined 1 j2

VWher e j1l.vertexP=j2.vertex2 and j1l.vertexl
< j2.vertex2..j1. VertexP-1<j 2. Vertex2

)

Pisavariablefrom2toN

A Joined_n table will have the following attributes to describe the substructure
* N+1 vertex numbers, describing the various vertex numbers
* N+1 vertex labels, describing the vertex labels
* N edgeslabels, describing the edge labels

* N-1 extension number, describing which vertexes connecting that edge

76

5.34.1 Generating the Frequent_n table

The Joined_n contains only the instances of the n edge substructure. In order to group
the substructures, which are exact we create a table Frequent_n which would group all the
exact graphs and update their counts. The query to creating the Frequent_n table is shown

below:
| nsert into
Frequent _n
(Vertexlnane, Vertex2nane.... Vert exN+1n
ane, Edgel, Edge2, EdgeN, Ext 1, Ext 2... E

Xt N-1)

(

Sel ect
j .vertexlnane,j.vertex2nane..vertexN
+1lnane, | . edgel, j . edge2..j.edgeN, j. ext
1,j.ext2..)j.extN1

From Joined N1 j

Goup by j.vertexlnane,j.vertex2nane.j.vertexN

+1lnane, | . edgel, . edge2..|.edgeN j.ext
1,j.ext2..)j.extN1

)

By grouping the vertex names and edge names we have grouped all the labels of the
substructure. But for two substructures to be exact the graphs have to be expanded in the
exact way. Consider the graph shown in the Figure 5-18. The two graphs are exactly the
same assuming that they have the same edge names. Let us assume these are two occurrences

of the same substructures in the graph.

77

Figure 5-18 Exact graph match

The expansion starts from a single edge in our algorithm and proceeds with adding an
edge to the existing substructure. Let us represent the expansion as ABCABBC2, meaning
the vertex names are A, B, C and the edge AB was expanded to edge BC on the second
vertex B. Thiswill form the signature for the substructure. So the graphs shown in the Figure
5-18 could have been expanded to in many ways. The following are some possibilities

ABDCABADBC12

ADBCABADBCI13

ABDCABADBC12

This means the different vertex labels in the graph are A, B, D, and C and the edges
in the substructure are AB, AD, and BC. The extensions tell how the graph looks like, the
first edge is from vertex1 to vertex2 and then 1 means the second edge is from vertex1 to

vertex3 and the number 2 means the third edge is from vertex2 to vertex4. The instances of

78

the substructures that have the exact signature are grouped together. So although the
substructures might be theoretically the same, they are only grouped together if they were
expanded in the exact same fashion starting from the first vertex. So functionality wise we

are grouping the exact instances of the substructure to get their counts.

5.3.4.2 Implementing the beam for n-edge substructures

Once the Frequent_n table is loaded, we have all the substructures of size n with their
counts updated. In order to implement the beam we create a table Frequent_beam_n, which
will contain exactly beam number of substructures of size n. A cursor is declared on the
Frequent_n table to sort them on the attribute count. The cursor fetches a tuple from the
Frequent_n table and inserts that tuple into the Frequent_beam n table. After inserting the
first tuple into Frequent_beam_n table another tuple is fetched from Frequent_n table. This
substructure is compared with the already inserted substructure in the Frequent_beam n table
and if they are found to be exact then this substructure is not inserted into the table. The
comparison is done using the isomorphism code. This would continue till we insert exactly
beam number of tuplesinto Frequent_beam ntable

The Frequent_beam_n table contains only the substructures of size n. In order to
extend to n+1 edge substructures the vertex numbers of the substructures are needed. Since
the Frequent_beam n table does not contain the vertex numbers of the substructures the
instances of these substructures have to be collected. So we create a new table
Joined beam n to store the instances of these substructures. The Joined n table contains all
the instances of the n edge substructures. So by joining the Frequent_beam n table and the
Joined_n table we can get the instances of the substructures in the Frequent_beam_n table.

The query for loading the Joined beam_n is shown below:
I nsert into

79

Joi ned_beam n (ATTRI BUTES)
(

Sel ect vertexlnanme ...j.vertexN+lnane,

vertexl..j.vertexN+1,

edgel.j . edgeN,

extl..j.extN-1

From Frequent _beam N f, Joi ned_N |

Wher e f.vertexlnanme=j.vertexlnane...
f.vertexN+lnane=j.vertexN+lnane
and f.edgel= j.edgel...
f. edgeNsj . edgeN and
f.extl=s).extl...

and f.extN-1=j.extN1

j.
j.
j.
j.

5.3.5 Halting conditions

There are two halting conditions for the algorithm. One of the user specified
parameter is the max size. Once the algorithm discovers all the substructures of the max size
the program terminates. Another halting condition would be when there are no tuples in the
Joined_n table. This necessarily means that there are no more substructures discovered of
sizen.

For example if the max size for the graph shown in Figure 5-6 is specified as 4, the
algorithm terminates after discovering the 4 edge substructures. The Frequent_beam_4 table
is shown in the Figure 5-19 for this graph. The algorithm has correctly discovered the
substructure we have embedded. The instances of this substructure are shown in the Figure 5-

20. Thisis also the table Joined_beam 4

80

VINAME VINAME V3INAME VINAME VSNAME E1 EZ E3 E4 COUNT1I EXT1 EXTZ EXT3
A C E D C ar sh hbd do 2 1 3 4

1 record(a) =selected.

Figure 5-19 Frequent_beam_4 table

¥l Wi W3 V4 ¥i E1 EZ E3 E4 VINAME VANAME W3INAME V4NAME VSNAME EXT1 EXT:S EXT3
f 7 11 12 7 ac ab bd do A C B K C 1 3 4
9 10 14 15 10 ac ab bd doc &4 cC B I cC 1 3 4

2 recordis) selected.

Figure 5-20 Joined beam_ 4 table

5.3.6 Limitations to the algorithm

Some of the limitations to the current algorithm are discussed in this section.

1. Number of columns: There is a limitation to the number of columns a table
can have in the database DB2. The maximum number of columns we can have
in the system is only 500. Joined n table would need 4n+1 attributes for
describing the n edge substructure. The vertex names would need n+1
attributes, the vertex numbers would need n+1 attributes, the edge would need
n attributes and the extensions would need n-1 attributes. So only the
algorithm could discover a 124-edge substructure.

2. Cursors: We use the cursors for implementing the beam. The
host variables are declared for exchanging data between the database and the
host programming language using the cursors. DB2 does not support declaring

array of host variables and hence the generalization for the algorithm was not

81

achieved. Separate host variable had to be declared for each pass. Right now

the algorithm works for a maximum size of 6.

CHAPTER 6

PERFORMANCE ANALYSISAND OPTIMIZATIONS

This chapter assesses the various approaches taken before we arrived at the final
approach discussed in the previous chapter. The various SQL queries involved in the
discovery process that have an affect on the run time are discussed. This chapter aso
discusses how the various SQL statements affect the performance and how they were
optimized to achieve better performance.

The previous chapter discussed how the beam was implemented using the
Frequent_beam n table. The Joined _beam n contains al the instances of the substructuresin
the Frequent_beam n table. Although this was the final approach discussed, there were many
other SQL alternatives that were explored in implementing this. The various approaches that

were taken in implementing this functionality are discussed in this chapter.

6.1 Configuration File

The configuration file is useful for automating the performance evaluation. It consists
of a number of parameters, which once specified correctly, can be used for running the
algorithm in an unattended mode. It can aso be used for running the algorithm on several
datasets with varying configurations without any user intervention. The variables defined in
the configuration file are:

DBMS Type$User Name$Password$Table Name$MaxSize$Beam$Approach
Number$LogFile$Debug (value 0 or 1)$Log Results to file (value 0 or 1)$Level of logging
RDBMS Name: The RDBMS name (Oracle or DB2) where the input relation is present.
Database Name: The database that contains your input relation.

82

83

Userld: The user who has access over the input relation.

Password: The password associated with the Userld — needed to connect to the database.

Table Name: The name of the input relation.

Approach Number: The approach number to be used for the algorithm. It is an integer value.
All the approaches and their optimizations are given a unique integer value to identify
them.

Max Sze: Aninteger to specify maximum size of substructure to be discovered.

Beam: An integer to specify the beam.

Debug: If true, then prints the debug statements.

Log file name: The name of the log file into which the results would be written.

Log level: Aninteger number to specify the level of logging needed.

For each experiment, the values of al these variables are written in asingle linein the
order of the variables shown above and are separated by a“$” sign. Thusif the configuration
file contains several such lines, the algorithms will be invoked that many times. To skip a
line, the line should start with the word “REM”. Below is an example of some mining
configurations.

REM Experiment on DB2. Approach -ECBA

DB2$subduedb$gr aphmining$graphmining$TSKV10KE$4$5$10$fal se$ TSKVIOKESAALBL0

Ixt$l

Here the first line is ignored as it starts from the word “REM”. For second line values are

used as follows:

RDBMSto use: DB2

Database Name: Subduedb

UserlD: graphmining

Password: graphmining

Input Table: TSK10KE.

Approach Number: 4 (For ECBA)

Max Size: 5

Beam: 10

Debug: False (don't print debug statements)
Log file Name: T5SKV10KESAA4B10.txt

Log level: 1 (write the overall time taken).

6.2 WritingLogFile

Graph mining is a time-consuming process and at times it happens that for certain
mining configurations, mining a given dataset may take several hours. Since we have to
compare the performances of these approaches with others, after a given time limit, if the
approach does not complete, the discovery process has to be killed. Also for the purpose of
studying these algorithms, we need to know about their progress while running a data set.
Hence it is very important to note the time at each step of the algorithm and produce a log
file containing enough information. This log file can then be processed to generate the useful
information such as the number of passes completed, time taken for each pass. For this
purpose, we generate a log file. The log is written after finishing the algorithm on a data set.
This log contains all the individual timings for the SQL queries and the final time taken. .
Below is a sample content of these logging files.

Sizel Size2 Size3 Size4 Totad

0.990 1.200 2.230 2.650 7.070

The log file contains the individual times taken for processing substructures of that

size.

85

6.3 Useof Correlated queries

The first approach taken to implement the beam was using a correlated query. The
Frequent_n table contains all the substructures of size n. The Frequent beam n table
contains all the substructures that have to be expanded for generating the n+1-edge
substructures. The Joined_n table contains all the instances of the n-edge substructures. If the
beam number is set to P and if there are K tuples in the Frequent_n table then the K-P
substructures do not participate in generating the n+1-edge substructures. Hence if the
instances of the tuples, which are not going to participate in generating the n+1-edge
substructures, are deleted from the Joined_n table then we are left with only the instances of
the substructures, which will be expanded to n+1-edge substructures. Hence the tuples from
the Frequent_n table that do not form the beam are inserted into a new table EdgeN_subs. By
removing the instances of these substructures from the Joined n table, we attain the

functionality needed. This query for doing thisis shown below

Del et e fromjoined N as |
where Exists

(

Sel ect f.vertexlname
From edgeN _subs f
VWher e .vertexlname=j . vertexlnane and

f
f.vertex2nanme=j.vertex2nane...
f.vertexN+lnane=j.vertexN+lnane and
f.edgel=] . edgel and f.edge2=j.edge2...
f.edgeN=j . edgeN and f.extl=j.extl
Jdoext N1z ext N1

86

The above query is a correlated query because the sub-query contains an identifier

that represents a row of the outer query. In the above query the identifier j (Joined n table) is

from the outer query.

6.3.1 Input data set generation for testing

The graph generator used for testing some of the results had been developed by Dr.

Holder [9]. The generator accepts many parameters before it constructs the graph. Some of

them arelisted below.

Number of verticesin the graph.

Number of edgesin the graph.

Number of Vertex labels. The vertex labels can be given a
probability with which they appear in the graph. The sum of the
probabilities must add up to 1.

Number of edge labels. Thisis similar to the vertex labels.
Connectivity. Connectivity is the number of external connections
on each instance of the substructure.

Coverage. Coverage is the percentage of the final graph to be
covered by the instances of the substructures.

Overlap. Overlap is the percentage of the total instances that
overlap.

Substructure definition to be embedded in the graph. The different

verticesin the substructure followed by the edges.

Graphs have been constructed with number of edges twice as many as the vertices in

the graph. The overlap was set to 0.0 because the database algorithm does not implement the

87

concept of overlap. The connectivity was set to 5. Ten different vertex labels and edge labels
have been included each with a probability of 0.1. The coverage was set to 0.2. The graphs
have been created to test the scalability and the performance of the algorithm. The embedded

substructure is shown in the Figure 6-1.

;:EZ
El

() w ()

E3 P

:

Figure 6-1 Embedded substructure

Table 6-1 Parameter Settings

Parameters Subdue Database
Size 4 4

Beam 4,10 4,10
Overlap True True

Table 6-1 shows the various parameters on which the Subdue algorithm and the
database algorithm were run. Overlap was set to true in the main memory approach because

the database approach currently does not support the non-overlap option. The run times for

88

the algorithms are shown in table 6-2.

Table 6-2 Timings using the correlated query

Beam =4 41 smes ara in Saconds Subdue
Cata Set Jupdata 1pass 1 Jupdata 2 pessd |updatel |pass 2 ypdats 4 pass 4 Jfinal4 |
TEOVIDOE | 001 TRE T TS 0015 015 002 TR I R
TIAOVEODE | 0045 0.3%) 005 0.21 0 085 0.35 016 a4a8) 1.37] 0.5
TEam 1000E 0.3 078 .25 [[048 0.81 OAT 1.24 342 0454
TIWIKE 051 1.37 .53 0.65 237 3.08 SH2 ET 1231 1 86
TIK3KE 051 145 16T 33 10.E 12.05 316 37| s15] z43
TIKSKE 0.8 2,07 365 1.3 b [52.3d 17.74 52.17) 14388 15
Beam = 10

CataSst |updabs 1pass 1 updans 2 |passd |updated |pass 3 upoans 4 pass54 final 4
TE000E 001 K] 102 0.14 il 0.19 iE 041 08 02z
TEEIVEONE 005 0.3 00 [i[F 11 021 014 044 1M 172
TEQII0DOE, 031 0 f= | I (] fd 0483 143 53 1ER] 238 40
TiKVIKE | 053 1.37] 1 Fad 3 E1 g] 11,13 19 2 73] 36T4) TAT
TIKIKE | 0E 1735 2 EA d 5 37T 345 T84 B35 13488) TaE
TIKEHE 047 215 1077 13 458 13176 137 2T FE42 A07 F3) SE013 a17

The timings were noted for updating the Joined_n table, where n ranges from 1 to 4,
and the time taken for discovering substructures of size n while varying the beam. The
overall timings for each graph are shown in the column labeled “final 4. The same test cases
were run on Subdue and the timings are also shown in table 6-2. We can see from the results
that Subdue outperforms the database version. The overall times taken for the agorithm
show that the time was not increasing linearly. The update operation for pass 4 was taking
the maximum amount of the time. This can be attributed from the fact that there would be a
greater number of tuples in the Joined 4 table. For the test case, TIKV5KE, one of the best
substructures found in Subdue is in Figure 6-2. This is one of the substructures embedded in
the graph. The frequent_4 table, which contains all the four edge substructures and their
counts, are shown in Figure 6-3. As the Figure shows, the number of instances found in both

algorithms is the same. The number of instances of the substructure is represented as

89

attribute C1 in Figure 6-3. We use this information to validate that the database algorithm
works correctly. In order to improve the performance of the database algorithm, the query for

updating the Joined_4 table needs to be optimized.

substructure definition
Mutnber of subgraph vertices =5
Mutnber of subgraph edges =4
subgraph vertices
R
353 har
354 foo
355 vl
356 wl
Subgraph edges
[354 -» 354] e
[354 -» 353] e
[356 -» 354] el
[356 -» 355] el
Mumber of instances =111
Value=1.062024
Description length of global graph compressed
using this substructure= 71625 142573
Compression= 05940501

Figure 6-2 Output for Subdue for data set TIKV5KE

V1 oowWZ Vi3 L Vi El EZ E3 E4 1 Xl Xz 3
vl w3 il foo har &5 el ed ed 119 1 1 4
¥l v v foo w4 ed el el g4 117 1 1 4
¥l v v foo w5 ed el el X 114 1 1 3
vl w3 foo bar w4 e5 el ed ed 113 1 3 3
vl w3 foo w4 bar e5 el ed g4 113 1 3 3
vl w2 foo bar w4 el el el ed 112 1 3 3

Figure 6-3 Frequent_4 table tuples

90

6.4 Usingthe Minus operator

As discussed above, the correlated query is a very costly operation. The challenge is
to remove the correlated query but still achieve the functionality. Instead of deleting tuples
from the table Joined_n, we create a new table Joined beam n. This table is used to store
the tuples, which are the instances of the substructures in the table Frequent_beam_n. The
EdgeN_subs table contains all the substructures, which do not participate in future
extensions. So when EdgeN_subs is joined with the Joined n table it will result in al the
instances of the substructures that do not participate in the future extensions. If we define a
set, which contains all the instances of the substructures that are not going to participate in
the future extensions then we can subtract this set of tuples from the original set of tuples
(Joined_n) to result in instances of the substructures that are going to participate in the future
extensons. The Minus operator in DB2 can achieve this functionality of the subtract
operation. So after subtracting we can store the result set in the table Joined_beam_n. The

guery to do thisis shown below. This avoids the correlated queries.

| nsert into Joi ned_beam n ATTRI BUTES
(
Sel ect ATTRI BUTES
From Joi ned_n
M NUS
Sel ect ATTRI BUTES
From Joi ned_n, edgeN subs f
Wher e f.vertexlnane=j.vertexlname and

f.vertex2name=j.vertex2nane...
f.vertexN+lnane=j.vert exN+lnane
and f.edgel=j.edgel and
f.edge2=] . edge2...f. edgeN=j . edgeN
and f.extlsj.extl .f.extN

1= . extN-1

91

The program is again tested on the same inputs. The results are tabulated in table 6-3.

The results show that there has been a considerable improvement in run time of the
algorithm. If we take the data set T1KV5KE then the time taken for update in the fourth pass
for the previous approach was 77.74 seconds compared to 13.1 seconds for this approach.
Although this approach does not perform as well as the main memory approach, there has
been considerable improvement in time over the previous approach. If we look at the time
taken for update 4 then it constitutes more than 75% of the overall time taken. So effort must
be taken to still improve the performance of this query. The best substructure discovered by
Subdue for the data set T1KV5KE is shown in the Figure 6-2. The best four-edge
substructures discovered by this database approach are shown in Figure 6-3.

Table 6-3 Test results using the Minus Operator

Bearm =4, All times are n Seconds.
Dsls Set [update 1 |pass 1 Jupdsle 2 Jpass 2 Jupdsle 3 Josss 3 Jupdste 4 |pass & final 4 Stk s

T50W00E ouoF 016 0.0z 0.0 0.01 0.13 00 015 0.53 011

T2EIYS008 0 06 0.26 0.05% 0.21 0.0v 0.=3 005 0.35 1.17 05
TS0 00 015 & a2 U.b4 U.d u.f 018 Uy 2B .44
TIEMNIKE 34 1.1 04 0.85 0.7 1.4 0.8 1.9 5.33 1.86
TIE3XE 06| 1.44 1.14 1.94 2.02 3.4 2.3 4.62) .46 213
TIHEHE .86 2147 28 4.45 5.9 a.49 a2 134 JBE 15
TSEMIDRE 171 a5 3B 5.8 a2 na 3 40.2 B1E B7
Hearn = 10

Oafa Set |update 1 |pass 1 |updale 2 |pass 2 |updsie 3 |pass 3 |update d |pass 4 Jfinal 4

Ts00E 002 01z 0.0z 0.1z 0.03 0.1a 0u0a 0.4 naz 0.2z
T250VE08 ooy 0.26 0.08 0.35 0.0v 045 006 0.&1 1.66 1.72
TS0 00l 015 0. 46 0.22 0.53 0.5 0.ER o 1.1 107 401
N ENIKE U.5 1.15 1.3 23 1.4 4.4 ris 213 11.8 .2
TIESEE E3 1.55 3.7 5.1 7.8 DE2 1235 17.27 33.7 T.88
T KSHE n.a 2.2 11E 14.7 ey 272 42.3 53.6 g4.72 217

TRVIORE 182 362 134|153 198|252 677 1765 2014] 78

92

6.5 Indexing Techniques

An index is an access method that can be created on a table, using one or more
columns of the table as the key columns of the index. An index provides a fast way to find
rows of the table. Indexes can greatly improve the performance of queries that search for a
particular column value or range of values, aswell asfor joining. An index always provides a
logical ordering on the rows of the table. The ordering property of an index is useful in
processing queries with ORDER BY and GROUP BY clauses, and is some kind of join

algorithms. An example for creating index is shown below.

Create Index vl on vertices (vertexno, vertexnane);

The above statement creates an index v1 on the table vertices with column names
vertexno and vertexname. There is always an overhead of creating and maintaining an index.
Whenever a tuple is inserted or deleted from a table the corresponding operation has to be
done on the index aso.

Since there is a join operation involved in the query we are trying to optimize it by
creating an index on those attributes involved in the where clause. The index is created in the

following way on table Joined _n

Create Index j_N
On Joined_N (vertexlnane..vertexN+lnane,
edgel. . edgeN, ext1l..extN-1);

The indexes are created after loading the table because otherwise there would be an
overhead of updating the index every time a new tuple is inserted into the table. The same
tests were re run to see the effect on the run time. The results have been tabulated in the table
6-4. Indexes were created only on the tables Joined_3 and the Joined_4, because the run time

for these operations formed the major part of the overall time taken by the program.

93

Table 6-4 Timings comparison with Indexing

Bedm =4, Al liws are n Sebsnds | |
Datm Sl updale 1 |pags 1 ppdate 2 pass ? |ledeaTime|updale 3 Jpace 3 |IndexTrs|update 4 [p:u's d |nald Subdys
TEWA00E 0,03 0125 0018 015 0.0 oo 032 O0FS 0.22% .55 1.1 o1
TAIEI0E 0065 024 0055 0.3 016 0.33 0.58 0135 027 ik:] 1.8l 0.5
TE00AD00E 15 0536 07 047 .22 0.33 1.19 0 0 4E 1.5 .47 0.0
1ENIKE ¥ 1.11 041 0 a6 .35 0.73 14 CLE 05y 277 51 1.86
1HIAKE] 1. 66 1.12 1493 057 1.95 3 1.1 2EL 5.7 137 213
[TELKE L.He 4.4 2.4 44 13 E.1 III-I £ . = Ji6 44|
1501 RE - F] 245 _-!'JH_ E 1 e - 4.1 144 Z:'-1_ 242 HE 431 a.F
Hearm = 10 | |
Data Sai updaia 1 |pags 1 gpdate 7 (paded |FdeaTimel|updaie 3 lpaes 3 |IndeeTivw| ugdate d jpessd [heald Siibdia
TEANE 02 o1 0z 015 0.0 012 041 0 ES 0.245 0.7 142 022
TSITE o 0.25 0rs 03 013 016 0.6 0135 .25 .56 2.19 .72
TEOIADD0E 15 048 073 05 0.3 0.32 1.21 0.3 Ot 155 185 4
T1ENAKE 0.43 .19 1.68 25 085 1.56 305 037 27 5.7 13.4 7.7
Tik3KE i1 1.48 4.08 53 1.49 57 1011 234 =1 1525 3265 7B
T1kEKE jia] 204 [=hl} 1143 31 6.4 34.13 4. 10K 551 1551 8.1 517
TENAORE 1.73 3. 25 11.62 1EE 29 AN | 37 L 17105 BT X7

In the initial data sets there was not much of an improvement because there is an
overhead of creating the index, which is shown in the column Index Time. The first Index
time is the time taken to create the index on the Joined 3 table and the second one is the time
taken to create the index on Joined_4 table. The timings show a considerable improvement in
the run time of the agorithm, especially the update operation of the Joined table. For
example, for the data set TSKV10KE and beam =10, the time taken by the update operation
is 3.76 seconds compared to 167.7 seconds taken by the previous approach. We can also see
that the index on the Joined_3 table did not have much of an improvement on the agorithm.
Although there has been a huge improvement in the performance from the previous
approach, the performance of Subdue’s main memory algorithm is still better than the
database approach. For example, the overall time taken by the data set TSKV10KE using
beam size 4 for Subdue is just 8.7 seconds, compared to the 33.1 seconds taken by the
database al gorithm.

94

6.6 Updating without the Minus oper ator

This approach is the one discussed in chapter 5. The assumption while implementing
this approach is that the beam number is a very small number compared to the number of
substructures. Instead of creating the table EdgeN_subs that have all the instances of the
substructures that do not participate in the future extensions, we create a table
Frequent_beam n table that contains the substructures that are going to participate in the
future extensions. Hence, the Frequent_beam n table will have a most beam number of
tuples, which would be much smaller than the table Frequent_n itself. It would be just
enough to gather al the instances of the substructures, which are in the table
Frequent_beam n table. Since the Joined n table contains all the instances of the
substructures of size n, we can gather the instances of the substructures in Frequent_beam n
table by joining the Frequent_beam_n table with Joined_n table. The query to achieve thisis

shown below
| nsert i nto Joi ned_beam n ATTRI BUTES
(
Sel ect ATTRI BUTES
From Joined_n j, Frequent_beamn f
Wher e f.vertexlnanme=j.vertexlname and
f.vertex2nanme=j.vertex2nane...
f.vertexN+lnane=j.vert exN+lnane
and f.edgel=j.edgel and
f.edge2=] . edge2...f. edgeN=j . edgeN
and f.extlsj.extl .f.extN
1= . extN-1
)

The run times of this approach are shown in table 6-5.

95

Table 6-5 Timings without using the Minus operator

Besm =4 Al lisss are m Sepsnds
Diats S2l |updsie 1 |pagsd wpdate 2 pass 2 IrafeaTime |updals 3 |pags 3 IndexTirs |update 4 |pass & final 4 S bys
LS [i] it [ilx] 008 005 0.3 [[l 004 034 0.77 o
TS5IE00E o iz 002 013 0.15 0d .46 [NE] 006 054 13 05
TE0 A DOOES oz 0.4 [ITuE] 018 0.2 0E 0 gl 0 006 074 18 0.9a
T1EW2KE [T} [[T 0.3 031 0.8 oai 045 011 135 316 1,86
1EVIKE iy 0& i) [T 054 14 ¥ 1.5 014 116 B3 i3
1RAEKE ar 1.0¥ [NE 1.3 207 i) 41 287 01 554 [EE] K|
Heaim = 10 | |
Data Sal |updata 1 |pass 1 |opdate 7 lpass 2 |edesTine|update 3 |pass 3 |indeeTea|update 4 [pess & [final 4 Subdia
TEONODE m (R 00z [RE] iE]| [kl 006 [(] 125 0232
TSIS0E 1K 027 0.0 033 013 i S| [TRE] o T3 .73 1.72
TEO0 1000E] oz [RE]] 0.0 ™ 023 o 0.75] [00 113 251 4.0
T1ENVZKE 0.04 057 [RE] 02 055 015 1.6 [k 033 253 5.35 7.27
T1ENVIKE 0.0& 0.7 013 1.18 153 i1 3.63 25 043 .31 1183 7.6
T1ENVEHE 0.1 1.12 0.34 267 333 11 7.1 368 023 1.3 21216 317

There is a definite decrease in the time taken by this approach compared to the
previous approach. For example, consider the pass 3 of the data set TIKV5KE; the time
taken for by the previous approach is 30.87 seconds compared to the 7.1 seconds taken by
this approach. The improvement has been in the update times, which is just 0.11 seconds
taken by this approach compared to 23.21 seconds of the previous approach. The graphical
comparison graphs for the overall timings for al the approaches are shown in the table 6-6

and 6-7. The timings are shown on the logarithmic scale, as the rangeis very large.

Table 6-6 Comparing the Final times

96

1000

100

10

Logarithm of Times{seconds)

Beam=4, Max size =4

OECBEA-1
EECEBEAZ
BECEBA-3
EmECEA-4
B Subdue

Data Set

97

Table 6-7 Comparison of overal times

Beam =10 Max size=4

10000
=
T 1000 [
E OECBA-1
g oo EECEA-Z
E EECEAS
= 10 mECEA-4
E E Subdue
£ |
=
=
R

&

6.7 Achieving Scalability

The above tests could only help in making a comparison within the approaches but
could not establish any proof of scalability of the approaches. The code used for generating
the test cases could not create test cases large enough to test for higher data sets. Another
graph generator described in section 3.3.4 has been used for testing the algorithm further.
The generator was able to create data sets of size 1,600,000 edges and 800,000 vertices. Tests
have been done on these data sets on main memory as well as the last approach discussed
above. The results are shown in table 6- 8.

The final timings and their comparison with Subdue are shown. The number of
instances of the substructures discovered by both the algorithms turned out to be the same.
The crossover point for the algorithm timing takes place at as low as 100 edges. The main

memory algorithm took more than 60,000 seconds to initialize the T400KV 1600KE graph

98

and took more than 20 hours to initialize the T80OKV1600E data set. We could not go
beyond the T80OKV1600KE data set for testing because the graph generator could not
produce the required graph. The run time for the data set T800KV1600KE using the
database version with a beam size of 10 is 12,703 seconds. The time taken by the Subdue
algorithm for a data set of TS0KV 100K E and a beam size of 10 is 71,192 seconds. One of the
main reasons for such improvement has been using pure SQL statements to achieve the

functionality. The graphical comparison of the approachesis shown in tables 6-9 and 6-10.

Table 6-8 Comparison of Timings

99

Beam =4

Data Set Data base =ubdue

Ta0v1M00E 0.6 Q17

T2500W500E 0.803 3.56

Ta00W1000E 1.13 13.21

T1KNZKE 1.95 4511

T2.A8KEKE 295 170.43

TakNW10KE B.6Y 78225

T/ AKI15KE 8.26 2424 B5| Substructures inserted in the graph
T10kN20KE 12.12 8E17.17

T15k30KE 17.703 8021.51

T20kNA0KE 2707 19533.09 3% 3%
Ta0kM100KE 144.03 3425939 of of
T100kN200KE BE3.5 edges edges
T200k3/400KE 2141.24

T400KX300KE 5375.04 |
TB00W1EDOKE 12347 .02 |
Beam =10 i
Data Set Data base Subdue

Ta0100E 0.28 0.4

T2500W500E 0.95 5.2

150041 000E 1.26 19.9

T1KV2KE 2.45 535

T2.6KEKE 3.76 226.35

TakN10KE 77595 106577

T7 . 6K15KE 10.8 3523.23

T10kN20KE 14.58 BE9S 27

T15kN30KE 2219 16042 45

T20kMA0KE 3.7 28918.05

Ta0kM100KE 146.69 71159289

T100kY200KE 7956

T200k/400KE 218774

T400KXB00KE A4357.29

TE00W1RDOKE 12703.08

100

Table 6-9 Graphical comparison of the approaches

Beam=4 Max size=4

100000

)

S 10000

=

2

& 1000

:

£

B

= 101

=

£ .

=

s 4
08

@ Database Approach

® Main Mernory

Table 6-10 Graphical Comparison of the Approaches

100000

Beam =10 Max size =4

10000

1000

100

Logarithm of Times(Seconds)

@ Database Approach
® Mdain memaory

101

102

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusion and Future Work

In this thesis we have developed several algorithms for graph-based data mining
using relational databases. The idea behind graph-based data mining was to find interesting
and repetitive substructures in a graph. Initial efforts included mapping graphs into a
database and achieve the functionalities of Subdue. One of the main challenges was the
representation of the substructures in a database and discovering these substructures. Our
first algorithm developed achieved the functionality required but lacked scalability. The next
challenge is to achieve the scalability and apply the concept of beam. The ECBA implements
the graph discovery in pure SQL statements and uses indexing techniques to improve the
performance of the algorithm. We were able to run graph mining on data sets that have 800K
vertices and 1600K edges. The agorithms developed were able to achieve the functionality
desired (scalability). The agorithms were able to find substructures and their number of
instances correctly. Much functionality like beam and max size was successfully
implemented in this thesis.

We are still in the process of implementing the concept of overlap. For considering
the issues involved in overlap the instances of the substructure have to be carefully analyzed
to see if there exists a common vertex between the two instances. One of the important
concepts while dealing with graphs is detecting cycles. The current algorithm though detects
the cycles correctly but after detecting the cycles it still loops within the cycle. Cycles need
to be carefully handled and reported. We are also in a process of implementing a concept like

MDL, which would report compression achieved by a substructure in a database system.

103

REFERENCES

1. Cook, D.J. and L.B. Holder, Substructure Discovery Using Minimum
Description Length and Background Knowledge. Artificial Intelligence Research,
1994. 1: p. 231-255.

2. Sarawagi, S., S. Thomas, and R. Agrawal. Integrating Mining with Relational
Database Systems:. Alternatives and Implications. in SGMOD. 1998. Seattle.

3. Thomas, S., Architectures and optimizations for integrating Data Mining
algorithms with Database Systems, in CSE. 1998, University of Florida: Gainesville.
4. Cook, D.J. and L.B. Holder, Graph-Based Data Mining. IEEE Intelligent
Systems, 2000. 15(2): p. 32-41.

5. Rissanen, J. Stochastic Complexity in statistical inquiry. in World Scientific
Publishing Company. 1989.

6. Bunke, H. and G. Allerman, Inexact graph match for structural pattern
recognition. pattern recognition letters, 1983. 1(4): p. 245-253.

7. Chamberlin, D., A Complete Guide to DB2 Universal Database. 1998:
Morgan Kaufmann Publishers, Inc.

8. Noble, C., Graphgen.

9. Holder, L.B., Subgen.

BIOGRAPHICAL INFORMATION

Ramji Beera was born on May 28, 1979 in Hyderabad, India. He received his
Bachelor of Technology degree in Computer Science and Engineering from Indian Institute
of Technology, Madras, India in May 2000. In the Fall of 2000, he started his graduate
studies in Computer Science and Engineering at The University of Texas, Arlington. He
received his Master of Science in Computer Science and Engineering from The University of
Texas at Arlington, in August 2003. His research interests include graph based mining and

Business Intelligence.

104

	Structural Data Representation
	Parameters for Control Flow
	Compression Using Minimum Description Length
	Compression using the Size
	Inexact Graph Match
	The substructure Discovery Algorithm
	Notations
	Flow
	Halting Conditions
	Next Iterations

	Using static SQL in C programs
	Cursor Declarations
	Discovery Algorithm
	Initialization of data
	Substructure Discovery
	Two-Edge Substructures
	Generalization
	Negative Extensions
	Constructing the graph

	Input data generation
	Performance
	Conclusion

	Functions in UDB system
	Creating an External Scalar Function
	Description of the Syntax

	UDF’s over Cursors
	Implementation Details
	Table UDF's in DB2

	Experiment Results and Conclusion
	Why a new Approach
	Graph Representation
	Graph Extension Revisited

	Initialization of Data
	Algorithm
	Flow of the algorithm
	Discovering the single edge substructures
	Implementing Beam for single-edge substructures

	Extending to two-edge substructures
	Updating the counts for two-edge substructures
	Implementing beam for two edge substructures
	Creating the Joined_beam_2 table

	Generalization
	Generating the Frequent_n table
	Implementing the beam for n-edge substructures

	Halting conditions
	Limitations to the algorithm

	Configuration File
	Writing Log File
	Use of Correlated queries
	Input data set generation for testing

	Using the Minus operator
	Indexing Techniques
	Updating without the Minus operator
	Achieving Scalability
	Conclusion and Future Work

