

SUPPORT FOR COMPOSITE EVENTS AND RULES IN DISTRIBUTED
HETEROGENEOUS ENVIRONMENTS

By

ROGER LE

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

1998

To my family

iii

ACKNOWLEDGMENTS

Firstly and foremost, I would like to express my sincere gratitude to my advisor,

Dr. Sharma Chakravarthy, for giving me an opportunity to work on this interesting topic

and for providing me great guidance and support through the course if this research work.

I am also grateful to Dr. Joachim Hammer and Dr. Eric Hanson, for graciously agreeing to

serve on my committee, for teaching wonderful classes, which have greatly helped in the

understanding of databases, and for taking time from their busy schedules to read and

comment on my thesis. I have been very fortunate to have such excellent committee

members; it has been a pleasure to interact with them all.

I would like to thank Sharon Grant for maintaining a well-administered research

environment and being so helpful in times of need. Special thanks to Federico Zoufaly,

Shiby Thomas, Hyoungjin Kim, and Seokwon Yang, for the many fruitful discussions and

invaluable advice on many aspects of my research work. Also I would like to thank all my

friends for their constant support and encouragement.

This work was supported in part by the Office of Naval Research and the

SPAWAR System Center–San Diego, by the Rome Laboratory, DARPA, and the NSF

grant IRI-9528390.

Last, but not least, I would like to take this opportunity to thank my family for

their endless love. My parents, my brother Francis and most of all, Hui, give me unlimited

iv

amounts of patience, support, and extraordinary encouragement to get through difficult

moments.

v

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS...iii

TABLE OF CONTENTS ...v

LIST OF FIGURES..vii

ABSTRACT..viii

CHAPTERS ...1

1 INTRODUCTION..1

1.1 Related Work ...5

1.1.1 Sentinel..6
1.1.2 TriggerMan..7
1.1.3 Component-Based Softwares..8

1.2 Problem Statement ...8

2 ALTERNATIVES FOR INFRASTRUCTURE ..10

2.1 CORBA..11
2.2 DCOM/ActiveX...13
2.3 Our Choice ...15

3 ALTERNATIVES FOR ARCHITECTURE AND DESIGN..................................17

3.1 The Nature of Objects in CORBA ...17
3.2 The CORBA Services ..18
3.3 The Event Service and Its Limitations. ..19
3.4 Registering Events at Run-Time ..24

3.4.1 Java Reflection..24
3.4.2 Alternative Solution: Event Template...26

3.5 Event Notification Using Non-Blocking Calls ...27
3.5.1 Event Notification Using CORBA Method Calls....................................27
3.5.2 Non-Blocking Calls (“oneway”) ...27

3.6 Communication and Connection Transparency Using CORBA28
3.6.1 The Role of an Object Request Broker...28

vi

3.6.2 Interoperability between Object Request Brokers..................................28
3.6.3 Transparency to Locate CORBA Applications on the Network.............29

3.7 The Event Queue Model..31
3.8 Rule Execution Using DII ..31

3.8.1 The Structure of a Dynamic CORBA Application..................................33
3.8.2 DII: Advantages and Drawback..33
3.8.3 An Alternative To Dynamic Method Invocation: Feature and

Limitation...34
3.8.4 Extension of the Rule Execution Scope..35

3.9 Composite Event Detection ...36

4 CEDAR: DESIGN AND IMPLEMENTATION..38

4.1 The Structure of a CORBA Application ..38
4.2 Registering Events..40

4.2.1 Syntax of Event Definition..40
4.2.2 Dynamic Subscription Using Java Reflection ...41

4.3 Sending Event Notifications...42
4.4 Connecting to the CEDAR Server ...44

4.4.1 Configuration Files (Orbix.hosts and Orbix.hostgroups)44
4.4.2 Procedure Steps to Connect..45

4.5 Composite Event Detection ...46
4.5.1 API of LED Written in Java ...46
4.5.2 Integration of the Event Graph With the CEDAR Implementation

..49

5 CONCLUSION AND FUTURE WORK..51

5.1 Conclusion..51
5.2 Future Work...52

LIST OF REFERENCES...55

BIOGRAPHICAL SKETCH..57

vii

LIST OF FIGURES

Figure page

3.1 The supplier/consumer communication model...20

3.2 Consumer and supplier proxy objects..22

3.3 Architecture using event channels ...23

3.4 Object request broker...29

3.5 Invoking on a method using DII...34

4.1 Invoking on a CORBA object ..39

4.2 Example of event specification: Stock.idl..41

4.3 Creation of an instance of type Stock ..41

4.4 Example of static linking of library in Java..42

4.5 Dynamic linking of library using Java reflection..42

4.6 Non-blocking call for raising events (IDL specification)...43

4.7 Encapsulate event into an Any instance before notification......................................44

4.8 Creation of detection nodes for primitive events...47

4.9 Creation of detection node for composite events ..47

4.10 Event subscription by a list of rules ...48

4.11 Raising primitive events...48

viii

Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Master of Science

SUPPORT FOR COMPOSITE EVENTS AND RULES IN DISTRIBUTED
HETEROGENEOUS ENVIRONMENTS

By

Roger Le

December 1998

Chairman: Dr. Sharma Chakravarthy
Major Department: Computer and Information Science and Engineering

Active database systems have been proposed as a data management paradigm to

satisfy the needs of many applications that require a timely response to situations. The

promises of the active database system are significant. Event-condition-action (ECA)

rules are used to capture the active capability. As an example, the same capability can be

used to support push/pull propagation of data in a distributed environment. As another

example, workflow and E-commerce applications that are event-driven can be supported

by extending the ECA rules concept to heterogeneous environments.

The utility and functionality of active capability (ECA rules) has been well

established in the context of databases. Today, most of the commercial relational

databases management systems (RDBMSs) have some form of ECA rule capability. In

ix

addition, there are several research prototypes that have extended the ECA rule

capability to object-oriented database management systems (OODBMSs).

In order for the active capability to be useful for a large class of advanced

applications, it is necessary to go beyond what has been proposed/developed in the

context of databases. Specifically, extensions beyond the current state of the art in active

capability are needed along several dimensions: i) make the active capability available for

non-database applications, in addition to database applications; ii) make the active

capability available in a distributed environments; that is, in addition to specifying ECA

rules within a system, it should be possible to specify them across applications; and iii)

make the active capability available for heterogeneous sources of events (whether they

are databases or not).

The objective of this thesis is to provide the best architecture and framework to

support ECA rules that can run across distributed and heterogeneous systems. The design

allows the user to specify rule condition and action at run-time, and will integrate a

mechanism for composite event detection based on an event tree. As we go along with

the design and implementation, the different alternatives will be discussed.

1

CHAPTER 1
INTRODUCTION

The utility and functionality of active capability (event-condition-action or ECA

rules) has been well established in the context of databases. Today, most of the

commercial relational databases management systems (RDBMSs) have some form of

ECA rule capability. In addition, there are several research prototypes that have extended

the ECA rule capability to object-oriented database management systems (OODBMSs).

Sentinel, developed at the University of Florida ([ANW93], [BAD93], [CHA94a],

[CHA94b], [CHA95]) is one such prototype that supports an expressive composite event

specification language (termed Snoop), efficient event detection (by using pre-processor

generated wrappers), conditions and actions (as a combination of OQL and C++),

multiple and cascaded rule processing (using a rule scheduler and nested transaction

model), a visualization tool, and a rule editor for dynamic creation and management of

rules. Some of the above results will be relevant for object-relational DBMSs that are

currently being developed by the industry.

Although the ECA rule concept was developed in HiPAC ([CHA89]) for

providing a uniform framework for supporting many ad hoc functions (such as integrity

constraints, separation of rules/policies from application code, access control, incremental

view management) in the context of databases, their utility seems to be more universal

than envisioned by its developers. While some types of applications can run in stand-

alone mode, other applications need to react to external events in order to resume or even

2

start their execution. Event propagation from a source to a consumer application can be

used for many purposes in a distributed environment. For example, this capability is

relevant in terms of propagation of changes for heterogeneous sources in the context of

data warehousing. In that case, the frequency of data transmission can be very high so

that you may want to reduce it by using composite events to filter the flow of data. That

means support of push/pull propagation of data in a distributed environment has never

been more relevant. As another example, workflow and E-commerce applications that are

event-driven can be supported by extending the ECA rules concept to heterogeneous

environments.

Scalability and high performance are facilitated by the fact that events are

detected and rules processed asynchronously, separately from the initial updates to the

data. When rules are executed locally to the events that trigger them, it may make sense

to perform synchronous processing, but especially when it comes to separating the event

detection and rule execution in a distributed environment, asynchronous processing

allows faster testing of sophisticated conditions without slowing down the updates.

Scalability is an important factor for consideration when designing software, and

the distributed nature of an application can be accounted for it. Because of the demand

for distributed computing capabilities generated by the Web, an event detection system

seems to be truly scalable if it can be hooked to the Internet and is able to handle

hundreds or even thousands of event notifications and rule executions.

Making the applications work in a distributed fashion can increase the fault-

tolerance of the whole system. When the latter does not perform properly anymore, it is

easier to locate and replace the faulty component by another available one that performs

3

identical tasks, in the case of separated functional modules instead of a single

conglomerated application. So, for example, if a machine breaks down in a production

line, the manufacturer can replace it with another one before the whole production is

affected. When your application is distributed, replacing a component instead of the

whole system is less expensive, and decreases the risk of having a single point of failure.

The performance of the system is also affected by whether it is distributed or

centralized in one application. Processing the entire amount of data in one place should

be done if the processing time is short, otherwise it could be faster to broadcast the data

across multiple machines for distributed computation and gather the results back to the

source. There is obviously a trade-off between the data transport overhead and the speed-

up gained by distributing the computing. The best solution is to run applications on multi-

processor machines, but not everybody can afford to replace their existing hardware. That

is the reason why distributing applications on available machine can increase performance

with scalability. To refer again to the production line, the throughput is improved when

multiple machines in line constitute a pipeline better than a single equivalent machine that

is doing all the work.

In order for the active capability to be useful for a large class of advanced

applications, it is necessary to go beyond what has been proposed/developed in the

context of databases. Specifically, the extensions beyond the current state-of-the-art in

active capability are needed along several dimensions:

1) Make the active capability available in a distributed environment; that is, in

addition to specifying ECA rules within a system, it should be possible to

specify them across applications, and associate them with any of the various

4

available sources of information. That will constitute a framework for

distributed computing by taking advantage of all the resources available on the

network and alleviating the workload on a particular machine. The ECA rules

execution can be brought to another level of distributed computing. In fact,

there can be an advantage of evaluating the rule condition by one application

and executing the corresponding action by another application. Since one of

our concerns is to take advantage all the available distributed resources, it

would be very cost-efficient to reuse legacy implementation to be used for the

rule conditions and actions. Categorizing applications as containers of

available conditions or actions to be made available to the users may be the

right approach for component reusability. For example, a database can be used

to store conditions in the form of structured query language (SQL) statements

that can be used to trigger as many rules as the user wants, and the same

concept can be applied for a library of rules actions.

2) Make the active capability available for non-database applications, in addition

to database applications. The system should support connections to

heterogeneous data sources, including general application programs, any types

of databases, Web engines producing hypertext markup language (HTML)

information and legacy systems.

3) Support specification of events and rules dynamically. The dependencies

between data exchange as well as execution of methods/procedures may need

to be established for the overall operation of the distributed application. For

example, if the availability of a critical component is a problem, that

5

information needs to be sent to the designers to substitute an alternative

available component so that the production line does not idle affecting the

product shipment. If event-based rules can be specified across applications in

a dynamic manner, the above can be specified and handled without having to

change existing systems. The same is true in large enterprises having

heterogeneous systems that need to coordinate and cooperate together for the

overall functioning of the enterprise.

Going to a distributed architecture raises a number of interesting issues, and also

makes the life easier for the user in several ways:

1. Usability has been improved because dynamic specification and rule execution

are well supported. The capability to change a rule specification on the fly is

much more flexible than having to recompile the rule implementation.

2. Application and rule specifications are simplified provided that the conditions

and actions are already implemented. Consequently, managing the rules

becomes easy.

1.1 Related Work

There has been some work in the detection of events in a distributed environment

([SCH96], [JAE97], [LIA97], [SU95], [SU96], [LAM97]). In Schwiderski [SCH96], the

main emphasis is on the detection of events and the problems associated with it due to

clock synchronization and communication (delays in delivery of events) problems. In

Jaeger [JAE97], the emphasis is on processing a global event history that is gathered from

6

individual event histories propagated by participants of a loosely coupled distributed

environment.

1.1.1 Sentinel

In Liao [LIA97], a global event detector (GED) has been developed as a server

essentially to provide support for rules using events (both primitive and composite)

generated in other applications. The global event detector provides asynchronous event

notification to its clients as well as propagates parameters of the events (primitive or

composite) for use in condition and action evaluated in the client application address

space. This functionality is satisfying in a once-for-all-defined environment. Since the

ECA rules are hard-coded in the client programs, they cannot be modified at run-time,

unless they are recompiled.

Another limitation in the Sentinel design is that it does not address the problem of

how heterogeneous sources can be integrated into the system. The field of interest

constituted by data warehousing encourages us to look further at the extensity of our

active system, by including heterogeneous active or non-active systems to be integrated in

a global event detection and rule execution system. For example, a RDBMS like Sybase

can benefit from our system to propagate changes of tables to subscriber applications.

Remote procedure call (RPC) has been used to implement the communication

protocol between the GED server and the client applications. But going to a full-fledged

distributed environment support has several advantages, compared to the mere use of

RPC and sockets:

7

1. Improve and simplify the communication between clients and GED server, by

reducing the overhead inherent in the use of RPC communication style,

especially in the case of passing complex information, like object instances

(for example, event graph and list of event parameters [LIA97]).

2. Make the communication between clients and server more robust. When an

application happens to be disconnected from its server, it should be aware of

the cause (the server is down for example) and reconnect for subsequent

requests in a transparent way if possible.

3. Be able to handle special cases like the possibility of running two client

applications having the same name on the same machine.

We will reuse the module for composite event detection based on an event graph,

which was the cornerstone of the GED server. While the event management system

(subscription and notification) remains the same in essence, the communication protocol

originally using RPC will be adapted for a distributed component-based environment

[LIA97].

The processing model for the ECA rules is also changed in order to accommodate

remote execution of conditions and actions.

1.1.2 TriggerMan

There are other attempts in using active capability in a distributed environment.

TriggerMan [HAN97], for example, accepts and processes rules in a separate address

space (TriggerMan server) that is connected to a number of information sources.

However, TriggerMan does not support composite events. Beside, there is no support for

8

rule execution at the client application side, as opposed to the Sentinel approach, although

it is possible to propagate the events to the event consumer.

1.1.3 Component-Based Softwares

Apart from the above work related to active capability, a number of efforts in the

commercial world have been addressing support for distributed components, notably

Common object request broker architecture (CORBA) and object linking and

embedding/distributed component object model (OLE/DCOM). Given that future

distributed environments are likely to use these two component-based systems, it is

imperative that we address the availability of services, such as composite events and

rules, for these environments and provide support for them in a pragmatic framework.

1.2 Problem Statement

Based on our experience in developing active capability in Sentinel and for

distributed database environments, we believe that the capability can be generalized along

the three dimensions mentioned above, and supported using a component-based

framework.

The general problem is to support event/rule specification dynamically, and their

detection/execution for any number of systems. Our focus is on the specification,

detection, and management of composite events as this aspect has not been addressed in

the literature and we believe is important for a large class of real-life applications. We are

9

also investigating rule processing in a distributed environment, where we also allow a

consumer application to supply events at the same time.

Another issue raised by the distributed environment is the visibility at a global

scope of all the components relevant to the event and rule specifications, including

definition of the available primitive and composite events, the list of the client

applications likely to provide actions and conditions for ECA rules, and the list of user-

defined rules. From a user point of view, a tool for browsing the available events for

example becomes anything but useless as the number of components to be managed

increases.

In the following chapters, we will address how we are planning on addressing the

above extensions using a combination of existing components and new

functionality/services that are derived from our experience in designing and implementing

Sentinel.

10

CHAPTER 2
ALTERNATIVES FOR INFRASTRUCTURE

In this chapter, we are presenting the alternatives for infrastructure. We have

already seen that the traditional use of RPC/sockets has some drawbacks and limitations,

and suffers from complexity in usage and development of servers and applications, when

we presented the work of GED. The advantages/gains of going to a distributed

environment support that handles objects which RPC cannot lead us to explore the

features of newer infrastructures for the development of distributed applications such as

distributed computing environment (DCE), CORBA, and DCOM, relevant to our project,

and to discuss their limitations if any.

Because of the importance of bringing heterogeneous systems together, the choice

for a framework for developing object-oriented, distributed applications will be certainly

determined by the capability of cross-platform support, that is avoiding dependencies on

the peculiarities of any one platform.

Another factor to be considered is cross-language support. While C and C++ are

now used for a significant volume of software development, COBOL is still the most-used

programming language (as the primary language of an estimated 3 million programmers,

compared to 1.6 million using Visual Basic and 1.1 million using C and C++).

Nowadays, a system should provide some kind of connectivity with the World

Wide Web to be considered viable. The importance of the Internet has already been

stressed enough when it comes to use it as a general-purpose user interface. But there is

11

demand for it to be associated with more distributed computing capabilities, and a major

strength of the Web technology is its platform independence.

Scalability and high performance have fostered the need of distributing object

computing. Thus, it is logical to think that such a framework should provide support to

design software scalable across large networks, if not the Internet and its millions of

online users.

Finally, all distributed computing necessarily involves communication. If this takes

place over public computing networks then the authenticity of the data and its integrity

while being transferred may be at risk. That is the reason why the security issue will be

brought up into the discussion.

2.1 CORBA

The Object Management Group (OMG), a consortium of industry companies has

been created in 1989 to share one consistent vision of an architecture for distributed,

component-based object computing. The architecture is described in the Object

Management Architecture Guide, first published in 1990, and has been incrementally

populated with the specifications of the core inter-object communication component

CORBA [OMG97].

Multiple platform support has always been OMG’s highest priority, because it

tries to avoid dependencies on the peculiarities of any one platform. Ironically, they even

support a wider range of Microsoft platforms: CORBA-compliant products are available

on MS-DOS and 16-bit Windows 3.x in addition to the 32-bit Microsoft platforms, almost

12

every Unix, OS/2, OS/400, MacOS, VME, MVS, VMS, and a number of real-time

operating systems.

CORBA’s language-neutral approach was designed to accommodate a lot of

programming languages, including the most used, COBOL. OMG has adopted mappings

for C, C++, Ada, Smalltalk, COBOL and Java, as well as FORTRAN.

Platform independence across heterogeneous systems and the Internet has been

achieved with Java technology based on bytecodes that can be interpreted on every Java

Virtual Machine, which in turn can communicate with the CORBA interface to access

other distributed computing resources not available otherwise. This CORBA access can

be provided via an “ORBlet”, itself written in Java, and downloadable into the browser.

Such ORBlets are already available from many vendors including Sun, IONA, HP,

Oracle, IBM and Visigenic. Furthermore, starting with Netscape Navigator 4.0, Java-

enabled Web browsers will soon be available with CORBA support built-in, thus

removing even the need to download the ORB into the browser.

CORBA was designed from the start with Internet-scale applications in mind. It

supplies applications built on the Object Management Architecture (OMA) with a robust

backbone for interoperability in local- and wide-area network environments. Though it

works as well as within process and machine boundaries, support for interoperability

across network boundaries was the primary design center from the very start. Moreover,

CORBA provides interoperability over the Internet with its IIOP (Internet interoperability

protocol) protocol.

CORBA specification provides services for secure communication with security

safeguards to be usable in the real world of public networks, such as the Internet.

13

OMG has specified a wide range of security service for CORBA-based systems,

which not only provides confidentiality and authentication, but also implements non-

repudiation (making it usable for financial transactions, to ensure that the participants

cannot later deny their commitments).

For the communication over the Internet, it seems that the state-of-the-art security

model resembles more the approach of Java applet execution. This is because all Java

applets run on a virtual machine which insulates them from direct contact with the host

system. This so-called “sandbox” around the applet enforces restrictions that prevent it

from interfering with the host.

Hence the OMG security service specifications address the real-world security

issues necessarily for the use of distributed objects in building systems for electronic

commerce, in addition to the confidentiality needed in other applications such as keeping

medical records.

2.2 DCOM/ActiveX

The Windows-based strategy is from small and simple components to build blocks

that can be assembled into more complex systems. From a single-machine communication

protocol COM (component object model) for component-based software applications,

DCOM was given birth to encompass communication between components on networked

machines as well. Then to join the Internet trend, ActiveX controls were promoted as a

way to support mobile code to compete with Java applets [OMG97].

ActiveX/DCOM implementations are available for Microsoft operating systems

(Windows 95 and Windows NT), MacOS and Unix (by third parties) [CHO96].

14

Microsoft promotes ActiveX controls and DCOM as an alternative to Java mobile

code and CORBA to encompass the Web and provide it with distributing computing

capabilities. The drawback of the ActiveX control approach is the use of native x86 code

and thus is platform-dependent. At present the only browsers understanding ActiveX are

Microsoft’s own Internet Explorer 3.0 and 4.0, which are only available for Microsoft

platforms, but not Unix. There is no word yet how ActiveX will be supported on other

platforms, but Microsoft may simply dictate that all ActiveX controls should be

recompiled, possibly into some sort of “fat binary” format with a separate code segment

for each supported platforms.

DCOM seems not to be designed to be scalable across large-scale networks. As it

uses reference counts of the number of clients to decide the life span of a computing

object, the fault-tolerance of the whole system suffers from errors likely to occur in order

to maintain exact information in a distributed environment. Mistakes can be insidiously

easy to make by the developer, and does not guarantee error-free programs, because

problems can also arise in the network. Then, DCOM has implemented a backup resource

management mechanism, which is unfortunately even less scalable: keep-alive messages

are sent at regular intervals to “ping” objects for their availability.

Communication security raises the issue of data authenticity and integrity. But

DCOM/ActiveX communication style provides two unsafe mechanisms, one is based on

the Remote Procedure Calls of DCOM, and the other is using ActiveX mobile native code

to encompass communication over the Internet.

Although DCOM uses a variant of the DCE RPC mechanism for communication

between remote objects, Microsoft did not use the accompanying DCE security

15

mechanism originally developed at MIT. DCOM seems at this point to have no support at

all for confidentiality or authentication of inter-object communication.

The second DCOM/ActiveX communication is to copy ActiveX controls into a

remote machine to be executed there. The problem is that ActiveX controls are native

x86 code, compiled from C++ without any restrictions on what they may do. A

complementary approach to mobile code is to certify the integrity and authorship of the

code using the public key cryptography. By verifying the public key signature on

downloaded mobile code, a browser can be sure that the code really was written by the

apparent author, and that it hasn’t been tampered with since. However, this verification

does not guarantee that the author has no malign intent, nor that the code does not

contain honest but disruptive coding errors.

2.3 Our Choice

Generally speaking, we have chosen CORBA to be the component-based software

for implementing our project, not because of its functionalities (DCE and DCOM have

similar functionalities), but because of its deployment on a large range of operating

systems, including Unix and Windows. Our motivation is to be able to access and use

heterogeneous components to be integrated into our distributed system of event detection

and rule execution.

Also CORBA and DCE have definitively a maturity of specifications and products

that conform to them, compared to DCOM. There is a fundamental difference between

DCE and CORBA, however, that we feel far overshadows either of these criteria as a

basis for selecting a platform for distributed computing: the approach of DCE uses

16

procedural programming like the C language, while CORBA follows the object-oriented

methodology to interface with the computing components.

In fact, we do not completely discard the use of DCOM as infrastructure for

supporting distributed event-driven applications, because of the popularity and

overwhelming presence of Windows operating systems in the world of PCs. Eventually,

we will consider to port our project in the Windows NT environment, and hopefully an

interface will be specify to make the two systems communicate with each other.

17

CHAPTER 3
ALTERNATIVES FOR ARCHITECTURE AND DESIGN

CORBA has been chosen as the component-based software to implement this

project. The design of our system of event detection and rule execution is based on its

features. Allowing specification of events at run-time is an important feature in our

system of event detection.

Then we will see that the event notification mechanism has been designed to

match the event communication model, by making use of the non-blocking call capability

provided by CORBA specification. The ORB is an important component of the CORBA

framework. We will explain its role for achieving integration of heterogeneous systems.

Our goal is to take advantage of heterogeneous components for our system of

event detection and rule execution. In order to do that, we come up with a flexible design

for the execution of ECA rules. More precisely, we extend the scope of the condition

evaluation and action execution, by allowing them to be specified as operations or

services provided by other components in the network. Finally, we will discuss the

question of how composite events are handled in our system.

3.1 The Nature of Objects in CORBA

Although CORBA objects are just standard software objects implemented in any

supported programming language, including Java, C++ and Smalltalk, each of them has a

18

clearly-defined interface, specified in the CORBA Interface Definition Language (IDL).

The interface definition specifies what member functions are available to a client, without

making any assumptions about the implementation of the object [ION97].

The separation between an object’s interface and its implementation has several

advantages. For example, it allows you to change the programming language in which an

object is implemented without changing clients that access the object. This capability is

used to bring together heterogeneous systems written in different languages.

3.2 The CORBA Services

The CORBA services are sets of objects defined by CORBA that provide useful

services for some distributed applications [ION97]:

§ The Event Service. This service allows objects to communicate using

decoupled, event-based semantics, instead of the basic CORBA function call

semantics.

§ The Naming Service. Before using a CORBA object, a client program

must get an identifier for the object, known as an object reference. This

service allows a client to locate object references based on abstract

programmer-defined object names.

§ The Trader Service. This service allows a client to locate object

references based on the desired properties of an object.

§ The Object Transaction Service. This service allows CORBA

programs to interact using transactional processing models.

19

§ The Security Service. This service allows CORBA programs to interact

using secure communications.

The Naming Service and Trader Service is useful to provide a visibility of the

various components at a global scope. Since a user can specify the rule conditions and

actions dynamically using existing operations implemented by some server applications

on the network, he is certainly interested in having a list of such distributed resources.

In some cases, the rule execution is required to follow a transactional processing

model, which is greatly facilitated by the Object Transaction Service. In other cases, the

security issue becomes predominant. If the communication takes place over public

computing networks then the authenticity of the data and its integrity while being

transferred may be at risk. CORBA specification provides the Security Service for that

purpose.

Finally, the Event Service has been provided to support an event communication

model suitable for event detection and propagation. But we will see the drawbacks of

using it for our project in the following subchapter.

3.3 The Event Service and Its Limitations.

The supplier-consumer communication model allows an object to communicate

an important change in state, such as a disk running out of free space, to any other objects

that might be interested in such an event [VIS97].

The Event Service provides a facility that decouples the communication between

objects. It provides a supplier-consumer communication model that allows multiple

20

supplier objects to send data asynchronously to multiple consumer objects through an

event channel.

Figure 3.1: The supplier/consumer communication model

Figure 3.1 shows three supplier objects communicating through an event channel

with two consumer objects. The flow of data into the event channel is handled by the

supplier objects, while the flow of data out of the event channel is handled by the

consumer objects. If the three suppliers shown in Figure 3.1 each send one message every

second, then each consumer will receive three messages every second and the event

channel will forward a total of six messages per second.

The data communicated between suppliers and consumers are represented by the

Any class, allowing any CORBA type to be passed in a type safe manner. Supplier and

consumer objects communicate through the event channel using standard CORBA

requests.

21

The event service provides both a pull and push communication model for

suppliers and consumers. In the push model, supplier objects control the flow of data by

pushing it to consumers. In the pull model, consumer objects control the flow of data by

pulling data from the supplier.

The event channel behaves like an event queue to regulate the flow of data to be

processed by an application. The size of the buffers containing those events can be

configured before starting the event channel but not at run-time.

The event channels provided by the CORBA Event Service seem to be the most

appropriate mechanism to transmit events between distributed applications. But there are

several reasons why we are not using them.

First, the availability of the Event Service depends on the CORBA vendor. At this

point in time, the Event Service is not available for OrbixWeb. However, it is available

for the C++ version of Orbix. We can also mention that Visigenic provides an Event

Service package.

The event channel consumes too many system resources for what we want to

achieve, that is, multicasting instead of broadcasting. The event channel is a black box

that provides the users with an API allowing them to subscribe for, notify and push/pull

events. Supplier and consumer objects communicate through the event channel using

standard CORBA requests. Consumers and suppliers are completely decoupled from one

another through the use of proxy objects. Instead of directly interacting with each other,

they obtain a proxy object from the event channel and communicate with it. The event

channel facilitates the data transfer between consumer and supplier proxy objects. Figure

3.2 shows how one supplier can distribute data to multiple consumers.

22

In our case, it would be a waste of resources to use event channels. Since there is

only one consumer (the rule server) for several suppliers, there is no need of having proxy

objects that only add delay in the event communication.

Figure 3.2: Consumer and supplier proxy objects

As we can see in Figure 3.3 multiple applications can be consumers of events, but

they may not be interested in the same events. In order to achieve multicast

communication, each consumer can filter the flow of data broadcasted through the event

channel. Indeed, any consumer who subscribes for a particular event channel receives all

the corresponding event notifications. But we do not want to overload the network with

unnecessary data transmission.

23

Figure 3.3: Architecture using event channels

Another alternative would be to associate one event channel with one and only

one event type. It would also simplify the management of subscription/unsubscription to a

particular event for each consumer. The number of event channels will grow with the

number of user-defined events. Since it is a costly resource, the event channel turns out to

be an inappropriate solution for scalability.

Finally, the design of our rule execution will definitively discard the last doubts

about using event channels.

Our design simulates the model of event suppliers/consumers, without actually

dispatching events to the consumer applications. In fact, the consumer application is a

server that implements operations, some of which can be used as part of an ECA rule

ORB

 Producer

 Producer

Consumer

Consumer

.

.

.

.

.

.

Rule

Server

Event notification
Event consumption

Event
Channel

Event
Channel

Event
Channel

24

condition or action. Instead of being specified inside the applications, the ECA rules are

stored in the rule server. The rule server is also responsible for the detection of primitive

and composite events; it receives primitive event notification from suppliers and

integrates an event graph for composite event detection. Events are not propagated to the

applications; they are used in the address space of the rule server to trigger ECA rules,

although the conditions and actions of those rules may be executed remotely.

3.4 Registering Events at Run-Time

The server design must take into account introduction of new event types into the

system without having to be recompiled and restarted. This issue does not apply to the

design of event suppliers, because their implementations are statically linked with the

specification of the events they can raise. In other words, they cannot generate new event

types during their lifetime.

Instead of having a single generic method call, we can implement a different

method for each type of event. That would require recompiling the server whenever a

new event type is introduced into the system. Another alternative for introducing new

event types is the use of a template structure to specify new event types.

3.4.1 Java Reflection

Registering new events requires dynamic linking of event libraries. But there is an

implementation issue about the dynamic linking mechanism provided by Java.

25

Java reflection allows to query information, including attribute value, at run-time

on an instance of a class unknown at compile time, typically casted into an instance of

class Object. It also allows to make method calls on that instance. We will use this Java

facility to manipulate data types (events) introduced into the system at run-time.

Here is an example of Java code that makes a method call contained in a library

loaded at run-time (the dynamic version of the example regarding the extraction from an

instance of type Any):

import java.lang.reflect.*;

// create formal parameters

Class formalParams[] = new Class[1];

formalParams[0] = Class.forName("org.omg.CORBA.Any");

// create method stub

Method extractMethod =

helperClass.getDeclaredMethod("extract", formalParams);

// create instance of helper class

Object helperObject = helperClass.newInstance();

// params declaration

Object methodParams[] = new Object[1];

26

// instanciate parameters

methodParams[0] = eventAny;

// invoke method

Object event = extractMethod.invoke(

eventRegistration.helperObject, methodParams);

// to be casted in the proper type when using the event

This Java mechanism reminds of Dynamic Link Library (DLL), although it has an

important limitation: once the library has been loaded, it cannot be reloaded again,

without restarting the application. In other words, if the library had to be recompiled for

schema evolution reasons, the changes will not be seen by subsequent calls to it within

the application.

3.4.2 Alternative Solution: Event Template

Another alternative for introducing new event types is to agree about an event

template, so that every event specification follows a model for defining the attributes.

This solution may be appropriate if there is no dynamic linking supported by the language

used to implement the system. But when the event structures become complex (large

number of attributes, nested structures, user-defined types), this solution for creating an

event instance is cumbersome to implement, especially if using a hierarchy of linked lists.

In contrast, CORBA IDL can specify a large range of types, including nested structures

and the generated Java classes are automatically used for the data marshalling and

27

communication. Thus, if we make full use of the IDL expressiveness, it would simplify

the implementation, as well as the view that a developer has of the definition of new

event types. In fact, the Java code mapping to complex event structures is almost

identical to the event structure originally specified, so that it would be more

straightforward to insert parameters into and retrieve them in the supplier and server

implementation, than if we had to manipulate linked lists of parameters.

3.5 Event Notification Using Non-Blocking Calls

3.5.1 Event Notification Using CORBA Method Calls

The mechanism of event passing can be implemented by using asynchronous

method calls, as we are trying to avoid the overhead associated with the use of event

channels. The event parameters can be the actual parameters of the request, or they can

be encapsulated in a data type.

3.5.2 Non-Blocking Calls (“oneway”)

CORBA specifies a way to make non-blocking calls, by declaring operations as

oneway in the IDL definition. The delivery semantics for an oneway requests are "best-

effort" only; that is, a caller can invoke an oneway request and continue processing

immediately, but will not be guaranteed that the request will arrive at the server.

An IDL operation may be declared as oneway only if it has no return value, out,

or inout parameters. An oneway operation can only raise an exception if a local error

occurs before an invocation is transmitted.

28

3.6 Communication and Connection Transparency Using CORBA

3.6.1 The Role of an Object Request Broker

CORBA defines a standard architecture for ORBs. An ORB is the software

component that mediates the transfer of messages from a program to an object located on

a remote network host. The role of the ORB is to hide the underlying complexity of

network communications from the programmer.

An ORB allows you to create standard software objects whose member functions

can be invoked by client programs located anywhere in your network. A program that

contains instances of CORBA objects is often known as a server.

When a client invokes a member function on a CORBA object, the ORB

intercepts the function call. As shown in Figure 3.4, the ORB redirects the function call

across the network to the target object. The ORB then collects results from the function

call and returns these to the client.

3.6.2 Interoperability between Object Request Brokers

The components of an ORB make the distribution of programs transparent to

network programmers. To achieve this, the ORB components must communicate with

each other across the network.

Client

Object

 Object Request Broker

Client Host Server Host

29

Figure 3.4: Object request broker

In many networks, several ORB implementations coexist and programs developed

with one ORB implementation must communicate with those developed with another. To

ensure that this happens, CORBA specifies that ORB components must communicate

using the inter-communication protocol IIOP.

The inter-communication between ORBs is the typical way to bring together

heterogeneous environments. Some CORBA applications can only connect to a particular

ORB for various reasons: incompatibility with the ORB because of the programming

language used to implement them, incompatibility when an application developed with

one CORBA product is trying to connect directly with the ORB of another vendor.

Fortunately, the communication between two ORBs from different vendors has

been made possible by CORBA IIOP protocol, now supported by most of the CORBA

implementations. Heterogeneous systems can interact with each other thanks to the

network of ORBs that constitute a gateway system in a distributed environment.

3.6.3 Transparency to Locate CORBA Applications on the Network

A client application connects to a server in a process called binding.

30

The parameter of host name can be indicated in the binding call to look for a

server instance on a specific host. But one of our goals in the composite event detection

and rule service (CEDAR) design is to avoid the client application to be concerned with

the server location on a particular host of the network; if the CEDAR server were located

on a remote network, then it would be necessary to indicate a specific host.

One solution is to provide the application with the host name by some means:

hard-coding this information is not a flexible solution, but an option on the command line

or a configuration file can be acceptable solutions. The best strategy is to mix those

solutions with the use of the locator feature in Orbix as described below.

Most of the products that implement CORBA specification such as Orbix and

Visibroker offer a convenient feature that allows the user to specify the name of the host

where a server is running in a system configuration file, so that this information is not

hard-coded in the client implementation, but instead can be shared by all the components

of our system. In fact, it allows more than that: the user can indicate a list of host names

where the server is likely to be running. Then the ORB will try to locate an instance of

the server on one of them at run-time in a random order.

Visibroker actually goes one step further by using broadcasting within the local

network in order to find a server, so that the user will not need to associate each server

with a list of possible host names.

31

3.7 The Event Queue Model

An event queue is an important component of our architecture to regulate the flow

of events coming to the server. When the events are not processed fast enough, they have

to be temporarily stored in a structure.

In our design, we avoid implementing an event queue because it is already taken

care of by the communication layer. In fact, this crucial component of the event push

model can be mapped to the functioning of an iterative server. In the push model, events

that are not processed yet by the application are stored in a queue. Similarly, when the

flow of client requests arriving at the server is too big to be handled, the communication

layer will store them in a queue. Later on, the server dequeues them one by one and

processes them in order.

3.8 Rule Execution Using DII

Our motivation is to extend the concept of ECA rule, whose condition and action

can be specified to map to existing and possibly remote method implementations provided

by other systems and made visible through an application programming interface (API)

defined in CORBA specification language IDL.

As we stressed it before, reusing the legacy codes is a cost-efficient solution to

achieve the paradigm of distributed computing, provided that integrating those legacy

systems only requires minor changes, which is usually not true. Fortunately, CORBA

philosophy has been working to provide a clear interface specification that can easily map

to the various underlying implementations. Once a program has defined its interface in

32

IDL, it is considered as a CORBA object and behaves like a server that implements a set

of operations available to any CORBA client. Then, those operations can be used to

specify any ECA rule condition or action in our rule server.

Our rule specification system is highly flexible, because it enables the user to

define rule dynamically. In fact, a rule action can be modified on the fly to do something

else; the user just needs to point it to another operation supported by some CORBA

object.

Rules are not exactly executed in the address space of the CEDAR server,

although their executions are initiated there. In fact, the condition evaluation and the

action are performed in the CORBA servers that implement theirs conditions and actions,

as if they are mere service requested by a client.

Our design defines an ECA rule as a data structure that stores the name of the

event triggering the rule, the method calls for the condition and action to be carried out at

runtime using the dynamic invocation interface (DII).

Another advantage for designing the rule execution that way is that we simplify

the rule management by removing the notion of application subscribers. There are no

consumer applications that subscribe for events of interest; instead they are replace by

application containers of conditions and actions. In fact, the ECA rules are the only

entities subscribing for events; the logic of their execution remains in the rule server and

are not propagated to the client applications, which makes it easier to manage and control

the rule execution.

33

3.8.1 The Structure of a Dynamic CORBA Application

One difficulty with normal CORBA programming is that you have to compile the

IDL associated with your objects prior to using the generated Java code in your

applications. This means that your client programs can only call member functions on

objects whose interfaces are known at compile-time. If a client wishes to obtain

information about an object’s IDL interface at runtime, it needs an alternative, dynamic

approach to CORBA programming.

The CORBA Interface Repository is a database that stores information about the

IDL interfaces implemented by objects in your network. A client program can query this

database at runtime to get information about those interfaces. The client can then call

member functions on objects using a component of the ORB called the Dynamic

Invocation Interface (DII), as shown in Figure 3.5, so that the method call can be chosen

at runtime.

3.8.2 DII: Advantages and Drawback

CORBA specifies a powerful mechanism called DII to build requests (method

calls) at run-time. Using DII on the client side does not require changing the

implementation of the server; thus it does not create additional complexity when bringing

together systems that are already implemented.

Client

Object

Client Host Server Host

 DII Client Skeleton
Code

34

Figure 3.5: Invoking on a method using DII

The drawback of the DII is that it performs worse than static method invocation

because of the overhead of building the request step by step at run-time. It put some

complexity to implement a method call, as compared to the static method invocation but

this is the only way to create generic method calls. The same comparisons can be drawn

between dynamic SQL and static SQL.

3.8.3 An Alternative To Dynamic Method Invocation: Feature and Limitation

There is an alternative to dynamic method invocation: compiling the

corresponding static calls at runtime.

In other words, the Java compiler will be used to create a library of calls for the

condition and action whenever a new rule is specified. Compiling Java modules at

runtime requires a mechanism to load them dynamically later on.

This approach can speed up the method invocations, although it introduces the

overhead of compiling source code, which occurs whenever a rule has been defined for

35

the first time or is modified. Besides it is not as meaningful for the system performance as

the number of times a rule is executed.

Compiling code is an attractive solution for another reason. This mechanism is

actually used to create user-defined conditions to be executed in the address space of the

CEDAR server. For example, if a rule condition is simple enough to be evaluated locally

in the rule server instead of being the result of a remote call, it can be compiled into a

library call and reused for other rules. Thus we can have a unified mechanism for loading

the rule libraries no matter if the rule conditions and actions are CORBA remote

invocations or internal calls of methods coming from user libraries. This approach is

attractive because it involves fewer changes to extend the Sentinel previous work.

The major drawback of the compilation approach is that it is difficult to run the

Java compiler from within a Java program. In fact, Java does not allow to make system

calls, like in the C language (system(“javac”)).

The number of files managed by the CEDAR system can become huge with the

number of rules defined by the user because a library module has to be created for each

rule.

In our implementation, rule execution is exclusively based on CORBA method

invocations. But in future work, calls to Java libraries will be allowed, which will greatly

enhance the scope of rule conditions and actions.

3.8.4 Extension of the Rule Execution Scope

Our rule execution model takes advantage of remote operations implemented by

other CORBA servers in order to specify the condition and action of a rule. But in most

36

cases, condition methods are likely to be simple and do not need to be implemented by a

remote server to avoid the overhead of invoking them through the network. This is

illustrated by the example of a CEDAR server receiving stock updates, where one rule

has been defined to execute the action of buying thousands stocks if their price goes up

beyond a certain threshold value. That straightforward condition can be processed in the

same address space of the CEDAR server after being parsed or with a local call to a Java

library. The user is the one to decide if the call should be made locally or remotely.

The execution of the methods used for conditions and actions is not bug-free.

When an error occurs, it can raise an exception that needs to be caught, so that it would

be easier for diagnosis. If the exception is not caught, it will be passed to the calling

function, which may lead to an exit from the program.

3.9 Composite Event Detection

Composite events can be detected on the server side using of an event graph,

which also detects primitive events.

Composite events [LIA97] are detected on the server using an event graph. An

event tree is created for each composite event and these trees are merged to form an

event graph for detecting a set of composite events. This avoids the detection of common

sub-events multiple times thereby reducing storage requirements. The leaf nodes are

made of primitive events, whereas the non-leaf nodes represent global composite events.

Whenever a primitive event is detected, it will propagate the event notification to

its parent nodes. The parent nodes maintain the occurrence of its constituent events along

37

with their parameter lists. If the composite event occurs by the last notification, it is

detected and further propagated to its parent nodes.

38

CHAPTER 4
CEDAR: DESIGN AND IMPLEMENTATION

The CEDAR service is designed to provide primitive and composite event

detection as well as rule processing in a distributed environment. This chapter presents

the detailed design and implementation issues related to each functional module of the

CEDAR system. The CORBA-compliant product we decided to use to implement this

project is OrbixWeb, developed by IONA. This CORBA implementation allows you to

build and integrate distributed applications written in Java. OrbixWeb is a full

implementation of the OMG’s CORBA specification, and support features like DII and

Interface Repository. We will first see a description of the CORBA-compliant

components specific to the OrbixWeb product. Then we will see how the CEDAR system

has been implemented to provide flexibility to the users, by allowing the introduction of

new event types into the system at runtime. Finally, the system of composite event

detection has been carried out by re-using a component of the Sentinel local event

detector (LED), the event graph. It was translated in Java to the case of Sentinel

applications written in this language instead of C++.

4.1 The Structure of a CORBA Application

The first step in developing a CORBA application is to define the interfaces to

objects in your system, using CORBA IDL.

39

An IDL compiler generates files (in Java, for example), including client stub code,

which allows you to develop client programs, and server skeleton code, which allows you

to implement CORBA objects. As shown in Figure 4.1, when a client calls a member

function on a CORBA object, the call is transferred through the client code to the ORB.

The ORB then passes the function call through the server skeleton code to the target

object.

Figure 4.1: Invoking on a CORBA object

OrbixWeb is an ORB that fully implements the CORBA 2.0 specification. By

default. All OrbixWeb components and applications communicate using the CORBA

standard IIOP protocol.

The component of OrbixWeb are as follows:

Client

Object

 Object Request Broker

Function
Call

Client Host Server Host

 Client Stub
Code

Client Skeleton
Code

40

§ The IDL compiler parses IDL definitions and produces Java code that

allows you to develop client and server programs.

§ The OrbixWeb runtime is called by every OrbixWeb program and

implements several components of the ORB, including the DII, the DSI, and

the core ORB functionality.

§ The OrbixWeb daemon is a process that runs on each server host and

implements several ORB components, including the Implementation

Repository. An all-Java counterpart to the daemon process is also included.

This daemon process is also known as the Java Activator, also referred to as

orbixdj.

§ The OrbixWeb Interface Repository server is a process that

implements the Interface Repository.

4.2 Registering Events

The CEDAR system is designed to provide flexibility to the users, by allowing the

introduction of new event types into the system at runtime.

4.2.1 Syntax of Event Definition

The CORBA IDL is used to define interfaces to objects in the network. We also

use the same mechanism it to specify event definition using the struct data type, which

allows you to package a set of named members of various types. New event types are

introduced to the system by compiling their IDL description so that the corresponding

41

stubs can be generated in order to manipulate event instances in the implementation of

the server and suppliers:

struct Stock {

 string symbol;

 float price; };

Figure 4.2: Example of event specification: Stock.idl

Once the Stock.idl file is compiled by an IDL compiler, the developer can

manipulate an event instance in the implementation. Here is a Java example that explains

how to load event libraries and how to use them to manipulate event instances:

import Stock; // event Stock

Stock stock = new Stock();

stock.symbol = “IBM”; stock.price = (float) 133.5;

Figure 4.3: Creation of an instance of type Stock

4.2.2 Dynamic Subscription Using Java Reflection

Client or server applications that use event structures in their implementation

should be compiled using the corresponding stub libraries. This is typically done at

compile time of the application, which means that after the application has started, it

42

cannot accept subsequent event types. For example, the keyword import is used in Java

to load required libraries when the application is started:

import Stock; // load the library class Stock

Figure 4.4: Example of static linking of library in Java

In order to go beyond the limitation of predefined event types, another mechanism

has to be used to load event libraries at run-time. It is based on the Java feature of

reflection. The following code example does the same thing as previously except that

loads a library at run-time using Java reflection [AGA98]:

import java.lang.reflect.*;

Class helperClass = Class.forName(“Stock”);

Figure 4.5: Dynamic linking of library using Java reflection

4.3 Sending Event Notifications

In order to pass the event notification from the supplier application to the CEDAR

server, we have chosen a simple generic CORBA method call at the interface of the

server instead of using other mechanisms like the event channel or the generation of a

particular method call for each event type.

43

The mechanism we choose to transmit any type of event, or more precisely type

unknown at compile time, is based on a generic non-blocking method call raiseEvent(),

which makes use of the type Any to pass safely the event instance as well as its

parameters. Manipulation of the type Any will require access to the event libraries.

// raiseEvent():

 oneway void raiseEvent(in any event);

Figure 4.6: Non-blocking call for raising events (IDL specification)

The generic method call raiseEvent() takes the event instance as a parameter

through the use of the type Any. Because the event type specifications differ from each

other, we need to use a mechanism similar to void * like in C in order to pass parameters

of type undetermined at compiled-time. Using the CORBA type Any is the safe way to

pass different types of parameters as specified by CORBA specification. Technically

speaking, the event instance is embedded into an instance of type Any through the value

field, and the type information is encoded into the type field. In our case, the type is a

Java class mapping to the event structure. In fact, the value field cannot be manipulated

directly, but instead the event instance is inserted and extracted from the holder type Any

using the methods insert() and extract() from the libraries generated by the IDL

specification of the event types. Those libraries are constituted by adding the suffix

Helper like in the following example:

44

import Stock;

import org.omg.CORBA.Any;

Stock stock = {“IBM”, 103.45};

Any event = new Any(); // or using ORB.init().create_any()

StockHelper.insert(event, stock);

RaiseEvent(event); // notify server

Figure 4.7: Encapsulate event into an Any instance before notification

Without those libraries, it is not possible to extract from an instance of the type

Any. That is the reason why we need a DLL-like mechanism to load those libraries at run-

time, especially when specifications of new event types are compiled and enter the

system after it has been started.

4.4 Connecting to the CEDAR Server

4.4.1 Configuration Files (Orbix.hosts and Orbix.hostgroups)

Locating CORBA objects in the network is made transparent: it is not necessary

to explicitly specify the host name during the binding, except for locating an object on a

particular machine. OrbixWeb provides the locator feature for this purpose. Specification

of hosts for a particular application is done in a configuration file.

Using Orbix, here is how the configuration file Orbix.hosts can look like:

PED:lightning,manatee,coconut:

The format of each line is:

45

<server_name>:<list_of_hosts>:<host_group>

At this point in time, the OrbixWeb users may be unhappy because this

configuration file feature is not available with the pure Java version of OrbixWeb. In

other words, the version of ORB daemon that must be running in the background of every

machine must be orbixd and not orbixdj. This is not a crucial limitation unless you want

to integrate the CEDAR system with the World Wide Web by making the ORB (besides

the application) an applet that can be downloaded by any JAVA-enabled browser.

Filling out the configuration file can be tedious when the same list of host names

corresponds to several servers. That is the reason why another configuration file

Orbix.hostgroups is provided in order to avoid repeating the same list of host names, as

shown in the following example:

allNodes:host1,host2,host3,host4,host5,host6

and in the Orbix.hosts file, the format of each line is: <group_name>:<list_of_hosts>

4.4.2 Procedure Steps to Connect

All the steps to connect to the CEDAR server have been embedded in a single

procedure Connections.connect2PED(). They are the same as indicated in the CORBA

specification and the OrbixWeb manual.

First step to accomplish is to connect to a CORBA server, and in order to do that

you need to make a binding call on a static class derived from the IDL specification of the

server.

The procedure of connecting to the CEDAR server has been made easy to follow

by embedding all the necessary method calls of CORBA API within a single method call.

46

The implementation details follow the typical steps of connecting to any CORBA servers,

although they include the use of the locator feature, so that the binding call to the

CEDAR server is made without providing host names.

4.5 Composite Event Detection

After presenting the API for the use of the event graph implemented in Java, we

will explain how we integrate it with the CEDAR system.

4.5.1 API of LED Written in Java

We have translated the event graph module of the Sentinel project originally

written in C++ in Java.

1. Initialize LED library:

globalLED.initializeLED();

LED aLED = globalLED.aLED;

2. Specify events to be detected: build the event graph with primitive/composite nodes:

EventNode node1 = aLED.createPrimitive("e1");

EventNode node2 = aLED.createPrimitive("e2");

aLED.createAnd("e3", node1, node2);

3. Create rule instances and associate (subscribe) them to events:

RehashingRule aRehashingRule = new RehashingRule();

47

Figure 4.8: Creation of detection nodes for primitive events

aLED.addSubscriber("e3", aRehashingRule);

Figure 4.9: Creation of detection node for composite events

p1 p2 p3

c1

c2

Event Graph

p1 p2 p3

c1

c2

Event Graph

An

48

Figure 4.10: Event subscription by a list of rules

4. Raise events:

PrimitiveEventNotif.notify("e1");

PrimitiveEventNotif.notify("e2");

Figure 4.11: Raising primitive events

p1 p2 p3

c1

c2

R1 R2 ..
Rules list associated with event p2

Event Graph

p1 p2

c1

c2

List of rules associated with event p2

Event Graph

Notification

Rule execution

Event propagation

R1 R2 ..

49

To create a rule, one needs to implement the interface RuleObject with respect to

the condition and action of the rule.

4.5.2 Integration of the Event Graph With the CEDAR Implementation

The Java version of LED based on an event graph is can detect primitive events

and some types of composite events. When implementing the detection of composite

events within CEDAR framework, we retain the concept of event graph and rule

subscription borrowed from LED.

Currently, CEDAR implements a straightforward system of primitive event

detection and rule firing. The main data structure is the rule manager built on a hash table

whose keys are the names of the primitive events registered through an API, while each

of its buckets contains a linked list of rules to be triggered when the corresponding event

has been raised.

The system of composite event detection is achieved by using the LED event

graph and to create a particular rule between the event graph and the CEDAR primitive

event detection. On one hand, we make the set of hash table keys include the names of

composite events; each key can be either a primitive or a composite event because they

are handled in the same way; the list of rules associated with a composite event works not

differently from the case of primitive events. On the other hand, the detection of

composite events is done using the event graph where all the rules subscribed to

composite event nodes are the same particular rule called 'RehashingRule' whose

function is to "raise" or hash the composite event in the rule manager hash table.

50

The event graph has to be placed efficiently within the whole detection process.

Its input can be connected to the output of the hash table, which means that each

primitive event linked list of rules contains a particular rule that will call "notify" routine

to propagate the event notification through the event graph. We can avoid this additional

overhead by calling directly the "notify" routine within the CORBA call raiseEvent()

instead of going through the hash table. But in any case, the composite event detecting

process is sequential with the primitive event counterpart; it can be decided prior to or

following the primitive event detection. In fact, from a conceptual point of view, it would

be better to have both of them run concurrently. This can be implemented using threads.

51

CHAPTER 5
CONCLUSION AND FUTURE WORK

5.1 Conclusion

This dissertation presents an approach to provide the best architecture and

framework to support ECA rules to be extended and integrated with distributed and

heterogeneous systems.

CORBA has been chosen to be the component-based software for the

implementation for our prototype against DCOM and the event service. Dynamic

specification of events and rules has been one of our principal motivations as well as the

expressiveness of composite events.

The Composite Event Detection And Rule Execution (CEDAR) service has been

designed to provide primitive and composite event detection as well as rule processing in

a distributed environment.

The CEDAR system succeeds to provide flexibility to the users, by allowing the

introduction of new event types into the system at runtime.

Our design of ECA rules makes it easier to achieve distributed computing and

integration of heterogeneous systems. Rule conditions and actions can be method calls on

other CORBA objects and can be specified at run-time.

52

By integrating an event graph in our system, we address the aspects of

specification, detection, and management of composite events, because we believe it is

important for a large class of real-life applications.

5.2 Future Work

We plan on extending the current implementation with the following additional

functionalities:

§ Support active database semantics for the meaning of event notification:

update, insert and delete on objects.

§ Add a graphical user interface on top on the already existing API. Then it will

be easier to register for new events and to specify rules at run-time.

§ Extend rule execution besides the use of DII, by permitting calls to Java user-

libraries.

§ Enable an application to be a condition/action container and an event supplier

at the same time. This may require the use of callbacks.

§ Increase the expressiveness of the rule condition specification, by covering a

large range of logical operators and allowing new data type to be registered

into the system, much like in ORDBMS.

§ Use threads for rule execution to increase the performance of the CEDAR

server when running on a multi-processor machine.

§ Implement a recovery system in case of server failure, which will require to

persist events.

53

§ The current implementation supports immediate coupling mode. We plan on

extending this with detached and deferred coupling.

Obviously not all library methods can be used to implement conditions: only those

methods returning a value that can be used in a comparison predicate. If the method

returns a boolean value, it is not necessary to explicitly compare it with true or false; only

the signature of the method call is parsed, because the entire condition is implemented as

a single method returning a boolean value. However, it would be interesting to extend the

condition syntax by supporting predicates for any primitive type like string, integer, etc.

provided that the parser has been extended to accept the additional comparison operators.

Then it would be possible to take any operation that returns a value and make it part of a

condition predicate like in the following:

If (Database.getName(id) == “Bob”) then execute action…,

where Database is a CORBA object that maintains a database of correspondence

of names with Ids.

Supporting predicates makes it more flexible to define the condition. If the user

desires to change the value of a constant on the right side of an operator, he will not need

to make any changes in the implementation of the condition. Furthermore, predicates

increase the expressiveness as well as the readability of the condition definition. It would

even be possible to make two remote calls within the same condition and compare their

results:

If (getName1(id) == getName2(id)) then execute action…

54

The syntax of the predicates can be extended if the parser can recognize new

abstract data types by registering them as well as their operators to the CEDAR server,

which is similar with Object Relational DBMS to some extent.

55

LIST OF REFERENCES

[AGA98] Agarwal S., Event Management in an Active Object Request Broker.
Master’s thesis, University of Florida, Gainesville, May 1998.

[ANW93] Anwar E., Maugis L., and Chakravarthy S., A New Perspective on Rule

Support for Object-Oriented Databases. In Proceedings, International
Conference on Management of Data, pages 99—108, Washington, D.C.,
May 1993.

[BAD93] Badani R., Nested Transactions for Concurrent Execution of Rules: Design

and Implementation. Master’s thesis, University of Florida, Gainesville,
December 1993.

[CHA89] Chakravarthy S., HiPAC: A Research Project in Active, Time-Constrained

Database Management (Final Report). Technical Report XAIT-89-02,
Xerox Advanced Information Technology, Cambridge, MA, August 1989.

[CHA94a] Chakravarty S., Krishnaprasad V., Anwar E., and Kim S.-K., Composite

Events for Active Databases: Semantics Contexts and Detection. In
Proceedings, 20th International Conference on Very Large Data Bases,
pages 606—617, Santiago, Chile, August 1994.

[CHA94b] Chakravarthy S. and Mishra D., Snoop: An Expressive Event Specification

Language for Active Databases. Data and Knowledge Science, 13(3),
October 1994.

[CHA95] Chakravarthy S., Tamizuddin Z., and Zhou J., SIEVE: An Interactive

Visualization and Explanation Tool for active Databases. In Proceedings,
2nd International Workshop on Rules in Database Systems (RIDS'95),
pages 179—191, Athens, Greece, October 1995.

[CHO96] Choppell D., Understanding ActiveX and OLE, A guide for developers &

managers. Microsoft Press, Seattle, WA, 1996.

[HAN97] Hanson E. and Khosla S., An Introduction to the TriggerMan

Asynchronous Trigger Processor. In Proceedings, 3rd International
Workshop on Rules in Database Systems (RIDS’97), pages 51—66,
Skovde, Sweden, June 1997.

56

[ION97] IONA, The OrbixWeb 3.0 Programmer's Guide.
http://www.iona.com/products/internet/orbixweb/fordevelopers.html, July
1997.

[JAE97] Jaeger U., Event Detection in Active Databases. Humboldt University of

Berlin, Berlin, Germany, May 1997.

[LAM97] Lam H. and Su S. Y. W., ECAA Rules and Rule Services in CORBA.

White paper published in the Object Management Group (OMG) web site,
document number cf/97-01-09, http://www.omg.org, January 1997.

[LIA97] Liao H., Global Events in Sentinel: Design and Implementation of a Global

Event Detector. Master’s thesis, University of Florida, Gainesville,
December 1997.

[OMG97] OMG, Comparing ActiveX and CORBA/IIOP.

http://www.omg.org/news/activex.htm, February 1997.

[SCH96] Schwiderski S., Monitoring the Behavior of Distributed Systems. Ph.D

thesis, University of Cambridge, London, 1996.

[SU95] Su S. Y. W., Lam H., An Extensible Knowledge Base Management System

for Supporting Rule-based Interoperability among Heterogeneous Systems.
Keynote Paper, Conference on Information and Knowledge Management,
pages 1—10, Baltimore, MD, December 1995.

[SU96] Su S. Y. W., Lam H., NCL: A Common Language for Achieving Rule-

Based Interoperability among Heterogeneous Systems. Journal of
Intelligent Information Systems, Special Issue on Intelligent Integration of
Information, Vol. 6, pages 171—198, 1996.

[VIS97] Visigenic, VisiBroker Naming and Event Services 3.0, Programmer's

Guide, http://www.inprise.com/techpubs/visibroker/#NELink, July 1997.

57

BIOGRAPHICAL SKETCH

 Roger Le was born on July 24, 1972, at Bourg-la-Reine, France. He received his

Bachelor of Science degree in computer science from l’Ecole Nationale de l’Aviation

Civile (ENAC), Toulouse, France, in July 1996. In the Spring of ’97, he started his

graduate studies in computer and information science and engineering at the

University of Florida. He expects to receive his Master of Science degree in computer

and information science and engineering from the University of Florida, Gainesville,

Florida, in August 1998. His research interests include integrating applications with

component-based object architectures, active and object-oriented databases.

I certify that I have read this study and that in my opinion it conforms to
acceptable standards of scholarly presentation and is fully adequate, in scope and quality,
as a thesis for the degree of Master of Science.

Sharma Chakravarthy, Chairman
Associate Professor of Computer and
 Information Science and Engineering

I certify that I have read this study and that in my opinion it conforms to

acceptable standards of scholarly presentation and is fully adequate, in scope and quality,
as a thesis for the degree of Master of Science.

Eric N. Hanson
Associate Professor of Computer and
 Information Science and Engineering

I certify that I have read this study and that in my opinion it conforms to

acceptable standards of scholarly presentation and is fully adequate, in scope and quality,
as a thesis for the degree of Master of Science.

Joachim Hammer
Assistant Professor of Computer and

Information Science and Engineering

This thesis was submitted to the Graduate Faculty of the College of Engineering

and to the Graduate School and was accepted as partial fulfillment of the requirements for
the degree of Master of Science.

December 1998 __________________________________

Winfred M. Phillips
Dean, College of Engineering

M. J. Ohanian
Dean, Graduate School

