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ABSTRACT 

PERFORMANCE EVALUATION AND ANALYSIS OF 

SQL BASED APPROACHES FOR  

ASSOCIATION RULE MINING  

Publication No.____ 

Pratyush Mishra, M.S. 

The University of Texas at Arlington, 2002 

Supervising Professor: Sharma Chakravarthy 

Data mining aims at discovering important and previously unknown patterns from the 

datasets. Database mining performs mining directly on data stored in Data Base Management 

Systems. Several SQL based approaches for mining have been studied in the literature.  

The main focus in this thesis is on the performance evaluation of these approaches. 

We study several additional optimizations for the K-way join approach and SQL-OR based 

approaches and evaluate them using IBM DB2/UDB and Oracle RDBMSs. We 

experimentally evaluate these approaches and their optimizations and compare their 

performance on large data sets. We also present analytical evaluation for the K-way join 

approach and its optimizations. Finally, we summarize the results and indicate the conditions 

for which the individual optimizations are useful. The larger goal of this work is to feed these 

results into a mining optimizer that chooses the specific strategy for mining the input dataset 

based on its characteristics. 



 

 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS  .................................................................................................  iv 

ABSTRACT  ........................................................................................................................   v 

LIST OF FIGURES  ..............................................................................................................  ix 

LIST OF TABLES  ..............................................................................................................   xi 

Chapter 

1.  INTRODUCTION  ..........................................................................................................     1 

1.1.  Background  .....................................................................................................     4 

1.2.  Focus of This Thesis  .......................................................................................     6 

2.  ASSOCIATION RULE MINING  ...…………..……………………………………...…   9 

2.1.  Apriori Algorithm  ...........................................................................................   10 

2.2.  Candidate Generation  ......................................................................................   10 

2.3.  Support Counting  ............................................................................................   12 

2.3.1.  Support Counting Using Simple SQL (SQL-92 Standard)  ..............   12 

2.3.1.1.  K-way Join (Kwj)  ..............................................................   12 

2.3.1.2.  2-Group By (Tgb)  ..............................................................   13 

2.3.1.3.  Query Sub Query (Qsq)  .....................................................   15 

2.3.2.  Frequent Itemset Generation Using Stored Procedures and 
  User Defined Functions  .................................................................   17 

2.3.2.1.  VerticalTid (Vtid)  ..............................................................   18 

2.3.2.2.  Gather Join (Gjn)  ...............................................................   19 

2.3.2.3.  Gather Count (Gcnt)  ..........................................................   21 

3.  SQL-92 BASED APPROACHES  ..................................................................................   23 

3.1.  Support Counting Revisited  ............................................................................   23



 

3.2.  Analysis of K-way Join Approach and its Optimizations  ...............................   24 

3.2.1.  Notations Used for Cost Analysis  ....................................................   25 

3.2.2.  Methodology for Experimental Evaluation  ......................................   26 

3.2.3.  Cost Analysis of the Basic K-way Join Approach (Kwj)  .................   27 

3.2.4.  Pruning the Input Table (Pi)  .............................................................   30 

3.2.5.  Second Pass Optimization (Spo)  ......................................................   33 

3.2.6.  Reuse of Item Combinations (Ric)  ...................................................   35 

3.3.  Combinations of Basic Optimizations  ............................................................   37 

3.3.1.  Second Pass Optimization on Pruned Input (SpoPi)  ........................   38 

3.3.2.  Reuse of Item Combinations on Pruned Input (RicPi)  .....................   39 

3.3.3.  Reuse of Item Combinations and Second Pass  
  Optimization (RicSpo)  ..................................................................   40 

3.3.4.  Combination of all Optimizations (All)  .......................................................   42 

3.4.  Conclusion  .......................................................................................................   44 

4.  SQL-OR BASED APPROACHES  ................................................................................   45 

4.1.  VerticalTid Approach (Vtid)  ...........................................................................   45 

4.2.  Gather Join Approach (Gjn)  ............................................................................   49 

4.3.  Gather Count Approach (Gcnt)  .......................................................................   51 

4.4.  Analysis and Optimizations to the SQL-OR Based Approaches  ....................   53 

 4.4.1.  Improved VerticalTid Approach (IM_Vtid)  .....................................   55 

4.4.2.  Improved Gather Join Approach (IM_Gjn)  ......................................   58 

4.4.3.  Improved Gather Count Approach (IM_Gcnt)  .................................   61 

4.5.  Conclusion ........................................................................................................   62 

5.  OTHER CONTRIBUTIONS  ..........................................................................................   65 

5.1.  Subsets Generation  ..........................................................................................   65



 

5.2.  Configuration File  ...........................................................................................   67 

5.3.  Writing Log File  ..............................................................................................   69 

6.  CONCLUSION AND FUTURE WORK  .......................................................................   74 

6.1.  Conclusion and Future Work  ..........................................................................   77 

Appendix   

7.  WRITING STORED PROCEDURES FOR ORACLE  .................................................   80 

7.1.  Writing Java Stored Procedures for Oracle  .....................................................   81 

7.2.  Inserting CLOBS in an Oracle Table or Updating Inside a Result Set  ...........   83 

7.3.  Code for Different Stored Procedures  .............................................................   85 

7.3.1.  CountAndK Stored Procedure  ..........................................................   85 

7.3.2.  CombinationK Stored Procedure ......................................................   86 

8.  WRITING USER DEFINED FUNCTIONS FOR IBM DB2/UDB  ...............................   88 

8.1.  Writing Column UDFs  ....................................................................................   89 

8.2.  Writing Table UDFs  ........................................................................................   89 

REFERENCES  ....................................................................................................................   93 

BIOGRAPHICAL INFORMATION  ...................................................................................   95 
 
 
 
 
 
 



 

LIST OF FIGURES 

Figure                     Page 

1.1.   Architectural Alternatives ...........................................................................................     3  

1.2.   Proposed Architecture  ...............................................................................................     7 

2.1.   Candidate Generations For Any K  .............................................................................   11 

2.2.   Support Counting By K-way Join Approach  ..............................................................   13 

2.3.   Tree Diagram For Sub-Query Qi  ................................................................................   15 

2.4.   Sql-92 Based Approaches (Oracle)  ............................................................................   16 

2.5.   Sql-92 Based Approaches (DB2)  ...............................................................................   16 

2.6.   Kwj and Qsq on T5I2D100K (DB2)  ..........................................................................   17 

3.1.   K-way Join on T5I2D1000K (DB2)  ……...…………………..…………………......   28 

3.2.   K-way Join on T5I2D1000K (Oracle)  ........................................................................   28 

3.3.   K-way Join on T10I4D100K (DB2)  ...........................................................................   28 

3.4.   K-way Join on T10I4D100K (Oracle)  ........................................................................   28 

3.5.   Reduction in Table Size Due to Pruning  ....................................................................   31 

3.6.   K-way Join and Pruned Input  .....................................................................................   31 

3.7.   Pass Wise for K-way Join  ..........................................................................................   32 

3.8.   Pass Wise for Pruned Input  ........................................................................................   32 

3.9.   Kwj and Spo  ...............................................................................................................   34 

3.10.   Ck and Fk for Kwj and Spo  ......................................................................................   34 

3.11.  Reuse of Item Combination (Oracle)  ........................................................................   37 

3.12.  Reuse of Item Combination (DB2)  ...........................................................................   37 

3.13.  Spo on Pi  ...................................................................................................................   38



 

3.14.  Ric on Pi  ....................................................................................................................   40 

3.15.  Ric and Spo (Oracle)  .................................................................................................   42 

3.16.  Ric and Spo (DB2)  ....................................................................................................   42 

3.17.  All Optimizations Combined (DB2)  .........................................................................   44 

3.18.  All Optimizations Combined (Oracle)  ......................................................................   44 

4.1.   VerticalTid on T5I2D100K (DB2)  .............................................................................   47 

4.2.  VerticalTid on T5I2D100K (Oracle)  ..........................................................................   47 

4.3.   VerticalTid scale up (DB2)  ........................................................................................   48 

4.4.   VerticalTid scale up (Oracle)  .....................................................................................   48 

4.5.   Gather Join on T5I2D100K (Oracle)  ..........................................................................   51 

4.6.   Gather Join on T5I2D100K (DB2)  .............................................................................   51 

4.7.   Naïve SQL-OR Based Approaches (Oracle)  ..............................................................   53 

4.8.   Ck and Fk for Gjn (DB2)  ...........................................................................................   55 

4.9.  Percentage Gain of Im_Vtid over Vtid  ........................................................................   57 

4.10.  IM_Vtid on T5I2D1000K  .........................................................................................   57 

4.11.  Gjn & IM_Gjn on T5I2D100K (Oracle)  ...................................................................   59 

4.12.  Size of Ck (Gjn & IM_Gjn)  ......................................................................................   59 

4.13.  Performance Gain for IM_Gjn  ..................................................................................   59 

4.14.  Gjn and Gcnt for T5I2D1000K (Oracle)  ...................................................................   62 

4.15.  Performance Gain for IM_Gjn  ..................................................................................   62 

4.16.  Vtid, Gjn and Gcnt on T5I2D100K (Oracle)  .............................................................   63 

4.17.  Best Optimizations on T5I2D1000K (Oracle)  ..........................................................   64



 xi

LIST OF TABLES 

Table                                            Page 

3.1.   Notations used for cost analysis of different approaches  ...........................................   25 

3.2.   Number of Candidate Itemsets in different passes  .....................................................   29 

3.3.   Number of records in Combk in 1000's  .....................................................................   42 

4.1.   Input Table  .................................................................................................................   46 

4.2.   TidListTable ................................................................................................................   46 

4.3.   Counting support using CountAndK Procedure  .........................................................   47 

4.4.   ItemListTable  .............................................................................................................   49 

4.5.   Input Table  .................................................................................................................   50 

4.6.   C2 Table  .....................................................................................................................   50 

4.7.   C3 Table  .....................................................................................................................   50 

4.8.   2-D Array for Support Counting  ................................................................................   52 

4.9.   Relation F2  .................................................................................................................   52 

4.10.  Number of Candidate Itemsets  ..................................................................................   55 

4.11.  Counting Support Using CountAnd3 Procedure  .......................................................   56 

5.1. Frequent Table .............................................................................................................   66 

5.2. Rule Generation  ..........................................................................................................   66 

6.1.  Trends in Oracle  ..........................................................................................................   75 

6.2.   Trends in IBM DB2/UDB  ..........................................................................................   75 

6.3.   Meta –data Table for SQL-92 Based Approaches  ......................................................   76 

6.4.   Meta–data Table for SQL-OR Based Approaches  .....................................................   77



 

 

CHAPTER 1  

INTRODUCTION 

The rapid improvement in the size of the storage technology with associated drop in 

the storage cost, and increase in the computing power has made it feasible for organizations 

to store unprecedented amounts of organizational data and process it. These organizations, 

though having a gold mine of data, have not yet been able to fully capitalize on its value. 

Typically, the data captures the business trends over a period of time. However, the nuggets 

of useful knowledge hidden are not so easy to discern. To compete effectively in today’s 

market, decision makers need to identify and utilize this information buried in the collected 

data and take advantage of the high return opportunities in a timely fashion.  

Given a database of sufficient size and quality, data mining technology can generate 

new business opportunities by providing a better insight to the business, based on the 

collected information. The key here is the generation of previously unknown knowledge 

from huge datasets. The process of mining is driven by the outcome requirements. Based on 

what we want, a specific data mining technique is employed. The different data mining 

techniques and their outcomes are briefly discussed below [1]: 

Classification: This is a process of grouping items based on a classifying attribute. A 

model is then built based on the values of other attributes to classify each item to a particular 

class. A training dataset is typically used for validating and tuning the model. The 

classification technique may be used, for example, to identify the most probable consumers 

for a product, based on their spending patterns.  

Clustering: The process of clustering tries to group the data set in such a way that the 

data points in one cluster are more similar to one another while the data points in different 
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clusters are more dissimilar. A similarity measure needs to be defined and the quality of the 

outcome, to a large extent, depends on the appropriateness of the similarity measure for the 

data set or the domain of application. The technique of clustering, for example, can be used 

to divide the market into distinct groups, so that each group can be targeted with a different 

strategy. 

The basic difference between classification and clustering is that in classification, the 

classifying class is known previously (also known as supervised), while clustering does not 

assume any knowledge of clusters (unsupervised).  

Prediction: The technique of prediction is based on some continuous valued 

attributes. Previous history of the attributes is used to build the model. This technique is very 

commonly used for the prediction of sales of a product. 

Deviation analysis: This technique compares current data with previously defined 

normal values to detect anomalies. Deviation analysis tools may be useful in security 

systems, where it may warn the authorities if there is any sharp deviation in the usage of 

resources by a particular user.  

Association Rules: It is the process of identifying the dependency of one item(s) with 

respect to the occurrence of other item(s). These models are often referred to as 

Market/Basket Analysis when they are applied to retail industries to study the buying 

patterns of their customers. Here an attempt is made to identify a product “A” with another 

product “B” to an extent that it can be said that whenever “A” is bought, “B” is also bought 

with high confidence (the number of times B occurs when A occurs). 

The work in the field of data mining has resulted in a wide range of architectural 

alternatives for integrating mining process with the DBMS. These alternatives are depicted in 

Figure 1.1[2] and are described below. 
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Figure 1.1 Architectural Alternatives 

 

Loose Coupling or Cache based Mining: It’s an example of the client/server 

architecture. The mining kernel can be considered as the application server. Here the data is 

first fetched from the database and fed to the mining-kernel, which mines and pushes the 

results back to the database. 

Stored procedures and user defined functions: Here, mining logic is embedded as an 

application on the database server. The applications are executed in the same address space 

as the DBMS. The flexibility in programming the stored procedure out-weighs their 

development cost. 

SQL based approach: Here, for mining, queries are written in SQL. A mining-aware 

optimizer may be used to optimize these complex, long running queries based on the mining 

semantics.  

Integrated Approach: This is the tightest form of integration that has no boundary 

between querying, OLAP, or mining. Mining operators or SQL extended for mining is 

optimized by the underlying system without any hints from the user.  The long-term goal is 

to extend the current query optimizers to cover OLAP and mining along with SQL queries.  
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The scope of this thesis lies within the realm of association rule mining over 

relational database management systems. Here two architectural alternatives of data mining 

have been explored and compared. These are – approaches using stored procedures and user 

defined functions (SQL-OR) and approaches based on pure SQL (SQL-92 standard). A more 

detailed explanation of these alternatives is given in later chapters.  

1.1 Background 

The work on association rule mining started with the development of the AIS 

algorithm [3], and was further modified and extended in [4]. Since then, there have been 

several attempts in improving the performance of these algorithms. The partition algorithm 

[5] improves the overall performance by reducing the number of passes needed over the 

complete database to at most two. The turbo-charging algorithm [6] incorporates the concept 

of data compression to boost the performance of the mining algorithm. The FP-Tree 

algorithm [7] builds a special tree structure in main memory to avoid multiple passes over 

database. However, most of these algorithms are applicable to data stored in flat files. The 

basic characteristics of these algorithms are that they are main memory algorithms, where the 

data is either read directly from flat files or is first extracted from the DBMS and then 

processed in main memory. These algorithms implement their own buffer management 

strategies. The performance of these algorithms is due to their capability of building 

specialized data-structures, which is better suited to that algorithm. There have been very few 

attempts, until now, to build database-based mining approaches. In this approach we assume 

that the data is already stored in tables in a underlying DBMS and we use the SQL provided 

by the RDBMS for mining to produce interesting rules. SETM [8], showed how the data 

stored in RDBMS can be mined using SQL and the corresponding performance gain 

achieved by optimizing these queries.  
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Recent research in the field of database-based mining has been in integrating the 

mining functions with the database. Various extensions to the SQL have been proposed. 

These proposals overload the SQL with certain mining operators. The Data Mining Query 

Language DMQL [9] proposed a collection of such operators for classification rules, 

characteristics rule, association rules, discriminant rules, etc. Meo et al [10] proposed the 

MineRule operator for generating general/clustered/ordered association rules. Agrawal and 

Shim [11] presents a methodology for tightly-coupled integration of data mining applications 

with a relational database system. Sarawagi et al [12], have tried to highlight the implications 

of various architectural alternatives for coupling data mining with relational database 

systems. They have also compared the performance of the SQL-92 based architecture with 

SQL-OR based architecture and when mining is done outside the database address space.  

Some of the earlier research has focused on the development of SQL-based 

formulations for association rule mining. Most of these algorithms use the apriori algorithm 

directly or indirectly with some modifications to it. Sarawagi et al [12] and Thomas [2] deal 

with the SQL implementation of the apriori algorithm and have compared some of the 

optimizations to the basic k-way join algorithm for association rule mining but the relative 

performances and possible combinations for optimizations were not explored. Also the 

optimizations to SQL-OR based approaches have not received much attention. In this thesis, 

we will analyze these optimizations in detail both analytically and experimentally. We 

analyze why certain optimizations are always useful and why some perceived optimizations 

do not seem to work as intended. 

There are many commercial mining tools available today in the market, viz., the 

IBM’s Intelligent Miner, DBMiner, etc., which use the capabilities provided by the 

underlying database management system for mining. Though these mining tools are quite 

efficient, they are developed for a particular RDBMS. Hence, they cannot be used if the 
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relevant database is not used. To overcome this limitation, our approach uses a database 

independent architecture introduced in [13]. To make the implementation operating system 

independent, we have used Java and JDBC API’s. For the purpose of our evaluation, we have 

run the experiments on both Oracle 8i and IBM DB2/UDB.  

1.2 Focus of This Thesis 

With increase in the use of RDBMS to store and manipulate data, mining directly on 

RDBMSs gives us the advantage of using the fruits of decades of research done in this field. 

Main memory always imposes a limitation on the size of data that can be processed. 

However using RDBMSs provides us the benefits of using their buffer management systems 

specifically developed for freeing the user/applications from the size considerations of the 

data. Building mining algorithms to work on RDBMSs also gives us the advantage of mining 

over very large datasets as RDBMSs have been built to manage such large volumes of data. 

File based mining algorithms are those that work on data outside the database. They 

generally have an upper limit on the number of transaction that can be mined. For example, 

the DBMiner has an upper limit of 64K on the number of unique transactions that it can 

process for mining.  With the user having a choice of RDBMS to use for his application, the 

mining algorithms should be developed using such accepted standards so that the underlying 

system is not a limitation and should be portable on other RDBMSs. Keeping this in mind, 

our focus in this thesis is on the use of SQL and some of the Object Relational constructs 

provided by these RDBMSs for association rule mining. We have tried both: SQL-OR 

implementations (using user defined functions for DB2 and Java stored procedures for 

Oracle) and implementation using SQL-92 standards for association rule mining. 

The goal of this thesis is to study these approaches for association rule mining and 

explore additional performance optimizations to these approaches. Based on the performance 
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evaluation of various approaches, we plan on generating heuristics that will help us select an 

approach that is better suited from among the approaches available. The other goal of our 

work is to consolidate the heuristics as metadata that can be used by a mining optimizer. 

Most of the relational query optimizers are not designed to optimize queries that are typically 

used for mining. Also, current optimizers cannot be given any external input in guiding them 

towards generating a specific query plan. Hence, the results collected from the performance 

evaluations of these algorithms are critical for developing a knowledge base that can be used 

for selecting appropriate approach and optimizations for a given approach. Due to lack of 

availability of real datasets, we use synthetic datasets (generated by the program developed at 

IBM Almaden) for performance evaluation. Nevertheless, the results are useful (as they are 

only based on cardinality, support and underlying RDBMS, not on the semantics of the data 

set) in understanding the approaches and can certainly be converted into meta-data for its use 

by the mining application. 

Figure 1.2 shows the proposed architecture. At the heart of the architecture is the 

mining optimizer. This optimizer uses metadata, which is inferred from analytical evaluation 

and the results obtained from a series of experiments on the various SQL formulations of the 

apriori algorithm [12], [2], [13] and its optimizations. 

 

 

Figure 1.2 Proposed Architecture 
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The rest of this thesis is organized as follows. Chapter 2 introduces the apriori 

algorithm and different SQL formulations of it for association rule mining. Chapter 3 covers 

SQL-92 based approaches for support counting. It also covers in detail the basic k-way join 

method for support counting and its basic optimizations along with their performance 

analysis. SQL-OR based approaches and their possible optimizations are covered in Chapter 

4. Chapter 5 includes extensions done in building this mining tool. Chapter 6 concludes the 

thesis with emphasis on the future work. 



 

 

CHAPTER 2  

ASSOCIATION RULE MINING 

Association models examine the extent to which values of one field depend on, or are 

predicted by the values of another field. The rules discover items that "go together". The 

rules have a user-stipulated support, confidence, and length. 

The problem of association rule mining was formally defined by Srikant and Agrawal 

[4]. In short, it can be stated as: Let I be the collection of all the items and D be the set of 

transactions. Let T be a single transaction involving some of the items from the set I. The 

association rule is of the form A � B (where A and B are sets).  There are two terms 

associated with association rules. These are: “Support” and “Confidence”. If the support of 

itemset {AB} is 30%, it means “30% of all the transactions contain both the itemsets – 

itemset A and itemset B”.  

Support of itemset {AB} = Number of times itemsets A and B where bought together 
Total Number of Transactions 

And if the confidence of the rule A � B is 70%, it means “70% of all the transactions that 

contain itemset A also contain itemset B”.  

Confidence of the rule A � B = 
})({
})({

ASupport
ABSupport  

In this chapter, we discuss SQL-92 and SQL-OR formulation [2], [13] for the generic 

apriori algorithm. An association rule-mining problem is broken down into two sub-

problems. 1) generate all the item combinations (itemsets) whose support is greater than the 

user specified minimum support. Such sets are called the frequent itemset and 2) use the 

identified frequent itemsets to generate the rules that satisfy a user specified confidence. 
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2.1 Apriori Algorithm 

The apriori algorithm is based on the above-mentioned steps of frequent itemset and 

rule generation phase. Frequent itemsets are generated in two steps. In the first step all the 

possible combination of items, called the candidate itemset (Ck) is generated. In the second 

step, support of each candidate itemsets is counted and those itemsets that have support 

values greater than the user specified minimum support form the frequent itemset (Fk). The 

algorithm is depicted below. 

 
F1 = {frequent 1-itemsets}

for (k = 2; Fk-1 ≠ 0; k++) do

Ck = generate(Fk-1)

for all transactions t ∈ D do

Ct = subset(Ck, t)

for all candidates, c ∈ Ct do

c.count++

end for

end for

Fk = { c ∈ Ck | c.count ≥ minsup}

end for

Answer = ∪ k{Fk}

2.2 Candidate Generation 

For SQL formulation, the database is represented as a relation with 2 attributes: Tid 

and item. Multiple tuples of this transaction relation represent the items associated with a 

single transaction. Candidate and frequent itemsets are represented as relations containing a 

set of attributes, each representing an item. In the kth pass, the set of candidate itemsets Ck is 

generated from the frequent itemsets Fk-1 (generated in the (k-1) th pass) as shown below: 

 
Insert into Ck
Select I1.item1, … ,I1.itemk-1, I2.itemk-1
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From Fk-1 I1, Fk-1 I2
Where I1.item1 = I2.item1 and

:

I1.item k-2 = I2.itemk-2 and

I1.item k-1 < I2.itemk-1

 

The number of candidate itemsets generated in each pass, by the above step is 

reduced by pruning out all itemsets c ∈  Ck where some (k-1)-subsets (itemsets of length k-1) 

of c are not in Fk-1. This is based on the subset property that in order for an itemset to be a 

frequent item, all subsets of that itemset have to be frequent. In the generated itemset of 

length k, two of its itemsets of length k-1 are frequent itemsets since the itemset of length k 

was generated from these two itemsets. The remaining subsets (itemsets) of length k-1 are 

validated for memberships. This is done by additional join predicates, which skip one item at 

a time from the k-itemset. The tree diagram for this process is shown below. 

 

 

Figure 2.1 Candidate Generations for Any k 
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For example, let F3 be {{1 2 3}, {1 2 4}, {1 3 4}, {1 3 5}, {2 3 4}}. After the join 

step, C4 will be {{1 2 3 4}, {1 3 4 5}}. In the prune step, all itemsets kCc ∈ , where some (k-

1) subset of c is not in Fk-1 as mentioned before are deleted. Thus the prune step will delete 

the itemset {1 3 4 5}. The itemset {1 3 4 5} is known to be generated from the subsets {1 3 

4} and {1 3 5}. However, the subset {3 4 5} is not in F3. Hence it is deleted and C4 contains 

only {1 2 3 4}. 

2.3 Support Counting 

This is an important and most time-consuming part of the mining process. This step is 

needed to identify all the frequent itemsets from the set of candidate itemsets. In the 

following section we present 3 methods using the SQL-92 standard for support counting and 

3 methods using SQL-OR constructs for support counting. 

2.3.1 Support Counting Using Simple SQL 

This consists of writing SQL (conforming to SQL-92 standards) for counting support 

of the candidate itemsets. The approaches based on SQL-92 standard are discussed in the 

ensuing sections.  

2.3.1.1 K-way Join (Kwj) 

The basic approach for support counting is that for any pass k, k copies of the input 

table are joined with the candidate itemsets Ck followed by a group by on the itemsets.  The k 

copies of the input table are needed to compare the k items in the candidate itemset Ck with 

one item from each of the k-copies of the input table. The group by clause is needed to 

identify all itemsets whose count is > user specified threshold value, as frequent itemsets, 

which are then considered potential itemsets for the rule generation phase. The SQL 
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statement and the tree diagram for support counting with k-way join approach are shown 

below. 

 
Insert into Fk
Select item1, … , itemk, count(*)

From Ck, T t1, … , T tk
Where t1.item = Ck.item1 and

:

tk.item = Ck.itemk and

t1.tid = t2.tid and

:

tk-1.tid = tk.tid

Group by item1, item2, … ,itemk
Having count(*) > minsup

 

 

Figure 2.2 Support Counting by K-way Join Approach 

2.3.1.2 2-Group By (Tgb) 

This approach avoids the multi-way joins of the k-way join approach. Here we join 

the candidate itemset Ck and the input table T once. The join condition checks whether the 
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item present in the input table T is same as any of the k items in the candidate itemset Ck. If 

so, then group all such items, i.e., do a group by on the (item1, item2, … , itemk, tid) with a 

filtering condition that the count of such items is equal to k. The result is a set of items and 

their tid such that this tid supports the itemset in Ck. Once all such itemsets are identified, a 

group by on each item (item1, item2, …, itemk) of these itemsets is done. Those itemsets 

whose count > user specified threshold value, are put in the frequent item list. The SQL 

statement used in this approach is shown below. 

 
Insert into Fk
Select item1, item2, … , itemk, count(*)

From (Select item1, item2, … , itemk, count(*)

From T, Ck
Where item = Ck.item1 or

:

item = Ck.itemk
Group by item1, item2, … , itemk, tid

Having count(*) = k

) As temp

Group by item1, item2, … , itemk
Having count(*) > minsup

 

In this approach, for support counting, the candidate itemset relation is joined only 

once with the input relation and hence the number of joins in any pass k are comparatively 

lesser than the k-way join. But then this approach uses the “OR” operator for comparing the 

itemsets along with two group by and having clauses (once during the grouping of the items 

in the input table and the second time for the actual support counting) for identifying frequent 

itemsets of length k. Since the “OR” operator does not lend itself for optimization, using the 

“OR” operator along with two group by clauses turns out to be very time consuming. 
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2.3.1.3 Query Sub Query (Qsq) 

This approach makes use of the common prefixes for support counting. There are lots 

of intermediate sub-queries generated in this approach. We will denote sub-queries by Qi, 

meaning that it is the ith sub-query. Note that there is no sub-query Q0. Subquery Qi will 

select items from sub-query Qi-1 and relations Ci and input table T. The condition being that 

the items in Qi-1 match with those in Ci and tid in T matches with that in Qi-1. Thus in any 

pass, say m, (m-1) items (item1, item2, … , itemm-1) in Qm-1 are matched with (m-1) items in 

Cm. Also tid in T and Qm-1 are matched. If all of them match, and there support > user 

specified threshold value, then all such items are inserted into Fk.  

The tree diagram for the Sub-Query Qi and the corresponding SQL statements are 

shown below. 

 

Figure 2.3 Tree Diagram for Sub-Query Qi 
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Insert into Fk
Select item1, item2, … , itemk, count(*)

From (Subquery Qk) t

Group by item1, item2, … , itemk
Having count(*) > minsup

Subquery Qi (1 ≤ i ≤ k):

Select item1, item2, … , itemi, tid

From T ti, (Subquery Qi-1) as ri-1,

(Select distinct item1, item2, … , itemi
From Ck) As di
Where ri-1.item1 = di.item1 and

:

ri-1.itemi-1 = di.itemi-1 and

ri-1.tid = ti.tid and

ti.item = di.itemI

 

Figures below compare the performance of these approaches on Oracle and IBM 

DB2/UDB. The methodology of performing these experiments is detailed in section 3.2.2. 

 

Figure 2.4 SQL-92 Based Approaches 
(Oracle) 

Figure 2.5 SQL-92 Based Approaches 
(DB2) 
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Figure 2.6 Kwj and Qsq on T5I2D100K (DB2) 

 

Figure 2.4 compares the overall time required for mining dataset T5I2D10K using 

Kwj, Tgb and Qsq with varying support values on Oracle. Figure 2.5 shows the same for 

DB2. From Figure 2.4 it is clear that Kwj is the best on Oracle. On DB2, for dataset 

T5I2D10K, the time taken by Kwj and Qsq is nearly same while the time taken by Tgb is 

very high hence the same cant be said from the Figure 2.5. Figure 2.6 compares Kwj and Qsq 

for dataset T5I2D100K on DB2. Here for support value of 0.10%, Qsq didn’t complete even 

after running for 9 hrs. From this figure, it is clear that, Kwj is much better than the Qsq. 

Similar trend has been found on both – Oracle and DB2 for other datasets.  

2.3.2 Frequent Itemset Generation Using  
Stored Procedures and  
User Defined Functions 

This section describes queries, in which stored procedures and user defined functions 

are written to enhance the candidate itemset and support counting phase. Here, at times, some 

SQL-OR constructs are used (such as CLOBs) for better representation of input data. For 

Oracle, all stored procedures have been implemented as a Java stored procedures and for 
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IBM DB2/UDB, the same has been implemented as user defined functions (or UDFs) using 

Java. In this section the word “procedure” is used in general for both – user defined functions 

for IBM DB2/UDB and stored procedures for Oracle, unless otherwise stated. 

2.3.2.1 VerticalTid (Vtid) 

The SQL-92 based approaches assumed that the input table (the one to be mined) has 

following attributes: (Tid, Item). In the VerticalTid approach, the representation of input data 

is changed and the transactions are inserted in a different relation (TidListTable) having 

following attributes: (Item, TidList). For every unique item id in the input dataset, the 

TidListTable has only one tuple. This tuple represents the item id and the list of all the 

transactions in which that item was bought. Each list of transactions is represented as a 

CLOB and stored in the TidList column of the TidListTable.  

For the purpose of support counting, procedures are used to read these CLOBs and 

for each item combination (itemset), count the number of same transaction ids that are 

present in the TidList of each item id in that itemset. If the count > the user specified 

minimum support value, then the itemset is considered as frequent and is used to generate 

item combinations of length one more than itself in the subsequent pass. The SQL for 

generation of frequent itemsets is given below. 

 
Insert into Fk
Select item1, item2, …, itemk
From (Select item1, item2,…, itemk,

CountAndK(I1.TidList,I2.TidList, … ,

Ik.TidList) as cnt

From Ck, TidListTable I1, TidListTable I2,…,

TidListTable Ik,

Where Ck.item1 = I1.item And

Ck.item2 = I2.item And



 19

:

:

Ck.itemk = Ik.item) as temp

Where cnt > minsup.

Here CountAndK is a procedure that in pass k, accepts k TidLists and returns the 

count of transactions that are common in each of them. 

2.3.2.2 Gather Join (Gjn) 

This method differs in the way candidate itemsets are generated and the way in which 

support counting of these candidate itemsets is done. This approach also uses a different 

representation for the input table. Here the input table is read and for each unique transaction 

all the items bought in that particular transaction are collected together. For implementation 

on DB2, we use CLOBs to represent the list of items bought in a transaction and use a 

different table (ItemListTable) having the attributes (Tid, ItemList) to materialize it. For 

Oracle, this is implemented as a stored procedure, which makes a single pass over the input 

table and collects all the items bought in a given transaction in a vector. The vector is then 

used directly for generation of candidate itemsets. The ItemListTable is not materialized. In 

each pass k, procedures are used to read this collection of items (ItemList column of the 

ItemListTable if it is materialized, else the vector of items) and generate item combinations 

of length k, which are then inserted in the candidate itemsets table Ck. For support counting, 

since these candidate itemsets of length k, are generated from the items bought in any 

transaction, there is no need to join Ck with k copies of input table (as is done in SQL-92-

based approaches), rather a simple “Group by” on the k-items of the candidate itemset is 

sufficient to identify those itemsets that have count > user specified minimum support. The 

JDBC calls and the SQL used for generation of candidate itemsets in Oracle and DB2 is 

shown below: 
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try

{

Connectin con;

CallableStatement cStmt;

String qs = "{Call CombinationK(?)}";

cStmt = con.prepareCall(qs);

cStmt.setString(1,”InputTable”);

cStmt.execute ();

cStmt.close();

}

catch (Exception e)

{

e.printStackTrace();

}

 

The above JDBC calls are for Oracle. Here a call to CombinationK stored procedure 

is made to generate all item combinations of length k.  

For DB2 CombinationK procedure has been implemented as an udf. The call to udf is 

made as shown below: 

 
Insert into Ck

Select item1, item2,…, itemk

From (select *

From ItemListTable) as T1,

table(CombinationK(tid, ItemList)) as T2;

 

Here the keyword “table” means that the CombinationK udf is a table udf that returns 

a table. So here the CombinationK udf returns a table consisting of candidate itemsets of 

length k. The SQL for generating frequent itemsets from the above generated candidate 

itemsets is given below.  
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Insert into Fk
Select item1, item2,…, itemk, count(*)

From Ck
Group by item1, item2,…, itemk
Having count > minsup;

2.3.2.3 Gather Count (Gcnt) 

This approach is very similar to the Gather join approach. This approach also uses the 

same stored procedures for generating candidate itemsets of length k. The only departure 

from the Gather join approach is in the second pass.  In the second pass, instead of directly 

inserting the generated candidate itemsets into table C2, a two-dimensional array, 

representing the count of all 2-item combinations is built. At the end of the pass, the two-

dimensional array is read and only those item combinations, whose count is greater than the 

user specified minimum support value, are inserted in the frequent itemsets table (F2). This 

has been implemented for Oracle, by modifying the Combination2 stored procedure (called 

GatherCount2 stored procedure). Because of memory constraints, the same could not be 

implemented for pass 3 and higher passes (we will see this in details in Chapter 4). So this 

approach, uses the same stored procedures as used by the Gather join approach for pass 3 and 

onwards. Similar modification could not be done in the udf’s for DB2. The JDBC code 

below shows the calls made to different stored procedure for support counting. 

 
try

{

CallableStatement cStmt;

Connection con;

String qs= “”;

if(k==2) // call the GatherCount2 stored procedure

{

qs = "{Call GatherCount2(?,?)}";

cStmt = con.prepareCall(qs);
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cStmt.setString(1,”InputTable”);

cStmt.setInt(2,minsup);

}

else // call the CombinationK stored procedure

{

qs = "{Call CombinationK(?)}";

cStmt = con.prepareCall(qs);

cStmt.setString(1,"InputTable");

}

// call the stored procedure

cStmt.execute();

cStmt.close();

}

catch (Exception e)

{

e.printStackTrace();

}



 



 

CHAPTER 3  

SQL-92 BASED APPROACHES 

In the previous chapter, we described different approaches to generate candidate 

itemsets and count their support. Each of these approaches has their own advantages and 

disadvantages. In this chapter we will revisit the SQL-92 based approaches in more detail. 

The outline of this chapter shall be as follows: Section 3.1 will bring out the differences, 

advantages and disadvantages of different approaches for support counting. Section 3.2 will 

enumerate various optimizations to the k-way join approach for support counting and 

evaluate them analytically and experimentally. In Section 3.3 we will observe the effects of 

combining these individual optimizations. We conclude this chapter in section 3.4, with a 

summary of performance gained due to these optimizations. 

3.1 Support Counting Revisited 

The simplest way of support counting is the k-way join approach. Here in pass k, k–

copies of input table are joined for counting the support of all the candidate itemsets of length 

k. For datasets of small sizes, or for low values of k, this approach works fine, but for large 

datasets or for low support values resulting in substantial number of passes, self-join of the 

input dataset need to be performed k times and is very time consuming. The 2-Group By 

approach tries to overcome this problem. But with this approach also, there are certain 

advantages and disadvantages. This approach gets around the problem of multi-way joins and 

the number of joins are comparatively less than the k-way join, but this approach suffers 

from the overhead involved in the comparisons made using the “OR” operator and 

executions of group by and having clauses. In fact, the group by and the having clauses have 

to be executed twice – once during the grouping of the items in the input table and the second 
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time for the actual support counting. Experiments on input tables with different 

characteristics have shown that the execution of the group by clause twice, is more time 

consuming than the k-way join of the input table. 

The Query Sub Query approach for support counting makes use of common prefixes 

for support counting. In any pass k, a sub-query (Qk-1) is generated to find out the frequent 

items of length k-1. The sub-query Qk-1, in turn calls subquery Qk-2. This continues, until 

subquery Q1 is executed which returns all frequent 1-itemsets. The result obtained from the 

subquery Q1, is streamed to subquery Q2 for the generation of frequent itemsets of length 2. 

This process continues upwards till the last subquery Qk-1 is executed. Since the results from 

any subquery are not materialized, in any pass k, k-1 sub queries have to be executed. The 

work by S. Thomas [2] has reported that of all the SQL-92 based approaches this approach 

for support counting has the best performance. But from the various experiments that we 

have done – both on IBM DB2/UDB and Oracle, we have found that the performance of k-

way join is the best. Figure 2.4, Figure 2.5 and Figure 2.6 shows this. 

3.2 Analysis of K-way Join Approach 
And its Optimizations 

Of all the SQL-92 based approaches, k-way join has been found to be the best. So this 

section will cover the analysis of the possible optimizations to the basic k-way join and their 

implications. The purpose of these optimizations and their analysis (along with performance 

evaluation) is to understand the impact of various optimizations on datasets of different 

characteristics (size, average transaction length, support, confidence etc.). The purpose of this 

analysis is to obtain heuristics that relate various optimization techniques and their effect on 

the dataset characteristics. Though not all the optimizations produce better timings, our 

conjecture is that the study of these optimizations can give us a better insight to the metadata 
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that can be used for making a mining-aware optimizer. In addition to providing analytical 

support for these optimizations, we will present the results obtained when datasets with 

different characteristics were mined using them.  

3.2.1 Notations Used for Cost Analysis 

The cost analysis of some of the approaches was done in Thomas [12]. We use 

similar notations for our study of these optimizations. These notations are described in the 

table given below. 

 

Table 3.1 Notations Used for Cost Analysis of Different Approaches 

R Number of records in the input transaction table 

T Number of transactions 

N Avg. number of items per transaction = R/T 

F1 Number of frequent 1-itemsets 

S(C) Sum of support for each itemset in C 

sk Average support of a frequent k-itemset = S(Fk)/(Fk) 

Rf Number of records out of R involving frequent items = S(F1) 

Nf Average number of frequent items per transaction = Rf/T 

Ck Number of candidate k-itemsets 

C (N,K) Number of combinations of size k possible out of a set of size n: (n!)/(k!(n-k)!) 

group (n,m) Cost of grouping n records out of which m are distinct 

join (n,m,r) Cost of joining two relations of size n and m to get a result of size r 

 

The methodology used for cost analysis is a very general approach to estimate the 

cost of each optimization. The notations used, do not tell us how the underlying optimizer 

manages to compute the SQL query, as that might differ from vendor to vendor (this is very 

clearly evident from our experimental results over Oracle and IBM DB2/UDB). The 
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formulae does not compare the CPU or the I/O required for computing the query, but they are 

powerful enough to provide a guiding cue to be used for choosing the appropriate 

optimization for association rule mining for a given dataset. 

3.2.2 Methodology for Experimental Evaluation 

The performance results presented in this thesis are on datasets generated 

synthetically using the IBM’s data-generator. The nomenclature of these datasets is of the 

form TxxIyyDzzzK. Where xx denotes the average number of items present per transaction. 

yy denotes the average support of each item in the dataset and zzzK denotes the total number 

of transactions in K (1000’s). The experiments have been performed on Oracle 8i and IBM 

DB2 / UDB V7.2 (installed on Windows 2000 server with 512MB of RAM). Each 

experiment has been performed 4 times. The values from the first run are ignored so as to 

avoid the effect of the previous experiments and other database setups. The average of the 

next 3 runs is taken and used for analysis. This is done so as to avoid any false reporting of 

time due to system overload or any other factors. For most of the experiments, we have found 

that the percentage difference of each run with respect to the average is less than one percent. 

For SQL-92 based approaches, before feeding the input to the mining algorithm, if it is not in 

the (tid, item) format, it is converted to that format (by using the algorithm and the approach 

presented in [13]). On completion of the mining, the results are remapped to their original 

values. Since the time taken for mapping, rule generation and re-mapping the results to their 

original descriptions is not very significant, they are not reported.  

For the purpose of reporting the experimental results in this thesis, for most of the 

optimizations we have shown the results only for three datasets – T5I2D500K, T5I2D1000K 

and T10I4D100K. Wherever there is a marked difference between the results for Oracle and 
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IBM DB2/UDB they are also shown; otherwise the result from anyone of the RDBMSs have 

been included. 

3.2.3 Cost Analysis of the Basic K-way Join Approach (Kwj) 

For support counting, in any pass k, k copies of input table are joined with Ck (Figure 

2-2). The total number of items produced in a join of Ck with T is equal to the number of 

records in Ck * average support of first item in Ck. Using the join notations, the join cost can 

be represented as join (Ck, R, Ck*s1). Similarly, the join of m-copies of T with Ck will result 

in a table, containing the sum of support count for first m-items of an itemset in Ck.  In terms 

of join notation this can be represented as join (Ck*sm-1, R, Ck*sm). The cost of last join, 

cannot be calculated from the above formula as the sk value for the itemset of length k is not 

known since the candidate itemsets of length k produced, is not frequent. But the relation 

obtained from the last join will have as many tuples as the sum of support for each itemset in 

set Ck. Using the join notation this can be represented as join (Ck*sk-1, R, S(Ck)). Hence the 

cost of any pass, for this approach can be given as: 
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Figure 3.1 compares the time required for mining the relation T5I2D1000K on DB2, 

with break-up for each pass for support values of 0.20%, 0.15% and 0.10%, while Figure 3.2 

shows the same on Oracle. (On DB2, for support value of 0.10%, the experiment did not 

complete even after running it for over 9 hrs). The analysis of time required for each pass 

shows that, of all the passes, second pass is the most time consuming. This is true as in 
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second pass nC2 (all combinations of two elements from frequent 1-itemsets) candidate 

itemsets are generated, where n is the cardinality of frequent-1 itemset. 

 

 

  

 
Figure 3.3 K-way Join on T10I4D100K 
(DB2) 

Figure 3.4 K-way Join on T10I4D100K 
(Oracle) 

Figure 3.1 K-way Join on T5I2D1000K 
(DB2) 

Figure 3.2 K-way Join on T5I2D1000K 
(Oracle) 
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Figure 3.3 shows the time required for mining relation T10I4D100K for different 

support values on DB2, Figure 3.4 shows the same for Oracle and Table 3.2 shows the 

number of candidate itemsets generated in respective passes, when different tables were 

mined with different support values. (Here we have chosen the dataset T10I4D100K, because 

for this dataset, the experiment runs for 9 passes and we wanted to see how k-way join 

performs with the increase in the number of passes.) For DB2, for support value of 0.75% the 

experiment didn’t complete even after running for 12 hours. 

 

Table 3.2 Number of Candidate Itemsets in Different Passes 

 C2 C3 C4 C5 C6 C7 C8 C9 

T5I2D500K.   Sup = 0.10% 307720 126 7 0 -- -- -- -- 

T5I2D1000K. Sup = 0.10% 309291 127 61 0 -- -- -- -- 

T10I4D100K. Sup = 0.75% 12470 65 3 0 -- -- -- -- 

T10I4D100K. Sup = 0.33% 216153 2453 905 354 109 20 2 0 

 

The analysis of theses figures shows that for mining configuration, where the length 

of the largest frequent itemset is small, the time required for support counting at higher 

passes is not very significant. This is because there is a great reduction in the size of the 

candidate itemset (Ck). However, for datasets with long frequent itemsets, though the 

cardinality of the Ck decreases with the increase in the number of passes, even then joining k-

copies of input table for support counting at higher passes is quite significant. In equation 3.1 

for support counting of any pass k, the input table is joined k-times. Hence an obvious way to 

optimize this would be by reducing the cardinality of the input table.  Section 3.2.4 discusses 

this in more detail. Once again, if we analyze the first and the second pass, frequent itemsets 

of length 1 (F1) are generated in pass 1. F1 is then used to generate C2, which is followed by 
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support counting of C2. An efficient way to get around with this time consuming process 

would be generating the frequent itemsets of length 2 (F2) directly, by joining the input table 

with itself with the group-by on the items of the input table that have the same tid. This way 

Pass 1 can be skipped all together (as there are no rules on F1) and also there is no need for 

candidate generation for pass 2 as F2 is generated directly by the above step. Section 3.2.5 

discusses this second pass optimization in more detail. 

Let us compare the SQL tree for support counting (Figure 2.2) for two successive 

passes, say pass 4 and pass 5. In the 4th pass C4 is joined with 4 copies of input table, to 

identify all frequent itemsets of length 4. In the 5th pass, again input table is joined 4 times 

for determining the frequent itemsets of length 4 and then the support of 1-extensions of 

these frequent itemsets, present as the fifth item in C5, are counted by joining one more copy 

of the input table with C5. Thus if all the frequent itemsets contained in any transaction is 

saved at the end of the pass 4, they can be used for support counting in pass 5, as frequent 

itemsets of length 5 are 1-extensions of these frequent itemsets of length 4. Section 3.2.6 

discusses about this optimization and its effects. Let us now compare the cost of the basic k-

way join approach given by equation 3.1 with each of these optimizations, and then with 

their combinations. The ensuing section deals with this.  

3.2.4 Pruning the Input Table (Pi) 

As indicated earlier, reducing the size of the input table and using it in all the passes 

for support counting can improve the time for support counting. Eliminating the records of 

those single itemsets from it, whose support is lower than the user specified minimum value, 

can reduce the size of the input table. Instead of deleting these records, a new relation, Tf, 

having following attributes: (tid, item), is created to contain tuples of only frequent itemsets 

of length 1. This is done by generating F1, as before. Then F1 is joined with input dataset T 
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on the “item” column, and records of only those items whose support > user defined support 

value are inserted in the relation Tf. The SQL for creating the pruned input table is given 

below: 

 
Insert into Tf select t.tid, t.item

From T t, F1 f

Where t.item = f.item

 

Thus the overall cost of this optimization includes the cost of producing the pruned 

input table Tf  + cost of support counting in every pass. This can be given as:  
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Figure 3.5 Reduction in Table Size Due to 
Pruning 

Figure 3.6 K-way Join and Pruned Input 

 



 32

The difference between equations 3.1 (Kwj) and 3.2 is that, in equation 3.1, an 

additional cost for materializing the pruned relation is involved. And then this pruned relation 

is used instead of the original dataset in the joins for the support counting of every pass. The 

pruning of non-frequent 1-itemset is more effective with higher support values or for 

relations with a very large number of distinct items, which results in pruning out a large 

number of non-frequent 1-itemsets. Figure 3.5 shows the reduction in size of input table 

T5I2D1000K for different support values. It is evident from the figure that the reduction in 

the size of the table is very marked for higher support values. But, pruning might not always 

end up in giving better performance. Figure 3.6 compares the total cost of mining the relation 

T5I2D1000K on oracle, using the pruned relation (time for pruning also considered) with 

basic Kwj, for different support values. Its evident from this figure that for higher support 

values, (3.0%, 2.0% and 1.0%), the total time taken is less when pruned relation was used, 

but the reverse is true for lower support values. To explain this let us see the time taken by 

each pass. 

 

Figure 3.7 Pass Wise for K-way Join Figure 3.8 Pass Wise for Pruned Input 
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Figure 3.7 (for Kwj) and Figure 3.8 (for Pi) shows the cost of various passes for table 

T5I2D1000K for support values of 0.2%, 0.15% and 0.10%. From these figures, we see that 

the use of pruned relation hardly has any effect on the running time of any pass; rather, there 

is an additional cost involved in pruning (given by the SQL above, denoted as “Ohead” on 

the X-axis of the Figure 3.8). Because of this overhead, at low support values, the overall 

time of using pruned relation comes out more than the simple Kwj. 

3.2.5 Second Pass Optimization (Spo) 

As explained earlier and is also apparent from the figures shown above, that, of all the 

passes, second pass is the most time consuming. In general, because of the immense size of 

C2, the cost of support counting for C2 is very high. In addition, for candidate sets of length 2, 

as all the subsets of length 1 are known to be frequent, there is no gain from pruning during 

the candidate generation. Also there are no rules associated with F1. Hence the process of 

generating F1 then C2 followed by its support counting phase can be replaced by directly 

generating F2. This is done by joining two copies of the input table, such that the item from 

first copy < item from the second copy and that both items belong to same transaction. The 

SQL for the same is as follows: 

 
Insert into F2 select t1.item, t2.item, count(*)

From InputTable T1, InputTable T2
Where T1.tid = T2.tid and T1.item < T2.item

Group by T1.item, T2.item.

Having count(*) > minsup

 

The cost of second pass is thus: 
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Figure 3.9, compares the overall time required for mining table T5I2D500K using 

Kwj and Spo. We can see that though the cost of grouping is same as that in the Kwj, yet 

skipping of the support counting phase during the second pass results in a big reduction in the 

overall cost. For table T5I2D500K, the overall time required for mining it is reduced by 3 to 

4 times when the second pass is optimized. 

 

Figure 3.9 Kwj and Spo Figure 3.10 Ck and Fk for Kwj and Spo 

 

Figure 3.10 compares the time taken for the candidate generation phase (Ck) and 

support counting phase (Fk) for the Kwj and the Spo. The values in Pass-2 of this figure 

shows that the improvement in performance is due to savings on the join cost at two stages. 

The first is by totally bypassing the generation of candidate itemset C2 and the second is 

during the generation of the frequent itemset F2. The reason for the improvement in the 
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second stage will become clearer by analyzing the costs of the SQL statements executed for 

the second pass. The cost of the second pass for the Spo is: 

))2,(),2,(())2,(,,( 1FCNCgroupNCRRjoin ff +  

and for the k-way join is:  

)*,,( 122 sCRCjoin + )),(())(,,*( 22212 CCSgroupCSRsCjoin + . 

Thus in Spo, for generation of the frequent itemset F2, input relation (T) is directly 

joined with itself, instead of joining three relations - C2 with 2 copies of input relation (as is 

done in Pass-2 of Kwj), which results in decrease in the computation time of F2. 

3.2.6 Reuse of Item Combinations (Ric) 

This optimization aims to reduce the cost of support counting, in any pass k, by 

avoiding the join of k copies of input table with Ck. This is done by materializing the frequent 

itemsets obtained from a particular transaction in pass k-1, and using it for support counting 

in the kth pass. This saves from redoing the same sequence of joins that were done in the 

previous pass, which proves to be very effective for cases where the length of the frequent 

itemset is large. So in kth pass for support counting, a relation Combk, having the following 

attributes (tid, item1, item2, …, itemk) is created. The tuples in Combk is the result of the join 

between Combk-1, T and Ck to select all those transactions in T which contains 1-extensions 

to the frequent itemsets of length k-1. The SQL for this is given below: 

 
Insert into Combk
Select T1.tid, T1.item1, T1.item2,…, T1.itemk-1,T2.item

From Ck, Combk-1 T1, T T2
Where T1.item1 = Ck.item1 and

:

:

T1.itemk-1 = Ck.itemk-1 and

T2.item = Ck.itemk and

T1.tid = T2.tid



 36

Fk is then generated from Combk by grouping on k items (item1, item2, …, itemk) and 

selecting those that satisfy the minimum support criteria. The SQL for this given below: 

 
Insert into Fk
Select item1, item2, …, itemk
From Combk
Group by item1, item2, …, itemk
Having count(*) > minsup

 

Let us analyze the cost of this optimization. Instead of joining the input table k times, 

in pass k, only 3 relations – Ck, T and Combk-1 are joined. However, the downside of this 

approach is that, Combk-1 has to be materialized so that it can be used in the next pass. To 

evaluate the cost of this optimization, the notion of joins of two tables is extended to three 

tables as trijoin (p, q, r, s). Which means that relations having p, q, and r tuples respectively 

are joined to produce a relation with s number of tuples.  Using this notation the cost of any 

pass k in this optimization is given as:  

 

))),(())(,,,( 1 kkkkk CCSgroupCSCRCombtrijoin +− .  (3. 4)

 

Figure 3.11 compares the total time taken for mining the relation T10I4D100K using 

Kwj and Ric for different support values on Oracle. Figure 3.12 shows the same for DB2. For 

higher support values, the experiments runs for less number of passes and hence the cost of 

support counting using the Kwj, without materializing the intermediate results seems to do 

better. But for low support value, at higher passes, the cost of joining input table k-times with 

Ck turns out to be more costly than materializing Combk-1 and using it for support counting. 
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Figure 3.11 Reuse of Item Combination 
(Oracle) 

Figure 3.12 Reuse of Item Combination 
(DB2) 

 

In Figure 3.12, for support value of 0.75%, Kwj does not complete, while Ric does. 

This can be explained more clearly by comparing equation 3.1 (for Kwj) and equation 3.4 

(for Ric). In equation 3.1, for support counting of the 3rd pass, 4 relations are joined - 3 

copies of the input table and C3, while in equation 3.4 just 3 relations are joined - Comb2, T 

and C2 to get Comb3 and then group by on Comb3 is done for F3. Because of the immense 

size of these tables and more number of joins, the experiments (on DB2) in the former case, 

doesn't seem to complete (we ran the experiment on DB2 for 9 hrs.) 

3.3 Combinations of Basic Optimizations 

Sections 3.2.4, 3.2.5 and 3.2.6 discussed, respectively, the use of pruned input, 

optimization of the second pass, and reusing the item combinations generated in the previous 

pass. In this section we will discuss additional optimizations obtained by combining these 

individual optimizations. 
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3.3.1 Second Pass Optimization on  
Pruned Input (SpoPi) 

This combination of optimization uses pruned input along with second pass 

optimization. Although the Spo does result in some performance gain under all situations, the 

same is not true with Pi. Hence the overall performance obtained from this combination is 

limited by the overhead of pruning. Figure 3.13 compares the time taken for mining the table 

T5I2D500K using the Kwj, Pi, Spo and by SpoPi, for different support values on Oracle. For 

low support values, the overhead of building pruned input outweighs any performance gained 

due to optimization of the second pass.  Hence at a low support value, SpoPi does better than 

when only pruned input is used, but its performance is worse than when only Spo is used. In 

all the experiments performed, the performance of this combination has not been very 

impressive. 

 

 
Figure 3.13 Spo on Pi 

 

The overall cost of this optimization is thus same as the use of pruned input except for 

the second pass, where the cost of second pass is similar to Spo. This is given below: 
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Pruning: +),,( 1 fRFRjoin  

Second Pass: ))2,(),2,(())2,(,,( 1FCNCgroupNCRRjoin ffff +  + 

�
−

=
−

1

1
1 )*,,*(

k

m
mkfmk sCRsCjoin + )),(())(,,*( 1 kkkfmk CCSgroupCSRsCjoin +−  

 

 

(3.5)

3.3.2 Reuse of Item Combinations on  
Pruned Input (RicPi) 

This optimization is similar to the one discussed in the section 3.2.6, except that 

instead of using the input table as it is, non-frequent itemsets of length one are pruned out 

and then this pruned input table is used in all passes for joining with Combk-1 to produce 

Combk. The cardinality of Combk-1 is S(Fk-1). Thus the cost of generating frequent itemset for 

any pass is given as:  

 

))),(())(,,,( 1 kkkkfk CCSgroupCSCRCombtrijoin +−   (3.6)

 

The analysis of this combination shows that for most of the experiments at low 

support values, it did not produce the added performance of:  (1) reusing the frequent 

itemsets generated in the previous pass and (2) using pruned relation. The overall 

performance for this combination is dominated either by the cost of building the pruned 

relation at low support values or by the cost of materializing the Comb2 at high support 

values. This seems to be quite logical because, as seen earlier the effect of pruning dominates 

only for high support values and reuse of item combinations is effective for cases where the 

maximum length of the frequent itemset is large. But since for large support values, the 

maximum length of the frequent itemset is quite small, hence in most cases, we do not obtain 

the benefits of materializing the transactions with frequent itemsets of the previous pass. 
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Similarly for low support values, where there is hardly any effect of pruning on the input 

table size. The overhead of pruning eclipses any time saved by reusing the item 

combinations. Figure 3.14 shows this for table T5I2D1000K on DB2. 

 

 
Figure 3.14 Ric on Pi 

3.3.3 Reuse of Item Combinations and  
Second Pass Optimization (RicSpo) 

This section describes the effect of combining Spo with the optimization where 

frequent itemsets generated in the previous pass are materialized and used for support 

counting. As described in section 3.2.5 for Spo, first pass and candidate itemset generation in 

second pass is skipped. Since in Spo, C2 is not generated, in RicSpo, instead of generating 

Comb2, input table is joined thrice with C3 to produce Comb3 directly (C3 is produced in the 

same way as is done in the Spo). And then for subsequent passes, the query is similar to one 

discussed for Ric in section 3.2.6. The SQL for generating Comb3 directly is shown below: 
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Insert into Comb3
Select T1.tid, t1.item, t2.item, t3.item

From InputTable T1, InputTable T2, InputTable T3, C3
Where T1.item = C3.item1 and

T2.item = C3.item2 and

T3.item = C3.item3 and

T1.tid = T2.tid and

T2.tid = T3.tid

 

The overall cost for this optimization is given below. Here quadjoin(p,q,r,s,t) means 

the cost of joining four relations having p, q, r and s tuples respectively to produce a relation 

with t number of tuples and the cardinality of Comb3 is S(F3). 

 

Second pass: ))2,(),2,(())2,(,,( 1FCNCgroupNCRRjoin ff +  +  

Third pass: ))3,(),3,(())3,(,,,,( 23 FCNCgroupNCCRRRquadjoin ff +  +  

For (k >3): ))),(())(,,,( 1 kkkkk CCSgroupCSCRCombtrijoin +−  (3.7)

 

Figure 3.15 compares second pass optimization and reuse of frequent itemsets of the 

previous pass with their combination for table T5I2D1000K on Oracle. Figure 3.16 shows 

the same on DB2. As seen from these figures, in Ric, Pass-2 and Pass-3 take most of the 

time. This is to materialize Comb2 in Pass-2, which is very huge and using this Comb2 in 

Pass-3. Table 3.3 shows the number of tuples in Combk for pass-k for different support 

values. Hence the combined optimization does better than just the reuse of item combination 

as it skips the generation of C2 and Comb2. For most of the datasets, this combination of 

optimization has come out as one of the best optimization. 
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Figure 3.15 Ric and Spo (Oracle) Figure 3.16 Ric and Spo (DB2)  

 

 

Table 3.3 Number of Records in Combk in 1000’s 

Number of Tuples in 1000’s 
Table Characteristics 

Comb2 Comb3 Comb4 

T5I2D1000K. Support = 0.20% 13267 0 0 

T5I2D1000K. Support = 0.20% 13756 22 0 

T5I2D1000K. Support = 0.20% 14165 111 6 

3.3.4 Combination of All Optimizations (All) 

This is the last optimization, which is basically the combination of all the three 

individual optimizations discussed in sections 3.2.4, 3.2.5 and 3.2.6. The SQL for this 

approach is similar to the one discussed in section 3.3.3, except that instead of using the input 

relation as such, we first prune out all the non-frequent itemsets and then in place of input 

dataset use this pruned relation for support counting. So the overall cost for this optimization 
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would be similar to the equation 3.7 with the addition of one time cost of pruning + cost of 

using the pruned input in all the passes. This is given below: 

 

Pruning: +),,( 1 fRFRjoin  

Second pass: ))2,(),2,(())2,(,,( 1FCNCgroupNCRRjoin ffff +  + 

Third pass: ))3,(),3,(())3,(,,,( 2FCNCgroupNCRRRquadjoin fffff +  + 

For (k>3): ))),(())(,,,( 1 kkkkfk CCSgroupCSCRCombtrijoin +−  

 

 

 

 

(3.8)

 

Figure 3.17 and Figure 3.18 show the effect of this combination of optimizations on 

T5I2D1000K with different support values for IBM DB2/UDB and Oracle respectively. As 

seen from these figures, optimizing the second pass does save some time in almost all cases 

and also the combination of second pass optimization with reuse of item combination has 

shown to be one of the most effective combination of optimizations, but at the same time use 

of pruned input with reuse of item combination has hardly ever given added performance. 

Out of the two sets of extreme sub-combinations - (1) reuse of item combination with pruned 

input and (2) reuse of item combination with second pass optimization, for lower support 

values, the total mining time for this combination of all individual optimizations is dominated 

by the former sub-combination, which eclipses any performance gained by the second sub-

combination. Hence for most of the experiments, this combination of all the optimizations 

has shown better performance than others, but has been worse than the RicSpo optimization.  
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3.4 Conclusion 

Based on the experiments that have been performed using SQL-92 based approaches 

we can summarize the effect of various optimizations as follows:  

Out of the 3 approaches (k-way join, 2-Group By and Query Sub Query) for support 

counting, k-way join has the best performance.  

In all the optimizations for k-way join method for support counting, pruning the input 

dataset and then using it, is very effective for higher support values while the reuse of item 

combinations is the best if the length of the largest frequent itemset is large.  The second pass 

optimization has shown to reduce the mining time in almost all the cases. When 

combinations of these individual optimizations are considered, reuse of item combinations 

with second pass optimization is found to be the best among all the optimizations. 

Figure 3.17 All Optimizations Combined 
(DB2) 

Figure 3.18 All Optimizations Combined 
(Oracle) 



 

 

CHAPTER 4  

SQL-OR BASED APPROACHES 

In chapter 2 we discussed how stored procedures and udfs can be used for the purpose 

of candidate itemset generation and their support counting. In this chapter we shall revisit 

them to see their applicability in detail. Sections 4.1, 4.2 and 4.3 deal with the working of 

VerticalTid, Gather Join and Gather Count approaches respectively. In section 4.4 we will 

present further optimizations to these approaches. Finally in section 4.5, we will draw the 

conclusions, after comparing the experimental results of these approaches. Note that for 

Oracle we have implemented these as stored procedures (sp) and for IBM DB2/UDB the 

same has been implemented as user defined functions (udf). So, in this chapter we will use 

the word procedure to represent both sp for Oracle and udf for DB2, unless indicated 

otherwise. 

4.1 VerticalTid approach (Vtid) 

This approach makes uses of two procedures – SaveTid and CountAndK. The 

SaveTid procedure is called once to create CLOBs for representing a list of transactions. This 

procedure scans the input table once and for every unique item id, generates a CLOB 

containing the list of transactions in which that item occurs (TidList). These item ids, along 

with there corresponding TidList is then inserted in the TidListTable relation, which has the 

following schema (Item: number, TidList: CLOB). Table 4.1 shows a sample input table. In 

this table for the item id 2, there are 3 distinct values in the corresponding Tid column. This 

means that the item denoted by item id 2 occurs in those 3 transactions. The SaveTid 

procedure reads this item id value and generates a CLOB containing the 3 transaction ids in 
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which it was bought. Table 4.2 shows the corresponding values in the TidListTable produced 

by the SaveTid procedure. 

 

 

Once the TidListTable is generated, then this relation is used for support counting in 

all the passes. The way support counting is done is that for each itemset, the number of 

common transactions in the TidList of all the items constituting that itemset is found. In pass 

k, for support counting, the procedure CountAndK is invoked for every candidate itemset. 

This procedure accepts k CLOBs as input, each representing the TidList of the corresponding 

item constituting that itemset. The procedure then intersects these TidLists to find out those 

transactions, which are present in all the TidLists. The count of the common tids, which 

represents the support for that itemset, is then returned. Hence in pass 2 the CountAnd2 

procedure will receive 2 TidLists each corresponding to the item constituting the candidate 

itemset of length 2 and will intersect them for finding the support count. Similarly in pass 3 

the CountAnd3 procedure will receive 3 TidLists and intersect them to find the support count 

of candidate itemset of length 3. Table 4.3, explains the working of the CountAnd3 

Table 4.1 Input Table 

Item Tid 
1 1 
2 2 
2 3 
2 4 
3 1 
3 2 
3 3 
4 1 
4 3 
5 2 
5 3 
5 4 

Table 4.2 TidListTable 

Item TidList 
1 “1” 
2 “2,3,4” 
3 “1,2,3” 
4 “1,3” 
5 “2,3,4” 
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procedure. For example if C3 contains following itemsets {2,3,4}, {2,3,5} and {3,4,5} where 

Table 4.2 shows the TidList for each itemset of length 1, then for support counting, calls 

made to CountAnd3 procedure and the values returned are:  

 

Table 4.3 Counting Support Using CountAndK Procedure 

Stored Procedure called Value Returned 

CountAnd3 (“2,3,4”, “1,2,3”, “1,3”) 1 (only transaction 3 is present in all the 
TidLists) 

CountAnd3 (“2,3,4”, “1,2,3”, “2,3,4”) 2 (Transactions 2 and 3 are present in all the 
TidLists) 

CountAnd3 (“1,2,3”, “1,3”, “2,3,4”) 1 (only transaction 3 is present in all the 
TidLists) 

 

 

Figure 4.1 VerticalTid on T5I2D100K 
(DB2) 

Figure 4.2 VerticalTid on T5I2D100K 
(Oracle) 

 

Figure 4.1 shows the time for mining the relation T5I2D100K with different support 

values on DB2. Figure 4.2 shows the same for Oracle. A pass-wise analysis of these figures 
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shows that second pass is consuming most of the time. This is where the TidList of items 

constituting the 2-itemsets are compared for finding the common transactions in them. 

Though the counting process seems to be very straightforward but the process of reading and 

intersecting these CLOBs is time consuming. As number of 2-candidate itemsets is very 

large, the total time taken for support counting in pass 2 is very high.  

The source codes for all these procedures are listed in the Appendix, at the end of 

thesis.  

Figure 4.3 and Figure 4.4 shows how this approach scales up as size of datasets 

increase for support values of 0.20%, 0.15% and 0.10% on DB2 and Oracle respectively. 

From these figures it is clear that Vertical Tid does not do well as size of the datasets 

increases. Also for size of 500K and beyond, this approach did not complete even after 

running for over 24 hours. 

 

 

Figure 4.3 Vertical Tid scale up (DB2) Figure 4.4 Vertical Tid scale up (Oracle) 
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4.2 Gather Join Approach (Gjn) 

In this approach for candidate itemset generation, Thomas [2], Dudgikar [13], and our 

implementation for DB2 uses the SaveItem procedure. This procedure is similar to the 

SaveTid procedure. The only difference being that here a CLOB object represents a list of 

item ids. The SaveItem procedure scans the input dataset and for every unique transaction, 

generates a CLOB object to represent the list of items bought in that transaction (called 

ItemList). The transaction along with its corresponding ItemList is then inserted into the 

ItemListTable relation, which has the following schema: (Tid: number, ItemList: CLOB). 

The ItemList column is then read in every pass for generation of k-candidate itemset. In our 

implementation, for Oracle, we skip the generation of ItemListTable and the CombinationK 

stored procedure has been modified. The CombinationK udf for DB2 uses the ItemList 

column from the ItemListTable to generate k-candidate itemsets while in Oracle, in any pas 

k, this stored procedure reads the input dataset ordered by “Tid” column and inserts all item 

ids, corresponding to a particular transaction in to a vector. This vector is then used to 

generate all the possible k-candidate itemsets. This is done to avoid the usage of CLOBs as 

working on CLOBs in Oracle has been found to be very time consuming and also the 

implementation in Oracle had to be done as stored procedure, which does not necessarily 

needs the inputs as CLOBs. 

 

Table 4.4 ItemListTable 

Tid ItemList 

1 “1,3,4” 

2 “2,3,5” 

3 “2,3,4,5”

4 “2,5” 
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Table 4.4 shows the corresponding ItemListTable produced by the SaveItem 

procedure for the input table shown in Table 4.1.  

 

 

Table 4.5, Table 4.6, Table 4.7 show the working of this approach as implemented in 

Oracle. In pass 2 and pass 3, Combination2 and Combination3 stored procedures read the 

input dataset (Table 4.5) and generate candidate itemsets of length 2 (Table 4.6) and length 3 

(Table 4.7) respectively. For DB2 the process of candidate itemset generation is as follows: 

In any pass k, for each tuple of ItemListTable, the CombinationK udf is invoked. This udf 

receives the ItemList as input and returns all k-item combinations. Figure 4.5 and Figure 4.6 

show the time taken for mining the dataset T5I2D100K with different support values, using 

this approach on Oracle and DB2 respectively. The legend “ItemLT” corresponds to the time 

taken in building the ItemListTable. Since building of ItemListTable is skipped for our 

Oracle implementation, the time taken for building ItemListTable for Oracle is zero. 

Table 4.5 Input Table 

Tid Item 
1 1 
1 3 
1 4 
2 2 
2 3 
2 4 
3 2 
3 3 
3 4 
3 5 
4 2 
4 5 

Table 4.6 C2 Table 

Item1 Item2
1 3 
1 4 
3 4 
2 3 
2 4 
3 4 
2 3 
2 4 
2 5 
3 4 
3 5 
4 5 
2 5 

Table 4.7 C3 Table 

Item1 Item2 Item3
1 3 4 
2 3 4 
2 3 4 
2 3 5 
2 4 5 
3 4 5 
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Figure 4.5 Gather Join on T5I2D100K 
(Oracle) 

Figure 4.6 Gather Join on T5I2D100K (DB2) 

4.3 Gather Count Approach (Gcnt) 

This approach has been implemented for Oracle only. This is a slight modification to 

the Gather Join approach. Here an attempt is done to count the support of candidate itemsets 

directly in the memory, so as to save the time spent in materializing the candidate itemsets 

and then counting their support. So in pass 2, Gcnt uses GatherCount2 procedure, which is a 

modification to the Combination2 procedure. In second pass, instead of simply generating all 

the candidate itemsets of length 2 (as is done in the Combination2 procedure in Gjn), the 

GatherCount2 procedure uses a 2 dimensional array to count the occurrence of each itemset 

and then only those itemsets that have support count > the user specified minimum support 

value are inserted in frequent itemsets table. This reduces the time taken for generating 

frequent itemsets of length 2 as it skips the materialization of C2 relation. The way it is done 

is that in pass 2 a 2-D array of dimensions [# of items] * [# of items] is build. All the cells of 

this array are initialized to zero. The GatherCount2 procedure generates all 2-item 

combinations (similar to the way it was done in Combination2 procedure of Gjn) and 

increments the count of the itemset in the array. Thus if an itemset {2,3} is generated, the 
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value in the cell [Item2][Item3] is incremented by 1. As the itemsets are generated in such a 

way that item in position 1 < the item in position 2, hence half of the cells in the 2-D array 

will always be zero. 

 

Table 4.8 2-D Array for Support Counting 

 Item1 Item2 Item3 Item4 Item5 

Item1 0 0 1 1 0 

Item2 0 0 2 2 2 

Item3 0 0 0 3 1 

Item4 0 0 0 0 1 

Item5 0 0 0 0 0 

 

Table 4.9 Relation F2 

Item1 Item2 Count

2 3 2 

2 4 2 

2 5 2 

3 4 3 

 

For the input dataset shown in Table 4.5, Table 4.8 shows the 2-Dimensional array 

generated by the GatherCount2 procedure. Once the entries in this array are filled, a pass is 

made over it to find out the number of times an item combination has been generated. If an 

item combination has a count > user specified support value, then it is inserted in the frequent 

itemsets’ relation. For the dataset shown Table 4.5 the F2 relation will contain only the 

itemsets shown in Table 4.9. 
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However this method of support counting cannot be used for higher passes, because 

building a 3 or more dimensional array would cost a whole lot of memory. Also creating an 

in-memory tree like data structure for representing the itemsets of length k and then trying to 

resolve keys at k-levels (during support counting) will not only consume a whole lot of 

memory but also shall be very time consuming. Hence for all passes greater than 2, Gcnt uses 

the same CombinationK procedure that are used by the Gjn approach.  

4.4 Analysis and Optimizations to the SQL-OR based approaches 

 

 
Figure 4.7 Naïve SQL-OR Based Approaches (Oracle) 

 

Figure 4.7 compares the time taken for mining by the naïve SQL-OR based 

approaches for support values of 0.10% on datasets T5I2D10K, T5I2D100K, T5I2D500K 

and T5I2D1000K on Oracle. From this figure it is very clear that of the 3 approaches, 

Vertical Tid has the worst performance (VerticalTid didn’t complete for datasets T5I2D500K 

and T5I2D1000K even after running for 24 hours). This is because Vtid blows up at the 

second pass, where the overall time taken in support counting of all the 2-itemsets by 

intersecting their TidLists is very large. So the optimization to Vtid would be to reduce the 
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number of TidLists processed by the CountAndK procedure in each pass. This optimization 

is explained in more detail in section 4.4.1.  

For the other two approaches, though they complete for large datasets but they take a 

whole lot of time. The difference in the candidate itemset generation process, as is done in 

these approaches and the way it is done for any SQL-92 based approach is that here in any 

pass k, all the items bought in a transaction (the complete ItemList) are used for generation of 

candidate itemsets. Whereas in the SQL-92 based approaches, in kth pass, only frequent 

itemsets of length k-1, were extended. The significance of this is in the number of candidate 

itemsets that are generated at each pass and the way support counting is done. In SQL-92 

based approaches, frequent itemsets of length k-1 are used to generate candidate itemsets of 

length k and then additional joins are done to consider only those candidate itemsets, whose 

subsets of length k-1 are also frequent (because of the subset property). This reduces the 

number of candidate itemsets that are generated at each pass significantly. But then for 

support counting input dataset had to be joined k-times with an additional join condition to 

identify that these items (constituting an itemset) where coming from same transaction. In 

Gjn and Gcnt, since the candidate itemsets are generated from the complete ItemList of a 

transaction, there is no need to join the input dataset. Just a single group by on the items 

constituting an itemset, with a having clause is sufficient to identify all those candidate 

itemsets that are frequent. However, in any pass k, there is no easy way to identify the 

frequent itemsets of length k-1 and use them selectively to generate candidate itemsets of 

length k; rather the entire ItemList is used for generation of k-candidate itemsets. This 

generates a huge number of unwanted candidate itemsets and hence an equivalent increase in 

the time for support counting. 



 55

Table 4.10 Number of Candidate Itemsets

Relation Number of 
Candidate Itemsets 

C2 1450790 

C3 2521176 

C4 3246582 

C5 3312486 

C6 0 

Figure 4.8 Ck and Fk for Gjn (DB2) 

 

Table 4.10 shows the number of candidate itemsets generated and Figure 4.8 

compares the time taken in generation of these candidate itemsets and their support counting 

for each pass for dataset T5I2D100K, for support value of 0.10% on DB2. These figures 

suggest that most of the time taken is in the generation of large number of candidate itemsets. 

So a way to optimize it would be to reduce the number of candidate itemsets generated. This 

optimization is explained in detail in the section 4.4.2 and 4.4.3. 

4.4.1 Improved VerticalTid Approach (IM_Vtid) 

In Vtid approach for support counting, in any pass k, the TidList of each item 

constituting an itemset is passed to the CountAndK procedure. As the length of the itemsets 

increases, the number of TidLists passed as parameter to the CountAndK procedure also 

increases (in pass k, CountAndK procedure receives k TidLists). So to enhance the process of 

support counting, this optimization does the following: In pass 2, frequent itemsets of length 

two are generated directly by performing a self-join of input dataset. The join condition being 

that the item from the first copy < the item from second copy and that both the items belong 

to the same Tid. This is same as is done in the Second pass optimization for SQL-92 based 
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approaches [2]. For pass 3 onwards, for those itemsets, whose count > minimum support 

value, the CountAndK procedure builds again a list of transactions (as a CLOB) that have 

been found common in all the TidLists to represent that itemset as a whole. (We have 

implemented this for Oracle only and have modified the CountAndK stored procedure to 

reflect the above change, hence for this optimization CountAndK procedure is used only in 

the reference of implementation for Oracle.) In pass k, the itemset along with its TidList is 

materialized in an intermediate relation. In the next pass (pass k+1), during the support 

counting of the candidate itemsets (which are one extension to the frequent itemsets of length 

k, that have been materialized in pass k), there is no need to pass the TidLists of all the items 

constituting this itemset. Instead, just two TidLists – one representing the k-itemset and other 

representing the item, extending this itemset are passed. This saves a whole lot of time, in 

searching the list of common transactions in the TidLists received by the CountAndK 

procedure.  

 

Table 4.11 Counting Support Using CountAnd3 Procedure 

Intermediate Relation 
Stored Procedure called 

Item1 Item2 Item3 TidList Count

CountAndK (“2,3,4”, “1,2,3”, “1,3”) 2 3 4 “3” 1 

CountAndK (“2,3,4”, “1,2,3”, “2,3,4”) 2 3 5 “2,3” 2 

CountAndK (“1,2,3”, “1,3”, “2,3,4”) 3 4 5 “3” 1 

 

 For example if C3 contains following itemsets {2,3,4}, {2,3,5} and {3,4,5} where 

Table 4.2 shows the TidList for each itemset of length 1, then for support counting, calls 

made to CountAnd3 procedure and the values inserted in the intermediate relation is shown 

in Table 4.11. For itemset {2,3,4} the list of transactions common in the TidList of items {2}, 
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{3} and {4} along with the count is inserted in the intermediate relation. In pass 4 if the C4 is 

{2,3,4,5} then the procedure CountAnd4 is called as: CountAnd4 (“3”,  “2,3,4”), where the 

first TidList represents the itemset {2,3,4} and the second TidList represents the itemset {5}. 

 

Figure 4.9 Percentage Gain of Im_Vtid 
over Vtid 

Figure 4.10 IM_Vtid on T5I2D1000K 

 

Figure 4.9 shows the performance gained (in percentages) by using Im_Vtid over 

Vtid for datasets T5I2D10K and T5I2D100K for support values of 0.20%, 0.15% and 0.10% 

(for other datasets Vtid didn’t complete). Figure 4.10 shows the overall time taken for mining 

the relation T5I2D1000K with IM_Vtid approach for different support values on Oracle. The 

legend TidLT represents the time taken in building the TidListTable from the input dataset 

(T5I2D1000K). This phase basically represents the time taken in building the TidList (a 

CLOB object) for each item id. From Figure 4.10 it is clear that time taken in building the 

TidListTable is a huge overhead. It accounts for nearly 60 to 80 percent of the total time 

spent for mining. Though this optimization is very effective but still the time taken for 

building the TidListTable shows that the efficiency of RDBMS in manipulating CLOBs is a 

bottleneck.  
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4.4.2 Improved Gather Join Approach (IM_Gjn) 

In Gjn approach, in any pass k, all the items that occur in a transaction are used for 

the generation of candidate itemsets of length k. In subsequent passes, the items, which did 

not participate in the generation of frequent itemsets, are not eliminated from the list of items 

for that transaction. (We know through the subset property that, if an itemset, “A” is not 

frequent, then any extension of itemset “A” will not be frequent). There is no easy way of 

scanning and eliminating all those items from the ItemList of a transaction that did not 

participate in the formation of frequent itemsets in any pass. As there is no pruning of the 

items, a huge number of unwanted candidate itemsets are generated in every pass, which is 

very time consuming. One possible way to optimize this would be that in any pass k, use the 

tuples of only those transactions, (instead of the entire input table) which have contributed to 

the generation of frequent itemsets in pass k-1. For this we use an intermediate relation 

FComb. FComb has the following schema: (Tid: number, item1: number, item2: number, … 

itemk-1: number). In any pass k, this relation contains the tuples of only those transactions 

whose items have contributed in the formation of frequent itemsets in pass k-1. This is done 

by joining the candidate itemsets table (Ck-1) with the frequent itemsets table (Fk-1). But for 

identifying the candidate itemsets that belong to same transaction, the CombinationK stored 

procedure has been modified (for Oracle) to insert the transaction id along with the item 

combinations that were generated from the ItemList of that transaction, in the Ck relation. In 

any pass k, FComb table is thus generated which is then used by the CombinationK stored 

procedure (instead of the input dataset) to generate candidate itemsets of length k. This 

optimization has been implemented for Oracle only, as this does not need the ItemList 

column to be materialized as a CLOB object; rather it can generate it in every pass using the 

FComb relation. The same wont be very effective with DB2, as the CombinationK udfs need 
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the input to be in the form of CLOB and creation of CLOB for every ItemList at each pass 

would be very time consuming.  

 

 
 

Figure 4.11 Gjn & IM_Gjn on T5I2D100K 
(Oracle) 

Figure 4.12 Size of Ck (Gjn & IM_Gjn) 

 

 

 
Figure 4.13 Performance Gain for IM_Gjn 
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Figure 4.11 compares the time required for mining the dataset T5I2D100K on Oracle 

for different support values, when the FComb table is materialized (IM_Gjn) and used for the 

generation of candidate itemsets and when input table is used as it is (Gjn) for generation of 

candidate itemset. We see that the total mining time by using FComb relation is quite less 

than the total mining time using the input dataset as it is. Also in Gjn, for different support 

values (0.20%, 0.15% and 0.10%) the time taken in each pass is nearly same. This is because 

in Gjn there is no pruning of candidate itemsets and then irrespective of the user specified 

support values the entire ItemList is used for generating all the candidate itemsets of length k. 

Figure 4.12 compares the number of candidate itemsets generated for relation T5I2D100K 

when input relation and when FComb relation are used by the CombinationK stored 

procedure for support value of 0.10%. From this figure, we see that in higher passes, when 

input relation is used then the number of candidate itemsets are significantly larger than when 

FComb relation is used which accounts for the difference in the total time taken for mining 

by these two methods. Figure 4.13 shows the performance gained (in percentages) by using 

IM_Gjn over Gjn on datasets T5I2D10K, T5I2D100K, T5I2D500K and T5I2D1000K for 

different support value. From this figure we see that on the different datasets, on an average 

the gain is 1500%. The SQL for generation of FComb table is shown below: 

 
Insert into FComb

Select I1.Tid, I2.item1, I2.item2,…, I2.itemk-1
From Ck-1 I1, Fk-1 I2
Where I1.item1 = I2.item1 And

I1.item2 = I2.item2 And

:

I1.itemk-1 = I2.itemk-1
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4.4.3 Improved Gather Count Approach (IM_Gcnt) 

As Gcnt approach is a slight modification of the Gjn approach, the optimization 

suggested for the Gjn can be used for Gcnt approach also. In Gcnt approach, the second pass 

uses a 2-Dimensioanl array to count the occurrence of all item combinations of length 2 and 

those item combinations whose count > user specified support value are directly inserted in 

the frequent itemsets’ relation (F2). As materialization of the candidate itemsets of length 2 

(C2) at this step is skipped hence in the third pass, F2 is joined with two copies of input 

dataset to generate FComb, which is then used by the modified Combination3 stored 

procedure. For subsequent passes, materialization of FComb relation is done in the same 

manner as is done for the IM_Gjn approach.  

Figure 4.14 compares the mining time for tables T5I2D1000K on Oracle using 

IM_Gcnt approach for different support values and also compares it with the IM_Gjn 

approach. This figure shows that, of both the approaches, IM_Gcnt performs better than 

IM_Gjn. This is because of the time saved in the second pass of the IM_Gcnt approach. For 

the rest of the passes, the time taken by both of them is almost same as both of them use the 

same modified CombinationK stored procedure for generation of candidate itemsets. Thus if 

memory is available for building the 2-D array then performance can be improved by 

counting the support in memory. Remember that the size of the array needed would be of the 

order of n2 where n is the number of distinct items in the dataset. Figure 4.15 shows the 

performance gained (in percentages) by using IM_Gcnt over Gcnt on datasets T5I2D10K, 

T5I2D100K, T5I2D500K and T5I2D1000K for different support values. From this figure we 

see that on an average the gain for different support values is 2500% on the different 

datasets. 
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Figure 4.14 Gjn and Gcnt for 
T5I2D1000K (Oracle) 

Figure 4.15 Performance Gain for IM_Gcnt 

4.5 Conclusion 

The SQL-OR based approaches seems to be quite simple in the way candidate 

itemsets are generated and there support is counted. But when compared with SQL-92 based 

approaches, they do not even come close. The time taken by the naïve SQL-OR based 

approaches, using stored procedures and udfs, is much more than the basic k-way join 

approach for support counting. This is because the data representation in SQL-92 based 

approaches is very simple which reduces their processing time. In the SQL-OR based 

approaches, the use of complex data structure though makes the process of mining so simple, 

also makes it quite inefficient, as time taken to process these data structures is very large. 

Among the naïve SQL-OR based approaches, we found that the Gather Count approach is the 

best while the VerticalTid approach has the worst performance. Figure 4.16 shows this for 

dataset T5I2D100K on Oracle and Figure 4.7 compares the total time taken by these 

approaches for different datasets. The Gather count outperforms the Gather join approach 

because in the second pass it uses main memory to do the support counting and hence skips 
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the generation of candidate itemsets of length 2. The performance of VerticalTid approach is 

worst. Here for each candidate itemset produced, CountAndK procedure has to be called, 

which intersects all the TidLists received as parameter to do the support counting. As 

processing CLOBs is costly, hence the overall time required by the VerticalTid approach is 

much more than other approaches.  

 

 

 
Figure 4.16 Vtid, Gjn and Gcnt on T5I2D100K (Oracle) 

 

The optimizations to these approaches, thus tries to mix the advantages of both: SQL-

92 and SQL-OR based approaches. The IM_Vtid approach uses second-pass optimization for 

pass two (simple SQL query), and then onwards uses CLOBs for support counting. Also the 

optimization reduces the number of TidLists (materialized as CLOB objects) that the 

procedure CountAndK has to process for each candidate itemset to two, by building the 

TidList for itemsets found frequent in pass k and using it for the purpose of support counting 

in the next pass. 

Similarly the other optimizations (IM_Gjn and IM_Gcnt), as implemented in Oracle, 

avoid the usage of CLOB objects and hence these improved versions seem to be very 
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promising. The Gather Count approach, which makes use of system memory in second pass 

for support counting, is an improvement over the optimization for the Gather Join approach. 

Figure 4.10 and Figure 4.14 shows the performance of IM_Vtid, IM_Gjn and IM_Gcnt for 

dataset T5I2D1000K for different support values. From these figures it is clear that IM_Gcnt 

is the best of the three SQL-OR approaches and their optimizations discussed in this chapter. 

 

 

 
Figure 4.17 Best Optimizations on T5I2D1000K (Oracle) 

 

Figure 4.17 compares the performance of the two best optimizations for SQL-OR 

based approaches (IM_Gjn & IM_Gcnt) with the two best optimizations for the SQL-92 

based approach (combination of all the optimization and Reuse of item combinations with 

Second pass optimization) on dataset T5I2D1000K for Oracle. This figure shows that, the 

optimized SQL-OR based approaches are very efficient and the IM_Gcnt approach is the best 

of all the optimizations seen so far. 
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CHAPTER 5  

OTHER CONTRIBUTIONS 

This chapter consists of other contributions that are needed for the generation of 

association rules and for performing large number of experiments. Section 5.1 deals with the 

process of generation of subsets of the frequent itemsets, needed during the rule generation 

phase. Section 5.2 explains the Configuration file that can be used in running this tool in a 

batch mode. Section 5.3 discusses the Log files that are generated during the mining process 

and how these logs can be formatted to give us a better understanding of the results. 

5.1 Subsets Generation 

The generation of rules subsumes the generation of subsets of all the itemsets 

identified as frequent itemsets after the end of the support counting phase. The frequent 

itemsets generated in pass k, are stored in relation Fk. For rule generation, all the frequent 

itemsets are collected in one single relation FrequentTable. The FrequentTable has the 

following attributes (item1, item2,…,itemK, Count and NullMarker). Here “K”is the user 

specified value (Stop Level), which represents the upper bound on the length of the largest 

frequent itemset that can be found during mining a given dataset. It can certainly be greater 

than the actual length of the largest frequent itemset found during mining that dataset. Since 

the frequent itemsets are of varying length, the NullMarker is used. It identifies the length of 

the frequent itemset. The count column in FrequentTable maintains the count of each 

frequent itemset found during support counting. This is later on used for calculating the 

confidence value of the rules associated with that frequent itemset. An example below shows 

the representation of the frequent itemsets in the relation FrequentTable. 
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Table 5.1 FrequentTable 

Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Count NullMarker

2 4 5 0 0 0 0 0 9 4 

 

Table 5.1 shows that FrequentTable has 10 columns – 8 (Item1, Item2,…, Item8) for 

storing the items constituting a frequent itemset and the 9th for storing its count value and 10th 

for its length. Here it is assumed that the maximum length of a frequent itemset will not be 

more than 8. Hence the FrequentTable has 8 columns for storing the item ids. The tuple 

shown in the FrequentTable represents the frequent itemset {2,4,5} and the NullMarker says 

that column 4 onwards, the values should be ignored for this frequent itemset. 

For rule generation, each tuple (representing a frequent itemset) from the 

FrequentTable is retrieved and all the subsets of that frequent itemset are generated to form 

the rules. The generation of subset and rules is as follows: 

 

Table 5.2 Rule Generation 

Position Pos1 Pos2 Pos3 Rule Count 
ItemSet 2 4 5 Antecedent Consequence 9 

0 0 1 2,4 5 9 
0 1 0 2,5 4 9 
0 1 1 2 4,5 9 
1 0 0 4,5 2 9 
1 0 1 4 2,5 9 

Sequence 

1 1 0 5 2,4 9 

 

For a frequent itemset of length n, we generate 2n –2 sequences of length n. These 

sequences are the binary representation of all the numbers from 1 to 2n – 1. Now if any 

sequence has a “0”, in position m that means the item id in position m (in the frequent 
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itemset) is in the antecedent of the rule. Similarly, if there is “1” at position m, then the item 

id at position m, is in the consequence of the rule. All the rules generated from a frequent 

itemsets inherit its support count (number of times that frequent itemset occurs in the entire 

dataset) Table 5.2 shows all the rules generated this way for frequent itemset {2,4,5}. So if 

the itemset {2,4} is in the antecedent and {5} in the consequence, the association rule is 

depicted as {2,4} � {5}.  

The rules are then inserted in the RulesTable relation and only those rules are finally 

displayed whose confidence satisfies the user specified value. The process of calculation of 

confidence is same as described by Dudgikar [13] but this process of rule generation has 

been found to be more efficient than using joins and complex SQL queries, as was done by 

Dudgikar [13] for generating subsets.   

5.2 Configuration File 

There are two ways for using this mining tool. The first is using the GUI and other is 

using the configuration file. Running this mining tool using GUI has been described in [13]. 

The GUI is useful for a non-expert (or a novice), but needs some human intervention to 

provide the configuration needed for mining. The configuration file is useful for automating 

the mining process. It consists of a number of parameters, which once specified correctly, 

can be used for mining in an unattended mode. It can also be used for mining several datasets 

with varying mining configurations without any user intervention. The variables defined in 

the configuration file are: 

RDBMS Name: The RDBMS name (Oracle or DB2) where the input relation is present. 

Database Name: The database that contains your input relation.  

UserId: The user who has access over the input relation. 

Password: The password associated with the UserId – needed to connect to the database. 
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Log File: The name of the Result Log file to generate. 

Approach Number: The approach number to be used for mining. It is an integer value. All the 

approaches and their optimizations are given a unique integer value to identify them. 

Table Name: The name of the input relation. 

Support: Minimum support value to be used for mining. This is in percentage. 

Confidence: The confidence value to be used for rule generation. It is an integer value (as 

percentage)  

Stop Level: The maximum number of passes to go before stopping. 

Debug: If true, then prints the debug statements. 

Skip Rules: If true, the program stops after the generation of frequent itemset. Rule 

generation is skipped. 

Reverse Mapping: If true, the results (item ids) are mapped back to their original names. 

Log Results to file: If true, trace values will be written to the Log File. 

For each experiment, the values of all these variables are written in a single line in the 

order of the variables shown above and are demarcated by a “$” sign. Thus if the 

configuration file contains several such lines, the mining algorithms will be invoked that 

many time. To skip a line, the line should start with the word “REM”. Below is an example 

of some mining configurations. 

REM Experiment on DB2. Approach -Kwj 

DB2$Sample$ntmining$ntmining$D_A10_T5I2D500K.txt$10$T5I2D500K$3.00%$50$8$fal

se$true$false$true 

Here the first line is ignored as it starts from the word “REM”. For second line values are 

used as follows: 

RDBMS to use: DB2 

Database Name: Sample 
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UserID: ntminig 

Password: ntmining 

Log File: D_A10_T5I2D500K.txt 

Approach Name: 10 (for K-way Join) 

Input Table: T5I2D500K. 

Support: 3.00% 

Confidence: 50 (percent) 

Stop Level: 8 

Debug: False (don’t print debug statements) 

Skip Rules: True (skip rule generation) 

Reverse Mapping: False (don’t do reverse mapping) 

Log result to File: True (write the log file). 

5.3 Writing Log File 

Data mining is a time-consuming process and at times it happens that for certain 

mining configurations, mining a given dataset may take 10 to 15 hrs or even more. Since we 

have to compare the performances of these approaches with others, after a given time limit, if 

the approach does not complete, the mining process has to be killed. Also for the purpose of 

studying these algorithms, we need to know about their progress during mining a data set. 

Hence it is very important to note down the time at each step of the algorithm and produce a 

log file containing enough information. This log file can then be processed to generate the 

useful information such as the number of passes completed, time taken for each pass, 

intermediate relations generated and cardinality of each of them, even if the mining process 

is killed before it completes. For this purpose, we generate two log files. One is the time log, 

which is written at the end of materialization of any relation generated during the mining 
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process. This log (TimeLog) contains the time stamp of when a particular pass of the 

approach started and if any intermediate relations where generated, what is there cardinality. 

Below is a sample content of these logging files. 

Contents of the TimeLog file: 

Start - Approach 50. Table = FinalInput Support =0 Wed Sep 11 17:47:11 CDT 2002 

// This indicates the start of VerticalTid approach on input relation FinalInput. 

// The support value, in terms of row count is 0. 

TIDT Wed Sep 11 17:47:11 CDT 2002 

F1 Wed Sep 11 17:47:11 CDT 2002 

C2=10 Wed Sep 11 17:47:11 CDT 2002 

F2 Wed Sep 11 17:47:12 CDT 2002 

C3=10 Wed Sep 11 17:47:12 CDT 2002 

F3 Wed Sep 11 17:47:12 CDT 2002 

C4=5 Wed Sep 11 17:47:12 CDT 2002 

F4 Wed Sep 11 17:47:13 CDT 2002 

C5=1 Wed Sep 11 17:47:13 CDT 2002 

F5 Wed Sep 11 17:47:13 CDT 2002 

C6=0 Wed Sep 11 17:47:14 CDT 2002 

F6 Wed Sep 11 17:47:14 CDT 2002 

C7 Wed Sep 11 17:47:14 CDT 2002 

F7 Wed Sep 11 17:47:14 CDT 2002 

C8 Wed Sep 11 17:47:14 CDT 2002 

F8 Wed Sep 11 17:47:14 CDT 2002 

Subsets Wed Sep 11 17:47:14 CDT 2002 

Rules Wed Sep 11 17:47:14 CDT 2002 
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The second column, in each row is the timestamp when all the tuples where inserted 

in that that particular relation. The first column contains the relation name and their 

cardinality. For those relation names, which do not have “=” character in them, they are 

either the relations for Frequent itemsets (Fk) or were not generated but are there as the 

variable Stop Level, in the configuration file, specifies that the experiment should run until 

that pass number. (We do so just to maintain a consistency in the output that is generated. 

The cardinalities of frequent itemsets relations are calculated at the end during writing the 

ResultLog.) The other log (ResultLog) is written only when a given approach completes 

successfully. This log contains the same information as the TimeLog but it is formatted in a 

different way. A Java program (LogProcess.java) is used over the ResultLog file for 

processing it and extracting only the needed information. It also formats the output so that it 

can be directly loaded in an Excel spreadsheet for the purpose of analysis. A sample content 

of the formatted output produced by the LogProcess.java file is shown below: 

Output of the LogProcess.java file: 

// The second column shows the cardinality of the corresponding relation. 

F1  786 

C2  308505 

F2  930 

C3  281 

F3  130 

C4  14 

F4  14 

C5  0 

F5  0 

C6  0 
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F6  0 

C7  0 

F7  0 

C8  0 

F8  0 

Subsets 2836 

Rules  589   

// The second column after this shows the time (in milliseconds) in generating the                  

// corresponding relation. 

F1  511 

C2  160301 

F2  17765 

C3  781 

F3  2294 

C4  621 

F4  2012 

C5  1052 

F5  1232 

C6  10 

F6  0 

C7  0 

F7  10 

C8  0 

F8  0 

Total Count 186599 
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Rule Gen 41049 

For each row from top, till the first column containing the value “Rules”, the second 

column shows the cardinality of the corresponding relation. The second column then 

onwards shows the time taken to generate that relation. The last two rows show the total time 

taken in generation of all the frequent itemsets and the time taken in the generation of rules, 

respectively. Time here is measured in milliseconds. 
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

We have compiled the results obtained from mining different relations into a tabular 

format. This can be converted into metadata and made available to the mining-optimizer so 

that it can use these values as a cue for choosing a particular optimization for mining a given 

input relation. Here it is assumed that we can easily figure out some of the characteristics of 

the input table. As for SQL-92 based approaches, since Kwj was found to be the best, results 

reported here are only for Kwj and its optimizations. For SQL-OR based approaches, as the 

optimizations were implemented on Oracle only, the summary table (Table 6.4) for 

optimizations to SQL-OR based approaches report results only for Oracle. 

Table 6.1 and Table 6.2, summarizes the ranking of the basic Kwj and its various 

optimizations based on their performance and also the trend seen in the performance of these 

optimizations in mining three relations (T5I2D1000K, T5I2D500K and T10I4D100K) with 

different support values on Oracle and IBM DB2/UDB respectively. For each of these 

relations, the summary table contains 3 rows. The first two rows specify the two best 

optimizations and the last row lists the worst optimization for that dataset. The format is the 

same for both – Oracle and IBM DB2/UDB. For the purpose of building the meta-data  Table 

6.3 and Table 6.4 provides a summary of results obtained from mining various other datasets 

on both IBM DB2/UDB and Oracle. The focus of this summary table is to aid the optimizer 

in picking up the proper optimization based on a couple of easily determinable constraints. 

These constraints are: RDBMS to use (if there is a choice), the cardinality of the input table, 

specified support, and if there is enough additional space to materialize the intermediate 

results. 
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Table 6.2 Trends in IBM DB2/UDB 

Table Name Ranking Supp = 0.20% Supp = 0.15% Supp = 0.10%
First RicSpo Spo RicSpo 

Second Spo RicSpo All T5I2D1000K 

Last RicPi SpoPi SpoPi 
First Spo Spo Spo 

Second RicSpo RicSpo RicSpo T5I2D500K 
Last SpoPi SpoPi SpoPi 

 Ranking Supp = 2.00% Supp = 1.00% Supp = 0.75%
First Spo RicSpo RicSpo 

T10I4D100K Second RicSpo All All 
 Last Ric Kwj Kwj 

 

Table 6.1 Trends in Oracle 

Table Name Ranking Supp = 0.20% Supp = 0.15% Supp = 0.10% 
First RicSpo RicSpo Kwj 

Second All All RicSpo T5I2D1000K 
Last RicPi RicPi RicPi 
First RicSpo RicSpo Spo 

Second Spo Spo RicSpo T5I2D500K 

Last RicPi RicPi RicPi 

 

 Ranking Supp = 2.00% Supp = 1.00% Supp = 0.75% Supp=0.33%
First All RicSpo RicSpo Ric 

Second Pi All All Spo T10I4D100K 

Last Ric RicPi RicPi RicSpo 
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 Table 6.3 Meta–data Table for SQL-92 Based Approaches 

DB2 Oracle Table Size 
T5I2DzzzK Extra 

Space 
No Extra 

Space 
Extra Space No Extra 

Space 

Support 
Value 

RicSpo Spo RicSpo Spo S = 0.20% 
RicSpo Spo RicSpo Spo S = 0.15% 10K 
RicSpo Spo Spo Spo S = 0.10% 
RicSpo Spo RicSpo Spo S = 0.20% 

Spo Spo RicSpo Spo S = 0.15% 50K 
Spo Spo Spo Spo S = 0.10% 

RicSpo Spo RicSpo Spo S = 0.20% 
Spo Spo RicSpo Spo S = 0.15% 100K 
Spo Spo Spo Spo S = 0.10% 
Spo Spo RicSpo Spo S = 0.20% 
Spo Spo RicSpo Spo S = 0.15% 500K 
Spo Spo Spo Spo S = 0.10% 

RicSpo Spo RicSpo Spo S = 0.20% 
Spo Spo RicSpo Spo S = 0.15% 1000K 
Spo Spo Kwj Kwj S = 0.10% 
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Table 6.4 Meta–data Table for SQL-OR Based Approaches 

DB2 Oracle Table Size 
T5I2DzzzK Extra 

Space 
No Extra 

Space 
Extra Space No Extra 

Space 

Support 
Value 

-NA- Gjn IM_Gcnt Gcnt S = 0.20% 

-NA- Gjn IM_Gcnt Gcnt S = 0.15% 10K 

-NA- Gjn IM_Gcnt Gcnt S = 0.10% 

-NA- Gjn IM_Gcnt Gcnt S = 0.20% 

-NA- Gjn IM_Gcnt Gcnt S = 0.15% 50K 

-NA- Gjn IM_Gcnt Gcnt S = 0.10% 

-NA- Gjn IM_Gcnt Gcnt S = 0.20% 

-NA- Gjn IM_Gcnt Gcnt S = 0.15% 100K 

-NA- Gjn IM_Gcnt Gcnt S = 0.10% 

-NA- Gjn IM_Gcnt Gcnt S = 0.20% 

-NA- Gjn IM_Gcnt Gcnt S = 0.15% 500K 

-NA- Gjn IM_Gcnt Gcnt S = 0.10% 

-NA- Gjn IM_Gcnt Gcnt S = 0.20% 

-NA- Gjn IM_Gcnt Gcnt S = 0.15% 1000K 

-NA- Gjn IM_Gcnt Gcnt S = 0.10% 

6.1 Conclusion and Future Work 

In this thesis, we have explored the various formulations (both SQL-92 and SQL-OR 

based), their combinations and possible optimizations for association rule mining. We have 

analytically and experimentally compared these approaches and their optimizations in an 

attempt to provide better insight to their effect on the total mining time for relations with 

varying characteristics and changing support values. Although combination of individual 

optimizations makes sense intuitively, our analysis and performance evaluation clearly 
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indicates that it is not a given. Also, depending upon the available storage, different choices 

of optimization may have to be used by the mining optimizer.  

From most of these experimental results it seems that the best optimization for SQL-

92 based approaches is the reuse of item combinations or reuse of item combinations 

combined with the second pass optimization when we have enough space (on disk) for 

materializing the intermediate relations (Combk). But when additional space is the issue, then 

second pass optimization is the best approach. On the other hand for low support values, use 

of pruned input along with reuse of item combinations was found to be the worst 

combination for most of the input tables.  

In SQL-OR based approaches, if we have enough memory to build a 2 dimensional 

array for counting support in the second pass, then Gather count approach has been found to 

be the best of all the naïve SQL-OR based approaches. If building an in memory 2-

dimensional array is a problem, then Gather join is a better alternative. The same implies 

when we have enough space to materialize intermediate relations (on disk). Hence when the 

optimizations to the SQL-OR based approaches is considered; the optimized Gather count 

approach (IM_Gcnt) is the best in all the optimizations. Also in most of the cases IM_Gcnt 

has been found to be the best of all the all the approaches and their optimizations (including 

those for SQL-92 based approaches). 

The work presented here tries to build this metadata by considering the different 

optimizations to the basic k-way join approach to association rule mining. The other 

possibility would be to use the SQL-OR features provided by these commercial RDBMS’s 

and develop association rule mining algorithms to use them more efficiently. A natural 

extension to this work would be trying to mix these optimizations at different passes i.e. a 

mixed optimization may consider using some SQL-92 based approach for support counting 

for first couple of passes and then switch to some SQL-OR approach for support counting. 
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We can then also try evaluating these mixed approaches with the current SQL-92 based 

implementations; if the results are comparable, it can be included in the meta-data. 

We have gathered some interesting observations on how the DBMSs generate plans 

for various queries that are used in mining. Many a times, the query plan chosen does not 

seem to be the right one as the estimated cost does not seem to match the actual cost. This 

has provided several insights into the working of the current optimizers and how they need to 

be modified. If it were possible to suggest hints for certain optimizations, that could have 

been exploited in goading the optimizer to generate more efficient plans. 

The long-term goal is to build a single optimizer for SQL queries that may include 

OLAP and Mining components.  Most of the results reported in this thesis will be useful for 

that purpose. 
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APPENDIX A  

WRITING STORED PROCEDURES FOR ORACLE 
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CHAPTER 7  

WRITING STORED PROCEDURES FOR ORACLE 

7.1 Writing Java Stored Procedures for Oracle 

Writing Java Stored Procedures for Oracle consists of following steps: 

1. Writing Java File 

2. Loading Java Class File in Oracle Server 

3. Publishing the Java Methods for calling them. 

4. Calling the stored Procedure. 

1. Writing Java File (say TestManager.java) 

Implement all database updations that have to be done (similar / related things) as 

methods of this file. This is very similar to any java file. The stored procedures are generally 

tested by first writing them as any general java file and only after verification, we load it in 

the Oracle Server. The only thing that needs to be changed while loading the file, is that all 

statements, where “Connection” object are created, are changed to as shown below: 

Connection conn = DriverManager.getConnection("jdbc:default:connection:"); 

2. Loading Java File in Oracle Server 

Once the Java file to be loaded has been implemented and tested, then loading can be 

done from any client. We use the “loadjava” command for this. An example is shown below: 

loadjava -u scott/tiger@paris:1521:orcl -v -r -t TestManager.java 

Similarly, if this file has to be dropped from the Oracle Server, use the “dropjava” 

command. Example below shows the syntax for dropjava: 

dropjava -u scott/tiger@paris:1521:orcl -v  -t TestManager.java 

3. Publishing the Java Method for calling them. 
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After loading the Java stored procedures, you must publish the methods of your java 

program that you want to use as stored procedures, in the Oracle data dictionary. To do that, 

you write call specs, which map Java method names, parameter types, and return types to 

their SQL counterparts. 

The methods in the Java class TestManager.class are logically related, so you can 

group their call specs in a PL/SQL package. First, you create the package spec, as follows: 
CREATE OR REPLACE PACKAGE t_mgr AS 
  PROCEDURE Some_method1 (param1 type1, param2  type2,…, paramN  typeN); 
  PROCEDURE Some_method2 (param1 type1, param2  type2,…, paramN  typeN); 
      : 
  PROCEDURE Some_methodN (param1 type1, param2  type2,…, paramN  typeN); 
End t_mgr; 

Where Some_method1, Some_method2,…, Some_methodN are the method names 

you want to use for registering your Java methods (They can be different than the method 

names used  in your TestManager.Java file). These methods names will be used to invoke 

your stored procedures. param1, param2,…, paramN are the parameters passed to these 

methods. type1, type2,…, typeN are the corresponding data types for these parameters. These 

are PL/SQL data types that are equivalent of the Java data types. For example for “int” data 

type the equivalent PL/SQL data type is NUMBER and for String it is VARCHAR2. 

Then, you create the package body as shown below, by writing call specs for the Java 

methods: 

CREATE OR REPLACE PACKAGE BODY t_mgr AS 
PROCEDURE Some_method1 (param1 type1, param2  type2,…, paramN  typeN) 
AS   LANGUAGE JAVA  
NAME 'TestManager.method1(Type1, Type2,…, TypeN)'; 
 
PROCEDURE Some_method2 (param1 type1, param2  type2,…, paramN  typeN) 
AS   LANGUAGE JAVA 
NAME 'TestManager.method1(Type1, Type2,…, TypeN)'; 
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PROCEDURE Some_methodN (param1 type1, param2  type2,…, paramN  typeN) 
AS   LANGUAGE JAVA 
NAME 'TestManager.methodN(Type1, Type2,…, TypeN)'; 

END t_mgr; 

Here Type1, Typ2, TypeN are the Java data types (same as the ones used in 

corresponding methods of your Java Implementation File. 

4. Calling the Stored Procedures 

Now, you can call your Java stored procedures from the top level and from database 

triggers, SQL DML statements, and PL/SQL blocks. To reference the stored procedures in 

the package t_mgr, you must use dot notation. 

Example: t_mgr.Some_method1(2010, 'camshaft', 245.00); 

7.2 Inserting CLOBS in an Oracle Table or Updating Inside a Result Set. 

Inserting new CLOBS in Oracle Table isn’t very straightforward. Following describes 

the steps to follow for writing CLOBS. 

1. Insert Empty CLOBS in the table 

If suppose the table used is MyTable and it has following schema (item: int, cnt: int 

and TidList: ClOBS) then following SQL shows how to do this: 

INSERT INTO MyTable VALUES (item1, 0, EMPTY_CLOB())

(here item1 is a variable of type int) 

2. Lock the tuple in which you want to write the CLOB  

The following SQL locks the rows for updation: 

 
ResultSet rset = SELECT cnt, TidList

FROM myTable

WHERE item = pitem

FOR UPDATE;
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Here pitem is a variable containing the value of the item used to uniquely identify a 

single tuple in the relation MyTable. The “For Update” clause locks the particular tuple 

identified by the “Select” clause. 

 

3. Get the handler to the CLOB object in the tuple and update it. 

To update the column having CLOB values, first we need to get the handler to that 

CLOB and then update it using that handler. The following JDBC code is used for the same. 

 
try

{

oracle.sql.CLOB c = null;

while(rset.next())

c = ((CLOB)(rset.getObject(2)));

java.io.Writer w = c.getCharacterOutputStream();

w.write(tidString);

w.close();

}

catch (SQLException sqlex)

{

sqlex.printStackTrace();

} 

 

4. Update any other column and return the Update Lock 

For updating any other column of the MyTable relation, use the “Update” SQL. Once 

the row is updated, the Lock on it is released by the RDBMS. An example of the same is 

shown below: 

 

UPDATE MyTable SET cnt = count where item = pitem

This updates the cnt column and releases the lock from the tuple uniquely identified 

by the item column. 
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7.3 Code for Different Stored Procedures 

This section lists the Java code used in implanting the stored procedures in Oracle. 

7.3.1 CountAndK Stored Procedure 

This stored procedure, receives k TidLists (CLOB objects) and returns the count of 

common transactions in them. This method inserts all the inputs received in a Vector and 

passes it to the CountK method, which basically does the counting of the common 

transactions. The Java code below shows this for CountAnd2 procedure, which is mapped to 

Count2 method of the Java Class file. 

 
public static int Count2(oracle.sql.CLOB c1, oracle.sql.CLOB c2) 
{ 
    Vector input = new Vector(); 
    input.addElement(c1); 
    input.addElement(c2); 
    int count = CountK(input); 
    return count; 
} 
 
 
private static int CountK(Vector in) 
{ 
    int K = in.size(); 
    StringBuffer tidBuffer = new StringBuffer(); 
    String tidString[] = new String[K]; 
    Vector[] tidVector = new Vector[K]; 
    int count =0; 
    try 
    { 
      for(int i =0; i< K; i++) 
      { 
        Reader r = ((CLOB)in.elementAt(i)).getCharacterStream(); 
        int ch =0; 
        while((ch = r.read()) > 0) 
             tidBuffer.append((char)ch); 
     
        tidString[i] = tidBuffer.toString(); 
        r.close(); 
        tidBuffer.delete(0,tidBuffer.length()); 
     
        StringTokenizer st1 = new StringTokenizer(tidString[i], ","); 
        tidVector[i] = new Vector(); 
         
        while(st1.hasMoreTokens()) 
            tidVector[i].addElement(st1.nextToken()); 
      } 
    } 
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    catch (IOException ioex) 
    { 
      ioex.printStackTrace(); 
    } 
    catch(SQLException sqlex) 
    { 
      sqlex.printStackTrace(); 
    } 
    boolean isPresent; 
     
    for(int i =0; i < tidVector[0].size(); i++) 
    { 
      String tid = tidVector[0].elementAt(i).toString(); 
      isPresent = true; 
      int j = 1; 
      while((j < in.size()) &&(isPresent)) 
      { 
        if(! (tidVector[j].contains(tid))) 
          isPresent = false; 
        j++; 
      } 
      if(isPresent) 
        count++; 
      else 
        isPresent = true; 
    } 
    return count; 
} 
 

7.3.2 CombinationK Stored Procedure 

The CombinationK stored procedure receives the name of the input dataset as a 

parameter. It reads the input dataset ordered by Tid and collects all the item ids belonging to 

a transaction in a Vector and generates items combinations of length K from it. This is shown 

by the Java code below for Combination2 procedure. 

 
public static void Combination2(String tabName, String type) 
{ 
  String sql = ""; 
  ResultSet rSet = null; 
  Statement stmt = null, stmt2 = null; 
  Connection conn = null; 
  PreparedStatement pstmt = null; 
  int v_tid = 0, v_item = 0, v_pTid= -1; 
   
  itemList.removeAllElements(); 
  try 
  { 
    conn = DriverManager.getConnection(url2); 
    sql = "Select * from " + tabName + " order by tid"; 
    String sql2 = "Insert into C values (?, ?, ?)"; 
    stmt = conn.createStatement(); 
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    pstmt = conn.prepareStatement(sql2); 
  } 
  catch(SQLException sqlex1) 
  { 
     sqlex1.printStackTrace(); 
  } 
  try 
  { 
    rSet = stmt.executeQuery(sql); 
    rSet.next(); 
    v_tid = rSet.getInt(1); 
    v_item = rSet.getInt(2); 
    v_pTid = v_tid; 
    itemList.addElement(new Integer(v_item)); 
 
    while(rSet.next()) 
    { 
      v_tid = rSet.getInt(1); 
      v_item = rSet.getInt(2); 
      if(v_pTid == v_tid) 
        insertIntoVector(v_item); 
      else 
      { 
        for(int i =0; i < itemList.size()-1; i++) 
          for(int j = i+1; j < itemList.size(); j++) 
          { 
            pstmt.setInt(1, v_pTid); 
            pstmt.setInt(2, ((Integer)(itemList.elementAt(i))).intValue()); 
            pstmt.setInt(3, ((Integer)(itemList.elementAt(j))).intValue()); 
            pstmt.executeUpdate(); 
          } 
        itemList.removeAllElements(); 
        itemList.addElement(new Integer(v_item)); 
        v_pTid = v_tid; 
      } 
    } 
       
    for(int i =0; i < itemList.size()-1; i++) 
      for(int j = i+1; j < itemList.size(); j++) 
      { 
        pstmt.setInt(1, v_pTid); 
        pstmt.setInt(2, ((Integer)(itemList.elementAt(i))).intValue()); 
        pstmt.setInt(3, ((Integer)(itemList.elementAt(j))).intValue()); 
        pstmt.executeUpdate(); 
    } 
    itemList.removeAllElements(); 
       
    rSet.close(); 
    stmt.close(); 
    pstmt.close(); 
    conn.close(); 
  } 
  catch(SQLException e) 
  { 
    System.err.println(e.getMessage()); 
    e.printStackTrace(); 
  } 
}  
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APPENDIX B 

WRITING USER DEFINED FUNCTIONS FOR IBM DB2/UDB 
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CHAPTER 8  

WRITING USER DEFINED FUNCTIONS FOR IBM DB2/UDB 

DB2 udfs can be written as a Java file. A basic difference with any Java file and the 

one that implements udfs is that the Java class has to extend from COM.ibm.db2.app.UDF 

class. There are two types of user defined functions in DB2 – column udfs and table udfs. 

Following section covers writing DB2 udfs. 

8.1 Writing column udfs 

A column udf in DB2 is the one that can take some input parameters and return a 

single value or a column. The value that is returned from a column udf is also mentioned in 

the parameter list of the column udf along with the input parameters. It is implemented as a 

method of a Java file that extends from COM.ibm.db2.app.UDF class, which provides with 

setter methods to set the value of the return parameter. The Java code below shows the 

CountAnd2 udf. This is implemented as CountAnd2 method of the Java class file and like the 

Oracle CountAndK stored procedure, calls CountK method to do the actually counting. 

 
public void CountAnd2(Clob tids1, Clob tids2, int count) throws Exception 
  { 
    vArray.addElement(tids1); 
    vArray.addElement(tids2); 
    count = CountK(vArray); 
    if(needToSet(3)) set(3,count); // to set the value of the third (output) parameter 
    vArray.removeAllElements(); 
  } 
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8.2 Writing table udfs 

Table udfs are used to return multiple values that correspond to the columns of an 

intermediate relation. This intermediate relation can be used in any SQL as any other base 

relation.  The way table udfs are called internally by the system is very different from the 

way it is done for column udfs. Table udfs have 5 distinct call types. These are explained 

below. 

SQLUDF_TF_FIRST: The table udf is invoked with this call type, when it is called 

for the first time by DB2. This is the best place to initialize variables that are independent to 

the type of call. 

Once the udf is called with the SQLUDF_TF_FIRST call type, then for every input 

tuple a call to udf is made. It is called by DB2 with the following 3 call types in the given 

order: 

 SQLUDF_TF_OPEN: This section of udf is place for initializing variables that are 

useful to that particular call. 

SQLUDF_TF_FETCH: Until the udf is called for the next input tuple, the DB2 keeps 

invoking the udf, with this call type. The significance of this is that, the table udfs can return 

more than one tuple for every one input tuple. For returning a tuple, once the output variables 

are set, the state of the udf is set to “00000”. This indicates a successful return of a tuple. 

Once the condition to read the next tuple is set, the state of the udf is set to “02000”. If the 

DB2 finds that the state of the udf is set to “02000”, it calls the udf for the next input tuple. 

SQLUDF_TF_CLOSE: Before invoking the udf again for the next input tuple, the udf 

is called with this call type. The code in this section of the udf is used to reset the values of 

any initialization variables. 

Finally when the udf has been invoked for all the input values, then before returning, 

it calls the udf last time with the call type set to SQLUDF_TF_FINAL. 
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SQLUDF_TF_FINAL: The code in this section is executed to finally clear all the 

variables initialized for this udf. 

In table udfs, like the column udfs, the column values to be returned are listed in the 

parameter list along with the input parameter. The Java code below shows the 

implementation for SaveTid udf. This udf receives 3 inputs: item, tid and the total number of 

tuples for which it will be invoked. For each input tuple the udf returns three values – the 

item id, list of common transactions (TidList) and their count. 

 
public void SaveTid (int item, int tid, int tableSize, int T_item, int T_cnt,  
                      COM.ibm.db2.app.Clob TidList) throws Exception 
{ 
    switch (getCallType()) 
    { 
      case SQLUDF_TF_FIRST: 
          iter = 0; // this for the first time 
          tupleNum = 0; 
          prevItem = -1; 
          break; 
      case SQLUDF_TF_OPEN: 
            iter = 0; // so that the FETCH is invoked only once for every input tuple 
            tupleNum++; 
           break; 
      case SQLUDF_TF_FETCH: 
            if(iter == 1) 
              setSQLstate("02000"); // read next tuple from the input 
            else 
            { 
              if(tupleNum == 1) // if this is the first tuple from the input table 
              { 
                v1.addElement(new Integer(tid)); 
                prevItem = item; 
                iter++; 
              } 
              else 
              if(prevItem == item) 
              { 
                if(tupleNum == tableSize) 
                {// if this is the last tuple of the input table 
                // add the last element to the vector and write it to the CLOB 
                  v1.addElement(new Integer(tid)); 
                  tidString = v1.elementAt(0).toString(); 
                  for (int i = 1; i < v1.size(); i ++) 
                    tidString = tidString + "," + v1.elementAt(i).toString(); 
                  returnClob = COM.ibm.db2.app.Lob.newClob(); 
                  resultWriter = returnClob.getWriter(); 
                  resultWriter.write(tidString.toCharArray()); 
                  if(needToSet(4)) set(4,prevItem); 
                  if(needToSet(5)) set(5,v1.size()); 
                  if(needToSet(5)) set(6,returnClob); 
                  setSQLstate("00000"); // write a tuple to the output. 
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                  iter++; 
                } 
                else 
                { 
                  v1.addElement(new Integer(tid)); 
                  iter++; 
                } 
              } 
              else // prevItem != item 
              { 
                tidString = v1.elementAt(0).toString(); 
                for (int i = 1; i < v1.size(); i ++) 
                  tidString = tidString + "," + v1.elementAt(i).toString(); 
                returnClob = COM.ibm.db2.app.Lob.newClob(); 
                resultWriter = returnClob.getWriter(); 
                resultWriter.write(tidString.toCharArray()); 
                if(needToSet(4)) set(4,prevItem); 
                if(needToSet(5)) set(5,v1.size()); 
                if(needToSet(5)) set(6,returnClob); 
                setSQLstate("00000"); // write a tuple to the output. 
                v1.removeAllElements(); 
                v1.addElement(new Integer(tid)); 
                prevItem = item; 
                if(tupleNum == tableSize) 
                { 
                  tidString = v1.elementAt(0).toString(); 
                  for (int i = 1; i < v1.size(); i ++) 
                    tidString = tidString + "," + v1.elementAt(i).toString(); 
                  returnClob = COM.ibm.db2.app.Lob.newClob(); 
                  resultWriter = returnClob.getWriter(); 
                  resultWriter.write(tidString.toCharArray()); 
                  if(needToSet(4)) set(4,prevItem); 
                  if(needToSet(5)) set(5,v1.size()); 
                  if(needToSet(5)) set(6,returnClob); 
                  setSQLstate("00000"); // write a tuple to the output. 
                } 
                iter++; 
              } 
            } 
           break; 
      case SQLUDF_TF_CLOSE: 
           break; 
      case SQLUDF_TF_FINAL: 
            v1.removeAllElements(); 
           break; 
    } 
  } // end of saveTid Method 
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