
A PERSISTENT AND RECOVERABLE

MIDDLEWARE APPROACH TO

ALERT DISTRIBUTION

The members of the Committee approve the masters
thesis of Nishanth Reddy Vontela

Sharma Chakravarthy ____________________________________
Supervising Professor

Alp Aslandogan ____________________________________

Leonidas Fegaras ____________________________________

A PERSISTENT AND RECOVERABLE

MIDDLEWARE APPROACH TO

ALERT DISTRIBUTION

by

NISHANTH REDDY VONTELA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2002

To my friends, family and loved ones for their consistent support,
Encouragement and love

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Sharma Chakravarthy, for his great

guidance and support, and for giving me an opportunity to work on this project. I am also

thankful to Dr. Leonidas Fegaras and Dr. Alp Aslandogan for serving on my committee.

I would like to thank Pratyush Mishra for maintaining a well-administered

research environment and being so helpful at times of need. Thanks are due to all

members of ITLAB for their invaluable help and fruitful discussions during the

implementation of this work. Also I would like to thank all my friends for their support

and encouragement.

This work was supported, in part, by the office of Naval Research, the SPAWAR

System center-San Diego & by the Rome Laboratory (grant F30602-01-2-05430), and by

NSF (grant IIS-0123730).

I also thank my parents and sister for their constant support and encouragement

throughout my academic career.
March 29, 2002

iv

ABSTRACT

A PERSISTENT AND RECOVERABLE

MIDDLEWARE APPROACH TO

ALERT DISTRIBUTION

Publication No.________

Nishanth Reddy Vontela, M.S.

The University of Texas at Arlington, 2002

Supervising Professor: Sharma Chakravarthy

Notification Systems attempt to provide a mechanism for signaling the occurrence

of an event and informing interested parties through alerts or messages. Typically, they

support a mechanism for dynamically registering an interest in some types of events, thus

removing the necessity of establishing dependency relationships between event producers

and consumers at build time. This selective delivery of notification is fundamental:

conventional broadcast and multicast communications mechanisms fail in large-scale

distributed environments due to the sheer number of recipients. A subscription-based

service can drastically reduce the required fan out.

Decoupling the production and consumption of information in software systems

facilitates extensibility by removing explicit dependencies between components. So

called "publish/subscribe" notification architectures are comprised of undirected

production, and subscription to events by their characteristics rather than their source.

v

vi

Alert Server is such a notification service, being developed at ITLAB. This thesis

discusses its design, implementation and use.

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. iv

ABSTRACT ... v

LIST OF FIGURES .. ix

LIST OF TABLES .. x

Chapter

1. INTRODUCTION ... 1

1.1. Problems and Requirements .. 2

1.2. Requirements for Alert Server .. 4

1.3. Requirements for Alert Clients .. 6

1.4. Approaches for Message Distribution ... 6

1.5. Need for Messaging System .. 9

1.6. Existing messaging systems .. 10
2. OVERVIEW OF RELATED WORK ... 13

2.1. Java Message Queue .. 13

2.2. IBM MQ Series .. 14

2.3. Sonic MQ ... 15

2.4. Global Event Detector (GED) ... 17

2.5. CORBA .. 18

3. DESIGN OF ALERT SERVER ... 19

3.1. Functionality to be supported .. 20

3.2. Alert ... 20

 vii

 viii

3.3. Acknowledgment ... 25

3.4. Receipt ... 25

3.5. Alert Server Architecture ... 25

3.6. Subscription and unsubscription .. 32

3.7. Queuing and distribution of alerts ... 34

3.8. Multithreading the Alert Server ... 42

3.9. Synchronization Issues .. 44

 3.10. Types of Locks .. 45

 3.11. Other data structures .. 48

4. IMPLEMENTATION OF ALERT SERVER .. 50

4.1. Alert Server Communication Interface .. 50

4.2. Workings of threads .. 53

4.3. Implementation of Locks ... 66

5. DESIGN AND IMPLEMENTATION
 OF PROXYSERVER ... 68

5.1. Design Issues ... 68

5.2. Architecture of Proxy Server ... 70

5.3. Implementation Details .. 73

5.4. Initialization of Proxy Server .. 79

6. CONCLUSIONS AND FUTURE WORK ... 57

6.1. Conclusions ... 81

6.2. Future Works ... 82

REFERENCES .. 83

BIOGRAPHICAL INFORMATION ... 85

LIST OF FIGURES

Figure Page

1.1. Messaging in an application .. 1

1.2. Virtually fully connected networks ... 4

3.1. An Example of alert format ... 24

3.2. Point-to-point messaging model .. 26

3.3. Publish/Subscribe messaging model .. 27

3.4. Contents of log file .. 29

3.5. Consumer table data structures .. 32

3.6. Priority Queue Data Structure ... 35

3.7. Sweeping Algorithm .. 39

3.8. Alert Server Architecture ... 42

4.1. Priority Queue data structure in Alert Inserted Mode ... 55

4.2. Priority Queue data structure in Consumer Added Mode 57

4.2. Class Diagram of lock package
 in Alert Server ... 67

5.1. Multithreading vs Multitasking ... 69

5.2. Architecture of Proxy Server ... 70

5.3. Details of Thread Handling ... 74

 ix

LIST OF TABLES

Table Page

3.1. Data structures and their locks .. 48

4.1. Scenarios in sweeping consumer lists ... 63

 x

CHAPTER 1

INTRODUCTION

Enterprise messaging products (or as they are sometimes called, Message

Oriented Middleware or MOM products) are becoming an essential component for

integrating intra-company operations. They allow separate business components to be

combined into a reliable, yet flexible, system. In addition to the traditional MOM

vendors, several database vendors and a number of Internet related companies also

provide enterprise-messaging products.

Parts
Inventory

PartsInventory Factory

Sales Accounting

Parts
Order

Figure 1.1. Messaging in an application.

MOMs have a lot of applications. For example, components of an enterprise

application for an automobile manufacturer can use a message oriented middleware for

the following:

1

2

• The inventory component can send a message to the factory component when

the inventory level for a product goes below a certain level, so the factory can

make more cars.

• The factory component can send a message to the parts components so that

the factory can assemble the parts it needs.

• The parts components in turn can send messages to their own inventory and

order components to update their inventories and order new parts from

suppliers.

• Both the factory and parts components can send messages to the accounting

component to update their budget numbers.

• The business can publish updated catalog items to its sales force.

Using messaging for these tasks allows the different components to interact with

each other efficiently, without tying up network or other resources. Manufacturing is only

one example of how an enterprise can use messaging system and its API. This can also be

used in financial services applications; health services applications and many other

applications. Thus the basic aim in all these applications is the distribution of processing

across multiple processors and platforms. These applications can be built using many

alternative approaches. This thesis discusses the design and implementation of one such

messaging system called Alert Server.

1.1 Problems and Requirements

In traditional network applications, when two processes must communicate with

each other, they need network addresses to begin communicating. If a process wants to

send a message to many other processes, it first would need to know the physical network

addresses of the other processes and then create a connection to all those processes. This

architecture does not scale well because configuration is complicated and tedious. More

3

over these messages can be delivered in any order and these processes have to keep track

for what messages they are interested. These processes can be any client applications on

the same host or different hosts on a network that can produce messages or consume

messages or do both. This is shown in figure 1.2. It is in this scenario that Alert Server is

needed where in different client applications can pass the alerts to the Alert Server and

the server distributes the alerts to only those client applications that are interested in these

alerts. In our case these client applications can be a Global Event Detector (GED) or

Local Event Detector (LED) [1, 2]. GED and LED, developed at Sentinel, are used to

provide active capabilities to traditional databases. The clients can generate events and

send them either to LED for detection or to Alert Server to be just passed on to other

interested clients. Apart from all these, it is also essential to build a system using openly

available components and not to commit to any specific vendor.

This thesis discusses the design and implementation of a messaging system called

Alert Server. There are several motivations behind our objective of designing and

implementing a message distribution mechanism even though we have many existing

messaging systems (like Java Message Queue (JMQ), IBM MQ Series etc). Firstly, not

all messaging system implementations support all operating systems and protocols.

Secondly, internal infrastructure of these systems cannot be modified to achieve our goals

that are explained in the next sections. Thirdly, there is significant overhead incurred if

we were to build the Alert Server on top of these existing systems, as we do not require

all the functionalities supported by them. Also, most of the messaging systems do not

support priority-based delivery of alerts and recovery from crashes.

4

Messaging
System

Process B

Process C

Process D

Process E

Process A

Host 3

Host 4 Host 2

Host 1

Figure 1.2. Virtually fully connected networks.

1.2 Requirements for Alert Server

If the Alert Server provided a union of all the existing features of messaging

systems it would be much too complicated for its intended users and would suffer from

considerable unnecessary overhead. It is crucial that Alert Server includes the

functionality needed to implement sophisticated enterprise applications. The alert server

attempts to minimize the set of concepts a programmer must learn to use enterprise-

messaging products. Alert Server strives to maximize portability and also assures

priority-based delivery of alerts. Some of the requirements of Alert Server are:

1. Alert Server should implement a publish/subscribe model. In publish/subscribe,

programs subscribe (register interest in) a subject. Programs also publish (send)

messages to the subject. Once a program has subscribed to a subject, the program will

receive any messages published to that subject in the distributed application. The

application developer defines subjects. This approach is most appropriate for highly

distributed applications where fault tolerance and high performance is needed.

5

2. Alert Server should deliver alerts before they expire (time-to-live) based on priority.

The Alert Server should guarantee the delivery of alerts on time. This is an important

requirement since a client may not be interested in some of the alerts after sometime.

3. Dynamic delivery of alerts between multiple producers and consumers based on their

registration/subscription topics. The delivery and publishing of alerts should be

asynchronous. Clients should not block while waiting for alerts.

4. Alerts (messages) and acknowledges should be persisted to handle crash recovery of

server. Alerts should be persisted when specified by user. Alert Server should be able

to recover from crashes. It should have the ability to run in normal and crash recovery

mode.

5. Privacy and integrity of alerts should be maintained while passing between client

applications. Privacy of messages based on the relative importance of alerts.

6. C, C++ and JAVA clients should be handled equally. Alerts should be distributed

irrespective of the programming language of the client applications.

7. Alert distribution should be possible in a distributed environment.

8. Dynamic monitoring and administration of (multiple) alert servers should be possible.

9. Alert Server should be integrated with LED/GED [1, 3] so that clients can

publish/subscribe for alerts and produce/consume events.

10. Consumers should be able to subscribe to multiple topics in one request.

1.3 Requirements of Alert Clients

Alert client can be either a producer or a consumer or both. The alert producer

does not necessarily need to know who the receiver(s) of the message will be. The

producer “publishes/sends” the messages to the Alert Server that is responsible for the

distribution of messages. Alert Consumers are responsible for processing and responding

(or taking other appropriate actions) to the alert (message) or a set of alerts by

6

subscribing/registering through the alert server. Alert Server provides APIs to implement

the clients needed. An important goal in this case is to minimize the work needed to

implement a producer or a consumer.

1.4 Approaches for message distribution

1.4.1 Client/Server Architecture with RPC

In this architecture, different applications communicate by making remote

procedure calls in which the messages are sent. Remote Procedure Calls (RPC) [4] are

embedded within client applications. Because they are embedded, RPCs do not stand

alone as a discreet middleware layer. When the client program is compiled, the compiler

creates a local stub for the client portion and another stub for the server portion of the

application. These stubs are invoked when the application requires a remote function and

typically support synchronous calls between clients and servers. Thus this architecture

reduces the complexity of developing applications that span multiple operating systems

and network protocols by insulating the application developer from the details of the

various operating system and network interfaces [5]. However, RPC is appropriate for

client/server applications in which the client can issue a request and wait for the server's

response before continuing its own processing. Because most RPC implementations do

not support peer-to-peer, or asynchronous client/server interaction, RPC is not well suited

for applications involving distributed objects or object-oriented programming.

Asynchronous and synchronous mechanisms each have strengths and weaknesses that

should be considered when designing any specific application. In contrast to

asynchronous mechanisms employed by Message-Oriented Middleware, the use of a

synchronous request-reply mechanism in RPC requires that the client and server are

always available and functioning (i.e., the client or server is not blocked). In order to

allow a client/server application to recover from a blocked condition, an implementation

7

of a RPC is required to provide mechanisms such as error messages, request timers,

retransmissions, or redirection to an alternate server. The complexity of the application

using a RPC is dependent on the sophistication of the specific RPC implementation (i.e.,

the more sophisticated the recovery mechanisms supported by RPC, the less complex the

application utilizing the RPC is required to be). RPCs that implement asynchronous

mechanisms are very few and are difficult (complex) to implement. When utilizing RPC

over a distributed network, the performance (or load) of the network should be

considered. One of the strengths of RPC is that the synchronous, blocking mechanism of

RPC guards against overloading a network, unlike the asynchronous mechanism of

Message-Oriented Middleware (MOM) [6]. However, when recovery mechanisms, such

as retransmissions, are employed by an RPC application, the resulting load on a network

may increase, making the application inappropriate for a congested network. Also,

because RPC uses static routing tables established at compile-time, the ability to perform

load balancing across a network is difficult and should be considered when designing an

RPC-based application.

1.4.2 Client/Server Architecture with ORB

An object request broker (ORB) is a middleware technology that manages

communication and data exchange between objects. ORBs promote interoperability of

distributed object systems because they enable users to build systems by piecing together

objects—from different vendors—that communicate with each other via the ORB. The

implementation details of the ORB [7] are generally not important to developers building

distributed systems. The developers are only concerned with the object interface details.

This form of information hiding enhances system maintainability since the object

communication details are hidden from the developers and isolated in the ORB. The two

major ORB technologies are Object Management Group’s (OMG) Common Object

8

Request Broker Architecture specification and Microsoft’s Common Object Model. Even

though CORBA [8] has certain advantages, it does not support the transfer of objects.

There is also no garbage collection. Moreover ORBs developed by different vendors may

have significantly different features and capabilities. Thus, users must learn a

specification; the way vendors implement the specification, and their value-added

features (which are often necessary to make a CORBA product usable). Similarly

COM/DCOM [9, 10] has certain negative aspects that make it unsuitable in implementing

such systems. It is platform specific and there is no stability of APIs making

maintainability of software difficult in the long run.

1.4.3 Client/Server Architecture with MOM

Message-oriented middleware (MOM) is a client/server infrastructure that

increases the interoperability, portability, and flexibility of an application by allowing the

application to be distributed over multiple heterogeneous platforms. It reduces the

complexity of developing applications that span multiple operating systems and network

protocols by insulating the application developer from the details of the various operating

system and network interfaces [5]. MOMs generally support synchronous calls between

clients and server applications. Message queues provide temporary storage when the

destination program is busy or not connected. MOM reduces the involvement of

application developers with the complexity of the master-slave nature of the client/server

mechanism. MOM increases the flexibility of architecture by enabling applications to

exchange messages with other programs without having to know what platform or

processor the other application resides on within the network. The aforementioned

messages can contain formatted data, requests for action, or both. Nominally, MOM

systems provide a message queue between interoperating processes, so if the destination

process is busy, the message is held in a temporary storage location until it can be

9

processed. MOM is typically asynchronous and peer-to-peer, but most implementations

support synchronous message passing as well. MOM is typically implemented as a

proprietary product, which means MOM implementations are nominally incompatible

with other MOM implementations. Using a single implementation of a MOM in a system

will most likely result in a dependence on that MOM vendor for maintenance support and

future enhancements. This could have a highly negative impact on a system's flexibility,

maintainability, portability, and interoperability. It is for these reasons that the Alert

Server is built using the queuing mechanism that MOMs use and Java RMI for the

transfer of messages between different distributing processes.

1.5 Need for a messaging system

Message passing is not as sophisticated and robust as distributed objects, and is

relatively simple to implement. So why do we need a message passing system? The goals

of the approaches explained earlier are very different. Distributing objects (RMI and

CORBA) extends an application across the network by making its objects appear to be

spread across the hosts in our virtual machine. Message passing serves a much simpler

role, defining a simple communication protocol for sending data/objects. Passing

messages avoids the communication overhead involved in using most distributed object

schemes, and does not require any special network protocols. So message passing is

useful and sometimes a necessary tool, particularly in the following situations:

1. Communication needs are relatively simple in nature.

2. Transaction throughput is critical.

3. The scope of the system is limited, so that rapid implementation takes

precedence over sophistication and flexibility of design.

4. Special network protocols need to be avoided (e.g., parts of the system need to

operate behind a firewall).

10
1.6 Existing Messaging Systems

Messaging systems are peer-to-peer facilities. In general, each client can send

messages to, and receive messages from any client. Each client connects to a messaging

agent, which provides facilities for creating, sending and receiving messages. Each

system provides a way of addressing messages. Each provides a way to create a message

and fill it with data. Some systems are capable of broadcasting a message to many

destinations. Others only support sending a message to a single destination. Some

systems provide facilities for asynchronous propagation of messages (messages are

delivered to a client as they arrive). Others support only synchronous propagation (a

client must request each message). Each messaging system typically provides a range of

service that can be selected on a per message basis. One important attribute is the lengths

to which the system will go to insure delivery. This varies from simple best effort, only

once delivery, and guaranteed delivery. Other important attributes are message time-to-

live, priority and whether a response is required. A few of these messaging systems are

discussed in chapter 2.

Alert Server uses both the distributed objects approach and the MOM approach. It

has to deliver alerts and should work in a distributed environment. Therefore we use a

combination of both the approaches to make communication look simple and provide a

little bit of sophistication and flexibility. This thesis discusses the design and

implementation of Alert Server. Alert Server is the alert and acknowledgement message

queue and distribution mechanism. It is a persistent and recoverable middleware

approach to alert distribution. It maintains transaction logs for a comprehensive audit trail

of alerts, acknowledgements and receipts to appropriate destination. In general, an alert is

generated and submitted to the Alerts Server based upon some mission application

criteria or condition. At the alerts server, the alerts are logged and queued and if

necessary persisted. The Alerts Server determines if there are any subscribers for this

11

alert and if so, forwards it to the destination. An alert producer could be a human operator

who “fills in the blanks” of an alert message through a GUI or other means. Alert

producers can also be software components that execute “under the hood,” invisible to

human operators. An alert producer assembles the alert in reaction to some system

condition and the send it to the distribution process, Alert Server. Alert consumers are

those applications that are interested in receiving (a subset of) alerts. This is always

accomplished via “registering” or “subscribing” for alerts that contain a particular pattern

in the alert destination or topic data element by specifying a filter during alert

registration. Any client application can be either an alert producer or a consumer or both

as long as they use the Alert Server APIs to talk to the Alert Server. A proxy server has

also been designed to handle C/C++ clients in a similar way as JAVA clients.

CHAPTER 2

OVERVIEW OF RELATED WORK

With all the power that the messaging systems have to offer it is not surprising that

there are many such systems available in the market, each with one with its own set of

advantages and disadvantages. This chapter discusses some of these systems that are

available in the context of meeting our requirements.

2.1 Java Message Queue

iPlanet’s Java Message Queue (JMQ) [11] product is a standard based solution to the

problem of inter-application communication and reliable data transmission across networks.

With JMQ, processes running in different architectures and operating systems can simply

connect to the same virtual network to send and receive information. This uses a

publish/subscribe model. Based on Java Message Service (JMS) [12] open standard, JMQ

applications are designed to be easily portable across different computer architectures and

operating systems and to handle all data translation between application processes. Even

though, JMQ provides delivery of messages on the basis of priority and supports persistence,

it cannot be used to transfer messages between different client applications (LED/GED) [1,

3] because it does not have any crash recovery mechanism. Apart from this, the actual length

of time the messages are held in the queue and the consequences of resource overflow are not

handled. This needs to be addressed in a message-distributing environment, as one cannot

assume infinite resources, as a lot of messages need to be handled at any point in time. More

over, the burden of initialization of the queues and assigning these queues to specific topics

(subjects) so that messages are stored on the system falls on the administrator. There is also

13

 14

no provision for clients to set some of the attributes of the message like persistence, priority

etc. These attributes are set by send/receive methods of the Java Message Queue instead.

2.2 IBM MQ Series

MQ Series [13] from IBM is one of the most established messaging products in the

industry. MQ Series has traditionally been oriented towards queue-based messaging, but

enhanced in late 1999 to support publish/subscribe messaging and a JMS interface. The

messaging clients communicate with one or more queue managers, which are implemented in

native code and are available for a wide range of platforms. A queue manager is a program

that provides messaging services to applications. Applications that use interface called

Message Queue Interface (MQI) to put and get messages from queues. The queue manager

ensures that messages are routed to another queue manager. The communication between

them is through channels. There are two types of channels. A message channel is a

unidirectional communication link between two queue managers that is used to transfer

messages between them. An MQI channel is bi-directional and connects an application (MQI

client) to a queue manager on a server machine for the transfer of MQI calls and responses.

Queue managers are grouped together into clusters. A cluster [14] is a group of two or more

queue managers that are logically associated and can share information with each other. Any

queue manager can send a message to any other queue manager in the same cluster without

the need for user to set up a specific channel definition because all this information is held in

a repository to which all queue managers in the cluster have access. This creates a problem if

the computer on which the repository uses DHCP (dynamic allocation of IP Address) since

MQ series uses IP address to find repository. Hence, if the address changes, other queue

managers will no longer be able to find the repository. This still applies even if all queue

managers in the cluster will be on the same computer, because the IP address is still used to

find the repository. Thus, MQ series cannot handle changes to network easily as it is pre-

 15

configured to forward messages from a queue to another queue. If any component fails in this

process, the message queuing software is stuck until the failed component is functioning

correctly as it does not support recovery mechanism. More over, it requires at least one

routing process on every machine. This is not reasonable when deploying to many machines.

This software also requires special privileges to install or run, as changes must be made to

the operating system kernel on most supported platforms. In addition to these, MQ Series

does not support subscription to messages on the basis of regular expressions and crash

recovery.

2.3 Sonic MQ

SonicMQ [15], from Sonic Software, provides a hub-spoke implementation of JMS

pub/sub ass well as point-point domains written entirely in JAVA. SonicMQ also provides

for JMS extensions like XML messages and server clustering. The ability of a messaging

server to deliver messages at a constant rage (regardless of publisher speeds and the number

of connections to the server) depends to a large extent on flow control algorithms employed

by them. In a typical messaging environment, message producers are usually faster than the

consumers of the message. To ensure the capacity limits (memory, threads, etc.) within

server, the sending client must be throttled to prevent the loss of messages or a buffer

manager must be provided on the server. A particularly important aspect of any flow

algorithm in a publish/subscribe messaging server is to ensure that if a particular subscriber

slows down, other subscribers on the same topic are not adversely affected. That is, a single

slow subscriber should not slow down the entire system. SonicMQ handles this problem by

buffering messages internally and throttles publishers when internal buffers overflow. This

actually slows down all publishers to the speed of the slowest consumer. This leads to serious

issues while using this product in real world application as the publishers are blocked till

subscribers catch up. Even though, SonicMQ claims to support distributed transactions, it

 16

might fail under some circumstances: if a publish call is part of a distributed transaction and

the call blocks forever, then the Distributed Transaction Coordinator) would either time-out

this transaction or report a state of ambiguity. More over, SonicMQ uses pre-fetching by

default, resulting in misleading performance results sometimes. Some applications that are

not aware of pre-fetching under the covers can run into potentially serious issues at the

deployment stage, when some messages might not be delivered to any other receiver because

they are queued in a single receiver (which might have crashed/hung due to potential

application failure). This results in messages not getting processed even while some queue

receivers are waiting for messages all the time. SonicMQ server resources (threads) are

consumed just waiting for incoming data, adding unnecessary overhead. Furthermore, as

each additional client connects a new thread needs to be allocated on the server, leading to

linearly increasing server load. Under such conditions the server eventually slows down to

unacceptable levels or crashes. In typical cases, allocating more than 2000 threads is

impractical on a single JVM, although the precise limits vary depending on the hardware and

operating systems platforms used. SonicMQ uses Cloudscape, which is a Java based database

management system instead of a file-based data store to persist and store messages. This

reduces the system speed as file-based data store delivers the messages 10-15 times faster

than delivering messages from database.

2.4 Global Event Detector

The Global Event Detector (GED) [1], developed at ITLAB at UT Arlington, is a

server based on the notification/subscription paradigm. All messages passing is done in a

demand-driven mode. That is, no messages are sent to the server unless there is a consumer

for that message. The server receives an event detection request from a consumer application

and forwards it to the corresponding producer only when it registers with the server. When

the event of interest defined in the producer application occurs, the producer application

 17

notifies the occurrence of event to the server. The server not only forwards the occurrence of

the event to the corresponding consumers, but it is also responsible for detecting any

composite event based on that event. GED uses the ECA (Event-Condition-Action) rule

paradigm in order to support active capability in a distributed environment. According to the

ECA rule paradigm, whenever the event occurs, the condition defined in the rule (for that

event) is evaluated and the corresponding action is performed if applicable. GED does not

guarantee delivery of events and implements notification/subscription paradigm. This fine in

case of event detection but if the consumer is just interested in the generation of event and

not the event detection then a publish/subscribe paradigm would be more better. It also does

not provide any filtering mechanism so that the server sends only the events that are of

interest to the consumer. There is also no mechanism that supports priority based delivery

and a way to specify that the event should remain on the server for a certain duration i.e., the

time to live header. GED can be used in an environment where in client applications need to

detect events. But if the applications are just interested that the event has occurred then this

server may not be that suitable.

2.5 Common Object Request Broker Architecture

Based on publish/subscribe paradigm, event service is one of the services from

Common Object Request Broker Architecture (CORBA) [8]. It defines three roles (supplier,

consumer, and event channel) [16]. The suppliers and consumers are decoupled, and

transparent from each other. Suppliers can push data to consumers through the event channel.

Likewise, consumers can use event channel to pull the data from suppliers. The event

channel works as a mediator between consumers and suppliers. The event channel interface

can be used for adding consumers, adding suppliers, and also for destroying the channel.

There are four models of component collaboration in the event service architecture:

Push Model, Pull Model, Hybrid Push/Pull Model, and Hybrid Pull/Push Model. The Push

18

model allows suppliers to initiate the transfer of event data to consumers. In the pull model,

the consumers request the event data from suppliers through event channel. The Hybrid

Push/Pull model allows both consumers and producers to initiate the transfer of event data.

The event channel plays the role of a passive mediator. The active consumers can request

data via the event channel in which the active supplier pushes the data. The Hybrid Pull/Push

model, in contrast to the Hybrid Push/Pull model, allows the active event channel to pull the

data from suppliers and push them to consumers.

Although the symmetry provided by the COBRA event service is well designed, it is

not possible for consumers to subscribe only to events, which are of interest. Each event that

is sent from each producer to the event channel is delivered to all the registered consumers.

This requires consumers to filter out event data that is not of interest. It involves additional

overhead for the consumers. This is likely to increase the network utilization and cause

clogged network traffic. In addition, there is no notion of priority based delivery and regular

expression based subscription for events. More there is also no notion of crash recovery and

the idea of persisting the events.

CHAPTER 3

DESIGN OF ALERT SERVER

Message-oriented middleware (MOM) refers to data transmission between front-

end applications and back-end applications. Middleware can be composed of many

layers, each addressing the specific requirements of inter-application communication. As

indicated, the purpose of a messaging system is to accept messages (data/objects) from

one client for delivery to another. Typically, the system is designed and implemented in a

manner that promises some degree of performance, reliability, availability and security. A

messaging system is composed of client applications, messages, and the messaging

service. A client application refers to one or more processes that coordinate to implement

some functionality. These processes may be located on a single machine or distributed

across different machines in different locations. A client application might itself be a part

of a large application. The messages contain not only data but information about the data

as well. Messages are sent in a pre-defined format understood by the sending client

process and the receiving client process. The message service includes:

1. A message server (sometimes called “message router” or a “message broker”).

Alert Server acts as a message broker for our messaging system.

2. Administration tools to manage the message server and messages in the

system.

3. An API for creating messages and interacting with the service.

This chapter discusses the design of Alert Server. First, it outlines the

functionality to be supported by the Alert Server followed by design choices to achieve

19

20

this functionality. It also discusses the contents of an Alert needed for efficient and easy

way of passing messages.

3.1 Functionality to be supported

The Alert Server should provide APIs to send messages from one application to

another. The client applications should also be able to register and unregister topics of

interest. They should be able to cancel or revoke messages (that have been sent) and

should also be able to send acknowledgements and receipts. In addition, Alert Server

should have delivery logic in order to send, and if necessary, persist, messages on the

basis of their priority. Finally, the alert server should be able to recover from crashes to

ensure no loss of alerts and proper continued delivery of alerts. The server should also

handle acknowledgements and receipts apart from alerts to guarantee delivery of alerts.

But before we get into the design of Alert Server, it is important to understand what alert,

acknowledgement and receipt is and what constitutes them.

3.2 Alert

An alert message contains an alert header as well as an optional alert body. All

messages support the same set of header fields. Header fields contain values used by both

clients and the Alert Server to identify and route messages. Body, on the other hand can

be any Java Object for Java-based clients and 1024 characters in length for C/C++

clients. A header of the alert message has the following data elements.

Destination (Topic): The destination field in the data element is the “topic” and

synonymous to, for example, a message “topic” or an email “subject”. The destination

data element provides the information needed by the Alert Server to distribute the alert to

proper recipients. It is the value in this field the alert consumers register or unregister by

specifying a pattern in the registration request. There are three different types of topic

that can be provided: TAG, PROFILE and USER. Each of these topic types are specified

21

using the form “topic type: value[, value]”. Topic type is a reserved word that must be

one of a “TAG”, “PROFILE”, or “USER”. The value of this field must begin with one of

3 prefixes (with colon included and all the letters capitalized):

TAG:

PROFILE:

USER:

Every alert contains the destination or a topic header field. The destination data

element provides the information needed by the Alert Server to distribute this alert to the

proper recipients.

TAG: The “TAG:” prefix helps alert consumers to subscribe to receive specific alerts by

specifying a filtering mechanism that employs UNIX regular expression masks. For

example: TAG:.* specifies all alerts. TAG:ABC specifies all alerts where destination

contains the string ABC. TAG:^A.* specifies all alerts where destination begins with A.

TAG:.*X$ specifies all alerts where destination ends with X.

PROFILE: This prefix helps alert consumers to subscribe to any message that belong to

a specific profile. For example: PROFILE:Watchman, PROFILE:Student.

USER: The USER: prefix as the name indicates helps in subscribing to messages from a

particular user name. For example: USER:A, USER:B, USER:C.

When the alert server processes an incoming alert, it places the filtering mask that

the consumers subscribed to the pattern contained in the alert’s destination. For example,

if there is a consumer subscribed to a filter of “TAG:Alert” and an alert with the

destination “TAG:AlertXYZ” comes in, then the subscription “TAG:Alert” is matched

against the topic or destination “TAG:AlertXYZ”. The regular expression mask of

“TAG:Alert” placed against the topic “TAG:AlertXYZ” matches true (“TAG:Alert is a

sub string of “TAG:AlertXYZ”). In the case of the other prefixes, the matching is

performed by comparing the strings in the subscription filter with the destination string in

22

the alert header. Consumer clients have the option to subscribe to multiple topics using

separators. Multiple topics with the same prefix are submitted by separating with

commas, for example, TAG:a, b, c will produce three subscriptions; TAG:a, TAG:b, and

TAG:c. Similarly, multiple topics with multiple prefixes are submitted using a semicolon

to separate prefixes, for example, TAG:a, b;USER:a, b will produce four subscriptions,

TAG:a, TAG:b, USER:a, USER:b.

Alert Type: This field in the header identifies the message type. There are basically two

types of alerts, alert itself and an acknowledgement for the alert. An alert is specified by

setting the alert type data element value to Alert, where as an acknowledgement is

specified by setting the alert type to Acknowledgement.

Duration: Duration data element in the header helps in identifying the messages that

have expired. Alerts or acknowledgements will remain active and available for

distribution from the Alert Server according to its time-to-live indicator. Once the alert

server receives and forwards the message to any registered recipients, it will remain in

the Server’s queue for the specific duration. The Server deletes the expired messages

when it tries to distribute it to the clients. Indefinite storage of messages in the queues is

handled by setting this data field to zero. These alerts should be explicitly cancelled by

the original producer or by any client as specified by a cancel policy.

Priority: This field in the header helps in priority based delivery of messages. The

priority levels are 1-10, where 1 is designated lowest priority and 10 is designated highest

priority. Higher priority alerts need to be distributed before the lower priority alerts and

messages having the same priority are delivered in the order they arrive i.e., on a first

come first serve basis.

Classification: This part of header information allows application specific classification.

Unclassified, Confidential, Secret and Top Secret are the four classification levels.

23

Classification of an alert basically defines the privacy level of alert. This data field is

reserved for future use.

Persistence: The producer designates messages as persistent by setting this field in the

header. The Alerts Server stores persistent messages so that they are reloaded in the case

of restart and recovered in the case of crash. The storing of the messages and their

retrieval is discussed later.

Acknowledge Policy: This field ensures the delivery of messages to the destination. An

alert can have one of the three acknowledgement policies attached to it: None, Client

Acknowledgement, and Client Receipt. A client acknowledgement requires the receiving

client to generate an acknowledgement alert where as a client receipt is automatically

constructed and submitted to the server after the client is notified of an incoming alert.

Client receipts are not stored on the server as clients make blocking calls when they send

alerts that are receipts. Also alert server discards acknowledgement for alerts that do not

require acknowledgement. The generation of alert acknowledgements and receipts are

explained in the implementation chapter of alert server.

Cancel Policy: This field helps in the cancellation of alerts that live indefinitely on the

server. An alert can be cancelled i.e., deleted from the queue on the server, by any client

if the Cancel Policy field is set to ANY, or only by the producer of the alert if it is set to

the ORIGINATOR.

Scope: This data element is reserved for future use. This has been included in order to

decide the scope of the message when there are a many alert servers. This is set to zero if

the scope has to be limited to one alert server.

Alert ID: Alert ID is a unique integer that is generated by the alert server to identify a

particular alert or acknowledgment.

24

Correlation ID: This data element is only used when the message is an

acknowledgment. This field takes on the value of the Alert ID for which it is an

acknowledgement.

Alert Body: The alert body is an object that can be sent with the message in the case of

Java alert producers while it is a character string in the case of C/C++ alert producers.

This difference is due to the limitation of C and C++. The body in the case of

acknowledgement is the string “ACK.”

Alert Hash Table: This is just a hash table that holds the mapping between the different

consumer lists in the consumer table data structure and the last consumer that has

received this alert. Only server for distribution purposes, accesses this alert attribute.

Clients cannot access this attribute. The attribute is absent when the alert is generated on

the client; it is added by the Alert Server when the alert is distributed to the consumers.

The usage and contents of this hash table are explained in the implementation chapter 4.

An example of alert with its header and body is shown figure 3.1:

ALERT HEADER:
Alert ID : 1 [system generated]
Destination :“TAG: .*X” [TAG, USER, PROFILE]
Arrival Time : 92115678 [Time received on server]
Duration : 10000 [Time to live on server]
Type : ALERT [ALERT, ACK]
Persistence : TRUE
Scope : 0 [Specific to this server]
Priority : 8
Classification : “UNCLASSIFIED”
Cancel policy : ORIGINATOR [ORIGINATOR, ANY]
Acknowledgement policy : NONE [NONE, CLIENTACK, RCPT]
User ID : “TRLP1”
Correlation ID : 0 [Set only for acknowledgement]
ALERT BODY:
Body = “this is the optional part of alert message” [Can be an object]

Figure 3.1. An Example of alert format.

25
3.3 Acknowledgement

An alert acknowledgement as explained above is actually an alert. It contains an

alert header with the same destination or topic as its associated alert, origination time,

persistence, time-to-live (duration) etc. except for the correlation ID. The correlation ID

data element contains the alert ID value of the alert to which this acknowledgment

message is responding. The body for an acknowledgement contains the string “ACK”.

Alert consumer applications may register just for alert acknowledgements, without

having to register for an alert. This capability is provided so that application developers

can create a chain of events. For example: consider A to produce an alert, B to register

for this alert, C to register for acknowledgements for this alert. A sends alert, B receives

alert and acknowledges it, C receives acknowledgement (and then goes off to do

something else, for example).

3.4 Receipt

An alert producer can request a “delivery” receipt for an alert by setting alert’s

acknowledgement policy data field to Client Receipt. The Alert Server constructs the

receipt automatically the instant the alert consumer receives the alert and then forwards it

to the requesting producer. Unlike acknowledgements, receipts are not queued or stored

at the Server, nor can alert consumers register for receipts. This feature is simply to

ensure the delivery of the alert.

3.5 Alert Server Architecture

This section explains the different design choices available and the reason for

choosing one of them.

3.5.1 Messaging Models

Most messaging products support either point-to-point or the publish/subscribe

approach to messaging.

26

 Msg

 Msg

 Queue

 Consumes
Producer

ConsumerSends

Acknowledge

Figure 3.2. Point-to-point messaging model.

Point-to-point messaging model: A point-to-point (PTP) product or application is built

around the concept of message queues, senders, and receivers. Each message is addressed

to a specific queue, and receiving clients extract messages from the queue(s) established

to hold their messages. Queues retain all messages sent to them until the messages are

consumed or until the messages expire. PTP messaging has the following characteristics:

1. Each message has only one consumer.

2. There are no timing dependencies between a sender and a receiver of a

message. The receiver can fetch the message whether or not it was running

when the client sent the message.

3. The receiver acknowledges the successful processing of a message.

This messaging model is shown in figure 3.2. This messaging model is useful

when the message needs to be processed successfully by one consumer. But Alert Server

has to handle multiple clients simultaneously, therefore publish/subscribe messaging

model has been chosen over this messaging model.

Publish/Subscribe Messaging model: In a publish/subscribe (pub/sub) model, clients

address messages to a topic (destination). Publishers and subscribers are generally

anonymous and may dynamically publish or subscribe to the content hierarchy. The

system takes care of distributing the messages arriving from a topic's multiple publishers

to its multiple subscribers. Pub/sub messaging has the following characteristics:

27

1. Each message may have multiple consumers.

2. There is a timing dependency between publishers and subscribers, because

a client that subscribes to a topic can consume only messages published

after the client has created a subscription, and the subscriber must continue

to be active in order for it to consume messages.

Subscribes

 Delivers

Alert
Server

 Consumer1 Msg

 Msg Sends Producer

Msg

Delivers

Subscribes

 Consumer2

Figure 3.3. Publish/Subscribe messaging model.

The Alert Server uses this messaging model as it has to delivery messages to zero,

one or many consumers that are anonymous. This timing dependency is relaxed by

allowing the producers to create persistent alerts. Persistent alerts can be received even

when the subscribers are not active. Thus, persistent alerts provide the durability and

reliability provided by the queues and still allow clients to send alerts to many

consumers. A sending client addresses (publishes) the message to a topic to which

multiple clients subscribe. There can be multiple publishers, as well as subscribers, to a

topic. In a publish-and-subscribe system, a client can be a publisher (message producer),

a subscriber (message consumer), or both. The delivery of messages to multiple clients,

as well as future subscribers, makes this model a choice on which the Alert Server

architecture is based. This messaging model is shown in figure 3.3.

28
3.5.2 Message Consumption

Architecture of a server also decides the way in which the clients consume

messages. Messages can be consumed in either of the two ways.

1. Synchronously: A subscriber or a receiver explicitly fetches the message from the

destination by calling a method. The method can block until a message arrives, or it

can time out if a message does not arrive within a specified time limit.

2. Asynchronously: A subscriber need not wait for the delivery of the message.

Whenever the message arrives, the server forwards it to the consumers that have

registered for that message. The consumers do not have to wait for the delivery of the

message. Alert Server uses this mode of message consumption, as it is essential that

the clients do not block during the publishing of alerts.

3.5.3 Message Delivery Mode

Architecture of Alert Server should guarantee the delivery of messages. For this

it is essential to persist the messages or alerts. But this is cannot achieved without

overhead. Therefore Alert Server architecture supports two modes of message delivery

and leaves it upon the client application to decide the delivery mode of messages. Clients

can do this by setting the delivery mode in the persistent header field. More over

messages also need to be persisted so that the architecture can support crash recovery.

1. The NON-PERSISTENT mode is the lowest-overhead delivery mode because it does

not require that the message be logged to stable storage. Alert Server failure can

cause a NON-PERSISTENT message to be lost.

2. The PERSISTENT mode instructs the Alert Server to take extra care to insure that the

message is not lost in transit due to its failure. This mode requires server to log the

alerts and retrieve them during normal startups as well as in the case of recovery after

crashing. A message that is persisted can expire. These messages are removed from

the stable storage when the server reloads. Merely persisting the alerts (i.e., writing

29

the alerts into a stable storage) does not help. There should be a mechanism for fast

retrieval of alerts from the logs. This mechanism is explained next.

Logging and Retrieval Mechanism

1. BLSN (4 bytes)
2. DLSN (8 bytes)
3. Index Table (12 bytes)

LSN fp Size Cancel
bit

1 20 24 1
3 45 27 0

Alert with ID 1
Alert with ID 3
.
.
.
.

Figure 3.4. Contents of log file.

The persistent mode delivery of the alerts entails them to be stored to a stable

storage (i.e., the disk in our case). Therefore the logging and retrieval of alerts should be

done efficiently. A naïve approach is to write the alerts into a log and scan the log

sequentially for retrieving. But this involves a lot of search time. Another approach is to

store the alerts in a database. But this involves more overhead than storing a file. For this

reason, a separate logging and retrieval mechanism has been designed. The alerts are

stored in log files depending on their priority. For example: all alerts with priority level 1

are stored in one file and all alerts with priority level 2 are stored in another separate file.

There is a file for each priority level. The alerts are serialized and then written into the

logs. The main reason for doing this is to reduce the I/O time as serialization helps in

easy reading and writing of entire objects and primitive data types, without converting

to/from raw bytes or parsing clumsy text data. But just writing these serialized objects

30

would not help in finding an alert in log with hundreds of them. Therefore for fast

retrieval, some other information is also stored in the log along with the alerts. All the

contents of the log are serialized for the above reason. The contents of the log file are

shown in figure 3.4 and are described in detail below:

Index Table:

 Index table is a data structure that is stored in the log file for searching and retrieving

alerts. Each log file has an index table to store and retrieve the alerts belonging to its

priority. The index table is also stored in a serialized manner. The table has records that

hold the information of the location of the alert in the log. Each table record has a Log

Sequence Number (LSN) to identify the alert (it is actually alert ID), pointer to the

position of storage of the alert in the file (fp) to index to that position in the file where

alert is stored, size of the alert (size) to read the bytes pertaining to that alert and a cancel

bit to help in identifying the cancelled alerts. LSN of a record helps in indexing into the

table and finding the record that belongs to alert of interest. Then following the file

pointer (fp) in that record and reading the number of bytes as specified by the size field

(size) in the index table record, alert is read back from the log. The storing of the alert is

done in a similar way. New table record is always created and inserted into the

corresponding index table in the next available slot. The records are added sequentially.

Since the index table holds records that indicate the position of alerts, this also needs to

be stored along with alerts. Thus, any alert retrieval requires first reading the index table

in the log.

Buffered Log Sequence Number (BLSN):

BLSN in each file is an integer stored in each log along with the index table. BLSN is set

to the ID of the alert that has recently been added to the priority queue. There is a BLSN

for each priority queue in its corresponding log file. This integer helps in reducing the

31

time for building the priority queue back when the server recovers from crash. Only those

alerts that are between BLSN and DLSN are put back into the priority queue. As all the

other alerts that are not between BLSN and DLSN have already been sent.

Delivered Log Sequence Number (DLSN):

DLSN, like BLSN, is also an integer stored in each log for corresponding priority queue.

DLSN, unlike BLSN, is set to the ID of the last alert that has been sent from the priority

queue and received by the client.

Cancel bit:

The cancel bit indicates whether the alert has been cancelled or not. This bit is set when

the alert is cancelled. Only those alerts that are not cancelled are read back when the

server starts up or when the server recovers from a crash.

 Both DLSN and BLSN help in the retrieval of NON-PERSISTENT alerts in the

case of crash recovery of the Alert Server. Instead of reading all the non-persistent alerts

from the log when the server recovers only those alerts whose IDs fall between BLSN

and DLSN are read from the log and put into the priority queue. The serialized log files

always contain BLSN at the start of the log, followed by DLSN is at 4 bytes followed by

index table with its records at 12 bytes. All the alerts are stored after index table. The

alerts after being stored in the log are sent to the queue for distribution to the consumers

who have subscribed to their topics. Since acknowledgements are alerts with the

correlation ID set to that of their alerts, they are handled as if they are alerts. The

handling of the subscription of the alerts is described in the next section.

32
3.6 Subscription and Unsubscription of alerts and acknowledgement

Internal

Secondary

Primary

TAG

USER

.*

^A.*

A

B

ACK

ALERT

Student

Staff

ACK

ALERT

ACK

ALERT

ACK

ALERT

ACK

ALERT

ACK

ALERT

C2 C1

C2 C1

C2 C1

C1

C1

C1 C2

C1C2 C3 C4

C1 C2 C3

PROFILE

Figure 3.5. Consumer table data structures.

Consumers that have subscribed for alerts or acknowledgements need to be stored so that

the server can handle their requests. Therefore the subscription and unsubscription of

consumers has to satisfy a number of requirements:

• Consumers should be able to subscribe/unsubscribe to an alert dynamically.

• Consumers should receive alerts as they arrive i.e., they have to receive alerts

on a first come first serve basis.

• Since alert delivery is based on priority, it is essential that the consumers for

alerts be found efficiently.

• Consumers should not receive the same alerts.

Since a number of consumers register with the server at any instant of time, it is

essential that the server use a data structure that helps in categorizing the clients upon the

33

alerts they subscribe and thus help in the efficient distribution of alerts. For this purpose,

an extended hash table has been used. This data structure is shown in figure 3.5.

This data structure contains a primary hash tables with three buckets. Primary

hash table helps in categorizing the subscriptions on the basis of topic types. Three

buckets refer to the three topic types that are supported by the alert server, namely, TAG,

USER and PROFILE. Each bucket points to another hash table. This table at the second

level is called the secondary hash table. This table categorizes the consumer subscription

pertaining to different subjects of the same topic type. As the subscription of consumers

with different subject increases, the number of buckets in the secondary hash table also

increases. Each bucket in the secondary table points to an internal hash table. This

internal hash table has alert type (data field that decides whether the message is an alert

or an acknowledgement) as its key. A hash table has been chosen instead of array so that

in future subscription may be extended to receipts. There are always two buckets for each

internal hash table, one for alerts and one for acknowledgements. These buckets have

consumer lists as their keys. Each list in the entire data structure has unique ID called the

List ID. List contains consumer nodes that hold information regarding different

consumers registered with the Alert Server. Each consumer node in a list has an ID

attribute that indicates its arrival in the list. Apart from consumer nodes, the lists also

contain information regarding the number of consumers added and number of consumers

deleted. For each consumer node added or deleted to the list these attribute of the list

change accordingly. These attributes help in reducing the searching for the consumer that

needs to receive alert within the list. It also prevents the resending of alerts to the same

consumer again. This is explained in detail in the chapter 4.

 Thus categorizing the alerts helps in finding the consumers of the alert

efficiently. Consumer registration causes a consumer node to be added to the beginning

of its respective list. Hash tables have been chosen (over other possibilities, such as

34

linked lists and arrays) in all the cases as they reduce search time. A hash table also

allows one to add new keys easily without much change in code if needed in the future.

The unsubscription for alerts and acknowledgements by a consumer is done in a similar

way. Unsubscription results in the deletion of that consumer node from the consumer list

preventing the Alert Server from distributing alerts to consumers that have unsubscribed.

The unsubscribed consumer node is found by indexing through the hash table and

traversing through the list. Maintaining the consumer information in the lists in the hash

table help in improving concurrency. Apart from the consumer nodes, the list has a LIST

ID and LIST ADDED attributes that help in traversing the entire list and also preventing

the resending of the same alerts to the same consumer. The queuing and distribution of

alerts is explained later.

3.7 Queuing and distribution of alerts

The alerts are stored in the logs depending on their persistent mode and later put

into the priority queue. There are ten queues, one for each priority level 1 through 10.

The data structure used for the queues is an array of queues. The size of this array is ten

corresponding to the number of priority levels. Alerts are stored in the queue on the basis

of their priority. So all alerts with the equal priority are stored in the same queue. Every

new alert is always added at the beginning of its queue in order to preserve its semantics.

The priority data field in the alert header is used for indexing into the array and getting

the queue at that index. Therefore insertion of the alert into the data structure always

takes a constant time. Queuing and distribution of alerts are two independent operations.

Therefore, they are performed concurrently using two different threads that shall be

explained later in the implementation chapter 4. Acknowledgements are also handled in

the same way as an alert. There is no difference between the queuing and distribution of

alerts and acknowledgements.

35

Queuing:

Index

A# - Alerts with their IDs

A4 A3 A1

A8 A2

A9

A10 A6A7

10

9

8

7

6

5

3

4

1

Queues

2

A5

Figure 3.6. Priority Queue Data Structure.

Producers publish alerts independent of the distribution mechanism of the alerts

on the Alert Server. Subscribing for an alert and publishing an alert are two independent

tasks as the producers and consumers are anonymous in a publish/subscribe-messaging

model. Therefore, alerts need to be queued and stored before the Alert Server can deliver

them. The data structure used for this purpose is shown in figure 3.6. This data structure

contains an array of queues. This has been done to help in distributing the alerts on the

basis of priority as it differentiates alerts on their priority. This differentiation also helps

in synchronization as different thread can access different queues simultaneously.

Synchronization issues shall be discussed later in this chapter. The queuing of alerts is

simple. Whenever a new alert comes in, it is indexed into the queue array using its

36

priority and then put at the beginning of its queue. New alerts are always added at the end

of the queue in order to maintain their semantics. The storing of the alerts in priority

queues array achieves the following requirements:

• Insures delivery of alerts on the basis of priority.

• Stores the alerts till a new consumer subscribes.

• Purging of alerts becomes easy, as alerts can be found easily indexing into the

array.

Apart from this, distinction of the queues on priority also helps in achieving

concurrency as different threads can work on different queues simultaneously. In order to

achieve synchronization among different threads, each queue in the array has a mode

attribute that says whether an alert is inserted or not. The alerts thus put into the queue are

now available for distributing that will be described further.

Distribution of Alerts:

The distribution of alerts has to satisfy a number of requirements:

• Alerts have to be distributed using the priority associated with it.

• When new higher priority alerts arrive, they have to be distributed before lower

priority alerts.

• The same alert should not be sent to the same consumer more than once.

• When new consumers subscribe to alerts, they need to receive alerts that have arrived

earlier, and if they are higher priority alerts, they have to be distributed first.

• The above has to be done as efficiently as possible.

The sweep algorithm and the associated data structures described below

accomplish the above. We describe the data structures, synchronization, and pre-emption

methods used for implementing them. Alerts are distributed to their respective consumers

by comparing their topics with the topics in the consumer table structure that is created

and stored in the data structure when the consumer registers. The priority queues are

37

swept continuously (at the granularity of a priority level) and the alerts are distributed one

at a time. It is during this sweeping of the priority queue that the expired alerts are also

purged. Since the goal of distribution is the delivery of alerts on the basis of priority, the

higher priority level alerts are delivered before the lower ones. Higher priority numbers

indicate higher priority. Alerts of the same priority are delivered on First Come First Sent

basis since the new alerts are added at the beginning of the queue and the queue is swept

from beginning to the end. The priority queue data structure is swept using a sweeping

algorithm.

Sweeping Algorithm

An algorithm is needed in order to sweep the priority queues. This algorithm

reduces the time in sweeping the priority queue data structure and prevents the resending

of the same alert to the same consumer. More over it ensures the delivery of alerts on the

basis of their priority. This is maintained even in the case of addition or deletion of new

consumers. The algorithm achieves this by making use of the information held in the

alert hash table (i.e., alert list table attribute) and consumer lists explained in earlier

sections. Alerts (i.e., Alert Topic) in the queues always map to a consumer list in the

consumer table data structure in case their topic is a USER or PROFILE and to a set of

lists in case the topic is a TAG. Alert list table in the alert that is created when an alert

object is generated, that is accessed by the server and not by any client, holds the

mapping between the consumer list and the last consumer node in the list that has

received that alert. This information is necessary in trying to stop sending the message to

the consumers that have already received the alert, thereby reducing the time for

sweeping the consumer lists. As already explained, each consumer node in the consumer

list has unique ID attribute in that list and similarly every consumer list also has a unique

ID attribute in the consumer table data structure. Consumer node ID attribute helps in

indicating the arrival of the consumer in that list and consumer list ID serves as an index

38

to the hash table in the alert message which tells that the alert has been sent till this

consumer and needs to be sent to all the consumers before this consumer in the list. Since

new consumers are always added to the beginning of the list, the consumers are always in

decreasing order of their ID attribute as this attributes indicates the arrival number in the

list. Therefore, the alert can be sent to all the consumers with the IDs greater than the

consumer ID of that list in the hash table present in the alert message, thus preventing

from resending the message to the same consumer more than once. Once the nodes of the

lists are obtained, alerts are sent back using the information in the node. The algorithm

takes the queue with the highest priority from the data structure and then traverses the

queue to send each alert in it to the registered consumers. The two data structures that the

algorithm sweeps may change, either due to alert addition or deletion from one of the

queues or due to addition or deletion of consumers from one of the consumer lists.

Alert Addition Mode

 Get the highest priority queue
that has
 not been sent.
 if(queue is empty) {
 Return to the calling
function
 }
 runSweepingAlgorithm(queue)

Consumer Addition Mode
 Set all queues state to not sent.
 Get highest priority queue that has
 not been sent
 while(queue is not empty)
 runSweepingAlgorithm(queue)
 if (Mode is same) {
 Get the next higher priority
 queue that has not been sent
 }
 else if (Mode change) {
 return to calling function;
 }
 else {
 Set mode to zero since no all
 alerts have been sent;
 }

Figure 3.7. Sweeping Algorithm.

39
 Figure 3.7—Continued.

SweepingAlgorithm (Q)
Acurrent = A0
while (Acurrent! = null)
 if (expired(Acurrent) = false)
 Findconsumerlist (Acurrent)
 else
 Q = Q - Acurrent
 Acurrent = Anext

Findconsumerlist (Acurrent)
PT (Acurrent[alerttype], ST)
if (prefix = TAG)
 for each key in ST
 if (matches(key, Acurrent[topic]))
 ST [Acurrent[topic], list]
 SendtoOutputQueue (list, Acurrent)
 else
 ST[Acurrent[topic], list]
 SendtoOutputQueue (list, Acurrent)

SendtoOutputQueue (list, Acurrent)
if (list != null)
 conrecv = AHT [list[ID], consumer[ID])
 if (conrecv = 0) {
 Send to all the consumers between list[added] and list[deleted]
 Put(HT[Acurrent], added[list])
 else
 if (list[added] > conrecv)
 send to all consumers between added [list] and conrecv
 Put(HT[Acurrent], list[added])

The algorithm executes in two phases. In the first phase the alert is checked for

expiration. Expired alerts are removed from the queue. This is checked by comparing

current system time with the sum of the time (arrival time) at which alert was received on

the server and the time-to-live (duration) data field in the alert header. If the sum is

greater than the system time then it is removed from the queue. The time received on the

40

server is the time when a client puts it in the request buffer on the server. But in case of

persistent alerts, the alerts need to be purged from the log. This is achieved by setting the

cancel bit in its log and is removed from the log when the server restarts and not

immediately. Phase two consists of finding the consumer list in the consumer table. Alert

destination topic is mapped to the consumer tables to find the consumer list for that alert.

After finding the consumer list, then the algorithm tries sending it to all the consumers till

it reaches a consumer that has last received this consumer. This works even in the case

when consumers are deleted because in this case alerts are sent only to new consumers

without caring about the deletion of consumers. In the absence of consumer list the

sweeping algorithm continues with the next alert in the queue and applies the same two

phases. After all the alerts in the queue are sent, the queue is marked as sent by setting the

queue’s mode attribute to DEFAULT. Once all the alerts in the queue have been sent, the

algorithm starts processing the alerts in the queue with the next highest priority in case no

new alerts have been added or no new consumer has subscribed to an alert of higher

priority. If none of these happen, then the algorithm proceeds with the processing of the

next higher priority queue repeating from phase one. But, if there is an update of one of

the data structures, the algorithm should know whether a new alert is added or a new

consumer is added. Therefore the algorithm needs to differentiate between alert addition

and consumer addition. In alert addition case the algorithm should know whether alert

has been added to the queues of higher priority and in consumer addition case, the

sweeping of the queues should start afresh (with queue of priority 10), since it is not

possible to know whether the newly added consumer has subscribed to high priority alert

or a lower one. It should be noted that consumers only subscribe to topics and not to

alerts directly. There might be a case where in a consumer might subscribe to a topic and

there might be many alerts published on the same topic with different priority. Therefore

in the case of consumer addition the sweeping of the data structure should start from

41

priority level 10. Thus, after sending all the alerts in queue the algorithm runs in alert

addition mode if a new alert has been added in between and runs in consumer addition

mode if a new consumer is added. It keeps running in the same mode if nothing happens

till all the alerts in the queues have been sent. If during the sweeping of the queue, both

addition of alert and consumer happens, then the algorithm runs in the mode that

happened last. The algorithm till executes the same two phases except that in case of

consumer addition mode it marks all the queues as NOT SENT by setting the mode

attribute of the queue to CONSUMER ADDED (CA) before starting two phases. In alert

addition mode, this need not be the case, as it can be known which queue has not been

sent depending on the alert added.

Algorithm:

The Sweeping algorithm pseudo code is shown in figure 3.7. Initially queue Q with the

highest priority is sent to the algorithm. Let A0, A1, A2, … be the alerts in the queue.

Their subscripts indicate their positions. Let Acurrent be the current alert that is being

distributed in the queue and Anext be the one after the current alert that needs to be

distributed. Let PT, ST and IT be primary, secondary and internal hash tables that store

the information about the consumers registered and let AHT be the table that provides the

mapping between the list ID attribute of the consumer lists in the tables and the consumer

node ID attribute that has last received the alert in that list. The key and the value

mapping in a table is shown by HT (list[ID], consumer[ID]) where HT is a table holding

the mapping. X [Y] indicates an attribute Y of an object X. For example, topic [Acurrent]

indicates the topic field of the alert.

42

PRIORITY
QUEUE
DATA

STRUCTURE

CONSUMER TABLE
DATA

STRUCTURE

Consumers

Consumer 3

Consumer 1

Consumer 2

Output Buffer

Producers

Register Buffer RMI

RegistrationHandlerThread

MessageHandlerThread

OutputHandlerThread

RMI call

Publish handler Thread

Notify Buffer RMI

Figure 3.8. Alert Server Architecture.

3.8 Multithreading the Alert Server

The Alert Server needs to be multithreaded in order to handle clients

asynchronously. The Alert Server uses Java Remote Method Invocation [RMI] in its

communication interface. RMI calls are blocking therefore these calls need to be handled

asynchronously. Client requests are queued. Since each request is independent and there

is no guarantee that they will arrive within a certain time there is a queue for each type of

43

request and a different thread handles each different request. Multithreading also helps in

improving the scalability of the server.

The clients put the messages in the queue and continue with their processing.

Since each queue has a thread listening on it, the thread is awakened when the queue is

not empty. The data structures handled by each thread are shown in figure 3.8. There are

other threads for handling other requests, such as canceling an alert, unsubscribing for a

topic. The threads shown in figure 3.8 are the threads that handle registration for a topic,

publishing an alert and the delivery of alerts to different consumers. The publish handler

listens on the notify buffer that holds the alerts that are published by different clients. It

places these alerts in the priority queue data structure on the basis of their priorities. On

the other hand, the registration handler handles the registration in the registration buffer

independent of the publish handler. This thread constructs consumer nodes that hold

consumer information used for sending the alert and puts them in the appropriate

consumer lists in a consumer table data structure explained earlier. The message handler

thread runs the algorithm on the priority queues and consumer tables and places the alert

and its consumers in the output queue. The output handler thread picks up these alerts and

delivers them to the consumers. This thread makes RMI calls to the clients to deliver the

messages. The cancel and the unsubscription thread keep processing the cancel and

unsubscription requests in a similarly way as publish and subscription handlers. Handling

of different requests and the flow shall be explained in detail in the implementation

chapter. Since this is a threaded architecture, it is essential to solve the synchronization

issues. These issues are discussed next.

3.9 Synchronization Issues

The Alert Server is made up of several data structures that will be shared and

hence may be concurrently accessed by threads. Following is the list of shared data

structures:

44

1. Consumer list: list of register objects in the hash tables for registration. These lists

are shared by registration handler thread, message handler thread and unsubscription

handler thread. The registration handler thread handles the registration of new clients

to the server by adding nodes to this list. The message handler thread reads the list for

consumers that have registered for an alert when the thread sweeps across the priority

queue. The unsubscription handler thread removes the consumers from the list when

they unregister.

2. Priority Queues: array of ten queues that store the alerts on the basis of their priority.

These queues are handled by the publish handler thread and message handler thread.

The publish handler thread adds alerts to the priority queues while the message

handler thread sweeps the priority queue to compare the alert topic with the

consumers that have registered with the server for that topic.

3. Output Queue: Queue containing delivery objects that have alerts and the consumer

information that is needed to send the alert to the subscribers. The message handler

thread adds delivery objects to the output queue while the output handler thread

delivers these objects handles this queue.

4. Alert log file: This file is updated by the publish handler thread and cancel handler

thread. The publish handler thread writes into the file when an alert needs to be

persisted. The cancel thread accesses the file when a persistent alert needs to be

cancelled.

5. Secondary Hash table: hash table that helps to distinguish between different topics

for the same alert types. These hash tables are accessed both by registration handler

thread, unsubscription handler thread and message handler thread.

Race Conditions: When the result of two or more threads performing an operation

depends on unpredictable timing factors, there is race condition. Example of a race

condition: Unsubscription thread is in the process of deleting a consumer node at position

45

7 from the consumer list. Message handler thread is traversing the consumer list to get

consumer node at position 13 to put it in output queue. Message Handler thread could be

looking at node 7 when the list manipulation is occurring. This thread will decide that

node isn’t the desired node and goes to the next position in the list. However, since

unsubscription thread has disconnected this node from the list the next position could be

NULL. The result of what unsubscription thread reads will hence depend on the timing

factor and has been compromised by the race condition. Hence the access to the

consumer list and several such shared data structures must be guarded for mutual

exclusion. This can be attained using synchronization mechanisms or locks. There are

several types of locks and the right choice must be made.

3.10 Types of Locks

Mutex: Mutex lock is a synchronization primitive that allows multiple threads to

synchronize access to shared data by providing mutual exclusion. The mutex lock has

only 2 states: locked and unlocked. Once a thread has acquired the mutex lock on a data

structure other threads attempting to lock the structure will be blocked until it is

unlocked. Since mutex allows only one thread to access any data at a given time, it is the

most restrictive type of access control. For example, when a mutex is used to synchronize

access to a list, the mutex will control the entire list. While the list is being accessed by

one thread it is unavailable to all other threads. If most accesses are reads and writes of

the existing nodes as opposed to insertions and removes, then a more efficient approach

will be to allow nodes to be individually locked.

Read-write: Read-write lock is another synchronization primitive that was designed

specifically for situations where shared data is read often by multiple threads/ tasks and

rarely written. A read-write lock is similar to a mutex lock except that it allows multiple

threads to concurrently acquire the read lock whereas only one writer at a time may

acquire a write lock. In the current scenario the Insert or delete operation on a list will

46

require acquiring the read-write lock in the write_lock mode, while the seek (search) of a

node will require acquiring the lock in the read_lock mode. By using the read-write locks

we can have search the data structure in parallel in the Alert Server. The only drawback

of using read-write locks is that locking operations take more time than the locking

operations on mutexes. Hence locking strategy must be chosen carefully. Read-write

locks are justified for the consumer list and priority queue data structures in the alerts

where inserting and deleting is done only once; thereafter all other operations are search

operations on the list to find a particular node. Read_lock mode can be used to allow

threads to search the list in parallel.

Semaphore: Semaphore is a synchronization primitive that has a value associated with it,

which is the number of shared resources regulated by the semaphore. Whenever a thread

acquires a semaphore, its count decreases by 1. Whenever a thread releases a semaphore,

its count increases by 1. Any thread wanting to acquire the semaphore must wait till its

count is greater than 0. Semaphores are used primarily when there is more than one

shared resource that needs to be regulated.

For synchronization of data structures in the Alert Server, mutex locks or

semaphores can be used when the operations involved are primarily inserts and deletes

that require exclusive access. For data structures such as the consumer list, where a

majority of the operations are search operations on the list and updates on individual

nodes, read-write locks can be used for locking the list and semaphore or mutex locks can

be used for locking individual nodes.

3.11 Other Data Structures

Apart from the consumer tables and priority queues that help in the queuing and

distribution of the alerts, there are other data structures that make the server handle

registration (subscription), unsubscribe, cancel and publish for an alert asynchronously.

The clients make calls to the server that are blocking, hence queues are needed to handle

47

requests asynchronously. These data structures are basically queues in which the server

stores the client requests. There is a queue for each type of interaction the clients have

with the Alert Server. Each new request is added at the end of the queue. Each request is

then removed from the queue and handled separately. There is a queue for each type of

request from the client:

Registration Buffer

Register buffer contains requests from clients that register for an alert with the server.

Buffer contains registered objects that hold information regarding the registration request.

These objects are then inserted in the consumer lists of the consumer table by the

consumer table data structure.

Unsubscribe Buffer

Unsubscribe buffer contains requests from clients that want to unsubscribe to an alert.

This buffer contains the same register objects as mentioned above but in this case they

are used to delete these objects from the consumer table data structure. Unsubscription

requests have been put into a different buffer so that the server handles multiple client

calls for subscription and unsubscription simultaneously.

Output Buffer

There is only one output queue on the server. So any alert to be delivered to the client is

put in this queue. The sending of the alert to the client is discussed in the next section.

The queue contains delivery objects that hold information required for delivery and also

the alert that needs to be delivered.

Cancel Buffer

This queue stores requests from clients that want to cancel alerts. The canceling of alerts,

as already explained, is decided by the cancel policy in the header of the alert. This policy

decides whether only the producer or any client can cancel the alert. A separate thread

called the Cancel Thread handles this queue.

48

Notify Buffer

This buffer stores requests from clients that publish the alerts. Alerts that are sent to the

server are first put in the notify buffer and, after logging, are put into the priority queues.

This buffer just contains alerts that are published. Since acknowledgements are nothing

but alerts with the correlation ID set to the ID of the alert being acknowledged.

Table 3.1. Data Structures and their locks

Data Structures and
Characteristics

Locks used with Rationale

Consumer list: list of consumer nodes

that are added when a client registers and

are deleted when the consumer

unregisters with the Alert Server.

Whenever the Alert Server has to send

an alert to the clients, it scans the list.

Mutex locks are used since operations used are

primarily inserts and deletes which happen when a

client registers or joins. These operations need an

exclusive lock mode that is provided by mutex

locks. Using mutex locks is preferred to read-

write locks; also because an operation on read-

write locks have a high overhead.

Alert log file: file that stores the alerts

that are published

Mutex locks are used here as file read and write

should be mutually exclusive.

Output Queue: queue of alerts and

consumers that are added when an alert

is to be sent to its consumers.

Mutex locks are used in this case since the only

two operations in this case are reading and

writing. Nodes are added in the end while the

deletion is done from the front.

Secondary Hash table: table of topics

with their consumer lists. The table

object is added only when there is a new

topic.

Read-write lock for locking consumer lists. Write

lock provides exclusive access while inserting or

deleting nodes in the lists. When accessing list in

shared (read) mode, lock hash table is used for

managing access to individual lists.

49

Details of the workings of the threads are explained in the implementation chapter

of Alert Server. The design of the Alert Server handles only JAVA clients. In order to

support C and C++ clients that send alerts to the server, another server that acts as a

proxy to the Alert Server needs to be implemented. The proxy needs to be designed such

that it can efficiently transfer calls to the Alert Server with a minimum overhead.

CHAPTER 4

IMPLEMENTATION OF ALERT SERVER

This chapter explains the implementation details of the alert server. It first

explains the communication interface of the Alert Server followed by the workings of

each thread and how each thread manipulates various data structures.

4.1 Alert Server Communication Interface

The alert clients communicate with the Alert Server through the remote method

calls. They can publish and cancel an alert, subscribe and unsubscribe to an alert. The

next section tries to explain a little bit of Java RMI and also explains some of the reasons

for choosing it over other similar technologies like CORBA and COM/DCOM [9, 10].

4.1.1 Choice of Java Remote Method Invocation

Remote method invocation allows Java developers to invoke object methods, and

have them execute on remote Java Virtual Machines (JVMs). Under RMI [11], entire

objects can be passed and returned as parameters, unlike many remote procedure call

based mechanisms (e.g., RPC) that require parameters to be either primitive data types, or

structures composed of primitive data types. Using RMI, any Java object can be passed as

a parameter - even new objects whose class has never been encountered before by the

remote virtual machine. This implies that new code can be sent across a network and

dynamically loaded at run-time by foreign virtual machines. Java developers have a

greater freedom when designing distributed systems, and the ability to send and receive

new classes is an incredible advantage. More over, Remote method invocation has a lot

of potential, from remote processing and load sharing of CPU's to transport mechanisms

50

51

for higher-level tasks, such as mobile agents, which execute on remote machines.

Because of the flexibility of remote method invocation, it has become an important tool

for Java developers when writing distributed systems. Since Alert Server has been

implemented in Java, RMI has been the choice over CORBA. Moreover, CORBA [8]

does not support transfer of objects or code and garbage collection. This becomes very

important in this case, as the server has to handle a large amount of alerts at point in time.

Apart from this, CORBA specifications are still in a state of flux. Last but not the least,

not all classes of applications need real-time performance, and speed may be traded off

against ease of use for pure Java systems.

4.1.2 API for communication

As already explained, there are basically six remote calls on the server that the

alert clients can invoke. Clients do not make these calls directly. The clients in turn use

the APIs in “MakeRMICall” class in the “alertserver.client” package. All methods in this

class are static. The remote methods are wrapped by the static methods in this class, that

also check for any errors in the arguments. This is necessary to catch the errors on the

client side and avoid propagating them to the server.

Publish an alert:

 public static void alertSend(Alert alertobj)

The alert that needs to be published is sent using the above API in the “MakeRMICall”

class present in the “alertserver.client” package. This method internally calls the actual

remote method on the server provided in its remote interface. This method also catches

any exceptions thrown by the client. The remote method thus called puts the alert in the

register buffer for processing by the server. The API explained below is remote method

call in the Remote Interface provided by the Alert Server.

52

public void alertCancel(Alert alertobj) throws RemoteException;

This API is a RMI call that passes the alert to the server. This API returns a void
and takes an alert as an argument. This is also a blocking call and throws a remote
exception like all other remote calls. This method call places the request in the
cancel queue on the server.

Subscribe and unsubscribe to an alert:

Clients can subscribe and unsubscribe alerts by using the following methods in the

“MakeRMICall” class. These methods in turn call the remote methods on the server and

also catch any remote exceptions thrown by them. These methods take a registration

filter, user id and alert type as its argument and return a void. The API for subscription

and unsubscription is given below

The ab

are exp

Cancel

cancel

public static void alertRegister (String filter, String userid, AlertType type);

public static void alertUnregister (String filter, String userid, AlertType type);
ove APIs call remote methods on the server for registration. These remote methods

lained below.
 public void alertRegister(String filter, String userid, AlertType type) throws
RemoteException;
public void alertUnRegister(String filter, String userid, AlertType type) throws
RemoteException;
These calls on the server put the register information in the register and
unregister queues respectively. These requests are then handled by registration
and unsubscription threads, which update the consumer data structure
accordingly. These calls are blocking like all the other calls.
 an alert:

public static void alertCancel(Alert alert)

Clients use the above method in “MakeRMICall” class of the client package to

alert. This API is used instead of calling the remote method, as it needs to check

53

the cancel policy of the alert. If the cancel policy is ANY then it makes the remote

method call but if the cancel policy is ORIGINATOR then the sender user ID in alert is

matched with the user ID of application (i.e., the client application that wants to cancel

the alert). If the match returns true, then the remote method is invoked, else a message is

returned indicating that the application cannot cancel the alert, as the alert was not

produced by that application. This causes the computation to be done on the client side

than on the server side.

4.2

req

con

effi

exp

4.2

Thi

thre

stru

prio

of t

ale
public void alertCancel(Alert alertobj) throws RemoteException;

This API is a RMI call that passes the alert to the server. This API returns a void and
takes an alert as an argument. This is also a blocking call and throws a remote exception
like all other remote calls. This method call places the request in the cancel queue on the
server.
 Workings of threads

Alert Server is a threaded server. As already explained, there is a thread for each

uest type and a thread for sweeping the data structures and finding the registered

sumers for alerts. Therefore, it is essential that the threads be implemented in an

cient manner, preventing synchronization problems. The workings of the threads are

lained next.

.1 Publish handler thread

This thread is mainly responsible for processing the requests in the notify buffer.

s buffer holds the alerts and acknowledgements that are published by the clients. This

ad removes the requests from the buffer and places them in the priority queue data

cture for distribution by the Message Handler Thread. After putting the alert into the

rity queue, buffer log sequence number of that log (log with the same priority as that

he alert) is updated with the ID of this alert indicating this is the most recently added

rt to the queue with the priority same as that of alert. But before it could wait on the

54

buffer for incoming requests when the thread starts initially, it reads persistent alerts from

the log and puts them into the priority queue data structure. This reading is done in the

beginning when the Alert Server starts. It is also during this time that the alerts that have

been cancelled are purged from the log and only those that live are read and put into the

priority queues. Persistent alerts are read from the logs using the index table in each log

file and scanning the records of the table. Its reads the log files on the basis of their

priority. The thread knows a logs priority by the name of the file. These log files are

named as “persistP.dat” where P stands for the priority. The thread has to obtain the write

lock of the queue before it can insert alerts into the queue and a mutex lock on the log

before it could be read the log. Each insertion of an alert results in this thread notifying

the message handler thread to run in ALERT ADDITION MODE (AA). It indicates this

by setting a common object between the message handler, registration handler and itself

to AA and setting the mode on the queue it is inserting the alert into also to AA. This is

necessary, as the message handler should know that an alert has been inserted into the

queue. This is done by obtaining the locks on the both the common object and the queue.

The logic used by the thread is shown

public void run()

 read all alerts persisted and put in to the priority queue

 while(!interrupted) {
 Get new alerts and acknowledgements from the notify buffer

 if alerts needs to be persisted
 persist(alert);

 Put into priority queue

 Notify message Handler thread to run in ALERT ADDITION MODE

 Update BLSN of the log
 }

55

This chapter explains the implementation details of the alert server. It first

explains the communication interface of the Alert Server followed by the workings of

each thread and how each thread manipulates various data structures.

AA

AA

Common Object

Default

Queue
mode

Default

1

Queues

2

4

3

5

6

7

8

9

10

A7 A5A6A10

A9

A2A8

A1A3A4

A# - Alerts with their IDs

Index

+ A11

Figure 4.1. Priority Queue data structure in Alert Inserted Mode.

Each insertion of an alert results in this thread notifying the message handler

thread to run in ALERT ADDITION MODE (AA). It indicates this by setting a common

object between the message handler, registration handler and itself to AA and setting the

mode on the queue it is inserting the alert into also to AA. This is necessary, as the

message handler should know that an alert has been inserted into the queue. This is done

by obtaining the locks on the both the common object and the queue.

The working of the thread can be better understood with an example. Assume that

the state of the priority queue array is as shown in figure 4.1 with the common mode and

the queue mode as default. This figure shows the addition of alert A11 to the queue with

priority of 5. Initially when there are no new alerts and no new consumers, the message

56

handler is waiting for some new alerts. When a new alert is added to the queue, the

message handler is notified by setting the common object mode to AA. The publish

handler also sets the mode of the queue in which it inserts the alerts to AA so that the

message handler knows that the alert has been added to this queue and it has to process

the queue when it sweeps the queues from their highest priority.

4.2.2 Registration handler thread

This th

in the

consum

above.

notifies

handle

added

newly

messag

the que

be note

that cau
 public void run()

 while (!interrupted) {
 if (registration queue is empty)
 wait
 Remove request from queue.

 Update the consumer table data structure by adding the consumer info.

 Notify the message handler thread to run in CONSUMER ADDED MODE

}

read handles the requests for registration from clients. These requests are queued

register buffer. It removes the requests from this buffer and places them in the

er table data structure in a consumer list. The execution of this thread is shown

It updates the consumer table upon receiving a new consumer subscription and

 the message handler thread to run in CONSUMER ADDED (CA) mode. This

r after adding the consumer to the consumer list as shown in figure 4.2, updates the

attribute of that list by one and sets the consumer ID attribute of the consumer

inserted to the added attribute that has recently been updated. It then notifies the

e handler to run in the CA mode by setting the common object to CA. It cannot set

ue mode to CA as it cannot know to what alert the client has subscribed. It should

d that clients could subscribe only to topic and not to alerts directly. It this reason

ses the message handler to run in two modes.

57

Index

A# - Alerts with their IDs

A4 A3 A1

A8 A2

A9

A10 A6A7

10

9

8

7

6

5

3

4

2

Queues

1

Queue
mode

Default

Common Object

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

A5

Figure 4.2. Priority Queue data structure in Consumer Added Mode.

4.2.3 Message Handler Thread

This thread is the main thread that helps in distributing the alerts. It continuously

sweeps the priority queue and consumer table data structures for distribution of alerts.

The details of the priority queues and consumer table data structures have been explained

in chapter 3. This thread therefore has to access two data structures, priority queues and

consumer tables that are being updated independently by two other threads. It needs to

run whenever there is addition of alerts to the queues or addition of consumers in the

consumer lists to the priority queue array and the consumer table data structure. In order

to indicate the change in these data structures to this thread and synchronize the access of

these data structures with the other threads it is essential for a different synchronization

mechanism. Other threads (registrations and publish handler) communicate with this

thread using a common indicator object, informing the thread that an alert has been added

58

or a consumer has been added. This indicator object will help the thread decide whether

the thread has to run in ALERT ADDED MODE or CONSUMER ADDED MODE. This

is essential in order to ensure the delivery of the alerts on the basis of priority as a higher

priority alert might have arrived or a new consumer might have been added when this

thread is processing a lower priority alert. This differentiation is needed, as the thread

has to follow different logic in two cases. It has to wait when there are no more alerts to

send and no new consumers added. It runs in ALERT ADDED MODE, whenever an

alert/acknowledgement is published and the priority queue array structure is updated by

the publish handler thread. It is asked to run in this mode by publish handler thread by

setting the mode of common indicator and mode of queue in which the alert is being

inserted to ALERT ADDED (AA). It keeps on running in this mode till all the alerts in

that particular queue, not the entire priority data structure, has been sent or a new

consumer is added. If no consumers are added meanwhile, it continues to run in this

mode else it starts running in CONSUMER ADDED MODE (CA) as the new consumer

might have subscribed to an alert of higher priority. The mode is changed only when

there is a new alert added or a new consumer added. If both these cases happen

simultaneously, then the thread runs in a MODE that was last set. It marks the queue as

“DEFAULT” when all the alerts in that queue are sent. This indicates the thread that the

queue has been processed when it tries to sweep from next time. The thread keeps

running with the next highest priority queue whose mode is not marked default when the

mode is not changed. In case of consumer insertion, the register handler notifies the

message handler to run in CA mode by setting the common object to CA. The message

handler then locks the entire data structure and sets the mode of all the queues to CA.

This is essential since the threads do not know the alerts the new consumers have

subscribed for. Therefore message handler has to sweep the queue from the highest

priority. After doing this, a new alert might have been added to a queue changing its

59

mode to AA. Message handler sweeps this when its turn comes since the mode is not

DEFAULT. It should be noted that the sweeping is always done from the highest priority

and these modes of the queue only tell the thread that it needs to send the alerts in the

queue. A mode of default for a queue indicates that all alerts have been sent or there are

no alerts in the queue. The running of Message Handler thread in the ALERT ADDED

MODE is shown below

pic

run

con

fixe

a lo

con

han

AD

is l

MO

ALERT ADDED MODE

private void sendtoOQbyMode1(Indicator indicator) throws InterruptedException
 Get the highest priority queue that has not been sent.
 if(queue = NULL) {
 Return to the calling function
 }
 runSweepingAlgorithm(queue)

In this mode the thread just starts sweeping the entire priority queue data structure

king one queue (i.e., one priority level) at a time on the basis of their priority and

ning the sweeping algorithm. The thread keeps on running in this mode until a new

sumer has been added. The granularity of running the sweeping algorithm has been

d to a queue instead of an alert to reduce the time needed to send the alerts as getting

ck of entire queue is faster than waiting for lock of each alert. So, whenever a new

sumer subscribes the consumer table data structure is updated by the registration

dler thread that notifies the Message Handler to run the algorithm in CONSUMER

DED MODE. Also, overhead associated with checking for new alerts and consumers

ikely to be high. The running of Message Handler Thread in CONSUMER ADDED

DE is shown below:

60

Delive

consu

explai

norma

suffici

sweep

found

list co

list. A

consu

when

one w

the lis
 private void sendtoOQbyMode2(Indicator indicator) throws InterruptedException

 if(priority queue data structure is empty)
 return to calling function and wait

 Set all queues state to not sent.

 Get highest priority queue that has not been sent

 while (queue != null) {
 runSweepingAlgorithm(queue)
 if (MODE IS STILL CONSUMER ADDED)
 Get the next higher priority queue that has not been sent
 else if (ALERT MODE ADDED)
 return to calling function;
 else
 Set mode to zero since no all alerts have been sent;
ry of alerts to consumers by Message Handler Thread:

This section explains the delivery mechanism used by the thread in order to find

mers in the list. The working of the thread is shown above and the mechanism is

ned further.

Alert Server needs to send the alerts to their consumers in an efficient manner. A

l sweeping of the consumer tables where the consumer information is stored, is not

ent since the consumers can register and unsubscribe to an alert dynamically. A

ing algorithm is used for this purpose. The details of the sweeping algorithm can be

in chapter 3. Each list in the consumer table data structure has a unique ID. Each

ntains consumer nodes that have unique attribute that indicate their arrival in the

part from this, the list has two other attributes, added and deleted, to keep track of

mers that are added and deleted dynamically. The added attribute increases by one

a new consumer is added due to registration and the deleted attribute increases by

hen there is a deletion of a consumer due to unsubscription. But these attributes of

t alone are not sufficient; alerts also need to keep track of the last consumer that has

61

received it to reduce traversal of the entire consumer list. For this purpose, there is a hash

table called alert list table in every alert, which stores the list ID and the consumer arrival

attribute of the consumer node. This tells the alert about the consumer that recently

received it. This table always has a single entry in case of alerts that have USER and

PROFILE topics since topics always map to a single consumer list in the consumer table

data structure while the alert list table may have multiple entries in case of TAG since the

subscription is based on regular expressions.

if(alert.getConsumersReceived (list.ID) == 0) {
 rest = list.added - list.deleted;
 while (rest > 0) {
 Consumer = list.get (rest -1);
 Send consumer to output queue with alert
 rest--;
 }
 Update the table in the alert with list.added attribute
}
else {
 if (list.added > alert.getConsumersReceived (list.ID)) {
 counter = 1;
 while ((alert.getConsumersReceived (list.ID) + counter) <= list.added)
 Consumer = list.get(counter - 1);
 If (Consumer.ID <= alert.getConsumersReceived(list.ID))
 break;
 Send consumer to output queue with alert
 counter++;
 alert.setConsumersReceived(list.added, list.ID);
 }
 }

This thread after finding the consumer list for an alert first checks whether this

alert needs to be sent for the first time by checking the number of consumers that

received it by using the entry of this list in the alerts list table. If the alert needs to be sent

for the first time, then it needs to be sent to all the consumers in the list irrespective of

how many consumers have been added or deleted till that point. But if the alert has

62

already been sent and needs to be sent next time during sweeping, then there are five

possible scenarios to be considered. In order to stop resending of alerts, it uses the other

list attribute, added and the list table in the alert. In order to understand these scenarios,

consider that the alert has already been sent to consumers C1 and C2. Therefore added

(A) and deleted attributes (D) shall be 2 and 0 respectively and the entry in the alert table

(AL) for this list will be 2 since C2 is the consumer that has last received this alert. It

should be noted here that consumers are always added to the front of a list. These

scenarios have been explained below with the help of the table 4.1.

Scenario 1: Addition of new consumers

This is the simplest case where only new consumers have been added. The thread has to

send to all the consumers from the beginning in the list till it reaches the ID of the

consumer that last received the list. This is stored in the alert when it was swept the last

time. For the initial scenario above, let us assume that consumer C3 has been added. The

list attribute A changes to 3 and attribute D is unchanged at 0. The thread sends alert to

all the consumers whose IDs fall between A and AL (2) thus avoiding resending and

update AL to 3 since C3 is the last consumer that received the alert.

Scenario 2:Deletion of consumers with no additions

In this case, the thread should not send this alert to any consumer. The thread can know

this by checking the list entry in the alert table with the list added attribute. For initial

scenario given above, lets say that consumer C1 has been deleted. At this point, A is

unchanged at 2 and D changes to 1. Since A is not greater than AL (2) alert is not sent to

any consumer. AL is still 2 in this case as the last consumer receiving the alert is C2.

Scenario 3:Addition and deletion of new consumers

For the initial scenario, consider the addition of consumers C3, C4 and later followed by

the deletion of consumer C4. Now for this case the attributes A will be 4 and D will be 1

while AL is still 2. The thread now checks AL with A and since A is greater than AL, the

63

alert is sent to all consumers between A and AL. This works fine for this example. But

what happens when all the consumers added is deleted. In this case, A will be 4 and D

will be 2. Now since A is greater than AL, it tries to send all consumers between A and

AL like before, but does not find any consumers as they have been deleted. Therefore, an

additional check comparing the first consumer ID in the list with the AL is necessary. If

ID is less than or equal to AL, then list is not scanned since all the alerts have been sent

to the consumers in it.

Scenario 4:Addition of consumers and deletion of old consumers

In this case consider the addition of new consumer C3 and deletion of consumer C2.

Now, A is 3 and deletion is 1 while AL is 2. Here again, since A is greater than AL,

thread sends alert to all consumers between A and AL.

Scenario 5: Addition of consumers, deletion of old and new consumers

Here, say there is addition of 2 consumers C3, C4 and deletion of C4 and C2. The

attributes at this state shall be A (4), D (1), AL (2). Since A is greater than AL, the thread

sends alert to all alerts between A and AL. While sending to consumers it also checks for

the consumer ID in the list with list entry in the table. If this ID is less than list entry, then

it has sent to all consumers in the list and stops any further sending.

Table 4.1. Scenarios in sweeping consumer lists

Scenarios Consumers AL A D

Initial 2 2 0

Addition of new

consumers

 2 3 0
C3 C1C2

C1C2

64
Deletion of consumers

with no additions

 2 2 1

Addition and deletion

of new consumers

 2 4 1

Addition of consumers

and deletion of old

consumers

 2 4 1

Addition of consumers

and deletion of old and

new consumers

 2 4 2

New Alert 0 2 0

C1C2

C3C4 C1C2

C3 C1C2

C4 C1C2C3

C1C2

4.2.4 Unsubscription Handler Thread

This thread runs in the same way as the register handler thread except that this

thread handles requests for unsubscription to an alert and an acknowledgement. This

thread removes unsubscription requests queued in the unsubscribe buffer and removes the

consumers from the consumer table. The thread needs to obtain a write lock from the list

from which the consumer needs to be deleted. This thread executes the following pseudo

code:

public void run()
 while(!interrupted())
 Remove request from the queue

 Delete the consumer node from the registration table

 Update the deleted attribute of the list accordingly.

65
4.2.5 Cancel Thread

priority

bit in th

4.2.6 O

transfe

finds th

thread

back to

respon

C/C++

that is

user ID
public void run()
 while(!interrupted())
 Remove alert from the cancel queue
 if(alert is persistent)
 Update the table record in the log

Cancel thread is responsible for removing the alerts that are cancelled from the

 queue. This thread removes alerts from the priority queue and also sets the cancel

e log so that the alert be purged from the log when the server restarts.

utput Handler Thread

public void run()
 while(!interrupted()) {
 Get the delivery object from output queue
 Get alert from the delivery object
 Get the consumer from the delivery object
 if(JavaClient())
 SendtoJavaClients(alert, consumer)
 else
 SendtoProxyClients(alert, consumer)
 Update DLSN attribute in the log
 }

The working of this thread is shown below. This thread is responsible for

rring the alerts to the registered from consumers. The Message handler thread that

e consumers, places the alerts along with its consumers in the output queue. This

takes delivery object i.e., alerts and its consumers from the queue and sends them

 the client by making RMI calls to the client. But this thread has an additional

sibility. It has to distinguish between proxy clients and alert server clients i.e.,

 clients and Java Clients. In the case of Java clients, the user ID of the consumer

present in the consumer object is a single string and in the case of proxy clients the

 is a concatenation of the user ID of the client and the user ID of the proxy server

66

with a “/” in between. This thread also sends receipt to the producer of the alert once an

alert has been delivered to the consumer and updates the DLSN of the log file. The

receipt is sent to the producer in the same remote call that transfers the alert to the client.

The user ID and Sender’s IP attribute in the alert identify the produce.

4.3 Implementation of Locks

The locks used in accessing different data structures have been explained in

chapter 3. This section explains the implementation of these locks. All locks belong to the

alertserver.locks package. The locks in this package provide three different types of

synchronization protocols. They are:

1. Sync: acquire/release protocols

2. Channel: put/take protocols

3. Executor: executing Runnable tasks

Alert Server uses only one protocol, the sync protocol. All the locks, Mutex,

ReadWrite and Semaphore locks in this protocol implement Sync interface. This interface

provides three methods, acquire(), release() and attempt(), which the locks override. The

first method acquire() is used when a lock is needed to be acquired. It is essential when a

thread needs to enter a synchronized block. The thread that enters the critical section or

synchronized block (in JAVA jargon) needs to release the lock to let other threads

waiting to enter the critical section. The release() method is used for this purpose. The

other method attempt() is used to acquire a lock within a specified amount of time.

Read/Write locks come with the facility to control the number of readers and writers. It

also provides mechanisms to assign priorities to readers and writers. Alert Server does

not need locks with such priority. Read Write locks in Alert Server are used only for

issuing read locks and write locks. It should be noted that the locks in this package are

non-reentrant meaning the thread that owns a lock has to wait for that lock till it releases.

The relationship between different locks in this package is shown in figure 4.3.

67

Mutex RLock WLock Semaphore

void acquire ()
void release ()

boolean attempt(msecs)

Interface Sync

Figure 4.3. Class diagram of lock package in Alert Server.

CHAPTER 5

DESIGN AND IMPLEMENTATION OF PROXY SERVER

This chapter discusses our design of a “PROXY SERVER”. The need for proxy

server arises for handling C and C++ clients. In addition to multithreading, it is also

necessary that proxy server handle the communication in a simple and efficient manner

providing the bare minimum needed.

5.1 Design Issues

The proxy server was designed to monitor events in a distributed application

environment where the client applications are producers and/or consumers of alerts. This

was mainly designed so that C and C++ clients can talk to the Alert Server written in

Java. Therefore clients in this chapter correspond to C and C++ clients and server refers

to the proxy server unless specified otherwise. Consumer clients make RPC calls to

register and unregister for alerts with the server. Similarly producer clients make remote

calls to proxy server to send alerts to the Alert Server. Consumer clients also make

similar calls to server to receive alerts when the Alert Server sends them. Remote

Procedure Calls have been used in the communication between the client and the server.

An RPC call is synchronous and blocking. The mechanism of synchronous RPC [4] is

shown in figure 5.3. This means that a client making an RPC call to the proxy server is

blocked till the call returns. The RPC request service procedure is in the main thread of

the server process. Therefore, even if two or more clients are making procedure calls at

the same time they will be handled serially by the server, and a client may have to wait

for service till the server finishes servicing the previous client request. This wait will be

68

69

significant when the server is handling several clients and the events being delivered are

large. In order to make the proxy server scalable it should be able to handle multiple

client requests concurrently. Hence the first design goal is to have a multitasking server,

as shown in. Another design goal of proxy server is that it should just provide a store and

forward mechanism. It should store the requests from clients and forward them to the

Alert Server. It should act as a mediator between the Alert Server and its clients. There

should not be any distribution logic as Alert Server is already doing it. Clients should be

handled transparently i.e., the client should assume that it is talking to the Alert Server.

Proxy Server should just serve as place where in the requests and responses from the

clients and Alert Server are converted into a language the other understands.

C3

C4

C2

Client C1

Server

Reply Request

Waiting Queue of
Client Requests

Standard Synchronous Server

C2

Server

Client C1

C3

C4

Request Reply

Reply Request

Multitasking Server

Figure 5.1. Multithreading vs Multitasking.

70
5.2 Architecture of Proxy Server

TCP
sockets

RPC

PROXY SERVER

RPC
Service

Queues

Conversion Module

Response

THREADS

R
M
I

R
M
I

ALERT SERVER

 Client

Client

Figure 5.2. Architecture of PROXYSERVER.

C and C++ clients send their requests to this server, which in turn, forwards it to

the Alert Server. Thus the architecture of the proxy server should support multiple clients

asynchronously since the rate at which the request comes is not known. This is achieved

by multithreading the server. It need not involve any distribution mechanism as the Alert

Server already provides it. It only needs a store and forward mechanism to move alerts in

either direction between the Alert Server and the clients. Therefore the data structures

used for this purpose need not be complex. Simple queues solve this purpose. It serves as

a place where the needed conversion from Java to C/ C++ objects and vice versa takes

71

place. Java Native Interface [17] has been used for this conversion. The details of the

implementation and conversion are explained in the implementation section.

Before we elaborate on the implementation, it is essential to understand the

architecture of the proxy server to how this has been implemented. This is shown in

figure 5.2. The clients send their requests through RPC calls. There is a service procedure

for each type of request. These RPC calls are blocking [4]. Since the server just stores

and forward messages, queues have been used as the data structures to hold them. This

also helps in allowing the client to make asynchronous calls. Each request type has its

own queue, as the remote call just needs to put them in their respective queues and return.

There is a queue for registration, unsubscription, cancellation and so on. Individual

threads that help in propagating the requests to the Alert Server handle each queue. Since

different threads share the queues it is necessary that the race conditions be handled

properly. The threads take out each request from the queue and convert them into Java

Objects in the conversion module and pass it to the Alert Server by making Remote

Method Invocation [11] calls. The conversion module is explained in detail in the

implementation chapter. The queues on the proxy that help in handling the requests and

the locks used for handling race conditions and other synchronization issues are discussed

below. This is can be better understood by considering different requests one at a time.

5.2.1 Publish an alert

The registration thread handles this request. New requests are always added at the

end of the queues and the requests are always handled as they come. Since a node is

being removed by one thread and added by another thread and there is no reading of the

queue at any point of time, the lock used for synchronization in this case is a mutex lock.

72
5.2.2 Canceling an alert

This request is handled by cancel thread. In this queue too, new requests are

added at the end of the queue and requests are handled as they come on a first come first

server basis. Since only reading and writing is involved the lock used is a mutex. Since

for canceling an alert, it needs to be passed to the Alert Server, this is passed in the same

way an alert is passed. But just doing this, is not sufficient. There may be cases where in

the cancel request is on the proxy server and the cancelled alert is in the response queue

of proxy server. These responses should not be sent to the clients as they are already

cancelled. This is achieved by checking the presence of the object in the cancel queue

before dispatching the response to the client.

5.2.3 Subscribe and Unsubscribe to an alert

These requests are handled by subscription and unsubscription thread

respectively. Like the previous queues, synchronization is handled by mutex as only

writing into the thread is involved. The request pending problem happens in case of

unsubscription. This is taken care in the same way as canceling an alert.

5.2.4 Acknowledge an alert

Acknowledging an alert just like sending an alert with the correlation ID of the

acknowledgement alert set to the ID of the alert to which it is an acknowledgement.

Alerts are handled in the same way as an alert. Therefore, they are stored in the same

subscribe buffer.

5.3 Implementation Details

This section discusses the implementation details of the proxy server. First, the

alternatives available to achieve the scalability and other design issues discussed above

are dealt and then the APIs needed by the clients to communicate with the server are

discussed. The execution of the threads in the server is discussed next. Finally, the

73

handling of the communication between the proxy and JAVA alert server using RMI and

JNI is explained.

5.3.1 Multithreading the server

In order to achieve scalability and handle clients asynchronously, it is essential

that the server support multitasking. This is achieved by multithreading or forking a child

process. The proxy server uses RPC and socket protocols in its communication interface.

In order to listen for client requests when the server starts running, the server process first

registers the program, procedures and version numbers with registerrpc command. The

port mapper then advertises the availability of the RPC address so that interested clients

can open a channel with the server. The server then goes to sleep while the svc_run call

listens to the other end of a socket for a client request to come along.

Based on the client request (argument), it executes one of the procedures

mentioned in the registerrpc call and returns the reply (result) to the client. The svc_run

routine is the heart of the server. Typically, it loops indefinitely, checking a set of socket

descriptors. When it gets a service request, it switches to the associated procedure on

examining the type of request. Once the procedure is executed, it loops back and waits

for additional requests. Details of svc_run are in [4]. In order to make the server scalable

it must execute each procedure in a thread, while the main thread (or process) listens for

additional requests. Multi-tasking the server is useful mainly when there are multiple

client requests that take widely different times to process. Even when the server is stuck

in the middle of a request that is a long processing task, the server should be pre-empted

by other brief or higher priority requests.

Either forking a process or allocating a thread to handle each request can achieve

Multitasking. In order to handle the request in a separate process, a child process can be

forked during dispatching of the request. Another alternative would be to start a child

process for each service procedure when the server is first started. In order to use

74

multithreading instead of child processes, the svc_run routine must create a pool of

threads where an idle thread will be allocated to handle a particular request. The

rpc_control utility function provided by the RPC library provides an option of starting

the server in the AUTO_MT mode wherein the procedure dispatch routine in svc_run

allocates a thread to handle each service request.

Server

Registered
Compute
Procedure

Thread

Thread

Thread

Calling Process

Client

Calling Process

Client

Calling Process

Client

Request
Information

Reply with status

Figure 5.3. Details of thread handling.

A thread is a single flow of control within a process. Threads share a single

address space. Each thread shares the resources of the parent process. Although

multitasking can also be achieved by creation of child processes, multiple threads of

execution provide much higher performance as compared to full-blown forking. First,

since threads share global variables, memory sharing is not an issue with threads. Second,

while context switching among threads, only pointer to the thread’s stack and registers

75

needs to be saved. For process context switches, all registers, stack, data, program

counter as well as several runtime state parameters of process need to be saved. Hence

context switching for threads is a lot cheaper than for processes. Third, when processes

synchronize, they usually have to issue a system call, a relatively expensive operation

that involves trapping into the kernel. But thread synchronization is usually handled by

the runtime thread library, and is less expensive as it does not require a trap to the kernel.

For the above reasons multithreading was seen to be the better of the two alternatives to

achieve multitasking. The threads created by the RPC service place the client requests in

separate queues depending on their request types. Different threads that convert them into

JAVA objects and pass them on to Alert Server by making remote calls, then process

these requests. Similarly, the response from Alert Server is also queued. This response is

processed by a separate thread by converting it into C structures in the conversion module

and then sent to the clients. The threads have been implemented using POSIX [18]

standards so that are portable.

5.3.2 Communication Interface

C/C++ clients send different requests by making RPC calls to the proxy server.

As already explained, the clients may send an alert, cancel an alert and also subscribe or

unsubscribe to a topic. The alert in case of C and C++ clients is a structure containing all

the fields that have been explained previously. For any sort of communication with the

proxy server, clients need to obtain a CLIENT handle [4] that should work with TCP

since the connection that the proxy server can accept is a TCP connection. A TCP

transport connection has been used instead of a UDP, as UDP RPC messages are at most

8K bytes, so procedures requiring or returning more than 8K bytes of encoded data

should use TCP. The following API obtains the client handle.

76

cl_handle = clnt_create(“proxyserver”, PROXYSERVER, VERS, “tcp”);

clnt_create() creates the CLIENT structure for the specified server host, program, and
version numbers. The first argument is the name of the host; the second and third
arguments are program number and version numbers respectively. The last argument
specifies a connection. This should be set to TCP.

The APIs used for communication with the server are explained below. All the APIs

below need a CLIENT handle.

Send an alert:

Alerts are sent by passing the alert structure along with the client handle in the remote

procedure call. The API used for sending alert is

A

th

C

A

to

c

alt_send_1(alert, cl_handle);

alt_send() makes RPC call to the proxyserver and places the alert in the publish queue.
Queue details have been explained in the previous chapter.
lert that is sent is placed in the publish queue. A thread listening on the queue picks up

e alert and forwards it to the alert server for distribution.

ancel an alert:

alt_cancel_1(alert, cl_handle);

alt_cancel_1() passes the alert that has to be cancelled from the client to the proxyserver,
which places it in the request queue. The first argument is an alert structure.

n alert is cancelled by passing the alert structure to the proxy server. This API is similar

 alt_send_1() except that this API places the alert in a cancel queue. The API used for

anceling an alert is shown above

77

Acknowledging an alert:

Acknowledging an alert is basically sending an alert whose correlation ID is set to the ID

of an alert. Acknowledgements are also queued in the publish queue and handled like

alerts.

S

C

c

e

in

sh

5

so
alt_acknowledge_1(alert, cl_handle);

alt_acknowledge_1() passes the acknowledgement to the proxy server and places it in the
publish queue for further distribution.
ubscribe and Unsubscribe to an alert:

lients subscribe and unsubscribe for alerts by specifying a topic. As explained earlier,

lients can subscribe and unsubscribe to an alert or acknowledgement. Therefore, it is

ssential to pass alert type, the topic and the clients name for requests of this type. This

formation is a REGINFO structure. The API used to subscribe and unsubscribe is

own above.
alt_register_1(reginfo, cl_handle);

alt_register_1() puts this structure in subscribe queue. Subscribe thread listens on
this queue and sends the entries in the queues to the Alert Server. The first argument
in this API is a structure that holds the topic, alert type and userid.

alt_unregister_1(reginfo, cl_handle);

This API is very much similar to the subscription API except that the request is put
in a separate queue called the unregister queue.
.3.3 Role of Java Native Interface

Since the proxy server is implemented in C and the Alert Server in JAVA, at

me point it is essential to convert C structures to Java objects and invoke the remote

78

methods that the Alert Server provides in its interface. The proxy server is a client for the

alert server; therefore it is important that requests in C and C++ be converted to java

objects that can be passed as parameters to methods that are provided by the alert server

to its clients for communication purpose. Java Native Interface (JNI) [17] has been used

for this purpose. There are other alternative approaches that allow Java applications to

interoperate with code written in other languages. For example:

• Through a TCP/IP connection or through other inter-process communication

(IPC) mechanisms.

• Distributed object technologies such as Java IDL API.

A common characteristic of these alternative solutions is that Java application and

native code reside in different processes. Process separation offers an important benefit.

The address space protection supported by processes enables a high degree of fault

isolation. But in this case, the native code of the proxy server has to convert the C

structures internally and then forward it to the alert server. Therefore the native code has

to communicate with Java application that resides in the same process. This is when the

JNI becomes useful because

• Lesser overheads of copying and transmitting data across different processes.

Loading the native library into a Java application or invoking a Java Virtual

Machine from the same process is much more efficient.

• Having an application span multiple processes could result in unacceptable

memory footprint. This is typically true if these processes need to reside on

the same client machine. Loading the java virtual machine into the process

hosting the application requires less system resources than starting a new

process and loading the java virtual machine into that process.

Apart from the conversion of requests and responses from C to JAVA and vice

versa, JNI is also used for making remote method calls to the Alert Server. The Alert

79

Server provides a remote interface, which the clients can use for communicating with the

server. The reference for the remote object is obtained with the JNI functions and the

methods in the interface are invoked from the C proxy server.

5.4 Initialization of Proxy Server

The proxy server needs to be initialized before it can accept calls from the clients.

The initialization of proxy server basically involves three essential steps

• Set the IP address. The IP address of the machine on which the server is running is

set so that the Alert Server can send the responses back to the proxy server which

can latter forward them to appropriate clients.

• Create a Java Virtual Machine. This step is essential, as we need a java virtual

machine in order use a Java Native Interface. The JNI invocation interface requires

the linking of native programs with a Java Virtual Machine implementation. This is

done by creating a JavaVMInitArgs structure in the native application and also

setting the virtual machine initialization arguments stored in JavaVMOption array.

The classpath and other important things are set here. After setting up the virtual

machine initialization structure, the native application calls JNI_CreateJavaVM to

load and initialize the Java virtual machine. The JNI_CreateJavaVM function fills

in two return values:

• An interface pointer, jvm, to the newly created Java virtual machine.

• The JNIEnv interface pointer env for the current thread. This pointer is

essential since the native code accesses JNI functions through the env pointer.

• The last step is configuration step. In this step the “proxyconfig.txt” is read

and all the macros that the application uses are set. The port number on which

the alert server listens for requests and the IP address of the Alert Server is

read and set. Apart from this, it also sets the proxy USER ID by reading from

80

the “config” file. This USER ID should be unique from all the other clients of

both the Alert Server and the clients of the proxy server.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

This thesis presents a messaging system that allows separate client applications to

be combined into a flexible and reliable system. It discusses the design and

implementation of Alert Server that handles JAVA clients and is also responsible for

distributing alerts. It explains the design and implementation of Proxy Server that handles

C/C++ clients. It discusses the problems in a messaging environment and the design

choices made to solve these problems. It also discusses the various alternatives available

and reason behind the choice of a particular alternative.

Alert Server has been implemented using publish/subscribe model where clients

can subscribe to three topics TAG, USER and PROFILE. It supports regular expression

based subscription in the form of TAG. It also assures delivery of alerts on the basis of

priority and maintains transaction logs for a comprehensive audit trail of delivery of

alerts, acknowledgements, and receipts to appropriate destinations. It supports persistence

of alerts by logging them on to a file-based storage. The clients have the option of

sending non-persistent alerts also. A new logging and retrieval mechanism has been

implemented. This is more efficient than the traditional way of storing the alerts. This is

achieved by storing alerts on the basis of their priorities and storing additional

information in the logs. A sweeping algorithm has been designed to sweep the data

structures and find the consumers for the alert. A proxy server has also been designed and

implemented to handle C/C++ clients. This proxy server is transparent to the clients and

81

82

its architecture supports a store and forward mechanism. The C/C++ clients are handled

in the same way as JAVA clients.

6.2 FUTURE WORK

The current implementation of Alert Server is a stand-alone application. This can

be integrated with GED/LED [1, 3] so that the clients have an option of either generating

events or send/receive alerts. This can be achieved by changing the API of the LED and

API of the Alert Server so that the client use that API to decide whether to send an alert

or generate an event. The current implementation of Alert Server handles the TAG,

USER and PROFILE on one server. This can be changed such that the subscriptions

pertaining to USER and PROFILE can be handled by one Alert Server and those

pertaining to TAG by another Alert Server. This may be done as Alert Server handles

TAG subscriptions slightly differently than the other two. More over this also improves

the scalability of Alert Server. The current implementation of Alert Server supports

publish/subscribe model. It can be extended to support point-to-point model also. The

clients in the current implementation need the IP address of the server in order to

communicate. This can be changed to improve availability by using JINI [19]. The

programs can then interact spontaneously enabling services to join or leave the network

with ease. This allows clients to view and access available services with confidence. The

current implementation can also be extended to provide administration utility and also

provide encryption mechanism when the alert is sent over a network to provide security.

REFERENCES

1. Tanpisut, W., Design and Implementation of Event based
subscription/notification paradigm for distributed environments. 2001, The
University of Texas at Arlington.

2. Dasari, R., Design and Implementation of a Local Event Detector in Java, in
CISE. 1999, Univ. of Florida: Gainesville.

3. Dasari, R., Events And Rules For JAVA: Design And Implementation Of A
Seamless Approach, in Database Systems R&D Center, CIS Department. 1999,
University of Florida: Gainesville.

4. Bloomer, J., Power Programming with RPC. 2000: Reilly.

5. R., R.B. Making the Most of Middleware. In Data Communications International
24. 1995.

6. Vondrak, C., Message-Oriented Middleware. 1997.

7. IONA, The OrbixWeb 3.0 Programmer's Guide. July 1997.

8. OMG, The Common Object Request Broker: Architecture and Specification
Version 2.0.

9. Microsoft, The Common Object Model Specification Version 0.9. 1995.

10. Microsoft, Distributed Component Object Model Protocol-DCOM/1.0, draft.
1997.

11. SunMicrosystems, Java Remote Method Invocation Specification. 2000.

12. SunMicrosystems, Java Message Service Specification Version 1.0.2b. 2000.

13. IBM, MQ Series - An Introduction to Messaging and Queuing. 1999.

14. IBM, MQ Series Queue Manager Clusters. 1999.

15. FioranoMQ, FioranoMQ and Progress Sonic MQ Comparison. 2001.

16. Schmidt, D.C. and S. Vinoski, The OMG Events Service. C++ Report. 1997.

83

84

17. Liang, S., The Java Native Interface Programmer's Guide and Specification.
2002.

18. Bradford Nichols, D.B.J.P.F., Pthreads Programming. 1996.

19. SunMicrosystems, JINI Specifications. 2000.

BIOGRAPHICAL SKETCH

Nishanth Reddy Vontela was born on September 18, 1977 in Warangal, India. He

received his Bachelor of Science degree in Mechanical Engineering from Visvesvaraya

Regional College of Engineering, Nagpur, India in May 1999. In the Fall of 1999, he

started his graduate studies in Computer Science and Engineering at The University of

Texas, Arlington. He received his Master of Science in Computer Science and

Engineering from The University of Texas at Arlington in May 2002. His research

interests include active databases and distributed systems.

85

	Table of Contents.pdf
	ACKNOWLEDGMENTS iv
	ABSTRACT v
	LIST OF FIGURES ix
	LIST OF TABLES x
	1. INTRODUCTION 1
	1.1. Problems and Requirements 2
	1.2. Requirements for Alert Server 4
	1.3. Requirements for Alert Clients 6
	1.4. Approaches for Message Distribution 6
	1.5. Need for Messaging System 9
	1.6. Existing messaging systems 10

	2. OVERVIEW OF RELATED WORK 13
	2.1. Java Message Queue 13
	2.2. IBM MQ Series 14
	2.3. Sonic MQ 15
	2.4. Global Event Detector (GED) 17
	2.5. CORBA 18

	3. DESIGN OF ALERT SERVER 19
	3.1. Functionality to be supported 20
	3.2. Alert 20
	3.3. Acknowledgment 25
	3.4. Receipt 25
	3.5. Alert Server Architecture 25
	3.6. Subscription and unsubscription 32
	3.7. Queuing and distribution of alerts 34
	3.8. Multithreading the Alert Server 42
	3.9. Synchronization Issues 44
	3.10. Types of Locks 45
	3.11. Other data structures 48

	4. IMPLEMENTATION OF ALERT SERVER 50
	4.1. Alert Server Communication Interface 50
	4.2. Workings of threads 53
	4.3. Implementation of Locks 66

	5. DESIGN AND IMPLEMENTATION
	OF PROXYSERVER 68
	5.1. Design Issues 68
	5.2. Architecture of Proxy Server 70
	5.3. Implementation Details 73
	5.4. Initialization of Proxy Server 79

	6. CONCLUSIONS AND FUTURE WORK 57
	6.1. Conclusions 81
	6.2. Future Works 82

	REFERENCES 83
	BIOGRAPHICAL INFORMATION 85

	LIST OF FIGURES.pdf
	1.1. Messaging in an application 1
	1.2. Virtually fully connected networks 4
	3.1. An Example of alert format 24
	3.2. Point-to-point messaging model 26
	3.3. Publish/Subscribe messaging model 27
	3.4. Contents of log file 29
	3.5. Consumer table data structures 32
	3.6. Priority Queue Data Structure 35
	3.7. Sweeping Algorithm 39
	3.8. Alert Server Architecture 42
	Priority Queue data structure in Alert Inserted Mode 55
	4.2. Priority Queue data structure in Consumer Added Mode 57
	Class Diagram of lock package
	in Alert Server 67
	5.1. Multithreading vs Multitasking 69
	5.2. Architecture of Proxy Server 70
	5.3. Details of Thread Handling 74

	Final list of tables.pdf
	3.1. Data structures and their locks 48
	4.1. Scenarios in sweeping consumer lists 63

	Chapter1.pdf
	Problems and Requirements
	Requirements for Alert Server
	Requirements of Alert Clients
	Approaches for message distribution
	Client/Server Architecture with RPC
	Client/Server Architecture with ORB
	Client/Server Architecture with MOM

	Need for a messaging system
	Existing Messaging Systems

	Chapter2.pdf
	Java Message Queue
	IBM MQ Series
	Sonic MQ
	Global Event Detector
	Common Object Request Broker Architecture

	Chapter1.pdf
	Problems and Requirements
	Requirements for Alert Server
	Requirements of Alert Clients
	Approaches for message distribution
	Client/Server Architecture with RPC
	Client/Server Architecture with ORB
	Client/Server Architecture with MOM

	Need for a messaging system
	Existing Messaging Systems

	Chapter2.pdf
	Java Message Queue
	IBM MQ Series
	Sonic MQ
	Global Event Detector
	Common Object Request Broker Architecture

	Chapter3.pdf
	Functionality to be supported
	Alert
	Acknowledgement
	Receipt
	Alert Server Architecture
	Messaging Models
	Message Consumption
	Message Delivery Mode

	Subscription and Unsubscription of alerts and acknowledgement
	Queuing and distribution of alerts
	Multithreading the Alert Server
	Synchronization Issues
	Types of Locks
	Other Data Structures

	Chapter4.pdf
	Alert Server Communication Interface
	Choice of Java Remote Method Invocation
	API for communication

	Workings of threads
	Publish handler thread
	Registration handler thread
	4.2.4 Unsubscription Handler Thread
	4.2.5 Cancel Thread
	4.2.6 Output Handler Thread

	Implementation of Locks

	Chapter5.pdf
	Design Issues
	Architecture of Proxy Server
	Publish an alert
	Canceling an alert
	Subscribe and Unsubscribe to an alert
	Acknowledge an alert

	Implementation Details
	Multithreading the server
	Communication Interface
	Role of Java Native Interface

	Initialization of Proxy Server

	Chapter6.pdf
	CONCLUSIONS
	FUTURE WORK

