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Data mining aims at discovering important, useful and previously unknown 

patterns from the dataset, which is typically stored in a commercially available database. 

The type of underlying database can vary and should not be a constraint on the mining 

process. We should be able to mine the data irrespective of the database management 

system (DBMS) used for storing and managing the dataset. In this thesis, we use DB2 

and Oracle to store our datasets, and use Java Database Connectivity (JDBC) to access 

the dataset managed by a relational DBMS. 

In this thesis, we focus on association rule mining using a layered approach. 

Mining requests from a user are accepted by a mining optimizer which generates 

appropriate Structured Query Language (SQL) queries accepted by the underlying 

DBMS. We formulate SQL queries to implement association rule mining algorithms. We 

present three SQL-92 and three SQL-OR (object-relational extensions to SQL) 

approaches for the same. We also compare and contrast the approaches based on their 
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performances over synthetically generated datasets. Some of the commercially available 

data mining application tools are also compared with our mining optimizer. 

We also map the input data into a format used by most mining tools. This, being a 

part of the optimizer, permits the user to directly identify relevant data from existing 

relations to the optimizer. Lastly we identify metadata, needed for determining the 

approaches based on the underlying database and user related constraints. Furthermore, 

metadata are stored in the underlying database and is accessed by the optimizer as 

needed. 



 

1 

CHAPTER 1 
INTRODUCTION 

Organizations generate and collect large volumes of data that they use in daily 

operations, e.g., billing, inventory, customer transactions in retail stores, banks, mail 

orders, market basket data, etc. The data necessary for each operation is captured and 

maintained by the corresponding department. This is a result of the tremendous growth in 

the data warehousing technology added to the stupendous drop in the storage prices. Yet 

despite this wealth of data, many companies have been unable to fully capitalize on its 

value because information implicit in the data is not easy to discern. However, to 

compete effectively in today’s market, decision makers must be able to identify and 

utilize information hidden in the collected data and take advantage of high return 

opportunities in a timely fashion. For example, after identifying a group of married, two-

income and high net worth customers, a bank account manager sends them information 

about the growth mutual funds offered by the bank, in an attempt to convince them to use 

the bank’s services rather than those of a discounted broker. 

1.1 Data Warehouse 

A data warehouse is a collection of subject-oriented, integrated, time variant and 

non-volatile data in support of management’s decision making process. It can also be 

defined as a tool for satisfying a business manager’s needs for complex queries and a 

general facility to get quick, accurate, and insightful information. Sets of data are one of 

the organizations most critical and valuable assets. Data Warehousing has grown out of 
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the repeated attempts on the part of various researchers and organizations to provide their 

organization flexible, effective and efficient means of getting at these sets of data. Data 

warehousing assembles and organizes data from enterprise operations such as transaction 

systems (registers, online order systems, etc.) and stores that data in a format that 

business or technical people can analyze. The data is stored in a data warehouse. The data 

warehouse is then made accessible through different means to those individuals in need 

of detailed information, information that is optimized and implemented to make timely, 

accurate decisions. As relevant information becomes available from a source, or when 

relevant information is modified, the information is extracted from the source, translated 

into a common model (e.g., the relational model), and integrated with existing data at the 

warehouse. Queries can be answered and analysis can be performed quickly and 

efficiently since the integrated information is directly available at the warehouse, with 

differences already resolved.  

A data warehouse is made up of three different functional areas, each of which 

must be customized to meet the needs of a business. 

The first component handles acquisition of data from legacy systems and outside sources. 

Here the data is identified, copied, formatted and prepared for loading into the 

warehouse. Many vendors’ products assist in data extraction and preparation. 

The second component of the warehouse is the storage, which is managed by relational 

databases like those from Oracle Corp., IBM Corp. or Informix Software Inc., specialized 

hardware-symmetric multiprocessor (SMP) or massively parallel processor (MPP) 

machines or software. The storage component holds the data so that the many different 
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data mining, executive information, and decision support systems can make use of it 

effectively.  

The third component of the warehouse is the access area. Here different end-user PCs and 

workstations draw data from the warehouse with the help of multidimensional analysis 

products, neural networks, data discovery or analysis tools. These powerful, smart 

software products are the real driving forces behind the viability of data warehousing. 

After all, what good does it do to store all this information without some way to 

understand it in new and different ways? Data mining applications fill that void. 

The online analytical processing (OLAP) or multidimensional spreadsheet tools 

represent a whole new generation of high-powered, user-friendly data investigation 

systems. These systems, sometimes referred to as spreadsheets on steroids, enable people 

to look at information from dozens of different perspectives. The main strengths of 

OLAP products are their ability to dynamically slice and dice reports and to look at the 

same kinds of information at different levels at the same time.  

1.2 Data Mining 

Data mining is a relatively unique process. In most standard database operations, 

nearly all of the results presented to the user are something that they knew existed already 

in the database. A report showing the breakdown of sales by product line and region is 

straightforward for the user to understand because they intuitively know that this kind of 

information already exists in the database. If the company sells different products in 

different regions of the county, there is no problem translating a display of this 

information into a relevant understanding of the business process.  



4 

  

Data mining, on the other hand, extracts information unknown previously to the 

user from a database. Relationships between variables and customer behaviors that are 

non-intuitive are the jewels that data mining hopes to figure out. And since the user does 

not know beforehand what the data mining process has discovered, it is a much bigger 

leap to take the output of the system and translate it into a solution to a business problem. 

Thus data mining is a process of extracting valid, previously unknown and ultimately 

comprehensible information from a data warehouse and using it to make crucial business 

decisions. The extracted information can be used to form a prediction or classification 

model, identify relations between database records, or provide a summary of the 

database(s) being mined. Data mining consists of a number of operations, each of which 

is supported by a variety of techniques such as rule induction, neural networks, 

conceptual clustering, association discovery, classification, etc. In many real world 

domains such as marketing analysis, financial analysis, fraud detection, etc, information 

extraction requires the cooperation of several data mining operations and techniques. 

While OLAP tools allow one to compare, say sales revenues for two quarters, data 

mining technology lets one perform for example, a search through all sales data and then 

presents with hypotheses to analyze. In fact, it is projected as the next step beyond OLAP 

for querying data warehouses. Data mining tools predict future trends and behaviors, 

allowing businesses to make proactive, knowledge-driven decisions. Data mining tools 

can answer business questions that traditionally were time consuming to resolve. Data 

mining tools can analyze massive databases to deliver answers to questions such as, 

"Which clients are most likely to respond to my next promotional mailing, and why?" 

With the data warehousing and decision support systems, one could answer questions like 
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"What were unit sales in New England last March? Drill down to Boston." But by data 

mining, now one can answer a question like "What’s likely to happen to Boston unit sales 

next month? Why?" Data mining derives its name from the similarities between 

searching for valuable business information in a large database — for example, finding 

linked products in gigabytes of store scanner data — and mining a mountain for a vein of 

valuable ore. Both processes require either sifting through an immense amount of 

material, or intelligently probing it to find exactly where the value resides. Given 

databases of sufficient size and quality, data mining technology can generate new 

business opportunities by providing these capabilities. 

1.2.1 Association Rules 

Association models are models that examine the extent to which values of one 

field depend on, or are predicted by, values of another field. Association discovery finds 

rules about items that appear together in an event such as a purchase transaction. The 

rules have user-stipulated support, confidence, and length. The rules find things that "go 

together". These models are often referred to as Market Basket Analysis when they are 

applied to retail industries to study the buying patterns of their customers. Thus, given a 

collection of items and a set of records, each of which contain some number of items 

from the given collection, an association discovery function is an operation on this set of 

records which returns affinities that exist among the collection of items. These affinities 

can be expressed by rules such as “72% of all the collections of item A also contain item 

B” and “30% of all the collections contain items A and B”. The rule is expressed 

symbolically as A ⇒ B [Agr93]. A is said to be on the opposite side of the association of 

B. A rule can involve any number of items on either side of the association. 72% in this 
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rule is the confidence of the rule and 30% is the support. In the Market Basket Analysis, 

the retailer will run an association discovery function over the point of sales transaction 

log. The transaction log contains, among other information, transaction identifiers (TID) 

and product identifiers (ITEMS). The collection of items is of the order of 100,000 or 

more and transactions are comparable too.  The output of the association discovery 

function is a list of product affinities. One of the most repeated data mining stories is the 

discovery that diapers and beer appear together in a shopping basket. The explanation 

goes that when fathers are sent out on errand to buy diapers, they often purchase a six–

pack of their favorite beer as a reward. The rule would be represented as Diapers ⇒ Beer. 

1.2.2 Sequential Patterns 

Given a database of sequences, where each sequence is a list of transactions 

ordered by transaction-time, and each transaction is a set of items, the problem of mining 

sequential patterns is to discover all sequential patterns with a user-specified minimum 

support. Here the support of a pattern is the number of data-sequences that contain the 

pattern. In other words, find inter-transaction patterns within a specified time window 

such that the presence of a set of items is followed by another item or set of items in the 

time-stamp ordered transaction set. 

A sequential pattern is an ordered list (sequence) of item-sets [Agr95]. The item-

sets that comprise the sequence are termed the elements of the sequence. The database 

comprises of records. A record typically consists of the transaction date and the items 

bought in the transaction. Often, data records also contain customer-id, particularly when 

the purchase is made using a credit card or a frequent-buyer card. 
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An example of a sequential pattern is that customers typically rent “Star Wars”, 

then “Empire Strikes Back”, and then “Return of the Jedi”. Note that these rentals need 

not be consecutive. Customers who rent some other videos in between also support this 

sequential pattern. Elements of a sequential pattern need not be simple items. “Fitted 

sheet and flat sheet and pillow cases”, followed by “comforter”, followed by “drapes and 

ruffles” is an example of a sequential pattern in which the elements are sets of items 

(item-sets). 

For Sequential pattern data mining, few constraints are added. First of which is, 

time constraints that specify a minimum and/or a maximum time period between adjacent 

elements in a pattern. They are called the min-gap and max-gap, respectively. Second, the 

restriction that the items in an element of a sequential pattern must come from the same 

transaction is relaxed, instead allowing the items to be present in a set of transactions 

whose transaction-times are within a user-specified time window, called the (window-

size). Third, given a user-defined taxonomy (is-a hierarchy) on items, allow sequential 

patterns to include items across all levels of the taxonomy.  

1.2.3 Clustering and Classification 

Cluster analysis is a data reduction technique that groups together either variables 

or cases based on similar data characteristics. This technique is useful for finding 

customer segments based on characteristics such as demographic and financial 

information or purchase behavior. It is a process of dividing a data-set into mutually 

exclusive groups such that the members of each group are as "close" as possible to one 

another, and different groups are as "far" as possible from one another, where distance is 

measured with respect to all available variables. Clustering is a descriptive task that seeks 

to identify homogenous groups of objects based on the values of their attributes. It can be 
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described as a process of maximizing inter-cluster similarities while minimizing 

intracluster similarities. Clustering algorithms can be classified into two categories: 

partitional and hierarchical. Given a set of objects and a clustering criterion, partitional 

clustering obtains a partition of the objects into clusters such that the objects in a cluster 

are more similar to each other than to objects in different clusters. The popular K-means 

and K-medoid methods determine K cluster representatives and assign each object to the 

cluster with its representative closest to the object such that the sum of the distances 

squared between the objects and their representatives is minimized. The only difference 

between the two partitional approaches is that, in K-means, clusters are represented by 

gravity center while in K-medoid, by a central object. On the contrary, hierarchical 

clustering is a nested sequence of partitions. There are again two flavors. An 

agglomerative, hierarchical clustering starts by placing each object in its own cluster and 

then merges these atomic clusters into larger and larger clusters until all objects are in a 

single cluster. It is a bottom up approach. A Divisive hierarchical clustering approach 

reverses the process by starting with all objects in a cluster and subdividing into smaller 

pieces. It is a top down approach. 

Classification is the process of dividing a data-set into mutually exclusive groups 

such that the members of each group are as "close" as possible to one another, and 

different groups are as "far" as possible from one another. Here that data is being 

classified into groups based on the distance measured with respect to specific variable(s). 

For example, a typical classification problem is to divide a database of companies into 

groups that are as homogeneous as possible with respect to a creditworthiness variable 

with values "Good" and "Bad". Classification, as the name implies, predicts class 



9 

  

membership. For example, a model predicts that Mr. ABC, a potential customer, will 

respond to an offer. With classification the predicted output (the class) is categorical. A 

categorical variable has only a few possible values, such as "Yes" or "No," or "Low," 

"Middle," or "High”. In other words, it is a process of building a model from a training 

set that classifies new data, based upon the attribute values. Each record of the training 

set consists of several attributes that could be continuous (coming form an ordered 

domain), or categorical (coming from an unordered domain). Of the attributes, one of 

them will be the classifying attribute. Decision trees are built depending on this 

classifying attribute, as the decision trees suit data mining and are the fastest to build, 

simple and easy to understand. The training set is partitioned recursively until each node 

consists of a single class/category. The figure shows a sample decision tree and the 

training set from which it is derived. 

Table 1.1 Training Data set 
TID Car Age Salary Class 
1 Sedan 30   65 G 
2 Sports 23   15 B 
3 Sports 40   75 G 
4 Sedan 55   40 B 
5 Limousine 55 100 G 
6 Sedan 45   60 G 
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Figure 1.1 Constructed Decision Tree 

1.2.4 Visualization 

Visualization tools take advantage of human perception as a method for analysis. 

Visualization is the graphical presentation of data and information for the purposes of 

communicating results, verifying hypotheses, and qualitative exploration. What numbers 

can't show, corresponding pictures often can. For example, a linear trend in data might 

not be evident from a table of data. However, a scatter plot that shows a series of points 

lined up on a straight line provides immediate insight into data relations. With high 

power computer graphics, visualization tools can also be effective presentation tools. 

Once a discovery is made, the analyst must convey that discovery using an easily 

accessible language such as pictures. The human mind is not capable of comprehending 

large amounts of data when they are presented in tabular form. However the human mind 

can process visual images far better than any computer. Visualization has long been a 
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standard tool to assist statistical and scientific analysis and is becoming an increasingly 

important component in database and data mining activities, both for its ability to provide 

rich overviews and to permit users to rapidly detect patterns and outlines. With respect to 

visualization of the association rules, the mined rules are often more apprehensible by the 

end user if they are presented in a graphical form than in the textual form.  

1.3 Problem Statement 

The main aim of this thesis is to deal with the association discovery approach in 

data mining. Data mining has undergone a transition from file mining to the current data 

warehouse mining. There have been two categories in the related work. One, which 

proposes adding new mining operators which extend Structured Query Language (SQL) 

and the other which leverages the query processing capabilities of current relational 

database management system (DBMS). This approach exploits the capabilities of 

conventional relational systems and their object-relational extensions to execute mining 

operations. We follow the latter approach, which assumes that the data is in a relational 

database in the form of tables and the data when present in the tables is much more 

flexible and easier to work with. All data is readily available for SQL queries that 

manipulate the data. We pursue the SQL based approach in our thesis doing which 

necessarily reduces the development time of the our algorithms and also make them 

extremely portable across DBMSs since porting is easier when standard SQL features are 

used.  

The other goal of our thesis is to explore the areas of mapping of input data and 

storing information as metadata that will aid in selection of an approach for association 

rule mining. The input data format for the association rule generator is (Tid, Item). 
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However, expecting data in this format would be unreasonable from an end user 

viewpoint since the real world data are not always in this format. To get around this 

problem, it should be made possible to map the user data into a format that is acceptable 

to the association rule generator. In order to achieve transparency, some metadata should 

be stored in the underlying database. This information would help to choose a good 

available approach to mine the input data. This information could be about the input 

table, underlying databases, pros and cons of each of the approaches, and some 

constraints (database and user specific). We believe that though some parts of this work 

may be small and some others just a beginning, this work will serve as a stepping-stone 

in the proper direction. 

1.4 Approach 

As described in the previous section, this thesis aims to explore the various 

approaches of association rule mining in relational databases, perform mapping of the 

input data, generate and use metadata. We study the various approaches and formulate 

SQL queries as a part of developing these approaches. These approaches have been 

implemented over two databases viz. DB2 and Oracle to establish the generality of our 

approach. The visualization is independent of the underlying DBMS or approach used for 

mining. It is a step to show that, regardless of the underlying database in which the users’ 

data exists, data can be mined, in particular for association rules as done here. Below we 

present some of the architectures [Tho98] for mining with relational systems. 
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Figure 1.2 Architectural alternatives 

Loose mining is an example of the client-server architecture. The server is the 

main mining kernel. In cache mining, the data is not read several times but is cached after 

the first read. The stored procedure and user-defined function approaches of mining 

encapsulate the whole mining logic into stored procedures and user-defined functions 

respectively on the database server. The flexibility of the approaches outweighs their 

development costs. SQL-based approach is the one that is explored in this thesis, in 

which the mining algorithms are formulated as SQL queries over the database in which 

the input data is predominantly stored as tables. We exploit the underlying database’s 

features like character large object (CLOB), stored procedures, user-defined functions 

(UDFs) and the least to mention the SQL querying capabilities. There may be integration 

with extensions like database extenders, data cartridges or data blades that may form a 

new integrated architecture. The last among the architectures is the integrated approach, 

which is the tightest form of integration that has no boundary between querying, OLAP, 

and mining. This is like a black box for the user who does not care about the underlying 

process. As mentioned previously, we pursue the SQL-based approach and formulate 
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queries for the mining algorithms. We present the architecture proposed in this thesis in 

Figure 1.3. 

 

Figure 1.3 The proposed architecture for association rule mining 

As seen in the figure, the mining query is input to a mining optimizer. This 

mining optimizer is a layered approach for optimization and visualization of the rules. It 

also encapsulates the mapping of input data. The JDBC/ODBC is the connection-

establishing component between the optimizer and the underlying database. The type of 

the underlying database is immaterial to this component. It is also the router of data from 

the database to the optimizer. The optimizer passes on the data to the rule generator that 

generates the rules. The rule generator bases the rule generation process on the user 

specified support and confidence levels, and selected approach if any or on the best 

approach as specified by the optimizer. The visualization module in the optimizer 

visualizes the generated rules in the bar chart, 2-D, and 3-D formats [Hon00]. The 

different association rule mining algorithms are discussed in Chapter 3. The processes of 

mapping and storing metadata are described in the next sub-sections respectively. 
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1.4.1 Mapping 

Mapping is an integral part of the input for the application. Our application, as 

well as most of the data mining applications/tools, for that matter, takes the input data in 

a two-column format. First column is the Transaction Identifier (TID) and the second 

column being the item. In our approach, we want to use data that is already present in the 

database without making the user to transform it and keep track of the transformation. 

Usually the data available and the data that one wants to mine is not present in the (Tid, 

Item) format. And it is defeats the purpose to make the end user map the data into the 

(Tid, Item) format. On the contrary, the user should be able to specify the data to be used 

in relational terms (such as selection of a subset of a relation or join and projection of 2 or 

more relations etc). Our system should map the relational data into the format acceptable 

by the application. This is precisely the objective of the mapping part of our work. The 

user is allowed to select a single or multiple tables for mining. If more than one table is 

selected, the user can either perform a join or union or difference operation on the 

selected tables and this table is the new input table. In this new table, the user further has 

a choice of selecting the Tid column and the columns that are to be treated as items 

among the available columns. The selected Tid column and the items’ columns are then 

mapped. Each element in the Tid and items’ columns is mapped to an integer. This will 

transform the user input data into the required (Tid, item) format. 

1.4.2 Metadata 

Metadata are another important aspect of mining. The goal is to try to store 

information/knowledge that will aid the mining optimizer in selecting a good approach 

for mining the input data. This information can be specific to the underlying database or 

to the input data and is stored as metadata in one of the underlying databases. This 
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information is accessed by the mining optimizer for making decisions and modified 

appropriately. A variety of characteristics of the approaches can also be stored, as part of 

the metadata and this would enable the selection of an approach for a particular data set 

in a specific database. This information in the metadata table needs to be modified 

dynamically so that the most recent and correct information is read by the application in 

the process of decision making with respect to approach selection. 

1.5 Thesis Organization 

The rest of the thesis is organized as follows. We present the details of using Java 

Database Connectivity (JDBC) for accessing DB2 and Oracle that we will be making use 

of, in Chapter 2. We discuss the SQL formulations for the various approaches for 

association rule mining in Chapter 3. Chapter 4 describes the mapping process and 

current implementations of the metadata with the additions to the existing metadata. 

Synthetic data generation, performance comparison of the various approaches and the 

scalability issues, and comparison of our work to the existing tools in the market are 

addressed in Chapter 5. We describe the system implementation in Chapter 6. Finally, in 

Chapter 7 we discuss our conclusions, contributions and the proposed extensions. 
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CHAPTER 2 
DATABASE CONNECTIVITY ISSUES 

2.1 Introduction 

SQL is a language used to create, manipulate, examine, and manage relational 

databases. Because SQL is an relational database-specific language, a single statement 

can be very expressive and can initiate high-level actions, such as sorting and merging 

data. SQL was standardized in 1989 so that a program could communicate with most 

database systems without having to change the SQL commands. Unfortunately, one must 

connect to a database before sending SQL commands, and each database vendor has a 

different interface, as well as different extensions of SQL. 

Open Database Connectivity (ODBC), a C language based interface to SQL-based 

database engines, provides a consistent interface for communicating with a database and 

for accessing database metadata. Individual vendors provide specific drivers or bridges to 

their particular database management system. Consequently, thanks to ODBC and SQL, 

we can connect to a database and manipulate it in a standard way. Though SQL is well 

suited for manipulating databases, it is unsuitable as a general application language and 

programmers use it primarily as a means of communicating with databases. Another 

language is needed to feed SQL statements to a database and process results for visual 

display or report generation. Unfortunately, one cannot easily write a program that will 

run on multiple platforms even though the database connectivity standardization issue has 

been largely resolved. For example, if a database client were written in C++, there would 
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be a need to totally rewrite the client for different platforms. On the contrary, a Java 

client can be run on any Java-enabled platform without even recompiling that program. 

The Java language is completely specified and, by definition, a Java-enabled platform 

must support a known core of libraries. One such library is JDBC, which can be thought 

of as a Java version of ODBC, and is itself a growing standard [Sun00]. 

JDBC is the Java application programming interface (API) for standardized SQL 

based database access. It is a database-independent API that facilitates the development 

of database-independent Java Applications/Applets/Beans. JavaSoftTM created the JDBC 

specification to meet the urgent need for a standard DBMS API for Java. JDBC provides 

database access via Java that is independent of both the platform and the database host 

system on which the application runs. The specification enables one to write Java code 

that establishes a connection to an SQL-capable data source, sends SQL statements to the 

data source, and returns status messages and data records resulting from the execution. 

JDBC also offers advanced functionality such as automatic conversion of different 

database data types to Java data types, the streaming of large data records, cursors, and 

multiple result data sets.  

In short, the JDBC API defines classes to represent constructs such as database 

connections, SQL statements, result sets, and database metadata. Thus JDBC allows a 

Java-powered program to issue SQL statements and process the results. 

2.2 Basic JDBC Architecture 

There are two architectures specified for JDBC that are universally accepted. 

They are based on the number of layers present in the architecture, which give flexibility 

to the client as an end user. 
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2.2.1 Two Tier Architecture 

In the two-tier model, a Java applet or application talks directly to the database. 

This requires a JDBC driver that can communicate with the particular DBMS being 

accessed. 

 

Figure 2.1 Two tier architecture 

In this architecture, a user's SQL statements are directly delivered to the database. The 

results of those statements are sent back to the user. There is tight coupling between the 

client and the server as the client is directly connected to the server. The database may be 

located on another machine to which the user is connected via a network. This is referred 

to as a client/server configuration, with the user's machine as the client, and the machine 

housing the database as the server. The network can be an Intranet, which, for example, 

connects employees to each other within a corporation, or the Internet. The advantages 

are that the architecture is simple and the client-side scripting offloads work onto the 

client. But the disadvantages are a fat client and some degree of inflexibility. 
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2.2.2 Three Tier Architecture 

In the three-tier model, commands are sent to a middle tier of services, which then 

sends SQL statements to the database. The Client is connected to an intermediate 

Application Server, which in turn is connected to the database. Thus the client 

communicates with the application server and this application server talks with the 

database. The SQL statements from the client are passed on to the database by the server. 

The database processes the SQL statements and sends the results back to the application 

server, which then sends them to the client. This is very much similar to the indirect 

mode of addressing used in the computer architecture.  

 

Figure 2.2 Three tier architecture 

Most people find the three-tier model very attractive because the middle tier makes it 

possible to maintain control over access and the kinds of updates that can be made to 

corporate data. With the middle tier, the user can employ an easy-to-use higher-level API 
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which is translated by the middle tier into the appropriate low-level calls. This 

architecture gives flexibility in the sense that one part can be changed without affecting 

the others. Also one can connect to different databases without changing code. The 

middle tier can be used to cache queries, implement proxies, and firewalls. Finally, in 

many cases the three-tier architecture can provide performance advantages. But the down 

side is that this is a complex structure, needs higher maintenance, and more parts to 

configure. 

There have been extensions to this architecture since Java allows for N-tier architectures. 

In our implementation, we will be using the two-tier architecture for its ease of use and 

simplicity. Our implementation does not need an application server, which would form 

the middle tier of services as seen in the three-tier architecture. The application in our 

architecture is directly connected to the database server and we need no services from the 

middle tier. The middle tier is needed in cases where the some parts of the application are 

prone to change over time and connections to different databases need to be established. 

No parts of our application are prone to changes and our application can connect to 

different databases since the JDBC driver provides us with that feature. 

2.3 Detailed Architecture 

Drivers for JDBC are exposed to JDBC compliant Java applications via the JDBC 

driver manager. The JDBC driver manager is a Java class implementation. It is an 

interface used by JDBC service consumers (Application/Applet/Bean developers) and 

service providers (JDBC driver developers).  
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Figure 2.3 Detailed architecture 

The JDBC application developers call upon the JDBC driver manager for JDBC 

driver association (or binding). JDBC driver developers build the JDBC classes to the 

specification as depicted by the JDBC driver manager class implementation. Also as seen 

in Figure 2.3 above, current JDBC drivers fit into one of the four categories: 

1. Type 1 - The JDBC-ODBC bridge provides JDBC access via most ODBC drivers. 

Note that some ODBC binary code and in many cases database client code must be 

loaded on each client machine that uses this driver. 

2. Type 2 - A native-API driver (partly Java) converts JDBC calls into calls on the client 

API for DB2, Oracle, Sybase, Informix, or other DBMSs. Note that, like the bridge 

driver, this style of driver requires that some binary code be loaded on each client 

machine. 
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3. Type 3 - A net-protocol (all Java) driver translates JDBC calls into a DBMS-

independent net protocol that is then translated to a DBMS protocol by a server. This 

net server middle-ware is able to connect all its Java clients to many different 

databases. In general, this is the most flexible JDBC alternative. 

4. Type 4 - A native-protocol (all Java) driver converts JDBC calls into the network 

protocol used by DBMS directly. This allows a direct call from the client machine to 

the DBMS server and is a practical solution for Intranet access. 

We will be using the Type 2 in our implementation. The Type 2 architecture allows faster 

access to databases like DB2, Oracle, etc. In our implementation, we are using DB2 and 

Oracle relational databases. Also that Type 1 supports Microsoft Access which we do not 

require and hence we settle for Type 2 architecture/driver.  

2.4 Stored Procedures 

Stored procedures are user written SQL programs that are stored at the server and 

can be invoked by the client applications. A stored procedure can contain most of the 

statements that an application program usually contains. Stored procedures can execute 

SQL statements at the server as well as application logic for a specific function. A stored 

procedure can be written in many different languages, such as COBOL, C, C++, PL/I, 

FORTRAN, etc. The client program and the stored procedure do not have to be written in 

the same programming language. The language in which stored procedures are written 

depends on the platform on which the server is installed.  The client program can pass 

parameters to the stored procedure and receive parameters from the stored procedure.  

In a regular database access without a stored procedure, the client performs all the 

application logic. The server is responsible only for the SQL processing on behalf of the 
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client. In such an environment, all database accesses must go across the network, 

resulting in poor performance in some cases. The model is relatively simple and this 

makes the application program easy to design and implement. Since all the application 

code resides at the client, a single application programmer can take responsibility for the 

entire application. But there are some disadvantages in using this orthodox approach. The 

application logic runs only on the client and hence there must be additional input/output 

operations for most SQL operations. These additional operations result in poor 

performance. Also there is a tight coupling between the client and the server. A slight 

change in the server initiates a corresponding change at the client side. Since there is one 

call to the server associated with each and every SQL statement, there is a lot of traffic 

congestion in the network. All these problems and concerns can be overcome by using 

stored procedures. Stored procedures enable to encapsulate many of the application’s 

SQL statements into a program that is stored in the server. The client can invoke the 

stored procedure by using only one SQL statement. A typical application requires two 

trips across the network for each SQL statement, whereas an application using the stored 

procedure technique requires two trips across the network for each group of SQL 

statements. This group is the collection of SQL statements that are encapsulated into the 

stored procedure. Also, the technique of using stored procedures would best suit an 

application that processes large amounts of data but require only a subset of data to be 

returned to user. This technique would allow access to features that exist only on the 

database server and prohibit the client from manipulating the contents of sensitive server 

data.  
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2.5 User Defined Functions 

User-defined functions (UDFs) extend and add to the support provided by built-in 

functions of SQL, and can be used wherever a built-in function can be used. UDFs can be 

created as either:  

• An external function, which is written in a programming language.  

• A sourced function, whose implementation is inherited from some other existing 

function.  

There are three types of UDFs:  

1. Scalar - Returns a single-valued answer each time it is called. For example, the built-

in function SUBSTR() in DB2 is a scalar function. Scalar UDFs can be either external 

or sourced.  

2. Column - Returns a single-valued answer from a set of like values (a column). It is 

also sometimes called an aggregating function. An example of a column function is 

the built-in function AVG() in DB2. An external column UDF cannot be defined but 

a column UDF that is sourced upon one of the built-in column functions can be 

defined. This is useful for distinct types. For example, if there is a distinct type 

SHOESIZE defined with base type INTEGER, a UDF AVG(SHOESIZE) which is 

sourced on the built-in function AVG(INTEGER) could be defined, and it would be a 

column function.  

3. Table - Returns a table to the SQL statement that references it. Table functions may 

only be referenced in the FROM clause of a SELECT statement. Such a function can 

be used to apply SQL language processing power to data that is not actually data, or 

to convert such data into a virtual table. For example, table functions can take a file 

and convert it to a table, tabularize sample data from the World Wide Web, or access 
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a Lotus Notes database and return information such as the date, sender, and text of 

mail messages. This information can be joined with other tables in the database.  

A table function can only be an external function. It cannot be a sourced function. 

Information about existing UDFs is recorded in the SYSCAT.FUNCTIONS and 

SYSCAT.FUNCPARMS catalog views in DB2. The system catalog does not contain 

the executable code for the UDF. (Therefore, when creating backup and recovery 

plans one should consider how to manage UDF executables.) A UDF cannot be 

dropped if a view, trigger, table check constraint, or another UDF is dependent on it. 

If a UDF is dropped, packages that are dependent on it are marked inoperative. An 

external UDF can be written by a user in C or Java. The program that implements an 

external table function must return one row of the result table each time it is called, 

and must indicate the end of the result by a special return code. 

2.6 Stored Procedures in Oracle 

Oracle provides a means of writing external procedures. But these procedures use 

Dynamic Link Libraries (DLLs) written in host language like C, FORTRAN etc. But 

Oracle 8.0TM does not support the procedures written in Java, which is the host language 

in our implementation. Thus there would be a need to use Java Native Interface (JNI) to 

communicate with a C external procedure if the choice of writing an external procedure 

in C were chosen. To get around this problem, we decided to use the Procedural 

Language/SQL (PL/SQL), which is a block structured programming language that 

supports loops, conditional statements, etc, in addition to the normal SQL operations. It 

also supports Data Manipulation Language (DML) statements inside the PL/SQL blocks. 

A stored procedure in Oracle has a name, takes parameters as input and returns values, is 



27 

  

a part of the data dictionary, can be invoked by many users. The input and output 

parameters can range from basic data types like numbers, characters, to complex types 

like character large objects (CLOBs) and tables [Ora97]. One of the examples in our 

implementation is the “saveItem.” The actual description and the declaration follow. 

CREATE OR REPLACE PROCEDURE saveItem(rowCount IN INTEGER) AS 

Declaration Section 

BEGIN 

Read the data 

Process the data 

Write to the CLOB 

END 

A CREATE OR REPLACE PROCEDURE clause always precedes the name of the procedure. 

This is to make sure that an earlier declaration (if any) is replaced by this new one. Then 

the name and the parameters follow. The temporary variable declarations are the next in 

line. The main body of the procedure is encapsulated in the BEGIN - END block. 

The main purpose of this stored procedure is to group, for each of the 

transactions, all the items present in that transaction. In other words, form a CLOB of 

items with the same TID number. The structure CLOB is used because it can store a 

maximum of 231-1 bytes (2 Gigabytes). In the stored procedure saveItem, the reading of 

data is the reading of a tuple at a time from the source table with the use of a cursor. 

Processing the data is identifying the CLOB to which this item is to be added. The 

writing part is adding an item to a CLOB with a TID that matches with the TID of the 

current item. The input and output are shown in the Table 2.1. 
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Table 2.1 The input and output for the saveItem stored procedure 
TID ITEM 

1 Bread 
1 Milk 
2 Bread 
2 Cheese 
3 Sugar 
4 Milk 

 

TID ITEMS 
1 Bread, Milk 
2 Bread, Cheese 
3 Sugar 
4 Milk 

 

To appreciate the usefulness of the stored procedure, the number of tuples in the original 

and output tables should be compared. Typically in a market basket dataset, the number 

of tuples in input table ranges from several thousands to millions. 

2.7 User Defined Functions in DB2 (UDBTM) 

A UDF in DB2 is created explicitly by a user using the CREATE FUNCTION, which 

declares the new function and specifies its semantics. UDFs are always created in a 

specific database and can be used only in that database. Within that database, UDFs can 

be used in the same way as built-in functions [Cha98, Pod98]. Use of a UDF does not 

require authorization, but the creation of one, does require certain privileges.  As 

described in section 2.5, UDFs can return either a scalar value or a table. Table functions 

are very powerful because they enable the user to make almost any source of data to 

appear to be a DB2 table. All that is required, is to write a Java program (in our 

implementation) that collects the desired data, filters it according to some input 

parameters if so desired, and returns it to DB2 one row at a time. The table returned by 

the table function can participate in joins, grouping operations, set operations such as 
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union, and any other operation that could be applied to a read-only view. In the rest of 

this section, we will describe how to create and implement a table function with an 

example. The example is the same as the one described in section 2.6. The syntax for 

creating and registering a table function would be as follows: 

CREATE FUNCTION saveItem(int, int) 

RETURNS table(T_tid int, T_cnt int, T_items CLOB) 

NOT FENCED SCRATCHPAD NO SQL 

NO EXTERNAL ACTION LANGUAGE Java 

PARAMETER STYLE DB2GENERAL FINAL CALL 

DISALLOW PARALLEL DBINFO 

EXTERNAL NAME fileName!saveItem 

Note that once the UDF is created in the manner shown above, it is automatically 

registered with the database and can be used in the SQL queries. The CREATE FUNCTION 

clause is the beginning of the function creation. In this case, the name of the function is 

“saveItem”. The RETURNS clause follows. Since it is a table function, the clause table and 

the schema of the table are the next to follow. The schema of the return table is made of 3 

columns that are all integers, viz. T_tid–the TID from the source table, T_cnt–the count 

of the number of items in this transaction, and T_items–the items in this transaction in the 

form of CLOB. The FENCED option specifies that the function must always be run in an 

address space that is separate from the database. This option causes a performance 

penalty due to process switching when the function is called, but integrity of the database 

is protected against accidental or malicious damage by the function. An unfenced 

function runs in the same address space as the database. Once the function is known to 

execute safely and correctly, one can make a fenced function unfenced. With the 

SRATCHPAD clause, the function is given a scratchpad area in memory that it can use to 
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store information from one function invocation to the next. The mandatory NO SQL clause 

specifies that the UDF contains no SQL statements in the body of the function. As of 

now, UDFs are not allowed to access the database. The mandatory NO EXTERNAL ACTION 

clause specifies that the UDF does not perform any actions that affect the world outside 

the database. Hence there exist no side effects. The mandatory clause LANGUAGE clause 

specifies the programming language in which the UDF is implemented, which is Java in 

our implementation. The PARAMETER STYLE clause identifies the conventions that are 

used for passing parameters to the UDF and is mandatory. Since Java is our language of 

implementation, the keyword DB2GENERAL is used. The FINAL CALL clause specifies that 

the final or last call to this UDF in a SQL statement when used, be differentiated from the 

earlier calls. This could be used for the housekeeping and cleaning purposes, especially 

used with the SCRATCHPAD option. The PARALLEL clause indicates whether parallel 

executions of the UDFs are allowed on multiple processors. In our implementation it is 

DISALLOWED because an invocation of the UDF needs to pass along information to the 

next invocation using a scratchpad. It is usually disallowed, when a UDF uses 

SCRATCHPAD, FINAL CALL or EXTERNAL ACTION clauses. The DBINFO clause is optional 

and causes DB2 to pass an extra parameter to the UDF. This parameter is a pointer to a 

data structure containing information such as the name of the current database, the 

current authid, and the name of the table and columns (if any) that is being modified by 

the current statement. The final clause is the EXTERNAL NAME, which indicates that the 

UDF is an external function and specifies the location of the function in the Java file that 

serves as its implementation. Either the whole path of the binary file that is the functions 

implementation, can be specified followed by a “!”, followed by the name of the proper 
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entry point in that file or one can just specify the filename, followed by “!”, followed by 

the entry point. In the latter case, the system will look for the function’s binary file 

implementation in the sqllib/function directory associated with the database. 

The implementation of the UDF saveItem is as shown below: 

saveItem(int tid, int item, int T_tid, int T_cnt, COM.ibm.db2.app.Clob 

T_items) 

{ 

Process/Write data to CLOB 

set(3, tid) 

set(4, count) 

set(5, CLOBOfItems) 

setSQLstate(“02000”) 

} 

The first two parameters in the signature of the method are the input parameters and the 

last three are the output parameters. In fact, they are the columns of the output table. The 

process/write data part of the function is the same as described in section 2.6. It 

determines the CLOB to which this item is to be added. Once this is done, the columns in 

the table are given the appropriate values by the use of the “set” method. Finally at the 

end of the function, we set the SQL state to “02000” to indicate the end of the table. 

Once this UDF is created and registered, it can be used in the SQL statements. One 

example is depicted below. 

INSERT INTO C1 

SELECT T_tid, T_cnt, T_items 

FROM (SELECT tid, item 

FROM C 

GROUP BY tid, item 

) AS tt0, TABLE(saveItem(tid, item)) as tt2; 

The input table C and output table C1 are shown below in Table 2.2. 
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Table 2.2 The input and output for the saveItem UDF. 
TID ITEM 
1 Bread 
1 Milk 
2 Bread 
2 Cheese 
3 Sugar 
4 Milk 

 

T_TID T_CNT T_ITEMS 
1 2 Bread, Milk 
2 2 Bread, Cheese 
3 1 Sugar 
4 1 Milk 

2.8 Conclusions 

In this chapter, we discussed the database connectivity issues and various 

architectures of JDBC. We also looked into the concepts of stored procedures and user 

defined functions. We then gave an example for stored procedures and user defined 

functions in Oracle and DB2 respectively. In Chapter 3 we discuss the concepts of 

association rule mining and describe the various approaches that we have implemented. 
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CHAPTER 3 
ASSOCIATION RULES 

3.1 Introduction  

Association rule mining is formally stated as follows: Let I = {i1, i2, i3, … , im} be a set 

of literals. It is the set of items. Let D be the set of transactions, where each transaction T is a 

set of items and T ⊆ I. An association rule is of the form X ⇒ Y. Here X ⊂ I, Y ⊂ I and X 

∩Y = Ø. The rule X ⇒ Y is said to hold over the set of transactions D with support s if s% 

of the transactions in D contain X ∪ Y. The rule X ⇒ Y has confidence c over the set of 

transactions D if c% of the transactions in D that contain X also contain Y. Rule support is 

the relative occurrence of the detected association rules within the entire database. To 

determine the rule support of an association rule, say X ⇒ Y, divide the number of 

transactions supporting the rule by the total number of transactions. 

{ }
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Thus for any rule, the support for that rule is equal to the support of an itemset that contains 

all the items in that rule. 

The confidence of an association rule is its strength or reliability. It is the percentage 

of transactions supporting the rule out of all the transactions supporting the rule body. 
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where X∩Y is the percentage of transactions containing both items X and Y, and support{X} 

is the percentage of transactions that contain item X. 

In this chapter, we discuss SQL-92 and SQL-OR (SQL-Object Relational) formulations for 

association rule mining [Sar98]. We present three approaches each for SQL-92 and SQL-OR 

association rule mining. First, we present a generic apriori algorithm that serves as the basis 

for our formulations [Que98]. An association rule mining problem is broken down into two 

sub-problems. 

1. Come up with all the item combinations (called itemsets) whose supports are greater than 

the user specified minimum support. Such sets are called the frequent itemsets. 

2. Use the identified frequent itemsets to generate the rules. Suppose ABCD and AB are 

two frequent itemsets, then it can be determined whether the rule AB ⇒ CD holds by 

computing the ratio support(ABCD)/support(AB). If this ratio ≥ the user specified 

minimum confidence, the rule AB ⇒ CD holds. 

3.2 Apriori Algorithm 

The apriori algorithm is based on the above mentioned two steps of candidate 

itemsets and rule generation phases. We start with the frequent 1-itemsets and make k passes 

identifying the kth frequent itemset in each of the passes. Let Fk represent the frequent k-

itemsets and Ck represent the potentially frequent k-itemsets, called the candidate itemsets. 

The generation of the frequent k-itemsets encompasses the process of generation of the 

frequent (k-1) itemsets, Fk-1, and Ck. The candidate itemset Ck is a superset of all the Fk 

generated. Once the itemsets are generated, the next step is the support counting step. Here 

the input data (transactions) is scanned and tested for the presence of candidates in Ck. All 

entries that have a support greater than the user specified minimum support qualify for rule 
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generation and become a part of the frequent itemset Fk at the end of the pass. The process 

terminates when there are no more elements in Ck. The algorithm is depicted below. 

F1 = {frequent 1-itemsets} 

for (k = 2; Fk-1 ≠ 0; k++) 

Ck = generate(Fk-1) 

for all transactions t ∈ D do 

Ct = subset(Ck, t) 

for all candidates, c ∈ Ct do  

c.count++ 

end for 

end for 

Fk = { c ∈ Ck | c.count ≥ minsup} 

end for 

Answer = ∪k{Fk} 

3.3 Input and Output Formats 

Input format. The input format is a two-column format. The first column is the 

transaction identifier (tid) and the second column is the item identifier (item). Hence for each 

transaction, if it has more than 1 item, then there will be multiple entries (rows) in the table 

for this transaction with the same value in the tid field and a different value in the item field. 

The other possible option is the normal table format with multiple columns, where one 

column is the tid field and the rest of the columns denote the items. For a transaction with 

large number of items, the first format will have as many tuples as the number of items while 

the latter will just have one tuple in the input table. In our implementation, the first format is 

assumed for two reasons. The first is that there is no prior knowledge about the number of 

items in each transaction. Also current databases in the market can support only up to certain 

number of columns for a table. Should a case arise wherein there are more number of items 
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in a transaction than allowed by the underlying database, there is no way we can manage the 

correctness of the data. Also there will be a lot of null values in rows, as all items are not 

used in all transactions. 

Output format. The output in our case is actually a set of rules. We present the output 

in a tabular form. Not all rules are of the same length. Hence we take the rule with the 

maximum length and this would statically determine the number of columns in the output 

table. Should a rule have less number of items than the number of columns in the table, the 

extra columns for that rule are filled with NULL values. Thus the format of the table is 

(item1, item2, … ,itemk, nullm, rulem, confidence, support). Here k is the length of the largest 

frequent itemset. nullm is the null marker and marks the end point of the rule. rulem is the 

position of the ⇒ in the rule. Confidence and support values for the rule are given in the 

confidence and the support fields. For example, a rule AB ⇒ CD with 30% support and 90% 

confidence is represented in the table with k = 8 by a tuple (A, B, C, D, NULL, NULL, 

NULL, NULL, 5, 3, 90, 30). 

3.4 Candidate Generation 

In the kth pass, we need to generate the set of candidate itemsets Ck from the frequent 

itemset Fk-1 generated in the (k-1) th pass. We do this in the following way. 

insert into Ck 

select I1.item1, … ,I1.itemk-1, I2.itemk-1 

from Fk-1 I1, Fk-1 I2 

where I1.item1 = I2.item1 and 

x 

I1.item k-2 = I2.itemk-2 and 

I1.item k-1 < I2.itemk-1 
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After this step, there is some pruning done. From Ck, all itemsets c ∈ Ck where some (k-1)-

subset of c is not in Fk are deleted. We use the k-way join to do this step. From the generated 

k-itemset from the join, we know that two of its (k-1)-itemsets are already known to be 

frequent since it was generated from two itemsets in Fk-1. We validate the remaining k-2 

subsets for memberships. These are done by additional join predicates, which skip one item 

at a time from the k-itemset. The tree diagram for this process is shown below. 

 

Figure 3.1 Candidate generation for any k 

For example, let F3 be {{1 2 3}, {1 2 4}, {1 3 4}, {1 3 5}, {2 3 4}}. After the join step, C4 

will be {{1 2 3 4}, {1 3 4 5}. In the prune step, all itemsets kCc ∈ , where some (k-1) subset 

of c is not in Fk-1 as mentioned before are deleted. Thus the prune step will delete the itemset 

{1 3 4 5}. The itemset {1 3 4 5} is known to be generated from the subsets {1 3 4} and {1 3 

5}. But the subset {3 4 5} is not in F3. Hence it is deleted and C4 contains only {1 2 3 4}. 
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3.5 Support Counting 

This is the important and time-consuming part of the mining process. The input table 

and the generated candidate itemsets are used to generate the rules. We present 3 methods of 

support counting in the SQL-92 category first and then the next 3 approaches belong to the 

SQL-OR category. 

3.5.1 K-way Join 

It is the simplest approach of support counting. In each pass k, we join k copies of the 

input table with the candidate itemsets Ck and do a group by on the itemsets. 

The basic idea in using the k copies of the input tables is that, we will need to compare the k 

items in the candidate itemset Ck to the items in input table. We take k copies of the input 

tables and compare one item from each of the tables to the items in the candidate itemset Ck. 

Since there are k items to be compared, we use k copies of input table and hence we can 

compare all the k items in one shot. We then do a group by on the k items and all items 

whose count(*) is ≥ minsup are potential items for the rule generation phase. The SQL 

statements and the tree diagram for support counting with k-way join approach is shown 

below. 

insert into Fk 

select item1, … , itemk, count(*) 

from Ck, T t1, … , T tk 

where t1.item = Ck.item1 and 

x 

tk.item = Ck.itemk and 

t1.tid = t2.tid and 

x 

tk-1.tid = tk.tid 

group by item1, item2, … ,itemk 
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having count(*) ≥ minsup 

 

Figure 3.2 Support counting by K-way join approach 

A more detailed explanation of K-way join and its flavors can be found in Thomas and 

Chakravarthy [Tho99]. There are certain advantages and disadvantages in using this 

approach. This approach is very simple and easy to use. It is very easy to understand also. 

But this approach would involve a lot of joins and a higher order of joins. That is to say that 

there are a lot of multi-way joins. In the kth pass, this approach needs a (k+1) way join.  

3.5.2 Two Group By 

This approach avoids the multi-way joins of the previous k-way join approach. Here 

we join the candidate itemset Ck and the input table T. The join condition checks whether the 

item present in the input table T is equal to any of the k items in the candidate itemset Ck. If 
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so, then group all such items, i.e., do a group by on the (item1, item2, … , itemk, tid) with a 

filtering condition that the count of such items is equal to k. The result is a set of items and 

their tid such that this tid supports the itemset in Ck. Once all such itemsets are identified, we 

do a group by on (item1, item2, …, itemk) on these itemsets with the having clause being the 

count(*) ≥ minsup. The SQL statements involved are shown below. 

insert into Fk  

select item1, item2, … , itemk, count(*) 

from ( 

select item1, item2, … , itemk, count(*) 

from T, Ck 

where item = Ck.item1 or 

x 

item = Ck.itemk 

group by item1, item2, … , itemk, tid 

having count(*) = k 

) as temp 

group by item1, item2, … , itemk 

having count(*) ≥ minsup 

With this approach also, there are certain advantages and disadvantages. This approach gets 

around the problem of multi-way joins and the number of joins are comparatively lesser than 

the k-way join, but this approach suffers from the overhead involved in the comparisons and 

executions of group by and having clauses. In fact, the group by and the having clauses have 

to be executed twice. Once during the grouping of the items in the input table and the second 

time for the actual support counting. 

3.5.3 Subquery Based  

This approach makes use of the common prefixes for support counting. There are lots 

of intermediate subqueries generated in this approach. We will denote the subqueries by Qi, 
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meaning that it is the ith sub-query. Note that there is no subquery Q0. The SQL statements 

and the tree diagram are shown below. 

insert into Fk 

select item1, item2, … , itemk, count(*) 

from (Subquery Qk) t 

group by item1, item2, … , itemk 

having count(*) ≥ minsup 

 

Subquery Qi (1 ≤ i ≤ k) 

select item1, item2, … , itemi, tid 

from T ti, (Subquery Qi-1) as ri-1, 

(select distinct item1, item2, … , itemi from Ck) as di 

where ri-1.item1 = di.item1 and 

x 

ri-1.itemi-1 = di.itemi-1 and 

ri-1.tid = ti.tid and 

ti.item = di.itemI 

Subquery Q0: No subquery Q0 
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Figure 3.3 Tree diagram for subquery Qi 

Subquery Qi will select items from tables Qi-1, Ci and input table T. The condition being that 

the items in Qi-1 match with those in Ci and tid in T matches with that in Qi-1. In any pass, say 

m, (m-1) items (item1, item2, … , itemm-1) in Qm-1 are matched with items in Cm. Also tid in T 

and Qm-1 are matched. If all of them match, then all such items are inserted into Fk if the 

support of these items is ≥ minsup. 

3.5.4 Vertical 

This is a SQL-OR approach. In this approach, we transform the input table into a 

vertical format by creating a CLOB for each of the item in the data table. The CLOB for an 

item contains all the TIDs that contain this item in the input table. These tid lists are then 

merged together as a part of the support counting phase. Basically for each of the items in Fk, 
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the corresponding tid-lists are intersected for support counting. Since the tid-lists are in 

sorted order, the intersection is easy. We can use an optimal approach like the sort-merge 

algorithm for the intersection process. In this approach several DB2 UDFs are made use of 

viz. SaveTid, CountAnd2, CountAnd3, …, CountAndK. The UDF saveTid takes 3 input 

parameters. The first is the item, second is the tid and the third is the number of rows in the 

input table. The tuples in the input table are input to this UDF one by one and the UDF 

generates the CLOB of the tids for each of the items. The UDF has 3 output parameters 

namely, the item, the count of the number of tids in the CLOB for each of the items and the 

tid list for the item. The output is actually a table and the three mentioned parameters are the 

columns of the output table. The pseudocode of the UDF is shown below. 

saveTid(int item, int tid, int rowCount, int T_item, int T_cnt, 

COM.ibm.db2.app.Clob T_tids) 

{ 

if item = prev_item 

add tid to tid_list T_tids 

increment count 

else 

create a new tid_list T_tids 

add the item to this new tid_list T_tids 

reset and increment the count 

end if 

set(4, item) 

set(5, count) 

set(6, T_tids) 

setSQLstate(“02000”) 

} 
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The UDF compares the item that is input with the previous item. If they are the same, then 

this tid also supports that item and hence this tid goes into the tid_list T_tids for the previous 

item. Also the count is incremented to indicate the increase in the number of transactions that 

support this item by one. If the items differ, then the tids should be in different tid_lists. 

Hence a new tid_list T_tids is created and the tid is added to this list. The count is reset and is 

incremented by one. At the end, there is a need to set the values of the return columns of the 

table. The set API is used for this. The columns are addressed by their index numbers 

(column positions) and the appropriate values are set. Finally there is a need to indicate the 

end of the table, which is done by setting the SQL state to “02000” using the setSQLstate 

API. The other UDFs used are the CountAnd2, CountAnd3, etc. These UDFs accept a 

number of CLOBs (tid_lists) as the input parameters and output the count that is the number 

of tids that support this itemset. In other words, the tid_lists are compared and the count of 

the number of common items is returned. For example CountAnd2 accepts two tid_lists. 

Then for each of the elements in the list, it checks if the element under consideration is 

present in both the tid_lists. If so, the count is incremented. Thus at the end of the invocation 

of the UDF, we will end up with a count of the number of common elements in the two 

tid_lists, which is nothing but the support for the itemset. Similarly for CountAnd3, 

CountAnd4, etc. The only difference is in the number of tid_lists compared, which is 

increased by one for each of the higher named UDF. The number that is juxtaposed at the end 

of the name indicates the number of tid_lists compared. Following is the description of a 

generic CountAndK UDF where k tid_lists are compared. Note that unlike the saveTid UDF, 

the last statement of setting the SQL state is not required in this case as this is a scalar 
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function that just returns a scalar value while the saveTid UDF was a table function and 

returned a table. 

CountAndK(COM.ibm.db2.app.Clob tids1, COM.ibm.db2.app.Clob tids2, … , 

COM.ibm.db2.app.Clob tidsk, int count) 

{ 

for the length of a tid_list do // scanning only one of the  

// tid_lists suffices 

if the element in the tid_list is present  

in all the other tid_lists 

increment the count by 1 

end for 

set(k+1, count) 

} 

The steps involved in this approach can be summarized as follows. 

• From the input table, prepare the tid_list using the saveTid UDF. This tid_list is a table, 

by name TIDT that is the output of the UDF saveTid and contains the tid_lists for each of 

the items in the input table. 

• For pass 1, 

• For generation of table F1, all items from the input table are grouped and those with a 

count ≥ minsup are the potential items in the table F1. 

• For all other passes,  

• For table Ck, k copies of Fk-1 are joined with the condition that the itemset be 

frequent. 

• Table Fk is generated by joining k copies (I1, I2, … , Ik) of  table TIDT and the table 

Ck with the join condition being that items in Ck be present in the copies of table 

TIDT. The tid_lists from the copies of TIDT are then passed on to the scalar function 
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CountAndK, which compares the tid_lists and returns the count. This count as 

mentioned earlier is the support of the tids for the itemset. 

3.5.5 Gather Join 

This is another SQL-OR approach. This is a bit different from the Vertical approach. 

Here we create a CLOB of items for each of the TIDs in the input data table. We have a UDF 

for this CLOB creation. The output of this UDF is then passed on as an input to another UDF 

that gives all the possible k-item combinations formed out of the items in the COLB. Each 

record that is output by this UDF is in the format T_item1, T_item2, … , T_itemk. This output 

is then joined with Ck and the items are compared. From the comparisons, all items whose 

support ≥ minsup are the prospective elements of candidate itemsets. In this approach DB2 

UDFs namely saveItem, Comb2, Comb3, … , CombK are used. The UDF saveItem takes 2 

input parameters. The first is the tid and the second is the item. The tuples in the input table 

are input to this UDF one by one and the UDF generates the CLOB of the items for each of 

the tids. The UDF has 3 output parameters namely, the tid, the item_list for the tid and the 

count of the number of items in the CLOB for each of the tids. The output is actually a table 

and the three mentioned parameters are the columns of the output table. The pseudocode of 

the UDF is shown below. 

saveItem(int tid, int item, int T_tid, int T_cnt, COM.ibm.db2.app.Clob 

T_items) 

{ 

if tid = prev_tid 

add item to item_list T_items 

increment count 

else 

create a new items_list T_items 
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add the item to this new items_list 

reset and increment the count 

end if 

set(4, item) 

set(5, count) 

set(6, T_items) 

setSQLstate(“02000”) 

} 

The UDF compares the tid that is input with the previous tid. If they are the same, then this 

tid also supports that item and hence this item goes into the items_list for the previous tid. 

Also the count is incremented to indicate the increase in the number of transactions that 

support this item by one. If the tids differ, then the items should be in different items_lists. 

Hence a new items_list is created and the item is added to this list. The count is reset and is 

incremented by one. At the end, there is a need to set the values of the return columns of the 

table. The set API is used for this. The columns are addressed by their index numbers 

(column positions) and the appropriate values are set. Finally there is a need to indicate the 

end of the table, which is done by setting the SQL state to “02000” using the setSQLstate 

API. The other UDFs used are the Comb2, Comb3, etc. These UDFs accept two input 

parameters. First is the tid and the second is the CLOBs (item_lists) and output the 2-item, 3-

item, … , k-item combinations of the items in the COLB. For example Comb2 accepts two 

parameters, tid and items_list. It then generates the 2-item combinations of the input 

items_list and returns them. Similarly for Comb3, Comb4, etc. The only difference is in the 

type of item combinations returned whether they are 2-item, 3-item, or k-item combinations. 

The number that is juxtaposed at the end of the name indicates the type of itemset returned. 
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Following is the description of a generic UDF CombK, which returns all the k-item 

combinations. 

CombK(int tid, COM.ibm.db2.app.Clob items, int T_item1, int T_item2, … , 

int T_itemk) 

{ 

for the length of items list items do  

generate all the k-item combinations and 

insert them into the table 

end for 

set(3, item1 of the k-item combination) 

set(4, item2 of the k-item combination) 

x 

set(k, itemk of the k-item combination) 

setSQLstate(“02000”) 

} 

The steps involved in this approach are as follows. 

• From the input table, prepare the items_list using the saveItem UDF. This item_list is a 

table, by name TITEM that is the output of the UDF saveItem and contains the 

items_lists for each of the tids in the input table. 

• For pass 1, 

For generation of table F1, all items from the input table are grouped and those with a 

count ≥ minsup are the potential items in the table F1. 

• For all other passes,  

Table Fk is generated by joining the tables TITEM and the table returned by the CombK. 

The join result is grouped by T_itemk, T_item2, … , T_itemk. The result is then passed 

through a having clause of condition count ≥ minsup. All the resultant items are potential 

candidates for rules generation. Actually, the items in the table TITEM are passed to the 
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UDF CombK and the k-item combinations with respect to this TITEM table are returned 

by CombK. 

3.5.6 Gather Count 

This is the last SQL-OR approach. It is very much similar to the Gather Join 

approach. But in this approach we utilize the index on table C to probe into the table Ck, after 

the CLOBs and the k-item combinations are created. Also the candidate itemsets C are 

created here. This approach also makes use of the UDFs savItem , Comb2, Comb3, … , 

CombK. 

The steps involved in this approach are as follows. 

• From the input table, prepare the items_list using the saveItem UDF. This item_list is a 

table, by name TITEM that is the output of the UDF saveItem and contains the 

items_lists for each of the tids in the input table. 

• For pass 1, 

• For generation of table F1, all items from the input table are grouped and those with a 

count ≥ minsup are the potential items in the table F1. 

• For all other passes,  

• Generate table Ck from k copies of Fk-1 with the join condition that item1, item2, … , 

itemk form a frequent itemset.  

• Generate the k-item combinations using the UDFs CombK using table TITEM. The 

results are then joined with Ck. There is a unique field in table Ck called oid. This oid 

identifies each of the itemsets uniquely and an index is created on this field for easy 

and fast probing into the itemsets. All the matching items are then passed through a 



50 

  

group by oid. This temporary table is then joined with Ck and the index on oid is used 

for joining. Items item1, item2, … , itemk are then inserted into the table Fk. 

3.6 Rule Generation 

This is the second and last phase of the association rule mining. We use the frequent 

itemsets produced in the support counting phase to generate the rules. For each of the 

frequent itemsets l, we find all its non-empty proper subsets. For each of the non-empty 

subsets m, we find the confidence of the rule m ⇒ (l-m) and if this confidence is at least as 

much as the user specified minconf, we output that rule. 

In the support counting phase, we store all the resultant itemsets of size k in table Fk. The 

first step is to consolidate all the frequent itemsets into one table. We name this table 

FISETS. The schema of the table FISETS is (item1, item2, … , itemk, nullm, count). Here 

nullm indicates the null marker, which is the end of the itemset. and count gives the support 

for that itemset. Now for each of the items in the FISETS, we need to generate the non-empty 

subsets of the form, Rule head ⇒ Rule Body. We generate the subsets for each of the tuples 

in the table FISETS and insert all the generated subsets in a table called the SUBSETS. For 

example, if the itemset contains {bread, milk, butter}, we generate six subsets. The first three 

are with one item in the rule head and two in the rule body while the last three have two 

items in the rule head and one item in the rule body. 

bread ⇒ milk, butter, milk ⇒ bread, butter, butter ⇒ bread, milk; bread, milk ⇒ butter, 

bread, butter ⇒ milk, butter, milk ⇒ bread; The schema of the table SUBSETS is (T_item1, 

T_item2, … , T_itemk, T_nullm, T_rulem, T_count). The T_item1, … ,T_itemk are the items 

in the itemset. T_nullm is the same as in the FISETS. It is the null marker. T_rulem is the 

rule marker. It is the position of separation of the rule head and the rule body. In other words 
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it gives the position of the “⇒” symbol in the rule. The subsets are generated using the 

function GenSubsets. Now the tables contain itemsets whose support is at least equal to the 

user specified minsup. Hence the rule generation is simple. We just have to join the two 

tables FISETS and SUBSETS with the condition that the ratio of 

countFISETS

countSUBSETS

_

_
 ≥ minconf. 

The schema for the table RULES is (item1, item2, … , itemk, nullm, rulem, confidence, 

support) 

The query below and Figure 3.4 illustrate the rule generation. 

insert into Rules  

select T_item1, …, T_itemk, T_nullm, T_rulem, 

(float(SUBSETS.T_count)/FISETS.count)*100, 

SUBSETS.T_count  

from SUBSETS, FISETS  

where (SUBSETS.T_item1 = FISETS.item1 OR SUBSETS.T_rulem <= 1 )  

AND (SUBSETS.T_item2 = FISETS.item2 OR SUBSETS.T_rulem <= 2 )  

x 

 AND (SUBSETS.T_itemk = FISETS.itemk OR SUBSETS.T_rulem <= k )  

       AND SUBSETS.T_rulem = FISETS.nullm  

AND SUBSETS.T_count*100/ FISETS.count >= minconf 
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Figure 3.4 Rule Generation 

The consolidation of the tables and the routines for generating the rules can be implemented 

as UDFs or table funcions also. The fraction of total running time spent in rule generation is 

very small. Hence, we do not focus much on other rule generation algorithms. 

3.7 Conclusion 

In this chapter, we stepped through the process of association rule mining. An insight 

into the apriori algorithm was given first and later we discussed the candidate generation 

process. Various approaches for support counting of the rules were looked at in the following 

sub-sections. Lastly we gave a brief overview about the rule generation. In the next chapter, 

we look into the issues of mapping the input data into the format desired by the rule 

generator and also discuss the layered approach of utilizing the metadata for association rule 

mining. 
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CHAPTER 4 
INPUT MAPPING AND METADATA 

4.1 Introduction 

This chapter gives a brief overview of the process of mapping the input data into a 

format that typically is used by most of the association rule mining algorithms. When there 

are more than one table used as input for the association rule mining, they need to be mapped 

to the typical input format. Lastly the topic of metadata is discussed and we elaborate on the 

information that can be stored as the metadata to aid in deciding the best available approach 

for rule mining. 

4.2 Mapping 

As mentioned in the earlier chapters, most of the association rule mining tools require 

the input to be in the (tid, item) format. But in real life applications, the data that is input to 

the mining algorithms are seldom in this required format. Hence there is a need to map this 

input before it is processed. Also since the number crunching capability of a computer 

outperforms the ability of processing character strings, we enforce the new constraint that the 

input table be in the integer format. These two constraints increase the work on the part of the 

user. If the user were supposed to do all the transformations, then the mining algorithms 

would not carry much importance. Hence, we try to incorporate the two levels of mapping 

into a layer of our implementation and take the burden off the end user. The whole mapping 

process would start once the input tables are identified. If the input table is just a single table, 

the mapping process can begin immediately. Otherwise, first the input table needs to be 
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created from the Union/Join of the user-selected tables and the mapping done on the new 

input table. If the operation is a join, then the user also provides the join columns in the 

selected tables. Once the input table is prepared, the user needs to select the columns that 

need to be treated as tid columns and those that need to be interpreted as items. In our 

implementation, we have incorporated the feature where the user can select multiple columns 

that would together form a tid column, similar to the concept of a composite key in a 

relational table. Also among the remaining columns, the user can select all or some of them 

to be treated as items. This feature is not available in many of the commercial data mining 

tools available in the market at present. The output of the mapping process will be three 

tables. First is the table that contains the tids mapped to unique integers, which we call the 

MappedTidsTable. Second is the table MappedItemsTable which has the items mapped, and 

the last is the FinalInput table which is the same as the original input table with all the values 

now mapped to integers with the information about the mapping present in the earlier 

mentioned two tables. We need to take care of the data types of the columns in the tables 

when mapping. In our implementation, the two tables generated are MappedTidsTable and 

MappedItemsTable. The MappedItemsTable table contains two columns. One for the item 

description and the other that represents its unique integer representation. Its schema is 

(ItemD character(20), ItemI integer). The other table MappedTidsTable will have (k+1) 

columns, where k is the number of attributes that the user selects to be treated together as the 

tid column. The last column is the integer representation of the tid value. Its schema is (tidD1 

character(20), tidD2 character(20), …, tidDk character(20), tidI integer). The mapping is such 

that a set of values for the tid columns, if different in at least one of the columns, will be 

treated as two different transactions. If they are the same in all the fields, they would 
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necessarily mean the same transaction. At the beginning of this thesis work, it was decided to 

implement mapping so that there would be only one column that would form the tid column. 

But then it was noticed that with a multiple attribute tid, the data could be more precisely 

interpreted than with a single attribute tid. For example, suppose an input table has a 

customer id as the tid column and let us assume that there is another attribute called the date, 

which represents the date of the transaction. If we were to have only customer id as the tid 

column, then the transactions on different days would be interpreted as the transactions on a 

single day. Now with both customer id and the date attributes representing the Tid column, 

the transactions of a customer on different days would be treated as different records. With 

this interpretation, the input data is more precise and specific. For both the tables, the 

description fields are characters and immaterial of the underlying data type in the input table, 

they are inserted into the table as characters. When generating the final input table, the data 

types are accordingly compared and the needed tuples generated. The generation of the final 

input is a join of the MappedTidsTable, MappedItemsTable and the original input table. The 

join condition is tids matching for tables MappedTidsTable and the original input table, and 

the other join condition is that any item value in the input table matching with a element in 

the MappedItemsTable. We try to compare the elements in the original table with those in the 

mapping tables and then take the corresponding elements’ integer representation from the 

two tables. Thus considering only the integer representations from the two mapping tables, 

our final input table will have two columns that are both integers. Its schema is (Tid integer, 

Item integer). For example, let the table below represent a database table and be the input 

table for the mining optimizer. 
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Table 4.1 Input table 
Date Customer Id Item1 Item2 Item3 
1/1 John Cookies Camera Shirt 
1/2  William Boots Shorts Socks 
1/2 Parker Milk Bread Chocolates 
1/3 Meg Shoes Lipstick Shampoo 
1/1 John Pen Paper Glue 
1/4 Parker Camera Cookies Gum 

 

Suppose the customer id alone was the tid and the user selected item1, item2 and item3 

as the item columns. In such a case, all distinct values in the customer id column are mapped 

to unique integers. The distinct items in the three columns are also mapped to unique 

integers. The two tables are shown below. 

Table 4.2 MappedTidsTable 
TidD TidI 
John 1 
Meg 2 
Parker 3 
William 4 

 
 

Table 4.3 MappedItemsTable 
ItemD ItemI 
Boots   1 
Bread   2 
Camera   3 
Chocolates   4 
Cookies   5 
Glue   6 
Gum   7 
Lipstick   8 

Milk   9 
Paper 10 
Pen 11 
Shampoo 12 
Shirt 13 
Shoes 14 
Shorts 15 
Socks 16 
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Now we perform a join over the two mapping tables and the original table and 

generate the final input table, which is shown below. 

Table 4.4 Final Input 
Tid Item 
1   5 
1   3 
1 13 
1 11 
1 10 
1   6 
2 14 
2   8 
2 12 
3   9 
3   2 
3   4 
3   3 
3   5 
3   7 
4   1 
4 15 
4 16 

 

In the input table, customer id Parker is associated with items Milk, Bread, Chocolates, 

Camera, Cookies, and Gum, which are mapped to integers 9, 2, 4, 3, 5, 7 respectively as 

seen in the MappedItemsTable table and Parker is mapped to 3 as seen in the 

MappedTidsTable table. Note that here the tid is just the customer id. Hence in the final 

input table, Parker is associated with six items even though three items were bought in 

two separate transactions on different days. This would not be the case, had we used the 

date and customer id together as the tid columns, using which the table MappedTidsTable 

is shown below. 
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Table 4.5 MappedTidsTable with new Tid field 
 TidD1 TidD2 TidI 
1/1 John 1 
1/2 Meg 2 
1/2 Parker 3 
1/3 William 4 
1/4 Parker 5 

 

The table MappedItemsTable still remains the same supposing the user selected item1, 

item2 and item3 as the item columns. The resultant final input table is a shown below. 

Table 4.6 Final Input table with new Tid Field 
Tid Item 
1   5 
1   3 
1 13 
1 11 
1 10 
1   6 
2 14 
2   8 
2 12 

3   9 
3   2 
3   4 
4   1 
4 15 
4 16 
5   3 
5   5 
5   7 

 
We see that since the date field was also included, the two transactions with 

customer id Parker are treated as two separate transactions and are mapped to distinct 

integers 2 and 5 and each transaction is now associated with three items each. 

4.3 Reverse Mapping 

This process is after the rules generation phase. Once the rules are generated, they 

are still in the number format. Hence there is a need for mapping those integers back to 

the original values. This is the process of reverse mapping. For example if Beer and 

Diapers were mapped to 1 and 2 respectively, and we had a rule 1 ⇒ 2, then this rule 

should be mapped to Beer ⇒ Diapers. Reverse mapping does this. We look up the rules 
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table and the MappedItemsTable table to get the desired results. We traverse through the 

rules table and replace each occurrence of the integer by its corresponding item 

description in the MappedItemsTable. 

4.4 Metadata 

Metadata are data about data. We store some information as part of metadata and 

utilize this information in determining the best available approach for the association rule 

mining. We store the database related and user input table related information as a table 

in the underlying database. Before the process of mining begins, we access this metadata 

and depending on the information available, we select an approach for rule mining. This 

is a layered approach of optimization on the mining process. Some user specified 

constraints and conditions are also a part of the metadata. 

Below are listed the salient features of the approaches of support counting. This 

information can be stored as metadata along with some information about the input table 

and also some database specific information. All this can be used before selecting a 

approach and the best among them can be used for rule generation. 

• K-way Join: This is the basic and simple approach. But it requires a (k+1)-way join in 

the kth pass. Suppose the underlying database has certain constraints wherein it 

supports only up to l-way joins, l<k, it becomes necessary to use some other 

approach. 

• Two-group by: There are comparatively lesser number of joins in this approach and 

so are the multi-way joins. But in this approach some time is lost in the execution of 

SQL query comparison, grouping and having clauses, in fact more for the grouping 

clause since it is executed twice. 
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• Subquery: This approach makes use of the common prefixes between the itemsets in 

Ck to reduce the amount of work done during support counting. Recursively, 

subqueries are generated and hence the main query becomes easy to understand. For a 

comparatively fast processor and ample of memory, this would be a better approach. 

• Vertical: This is one of the best SQL-OR approaches. It is particularly very much 

suitable for the higher passes. But if the candidate itemsets are very large, this 

approach suffers. In such cases, it is better to use Gather Join approach. 

• Gather Join: If the input items are already in the horizontal format, there is no need to 

gather the input in the format for this approach. In such a case, the table functions are 

easy to code and becomes modularized. Also, if the candidate itemsets are very large, 

this approach is preferred over the vertical approach. But if the number of frequent 

items per transaction is very large, this approach suffers. 

• Gather Count: This is very similar to the Gather Join approach except that this 

approach makes use of an index for faster probing into the tables. 

After considerable performance testing we found that our application runs much 

faster on DB2 than it does on Oracle. Partly the reason for this is that in Oracle, there is a 

need to explicitly materialize certain temporary and intermediate tables, which in DB2 

need not be materialized. This database specific information can also be stored as a part 

of metadata. 

It has been seen that among the SQL-92 approaches, the fastest approach is the K-

way join approach on DB2. If the number of tables generated in the process of rule 

generation is a constraint that the user needs to take care of, then the best approach would 

be again the K-way on either Oracle or DB2. If this is not a constraint then one would use 
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Subquery rather than the other two approaches. With number of joins being another 

constraint, the winner again is the K-way join in both DB2 and Oracle. 

4.5 Conclusions 

In this chapter we looked into the issues of mapping and metadata. The process of 

mapping was described, wherein the input data is transformed to integers so that it is 

easier and suits the rule generator. After the rule generation, there is a need to map back 

the integers to their original values. This process was discussed in the reverse mapping 

section. Finally, the layered approach of optimization was described in the metadata 

section wherein we try to store some important information that will help us in selecting 

an approach for mining. In the next chapter, we will discuss the performance and 

scalability of the approaches, synthetic data generation and comparison of our application 

with other commercially available data mining tools from data mining vendors. 
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CHAPTER 5 
PERFORMANCE, SCALING AND COMPARISONS 

5.1 Introduction 

In this chapter, we will discuss the performance of the various support counting 

approaches. We also depict the scalability of our approaches by running on different 

sized datasets. And lastly, we compare our mining optimizer with the other commercially 

available tools. 

5.2 Synthetic Data Generation 

We use the synthetic dataset generator from IBM [Agr94]. Using this generator, 

one can vary the number of transactions, distinct itemsets, and number of frequent 

itemsets per transaction in the datasets. We generated a few datasets using this generator. 

The naming convention of a generated dataset is as follows. A dataset will be named 

TmDn, where m, and n are integers. Tm denotes the average number of items per 

transaction and Dn denotes the number of Transactions. Thus the dataset will have n 

number of transactions with an average m number of items per transaction. Also the 

number of different items utilized in generating the transactions can be specified. 

Suppose we specify k different items, then these k items will be distributed throughout 

the transactions. Typically k>>m, else most of the transactions would have similar/same 

items, or in the worst case, each transaction would have the very same and repeated 

items. 
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5.3 Performance Comparisons of SQL-92 approaches 

All the experiments were performed on Version 5 of IBM DB2 Universal Server 

installed on Windows NT workstation with dual Pentium II processors, 128 MB main 

memory and 12 GB disc.  

We generated datasets using the synthetic data generator described in section 5.2 

and the performance comparisons were based on these datasets. Table 5.1 summarizes the 

parameters associated with the datasets. 

Table 5.1 Description of the generated datasets 
Datasets # of records  

(in thousands) 
# of transactions 
(in thousands) 

Avg. # of 
items 

T5D1K   5.6   1  5 
T5D10K  54.9  10  5 
T10D10K 105.3  10 10 
T5D100K 547.2 100  5 

 

We experimented with all the datasets and we present the performance comparisons of all 

the three SQL-92 approaches and the IBM Intelligent Miner [IBM00] on each of the 

datasets. Figure 5.1 shows the performance comparison of the approaches for dataset 

T5D10K. 

It can be seen from the figure that, Kway join is the best approach. The Subquery 

approach is comparable to the Kway join approach. The two group by approach 

performed reasonably well for small sized datasets. But for these datasets, it was running 

for more than 2-3 hours and had to be terminated. 
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Figure 5.1 Performance comparison for dataset T5D10K. 

Figure 5.2 and Figure 5.3 respectively show the performances of the approaches for 

datasets T10D10K and T5D100K.  

 

Figure 5.2 Performance comparison for dataset T10D10K. 
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Figure 5.3 Performance comparison for dataset T5D100K. 

For the datasets T10D10K and T5D100K, again Kway join was the winner whose 

response time with respect to rule generation was the least. Another thing to be noted for 

approaches running on these datasets was that as the support was decreased, all the 

approaches were taking more time and in a few cases some runs had to be terminated. 

Figure 5.4 compares the Kway and Subquery approaches pass wise for the dataset 

T5D10K with support 0.20%. It can be seen from the figure that the second pass is the 

most time consuming and the important phase. In fact the second pass can be optimized 

to a certain degree by pruning the non-frequent itemsets from the input transaction table 

and then using this pruned transaction table for further passes. 
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Figure 5.4 Pass wise comparison of Kway and Subquery approaches for T5D10K dataset 
with 0.20% support. 

5.4 Scaling 

We also experimented with the synthetically generated datasets to examine the 

scale-up behavior of the SQL-92 approaches with respect to the increase in the number of 

transaction/records. Figure 5.5 shows the behavior of Kway and Subquery approaches 

with the increase in the number transactions/records in the transaction table. Two group 

by approach was not taken under consideration because of its long run times. The support 

was kept fixed at 0.20% for all the datasets generated. As can be seen, for a smaller 

dataset, either of the approaches can be used, but as the number of records increased, 

apparently Kway emerged as the winner. 
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Figure 5.5 Number of Transactions scale-up 

5.5 Comparison with Other Commercial Mining Tools 

In this section, we try to compare our mining optimizer with the other data mining 

tools available in the market. Some of the tools we studied were Mineset from SGI Inc, 

and Intelligent Miner from IBM corp. Some of the salient differences are listed below. 

• Our approaches for rule mining are the SQL based approaches. All the support 

counting and rule generation algorithms are SQL-based queries. In the other tools, 

most of them are not SQL-based. They just read the data from the table and perform 

computations in memory by which they appear to be faster. Since our approach uses 

SQL, all the intermediate and final results are stored as tables in the underlying 

relational DBMS. Once the results are computed, they can be easily handled and 

worked with because of the SQL capabilities. 

• Since the others are not database-oriented, they do not have an underlying database. 

We have an underlying database to store our input and output. 



68 

  

• Our mining optimizer can connect to different databases. It is database independent. 

Regardless of the type of the underlying database, one can mine with our mining 

optimizer. The use of JDBC provides us this feature. 

• We have used Java as the language of implementation. Therefore there is no platform 

constraint and is platform independent. Hence it is easily portable. Also the entire 

mining tool is modularized and hence easily comprehensible. 

• In our implementation, we have provided a choice for the user to select an approach 

for association rule mining. Depending on the input data, database constraints, 

comprehensibility or personal preference, one can select one of the six approaches 

provided. All are SQL-based approaches. Three are SQL-92 based and the other three 

utilize the SQL-OR extensions. On the contrary, we have also provided a means of 

skipping the process of selection of an approach wherein the optimizer selects an 

appropriate approach and mines the input data. 

• The input table need not be just a single table. The input data can span over multiple 

tables and the input data can be consolidated into one single chunk by means of 

join/union of the multiple tables. 

• As opposed to other systems, the input format requirement of (Tid, Item) with both 

integers is simplified in our approach. We accept the horizontal format of a normal 

table and map the values in the tuples to integers if they are not already integers. At 

the end of the process, we map back the integers to original descriptions and display 

the rules. 

• Most of the systems make it necessary to have a single field as the transaction ID 

field. In our implementation we have made it much more flexible. We accept multiple 
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fields and these together, form the transaction ID just like the composite key in a 

relational DBMS table. 

• Like the single transaction ID field, many systems accept only one field as the items’ 

field. Thus one can mine only two columns from a relational DBMS table. In our 

implementation, we have provided a means of indicating which columns need to be 

considered as the items. The user can select from one to all the columns in a table to 

be treated as the items’ columns. 

• We provide the user, a means of imposing a constraint on the rules generated. A 

means by which the user can wish to see/not see certain items in the generated rules, 

thus controlling the rules generated. This is incorporated by allowing the user to 

generate a where clause and thereby only selected portions of the input being mined. 

• Lastly, as a means of easy comprehensibility for the user, there is visualization 

provided for the generated rules. The generated rules can be visualized in a table or 

3D format. 

5.6 Conclusions 

In this chapter, we showed the features of our mining optimizer and rule 

generator, its performances and scalability on the synthetically generated data. Lastly we 

compared features of our system with those of the commercial tools and indicated the 

differences. In the next Chapter, we go over the system implementation of the mining 

optimizer and rule generator. With the help of some screen dumps, we try to illustrate the 

GUI and the logic of our association rule mining approaches. 
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CHAPTER 6 
SYSTEM IMPLEMENTATION 

6.1 Introduction 

In this chapter, we present an overview of the system implementation of our 

mining tool. We present some screen dumps to aid in understanding and also to describe 

the user interface. 

6.2 Mapping and Rule Generation 

We start the discussion of our implementation with the main window. Figure 6.1 

below shows the main window and as seen in the figure there is a menu bar, tool bar and 

some text area. The menu bar contains options like file, import, result, help, approaches, 

visualization, and mine data. Under the file menu, the user can connect, disconnect, save, 

clear or print the messages in the text area or exit the miner. The user can connect to 

different databases, here DB2 and Oracle through the connect sub-menu and disconnect 

from the same through the disconnect sub-menu. Under the import menu, the user can 

choose generate rules, which is a step-wise process that accepts more input from the user. 

The user can view the results through the results menu. The approaches menu contains 

the sub-menus that are directed towards different support counting approaches. It also has 

means of registering the DB2 UDFs. The generated rules can be visualized in either the 
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table format or 3D format by selecting the appropriate sub-menu in the visualization 

 

Figure 6.1 Main Window of the association rule miner 

menu item. The mine data item provides a means of rule generation without any 

preference by the user for approach selection. This is the optimizer part wherein the 

underlying metadata decides on the approach selection. The following figure shows the 

sub-menus of the menu item file and depicts the genre of sub-menus for different menu 

items. 

For the process of rule generation to begin, the user needs to connect to an 

underlying database. This is achieved by the connect sub-menu item in Figure 6.2. 

Another thing to be noted is that most of the sub-menu items also have a link from the 

tool bar, for example connect, disconnect, generate rules, exit, to name a few. Clicking 
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on connect, takes the user to the next frame wherein the user enters the login information. 

This is shown in Figure 6.3. 

 

Figure 6.2 Sub-menus of menu item file 

 

Figure 6.3 The login window 
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The user needs to select the type of database, here either DB2 or Oracle and also 

provide the database name which contains the input table. Also, the user enters the 

account information viz. user id and password for the selected database. There is a check 

box named Developer, which gives the user the capability to select an approach for 

support counting, without which the user can just mine the input data without a 

preference for an approach. The associated buttons are self-descriptive not only in this 

window but through out our implementation. The user gets connected to the selected 

database and is prompted further for more input using the window shown in Figure 6.4. 

Here the user selects the input table(s). The reason for us displaying all the existing tables 

is that this will ease the user not to remember the table names but can select from the 

displayed list. The user also selects an appropriate operation, a join or union on the 

selected tables if more than one table, the minimum support and confidence. Stop level is 

the maximum number of passes allowed by the user for the process of support counting. 

The generate rules button guides the user further into the process and statistics button is 

to give some form of statistical analysis of the input table(s). 
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Figure 6.4 Parameter input window 

The window in Figure 6.5 is displayed to the user when generate rules button is 

clicked. As can be seen, the user-selected tables are shown in the list box on the left-hand 

side. The user needs to click on the table names and select the join columns, which would 

be then displayed in the list box on the right-hand side. 
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Figure 6.5 SQL input window 

The user needs to select the columns that would serve as the join columns for the 

input tables and further select the Tid and Items’ columns from the input tables. Figure 

6.6 shows the join columns selection. The tables are joined on the join column. In this 

example, the user selects T1CustomerID and T2CustomerID as the join columns for the 

selected tables Input_Table1 and Input_Table2 respectively. 
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Figure 6.6 Join column selection 

Once the user selects one join column for each of the selected tables, the user is 

then prompted by the window in Figure 6.7. Note that the system will not proceed until a 

join column for each of the tables is specified. The user then needs to select the columns 

that need to be treated as items. Figure 6.8 describes the user’s selection of the items’ 

columns. 
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Figure 6.7 User selection columns 

 

 

Figure 6.8 Items’ columns selection 
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As can be seen in Figure 6.7 and also Figure 6.8, the user can specify a where 

clause. This will act as a constraint on input data. Instead of unnecessarily generating 

rules for a larger data set and then imposing a constraint on them, using the where clause, 

the user can constrain the input tuples so that only desired records are subject to the 

mining process. Figure 6.9 describes the where clause creation and the associated 

parameters for the current example. Effort is put in so that most of the valid conditions 

clauses in SQL queries `can be incorporated in the where clause. 

 

Figure 6.9 The user specified WHERE clause 

The user is then given a choice for selecting the Tid columns. This is done by 

prompting the user with the set of columns that are potentially the Tid columns.  
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Figure 6.10 TID columns’ selection 

Figure 6.10 shows the window that prompts the user to select the Tid columns. 

Note that in this example the user has selected T1CustomerID and T1Date to indicate that 

they together must be treated as the Tid field. Once the user clicks OK, the corresponding 

Tids and Items are mapped to integers and are stored in the MappedTidsTable and 

MappedItemsTable respectively. The end of mapping is indicated by the text in the text 

area of the main frame as shown in Figure 6.11. Earlier, since the user had checked the 

Developer check box, the user is able to choose an approach for support counting. This 

can be seen in the sub-menu items of approaches in Figure 6.11. Had the user not 

checked the Admin check box, the user could just click the mine data menu item and the 

approaches menu item would be disabled for this session. 
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Figure 6.11 End of mapping and options for support counting 

If the miner is run for the first time, then the stored procedures in Oracle and 

UDFs in DB2 need to be registered with the underlying database registry. If the database 

connected is DB2, then the user needs to register the UDFs using the sub-menu item DB2 

UDF register in the approaches menu. The user then selects one of the approaches for 

support counting, for example here, the user has selected K-way join. The results of 

execution of the approach are shown in Figure 6.12. Had the user set the debug flag to 

true, more informative comments like the SQL statements of the tables dropped, created, 

their insertions, etc would be output in the text area. 
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Figure 6.12 End of support counting 

6.3 Conclusions 

We pictured the system implementation in this chapter. This chapter was intended 

at providing an insight of the implementation and the associated GUI. The next chapter 

discusses the thesis conclusions, our contributions and further extensions. 
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CHAPTER 7 
CONCLUSIONS 

We discussed the various architectures of mining and JDBC. We explored the 

various approaches of support counting for association rule mining and also performed 

the performance tests. This was a step to discover the competitive performance of the 

approaches. We formulated the SQL queries for the support counting in two categories 

viz. SQL-92 and SQL-OR. We ran each of the approaches in the two categories on two 

databases namely DB2 and Oracle. In the SQL-92 category, we experimented with all the 

three approaches with different datasets and compared their performances. K-way was 

the winner on both the types of databases. It was also noticed that Oracle was slower than 

DB2. This is partly because of the intermediate tables that needed to be materialized in 

Oracle. The reason being the structure of PL/SQL against DB2, which allowed us not to 

materialize certain intermediate tables, which decreased the completion time of the DB2 

approaches. Similar results were noticed with the SQL-OR approaches too. We then, 

utilized the object-relational extensions like UDFs, CLOBs, table functions, etc., as a part 

of implementing the SQL-OR category support counting approaches. Vertical and Gather 

Join performed comparably on both the types of databases. We also implemented the 

mapping of input data into the format that the mining optimizer needs namely the format 

of (Tid, Item) with both integers. This was also accompanied by the user selection of the 

Tid and items’ columns. Some work has been done in the section of collecting useful 

information that forms the metadata, which is used in selection of an approach for 

support counting. 
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7.1 Contributions 

The specific contributions of this thesis are as follows: 

• We formulate the various SQL-based (SQL-92 and SQL-OR) approaches for 

association rule mining. 

• We implement the mapping of input data into a format that is easily manipulable and 

required by the mining optimizer. 

• We present an optimized approach selection wherein the user need not select an 

approach and the optimizer selects one from among the best approaches and mines. 

This is done by storing some useful information, as metadata in the underlying 

database and these metadata are accessed and used for approach selection. 

• We provide a means of connecting to multiple databases and thereby allowing for the 

input data to be present in any database. When mining for the association rules, one 

can connect to the required database and mine for the rules. 

• We allow the user to specify the Tid column(s). This selection can be either a single 

field or multiple fields. In case of multiple fields, all the fields together are treated as 

the Tid columns. 

• We also allow the user to select the items’ columns. Again, the number of columns 

can range from one to many, which is at the disposal of the user. 

• We did some performance testing and scale up experiments over synthetically 

generated datasets. 
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7.2 Proposed Extensions and Future Work 

Some of the work in this thesis is complete and some other parts can be continued 

as future research. We have identified certain directions that can be treated as proposed 

extensions. Some of them are as follows: 

• The current work on association rule mining can be further continued for generalized 

association rules [Sri95, Sri96]. This will take care of the taxonomies that may exist 

among the items. The goal would be to find an association rule between items that 

may exist at any level of the taxonomy. 

• The current work can also be extended for the sequential pattern mining to find the 

frequently occurring patterns. 

• Incremental mining can be implemented over the current implementation. This will 

update the generated frequent itemsets from the earlier state of the database. Re-

computing the frequent itemsets is infeasible. Hence they should be updated. Also a 

negative border [Tho98] can be maintained to decide when to scan the whole 

database. 

• Some of the operations presently done in the mining optimizer as SQL queries or 

UDFs are thought of as possibilities to be developed as operators in the databases that 

would make data mining for association rules easier. Some of them are 

• The process where in we formulate the pruning as an SQL query can be visualized 

as an operator in the underlying database. 

• The process of generating the k-item combinations which is presently 

implemented as UDF and stored procedures viz. CombK. 

• The process of creation of the CLOBs of items and Tids viz. saveItem and 

saveTid respectively.  
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• The process of getting the common elements from k CLOBs. Presently 

implemented as UDF CountAndK. 
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APPENDIX: RULE GENERATION EXAMPLE USING VERTICAL APPROACH 
This appendix lists one example input data set, the intermediate frequent itemsets 

Fx, and the final association rules using vertical approach with minimum support of 50%, 

and minimum confidence of 50%. 

Let us assume that the input data is in two tables namely inputTableOne and 

inputTableTwo as shown in Table A-1 and Table A-2 respectively. 

Table A-1 InputTableOne 
Date CustID ITEM 

1/1/00 100 Milk 
1/1/00 100 Eggs 
1/1/00 100 Bread 
1/2/00 200 Sugar 
1/2/00 200 Eggs 
1/2/00 200 Cake 

Table A-2 InputTableTwo 
Date CustID ITEM 

1/3/00 300 Milk 
1/3/00 300 Sugar 
1/3/00 300 Eggs 
1/3/00 300 Cake 
1/4/00 400 Sugar 
1/4/00 400 Cake 

 

The mining optimizer combines theses two tables with a union operation on them. 

Also, the Date and CustID fields in the two input tables are selected to form the 

composite TID column. Tuples with unique values in both the fields are treated as 

separate transactions. The TIDs and ITEMs in the input table are mapped to tables 
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MappedTidsTable and MappedItemsTable in the Mapping process as shown in Table A-3  

and Table A-4 respectively. 

Table A-3 MappedTidsTable 
Date (TIDD1) CustID (TIDD2) TIDI 

1/1/00 100 1 
1/2/00 200 2 
1/3/00 300 3 
1/4/00 400 4 

Table A-4 MappedItemsTable 
 

ITEMD ITEMI 
Bread 1 
Cake 2 
Eggs 3 
Milk 4 
Sugar 5 

After the Mapping process, the input data set is transformed into the following 

data format into a table called FinalInput as shown in Table A-5. 

Table A-5 FinalInput table 
TID ITEM 

1 1 
1 3 
1 4 
2 2 
2 3 
2 5 
3 2 
3 3 
3 4 
3 5 
4 2 
4 5 
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A.1 Support Counting 

As a start of the support counting phase, the tid lists are created for each of the 

input items. Table A-6 depicts the lists. 

Table A-6 TID lists of each of the items 
ITEM COUNT TIDs 

1 1 100 
2 3 200,300,400 
3 3 100,200,300 
4 2 100,300 
5 3 200,300,400 

A.1.1 First Pass 

The frequent itemset F1 has the following tuples: 

Table A-7 Table F1 
ITEM1 COUNT 

2 3 
3 3 
4 2 
5 3 

 
 
A.1.2 Second Pass 

The frequent itemset F2 has the following tuples: 

Table A-8 Table F2 
ITEM1 ITEM2 COUNT 

2 3 2 
3 4 2 
2 5 3 
3 5 2 

 
A.1.3 Third Pass 

The frequent itemset F3 has the following tuples: 
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Table A-9 Table F3 
ITEM1 ITEM2 ITEM3 

2 3 5 
 

A.2 Rule Generation 

Consolidating the tables generated from the three passes, the final frequent 

itemsets table FISETS is shown in Table A-10. 

Table A-10 Table FISETS 
ITEM1 ITEM2 ITEM3 ITEM4 ITEM5 ITEM6 ITEM7 ITEM8 NULLM COUNT 

2 0 0 0 0 0 0 0 2 3 
3 0 0 0 0 0 0 0 2 3 
4 0 0 0 0 0 0 0 2 2 
5 0 0 0 0 0 0 0 2 3 
2 3 0 0 0 0 0 0 3 2 
3 4 0 0 0 0 0 0 3 2 
2 5 0 0 0 0 0 0 3 3 
3 5 0 0 0 0 0 0 3 2 
2 3 5 0 0 0 0 0 4 2 
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The subsets of table FISETS is stored in table SUBSETS shown in Table A-11. 

Table A-11 Table SUBSETS 
TITEM1 TITEM2 TITEM3 TITEM4 TITEM5 TITEM6 TITEM7 TITEM8 TNULLM TRULEM TCOUNT 

2 3 0 0 0 0 0 0 3 2 2 
3 2 0 0 0 0 0 0 3 2 2 
3 4 0 0 0 0 0 0 3 2 2 
4 3 0 0 0 0 0 0 3 2 2 
2 5 0 0 0 0 0 0 3 2 3 
5 2 0 0 0 0 0 0 3 2 3 
3 5 0 0 0 0 0 0 3 2 2 
5 3 0 0 0 0 0 0 3 2 2 
2 3 5 0 0 0 0 0 4 2 2 
3 2 5 0 0 0 0 0 4 2 2 
5 2 3 0 0 0 0 0 4 2 2 
2 3 5 0 0 0 0 0 4 3 2 
2 5 3 0 0 0 0 0 4 3 2 
3 5 2 0 0 0 0 0 4 3 2 

 

Using tables FISETS and SUBSETS, the association rules are generated and 

stored in the table RULES shown in Table A-12. 

Table A-12 Table RULES 
ITEM1 ITEM2 ITEM3 ITEM4 ITEM5 ITEM6 ITEM7 ITEM8 NULLM RULEM CONF SUP 

2 3 0 0 0 0 0 0 3 2 66.67 50 
3 2 0 0 0 0 0 0 3 2 66.67 50 
3 4 0 0 0 0 0 0 3 2 66.67 50 
4 3 0 0 0 0 0 0 3 2 100 50 
2 5 0 0 0 0 0 0 3 2 100 75 
5 2 0 0 0 0 0 0 3 2 100 75 
3 5 0 0 0 0 0 0 3 2 66.67 50 
5 3 0 0 0 0 0 0 3 2 66.67 50 
2 3 5 0 0 0 0 0 4 2 66.67 50 
3 2 5 0 0 0 0 0 4 2 66.67 50 
5 2 3 0 0 0 0 0 4 2 66.67 50 
2 3 5 0 0 0 0 0 4 3 100 50 
2 5 3 0 0 0 0 0 4 3 66.67 50 
3 5 2 0 0 0 0 0 4 3 100 50 
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Combining the tables MappedItemsTable generated in the mapping process and 

RULES, the final association rules can be presented to the user in the following format 

shown in Table A-13. 

Table A-13 Table RULES with items mapped back to descriptions 
Rule Head Symbol Rule Body Confidence(%) Support(%) 
Cake => Eggs 67 50 
Eggs => Cake 67 50 
Eggs => Milk 67 50 
Milk => Eggs 100 50 
Cake => Sugar 100 75 
Sugar => Cake 100 75 
Eggs => Sugar 67 50 
Sugar => Eggs 67 50 
Cake => Eggs, 67 50 
Eggs => Cake, 67 50 
Sugar => Cake, 67 50 
Cake, Eggs => Sugar 100 50 
Cake, Sugar  => Eggs 67 50 
Eggs, Sugar => Cake  100 50 
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