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Active Database systems have been proposed as a data management paradigm to

satisfy the needs of many applications that require a timely response to situations. The

promises of Active Database System are significant. ECA rules are used to capture the

active capability. While a number of research prototypes of active database systems have

been built, ECA rule capability in Relational DBMSs is very limited. This thesis

addresses the problem of turning a traditional database management system into a true

active database system without changing the semantics of the existing system. The

advantages of this approach are obvious. First, transparency is guaranteed. That means

we can add the active database capability without changing the client programs. Second,

all of relational DBMS’s underlying functionality is retained. Third, ECA rules can be

made persistent by using the native database functionality.
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Active database semantics can be supported on an existing Sybase SQL Server by

adding a mediator, termed ECA Agent, between the SQL Server and the clients. ECA

rules are completely supported through the ECA Agent without changing applications in

the SQL Server. Both primitive and composite events can be detected in the ECA Agent

and actions are invoked in SQL Server. All events are persistent in Sybase system. The

Gateway Open Server in ECA Agent is designed to connect SQL Server by using Sybase

connectivity products. The architecture of the ECA Agent and implementation details are

presented in this thesis. Also alternative approaches are discussed in detail, and the

features and limitations are identified.



1

CHAPTER1
INTRODUCTION

A traditional database is a passive repository of data where the DBMS only

execute the explicit transactions and queries asked by a user or an application program.

The DBMS uses a query-driven mechanism.  This traditional view of databases as

information repositories, which are used for storing and retrieving required information,

works for many applications. However, the need for having a database system capable of

reacting to specific situations without user or application intervention has been

recognized in several newer applications. Frequently mentioned examples of such

applications are network management, computer-integrated manufacturing (CIM),

commodity trading, air-traffic control, plant and reactor control, tracking, monitoring of

toxic emissions, workflow and process control, etc. Active database systems have been

proposed as a new data management paradigm to satisfy these kinds of needs so that the

system can monitor the state of the database for particular events, and trigger appropriate

and timely responses when events occur. This can be done by defining event-condition-

action (ECA) rules which are stored as part of the database [DAY94]. Active database

systems, by the way of rule definition, event detection and action execution, are not only

driven explicitly by a user or an application, but they are also able to recognize specific

situations (in the database and external to the database) and react to them.
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So far, a number of research prototypes of active database systems have been

developed, such as HiPAC [CHA89], Ariel [HAN92], Sentinel [CHA93], Starburst

[WID91], Exact [DPG91], Postgres [STO91], PEARD [JAH96], SAMOS [GAT92] etc.

Most of them are developed from scratch or integrated directly into the kernel of the

DBMS. The integrated approach provides the following advantages: [CHA89]

•  Do not require any changes to existing applications.

•  DBMS is responsible for optimizing ECA rules.

•  DBMS functionality is extended.

•  Modularity/maintenance of applications is better and maintenance is easier.

However, the implementation of an integrated approach requires access to the

internals of a DBMS into which the active capability is being integrated. This require

access to source code, makes the cost of integrated approach very high and requires a

long integration time as well. Hence, most integrated systems are research prototypes.

There are alternative approaches to support active capability, such as Embedding

Situation Check in application code and Polling. However these suffer from many

limitations. For example, the Embedded Situation Check approach requires extra code in

all applications. Since modularity is compromised, the management and maintenance of

applications is difficult. Also, constraints and business rules are not clearly separated

from the application [CHA89]. The polling for a relational DBMS is discussed in Chap 2.

To the best of our knowledge, there is no commercial DBMS that supports full

active capability, although the promises of active database technology is well-understood

and is considered significant. Currently, relational DBMS are widely used. Most users are

familiar with RDBMS, and the advantages of relational DBMS are well known. Rule
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capability is provided in many commercial systems, but it is not sufficient as it only

provides basic triggering capabilities.

The challenge is to turn a commercial database management system into a true

active database system without making any changes to the underlying system. This thesis

introduces an approach which adds a mediator to the Sybase SQL Server DBMS to

provide ECA functionality in the SQL Server.

 Although there are some advantages to integrating the active capability to the

DBMS kernel, the use of a mediated architecture outside of the SQL Server provides

many benefits, including:

•  Transparency: The clients do not feel the mediator.

•  System functionality: None of the existing DBMS’s functionality would be lost.

•  Extensiblility: A more distributed architecture can be designed.

•  Scalability: The architecture is scaleable.

•  Portable: Once the mediated approach has been developed, it may be ported to

    other Relational DBMSs.

The contributions of this thesis are as follows:

1. Present a mediated approach that significantly extends Sybase ECA

functionality:

1) A client can create multiple triggers on the same event.

2) A client can create composite events and triggers on them.

3) Reuse of previously defined events (both primitive & composite).

4) Drop triggers associated with primitive or composite events.
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5) Once events are created, they become persistent in the database

system.

6) All primitive events and composite events can be detected, and actions

are invoked within SQL Server.

Also, we discuss alternative approaches and show why mediated approach

is a good solution.

2. Well defined mediated approach (ECA Agent), and present the architecture of

ECA Agent.

3. Discuss how ECA Agent is implemented.

4. Provide an API for SQL Server, and show how this architecture is also

suitable for other SQL Servers.

The remainder of this thesis is organized as follows. The related work is shown in

Chapter 2. In Chapter 3 we discuss an alternative method to the layered approach. The

architecture of ECA Agent is presented in Chapter 4. OpenServer is introduced in

Chapter 5. The implementation details of Primitive and Composite Event are shown in

Chapter 6 and Chapter 7. We then draw conclusions and discuss the future work in

Chapter 8.
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CHAPTER 2
RELATED WORK

In this chapter, several research efforts on implementing Active Database

Management Systems, including the mediated approach are discussed.

2.1 Sentinel

Sentinel is an Object_Oriented Active Database System. It uses Open OODB as

its platform, and integrates ECA rules capability into the kernel of Open OODB. The

integration enhances Open OODB from a passive OODB to an active one.

2.1.1 Functional modules of Sentinel

The functional modules of Sentinel are integrated into the kernel of Open OODB.

The integrated modules are:

•  Local Event Detector (LED): This includes primitive event detection and

composite event detection within an application or address space. A method

can be specified as a primitive event, and the occurrences of the primitive

events are notified to the local event detector when the method is invoked.

Composite events defined within an application are detected by using a

sequence of primitive events detected according to the operator semantics as

well as  the specified parameter context of the composite event [LEE96].

•  Global event detector (GED): An inter-application event is detected by the
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GED. The GED communicates with the LED  through RPC and socket-based

communication to detect global events [LIA96].

•  Nested transactions: The transaction manager in Open OODB has been

extended to nested transactions for concurrent as well as prioritized execution

of rules in the client address space [SAY96] [BAD93].

•  ECA rule editor: This is an external rule support in Sentinel. The editor

    provides users with a friendly environment to manipulate the rules without

    changing, recompiling, or relining any source code of their applications. Java is

    used to implement the interface [CHU98].

•  Snoop preprocessor: The Snoop preprocessor converts the high-level user

specification of ECA rules specified in the Snoop language into appropriate

code for event detection, parameter computation, and rule execution [LEE96].

2.1.2 Event Operators

So far, Sentinel supports ten event operators. Composite event expressions are

constructed by using any of these operators using the Snoop syntax. Following is a

summary of the operators:

1. AND: Conjunction of two events, namely E1 and E2, denoted by E1 ^ E2,

occurs when both events occur. The order of occurrence of E1 and E2 is

irrelevant.

2. OR: Disjunction of two events, namely E1 and E2, denoted by E1 ∇  E2,

occurs when either E1 or E2 occurs.

3. SEQUENCE: Sequence of two events, namely E1 and E2, denoted by

E1>>E2, occurs when E2 occurs only after the occurrence of E1.
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4. NOT: NOT operator detects non-occurrence of an event, namely E2, in the

closed interval formed by two events, namely E1 and E3, denoted by

¬ E2[E1,E3].

5. ANY: The event , denoted by ANY(m,E1,E2,… ..,En) where m <= n, occurs

when m events out of n distinct events specified occur, ignoring the relative

order of their occurrences.

6. A (Aperiodic): A aperiodic event, denoted by A(E1,E2,E3), is detected for

every occurrence of E2 during the half-open interval formed by E1 and E3.

7. A*: It is a cumulative variant of the A operator.  A aperiodic-star event,

denoted by A*(E1,E2,E3), is detected when E3 occurs provided E1 has

already occurred.  The occurrences of E2 are accumulated during the half-

open interval formed by E1 and E3.

8. P (Periodic): A periodic event, denoted by P(E1,E2,E3) where E2 is a relative

temporal event, is detected for every time period specified by E2 during the

half-open interval (E1,E3].

9. It is a cumulative variant of P operator.  A periodic-star event, denoted by

P*(E1,E2,E3) where E2 is a relative temporal event, is detected only once

when E3 occurs provided the E1 has already occurred. The time specified in

E2 is accumulated whenever E2 occurs.

10. PLUS:  It is a variant of SEQUENCE operator.  A PLUS event, denoted by

E1 + [T] where [T] is a relative temporal event, is detected once a time

interval [T] elapsed after the occurrence of E2.
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2.1.3 Parameter Context

The proposed parameter contexts in Sentinel are recent, continuous, cumulative

and  chronicle [CHA94].  These contexts are precisely defined using the notion of

initiator and terminator events. An initiator of a composite event is a constituent event

that can start the detection of the composite event whereas a terminator is a constituent

event that can detect the occurrence of the composite event. Following is a short

explanation of each parameter context:

•  Recent:  Only the most recent occurrence of the initiator for any event that has

    started the detection of that event is used. When an event occurs, the event is

    detected and all the occurrences of events that cannot be the initiators of that

    event in the future are deleted.

•  Chronicle: In this context, for an event occurrence, the initiator, terminator pair

    is unique. The oldest initiator is paired with the oldest terminator for each

    event, i.e. in chronological order of occurrence. The constituent events of an

    event E cannot occur in any other detection of the occurrence of the composite

    event.

•  Continuous: This context is similar to chronicle, with the subtle difference that

     in the latter, pairing of the initiator is with respect to the terminator whereas in

     this context multiple initiators are paired with a single terminator of that event.

•  Cumulative: In this context, for each constituent event, all occurrences of the

event are accumulated until the composite event is detected.  In other words,

the parameters of a composite event include the parameters of all the
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occurrences of each constituent event.  All the occurrences of each constituent

event are flushed whenever its associated composite event is detected.

2.1.4 Local Event Detector (LED)

We briefly describe the LED here as the LED developed for Sentinel is also used

to implement the ECA Agent. Events are detected by the LED in Sentinel. The primitive

and composite events are declared in an application and reflected to an event graph. Each

event is represented as an event node in the graph, and the event nodes are connected by

their subscription relationships. An internal node of the event graph represents a

composite event, and a leaf node represents a primitive event. The root node of event tree

represents a user-defined composite event. Event trees in an application are merged to

form an event graph for detecting a set of composite events.

The methods that can generate primitive events are modified by the wrapper class

methods using the sentry feature of the Open OODB system while preprocessing the

application program. While preprocessing the application program, the Snoop

preprocessor of Sentinel adds code for parameter collection and notification to the event

detector.

The concept of event notification and list of subscribers was first introduced in

Sentinel to do the event detection [CHK94].

Whenever a primitive event occurs, an unique instance number is given for its

occurrence (t_occ), its occurrence time is set to the parameter list, and further

notifications are sent to its subscribers. The node of the event tree maintains the

occurrences of its constituent events with their parameter lists which are stored separately

for each context as part of the node. When it is notified by one of its constituents, the
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node checks the status of its constituents’ occurrence. If the composite event occurs by

the last notification, it is detected, and further notifications are sent to its subscribers.

2.2 ACOOD

ACOOD is a fully implemented research prototype based on the ONTOS

object-oriented DBMS which has C++ as its base language. It was originally developed

and implemented by Mikael Berndtsson and his group at the University of Skovde

[Ber91], and has been addressed in several reports including [BER92] and [BER94].

A layered approach is used for ACOOD to develop an active DBMS. This means

that ACOOD is layered upon ONTOS  and can use all functionality of this DBMS.

ACOOD extends the DBMS with the functionality of active features. An application can

use either the ONTOS  client interface for traditional database operations or the

ACOOD application interface when active features are needed (see figure 2.1).

ACOOD adopts the concept of ECA rules and represents events and rules as first

class objects. By representing them as first class objects, ACOOD provides a framework

for supporting runtime management of events and rules.

              User Application

      ACOOD

                            ONTOS

Method EventResult

Result

ResultCall

Call

Call

Figure 2.1: ACOOD Architecture and Interactions
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2.3 Polling Subsystem

In [VAN96] Polling Subsystem is discussed and implemented to support detached

rule coupling mode in Sybase.   Figure 2.2 shows the architecture of this approach

[VAN96].

This is a layered approach. Polling Subsystem actually is a periodic polling

application. A polling application is a client of the database where the data of interest

resides. To implement detached semantics, the polling application examines the current

state of the system to determine if any events need to be triggered.

Figure 2.2: The Polling Architecture

The advantages of polling subsystem are:

1) Polling subsystem can be added/changed/removed without affecting the other

parts of system.

2) This architecture is simple and easy to implement.

Actions

Answers

Periodic Queries

Passive DBMS

Client Application

Client Application

Client Application
Polling
Subsystem
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3) It is widely-used.

However, there are many limitations to polling subsystem which limit its practical

usefulness:

1) If polling is too slow, it may miss taking appropriate action.

2) The order of events can not be determined.

3) Client applications may be delayed waiting for the polling to complete.

4) The architecture is not scaleable.

5) It is not suitable for time-constrained applications.

Therefore, a polling subsystem may be suitable for a problem that does not

require every event to be captured and has a small data size.

2.4 The GATEWAY Approach

As we know, a polling subsystem is an appropriate solution when the problem

does not require every event to be captured and the size of the data is small. But many

problems require both a large data size and every event to be captured (although not used

depending upon the parameter context used) once it occurs. Another approach, Gateway,

is implemented in [VAN96]. The architecture of this approach is showed in Figure 2.3.

The Gateway architecture is a layered API approach. This layer is truly transparent to the

client. Open Server is used to implement Gateway (ECA-Server in the Figure) and

supports both detached and deferred coupling mode in Sybase.

ECA-Server accepts connection requirement from a client and passes all client

information to the SQL Server. SQL Server authenticates the client and creates the

connection. After the connection has been established, the gateway takes control of the

client process. SQL language and procedure requests from the client are preprocessed by
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the ECA Server. Coupling mode of events are processed in ECA Server, i.e. before any

transaction is committed, the ECA Server can interrupt the transaction and perform

inquires on the SQL Server.

This architecture has many advantages:

1) Both immediate and deferred trigger semantics can be implemented.

2) Events are generated in the correct order.

3) Events are not lost.

4) Parallel execution of ECA Server and SQL Server is possible.

5) Good performance.

                (

Figure 2.3: Gateway Architecture

     ECA SERVER

Client

Client

Client

      SQL SERVER

Native
System

An Open Server
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CHAPTER 3
WRAPPER APPROACH WITH EMBEDDED SQL/C

As we have seen in the earlier discussion, Sentinel is an Object-Oriented Active

Database System. Though it is implemented by integrating ECA functionality into the

kernel of Open OODB, the LED (Local Event Detector) is independent of the

OpenOODB. Therefore, we are able to reuse the LED developed for Sentinal and create

an agent between LED and the SQL Server.

In this chapter, we discuss a solution that uses a wrapper method along with the

mediated LED module to add ECA capability to the SQL Server.

3.1 Architecture

Because a client can place Transact-SQL statements in application programs that

are written in C (Embedded SQL/C), and because a client can write methods in

Embedded SQL/C, we can think of each method as an object, and define ECA rules on

these methods. The ECA Preprocessor is implemented to wrap methods where events are

defined. Figure 3.1 shows the architecture of the system.

Life cycle of ECA rules in this architecture:

1) Defines ECA rules in the Embedded SQL/C program.

2) Wrap the methods in the program and change all ECA rules into code that the

LED can recognize by using ECA Preprocessor.

3) Translate the Embedded SQL statements into Client-Library function calls

through the Embedded SQL Precompiler.
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4) Compile and link the code generated in the last three steps with the LED

Library and Open Client-Library to generate the executable code.

5) Run the executable code and return the result to the client.

6) Once the client stops running the code, the ECA rules also disappear.

7) The client can go to step 5 to start again, or the client can change ECA rules

and start from step 1.

        Figure 3.1: Architecture of Wrapper Approach of Sybase LED

Link

ECA Preprocessor

Local Event Detector

Client

Client

Client

      SQL SERVER

Embedded SQL
Precompiler

Open ClientLibrary

Executable code
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3.2 SNOOP

SNOOP [CHM94] is an event specification language in Sentinel. It gives precise

semantics of primitive events and several event operators proposed to express composite

events. It supports temporal, periodic, explicit and composite events. Since it is well

defined, we can take SNOOP as our event specification language. SNOOP BNF is given

below [CHA92] [LIA96] [LEE95]

            Event_exp ::= E1

E1 ::= E1 OR E2 | E2

E2 ::= E2 AND E3 | E3

E3 ::= E3 SEQ E4 | E4

E4 ::= NOT (E1, E1, E1)

| A (E1, E1, E1)

| A* (E1, E1, E1)

| P (E1, [time string], E1)

| P (E1, [time string]: parameter, E1)

| P* (E1, [time string], E1)

| P* (E1, [time string]: parameter, E1)

| [time string]

| E1 PLUS [time string]

| (E1)

| event_name

event_name::= name

| Eventname: Objectname
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| Eventname:: AppId

AppId ::= Sitename__Appname

| Identifier

 Name ::= Identifier

     Eventname ::= Identifier

    Objectname ::= Identifier

Also, we can find event and rule specification in [LIA96]. Syntax of the

event and rule specification in SNOOP is as follows [VK94] [LEE95] [LIA96]:

      Event_spec ::= event event_modifier method_signature

    | event event_name = event_exp

    | begin ( event_name)

    | end (event_name)

    | begin ( event_name) && end ( event_name)

    | end ( event_name) && begin ( event_name)

 Event_modifier ::= event_name

         Rule_spec ::= rule rule_name (event_name,

    condition_function, action_function)

[, [ parameter_context], [coupling_mode]

, [ priority ], [ rule_trigger_mode ]])

parameter_context ::= RECENT | CHRONICLE | CONTINUOUS |

CUMULATIVE

Coupling_mode ::= IMMEDIATE | DEFERRED | DETACHED
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Priority ::= positive integer

Rule_trigger_mode ::= NOW | PREVIOUS

3.3 ECA Preprocessor

There is a SNOOP preprocessor (named SPP) is part of the Sentinel system. It is

integrated with the OpenOODB preprocessor ppCC for wrapping methods of the reactive

class and creating several files (such as the signature and static files for use by other

components of Sentinel). We can separate the SPP from the OpenOODB, and add

functions to support Sybase Embedded SQL/C. We name this new preprocessor as SQL-

ECA Preprocessor. The SQL-ECA Preprocessor provides following functionality:

1) Embedded SQL/C only works for C language, and LED is designed based on

C++. Initially, all user code is written in SNOOP and Embedded SQL/C.

There is no OO concept in the user’s code. To make everything consistent, the

ECA Preprocessor puts all methods into a class _SYBASE.

2) It processes event and rule specifications defined by the user in SNOOP, and

inserts translated C++ code into the user program.

3) It wraps all the methods in _SYBASE class.

4) It creates several files so that it can be connected to the rule editor and Global

Event Detector.



19

19

3.4 Implementation of Sybase LED

Some of the modules shown in Figure 3.1, have already been implemented. LED

implemented as part of Sentinel, has been used without modification. Open

ClientLibrary  and Embedded SQL/C precompiler are implemented in the Sybase

system. The only part of the architecture requiring implementation is the ECA

Preprocessor. Since ECA Preprocessor is based on SPP, changes can be made to SPP.

There are four changes needed:

1) On preprocessing, all event definitions (including primitive and composite)

are translated into LED function calls. The difference between the SPP and

the ECA Preprocessor is that ECA Preprocessor translates all events into

events on a single class _Sybase (class level event).

For example: event e1 is defined in SNOOP and Embedded SQL/C as

follows.

event end (EventSellBook) void sell_book();

It will be translated into:

PRIMITIVE *BOOK_EventSellBook = new
PRIMITIVE("Sybase_EventSellBook", "Sybase", "end","void
sell_book()");

But for SPP, the event definition should be :

Class BOOK

{…

event end (EventSellBook) void sell_book();

}

it will be translated into:
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PRIMITIVE *BOOK_EventSellBook = new PRIMITIVE(
"BOOK_EventSellBook", "BOOK", "end","void sell_book()");

2) SPP calls ppCC (Open OODB preprocessor) to wrap the method, ECA

Preprocessor is separated from ppCC, and writes a wrapper module instead.

This wrapper module changes the method into another name, and wraps the

method into a new method whose name is the same as the original method. It

also adds a notificaiton statement to the LED.

      For example, method sell_book is defined as Figure 3.2:

Figure 3.2: Definition of void sell_book()

After preprocessing, the method is changed into Figure 3.3

void sell_book() {
EXEC SQL BEGIN DECLARE SECTION;
        int count;
        int quan;
        int key;
EXEC SQL END DECLARE SECTION;
exec sql whenever sqlerror call err_handle();
exec sql whenever not found goto not_found;
printf("please input call_number: "); scanf("%d",&key);
printf("How many books sold?"); scanf("%d",&count);
EXEC SQL CONNECT :username IDENTIFIED BY
:password;
  EXEC SQL select quan into :quan  from BOOKS_DB
  where call_no = :key;
 if ((quan-count)>=0) {
        quan=quan-count;
EXEC SQL update BOOKS_DB set quan = :quan
        where call_no = :key;
        printf("%d books sold!",count);
        }
        else {
                EXEC SQL update BOOKS_DB set quan = 0
                where call_no = :key;
                printf("only sold %d books!no more books !",quan);
                }
  EXEC SQL COMMIT;
not_found:printf("record not found!\n");
  EXEC SQL DISCONNECT DEFAULT;
}
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Figure 3.3: Method sell_book() after wrapper

void _wrapper__sell_book() {
EXEC SQL BEGIN DECLARE SECTION;
        int count;
        int quan;
        int key;
EXEC SQL END DECLARE SECTION;
exec sql whenever sqlerror call err_handle();
exec sql whenever not found goto not_found;
printf("please input call_number: "); scanf("%d",&key);
printf("How many books sold?"); scanf("%d",&count);
EXEC SQL CONNECT :username IDENTIFIED BY :password;
EXEC SQL select quan into :quan  from BOOKS_DB
  where call_no = :key;
 if ((quan-count)>=0) {
        quan=quan-count;
EXEC SQL update BOOKS_DB set quan = :quan
        where call_no = :key;
        printf("%d books sold!",count);
        }
        else {
                EXEC SQL update BOOKS_DB set quan = 0
                where call_no = :key;
                printf("only sold %d books!no more books !",quan);
                }
  EXEC SQL COMMIT;
not_found:printf("record not found!\n");
  EXEC SQL DISCONNECT DEFAULT;
}

void sell_book()
{
if (is_this_subscribed( "Sybase",  "void sell_book() ","begin"))
      {
        PARA_LIST *begin_sell_book_list = new PARA_LIST();
        Notify(this, "Sybase","void sell_book() ", "begin", begin_sell_book_list);
        }
_wrapper__sell_book();
if (is_this_subscribed( "Sybase",  "void sell_book() ","end"))
      {
        PARA_LIST *end_sell_book_list = new PARA_LIST();
        Notify(this, "Sybase","void sell_book() ", "end", end_sell_book_list);
       }
}
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3.5 Integration with Sentinel

As the code base for OO-LED and the relational-LED is same, it is possible to use

this in conjunction with the Global Event Detector (GED) as shown in Figure 3.4. Once

the GED server is started, event defined in Sybase can send event requests to the GED

and the GED can receive event notifications from the Sybase LED. Figure 3.4 shows the

relationship between LED and relational as well as OO applications.

                                       Figure 3.4: Integration with Sentinel
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3.6 Features and Limitations

Using wrappers with Embedded SQL/C to implement a relational LED for Sybase

offers the following benefits:

1) It is easy to implement.

It is implemented from the existing code base used in Sentinel.

2) The architecture is simple and can be along with the other database systems.

3) It can be integrated into Sentinel so that events can be detected and rules

executed in a heterogeneous system.

4) Because of the mediated approach, the Sybase LED can be added without any

changes to the underlying system.

However, the following limitations needed to be recognized:

1) Composite events and rules are only existed at runtime.

All ECA rules stay in memory. Once a user stops running the program, all

ECA rules immediately disappear. Only when user restarts the program, can

ECA rules be recreated.

2) ECA rules can only be defined statically.

All ECA rules are defined before a program is compiled. This eliminates the

possibility of runtime declaration of ECA rules. If a user wants to add, delete

or update an ECA rule, the application program must be stopped, the source

code modified, and the entire program recompiled (restart a new life cycle for

all ECA rules).
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3.7 Conclusion

A Wrapper with Embedded SQL/C may be an appropriate solution when an

application is simple and small, with statically defined ECA rules. However, when

applications are complicated, large, and need runtime declaration of ECA rules, this

needs to be reexamined to accommodate dynamic ECA rule capability.
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CHAPTER 4
DESIGN ISSUES OF THE SYBASE ECA AGENT

The previous approach suffered from several limitations although it its

implementation is straightforward. It is mostly suitable for very simple systems. Even

though we can make some changes to improve it, we cannot ensure the atomicity of an

event as it depends on users. Also we cannot change the preprocessing mechanism.

Therefore, an alternative solution which overcomes the above problems is necessary.

The ECA Agent proposed in this chapter is an alternative solution that overcomes

the problems of the previous (wrapper) approach. We discuss implementation detail in

the next few chapters. The ECA Agent is a mediated approach using Open Server to

provide the Sybase SQL Server with ECA capabilities. This solution not only solves all

of the limitations of the previous solutions, but also several advantages as described in

the rest of the thesis.

4.1 Overview of the Open Server

Sybase Open Server is used with the ECA Agent. Sybase provides an OpenServer

Library named Open Server  Server-Library/C [SYB96]. The library is a non-

preemptive multithread C library available from Sybase upon which the SQL Server is

based. In fact, it is the basis for most Sybase server and middleware products including

OmniSQL Server, all Sybase gateways, and Replication Server. The library allows for a

C program to become a server to multiple Sybase client programs. This Server is called

Open Server. It allows the programmer to authenticate logins, receive language requests,
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receive procedure calls, and return results in Tabular Data Stream (TDS) format, which

all Sybase clients can receive. The following libraries may be used in Open Server:

• Open Client Client-Library/C

• Open Server  Server-Library/C

Depending on its function, an Open Server's position in the client/server

architecture is different. There are three functional categories for OpenServer: standalone,

auxiliary, or gateway.

1) A standalone Open Server

Figure 4.1 shows a standalone Open Server application. A client

connects directly to a standalone Open Server application and submits

requests using remote procedure calls (RPCs), which is a command language

the server is programmed to recognize, a cursor command, or any other kind

of client command. The Open Server application programmer supplies code to

process client commands.

Figure 4.1: A Standalone Open Server
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A Standalone Open Server does not satisfy the requirements of our

mediated approach. Because it doesn’t connect to SQL Server, it cannot be

used to create a middleware out of SQL Server.

2)  An Auxiliary Open Server

An auxiliary Open Server application is shown in Figure 4.2. This

category of Open Server application supports SQL Server by processing

RPCs. The client connects directly to SQL Server and uses Transact-SQL for

its language requests. To execute a procedure on the Open Server application,

the client prefixes the procedure name with the name of the Open Server

application, which causes SQL Server to initiate an RPC. An RPC is the only

type of client command that can be sent to an Open Server via a SQL Server.

Figure 4.2: An Auxiliary Open Server

An Auxiliary Open Server can be used to create a layer for SQL Server.

This architecture was discussed and implemented in [VAN96]. Since it suffers

from the following limitations, we do not adopt this architecture for our

implementation.

a) Deadlocks are possible.

The Auxiliary Open Server must maintain its own deadlock checking

since the SQL Server can not be aware of the problem.
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b) Poor performance.

c) Immediate trigger semantics require verification.

There is no way to roll-back and RPC event notification if a

transaction aborts. Verification of events is required.

d) The Auxiliary Open Server may be prevented from making additional

inquires.

The Auxiliary Open Server needs to make its own database inquires

during condition evaluation, it must use a separate connection to the

SQL server. It will have to wait for the initiating transaction to release

its locks before the server can access any of the transaction’s dirty

pages

e) There is no way to determine the order of events.

There is no accurate indicator to determine order the commit times of

the transactions.

f) Lack of  robustness.

If the Auxiliary Open Server fails, the SQL Server will experience

delays waiting for RPC time-outs. Updating the status of the Auxiliary

Open Server can also have the effect of suspending other transactions

which rely on the Auxiliary Open Server until the transaction

completes.

3) A Gateway Open Server

Figure 4.3 shows an Open Server application in a gateway role. A gateway

server enables a client to access a server that cannot accept the client
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connection directly. The gateway does not have to connect to a SQL Server,

or for that matter, to any DBMS server. It could connect to a file system or an

application program that can be treated as a server. The gateway program uses

Server-Library to process client requests and Client-Library to connect to the

SQL server.

Gateway Open Server satisfies the requirement for the SQL Server to act

as an intermediary for clients and servers that cannot communicate directly.

By using the Gateway Open Server, the mediator approach used in this thesis

is truly transparent to the client. And there are no significant limitations in this

architecture. Gateway Open Server will be an important component of the

ECA Agent.

4.2 Architecture of ECA Agent

ECA Agent is a multithread program. It is positioned between clients and the SQL

Server so that the SQL Server can provide ECA capabilities with full transparency. From

the user’s point of view, the ECA Agent is a Virtual Active SQL Server. Not only can it

provide all functions of the native SQL Server, but it also provides the ECA functions

that active database requires. From a system’s point of view, the ECA Agent is a

Gateway
Open Server

Figure 4.3 A Gateway Open Server

Client
application

        SQL
      Server



30

middleware that connects the client and SQL Server and provides ECA service if

necessary.

The architecture of ECA Agent is shown in Figure 4.4. There are eight functional

modules in the ECA Agent:

•  Gateway Open Server (GOS):

GOS is responsible for the connection between a client and SQL Server. It

provides the same interface as SQL Server to accept client commands and

return the results to the client. GOS also accepts SQL requirements from the

other parts of ECA Agent and forwards them to SQL Server. Results are

returned to the corresponding part. Fully transparency is provided here.

•  Language Filter:

All client commands flow through the Language Filter. The ECA commands

are seperated and sent to the ECA Parser while other SQL commands are sent

back to the Gateway Open Server. Language Filter is also responsible for

filtering different types of ECA commands. (i.e. primitive event command,

composite event command, drop trigger command, etc.)

•  ECA Parser:

ECA commands are filtered into the ECA Parser from the Language Filter. The

ECA Parser scans and parses the commands. If there is no syntax error, the ECA

Parser will create corresponding events and rules which depend on the Local

Event Detector, send corresponding SQL to the Gateway Open Server,
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 Figure 4.4: Architecture of ECA Agent
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and send specifications of ECA rules to the Persistent Manager for persistent

storing events and rules. If a parse error occurs, an error message is returned to

Language Filter.

•  Local Event Detector (LED):

Since the SQL Server (trigger) detects only primitive events, LED is mainly

responsible for composite event detection.

•   Persistent Manager:

All events and rules defined by a client need to be persistent. The information

is stored in the following system tables using the SYBASE database:

1)   SysPrimitiveEvent: It is used to store information of primitive events.

2) SysEcaTrigger: All triggers are stored here.

3) SysCompositEvent: Information of composite events are stored in this

              table.

Persistent Manager stores all ECA information into these tables when it

receovess information from ECA Parser. On ECA Agent starting or recovery,

Persistent Manager restores and creates all events and rules from these tables.

•  Event Notifier:

As soon as a primitive event occurs, SQL Server sends notification to the Event

Notifier. The Event Notifier is responsible for receiving the notification,

formatting it and sending the formatted notification to the LED.

•  Action Handler:

Once an event occurs, it calls the actions defined on this event. The Action

Handler processes these actions, changes them into corresponding SQL

commands  (call corresponding stored procedures), and send SQL commands
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to the Gateway Open Server. The Gateway Open Server will send them to the

SQL Server, get the results from the Gateway Open Server, and send them to

the client as appropriate.

 4.3 Workflow of ECA Agent

The ECA Agent is responsible for two major functions: “create ECA rules” and

“event notification and action.”

The workflow of “create ECA rules” is shown in Figure 4.5. It includes seven

steps:

1) Client provides input for creating a new ECA rule.

2) The command goes to the Gateway Open Server.

3) The Gateway Open Server forwards the command to the Language Filter.

4) The Language Filter checks if the command is an ECA command. If so, the

Language Filter scans the command and sends the command to the ECA

Parser. Otherwise, the command is returned to the Gateway Open Server. And

the Gateway Open Server forwards the command to SQL Server and returns

the result to the client.

5) The ECA Parser analyzes the command and checks for errors. If an error is

detected, a message is returned to the Gateway Open Server. If no error is

found, the ECA Parser creates event graphs using the LED, sends the new

SQL commands to the Gateway Open Server, and forwards persistent

requirements to the Persistent Manager.

6) Gateway Open Server sends SQL commands to the SQL Server and Persistent

Manager if necessary, then returns the results to the client.
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7) If the Persistent Manager receives the persistent requirement, it persistently

stores ECA rules.

Figure 4.5: The Workflow of Creating ECA rules.
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1) The client sends SQL commands to the Gateway Open Server. If the

commands are not ECA commands, the commands will pass through to the

SQL Server.
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Event Notifier.

3) Event Notifier receives the notification from SQL Server, decodes the

notification message, and notifies the LED.
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4) LED, after receiving the notification detects if occcurrences of one or more

events. If so, LED sends event information to the Action Handler.

5) Action Handler processes event information, changes it into SQL commands,

and sends it to Gateway Open Server.

Figure 4.6: Workflow of event notification and action

6) The Gateway Open Server sends the commands to the SQL Server and returns

the results to the client.
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3) It can reuse previously defined events (both primitive & composite).

4) It drops triggers associated with primitive or composite events.

5) Once events are created, they will be made persistent.

All primitive events and composite events are detected, and actions are invoked in

the SQL Server.

The advantages of the ECA Agent are obvious. The ECA Agent not only

overcomes the limitations identified in the previous approach (discussed in Chapter 3),

but it also has its own advantages. In summary, the features of the ECA Agent are as

follows:

1) The primitive event is atomic.

2) ECA rules can be defined dynamically: The user can define ECA rules at any

time. Once the ECA rules are defined, the ECA rules are effective in the

system.

3) Transparency: As the agent has been added as a mediator, the clients are not

aware of its presence. Also, ECA rules can be created in the system using the

currently available interface.  Any existing SQL Server application can

continue to function without modification.

4) User Friendly: A user only needs to know the event operations to define an

ECA rule. The event and rule definitions are similar to that of the standard

SQL trigger syntax.

5) System consistency: None of an existing DBMS’s functionality is lost.

6) Extensible: A more distributed architecture can be designed.
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7) Semantic Independence: There is nothing about active database semantics that

demands that the rule execution must be integrated into the DBMS.

8) Scaleable Architecture.

9) Persistent: By using DBMS storage mechanism, all ECA rules are persistent.

10) Good Modularity/Maintenance.

11) All events can be detected: Events will not be lost.

12) Parallel execution of ECA Agent and SQL Server.

4.5 Integration with Sentinel

ECA Agent uses LED as its composite detector. Also LED provides an interface

to connect to Sentinel GED. This enables connection of this architecture with Sentinel.

Once we start the GED server in Sentinel, events defined in Sybase can send event

requests to GED and GED can receive event notification from ECA Agent. Figure 4.7

shows the relationship between Sentinel and ECA Agent:

A new architecture CEDaR (Composite Event Detection and Rule execution) is

proposed for Sentinel [CHA98] to support ECA rules for distributed heterogeneous

environments. CORBA is used as the underlying transport mechanism that provides

connectivity to multiple heterogeneous systems. CEDaR makes integration with ECA

Agent easier. An interface should be defined for ECA Agent by using CORBA IDL. The

integration architecture is shown in Figure 4.8.
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                           Figure 4.7: Integration with Sentinel
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Figure 4.8: Integration with CEDaR

4.6 Conclusion

This architecture proposed in this chapter is flexible, transparent, and supports all
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CHAPTER 5
DESIGN AND IMPLEMENTATION

OF THE GATEWAY OPEN SERVER AND THE PERSISTENT MANAGER

The Gateway Open Server provides an interface between clients and the SQL

Server. It plays an important role in the ECA Agent. This chapter discusses the

implementation of the Gateway Open Server.

5.1 Setting Up the Environment

To create an Open Server, we need to set up the environment. To set up the

environment, environment variables need to be set and the network connections in the

interface file need to be configured so that clients and the server can communicate with

each other.

The following environment variables are set for our Gateway Open Server:

•  SYBASE = local/sybase

        SYBASE implies the path of the SYBASE directory.

•  DSQUERY = SYB_ECA_AGENT

Here we set DSQUERY for clients, it points to the Gateway Open

Server name: “SYB_ECA_AGENT”.

•  DSLISTEN = SYB_ECA_AGENT

DSLISTEN is set for server, here is the name of Gateway Open Server

“SYB_ECA_AGENT”.
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The interface file need to be configured to contain network information about

servers on the system, including the server name, the network address, and the port

number on which the server listens for queries. Figure 5.1 shows the content of the

interface file we set for our Gateway Open Server:

Figure 5.1 Interface File for Gateway Open Server

Master lines are used by server applications to listen for queries over the network.

Query lines are used by client applications to connect to servers over the network. The

Gateway Open Server name is SYB_ECA_AGENT, which can work on any local

machine and has a port number of 12000. SQL Server is CISE-DATASERVER-0,

which runs on the machine “fountain” and connects with port number 9455.

When a client connects to a server, it does the following:

## CISE-DATASERVER-0 on fountain
##       Services:
##              query   tcp     (9455)
##              master  tcp     (9455)

CISE-DATASERVER-0 5 5
        query tli tcp /dev/tcp \x000224ef80e3a2c20000000000000000
        master tli tcp /dev/tcp \x000224ef80e3a2c20000000000000000

## SYB_ECA_AGENT on localhost
##       Services:
##              query   tcp     (12000)
##              master  tcp     (12000)

SYB_ECA_AGENT
        query tli tcp /dev/tcp \x00022ee07f0000010000000000000000
        master tli tcp /dev/tcp \x00022ee07f0000010000000000000000
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1) Determines the name of the server by referring to the DSQUERY

environment variable.

2) Checks the interface file for an entry whose name matches the name of the

server, stops at the first instance of that name, and reads the query line.

3) Uses the network information provided by the query line to connect to the

server.

Servers use the interface file to listen for clients. To listen for queries, a server:

1) Determines its own name by using the DSLISTEN environment variable

2) Looks in the interfaces file for an entry whose name matches the name by

which it knows itself and finds the master line

3) Uses the network information provided by the master line to listen for queries.

5.2 Implementation of the Gateway Open Server

The main functions of the Gateway Open Server are:

•  Set up structures: CS_CONTEXT is the basic control structure for an Open

    Server. There exist other structures that also require set up.

•  Listens for connection requests from clients and SQL server.

•  Processes client requests and SQL server results.

•  Clean up: Cleans all structures and allocated memory for the Gateway Open

    Server when the server is normally shut down.

Figure 5.2 shows the main steps for implementing Gateway Open Server.

After Gateway Open Server starts running, it listens for the client requests. If the request i
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Figure 5.2: Implementation Gateway Open Server



44

is to shutdown server, it will clean up the environment and shut off the server. Otherwise,

it will invoke different event handlers based upon the requirement.

The Gateway Open Server responds to requests from clients. When the Gateway

Open Server triggers an event, it places the event in the active thread's event queue. The

thread then executes a routine (event handler) that processes the event. There are ten

event handlers in our Gateway Open Server. Figure 5.3 shows the event handlers we have

defined.

Event                                 Routine                                Function

SRV_ATTENTION ActiveAttnHandler Process client attention requests.

SRV_BULK ActiveBulkHandler Bulk data received from a client.

SRV_CONNECT ActiveConnHandler Process client connection requests.

SRV_CURSOR ActiveCurHandler Process client cursor requests.

SRV_DISCONNECT ActiveDiscHandler Process client disconnections.

SRV_DYNAMIC ActiveDynHandler Process client dynamic SQL requests.

SRV_LANGUAGE ActiveLangHandler Process client language requests.

SRV_RPC ActiveRpcHandler Process RPC requests.

SRV_OPTION ActiveOptHandler Process option commands.

SRV_START              ActiveStartHandler       Installs handlers for all events.

Figure 5.3 Event Handlers for the Gateway Open Server
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When the Gateway Open Server starts, the SRV_START event is invoked and

event handler ActiveStartHandler is called. ActiveStartHandler installs the other nine-

event handlers that are used to respond to user’s requests.

5.3 Implementation of Persistent Manager

Once the Gateway Open Server starts, it generates a thread that connects to the

SQL Server directly by using Client-Library. The thread is a Persistent Manager that will

control and manage all persistent ECA rules. The connection with the SQL Server should

be granted high privilege, for example DBA, so that it can have higher privilege to create

or delete system tables than ordinary users.

The Persistent Manager is responsible for the management of ECA rule database.

Listed below are functions of the Persistent Manager:

1) Maintain ECA Agent system tables.

2) Recovery of ECA rules.

3) Persist ECA rules.

4) On system startup, restore all ECA rules.

5) Add or delete ECA rules from ECA Agent system tables.

6) Keep track of the occurrence of each event.

5.3.1 System Tables of the ECA Agent

To implement these functions, three system tables are created for the ECA Agent.

Figure 5.4 shows the structure of table SysPrimitiveEvent which is used to store all

primitive events. The structure of table SysCompositEvent is shown in Figure 5.5. This

table is used to store all composite events. Table SysEcaTrigger whose structure is shown

in Figure 5.6 stores all triggers.
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Figure 5.4: Schema of SysPrimitiveEvent Table

Figure 5.5: Schema of SysCompositEvent Table

Figure 5.6: Schema of SysEcaTrigger Table

Since system tables are created in the SYBASE database system, they are

maintained in the SYBASE database system based upon SYBASE storage management.

Column_name                    Type                           Length              Nulls
dbName                            varchar                            30                   NULL
 userName                         varchar                            30                   NULL
eventName                        varchar                            30                   NULL
tableName                         varchar                            30                   NULL
operation                           varchar                            20                   NULL
timeStamp                        datetime                            8          NULL
vNo                                     int                                 4                     NULL

Column_name                    Type                           Length              Nulls
  dbName                            varchar                            30                   NULL
  userName              varchar             30                  NULL
  eventName             varchar                              30           NULL
  eventDescribe          text                       text           NULL
  timeStamp            datetime             8           NULL
 coupling              char                10                  NULL
 context               char                10           NULL
 priority              char                10           NULL

Column_name                    Type                           Length              Nulls
dbName                            varchar                            30                   NULL
 userName              varchar              30                    NULL
 triggerName           varchar             30 NULL
 triggerProc     text                text NULL
 timeStamp            datetime             8 NULL
 eventName            varchar             30 NULL
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Persistent Manager is responsible for managing the data in these tables and providing the

persistent service to ECA Agent.

5.3.2 Implementation Details of Persistent Manager

The functions of Persistent Manager are discussed in the previous sections. Figure

5.7 shows how Persistent Manager works and how it is implemented.

When the ECA Agent starts, it creates a thread that connects to the SQL Server by

using functions in the Client-Library. The Persistent Manager runs in this thread (dark

square in Figure 5.7). It creates ECA rules from the system tables of the ECA Agent.

       ECA Agent

Create a connection
with SQL Server.

Read all ECA
rules from system

System Tables
of ECA Agent

Client

Starting

ECA Parser

Add New ECA Rules

SQL Server

Create ECA rules LED

Delete ECA Rules

Figure 5.7: Implementation of Persistent Manager

Happens at rule
Creation Time

Happens at
runtime
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After the ECA Agent starts, the Persistent Manager waits for the requirement

from ECA Parser. If there is an add or delete ECA Rules requirement, Persistent Manager

will persist the ECA Rules to the system tables or delete them from system tables.
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CHAPTER 6
IMPLEMENTATION OF PRIMITIVE

EVENTS

Though the SQL Server provides triggers, it only supports a limited way of

defining events, conditions, and actions. That is sufficient for many applications that

require full-fledged active capability. The ECA Agent uses SQL Server’s primitive

trigger mechanism and extends it significantly. Implementation details of primitive event

detection are discussed in this chapter.

 6.1 Trigger Extensions of the ECA Agent

While triggers work well in the SYBASE SQL Server, there are a number of

limitations. For example, triggers must be written in Transact-SQL whose limitations

make it difficult for supporting ECA form of rule evaluation. Following is a list of

restrictions of SYBASE trigger mechanism (SQL 92 compliant). Most of these

restrictions are true for other SQL 92 compliant relational DBMSs as well.

•  Complex data types is not allowed.

•  There is no direct access to C, to other programs, or to the underlying operating

    system.

•  Only atomic values (and not tables) may be passed as parameters to stored

     procedures.

•  A trigger cannot be applied to more than one table.

•  Each new trigger on a table for the same operation (insert, update, or delete)
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overwrites the previous one. No warning message is given before the overwrite

occurs.

Some of the restrictions make the system inflexible. For example, a trigger cannot

be applied to more than one table, or each new trigger on a table for the same operation

overwrites the previous one, etc. The ECA Agent, described in this thesis, overcomes

these restrictions so that it can provide the SQL Server with a complete Active Database

capability. Below, we list the functionality added by the ECA Agent:

•  Primitive Events: If an event is defined on a base table for a certain

operation, this event is called a Primitive Event. If two events are defined on

the same table for the same operation, we define these two events to be the

same. We will assign the same name in the system.

•  Composite events: A composite event is built using primitive events, event

    operators, and previously defined composite events.

•  Triggers can be defined on any events.

• Additional triggers can be defined on the same table for the same operation.

   Once the event occurs, all triggers defined on that event will be invoked.

•  A trigger can be applied to more than one table and more than one operation

    through the use of composite events.

•  Triggers can be dropped. When there are no other triggers defined on an

    event, the event is deleted by system.
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6.2 Syntax of Primitive Events

To provide user transparency, the syntax of an ECA Rule definition proposed by

the ECA Agent is kept the same as that of a trigger definition in Sybase except for the

naming of an event. Figure 6.1 shows the syntax of the Primitive Event definition. The

only difference here is the keyword event.

Figure 6.1: Syntax of a Primitive Event

A primitive event is defined on a table for an operation (delete, update, insert). A

trigger can be defined on any event. The default coupling mode is IMMEDIATE, and

the default parameter context is RECENT.  The action function is written as SQL code,

using the keyword “as”. The action is invoked in the SQL Server.

Once an event is defined, the user can define additional triggers on the event.

Figure 6.2 shows the Syntax of defining triggers on a previously defined event.

create trigger [owner.] trigger_name
on [owner.] table_name
for operation

as SQL_statements

operation := insert | delete | update
parameter_context := RECENT | CHRONICLE | CONTINUOUS

          | CUMULATIVE
coupling_mode := IMMEDIATE | DEFERED | DETACHED
priority := positive integer

[event event_name [coupling_ mode] [parameter_context] [priority]]
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6.3 Naming Mechanism

A user can assign a name for an object (a trigger or an event) in the system. Since

SYBASE supports a multi-user, multi-database environment, we cannot use the name

that the user assigns as the internal system wide identifier. All user defined names are

changed into an internal name that is unique across user and database-names. A user need

only be concerned with the names assigned by him/her. This naming scheme is consistent

With the way Sybase expands user-defined object names. If a user assigns an object

objectName, this name will be changed into the following system-wide internal name:

DatabaseName.userName.objectName

6.4 Language Filter

When a client forwards a language request command such as an SQL statement to

the Gateway Open Server, an SRV_LANGUAGE interrupt occurs, and the event handler

ActiveLangHandler is invoked. The Language Filter is called by this event handler and to

process the incoming command. The input is analyzed as shown in Figure 6.3. If the

command is not an ECA related command, the original command will be returned to the

create trigger [owner.] trigger_name
event event_name [coupling_ mode] [parameter_context] [priority]
as SQL_statements

operation := insert | delete | update
parameter_context := RECENT | CHRONICLE | CONTINUOUS

             | CUMULATIVE
coupling_mode := IMMEDIATE | DEFERED | DETACHED
priority := positive integer

Figure 6.2: Syntax of Defining a Trigger on Existing Event
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Gateway Open Server to pass it on to the SQL Server. Otherwise, the handler will invoke

a different function for each of the five different ECA requests:

•  Primitive Event: Primitive Event Parser will be called.

•  Composite Event: Composite Event Parser will be called.

•  Drop Trigger: Drop trigger function will be called.

•  Trigger created on existing Primitive Event: Existing Primitive Event Parser

     will be called.

•  Trigger created on existing Composite Event: Existing Composite Event Parser

    will be called.

Figure 6.3: Language Filter

NO

YES

Client

Gateway Open Server

       SQL Server

Language Filter

    ECA
Command

      ?
?

Primitive Event Parser

Composite Event Parser

Existing Primitive Event Parser

Existing Composite Event Parser

Drop Trigger Function
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6.5 Parsing and Generating Primitive Event

The five steps to parse and generate a Primitive Event are shown in Figure 6.4.

Figure 6.4: Primitive Event Parser

Here we give an example to explain how this works:

Example 6.1: Suppose the command is:

create trigger t_addStk on stock for insert

No

No
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Check Syntax
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Generate Code

Error?

Error?
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event addStk

as print "  trigger t_addStk on primitive event addStk occurs"

     select * from stock

and the contents of the stock table is shown in Figure 6.5

     Figure 6.5: Schema of Table stock

The Primitive Event Parser starts parsing this command:

1) Syntax checking: The command is scanned. If there is a syntax error in the

command, an error message is returned to the Gateway Open Server, and the

Gateway Open Server then returns an error message to the client. If there is no

syntax error, all object names are replaced by the internal system names, e.g.:

create trigger sentineldb.sharma.t_addStk on stock for insert

event sentineldb.sharma.addStk

as

     print "  trigger t_addStk on primitive event addStk occurs"

     select * from stock

2) Duplicate object name checking: All object names (internal system name)

including the trigger name and the event name are checked. If there is a

duplicate name, an error message is returned to the Gateway Open Server.

Column_name     Type            Length        Nulls
 ---------------    ---------------   ------ ----         ----- -----

 symbol              char                 6                   NULL
 Co_name            char                20  NULL
 price               money             8                   NULL
 time                datetime          8                   NULL



56

3) ECA code generation: SQL code is generated. SQL code generated includes:

•  Creation of  two tables, if they do not already exist, for processing the

parameter context. One table is created for storing the deleted tuples, whose

internal system name is:

                   DatabaseName.userName.tablename_deleted

The other table is for storing the inserted tuples, whose internal system

name is:

                 DatabaseName.userName.tablename_inserted

These two tables are created using the name of the table on which the

primitive event is created. The schema is almost the same as the table with

an additional attribute vNo (for recording the unique event occurrence

value). The value of this attribute will be used for composing parameters

for the parameter context specified.

For the example 6.1, the following tables are created:

sentineldb.sharma.stock_inserted and sentineldb.sharma.stock_deleted.

The schema of these two tables is shown in Figure 6.6.

•  Create a stored procedure to store the trigger action. The name of stored

    procedure will be:

Figure 6.6: Schema of two generating tables.

Column_name     Type            Length          Nulls
 ---------------    ---------------   ------ ----         ----- -----
 symbol                 char                 6                   NULL
 Co_name               char                20                 NULL
 price                  money             8                   NULL
 time                   datetime          8                   NULL
 vNo                        int                   4                   NULL
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   DatabaseName.userName.TriggerName__Proc

•  Get the occurrence number of the table from table SysPrimitiveEvent

    and put the number into table Version.

•  Create a trigger for the primitive event. The main functions of this

     trigger are:

a) Transfer relevant tuples from inserted or deleted into two generating

tables for the context.

b) Send notification to Event Notifier.

c) Invoke an action.

The code is generated for the example 6.1 is shown in Figure 6.7. This code will

be sent to the Gateway Open Server, the Gateway Open Server, which will pass it

on to the SQL Server, and the result will be returned to the client.

4) Generation of  persistent code: SQL code is generated and persisted. The code

includes the information written into tables created by the ECA agent:

SysEcaTrigger and SysPrimitiveEvent. These SQL statements are sent to the

Persistent Manager.

Two insert statements are generated for the example 6.1:

insert SysEcaTrigger values (“sharma”, “t_addStk”,

“sentineldb.sharma.t_addStk__Proc”, getdate(), “addStk”)

insert SysPrimitiveEvent values(“sharma”, “addStk”, “stock”,

”insert”, getdate(), 0)

5) Primitive Event Generation: A primitive event is created in LED.
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In example 6.1, the event name is sentineldb.sharma.addStk.

PRIMITIVE *eventPoint=new PRIMITIVE(sentineldb.sharma.addStk

“Sybase_Event","begin", sentineldb.sharma.addStk);

Details of all events are stored in the global link list EventPrimitive for use at

a later time.

             Figure 6.7 Code Generation in Example 6.1

/* create two tables. */
select * into sentineldb.sharma.stock_inserted from stock where1=2
alter table sentineldb.sharma.stock_inserted add vNo int null

/*create stored procedure*/
create procedure sentineldb.sharma.t_addStk__Proc as
print "* trigger_addStk on primitive event addStk occurs"
select * from stock

/* create trigger*/
create trigger sentineldb.sharma.t_addStk
on stock
for insert
as
 insert sentineldb.sharma.stock_inserted
           select * from inserted,Version
 select syb_sendmsg("128.227.205.215", 10006, " sharmastockinsert
begin sentineldb.sharma.addStk") /* Notification */

/* Get and change occurence Number */
update SysPrimitiveEvent set vNo=vNo+1 where eventName
= “sentineldb.sharma.addStk “
delete Version insert Version select vNo from SysPrimitiveEvent
where eventName=” sentineldb.sharma.addStk”

/* action function */
execute sentineldb.sharma.t_addStk__Proc
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6.6 Creating Triggers on Existing Event

6.6.1 Primitive Event List

To provide users with the capability of defining many triggers on the same event,

we keep track of each event and all triggers defined on that event. A list (termed

EventPrimitive list) is used to store primitive event details and trigger functions. Figure

6.8 shows the structure of this list. When a new event is created, an event node is inserted

into EventPrimitive, and a trigger node is inserted into Triggers of EventPrimitive.

6.6.2 Implementation of Triggers on an Existing Event

As we store the details of an event in the Because an EventPrimitive list, when a

new trigger is defined on an existing event, the following three steps are applied to the

new trigger:

1) Syntax checking: If there is no syntax error, go to step 2, otherwise an error

message is sent to the Gateway Open Server.

2) Duplicate object name checking: If there is no duplicate trigger name, go to

step 3. Otherwise, an error message is sent to the Gateway Open Server.

Event Name

Next

Event Pinter

Triggers

Event Function Trigger Name

Trigger Function
Next

Figure 6.8: Structure of the list EventPrimitive

EventPrimitive
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3) The state of the new trigger is inserted into the EventPrimitive list for the

existing event.

4) Code Generation: New code is generated and sent to the Gateway Open

Server.

•  A store procedure is created for this trigger action. The name of the

          stored procedure is:

 DatabaseName.userName.TriggerName__Proc

•  A new trigger is created in the SQL Server. Code is generated by adding

    and executing the stored procedure statement.

5) Persistent code generation: SQL code is generated for persistence. The code

includes the information written into the SysEcaTrigger table. It is sent to the

Persistent Manager.

 We illustrate the above with another example (example 6.2). Suppose the

user defines another trigger on the event addStk that was created in example 6.1:

Example 6.2:

create trigger t1_addStk event addStk

as  print "* another trigger t1_addStk  on primitive

      event addStk :buy 1000 IBM stock for Sharma"

      insert PortFolio values("Sharma","IBM",1234,$320, getdate())

After parsing the code, since there is no syntax error, the code shown in

Figure 6.9 is generated and sent to the Gateway Open Server.
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Figure 6.9: Code Generation in Example 6.2

/*create stored procedure*/
create procedure sentineldb.sharma.t1_addStk__Proc
as

print "* another trigger t1_addStk  on primitive event addStk
:buy 1000 IBM stock for Sharma"

insert PortFolio values("Sharma","IBM",1234,$320, getdate())

/* create trigger*/
create trigger sentineldb.sharma.t1_addStk
on stock
for insert
as
 insert sentineldb.sharma.stock_inserted
           select * from inserted,Version
 select syb_sendmsg("128.227.205.215", 10006, " sharmastockinsert
begin sentineldb.sharma.addStk") /* Notification */

/* Get and change occurence Number */
update SysPrimitiveEvent set vNo=vNo+1 where eventName
= “sentineldb.sharma.addStk “
delete Version insert Version select vNo from SysPrimitiveEvent where
eventName=” sentineldb.sharma.addStk”

/* action function */
execute sentineldb.sharma.t_addStk__Proc
execute sentineldb.sharma.t1_addStk__Proc
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6.7 Dropping a Trigger on a Primitive Event

6.7.1 Syntax of Removing a Trigger

The syntax of removing a trigger is same as that of SYBASE. Figure 6.10 shows

the syntax which provides transparency for the user.

6.7.2 Implementation Details

The client sends a drop trigger request to the ECA Agent. The command is

checked in the Language Filter. Since it is a drop trigger command, it is sent to the Drop

Trigger Function. The Drop Trigger Function will check if the trigger is defined on a

primitive event or a composite event. If it is defined on a primitive event, it invokes the

“Drop Trigger on Primitive” function. If the trigger is defined on a composite event, it

invokes the “Drop Trigger on Composite” function. Otherwise, an error message will be

sent to the user through the Gateway Open Server.

We discuss “Drop Trigger on Primitive” function in this section. “Drop Trigger

on Composite” will be discussed in the next chapter.

To recall, the ECA agent performs the following actions a trigger is defined on a

primitive event,:

1) Insert an item in EventPrimitive.

2) Create a stored procedure.

3) Create a trigger which adds a new stored procedure.

Figure 6.10: Syntax of Removing a Trigger

        drop trigger trigger_name
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4) Insert tuples in the system tables to make the trigger persistent.

Therefore, to remove a trigger on a primitive event, we can reverse the above four

steps. Also at least four additional steps need to be performed:

1) Delete an item in EventPrimitive list.

2) Delete a stored procedure.

3) Create a trigger which delete that stored procedure.

4) Delete tuples in the system tables.

After deleting this trigger and if there are no more triggers or events defined on

the primitive event, the event itself should also be deleted. This includes:

1) Deleting the event item in EventPrimitive list.

2) Deleting the event details in the LED.

3) Drop a trigger.

4) Delete a tuple in the system table

Example 6.3 shows how to remove trigger t_addStk.

Example 6.3:

Assuming that we have the triggers created in example 6.1 and 6.2, the command:

drop trigger t_addStk

First, the system locates the trigger t_addStk defined on the primitive event

addStk. Then the list EventPrimitive is scanned to find the event addStk. Once the

event item is found, the item whose trigger name is t_addStk is deleted in this event

item.

 Second, code is generated to delete a stored procedure:

drop proc sentineldb.sharma.t_addStk__Proc
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Third, code is generated to create a trigger in Figure 6.11.

Forth, code is generated to delete an item in the system table SysEcaTrigger.

delete from SysEcaTrigger

where userName = ”sharma” and triggerName= “t_addStk”

 Since there is another trigger t1_addStk defined on primitive event addStk, event

addStk cannot be deleted.

Figure 6.11: Code Generation for Drop Trigger

/* create trigger*/
create trigger sentineldb.sharma.t1_addStk
on stock
for insert
as
 insert sentineldb.sharma.stock_inserted
           select * from inserted,Version
 select syb_sendmsg("128.227.205.215", 10006, " sharmastockinsert begin
sentineldb.sharma.addStk") /* Notification */

/* Get and change occurence Number */
update SysPrimitiveEvent set vNo=vNo+1 where eventName
= “sentineldb.sharma.addStk “
delete Version insert Version select vNo from SysPrimitiveEvent where
eventName=” sentineldb.sharma.addStk”

/* action function */
execute sentineldb.sharma.t1_addStk__Proc
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CHAPTER 7
IMPLEMENTATION OF COMPOSITE EVENTS

Composite events are supported in the ECA Agent. We discussed the

implementation of primitive events and some basic components in chapter 6. In this

chapter, we discuss   the implementation of composite events.

7.1 Syntax of Composite Events

The objective of the ECA Agent is to  extend the SQL Server as well as provide

user transparency.  Our extensions need to be supported in the SQL Server and the users

should be able to access the features through SQL extensions at the interface level.  To

provide a composite event mechanism for the  SQL Server, the syntax of a trigger

definition  has been  Extended.

Figure 7.1 shows the syntax of a composite event definition. The event

specification language, Snoop, is used  to specify composite events  to the ECA Agent.

The keyword “create trigger” is the same as that of  SQL. The action function is written

in SQL and is invoked within the SQL Server. The result is returned to the client.

Also, we can define triggers on  an existing composite event. Actually, the syntax

is the same as that  of defining triggers on existing primitive events. The syntax is shown

in Figure 6.2. Currently, temporal events are not supported in the ECA Agent, and will

Be addressed in the future.
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Figure 7.1: Syntax of Composite Event Definition

7.2 Composite Event Parser

To recall, Figure 6.3 shows that the command from the client goes through the

Gateway Open Server and is then forwarded to the Language Filter. If the command is a

composite event definition command, it is sent to Composite Event Parser. The

Composite Event Parser parses the command, creates the event tree for the composite

event in the LED and generates  appropriate SQL code. To parse a composite event

create trigger [owner.] trigger_name
event event_name [= Snoop_Event_exp]
 [coupling_ mode] [parameter_context] [priority]
as SQL_statements

operation := insert | delete | update
coupling_mode := RECENT | CHRONICLE | CONTINUOUS

          | CUMULATIVE
parameter_context := IMMEDIATE | DEFERED | DETACHED
priority := positive integer

Snoop_Event_exp ::= E1
E1 ::= E1 OR E2 | E2
E2 ::= E2 AND E3 | E3
E3 ::= E3 SEQ E4 | E4
E4 ::= NOT (E1, E1, E1)

| A (E1, E1, E1)
| A* (E1, E1, E1)
| P (E1, [time string], E1)
| P (E1, [time string]: parameter, E1)
| P* (E1, [time string], E1)
| P* (E1, [time string]: parameter, E1)
| [time string]
| E1 PLUS [time string]
| (E1)
| event_name

event_name::= name
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definition command, there are four functions involved. The workflow is shown in Figure

7.2:

Figure 7.2: Composite Event Parser

Below, we illustrate with an example the creation of a composite event:
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Example 7.1:

create trigger t_and

event addDel = delStk ^ addStk

RECENT

as

      print “ trigger t_and on composite event addDel = delStk ^

                addStk”

     select symbol, price from stock.inserted

1) Syntax checking: The command is scanned to check syntax. If there is no

syntax error, all object names are replaced with internal system names.

Otherwise, an error message is returned to the Gateway Open Server.

In example 7.1, since there is no syntax error, the command is changed to:

create trigger sentineldb.sharma.t_and

event sentineldb.sharma.addDel = sentineldb.sharma.delStk ^

                                                        sentineldb.sharma.addStk

RECENT

as

      print “ trigger t_and on composite event addDel = delStk ^

                addStk”

      select symbol, price from sentineldb.sharma.stock.inserted_tmp

2) Name checking: New object names should not be duplicates  and all

associated objects should exist. If these conditions are not satisfied, an error
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message is returned to the Gateway Open Server. Otherwise, the event

specification string is sent to the Snoop Parser.

For example 7.1, new object name sentineldb.sharma.t_and and

sentineldb.sharma.addDel are not duplicates in the system and event

sentineldb.sharma.delStk and sentineldb.sharma.addStk are currently

defined, so string  “sentineldb.sharma.addDel =

sentineldb.sharma.delStk ^ sentineldb.sharma.addStk” is sent to the

Snoop Parser.

3) Snoop Parser: Snoop Parser parses the event specification string. If there is no

error in the string, it creates the composite event in the LED and generates a

node in  the eventContext list to process context.

In example 7.1, event sentineldb.sharma.addDel is created in the LED  using

the constructor of the composite event operator:

AND *sentineldb.sharma.addDel = new AND (sentineldb.sharma.delStk,

sentineldb.sharma.addStk)

4) Code generation: The following code  is generated:

       •  A rule is created in LED. Once the rule is triggered, the action function

is called, since a function can only be called in C++ in LED,  function

SybaseAction is defined as an interface of all SQL actions. In this

function, the SQL action is sent to the Gateway Open Server to run the

action. All information associated with the SQL action function is packed

into a structure NotiStr (Figure 7.3) so that when SybaseAction is

invoked, it can call the corresponding SQL function.
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       •  SQL code is generated to create a stored procedure in the SQL Server as

an Action function. The code is sent to SQL Server through the Gateway

Open Server.

       •  SQL code is generated to make the event and the rule object persistent.

In example 7.1, rule sentineldb.sharma.t_and is generated in the LED:

RULE * sentineldb.sharma.t_and = new RULE(sentineldb.sharma.t_and,

sentineldb.sharma.addDel, condition, SybaseAction,(void *) ActionPara,

RECENT);

ActionPara is a pointer of structure NotiStr:

ActionPara->store_proc = “sentineldb.sharma.t_and__Proc”;

ActionPara->eventName= “sentineldb.sharma.addDel”;

ActionPara->context=”RECENT”;

ActionPara->spp=spp;

// spp is a pointer of Thread Conrol Structure for client in Open Server

Figure 7.3: Structure of NotiStr

/* Notify Parameter Structure*/
struct NotiStr
{
   char store_proc[MAX_PARA_LENGTH];//stored procedure name
   char eventName[EVENT_NAME_LENGTH];// event name
  char context[CONTEXT_LEN];//context
   SRV_PROC      *spp; // Thread control structure for connection
}
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The code in Figure 7.4 is generated for action in the SQL Server and is sent to the

SQL Server through the Gateway Open Server.

Also the following SQL code is generated for inserting tuples into the tables

SysCompositEvent and  SysEcaTrigger:

insert SysPrimitiveEvent values (“sharma”, “addDel”, “delStk ^ addStk”,

getdate(), “IMMEDIATE”, “RECENT”, 0)

insert SysEcaTrigger values (“sharma”, “t_and”,

“sentineldb.sharma.t_and__Proc”, getdate(), “addDel”)

The code is sent to the Persistent Manager.

Figure 7.4: Stored procedure for Example 7.1

create procedure sentineldb.sharma.t_and__Proc
as

/* context processing */
delete sentineldb.sharma.stock_inserted_tmp
insert sentineldb.sharma.stock_inserted_tmp
          select *

          from sentineldb.sharma.stock_inserted, sysContext
                      where    sysContext.context=”RECENT”
                    and

sysContext.tableName=” sentineldb.sharma.stock”
and

                                    sentineldb.sharma.stock_inserted.vNo=
 sysContext.vNo

/*action function*/
  print "trigger t_and on composite event addDel = addStk ^ delStk"

select symbol, price from sentineldb.sharma.stock.inserted_tmp
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7.3 Event Notifier

The Event Notifer is a Light Weight Thread which runs in the ECA Agent. It is

generated when the ECA Agent starts. Once it is created, it will wait for notifications

from SQL Server. If Event Notifier receives a notification from the SQL Server, it

notifies the LED that an event has occurred.

7.3.1 server.config

A UDP socket is used to connect to SQL Server. The IP address and port number

in the ECA Agent should match that in the SQL Server. The file server.config is used to

store the IP address and port number of Event Notifer. Upon code generation, the

Primitive Event Parser retrieves the address from server.config file and generates code to

notify Event Notifier. In fact, the SQL Server will create a UDP socket to connect with

the Event Notifier based upon the SQL code.  An example of file server.config is shown

in Figure 7.5:

                   Figure 7.5 An example of server.config

Also,  when the  ECA Agent  is started, Event Notifier selects the IP address and

the port number from the server.config file and generates a UDP socket for message

passing from SQL Server.

7.3.2 Implementation of Event Notifier

128.227.205.215 10006

# IP address :eclipse.ufl.edu

# port_number :10006
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There are two parts  to the Event Notifier. The first is the Notification Listener

which catches any notification from the SQL Server. The other is the Notifier which

sends notifications to LED. Figure 7.6 shows the  details  of the Event Notifier.

Primitive Event Parser adds a built-in function call in the trigger definition. The

built-in function uses the UDP protocol to send the message to the destination. When a

primitive event occurs, a trigger is invoked in the SQL Server. The UDP socket is created

and the message is sent to the Notification Listener in the Event Notifier.  As soon as the

Notification Listener receives notification, it calls the Event Notifer. At this point the

Event Notifier unpacks the message and sends the notification to LED. After LED detects

an event, it invokes an action interface “SybaseAction”  which calls an action function (a

stored procedure) stored in the SQL Server through the Gateway Open Server.

Figure 7.6 workflow of Event Notifier

UDP SOCKETUDP SOCKET

             SQL
            Server

Notification
Listener

     Notifier        LED Gateway Open Server

Action
Handler  Client
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7.4 Action Handler

Action Handler actually is a function in the ECA Agent. From the LED’s point of

view, it is a C++  function. From the point view of the SQL Server, it is an interface for

an action in the SQL Server. Since many events may occur at the same time, and each

action function should run independently, a new thread is generated for each call to

SybaseAction. Each thread calls an action function within the SQL Server (stored

procedure) through the Gateway Open Server. The final results are returned to the client

through the Gateway Open Server. Figure 7.7 shows how Action Handler works.

… …

Actions

     LED

       Action
      Handler

   Action Thread 1    Action Thread 2   … … … … … … ..

    Gateway Open Server

   Client    Client    Client

Figure 7.7 Action Handler

SQL Server
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The interface of Action Handler is defined as following:

 void SybaseAction(L_OF_L_LIST *n1_list, void *actionproc)

void *actionproc is a pointer of structure NotiStr. When SybaseAction is called

by LED, SybaseAction generates a thread. In the thread, it unpacks the *actionproc and

gets the stored procedure name and Thread Control structure which will be used to

connect to the SQL Server in the Gateway Open Server.

L_OF_L_LIST *n1_list is a linked list which is  defijned in the  LED for

keeping track of the parameters of constituent events for the parameter context specified.

7.5 Parameter Context

The parameter contexts supported in the ECA agent  are:  recent, continuous,

cumulative and chronicle [vk94, dke94, CHA94].

7.5.1 Syntax of getting context

To get the context of a table, a user should use the following syntax:

TableName.inserted or

TableName.deleted

The Composite Event Parser will turn it into an internal system name:

dbname.username.TableName.inserted_tmp or

dbname.username.TableName.deleted_tmp

In example 7.2, if the user wants  the  paramater context “CUMULATIVE”

semantics when trigger t1_and is invoked, it is specified as follows:

Example 7.2:

create trigger t_com

event ComEve = addDel ; buyStk; (delStk ^ selStk)
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CUMULATIVE

as

select symbol, price from stock.deleted

select * from PortFolio.deleted

7.5.2 System table for parameter context

System table sysContext is created to store the occurrence of the tables defined on

Sharma: please explain te occurrences of the tables clearly

certain events. The structure of table sysContext is shown in Figure 7.8.

     Figure 7.8 Structure of table sysContext

Tuples are inserted into sysContext when the action is invoked. Each tuple is

associated with an occurrence of a table. Since for one table there may be many

occurrences in a composite event  which is dependent on the  parameter context, there are

many tuples for the same table on the same parameter context. A list is generated after

event detection. The list is derived from LED, changed into the list that records table

occurrences, then  SQL code is generated to insert tuples into sysContext table. The old

tuples whose tableName and context is the same as that of new tuples  are deleted before

inserting new tuples.

Sharma: is not the above true only for the recent context?

Column_name     Type            Length        Nulls

tableName            varchar          50              not null
context                  varchar         12              not null
vNo                         int                4               not null
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Figure 7.10 shows the tuples that are inserted into sysContext in example 7.2,

which depends on the event detection in Figure 7.9. SQL code  generated is shown in

Figure 7.10.

Figure 7.9: Event detection in example 7.2

time1addStk 2addStk 1delStk 1buyStk 2delStk 1selStk 2buyStk 2selStk

1stock 2stock 3stock 1PortFolio 4stock 2PortFolio 3PortFolio 4PortFolio

 ;

 ; ^

^

addStk delStk

2delStk

2delStk

1delStk
1buyStk

1delStk 2delStk 1buyStk1buyStk1delStk2addStk1addStk

2addStk 1delStk 1buyStk 1delStk 2delStk 1selStk1addStk

1selStk

buyStk delStk selStk
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Figure 7.10: Tuples inserted in sysContext

tableName  context vNo

sentineldb.sharma.stock CUMULATIVE 1

sentineldb.sharma.stock CUMULATIVE 2

sentineldb.sharma.stock CUMULATIVE 3

sentineldb.sharma.PortFolio CUMULATIVE 1

sentineldb.sharma.stock CUMULATIVE 4

sentineldb.sharma.PortFolio CUMULATIVE 2

/* delete old tuples */
if exists
   (select * from sysContext where
               tableName= “sentineldb.sharma.stock “ and

   context = “CUMULATIVE”)
    delete from sysContext where

   tableName= “sentineldb.sharma.stock “ and
   context = “CUMULATIVE”)

if exists
   (select * from sysContext where
               tableName= “sentineldb.sharma.PortFolio”  and

   context = “CUMULATIVE”)
    delete from sysContext where

   tableName= “sentineldb.sharma.PortFolio”  and
   context = “CUMULATIVE”)

/* Insert tuples */
insert into sysContext values
           (“sentineldb.sharma.stock”,“CUMULATIVE”, 1)
insert into sysContext values

(“sentineldb.sharma.stock”,“CUMULATIVE”, 2)
insert into sysContext values

(“sentineldb.sharma.stock”,“CUMULATIVE”, 3)
insert into sysContext values

(“sentineldb.sharma.PortFolio”,“CUMULATIVE”, 3)
insert into sysContext values

(“sentineldb.sharma.stock”,“CUMULATIVE”, 4)
insert into sysContext values

(“sentineldb.sharma.PortFolio”,“CUMULATIVE”, 2)

Figure 7.11: SQL code generated for inserting
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7.5.3 Implementation of parameter context

All occurrences of a table associated context are kept in the system table

sysContext. There are four steps to implement parameter context no matter what the

parameter context is:

1) When a primitive event occurs, the occurrence of associated table is put into

table dbname.username.TableName.inserted or

dbname.username.TableName. deleted.

2) Retrieve the parameter context list from LED and generate the SQL code for

inserting tuples.

3) Insert tuples into sysContext through the Gateway Open Server.

4) Join sysContext and dbname.username.TableName.inserted (or

dbname.username.TableName.deleted to get the context.

Figure 7.12 shows the stored procedure in example 7.2
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Figure 7.12: Stored procedure generated for example 7.2

create procedure sentineldb.sharma.t1_com
as

/* for context processing*/
/* context processing for table stock */
delete sentineldb.sharma.stock_deleted_tmp
insert sentineldb.sharma.stock_deleted_tmp
          select *

          from sentineldb.sharma.stock_deleted, sysContext
                      where    sysContext.context=” CUMULATIVE”
                    and

sysContext.tableName=”stock”
and

                                    sentineldb.sharma.stock_deleted.vNo=
 sysContext.vNo

/* context processing for table PortFolio */
delete sentineldb.sharma.PortFolio_deleted_tmp
insert sentineldb.sharma.PortFolio_deleted_tmp
          select *

          from sentineldb.sharma.PortFolio_deleted, sysContext
                      where    sysContext.context=” CUMULATIVE”
                    and

sysContext.tableName=”PortFolio”
and

                                    sentineldb.sharma.PortFolio_deleted.vNo=
 sysContext.vNo

/*action function*/
select symbol, price from sentineldb.sharma.stock.deleted_tmp
 select * from sentineldb.sharma.PortFolio.deleted_tmp
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CHAPTER 8
CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

We have demonstrated in this thesis that by introducing and ECA Agent outside

the SQL Server, full-fledged active functionality can be supported as a value added

capability. Nearly the full range of active functionality can be supported without resorting

to an integrated active database architecture. The ECA Agent makes the Sybase SQL

Server more powerful and provides transparent active capability to database clients.

Although this thesis describes an architecture, design, and implementation of an

ECA Agent for Sybase, we believe that the approach developed in thesis is general and

can be used for any relational DBMS.The functionality includes:

1) Transparent interface for users to create primitive and composite events.

2) Persist user created events using the native DBMS capability.

3) Drop triggers and events as desired.

4) Detect primitive and composite events.

5) Invoke actions within the SQL Server.

6) Support for multiple parameter contexts.

7) Collecting and passing parameters to conditions and actions.

Considering the recent proliferation of commercial relational systems that

supports primitive trigger capability, the prospect of seamlessly integrating an active

component is very attractive indeed. For many users, this may be the only practical way
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to use production rules today. Additionally, because ECA Agent is external to Sybase, its

power is not limited to what the database can provide, but by what the architecture

supports.

8.2 Future Work

We plan on extending the current implementation with the following additional

functionality:

•  The current implementation supports immediate coupling mode. We

     plan on extending this with detached and deferred coupling

•  We plan on supporting heterogeneous distributed active capability by using the

extended LED (ELED) that interfaces with the global event detector (GED).

We plan on doing this both in CORBA and RPC/Socket

•  Optimization of the various components of the ECA Agent. Since the

    communication between ECA Agent and SQL Server is based on the

socket, security and system efficiency will be affected. We plan on decreasing

communication times to increase system efficiency and make the system more

secure.

•  Support active database semantics in the other RDBMS such as Informix,

    Oracle by using the idea of an ECA Agent.
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