AN APPROACH TO SCHEMA MAPPING GENERATION
FOR DATA WAREHOUSING

The members of the Committee approve the masters
thesis of Karthik Jagannathan

Sharma Chakravarthy

Supervising Professor

Mohan Kumar

David Kung

Copyright © by Karthik Jagannathan, 2002
All Rights Reserved

To My Wife, Family and Friends

AN APPROACH TO SCHEMA MAPPING GENERATION
FOR DATA WAREHOUSING

by
KARTHIK JAGANNATHAN

Presented to the Faculty of the Graduate School of
The University of Texas at Arlington in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON
December 2002

ACKNOWLEDGMENTS

Before anything, | would like to thank my advisor, Dr. Sharma Chakravarthy, for
giving me an opportunity to work on this challenging topic and for guiding and supporting
me through the course of this research.

| would like to thank Dr. Mohan Kumar and Dr. David Kung for serving on my
committee, and for their valuable comments and guidance.

This work was supported, in part, by the Office of Naval Research, the SPAWAR
System Center-San Diego & by the Rome Laboratory (grant F30602-01-2-0543), and by NSF
(grants 11S-0123730 and 11S-0097517).

| would also like to thank my wife for her endless love and constant support

throughout my thesis; from the day | started to the day | defended my thesis.

November 18, 2002

ABSTRACT

AN APPROACH TO SCHEMA MAPPING GENERATION
FOR DATA WAREHOUSING

Publication No.

Karthik Jagannathan, M.S.

The University of Texas at Arlington, 2002

Supervising Professor: Sharma Chakravarthy

In data warehousing, the source schemas are defined independently from the
warehouse schemas, which are typically designed based on the information need of the
warehouse users. The mappings between the source and warehouse schemas are also
determined manually. Typically, more than one mapping between the warehouse schema and
the source schemas is possible and the designer might miss the most appropriate mapping
from the viewpoint of updates and maintenance of the warehouse.

Automated generation of the mappings between the source and the warehouse
schemas would generate a complete list of mappings from which the warehouse designer can
choose the appropriate mapping.

The issues encountered during automation are numerous, including but not restricted
to the presence of synonyms, homonyms and derived attributes in the source and warehouse
schemas. This thesis focuses on automating mapping generation in data warehousing for the

relational domain and handles select, project, join, union and intersection mappings.

Vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ..o

ABSTRACT
LIST OF FIGURES
LIST OF TABLES ..
Chapter

1. INTRODUCTION

1.1. Overview

2 Y, Fo) 11 7= () o K

1.3. Automating the process of mapping generationcccccevveveveeseeciieesveeenns

N = P (<0 LYo G

SN AN T (0 a0 (10 AN S U1 T

T (0] o 1< A1 = 0= .01 L

1.7. Contributi
2. RELATED WORK

ONS OF TNISTNESIS .o eenenenesennnnnnnnns

2.1. Generic Vsdomain-specific modelccooveieiiii i,

2.2. Overview

of matching techniQUESccoocvviiiece

2 < 1 01 1| AT

2.2.3. SKAT

A S I = 0 5 o E TR

225 . DIKE o

226. ARTEMIS o

Vi

227, CUPID .o 10

2.3, COMPAITSON ettt st bt s et e e et e b e sb e st ese e e e b e s e be e ene e 11
2.4, Chapter SUMMEIY ..oc.ocvereeiieeeieiese et sr e e s b snesne e 12
3. DESIGN et b et b b b s nee e nne e 13
L INEOTUCTION e 13
3.2, AULOMALTONISSUESoviiiiieiieieie ettt e e b bt e s b nnesne e 13
3.2.1. SYNONYIMS ..ttt sn e b e sneenneenne s 13

3.2.2. HOMONYIMS ..ottt 14

3.2.3. AttribUte MaPPINGS ...ooveieirieeirieeee s 14

3.2.4. Derived atribDUIEScoceiiiiiieeee e 14

3.3. TYPE Of MAPPINGS ..vevereeeiiriieeeiesieste sttt se et sse e ne s sne e sne e 15
3.3.1. Single source relation ProjeCtionccoevererieeieeieenese e 15

3.3.2. Join of twO Or MOre SOUrCe relationsSccoceeeeeeeereeneeseseesieseennes 15

3.3.3. Union/intersection of two or more source relationsc.coe.ee. 16

3.4. DESIgN @PPIOACI ... 17
S5, USEN INPUL et bbb e 18
3.6. Design of the matching algorithmccocoeiiiiii e 19
3.7, TransfOrMELTIONocueiirieeieeee e 20
3.7.1. Applying the homOonymScooeieiinineee e 21

3.7.2. Applying the SyNONYMScccoeiiiieieresee e 23

3.7.3. Applying the attribute MappPiNgSccccocerereririeeee e 27

3.7.4. Applying the derived attributescccoeveninienieieeee e 28

7.5, SUMMEIY oo 28

B8 INEISECHION oo e e e aaaaaes 29

3.8 L. SUMMEBIY .ttt 31

3.9. MapPING GENEIBLION oveieieieeieiesie ettt e e b sne e 31
3.9. 1 PrOJECLION ...ttt 32

3.9.2. Join, union and INEErSECHION cccveeeiieeeee e e 35

3.9.3. Joins of more than two relationscoccooeverireeieresee e 39

.94, SUMMEBIY .ottt nneenne s 43

310, USEr VAlTAATON ..ot 44
3.11. Reverse transformMationcccooererenineneeee e 44
3.12. Chapter SUMMEIY ...cc.ooueeierieeieiesie et e e b nnesne e 45
4, DATASTRUCTURESIN DETAIL oottt 46
A1 OVEIVIEIN ..ottt e et bbbt bt bt et et e e e et e b e ene e 46
4.2 Initial data SITUCTUIE ... e 46
4.2.1 DESCIIPLION ..vieieieeiieeesie sttt sttt et s e b e nne e 46

4.3 Data StruCtUre INTEISECION oveverieiieeieeeeee et 49
4.3.1 DESCIIPLION ..vieieieeieeeesiesie sttt ettt e e sn b e ene e 49

4.4 Data Structure CheCk VECIONooeiiieiieeeecere e e 50
4.5 Chapter SUMIMEIY c.ceieiiieiesiesie sttt st e e nn s b e ene e 52
5. DESIGN IMPLEMENTATION .ot s 53
S.LOVEIVIEIW .ttt b et b e bttt s b e ene e 53
B2 USEN INPUL ettt e s b e nne e 53
5.2 L SCHEIMES ..ottt 55

S5.2.2 HOMONYIMS ...ttt 56

S5.2.3 SYNONYIMS ..ottt r e sneenne e 56

5.2.4 AttriDULE MBPPING ..oveeeiiiieeeee s 57

525 DEMVEI ..ot 57

53 0MNG I AAIA ...c.eoeieieieeeee e e 58
5.3.1 Storing the source and warehouse schemasccccceveveveveneennns 58

5.4 TranSfOrMEIIONccooiviiiiriieiieeee et e e b e 63
5.4.1 Applying the hOMONYMScccoiiiiiiiiireree e 64

5.4.2 Adding the SYNONYMS ooiiiiiieceee s 68

5.4.3 Storing the attribute MappiNgScccverirerenreee e 72

5.4.4 Storing the derived attributeS ... 73

5.4.5 Completing the hashtable ..., 73

5.5 TNLEISECIION ..ottt e e b e 74
O.5.LISSUBS ... 76

5.5.2 IMPlementationcccooiveririieieeres s 76

5.6 MaPPING QENEIEHON oiveieieiieieiesies et se e e 81
S.8.1ISSUES ...t 82

5.6.2 IMPIEMENTALION ..o s 83

5.6.3 Check fOr ProjECHIONccoceeereeeeieresesese e 83

5.6.4 Check for join, union and iNterseCtioncccoceevvreererinseenennnens 85

5.7 USEr VAlIAAION ..o e 90
5.8 Chapter SUMMEIYociiiiiiieeeeses et e 90
6. PERFORMANCE OPTIMIZATION AND TESTING ...coooiiiiiieeeeeeeee e 91
6.1 OVEIVIEW ..ttt ettt e e bbbttt e et e b e ens 91

6.2 Implemented optimization teChNIQUESccoiiiiiiieree e 91

6.2.1 Use of hashtableScccooiriiiiee e 91
6.2.2 Reduced nUMDEr Of CYCIESc.ooiiiiieree e 91
6.2.3 Filtered source relationsccccooeeerininenesieee e 93
6.3 Techniques to IMpProve OptiMIZAtiONcooeieererene s 93
6.3. 1 Parall@liZationcccooeririiieieeee e 93
6.4 TESHNG & TESE CASES ..oveiuiiiieiiierie sttt 9
7. CONCLUSIONS AND FUTURE WORK oiiiiieeeee et 95
T L SUMMEIY oottt n e n b nr e nn e e s ne b e e nrennn e 95
T2 FUIUME WOTK ...t 96
7.2.1 Implementing a data dictionary/ thesauruscccccecevvnenenennnne 96
7.2.2 Integrating triggers and UPdaeScoceverererieeieenienese e 96
7.2.3 Extending the system to multiple platformscccccooeviiininiennene 96
Appendix
A. TEST CASES AND PROGRAM OUTPUTS ..o 97
REFERENGCES ...ttt sttt sttt sttt e e b e et e e sbe e s b e e sreennneens 118
BIOGRAPHICAL INFORMATION ..ottt 119

LIST OF FIGURES

Fgure Page
3.1. Singlesource relation ProjECLION.cccveiiieiieeiie e 15
3.2, JOIN Of SOUICE FEIEHIONSc.veeeeieeieeeeieeste s 16
3.3. Union/ intersection of SOUrCE relationscoceoveieeienieneniseseeeee e 17
3.4. Classification of schema matching approaches.cccccveveeicecie s 18
3.5, Theinitiadl SChEMAES.cciiiiieeeee e 21
3.6. Relations after applying the homonyms. ..o 22
3.7. Relations after applying the SyNONYMS.ccovevie i 24
3.8. Relations after applying the attribute mappinNgs.cccoevveevee e 28
3.9. The matching algorithm - INtErSECtioN.coovvevieiiice e 29
3.10. Exampleillustrating INterSECtioNccovviiieeiie e 30
3.11. ENd Of INEEISECLION. ...ovitiiiieieeieee et 31
3.12. The matching algorithm - Projection.cccceeie i 33
3.13. Example illustrating ProjeCtion.c.ccoveeiieeieeciie et e 34
G50 17 M = o o i o] (0= ox 1 o o 0SSOSR 35
3.15. The matching algorithm - join, union/ iNtErSeCtionccccceevcieereecciecsee e 36
3.16. Example iHTUSIrating JOIN.coocuieiieiiee ettt sne e 37
3.17. lllustrating generation of multiple JoiNS —Pass L........cccceveeveriiieciie s 41
3.18. lllustrating generation of multiple JoiNS — PassS 2........ccccevveevervieciie s 42
3.19. Exampleillustrating check for Mapping........cccceceeieciie e 43
3.20. End of mapping generation Pase.ccccceeiieeiieiiie ettt 44
4.1, INitial daLa SLIUCLUIE.coviiiiiieieeie et 48

Xii

4.2.
4.3.
5.1
5.2
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.

5.10.
5.11.
5.12.
5.13.
5.14.
5.15.
5.16.
5.17.
5.18.
5.19.
5.20.
5.21.
5.22.

Data structure that stores the set of intersecting attributes.c.ccoceveveninciennne 50

Structure that holds the final generated MapPINGS.coceverererererieee e 52
SOUICE TITE. et ettt e e b sne b e 54
Schema part of asample SOUrCE fil. ..o 59
Storing source/ warehouse sSchemas - Stage L.oc.eeveieiierene e 59
StOring SOUICE CNaraCteriStiCS.cuveueeeeieierieste sttt 60
Storing relation CharaCteriStiCS.oviieriirierererieee e 62
Storing attribute CharaCteriStiCS.oovreriirirereeeee e 63
Homonym part of the sample source file. ... 64
AppPlying homonymMS — SEEP L. ..ot 66
Adding NOMONYMS — SLEP 2. ... 67
Synonym part of the sample SOUrCe file.........ovvriieiiii e 68
Adding SYNONYMS — SEEP L. ... 70
Adding SYNONYMS — SEEP 2. ...t 71
Completing the hashtable HT4. ... 74
Example to demonstrate the matching algorithm. ... 75
[NItial TNTEISECE VECION. ...ttt 78
Intersect vector — after creating an entry for the first warehouse relation. 79
Intersect vector — after adding the first source relation.cceceveeeieneeneciinsene 80
Intersect vector — at the end of INtErSECLioN.ccevererininieeeeee e 81
[NItial CNECK VECLON . ..o 84
Check vector after ProjECHION.cc.cieiirererere e 84
Check VECLOr @fTEr JOIN.iieiieeeeeeeieeete s 87
Check vector after union / INtErSECLION.cceeeeeieererere s 89

Xiii

6.1. Reducing the NUMDEr Of CYCIES.ccuoiiiiiirieceeee s 92
6.2, Parall@liZEHON.ocveieeieieieceee e 94

Xiv

LIST OF TABLES

Table Page
2.1. Characteristics of matching teChNiQUES.ccoeveeiiiciecec e 8
2.2. Comparison of CharaCteriStiCS.cuiiiuiiiiieiie e 12
3.1. All possible cases while applying SYNONYMS...........ccocveiieiieeiee e 25
G2 ' C= 010l L= o g o | o USSR 38
5.1, EX@MPIE SCNEMES.oeeiuiiiiie ettt st sr e st e et e e e nbe e enreenreeenns 75
5.2. All POSSIDIE JOINS.viiiiiiiiee ittt e be e s e nb e e nre e nre e s 86

CHAPTER1
INTRODUCTION

1.1 Overview

Time and agan, the problem of “schema maching” keeps sprouting. Schema
matching refers to the problem of finding mappings between the attributes of any given pair
of schemas that are semantically related, or in other words, a homogeneous pair of schemas.
Schema maiching is a generic problem pertinent in many domains induding XML, relaiond
and object-oriented. Though the problem is comparable, the complexity of this problem is
dependent on the richness of the schemainvolved.

To date an example, if one tried to map attributes between two XML schemas, one
has to take the levd in the hierarchy tree, and the sub-structure of the attributes involved. But
if the same case were to be consdered in the rdationd domain, attribute maiching would

involve matching attributes based on the name and the type.

1.2 Motivation

Schema maching plays an imperaive role in data warehousng, wherein, given
source and warehouse schemas, one is required to find the attribute mappings between the
warehouse and the source schemas.

In a typicd scenario, the source schemas are created independently and a various
points in time. The warehouse schemas are designed based on the information need of the
warehouse userd anaydts, and the warehouse designer determines the mappings between the

warehouse and the source schemas manudly.

2

Given source and warehouse schemas, one should note that there would be more than
one possble mapping to generate a particular warehouse schema from the given source
schemas. The warehouse desgner might miss the most gppropriate mapping from the
viewpoint of updates and maintenance of the data warehouse as a result of trying to map the

schemas manudly.

1.3 Automating the process of mapping generation

Automating the process of the generation of the mappings between the source and the
warehouse schemas would result in a system that requires less time and energy to be spent by
the desgner, and a the same time will be correct and complete. This would generate a
complete lig of dl the mappings that are possible for the warehouse schemas from the source
schemas, enabling the warehouse designer to choose the appropriate mapping for that given
cae. This would dlow the desgner to explore severd mappings before findizing the

warehouse schemeas.

1.4 Related work

Though not in the commercid world, where they dill largdy depend on manudly
generating the mappings, some research has been done in the area of schema matching. As
the problem of schema matching is more generic in the sense that it is prevdent in many
other domains including XML message mapping and schema integration [1], most of the
research that has been done is largdy domain specific i.e, pertaining to a specific doman or
caers to a totdly different st of requirements and needs. Thus the need for a doman

specific solution for this generic problem arises.

1.5 Automation issues

Quedtions arise as to the smpligic draightforwardness in autometing the process of
schema mapping. But in redity, the issues encountered during automation are numerous. If
the name gpace follows a sngle convention, then mapping would have been quite
graightforward. But since the sources and hence the source schemas ae created
independently and a different points in time, one canot assume a uniform naming
convention for the dtributes. Hence, the complications that arise are numerous and not
limited to:

> Attributes that have the same name and same or different type, but need to be
considered as two separate attributes (called homonyms)

> Attributes tha are dructurdly smilar but semanticdly dissmilar, that is attributes
with different names but which have the same type (cdled synonyms)

> An dtribute of a warehouse schema that is referred to by a different name in the
corresponding source schema

> Derived dtributes of the warehouse schema, that are computed from more than one
attribute of the source schemas (Cumulative GPA, Gross Totd, €etc.)

The process of automation should be able to comprehend and differentiate between
these variations and arive a a set of mapping that is relevant to the schemas in question. If
these were not to be taken into congderation, it would result in an incomplete and incorrect
generaion of the mappings, as it would not have covered dl cases. It is obvious that given
the set of andogous, overlgoping inputs, more than one plausible mapping can be arived at.
In the end, it is left to the warehouse designer to aptly choose the mapping appropriate to the

case. Though validation by the designer gill plays a mgor role, the objective is to generate

4

the set of mappings between the source and the warehouse schemas that are pertinent. Some

of the pros and cons of the process of automation are summarized below:

Pros:
>
>
>

Cons:

Enables proper understanding of the mapping space

Enables eva uation of mappings from different viewpoints

Enables the warehouse designer to choose the appropriate schemas based on his
understanding of the mapping space

Eliminates the strenuous manua process and savestime

Requires less exeartion on the pat of the desgner as it generates al the mappings
possible for the warehouse schemas

Eliminates the posshble fault on the pat of the desgner who might miss the most
appropriate mapping from the viewpoint of updates and maintenance of the data

warehouse

Aninitid effort on the designer in the form of the sourcefile
Desgner hasto validate the results and choose the appropriate mapping

From this, it is bare tha it is ill the desgner who specifies the various semantics

(synonyms, homonyms, and the like) that come into play in generating the mappings, as one

requires a base on which to build the automation. Thus automation here is not redly

complete, as some amount of interaction is involved a some levd or the other. But this

entirdy diminaies any ambiguity or erors in the generated mapping that might otherwise

occur as a result of human intervention, and generates al possble mappings that might be

overlooked.

1.6 Problem statement

Given a st of semanticaly related source and warehouse schemas, the problem
involves in automating the process of maiching the schemas, and ariving & a resulting st of
al possible mappings between the warehouse schemas and the given source schemas that are
comparable. Once the appropriate mappings are determined, the problem aso involves in
generating the triggers and other code for propagation of the updates from the source to the
warehouse schemas.

This forms the bass and the motivation for this thess, which works towards an
optima solution for automating the process of schema matching and mapping generation,
egpecidly pertaning to data warehousing for the rdationd doman. The tool would engble
understanding of the mapping space, and the evauaion of mappings from different
viewpoints (esse of implementation, etc). But, it is up to the user to choose the most
appropriate mapping (may be based on other considerations). The tool would aso generate
triggers and other code for propagation of the updates to the warehouse schemas. This thess

handles sdect-project-join (or SPJ), union and intersection mappings.

1.7 Contributionsof thisthess
Thisthes's contributes to the following:

v' Dedgning a solution for autometing the process of schema matching and mapping
generation for the warehouse schemas pertaining to data warehouses for the relationd
doman handing SELECT-PROJECT-JOIN, UNION and INTERSECTION
mappings.

v' Presenting the desdgn of the dgorithm and the implementation issues, including the

handling of homonyms, synonyms and the attribute mappings

6

v' Looking at performance issues and ways to improve the performance of the dgorithm
including pardldization
In the forthcoming chepters, the god of automaing schema maiching and the
generation of mappings is redized. Chapter 2 gives an overview of the reaied work in the
area of automating schema matching. Chapter 3 gives a broad view of the desgn and the
dgorithm. Chapter 4 goes into the depths of the data dructures involved in the design.
Chapter 5 takes a wak through the various stages of implementation of the design and the
implementation issues involved. Chepter 6 evauaes the performance of the agorithm and
covers the various test cases that were tested out for consstency and correctness. Findly
chapter 7 derives conclusons and discusses the scope for future work in this area, induding

pardlelization leading to improvements in performance of the design.

CHAPTER 2
RELATED WORK
As mentioned in the previous chapter, some work has been done in this pervasve
aea of automating the process of schema matching. This chepter gives an overview of the
exiging research, and draws a pardle of the matching gpproach of this thess with the red,
giving its pros and cons againg the other systems.

2.1 Generic Vsdomain-specific model

To dat with, this thess is working towards solving the problem of automating the
process of schema matching and mapping generation specific to the reationd domain, as we
believe that at this point, it is more relevant to look at this problem from the perspective of
relational systems, rather than trying to achieve a more generic system that would then have

to be tweaked again for it to be of any use to the domain we want to use it under.

2.2 Overview of matching techniques

This section gives an overview of the different matching techniques that have been
presented to date. One needs to note at this point that save a very few techniques, most of the
rest have been/ are developed specific to a certain domain, for a definite cause. A ligt of the
available techniques include - Semint [2, 3], LSD [2, 4], SKAT [2, 5], TranScm [2, €],
DIKE [2, 7], ARTEMIS [2, 8] and CUPID [1]. Table 2.1 [2] gives an overview of the various
matching techniques and their characterigtics.

Table2.1. Characterigtics of matching techniques.

similarity metrics

Semlnt LSD SKAT TranScm DIKE ARTEMIS
Schematypes Relational, files XML XML, IDL, SGML, OO ER Relational, OO,
text ER
Metadata representation Unspecified XML, Graph-based Labeled Graph Hybrid relational/
schema OO DB model graph OO data model
trees
Match granularity Element- Element- Structure- Element-level | Element/structure- Element/structure-
level:attributes level level: classes level:entities/ level:entities/
relationships/ relationships/
attributes attributes
Match cardinality 1:1 1:1 1:land 1:n 1:1 1:1 1:1
Schema- Name-based - Name Name equality; | Name Name equality; Name equality;
level equality Synonyms; equality; Synonyms; Synonyms;
match /synonyms Homonyms, Synonyms; Hypernyms Hypernyns
Hypernyms Homonyms;
Hypernyms
Constraint- 15 criteria: data - Is-a(inclusion); | Is- Domain Domain
based type, length.. Relationship a(inclusion); compatibility compatibility
cardinalities Relationship
cardinalities
Structure - - Similarity Similarity Matching of Matching of
Matching w.r.t. related w.r.t. related neighborhood neighborhood
elements elements
Reuse/auxillary - Comparison | Reuseof - - Thesauri
information used with general
training matching rules
matches;
lookup for
valid
domain
values
Combination of matchers Hybrid matcher Automatic; - Hybrid - Hybrid of name
weighted matchers; and structure
combination fixed order of matchers
of al matchers
learners per
instance
object;
combination
of instance
predictions
Manual work/user input Selection of User- Match/ Resolving Resolving structural User can adjust
match criteria supplied mismatchrules | multiple conflicts weights in match
matchers matches, calculations and
for training adding new validate match
sources matching choices
rules
Application area Dataintegration; | Data Ontology Data Schemaintegration Schemaintegration
3 test cases integration composition to | translation
with pre- support data
defined integration/
global interoperability
schema
remarks Neural “algorithms” Rules Algorithms to Also embedded in
networks; ¢ implicitly implemented calculate new theMOMIS
implementation represented by | inJava synonyms, mediator, with
rules homonyms, extensions

The following sections detall out the various sysems and their relevance to this

thesis, and the problem statement at hand.

22.1 Semint

The Semint match prototype [3] crestes a mapping between individud attributes
usng neurd networks to determine the same [2]. This does not support name-based
meatching.

222 LSD

The LSD (Learning Source Destriptions) sysem [4] uses machine-leaning
techniques to maich a new data source agangt a previoudy determined globd schema,
producing a 1.1 aomic-levd magpping [2]. This technique was developed manly for the
XML domain.

223 SKAT

The SKAT (Semantic Knowledge Articulation Tool) prototype [5] follows a rule-
based approach to semi-autométically determine meaiches between two ontology [2]. This
technique is rdevant to the XML domain, and the schemas are transformed into a graph
based object-oriented database moddl.

224 TranSm

The TranScm prototype [6] uses schema maiching to derive an automatic data
trandation between schema ingtances. Input schemas are transformed into labeled graphs,
which is the internd schema representation [2]. This is relevant in the objected oriented
domain.
225 DIKE

DIKE [7] focuses on finding pars of objects in two schemas that are amilar, in the
sense that they have the same attributes and relaionships, but are of different “types’ [2].

The moativation involves in the need for schema abdraction for large sysems. The solution

10

requires clustering objects into subsets and producing an abdiracted schema obtained by
subdtituting each subset with one single object representing that subset. The various steps
involved are:
1. Enrichment of schema description obtaned by semi-automdicdly —extracting
knowledge
2. Exploit inter-schema properties from the data repository
3. Exploitation of the repogtory derived in step 3 to support the designer in redizing a
data warehouse over available data.
One requires to note here tha this sysem is manly used to support the designer of the
warehouse by supplementing with additiond information about the sources in question,
which is very much different from the requirements of the problem datement as described in
this thess which ams a solving the problem of generaing the warehouse mappings, given

the source and the warehouse schemas.

22.6 ARTEMIS

ARTEMIS [8] is a schema integration tool which completes schema integration by
clustering attributes based on computed affinities and congructing views based on the
cugers [2]. It is used to integrate independently developed schemata into a virtud globa

schema, the area of application of which is again differing from the one this thesis involves.

227 CUPID

CUPID [1] is a generic schema matching dgorithm that discovers mappings between
schema eements based on thelir names, data types, condraints and schema sructure. The
goproach involves in attacking the problem by computing smilarity coefficients between the
elements of the two schemas and then deducing a mapping from those coefficients.

11

The input is via initid mapping, dictionary or thesaurus libray of known mapping

eic. Cdculating the coefficients ae done in two Stages namely, linguisic mapping and

dructurd mapping. It involves normdization and clusering the schema dements into

categories to reduce the number of dement-dement comparison. Comparison involves in

cdculaing the linguigic amilarity of each par of dements from compatible categories,

resulting in a table of linguisic amilarity coefficients between dements of the comparing

two schemas. The mapping generation involved in choosing pars of schema eements with
maxima weighted smilarities

Though the daim is that it is a generic schema matching agorithm, it is more specific

to XML dructures and involves in finding Smilarities between schemas in a hierarchica

manner, dmilar to XML. The dgorithm leans towards a specific purpose in the XML

domain.

2.3 Comparison
The following table [table 2.2] gives a comparison of the characterigtics of the design
goproach of this thess dong with two other systems, the DIKE and the CUPID system that

were somewhat comparable to what has been done in thisthesis.

Table 2.2. Comparison of characteridtics.

12

DIKE CUPID OURS

Schema Types ER XML Relational
Metadata
Representation Graph Tree Graph Tables
Match-granularity Element-level - Element-level
IScheIema- ’;g Name Equality; Name Equalit Name Equality;
n?fj\tch Synonyms, Hypernyms quatty Type Check on Input

Structure T

matching - Similarity in structure -

Reuse/auxiliary
information used

DataDictionary,
Thesauri, Library of
known mappings

Manual Work/User
Input

Resolving structural
conflicts; specification
of some synonyms +
inclusions with
similarity probabilistic;
validation

Specification of
synonyms, homonyms
and attribute mappings;
Validation at the end

Application Area

Schema Integration

Schema Integration

Understanding of the
mapping space;
Evaluation of
mappings;

Update and
maintenance of
warehouses

Remarks

Algorithmsto calculate
new synonyms,
homonyms

Algorithmsto generate
all possible mappings,
Select, Project, Join,
Union and I ntersection

2.4 Chapter summary

This chepter gives an indght into the other related work that has been done around
this problem of schema matching. It is lucid that though some amount of research has gone
into this, schema matching ill remains a largedy dusive problem, as the gpplications are

varies and spans several domaing areas, and a generic solution is fill evasive.

CHAPTERS3
DESIGN

3.1 Introduction

This chepter discusses the issues involved in automating the process of mapping
generation, the different possble mappings that need to be taken care of, and the design of
the matching agorithm.

3.2 Automation issues
As mentioned in chapter 1, automating the process of schema matching and mapping

generation does not come easy, as it may seem like. Since the source schemas are defined
and created independently and a various points in time, a single uniform naming convention
for the dtributes of the source schemas is hard to redlize. Hence one needs to consider the
presence of the following in the attributes of the source and warehouse schemas:

1. Synonyms

2. Homonyms

3. Attribute mappings

4. Derived dtributes

These are described in detail in the following sections.

3.2.1 Synonyms

By synonyms, one refers to the attributes that are represented by different names in
the various schemas, but which are the same dtribute. For example, SSN of reation R1 and
SNO of rdation R2 might represent the same attribute, though referred to by different names.

These attributes have different names, but the same type.

13

14

3.2.2 Homonyms

By homonyms, one refers to the attributes that are represented by the same names in
the various relations, but which are different in dructure. For example, the attributes TYPE
of rdation R1 and TYPE of rdation R2 might be cdled by the same name, but which might
refer to two totaly disparate attributes. Here, one needs to note that the two atributes can

have the same or different types.

3.2.3 Attribute mappings

This is amilar to the synonyms in the respect that this represents the attributes of the
warehouse relations that are referred by different names than the ones that are used to
represent the same atributes in the respective source reations. For example,
EMPLOYEE_ID {varchar (10)} of DW rdaion R1 and SSN {varchar (10)} of source
relation R2 might be the same attribute, but referred to by two different names. This bascdly
comes into the picture when the warehouse tributes need to be given a name that is more

gppropriate to the Stuation than what is there in the corresponding source schema.

3.24 Derived attributes

These lig dl the attributes of the warehouse relaions that are derived or computed
from more than one attribute from the source rdation (s). Some examples of this type of
atributes would indude Cumulative Grade Point Average, Grand Total or any kind of
sum, that requires more than one attribute of the source schemas to be computed from.

From this, it is clear that these issues need to be taken care of during automation, as
missing out on any of these would not give a complete possible list of mappings between the
warehouse and the source schemas. Hence, the system should be able to comprehend this and

incorporate dl the necessary changes to arive a the correct and complete result of al the

possible mappings.

15

3.3 Typeof mappings
Various types of mappings are possible between the warehouse and source schemas.
The System would have to be able to generate the complete list of dl these different kinds of

mappings. The following sections give some ingght into the types of mappings.

3.3.1 Single sourcerelation projection
As the name denotes, this is a sdection/ projection of a sngle source relation. The

warehouse relation can be ether a complete projection of the source relaion or a partid

projection, asillugtrated in figure 3.1.

SRelation WH Relation S Relation WH Relation
A A A A
B B B B
C C C C
D D D D
E E E
Partial Projection Complete Projection

Figure 3.1. Single source relation projection.

3.3.2 Join of two or more sour cerelations

This mapping would cover dl the joins between the source rdations that make up the
warehouse relations. Again, here, one needs to consder two types of mappings namey, a
join with join atributes and a catesan join with no join atributes in common One aso

needs to consder the kind of join — whether it is a complete or partid join of the source

16

relations. The joins are not limited to a smple join of pars of reations and would be
comprehensve. Thisisillugrated in figure 3.2.

S Relation 1 WH Rélation SRelation 1

A B C D E C A B C D E

T D /F
E

: F .

S Relation 2 \L SRelation 2 \L

D E F G H = G H | J

Join with join attributes[D, E] Join with nojoin attributes

Figure 3.2. Join of source relations

3.3.3 Union/inter section of two or mor e sour cereations

This would cover dl the mappings that are ether unions or intersections of the source
relations. One will not be able to comprehend whether it is a union or a join a this point, as
one is not deding with the tuples here. Union or intersection can be detected between source
schemeas if the schemas have the same set of attributes as each other and with the warehouse
schema. This is illugrated in figure 3.3. Agan, it can be ether a complete or a partid uniory

intersection of the source schemas.

17

SRelation 1 WH Relation SRelation 1 WH Relation

A B C D E A A B C D E
w\ B w\ g

C D

SRelation 2 \L D SReIationZL E

A B C D E C D E F G

Union/ inter section (complete) Union/ inter section (partial)

Figure 3.3. Union/ intersection of source relations

3.4 Design approach

From the various classfications of schema matching gpproaches [2], as shown in
figure 34 [2], the approach that this thess takes is the “schema-only based approach”. As
described in [2], schema-levd maiching only congders schema information and not instance
data The information includes the usuad properties of schema dements, such as name,
description efc [2]. Again, under schema-based, the approach is dement-levd, in the sense
that the maich is performed for individud schema dements, which are attributes in this case.
Once again, one deds with both linguistic-based and condiraint-based approaches under
dement-level. What is caried out here is a name-based matching under linguistic matching,
and a type-based maiching under condraint-based matching, wherein, for each dement of a
relation R1, dl eements of the relaion R2 with same or Smilar name and type are identified.

18

Schema Matching Approaches

N

Individual matcher Combining matchers
approaches /\
/\ _ Combining
Schema-only Instance/ Hybrid matchers independent
based contents—& matchers
Element-leve Structure-level Element-leve

N | N

Linguistic Constraint- Constraint- Linguistic Constraint- Manually Automatically
based based

AR A AR

Fgure 3.4. Classfication of schema matching approaches.

Further Criteria:
-Match cardinality
- auxillary information used

3.5 Us input

The process begins with the user providing the sysem with initid inputs that are

crucid for ariving at the correct set of mappings between the source relaions and the data

warehouse relaions. They are liged below in the order in which they need to be specified in

the sourcefile, the details of which are covered later in chapter 5.

The various possible inputs are:

1.

2
3.
4

The source schemas

. Thewarehouse schemas

Thelig of homonyms

. Thelig of synonyms

19

5. The aitribute mappingsThe st of derived attributes and the corresponding source
attributes
Care should be taken to stick to the same ordering of the inputs, the reason for which

would be covered later in this chapter.

3.6 Dedign of the matching algorithm

Given a daa source, the approach to creating appropriate mappings is to sart by
finding those dements of the source that are dso present in the warehouse. This forms the
match operation. After an initid mapping is created, the detalled semantics of each of the
source eements need to be examined and transformations created that reconcile those
semantics with those of the target. The dgorithm is divided into three phases:

1. Transformation: This involves trandforming the data for optima generation of Al
possble mapping. This requires adding additiona information about attributes that
form pat of homonyms, synonyms, and atribute mappings, as detaled out in the
previous sections. The attributes in question are renamed (trandformed) as required
and the new names are sored separately for easy retrieva later. This would facilitate
accurate and complete comparison of the atributes in the next sage namey
Intersection, as this takes dl synonyms, homonyms, atribute mappings and derived
attributes into consderation. Hence gtarting from the next stage, the new transformed
names of these atributes would be considered for comparison as againg the origind
attribute names.

2. Intersection: For each of the warehouse relations, generate a list of possible source
relations that have a least one attribute in common with it (the warehouse reldion in

question), dong with the st of attributes that the rdations have in common with the

20
warehouse relation in question. This information is stored in a separate list, the design
of which will be discussed in detall in the next chapter on data Structures.

3. Mapping generation: From the resulting subset of information obtained from the
dructure as described in the previous part, generate al possble mappings of the
source relations to the warehouse relations, which includes sdect-project-join (SPJ
mappings), union and intersection mappings.

3.7 Transformation

As described in the previous section, transformation takes care of the homonyms,
synonyms, attribute mappings and derived attributes transforming the data for the next phase,
viz. Intersection. The data from the input file is read in by the system and dored in such a
way that facilitates easy doring and retrieving of the same It is best illustrated with an
example. Assume an example with two source reations R1 and R2 of sources 1 and 2
respectively. Also assume a warehouse relation R1. The sat representations of the source and
warehouse schemas are as shown in figure 3.5, where R1 gives the origind atributes and R1'
gives the transformed attributes, after gpplying homonyms, synonyms and the attribute
mappings. One assumption here is that the warehouse rdation R1 is a patid projection of
relaion R2 of Source 2.

21

SOURCE 1 RELATION R1 R14

A
B
Cc

SOURCE 2 RELATION R2 R24¢

DW RELATION R1 R1¢

Cc
D

E DW

Figure 3.5. Theinitid schemas

3.7.1 Applying the homonyms

When the homonyms ae read from the source file, the data is modified to
accommodate these new entries. New unique names are generaied for dl the attributes
invalved. As homonyms refers to attributes that have the same name, and same or different
types, but are totdly different aitributes, each of the aitribute involved is given a newly
generated name as part of transformation.

For example, assume that attribute C of reaion R1 of source 1 and attribute C of
relation R2 of source 2 are homonyms, i.e, though they have the same names, both the
attributes are to be consdered as separate attributes. As per the design, the names of both the
attributes in this case attribute C of rdation R1 and attribute C of relaion R2 are assgned

new unique generated names. This is gpparent from figure 3.6, which shows the sets R1¢ and

22

R2¢for rdaions R1 & R2 being modified and the new names of “C_001" & “C_002" being
assgned to the attributes C of relations R1 and R2 respectivdly. As shown, the mapping
between the origind attribute names (R1) and the new names (R19) is retained for future
reference. Again, R1¢ refers to the normalized st of atribute names of rdation R1, and so
forth for dl therdations.

One should again note a this point that the change in the name to atribute C of
relation R2 is not reflected in the warehouse reaion R1. This is the reason why the

warehouse mapping is specified separately after specifying the homonyms and the synonyms.

SOURCE 1 RELATION R1 R14

A A
B B
Cc C 001

SOURCE 2 RELATION R2 R24

Cc C 002

D D

E E
DW RELATION R1 R1d

Cc C

D D

E DW E DW

Figure 3.6. Rdations after gpplying the homonyms.

23

3.7.1.1 Issuesin applying homonyms

While applying the homonyms to the initid data, two different cases need to be

considered:
Case 1. Attribute has dready been transformed
Assume the fallowing example,

R1A:R2A

R2A :R3A
Where R1, R2, R3 denote the source relations and A referring to the attribute name. R2.A has
dready been transformed in the previous step. Hence in the next dep, it is not transformed
again, and only R3.A istrandformed. Case 2: Both attributes have been transformed
In the following example,

R1A:R2A

R3.A:R4A

R2A :R3A
R2A and R3.A have adready been transformed in the previous couple of steps. Hence, no
changeis necessary in the third step.

3.7.2 Applying the synonyms

When the synonyms ae read from the source file, the daa is modified to
accommodate these new entries. For the attribute names, new names ae assigned as required.
The mapping between the old names and the new names are stored separately, which would
fecilitate easy retrievd of the origind names given the new normadized names and vice versa

For example, assume that attribute A of rdation R1 of source 1 and attribute D of
rdaion R2 of source 2 are synonymous, i.e, though they have different names, both the

dtributes are essentidly the same for dl matching purposes. Hence, the design involves in

24

retaining the name of one of the dtributes, in this case the former one (of rdation R1) asis
and renaming the latter attribute (of relation R2), which is the same as the firg atribute
which would be “A”. This is apparent from figure 3.7, which shows the normalized tribute
st R2¢ for relation R2 being modified and the new name of “A” being assgned to the
atribute D. Agan, the mapping between the origind attribute names (R2) and the new
names (R2¢ needs to be retained for future cross reference.

One should note at this point that the change in the name to attribute D of relation R2
is not reflected in the warehouse rdatiion R1. This problem of trangtivity is the reason why

the warehouse mapping is pecified separatdly after specifying the synonyms and the

homonyms.
SOURCE 1 | RELATIONR1 | R1¢
A A
B B
C C 001
SOURCE 2 | RELATIONR2 | R2(
C C 002
D A
E E
DW RELATIONR1 | R1¢
C C
D D
E DW E DW

Figure 3.7. Reaions after gpplying the synonyms.

25

3.7.2.1 Issuesin applying synonyms

While applying the synonyms to the initid data, many different cases need to be
considered. All the possible cases are listed as shown in table 3.1.

Table 3.1. All possble cases while applying synonyms

ATTRIBUTE 1 ATTRIBUTE 2

The various possble cases have been grouped together by smilarity. All the amilar cases
need to be handled separately, as described below:
Case 1:
Given two aitributes R1.A : R2.B being synonyms,

A - Not transformed

B - 1. Not transformed (or)

2. Transformed by homonyms

This is the typica case, where, the name of attribute A is teken and the atribute B is
transformed with this name of A.

26

Case 2
Given two attributes R1.A : R2.B being synonyms,
A - 1. Transformed by synonyms (or)
2. Transformed by homonyms
B - 1. Not transformed (or)
2. Transformed by homonyms
In this case, the transformed name of attribute A is consdered and the attribute name of B is
transformed with this name.
Case 3
Given two attributes R1.A : R2.B being synonyms,
A - 1. Not transformed (or)
2. Transformed by homonyms
B - 1. Transformed by synonyms
In this case, the transformed name of attribute B is consdered and the atribute name of A is
transformed with this name. Thisis the switch case of case 2.
Case 4.
Given two attributes R1.A : R2.B being synonyms,
A - 1. Transformed by synonyms
B - 1. Transformed by synonyms

Thisisan error case, which cannot be handled.

27

3.7.3 Applying the attribute mappings

Applying the dtribute mappings to the datastructure is no different than that for
synonyms and homonyms. Three different cases are possible here.

Case 1. A direct mapping from a regular attribute of a source relation to that of a warehouse
relation, wherein, the atribute is referred to by a different name than what is specified in the
source relation.

Case 2: A mapping between an attribute of a source relation that has been modified earlier
due to the adding of homonyms and the corresponding attribute in the warehouse relation.

Case 3. A mapping between attributes of a source relation that has been modified earlier due
to the adding of synonyms and the corresponding attribute in the warehouse relation.

From the earlier example, as per the assumption, attributes C, D and E of rdation R2
of source 2 are projected on to the warehouse relation R1. Under atribute mappings, a one-
one mapping for each of these atributes that have been changed is given. It should be noted
here that there might be other attributes of the warehouse rdation that are not modified by
any of the cases as mentioned earlier. Such attributes are not mentioned under this section.
All the three cases can be seen in the example in figure 3.7.

Case 1. Attribute E of rdation R2 of source 2 is being referred by a different name in the
warehouse relation R1, whichis“E_DW".

Case 2: Attribute C of rdation R2 of source 2 has been modified and is now being referred to
with anew name, whichis“C_002".

Case 3: Attribute D of relation R2 of source 2 has been modified and is now referred to with
anew name, whichis“A”.

Once the attribute mappings are read in, the changes are updated in the warehouse relaion as
shownin figure 3.8.

28

SOURCE 1 RELATION R1 R14

A A
B B
Cc C 001

SOURCE 2 RELATION R2 R24¢

Cc C 002
D A
E E

DW RELATION R1 R1¢
Cc C 002
D A
E DW E

Fgure 3.8. Rdations after gpplying the attribute mappings.

3.7.4 Applying thederived attributes

The derived attributes, which are attributes of the warehouse relation that are derived/
computed from more than one attributes of the source reations, need to be handled
separately. They cannot be added to the data dtructure until after the generation of the
mapping. Hence, the derived attributes are removed from the warehouse relations and need to

be stored separately along with the attributes these are derived from.

3.7.5 Summary
Findly, a the end of trandormation, the schemas would have the transformed
atribute names as shown in the third column for each of the schemas in figure 3.8, which are

then consdered for the next phase, namdy Intersection.

29

3.8 Intersection
For each of the warehouse rdations, this stage involves in generating a list of possble
source relations that have a least one dtribute in common with the warehouse rddtion in
question. This information is stored separatey in a list, which a the end of this stage would
contain a list of sources for each of the warehouse relations. Both name-based and type-based
maiches are performed between the attributes of the source and the warehouse schemas. The

pseudo code for this part of the dgorithm isas shown in figure 3.9.

for each of the warehouse relations wr,,
{

interSet [] = new Set

for each of the sourcess,

for each of the source relations r
{
aSetj = new Set
aSet; =r, intersection wr,, (get set of intersecting attributes)

if aSet, != empty (implying that some common attribute exists)
{
add aSet;, 5 and r, to interSet, [j]
}
}

Figure 3.9. The matching dgorithm - intersection.

This process is done only once initidly, which fadlitates the effective filtering of
source reaions that form no pat of any paticular daa warehouse rdation from
congderdtion in the next step which is to generate the mapping between the data warehouse

relations and the corresponding source relations, and to figure out the type d the mapping —

30

whether it is a projection, join, union or intersection. This process is illusrated with an
example as shown in figure 3.10. Assume two source relations R1 and R2, and a warehouse
rdaion WR1. Now, in Intersection, for each of the warehouse reations, in this case, WR1,
each of the source relaions are consdered and the intersecting set of atributes is obtained. A
non-empty intersecting set of atributes implies that the source relation in question has some
atribute in common with the warehouse relation. Hence whenever a nonempty set is
obtained between a pair of source and warehouse relations, the corresponding source and the
st of common éttributes are added to a set for each of the warehouse relations, as illustrated

in figure 3.10.

WR1¢ B C D E F

<
< ---

WR1 |———>| R1 R2

R1¢ A B C D E

1
1
1
1
1
1
- ' i
1
1
1
i B
1
\%2 - B
R2¢ B C D E F G H
D C
E D
E
F
G

Figure 3.10. Exampleilludtrating intersection

31

3.81 Summary
At the end of this dtage, for each of the warehouse relations, one would be left with a
st of source reations that have at least one atribute in common with the warehouse relation
and the intersecting set of common attributes between that pair of source and warehouse

relations, as described in figure 3.11.

T Set of source relations those have
Vv some common attribute for each of
WR1 /| R1 R2)) the warehouse relations
WR2 R1 R2
WR3 \L
WR4

Set of common
attributes of each of
the sourcerelations

Figure 3.11. End of intersection.

3.9 Mapping generation

At the end of the previous stage, which is Intersection, for each of the warehouse
relations involved, one would end up having a s&t of dl the sources that have some attribute
in common with the warehouse rdations. The desgn in this stage involves in generating dl
the possble mappings between the warehouse and the source réldaions. One needs to
comprehend at this point, that there may exist more than one source relation that has a part in

deriving the data warehouse reaion. So the quest here is to identify how this warehouse

32

relation is derived — it might be a projection of a sngle source relation or a join of more than
one source relations, or a union or an intersection of smilar surce relations. For each of the
warehouse rdations, the sets of attributes of the source relations are retrieved and anayzed
and the plausble mappings generated. The various steps checks involved are — one for
projection and one for join and union/intersection. The set generated in the previous stage
[figure 3.11] is dl that is required in this dage to generate dl the possble mappings. At this
juncture in the design, the source reations have been filtered and only those relations that
have any common dtribute with the warehouse rdations are consdered. This consderably

reduces the number of comparisons that need to be performed.

3.9.1 Projection

The pseudo code for this part of the agorithm is given in figure 3.12. Asilludrated in
figure 3.12, for each of the warehouse reaions in question, the set of source relaions that
have some atribute in common with this warehouse relation is obtained from the previous
dage, and for each of these rdations, the set of common attributes is compared with the
atribute set of the warehouse rdation for equality. If they turn out to be equd, it implies that

the warehouse relation isindeed a projection of that source relation.

33

for each of the warehouse relations wr

{
mapSet,,, = new Set
dwSet |, = new Set
dwSet,, = set of attributes of the warehouse relation wr,

/I start of check for projection
for each of the source relations r; ininterSet,,, (refer Intersection)

get aSet; (the set of common attributes of this relation with the warehouse
relation)

if (aSet; == dwSet,,)
{

(implies that the warehouse relation is a projection of this source
relation- can be complete or partial)

if ((r;intersectionaSet;) != empty

(impliesit isa partial projection)
add r; to mapSet,, as partial projection
}

else

{
(impliesit is a complete projection)
add r; to mapSet,, as complete projection

}

// end of check for projection

Figure 3.12. The matching dgorithm - projection.

This again, is best illugrated with an example. Congder the following example with a
gngle warehouse relation W.R1. Assume that the source reaions R1 and R2 have some

attributes in common with thiswarehouse relation as illustrated in figure 3.13,

For each relation,
check the set of
common attributes
with the warehouse
relation for equality

Set of source relations for each of the
warehouse relations

1
I
WRL |———>| RL [R2 | _|

1 1
1 1
1 1
1 1
1 1
1 1
1 1
! 1
! 1
@ \L ' B i
1 1
1 1
B ; c I
1 1 | Whenever thereisa
c B " D 1 | match, add it to a set
: 1| foreachof the
C ! E 1 | warehouse relations
| P : Y :
! £ D <____:___> F WR1 RL |gommmea- :
E E G
Set of common F
attributes of each of
the source relations G

Figure 3.13. Exampleillustrating projection.

From figure 3.13, 1 gives the sat of warehouse relaions that has the set of source
relations that have common étributes for each of the warehouse reations. The firs Sep is
illugrated in 2, where for each of the warehouse rdations, for each of the source relation in
the s, the set of common attributes is compared with the warehouse Eaion for equdity. A
maich implies the presence of a projection. Whenever there is a match, as in 2, the source
relation involved is added to another set for each of the warehouse rdations, as illustrated in
figure 3.13.

One other check that needs to be done a this juncture is the check to see if it is a
complete or a patid projection. This can be done by intersecting the set of common
attributes of each of the sources with the complete attribute set of the same. If the resultant
st has attributes, it smply implies that it is a partid projection of the source rdaion, and a

complete projection otherwise. This check is not stopped when a match is found, and is done

35

for dl the source relation entries in the set for each of the warehouse relations, as one might
be able to derive the warehouse rdation from more than one source relations. For each of the
possible projection, the source relation is added to a set as detailed out in figure 3.13.

At the end of this stage, for each of the warehouse rdations, one would have a list of
al the mappings that can be generated by means of projection of a single source relation, as
illustrated in figure 3.14.

T Set of source relations from which
A\ the warehouse relation can be
WR1 [—>| Rl | R2 . . generated by projection
WR2 R1 R2
WR3 \L
WR4

Set of common
attributes of each of
the sourcerelations

Figure 3.14. End of projection.

3.9.2 Join, union and intersection

The pseudo code for this part of the agorithm is given in figure 3.15. Asilludrated in
figure 3.15, for each of the warehouse relations in question, this stage involves in generating
al possble pars of source rdations. For each of these pairs of relations, the combined set of

common attributes is compared with the attribute set of the warehouse relation for equdlity. If

36

they turn out to be equd, it implies that the warehouse relaion can be one of join, union or

intersection.

/I start of check for join, union/ projection

for all combinations of the sourcerelations (r; r)) ininterSet, (refer
I ntersection)

get aSet; (the combined set of common attributes of each pair of relations)
i{f (aSet; ==dwSet,)

(implies that the warehouse relation is a join of this source relation- can
be complete or partial)

if ((r;intersectionaSet;) !=empty || (r;intersectionaSet;) !=empty

(impliesitisa partial projection)
add the pair (r; r;) to mapSet,, as partial projection on join
}

else

{
(impliesit is a complete projection)
add the pair (r; r;) to mapSet,,, as complete projection on join

(impliesthat it might be a join or an intersection)
add the pair (r; r;) again to mapSet,, as union/ intersection
}

Il end of check for join, union/ projection

}

Fgure 3.15. The matching dgorithm - join, union/ intersection

Thisisagain best illustrated with an example asillugrated in figure 3.16.

37

All R1,R2 R1,R3 R1,R4 R2,R3 R2,R4 For each pair of
possible relations, check the

pairs R3.R4 combined set of
' common attributes
--------------------- with the warehouse

Set of source relations for each of the

warehouse rdations relation for equality

1 1
1 1
1 1
1 1
1 1
1 1
WR1
WRL RL R2 R3 RA |<- : : Whenever thereis a
i 1 | match, the pair is
$: B I | added to aset for
: 1| eachof the
B 5 : c : warehouse relations
1 1 :
C E c B : D : i
c : E : | @
O == S ’ v
1
A et] e s]e]
F E ©
Set of common G F
attributes of each of
the source relations G

Figure 3.16. Exampleilludraing join.

To explan figure 3.16, this sep darts with the same set of dl source relations that
have some aitribute in common with each of the warehouse relaions. The first sep is to
generate al possble pairs of source rdations. In the example, warehouse relation WRL1 has
four source reations that have some attribute in common with it. Hence al the possible pairs,
namdy — [R1, R2] , [R1, R3], [R1, R4] , [R2, R3] , [R2, R4] and [R3, R4] are generated. For
each of these generated pairs of source relations, the combined set of common attributes is
compared with the warehouse reation WR1 for equdity. Equdity implies that there is a
posshility of a join. Agan, here the check for union or intersection is an addition to this

check, where in a pair can be assumed to be a union / intersection of the warehouse relation if

38

the set of common attributes of each of the source relaions in the pair is the same, and is dso
the same as the warehouse reation. In the given example, the par R3, R4 would give a
possible union/ intersection, as they have the same set of attributes as shown in figure 3.16.
One other check that needs to be done at this juncture is the check to ®e if the mapping is
complete or patial.

This check is not stopped when a maich is found, and is done for al the source
relation pairs generated for each of the warehouse rdations, as one might be able to derive
the warehouse relaion from more than ore join of source reations. For each of the possible
joins, the pair of source relations is added to a set for each of the warehouse as illustrated in 3
of figure 3.16. Another check that needs to be done here is the kind of join — a join with a
common aitribute (usudly the key attribute), or a cartesan product, with no attributes in
common. The fdlowing example illudraes multiple joins of source reations deriving the
warehouse relation. Assume the sat of attributes of the warehouse reation (excluding the
derived attributes) in question is asfollows:

Set of attributes of DW rdlation={ ABCDEF}
Assume that the source relaions and the corresponding sets of common attributes for this

DW rdation are as shown in table 3.1.

Table 3.2. Examplefor join.

Sour ce Relation Attribute Set
sl R1 {ABCD}
s R2 {(EFR}

S R3 {ABC}
Y R4 {(DER

39

From the table, it is clear that both the combinations of [R1, R2] and [R3, R4] do
make up the same warehouse relation shown above. This leaves us with the check for unior/
intersection. Referring back to the top of this section would reved tha pars of source
relations are consdered for the check for join. Now, each pair is obtained and a check of
equdity is done on the common attributes of the source relations of that pair. If the check

turns out to be true, it impliesthat there is a possbility of a union or intersection.

3.9.3 Joinsof morethan two relations

So far, dl the possble mappings that have been generated under joins, union /
intersection are joins of pars of source reations. Following the same method for generating
al possble mappings of sSze three or more is not effective. Hence, a different gpproach has
been followed to generate dl possble mappings of size greater than two, the details of which
would be covered in the following sections.

To dart with, one has the set of source relaions that have some atribute in common
with each of the warehouse rdations as shown in figure 3.14. One dso requires the
maximum length of joins that need to be generated for the give warehouse rdations. Assume
N as the number of source rdations for the warehouse rdaion WR1, and M being the
maximum length of joins that need to be generated. Since one darts with joins of pars of
relaions, the remaining joins that need to be generated are from three onto M. The process
involves in generating al possble combinations of source relations of length three up to M.
For each combination generated, check is done to see if there is a possbility of a join, unior/
intersection there. But for sake of explanation, the two Stages of generating the possble

combinations and checking for join have been split into two separate sections.

40

3.9.3.1 Generating all possible combinations

This follows a compare and diminaion agorithm, which reduces the number of
comparisons to a minimum as agang an exhaudive comparison. In the first pass, the check
is between a st of the source relations in question for each of the warehouse relations, and
the complete set of dl the possible pairs of relations that have dready been generated. Now,
dl the possble joins of length three are generated. The subsequent pass would do a
comparison between the same set of source relations and the set of newly generated joins of
length three and s0 on, until the limiting length of M is reached. This is best illugtrated with
an example.

Assume a warehouse reation WR1 with four source reatons (N) having some
atribute in common with it. Also assume that one is required to generae dl the possble
joins of dl possble lengths. So, M in this case would be four, which would be the maximum
length of the join tha is possble Now, figure 3.17 detals out the comparison and
elimination process for the firgd pass, and the generation of dl the joins of length three. From
figure 3.17, it is clear tha the process of comparison and eimination has reduced the number

of comparisons congderably.

41

If the relation Continue the next cycle
exists in the pair, withtheremainingsetof |
eliminate the pair pairs from the previous j
from set 2 cycle i
i |
I
SET 1 SET 2 | SET 1 SET 2 !
|
i a
! 1
1 12 |[------d i
I
2 1-3 2 2-3 E
)
3 1-4 3 2-4
4 2-3 1-2-3 4 3-4 —>| 2-34
24 1-2-4
i ¢----—-- ' Continue until all
&4 134 i possible combinations
! of the same length are
! generated
If therelation !
doesnot existin |77
the pair, generate
Pass1-Cyclel | _ hination Pass1-Cycle2

Figure 3.17. llludtrating generation of multiple joins— pass 1

Now, in the next pass, as mentioned earlier, the set of reations is compared with the
st of generated joins of length three to generate dl joins of the next length, viz., four. The

second passisillugtrated in figure 3.18.

42

SET 1 SET 2 If the relation
exists in the pair,
eliminate the pair
1-2-3 from set 2

1-2-4 !
1

1-3-4

234 | — > | 1234 &-------- :

If the relation
does not exist in

Pass2—-Cyclel the pair, generate
a combination

Figure 3.18. Illudrating generation of multiple joins— pass 2

Figure 3.18 illugtrates the second pass, where the comparison is ketween the same set
of source relations and the sat of newly generated joins of length three, to generate joins of
length four in a amilar way as described for pass 1. This is repeated until dl possble joins
have been generated.

3.9.3.2 Check for possible mappings

As mentioned at the dart of this section, the check for a possble mapping is done
right after the generation of the joins. The process of checking for mapping is described in
this section.

For each generated join, assume n as the length of the join. Now, teking dl the
relations that make up the join into consideration, the list of al the pairs of these rdations are
obtained. For each of these pairs of relations, a check is done to see if the intersecting set
between them is not empty. If it is not, then a counter is incremented. At the end of the cycle,
the counter is compared with a pre-set threshold [(n-1)(n-2)/2 + 1]. There would be a

43

possble mapping if the counter value is grester than or equa to the threshold vaue. The

threshold vaue makes sure that dl the rdations involved in the join have been congdered,

and none have been left out. Figure 3.19 gives an exampleto illudrate this,

four

Assume thisjoin of length

1-2-3-4

n=4

Threshold = (n-1)(n-2)/2+ 1=4
When Counter >= Threshold = 4, it
implies that it might be a possible
mapping

1-2
1-3
1-4
2-3
2-4
34

Set of al possible pairs of
relations from the given
joinis considered, and
check isdoneto seeiif the
intersecting set between the
relations of each pair is
non-empty. If itis, a
counter isincremented

Figure 3.19. Example llludrating check for mapping

Agan, when a possible mapping is found, as before, it is added to the set of mappings

for each of the warehouse relations. As in the check for pairs, al the checks are done here to

check for join, union/ intersection, complete/ patid join and joins with/ without join

attributes as described in the previous section 3.9.2.

3.94 Summary

At the end of this sage, for each of the warehouse reations, one would have the

complete st of dl the possble mappings including projection, pair-wise and joins of lengths

more than two, uniong intersections, asillustrated in figure 3.20.

Set of all possible mappings from

FrTTTT projection, join, union/ intersection
|
\4

WR1L |—>| Rl | R2 : : R1, R2 R1, R3

WR2 R1 R2

WR3 \L

WR4

Set of common
attributes of each
possible mapping

Figure 3.20. End of mapping generation phase.

3.10 User validation

Now, it is apparent that more than one possible mapping would be possble for each
of the warehouse rdations. Hence, to overcome this ambiguity, al the possble mappings for
each of the warehouse rdations are presented to the user, and the user findly vdidates the
reults. It is only after the user vdidation, that execution proceeds on to generatiing the
gopropriate code for setting the triggers for updates and maintenance of the warehouse

reaions.

3.11 Reversetransformation
Once the mappings have been generated, the process of reverse-transformation
returns the atribute names that have been trandformed back to the origind form to facilitate

45

the generation of code for setting the triggers on the source schemas to propagate updates to

the warehouse schemas.

3.12 Chapter summary

In this chapter, one looked a the issues involved in automating schema matching and
mapping generation. All the various possble mappings that were conddered were aso
discussed. Then, the discusson went on to tak about the matching agorithm, detailing out
the various stages in the adgorithm and the issues involved. The next chapter would look a

the data structures used for storing and retrieving the data and for generating the mappings.

CHAPTER 4
DATASTRUCTURESIN DETAIL

4.1 Overview
The various data dructures required for effective doring and retrieving data are
explained in detail in this chapter.

4.2 Initial data structure
The Initial data structure forms the base for the whole design to rest on. It stores all

the information furnished by the user as discussed in the previous chapter. It typicaly stores.

1. Various Schemas (source and data warehouse) and their specifications

2. The homonyms

3. Thesynonyms

4. The attribute mappings

5

. Thederived attributes

4.2.1 Description

The data structure, [figure 4.1] condsts of a hashtable named “dwdatabases’ which
would serve as the outer most dructure that would have the list of sources and data
warehouses, with the name of the databases as the key and a \ector as the value. This vector
in turn congsts of these three dements:
Vector[0] — A Boolean that is set to true or fdse depending on whether the database in

question is trigger-based or difference-based respectively

Vector[1] — A string vaue that has the DBMS information for the given source
Vector[2] —A Hashtable

46

47

This hashtable in-turn has the relaion names as the key and a vector as the vaue for each of

the sources. This vector will have two dements:

Vector[0] — This points to a hashtable again, that contains the attribute names in the key
fidd and a vector in the vaue for each dtribute of the reation in question, and
this vector in turn contains from two elements to many depending on the type of
attribute. The various cases possible are listed below:

Case 1. A normd attribute of ardation:

Vector[O] — Thetype of the attribute (as a String)

Vector[1] — Fidd to specify whether it is a key or a derived attribute (would be
null in this case)

Vector[2] — An optiond field that would be added if the current atribute needs
to be renamed later (discussed later)

Case 2. A key dtribute of ardation:

Vector[0] — Thetype of the attribute (as a String)

Vector[1] — Field to specify whether it is a key or a derived attribute (would
have “ KEY” in thisfield)

Vector[2] — An optiond field that would be added if the current attribute needs
to be renamed later (discussed later)

Case 3. A derived / computed attribute of a warehouse relation:

Vector[0] — Thetype of the atribute (as a String)

Vector[1] — Field to specify whether it is a key or a derived attribute (would

have “ DERIVED” in thisfield)

Vector[1] — This points to another hashtable that contains the new names of the attributes in

the key fidds and the old names of the same aitributes in the vaue fidds. (This

would be discussed in detail later)

sour cel []
sour ce2 : NewNamel OldNamel
source3] NewName2 OldName2
<key> <value> NewName3 OldName3
<key> <key>
Trigger True 4
HT1 Vi ——»| DBMS V2
] l HT4
I
HT2 |—p| Reationl || | o | |
Relation2 []

Refation3 |[|

<key> <value>

HT3 | —— | Attributel |]

Atributez |[[]

LEGEND Attribute3 []
<key> <value>
HT - Hash Table
V - Vector Y

Either Lor2or 3

| v v
i newName E Type Type
“KEY” “ DERIVED”
i newName E

Figure4.1. Initid data structure.

49

4.3 Data structureintersection
In addition to the main data structure, another data structure figure 4.2] was needed
to save the st of intersecting attributes between any (source relation — data warehouse
relation) par, which would be required later on to st the triggers appropriately. This

dtructure can be described as:

4.3.1 Description

A vector named “intersectVector” the will contain one dement for esch of the
relaions of the data warehouse (assuming a single data warehouse for now). Each dement of
this vector is another vector that in turn contains four to five eements as shown:

1. Thename of the data warehouse

2. Thename of the data warehouse relation

3. An integer vaue tha gives the count of the number of source redations that have
attributes in common with this warehouse relation.

4. A data Structure “AttribSet” (described next)

5. Another AttribSet if required (for union or multiple partid projection)

In the case where multiple source reations are involved, additiond eements are
added to the vector as shown above. The data structure AttribSet mentioned above has the
following dements

1. Name of the source database
2. Name of the source relation
3. Set of intersecting dtributes (between this source redation and the data warehouse

relation in question)

50

Vi attrihSet
DW Rd 1
DW Rd 2
DW Re 3

A\ 4

DW Rd 4 —p| SourceName

SRel Name

Set of Attribs

V2 |—»| DWName

DW Rel Name

#Relations

Fgure4.2. Data structure that stores the set of intersecting attributes.

4.4 Data structure check vector

The data structure “checkVector” is the dructure that will hogt the find required
mappings between the source and the data warehouse reations. There is one ingance of
checkVector for each of the data warehouse rdation in question. This Sructure condsts of a
vector v1 that has the totad number of dements equa to the number of possble mappings
between the source rdations and the data warehouse relaion. The type of mapping, whether

it is a dngle source relation projection, or a join of two source relaions, or a union or

51

intersection is defined by another vector v2 [figure 4.3]. This vector V2 has the following
eements:

1 — A string fidd that would have ether “complete’ or “partid” as its vaue, depending on
whether the mapping is a complete or partial projection of the source relation, join or union,
whatever the case maybe.

2 — The source relation information, i.e, the attribSet sructure of the source relation (refer
previous section) for a sngle source relation in case of projection, and more than one as

required for ajoin, union or intersection.

52

Vi
AttribSet ——®| SourceName
S Rel Name
L 1 ot of Attribs
I 7y
alnliniuiiiniuuiniuitl com/partial
L 1
\4
v Source Name
com/partial [&——3 V2 SRel Name
— Set o Attribs
A
Source Name
SRd N .
M le—— AttribSet
Set of Attribs

Fgure4.3. Structure that holds the find generated mappings.

45 Chapter summary
In this chapter, one looked at the various Sructures that made the redization of the
desgn possble in this thess. The next chapter goes into the design implementation in detall,

and talks about the dgorithm and the issues involved in implementation.

CHAPTERS
DESIGN IMPLEMENTATION

5.1 Overview

This chapter discusses about the desgn implementation in detall, sarting with the
description of the source file provided by the user to how the data is read and stored, and the
implementation of the schema-meaiching dgorithm in detal. This dso deds with the different

implementation issues involved in the same and the methods used to overcome them.

5.2 User input
The input is read from a source file given by the user as explained in chapter 4. Figure

5.1 provides uswith an accurate representation of the source file.

53

schemas:: Legend:

source <S name> <true/false> <platform> Sname — Source Name
relation <R name> R name — Relation Name
attribute <A name> <type> { key/Derived} A name — Attribute Name
attribute <A name> <type> { key/Derived} DW name —Warehouse Name

.reIaIi on <R name>
atribute <A name> <type> { key/Derived}
atribute <A name> <type> { key/Derived}

source <S name> <true/false> <platform>
relation <R name>

attribute <A name> <type> { key/Derived}
attribute <A name> <type> { key/Derived}

warehouse <DW name>

relation <R name>

atribute <A name> <type> { key/Derived}
atribute <A name> <type> { key/Derived}

homonyms::
<A name> :: <S name>.<R name> ; <S name>.<R name>

synonyms::

<S name>.<R name>.<A name> ;. <S name>.<R name>.<A name> ; <S name>.<R name>.<A
name>

<S name>.<R name>.<A name> :: <S name>.<R name>.<A name>

attributemapping::
<DW name>.<R name>.<A name> :: <S name>.<R name>.<A name>

derived::
<DW name>.<R name>.<A name> :: <S name>.<R name>.<A name> ; <S name>.<R name>.<A
name>

Figure5.1. Sourcefile.

55

The keywords “schemas”, “synonyms”, “homonyms”, “attributemapping” and
“derived” make the desgn peform various operations when encountered. For example,
when the keyword “schemas” is encountered, the sysem knows that it will be followed by a
st of schemas, source or warehouse. Likewise, the sub keyword “source”, “relation” and
“attribute” meke it easer for the sysem to identify the type of input that it is reading in. A
more precise description of the various parts of the source file provided by the user is given
below. This is subdivided into 5 sections, analogous to the source file ffigure 5.1] as split up

by the keywords.

5.2.1 Schemas
This refers to the source and the data warehouse schemas that the user wants to use.
The syntax for specifying the schemain the sourcefile [figure 5.1] is as shown below:
For the source,
source <Sname> <trueffalse> <platform>
where,
<source name> givesthe name of the source relation

<true/false> specifies whether the source is trigger-based (true) or difference based

(fdse)
<platform> givesthe DBMS platform e.g. Oracleon NT
For the relation,
relation <R name>
where,

<relation name> givesthe name of the rdation
and for the atribute,

attribute <A name> <type> {key/Derived}

56

where,
<attribute name> givesthe name of the attribute
<type> givesitstype (char, varchar, integer €etc)
{Key/Derived} is an optiond fidd tha is specified as “KEY" or “DERIVED” if tha
attribute is akey or a derived attribute (for data warehouse relations only) respectively
The data warehouse schemas are pecified in a Smilar manner, except that the name “source”

is replaced with the name “warehousg’ [figure 5.1].

5.2.2 Homonyms

Under homonyms, we ligt al the attributes of the source relations that are referred to
by the same name, but tha ae dissmila. The syntax for specifying the homonyms in the
source file [figure 5.1] is as shown below:

<Aname> :: <Sname>.<Rname> ; <Sname>.<R name>
To date an example,
sl.rl.attributel :: s2.rl.attributes ; s3.r2.attribute2

which means, attributel of reation rl of source sl, is the same as (or homonymous to)

attributed of rdationr1 of source s2 and attribute2 of rdation r2 of source s3.

5.2.3 Synonyms
Under synonyms, we lig dl the attributes of the source reations that have different
names, but are the same. The syntax for specifying the synonyms in the source file [figure
5.1] is as shown below:
<Sname>.<Rname>.<A name> :: <Sname>.<Rname>.<Aname> ; <Sname>.<Rname>.<A name>
To dtate an example:

sl.rl.attributel :: s2.rl.attributed ; s3.r2.attribute?

57

which means, attributel of rdation rl of source sl, is the same as (or synonymous to)

attributed of rdation r1 of source s2 and attribute2 of rdation r2 of source s3.

5.2.4 Attribute mapping

Under attribute mapping, al the attributes of the data warehouse rdations that are
referred to by different names as againg their andogous counterparts in the source relations
are liged, and the mapping between them is given. The syntax for specifying the attribute
mapping in the source file [figure 5.1] is as shown below:

<DW name>.<R name>.<A name> :: <Sname>.<R name>.<A name>
To date an example,
dwl.rL.attributel :: s2.rl.attribute4

which means, attributel of relation rl of datawarehouse dwl, is the same as attribute4 of
relation rl of source s2. As explained in chapter 3, three unique kinds of mappings are
possible here:
Case 1 adirect mgpping from a regular attribute of a source relation to that of a warehouse
relation, wherein, the attribute is referred to by a different name than what is specified in the
source relation.
Case 2 a magpping between an attribute of a source relation thet has been modified earlier
due to the adding of homonyms and the corresponding ttribute in the warehouse relation.
Case 3 a mapping between tributes of a source reation that has been modified earlier due
to the adding of synonyms and the corresponding attribute in the warehouse relation.

525 Derived
Under derived, dl the attributes of the data warehouse relations that are derived or
computed from more than one atribute of the source reations are liged. The syntax for

gpecifying the derived attributes in the source file [figure 5.1] is:

58

<DW name>.<R name>.<A name> :: <Sname>.<Rname>.<A name> ; <Sname>.<Rname>.<A name>
To date an example,
dwl.rl.attributel :: s2.rl.attributed ; s2.rl.attribute5 ; s2.rl.attribute6
which means, attributel of rdation rl of datawarehouse dwl, is derived from attributes
attributed, attribute5 & attribute6 of rdation r1 of source s2

5.3 Storingthedata

The data is read in from the source file [Figures 51]. Once the source file is open,
depending on the keywords read in, various operations are performed accordingly. The data
is gtored in a datastructure named ‘initial datastructure”, that is described in detail in chapter
4 [figure 41]. This dructure tores the data in a hierarchica manner, with the sources at the
top kve, followed by the reations of the sources, followed by the attributed of the relations.
This structure holds good for the warehouse relaions too. The process of storing the various
pats of the source file is explained in detal in the following sections, dong with the issues

involved in the implementation of the same, and the solution arrived at.

5.3.1 Storingthe source and war ehouse schemas

This is a draghtforward implementation of the desgn, wherein, the source
characteristics are read in from the source file and the datastructure updated accordingly.
Since the file gores the schema information in a hierarchica order, the storing of the same is
done in a gamilar manner, sarting with the sources, and going down to the relations and the

atributes of each of the rdations and so on.

59

source S1 true ORACLEOMEGA
relation STUDENTINFO

attribute SSN char(9) key

attribute FIRSTNAME varchar(15)
attribute LASTNAME varchar(15)
attribute AGE int

attribute GENDER char(1)
attribute NATIONALITY varchar(15)
attribute RACE varchar(15)
attribute ADDRESS varchar(30)
attribute HOMATT1 varchar(10)
attribute HOMATT3 int

attribute SYNATT1 varchar(30)
attribute SYNATT4 char(20)

Figure5.2. Schema part of a sample sourcefile.

The goring of the data is best illustrated with a live example. Condder a source file, a
pat of which is shown in figure 52. Figure 53 shows the initid datastructure at
initidization, before any datais added to it.

HT1

Figure 5.3. Storing source/ warehouse schemas - stage 1.

60

Figure 54 shows the same structure after the source characteristics are read in from

the source/input file, which isthefirg line of figure 5.2.
source Sl true ORACLEOMEGA

A new eement has been added to the hashtable HT1 with the source name “S1” as
the key and a new Vector “V1” as the vaue. Again, two eements are added to this vector,
and the vaues “true’ and “oracleomega’ are added to the first and the second elements of the
vector V1, representing whether the source is trigger/difference based (true being trigger-
based) and the platform and the RDBMS where the source resides in that order. A new empty
hashtable is added as the third element of the vector V1 for the relations of this source.

R T W

HT1 Vi —» oracleomega
L 1

Figure5.4. Storing source characteristics.

When the next line is read in, which has the keyword “reation’, a new eement is
added to the newly added hashtable “HT2" with the relation name as the key as shown in
figure 55. For the vaue, a new vector V2 is added. Now this vector will have a single
eement to dart with, but another one might be added later on. This would be covered in

detal in the following sections, dtarting with section 5.3.2 covering the gtoring of synonyms.

61

For now, a new hashtable HT3 is added as the first dement of this vector V2, as shown again
infigure 5.5.

Now, when the attributes are read in line by line, for each of the attributes, a new
entry is added into the hashtable HT3 as shown in figure 5.6, with the attribute name as the
key and a new vector V3 as the vdue. Again, V3 has only two dements to start with, and the
third one is added as when necessry. This is dso covered in detal in the subsequent
sections. For now, based on the type of attribute- either a normal, key or a derived attribute
(for atributes of the warehouse rdations only), the vector V3 will have either * * or “key” or
“derived” as the second dement, with the aitribute name as the firs. This too is shown in

figure 5.6, for the given example. Two attributes are shown added to the hashtable.

62

[e I
] I | 1
1 [} | 1
1 [} |]
T T
1 l | |
| 1 1 1
1 I | 1
1 I | 1
1 [} | I
_——— | 1 1 1
— !] I | |
! 1 [} | 1
1 Fem=tmm——m———p———
1] [} | 1
! 1 I | I
! 1 | | 1
1 | 1 1 1
'] I | 1
“ 1 | | 1
3 > | A
> " A
—) ___2 1 1 1 1
] I | 1 [
ﬂ 1 I | 1
| T [y RSy |
TTTTTTTAT T
] | I 1
| [} 1
|] |
| I]
I I I
| I |
1 1 |
| [} 1
I I 1
| I |
1 1 1
| I '
— | I | o™
—_———m———p—-—-—
g
[oo] 1 T
(@] | I 1
= 1 1 |
i) m = | 1 !
> |8 |—lE| | 1
ha s { I 1
a ° I 1 i
e e = >] 1 i
T !l o B 1 1 h
| | { 1 '
| | 1 1 1
[| U R S ——
I |
I)
1 1
I]
I |
I]
1 1
I |
I)
| |
e —
I | —
I]
1 1 >
I |
I | N
7 P —
0 I |
1 | — a5
i | — &
L T
RN R I

Fgure5.5. Storing relation characterigtics.

63

HT3 [»| SSN I |
FIRSTNAME I[i

varchar(15) |«

V3 > | !

Figure 5.6. Storing attribute characterigtics.

Once the source schemas are added, the same process is repeated for the warehouse
schemas. One needs to note here that the source and the warehouse schemas are stored in the
same dructure to avoid unnecessary wastage of space. Once the source and the warehouse
schemas are stored in the datastructure as described in this section, the synonyms are read in

and are stored as described in the next section.

5.4 Transformation

This forms the fird stage of the matching dgorithm where in the data that has been
reed in from the source file is trandformed to include the homonyms, synonyms, attribute
mappings and the derived attributes. The following sections detall out the implementation

and theissues involved in gpplying dl these to the initid data

5.4.1 Applying the homonyms
When the homonyms are read from the source file, demarked by the keyword
“homonyms’, the data dructure is modified to accommodate these new entries. Again, for

easy comprehension, assume a sourcefile, part of which isshown in figure 5.7.

homonyms::

HOMATT1 :: SLSTUDENTINFO ; S2.COURSETAKEN ; S3.STAFFINFO
HOMATT2 :: SLSTUDENTACADINFO ; S2.COURSETAKEN
HOMATT3:: SLSTUDENTINFO ; S3.STAFFSTATUS

HOMATTA4 :: S2.STUDENTSTATUS; S3.STAFFSTATUS

Figure5.7. Homonym part of the sample sourcefile.

Each line is read in from the source file. For this case, assume thet the firgt line is read
in as shown below:
HOMATT1 :: SLSTUDENTINFO ; S2.COURSETAKEN ; S3.STAFFINFO
Now, as described earlier, this means that the attributes homattl of relations
STUDENTINFO, COURSETAKEN and STAFFINFO are homonymous, or in other words,
these three attributes, though being referred by the same name, need to be identified as three
different aitributes. The solution involves in generating new names for dl the involved

attributes, and replacing the origind attribute names with the newly generated names.

54.1.1 Issues
The solution involves in manipulating the dtributes involved in such a way tha dl
the involved attributes (homettl, homeattl and homaitl of the three different relations in this

case) would not be identified as the same when a search is done on any one of these

65

particular aitribute (homattl). A smple solution would be to add the newly generated name
as a new entity to each of the attributes involved, in this case, homaitl of each of the three
source relations. But again, problems would arise in the next stage, which is generating the
mapping, where in, the updated attribute names need to be readily accessble to generate the
intersection and findly the mapping. Hence another solution needs to be arived a by way of
which, the new attribute names would be readily and easly accessble, as would the origind
names of these attributes if necessxy and the mapping between the origind and the new

names.

5.4.1.2 Implementation
The solution involves in adding the new name for the involved dtribute as the third
element to vector V3 ffigure 5.6] of the attribute in question. One also needs to keep track of
the origind names of these attributes. The solution involves in adding a new hashtable to the
vector V2 (for the specific relation in question), which retains the mapping between the old
and the new dtribute names. This gep is detailed out later in this section. So the steps that
are involved in renaming each of the attributes are:
1. Generating new names for each of the attributesinvolved
2. Adding the new éttribute name to the vector V3
3. Adding a new hashtable (if it does not dready exig for that particular relaion) and
adding an entry into that table with the new name of the attribute as the key and the
origind name asthe vdue

The steps mentioned above are detailed with the example below.

Stepl: Generating new attribute names

This gep involves generating new names for each of the dtributes involves, as dl the
attributes have the same name, and need to be changed. A method has been written, which
takes the current name of the dtribute as the input and returns a new generated name as the
result. In our example, passing homeaitl of relations STUDENTINFO, COURSETAKEN and
STAFFINFO in turn will generate three different names — homattl 001, homeattl 002 and
homattl 003 respectively.

Step2: Updating vector V3

Figure 5.6 shows the vector V3 as it would look for dl the aitributes initidly, when

no new name has been added. Figure 5.8 shows the vector V3 of the attribute homait1 being

updated with the new name homattl 002 by adding it asthe third eement to V3.

HT3

SN [1

NamE []

HOMATTL []

SYNATT2 []
V3

Note how the new name is added as a new
element to vector V3

Char (9)

Figure 5.8. Applying homonyms— step 1.

HOMATT1 002

67

Step3: Adding an entry into hashtable

For each of the attributes that need to be renamed, a method would return the vector
V2 for this specific source relation, as each of the source reations will have one such vector.

In this example, as one congders the attribute homattl, the nethod will be called with
S2 and COURSETAKEN as the parameters for the source and relation names. This method
would return the vector V2 for this specific relation COURSETAKEN.

V2
i HT4
E— !
] | TOMATTLO®) MM e
1 I 1
1 | 1
pommaemmeas e -
HT3 : : :
S S aeesce e e g
i ' I ’
SSN 1
Since Hashtable HT4 does not
NAME [] exist aready, it is newly created
HOMATTL [] and an entry for HOMATT1 002
is added as shown
SYNATT2 ([]
LEGEND
V3 —p Char(9) Newly added
HT Hashtable
HOMATT1_002 V Vector

Fgure5.9. Adding homonyms— step 2.

68

Once vector V2 is obtained, a check is done to see if the hashtable HT4 dready
exigds, as only one such table is created for each of the rdations. So while renaming an
attribute of a relaion that aready had one attribute renamed, an initial check is done to see if
the table exigts. If the hashtable does not exis, then a new eement is added to vector V2 and
the hashtable HT4 is crested. Then a new entry into the hashtable with the new name of the
attribute as the key and the old name as the vaue is added, as shown in figure 5.9. If the
hashtable HT4 does exig, then a new entry is added to the existing table, without cresting a
new one. In our example, the hashtable HT4 does not exist dready. Hence the hashtable is
crested for the source relation COURSETAKEN, and a new entry is added to it. This
example demondrates the renaming process for one attribute, namely homaitl of source

relation COURSETAKEN.

5.4.2 Adding the synonyms
When the synonyms ae read from the source file, demarked by the keyword
“synonyms’, the data structure is modified to accommodate these new entries. Again, for

easy comprehension, assume a source file, part of which is shown in figure 5.10.

synonyms::

SL.STUDENTINFO.SYNATT1 :: S2.COURSETAKEN.SYNATT2 ; S3.STAFFINFO.SYNATT3
S1.STUDENTINFO.SYNATT4 :: S2STUDENTSTATUS.SYNATTS

S2.COURSETAKEN.SYNATT6 :: S3.STAFFSTATUS.SYNATT7; SL.STUDENTACADINFO.SYNATTS8

S2.STUDENTSTATUS.SYNATT9 :: S3.STAFFSTATUS.SYNATT10

Figure 5.10. Synonym part of the sample sourcefile.

69

Each line is read in from the source file. For this case, assume that the firg line is read in as
shown below:

SL.STUDENTINFO.SYNATT1 :: 2.COURSETAKEN.SYNATT2 ; S3.STAFFINFO.SYNATT3
Now, as described earlier, this means that synattl, synatt2 and synait3 of the respective
source relations are synonymous, or in other words, these three atributes, though having
different names, need to be identified as the same attribute. Hence, e attributes synatt2 and
gynatt3 are renamed to “synaitl” as per the design, wherein, the first name is retained and the

rest of the attributes are transformed with the first attribute' s name.

54.2.1 Issues

The solution involves in manipulating the attributes involved in such a way that al
the involved attributes (synaitl, synatt2 and synatt3 in this case) would be identified when a
search is done on this paticular atribute (synattl). A smple solution would be to add the
new name as a new entity to each of te attributes involved, in this case, synatt2 and synatt3.
But problems would arise in the next dage, which is generding the mapping, where in, the
updated attribute names need to be accessed to generate the intersection and findly the
mapping. Hence another solution needs to be arrived a by way of which, the new atribute
names would be readily and easly accesshble, as would the origind names of these attributes

if necessary and the mapping between the origina and the new names.

5.4.2.2 Implementation

The solution here involves two Seps, the firg being adding the new name for tha
atribute as the third dement to vector V3 ffigure 5.6] of the attribute in question. The second
step is necessary to make the new names easlly accessble and to keep track of te origind
names of the attributes. This step involves in adding another hashtable to the vector V2 (for

the specific rdaion in question), which retains the mapping between the old and the new

70

atribute names. This step is detalled out later in this section. So the two steps that are
involved in renaming each of the attributes are:
1. Adding the new attribute name to the vector V3
2. Adding a new hashtable (if it does not dready exig for that particular relaion) and
adding an entry into that table with the new name of the attribute as the key and the
origind name asthe vaue

The two steps mentioned above are detailed with the example below.

Stepl: Updating vector V3

Figure 5.6 shows the vector V3 as it would look for dl the atributes initidly, when
no rew name has been added. Figure 5.11 shows the vector V3 of the attribute synatt2 being
updated with the new name synattl by adding it as the third element to V3.

HT3 |——[s [
N —
HoMATT1 [

SYNATT2 [:::::j______l

V3 »| Char(9)

Note how the new name is added as a new SYNATT1 '
element to vector V3 > :

Fgure5.11. Adding synonyms— step 1.

71

Step2: Adding entry into hashtable

Figure 5.5 shows a vector V2, which initidly had only one eement. Section 5.3.1
describes the purpose of this vector. Now, for each of the attributes that need to be renamed,
a method would return the vector V2 for this specific source relation, as each of the source
relations will have one such vector. In this example, if the attribute synatt2 is consdered,
then the method will be cdled with S2 and COURSETAKEN as the parameters for the

source and relation names. This method would return the vector V2 for this specific relation

COURSETAKEN.
V2
i HT4
i !
I:l P { HOMATT1 002 HOMATT1
SYNATT1 SYNATT2 |q——
HT3 i i :
i v H PSPPI VRPN EPRUPI I
SSN 1]
Since hashtable HT4 aready
NAME L] exists, only anew entry is added as
HOMATTL [] shown for this attribute SYNATT1
SYNATT2 ([]

LEGEND
V3 —p Char(9) Newly added

SYNATT1 |

Figure5.12. Adding synonyms— step 2.

72

Once vector V2 is obtained, a check is done to see if the hashtable HT4 dready
exigds, as only one such table is created for each of the rdations. So while renaming an
attribute of a relaion that already had one attribute renamed, an initia check & done to see if
the table exigts. If the hashtable does not exis, then a new eement is added to vector V2 and
the hashtable HT4 is crested. Then a new entry into the hashtable with the new name of the
attribute as the key and the old name as the vaue is added, as shown in figure 5.9. If the
hashtable HT4 does exig, then a new entry is added to the existing table, without cresting a
new one. In this example as shown in figure 5.12, as the hashtable HT4 dready exids, one
just adds a new entry to it. This example demondirates the renaming process for one attribute,

namely synatt2 of relation COURSETAKEN.

5.4.3 Storingthe attribute mappings

The process involved in goring the atribute mappings to the datastructure is no
different than the gdoring of the synonyms and homonyms as detailed out in the previous
couple of sections. From section 5.2.4, it is clear that the attribute mappings are defined very
much smilar to the synonyms, except for the fact that this mapping is between the source
and the warehouse schemas, as againgt two sources. Though it supports three different cases,
there is smply a one to one mapping between the DW attribute and the corresponding
atribute from the source reation, which smply means tha this atribute of this warehouse
relation is the same as the attribute of the given source reaion, the only difference being the
change of name by which it isreferred by.

Again, the steps involved here are the same as that covered under section 5.4.2 for
goring the synonyms, differing only by the rdations involved, warehouse relations in this

case againg source relationsin the former case (synonyms).

73

5.4.4 Storingthederived attributes
As mentioned in chapter 3, the derived attributes need to be handled separately. They
cannot be added to he data structure until after the generation of the mappings, as they are
not required to generate the same. As they are not required until after the generation of the
mappings and user vdiddaion, the derived aitributes and the deriving aitributes from the
source relations are stored in a temporary sore initidly, and would be covered again after the

generdion of the mappings for dl the warehouse relations.

5.4.5 Completing the hashtable

From sections 5.4.1, 54.2, 5.4.3, it is bare that for &l attributes of the source and the
warehouse relaions that require to be referred to by a different name (under normalization),
an entry is created in a new hashtable HT4 which would contain the <new name, old name>
pair for eech of the atributes. But a the end of the normdization process, those attributes
that do not require a name change, or in other words, those attributes that have not been
transformed are not accounted for in this new hashtable HT4. The problem arises in the later
dage when this hashtable is the only structure referred to, to get the set of attributes for the

various relaions to generate the possible mappings.

54.5.1 Implementation

The implementation is a smple on which involves in obtaining a set of atributes for
each of the source and warehouse Eations that are not present in the hashtable HT4 for the
same, and adding an <original name, original name> pair to the hashtable for each of the
remaning dtributes. Figure 512 shows the incomplete hashtable HT4 that would be

completed as shown in figure 5.13.

74

V2
i HT4
i !
I:l P | HOMATT1 002 HOMATT1
SYNATT1 SYNATT2
SSN SSN
HT3 <«
l NAME NAME
h 4
SN []
For the remaining attributes of the
NAME L] relation, SSN and NAME in this
HOMATTL example, the pair <SSN, SSN>and
I <NAME, NAM E> have been added

SYNATT2 ([1] to HT4 to complete it.

LEGEND
V3
> Char() Newly added

HT Hashtable
V Vector

Figure5.13. Completing the hashtable HT4.

5.5 Intersection

As mentioned earlier, this sage involves generating a list of possble source relations
that have a least one aitribute in common with the warehouse relaion in question, dong with
the st of dtributes that the rdaions have in common with this warehouse reation. This
informetion is gored in a dructure, the description of whose implementation follows in this
section. At the end of this stage, one is required to have the following information for each of

the warehouse relations in question namely,

75

1. The lig of source reaions that have a least one dtribute in common with this
warehouse rdation in question.

2. For each of these source relations, a st of atributes that these relations have in
common with the warehouse relaion.

The implementation would be best explaned with an example This would be
referred back in both the remaining parts of the agorithm. Let us assume a single warehouse
relation. The same would be repesated for each of the rest of the warehouse reations. Assume
the following information for the warehouse relaiion as described in figure 5.14 and table
5.1. One needs to note here that the source relations and the attributes are sdlected in such a

way that they cover all the possible scenarios.

Warehouse Name: DW1
Warehouse Relation Name: DW-R1
Attribute Set: [ABCDEF

Also assume that the following source relations have some attributes in
common with this warehouse relation as shown below (note that all the
common attributes are highlighted):

Fgure5.14. Example to demondrate the matching agorithm.

Table5.1. Example schemas.

Sour ce Relation Attribute Set
s R1 {ABCDXYZ}
sl R2 {DEFM N}
) R3 {ABCDEF}
S R4 {ABCDEF}

76

5.5.1 Issues
This section covers the vaious issues involved in implementing this part of the
agorithm.

1. To enable proper comparisons of the attributes, one is required to consder the
transformed [refer chapter 3, section 3.5 atribute names for the purpose of
comparison.

2. As the pseudo-code of the intersection part of the dgorithm in chapter 3 illudtrates,
for each of the warehouse relations, one is required to do an attribute-attribute
comparison between the attributes of the warehouse relaion and the attributes of the
various source relations The problem involves in ariving a some way to improve
the performance of this attribute-attribute comparison, which otherwise would require
one to do the comparison N x M times [N being the total number of attributes of al
the source relations and M the number of atributes of the warehouse rdation in
question).

3. For each of the warehouse rdlations, a way has to be devised by which the result of
the comparisons, which is the lig of source reations that have any dtribute in
common with the warehouse relation and the set of common éttributes for each of the

source relations in question can be stored somewhere for easy retrieva in the next
stage.

5.5.2 Implementation

Sections 5.4.1, 5.4.2 and 5.4.3 detail out part of the transformation process, wherein
the transformed attribute names are stored in a hashtable HT4 as illudrated in figure 5.13.
This hashtable is completed as described in section 5.3.6. One needs to note at this point that

this hashtable HT4 with the <new, old> dtribute name pairs would exist for al the relaions

77

of the schemas, including the warehouse relations. Hence getting back a set of transformed
attributes for any of the relations doesn't seem to pose a problem anymore.

The other main issue involved here is the aitribute comparison between the source
and the warehouse relations. To improve the comparison from a nave N x M number of
comparisons, [N being the total number of atributes of dl the source relations and M the
number of attributes of the warehouse relation in question] a method has been formulated
that would decresse the number of comparisons from N x M to just N. For each of the
warehouse reldions, indead of obtaining the set of normdized attributes, the whole hashtable
HT4 is obtained. For each of the source rdlations, the set of normalized attributes is obtained
by returning just the key set of the hashtable HT4 for that source relation in question. Now,
comparison involves in checking if each of the dtribute of the source rddions exig in the
warehouse reldion, by hashing into the hashtable HT4 for the warehouse relation. This way,
the performance of the comparison is tremendoudy improved from N x M to just N.

One dill needs some way to dore the lis of source reations and the common
atributes for each of the warehouse rdations. To implement this a new data structure
“intersectVector” is created, which, will contain the following information for each of the
warehouse relaions at the end of this stage:

1. Thewarehouse name.

2. Thewarehouse relaion name (of the relaion in question).

3. The number of source reations that it has a least one atribute in common with.

One needs to note here that it will be updated as and when a new source relaion
with some common attribute with the warehouse relation is found.

4. A lig of the source rdations that have common atributes with this warehouse

relation. Again, for each of these source relations added to this structure, the set of

common attributes of that relation are added too.

78

Section 4.3 of chapter 4 detalls out this data Structure and figure 4.2 illugtrates the
same. The doring of daa in this dructure is best described with the given example [figure
5.14]. The dructure “intersectVector” is shown in figure 5.15 when it is first created. It

would congs of only the main vector V1.

Vi ——>

Figure5.15. Initid intersect vector.

Now, as per the example, an ingdance for the warehouse relation “DW-R1” is created,
where by, vector V2 is added as an dement to vector V1 and the first three eements of this
new vector V2 would contain the warehouse name, the warehouse relation name, and a field
that gives the number of source relations that have attributes in common with this warehouse

relation (initidized to ZERO) respectively, as shown in figure 5.16.

79

vi f————]

V2 —» DW1

DW-R1

LEGEND

Newly added

Figure5.16. Intersect vector — after cregting an entry for the first warehouse relation.

As explained earlier, for each of the source relations, the set of atributes is retrieved
from the stored data structure. Each attribute of each of the source relation is considered and
compared with the hashtable HT4 of the warehouse relation (DW-R1 in this case), by
hashing the attribute name into the hashtable to check if that attribute exigs. If it exigs, then
that particular attribute is added to a temporary set. Once dl the attributes of a source relation
have been checked for existence with the warehouse rdation, this temporary set of attributes
adong with the source name and the source relation name are added to the datastructure
“intersectVector” by adding a new entry into vector V2, which would be a sructure
(attribSet) which has exactly three ements — one for the source name, one for the source
relation name and the third, a set (for the attribute set).

This is illudrated in figure 5.17 for the first source relation, namey R1 of source Sl

as per the example. In the example one can see that this relation R1 has the attributes [A B C

80

D] in common with the warehouse relation DW-R1. One thing to note here is that if a source

relation has no éttribute in common with the current warehouse relation, it is Smply ignored.

Vi ———]

V2 > DW1

LEGEND

Newly added

: AttribSet
v
DW -R1
! v
e S
i R1
i ! ABCD

Figure5.17. Intersect vector — after adding the first source relation.

Agan, the same geps are followed for each of the remaining source relations until al

the relations have been compared againg this warehouse rdation in question. Then the whole

cycle is repeated for he rest of the warehouse reations. The Sructure “intersectVector” after

comparing the aitributes of the warehouse rdation DW-R1 with the source relations of the

given exampleis as shown in figure 5.18.

81

Vi]
attrihSat

— |

v s1
V2 P DW1 —> R1
DW-R1 [ABCD]
4
S1
L 1
j R2
L 1
[DEF]
L 1
2
L 1
R3
[ABCDEF]
LEGEND S2
Newly added T
[ABCDEF]

Figure5.18. Intersect vector — a the end of intersection.

5.6 Mapping generation

Once the sat of source redions that have some atribute(s) in common with the
warehouse relation is obtained and stored in the structure “intersectVector” as detailed out in
the previous section, the next stage would be to generate dl mappings that can possibly result
from the source rdations to the warehouse rdation in question. One aso needs to figure out
the kind of the mapping — whether it is a projection, join, or a union/ intersection. The
remaining sections describe the implementation of thisfind stage of the matching agorithm.

82
The resulting sructure “inter sectVector” from the previous stage, that stores the set
of intersecting attributes and the corresponding source and relation names for each of the data
warehouse relation is the only dructure that is required in this sage. As mentioned in chapter
3, the quest here is to identify how each of the warehouse relaions is derived from the source
relaions. The various possible scenarios are;
1 A projection from a single source relation (maybe complete or partia)
2. A join of two or more source rdations (it maybe a normd join or a cartesan
join, and acomplete or apartiad projection on join)
3. A union or intersection of two or more source relations (agan, it may be a
complete or partia projection on union)
For each of the warehouse relations, the sets of attributes of the source relations are retrieved
and andyzed and the plausible mappings generated. The various stages involved are:
1 Check for any projection
2. Check for ajoin, union and intersection
Agan, a the end of this stage, one is required to have the following information for each of
the warehouse relations in question namdly,
1. The various mappings that can be possible between the source reations and
the warehouse relations, giving the various possble mappings of the source

relaions that make up a projection, join or aunion / intersection.

5.6.1 Issues

One issue that is involved in the implementation of this dage of the matching
dgorithm is the doring of the generated mapping information for each of the warehouse
relaions. One needs the following information to be sored for each of the generated

mappings for any warehouse relation:

83

1. The type of mapping- whether a projection, join, or union / intersection
2. In any case, one needs to Store the source name, the reation name and the set
of dtributes that the particular source reation has in common with the

warehouse relation.

5.6.2 Implementation

A third and find dructure named “checkVector” is created for the sole purpose of
goring the information of the generated mappings for each of the warehouse relations. There
would exist an indance of this dructure for each of the warehouse reaions. This structure
has been detailed out in section 4.4, chapter 4. The next couple of sections describe the two

gepsinvolved in this stage namely check for projection and check for join.

5.6.3 Check for projection

For each of the source reaions from the structure “intersectVector”, the set of
common attributes is compared with the set of attributes of the warehouse relation (excluding
the derived atributes if any) in question for equdity. If the result of the check is true it
implies that the warehouse relation is indeed a projection of that source relation. This check
is not stopped when a match is found, and is done for dl the source relaion entries in the
dructure “intersectVector” that warehouse relaion in question, as one might be able to derive
the warehouse relation from more than one source relation. For every check where the result
is true, the source relation information is added to the new data structure ‘checkVector”. A
new vector V2 is added as a new dement to the existing vector V1, and tis in turn would
have two dements, one for the type of projection (complete or partid) and the other to store
the “attribSet” dructure of the source relation in question, which would contain dl the

required information about the source reation, namely, the source name, the source relation

84

name and the set of common dtributes Again, this is best illusrated with an example. The

initial empty “checkVector” isas shown in figure 5.19.

Vi ——»

Figure5.19. Initid check vector.

In the given example [figure 5.18], relations R4 and R5 of source S2 would satisfy
this check condition, as there is a posshility of the warehouse rdation DW-R1 being a partid
projection of these reaions. The checkVector after this information being added to it is as
illustrated in figure 5.20.

Vi —f v2 AttribSet

E i “ complete” &%
1 —— ®

[ABCDEF]

LEGEND
“complete” S2
Newly added i

e =

[ABCDEF]

Figure 5.20. Check vector after projection.

A new vector V2 is added as a new entry to vector V1 and the attribSet structure of relaions
R4 and R5 are added to V2 as shown in figure 5.20.

85
5.6.4 Check for join, union and inter section
This check is done only if the no of source rdation entries in “intersectVector” is
greater than ONE, as it takes a the least two relations to make up a join or a union. Now,
agan, for dl of the source reations that are listed in the data Structure ‘inter sectVector” for
the warehouse reation in question, al possble combinations of source rddions are
considered, and the combined set of common dtributes of each pair of source relations are
obtained and checked with the warehouse reation for equdity. Join and unior/ intersection
are determined by the following checks.

5.6.4.1 Check for join
Whenever there is a maich between the combined attribute set of the source relation
par and the warehouse rddtion, it implies that this join of source reations forms the
warehouse relation, and that it is a vaid mapping. This mapping information is added to the
data structure “checkVector”. The things to figure out here are
1. The kind of join — a join with a common attribute (usudly the key dtribute), or a
Cartesan join, with no attributes in common
2. Whether it isacomplete or apartid projection onjoin
Agan, a new vector V2 is added as a new eement to the exigting vector V1, and this in turn
would have three elements instead of two as in projection, one for type of join (complete or
partia projection on join) and the remaining two to store the “attribSet” <ructures of the two
source relations tha make up the join of the warehouse rdation in question, which would
contain al the required information about the source reations, namely, the source name, the
source relation name and the set of common attributes. Again, this is best illugtrated with an
example. From the given example [figure 5.18], it is obvious that a number of joins can be

possibly generated to derive the warehouse relation asillugtrated in table 5.2.

86

Table5.2. All possblejoins.

JOIN OF JOIN ATTRIBUTES TYPE
SLR1U SLR2 [D] PARTIAL
SLR1U 2R3 [ABCD] PARTIAL
SLR1U S2R4 [ABCD] PARTIAL
SLR2U 2R3 [DEF] PARTIAL
SLR2U S2R4 [DEF] PARTIAL
S2R3U 2R4 [ABCDEF COMPLETE

All of these possble mappings are added to the structure checkVector. But for the
purpose of illudration, only the fird mapping is added as illudtrated in figure 5.21. This
completes this sage wherein the various plausble mappings in the form of joins are

generated for each of the warehouse relations.

Vi —»

V2

!

AttribSet

I

“complete’

S3

[1

R6

“complete’

[ABCDEF]

[1

Y,

R4

[ABCDEF]

“partial”

R1

[]

[ABCD]

LEGEND

Newly added

[]

5.6.4.2 Check for union or intersection

Figure5.21. Check vector after join.

R2

[DE F]

87

Whenever there is a match between the combined attribute set of the source reation

par and the warehouse reation, and dso, if the common attributes of the two source

relations of that par turn out to be equd, then it implies tha this is a case of union or

intersection of the source redations forming tha particdar par. This mapping information is

added to the data structure ‘checkVector”. The thing to figure out here is the kind of union /

intersection — Whether it is a union on a complete or a patiad projection of the source

relations.

88

Agan, for each vaid mepping, a new vector V2 is added as a new dement to the
exiding vector V1, and this in turn would have three dements as in join, one for type of
union / intersection (complete or partia projection) and the remaning two to dore the
“attribSet” structures of the two source relations that make up the union / intersection of the
warehouse reation in question, which would contain al the required information about the
source relaions, namely, the source name, the source relaion name and the set of common
attributes. One needs to note here that any one pair of source relations that satisfy the above
checks can ether be a union or an intersection, which can only be determined by examining
the tuples of esch of the source reation in quesion as well as those of the warehouse
relaion. As that is not done a this point, where dl the rdations are handled a a reationd
leve, it is left as is for now. Agan, this is best illudrated with an example. From the given
example [figure 5.18], it is obvious that the only possble union or intersection is the one of
relations R3 and R4 of source S2.

All of these possible mappings are added to the structure checkVector as illustrated in
figure 5.22. This completes this dage wherein the various plausble mappings in the form of

unions or intersections are generated for each of the warehouse relations.

Vi —»

V2

!

AttribSet

'

“complete’

S3

[1

R6

“complete’

[ABCDEF]

[1

Y,

R4

[ABCDEF]

SL

“partial”

R1

[]

[ABCD]

[]

SL

R2

[DE F]

S2

“‘comp union”

R3

[1

[ABCDEF]

LEGEND

Newly added

[1

S2

Figure 5.22. Check vector after union / intersection.

R4

[ABCDEF]

89

90

5.7 User validation
The find step in the dedgn involves the intervention of the user, where the system
spews out dl the possble mappings that it has generated for each of the warehouse relations
and waits for the user to vdidate the results with the one mapping that would be appropriate
for the case as required by the user. One needs to note here again that as dready illugtrated in
the previous chapters, this is not a completely automated process, and ill requires the user
vaidation a the end to obtain the find exact mapping for the warehouse relaion as required
or envisoned by the user & an ealier dage. Once this vdidation is done for dl the
warehouse rdations in question, the next step would be the generation of the triggers for
setting up the warehouse for updates. This part is left as part of future work that would be

covered in the following chapter.

5.8 Chapter summary

This chepter covered the implementation of the matching adgorithm and the issues
involved in the same. The next chapter taks about the performance optimizations done on
the dgorithm.

CHAPTER®G
PERFORMANCE OPTIMIZATION AND TESTING

6.1 Overview

This chapter evauates the performance of the maiching dgorithm and presents one
with the various optimization techniques that have been implemented to improve the
performance of the agorithm, and aso presents other techniques that can be implemented to
further improve the performance of the same. It dso describes the various tests that have

been performed on the agorithm to check for consstency and exactness.
6.2 Implemented optimization techniques

6.2.1 Useof hashtables

An un-optimized code would take an extended time period for searching for attributes
or aset of attributes, which have been extensvely used in the dgorithm.

Optimization here involves in implementing the source and the warehouse reaions
as hashtables, which facilitates a more easer and effective search for the attributes of the

relations, be it source or warehouse.

6.2.2 Reduced number of cycles

In any single run of the intersection phase of the agorithm [section 3.5, chapter 3],
given the number of atributes of the source relation being M and the number of attributes of
the warehouse rdation being N, an un-optimized code would have to run MxN cycles to
fecilitate the comparison of each of the attributes of the source reation with al the attributes

of the warehouse relation.

91

92

Optimization here involves in implementing the source and the warehouse reaions
as Hadhtables as mentioned in the previous section, which enables hashing an attribute into
the hashtable to check for existence as againgt making a run through dl the dtributes of the
warehouse relation. This optimization reduces the number of cycles from MxN as described
above to just M, which would be just the number of attributes of the source relaion for each

run. Thisisillugrated in figure 6.1.

source relation war ehouse relation source relation war ehouserelation
Al WAL Al —
A2 WA2 A2 S
A3 WA3 A3 S
A4 WA4 Ad -
A5 WAS A5
A6 =\ WA6 A6
S S S ;
Fmmmmm =i T ymmm———m- y '
MxN M T
/ / \Y
Warehouse relation as
M N M a hashtable
A. Before optimization — each of attributes of B. After optimization — each of attributes of the
the source relation is compared with each of the source relation is hashed into the warehouse
attributes of the warehouse relation, resulting in relation, which is considered as a hashtable, thus
MxN number of cycles per source relation per reducing the number of cycles per source relation
warehouse relation per warehouse relation to just M

Figure 6.1. Reducing the number of cycles.

93

Figure 6.1 illudrates a sngle cyde of the agorithm for the intersection phase thet is
the main phase that needs optimization. As explained in the previous chapters, in this phase
of the agorithm, for each of the warehouse redtions, the atributes of each of the source
relaions need to be compared with the attributes of the warehouse relation to check for
equality. As illudrated in the figure, without optimization, this would result in MxN number
of cycles to be peformed for each source, warehouse relaion par. On optimization, this
reduces to just M, which is the number of aitributes of the source relation in question, as

illustrated in part B of the figure.

6.2.3 Filtered sourcerelations

After the second dstage, which is intersection, the lig of source reations is effectivey
filtered, and one ends up with only the lig of source relations that have some dttribute in
common with esch of the warehouse rddions. This again reduces the totad number of

comparisons that are required in the subsequent stages.
6.3 Techniquesto improve optimization

6.3.1 Paralldization

The dgorithm has been implemented in such a way that each cycle involving esch
one of the warehouse relations can be executed independent of the other. This paves a way
for the dgorithm to be further optimized by means of padldization where in the dgorithm
can be run in pardld for dl the involved warehouse rdations. Though not implemented, this
can be implemented to further improve the performance. Thisisillugtrated in figure 6.2.

When one refers back to the structure ‘intersectVector” [sections 4.3 & 5.7] and the
proceedings of the algorithm, it is clear that for each cyde involving each of the warehouse
relaions, the same steps are executed. One would note at this juncture that each of the cycles

have been implemented in such a way that they are totally independent of each other. Hence,

94

to further optimize the process, one can eadly implement paralelization here, wherein, each

of the cycles can be made to perform in pardle, without obstructing any of the other cycles.

Threads can be safely spawned to perform the same.

inter sectVector

DWRL1 Execution of
eachcycle

DWR2 proceeding in
sequence —

DWR3 serially

DWR4

DWR5

DWR6

v

intersectVector

DWR1 - > | Execution of all
thecycles

DWR2 - > | proceedingin
parale

DWR3 >

DWR4 - >

DWR5

DWR6

A. Before optimization — Each cycle involving
each of the warehouse relations is executed in
sequence — in other words, execution is done
serially

B. After optimization — Each cycle involving
each of the warehouse relations is executed in
parall el with the rest of the cycles, thus saving
on execution time

Figure 6.2. Pardldization.

6.4 Testing & test cases

A comprehensive and exhaudtive testing has been done on the system to check for

consgency and correctness, ranging from checks for boundary conditions to checks to

ensure that each part and phase of the agorithm peforms as clamed. The list of the tedts

performed and the results from the system have been included as part of Appendix A.

CHAPTER 7
CONCLUSIONS AND FUTURE WORK

7.1 Summary
To summarize, this thess addresses the problem of schema matching and the need for
automating mapping generation. The complexities involved in automation were a0
addressed in detail. This thess designed and implemented a solution for automating schema
matching and mapping generation pertaining to data warehouses for the relaiond domain.
This thess desgned and presented a new maiching dgorithm, and talked a&bout the
performance and implementation issues involved. This thess aso looked a improving the
performance of the agorithm in various ways, including pardldization.
In concluson, one needs to redize that this is not the find verson of the tool. The
tool that has been developed in thisthess:
» Enables understanding of the mapping space
> Endbles evdudion of mappings from different viewpoints (Ease of implementation,
€tc)
> Enables the warehouse designer to choose the appropriate mapping for the warehouse
schemas
> Allows warehouse designers to explore severd mappings before findizing the dw
schemaThis tool can be extended to include generation of triggers and code for
propagating the updates from the source schemas to the warehouse schemas, which has

been left as part of future work.

95

96
7.2 Futurework
Future work on this thess can involve the following areas as described in the

following sub-sections.

7.2.1 Implementing a data dictionary/ thesaurus

This would involve integrating the agorithm with a data dictionary and a thesaurus
that would effectively reduce the amount of work that needs to be performed on the part of
the user, who a present, has to provide the sysem with the list of synonyms that would be
found in the schemas. Adding a data dictionary and/or a thesaurus would facilitate the system
to obtain the st of smilar attributes which would be comparable to any given attribute of the
schemas in question, which would enable the same to generate a more comprehensive list of

mappings between source and warehouse relations, with little user intervention.

7.2.2 Integrating triggersand updates

This would involve extending the sysem to include the setting of triggers to
effectively update the warehouse rdations as the source reations are modified by means of
CREATE, DELETE or UPDATE. Updatng the warehouse reaions by means of a
difference-based approach as againgt the trigger-based gpproach can dso be implemented as

an dterndtive.

7.2.3 Extending the system to multiple platforms

Once triggers and updates are integrated with the system as described in the previous
section, the system can be extended to support multiple RDBMs, wherein, the system should
be able to update the warehouse, irrespective of the platform of the source and warehouse

relaions. It should be able to support updates across multiple platforms.

APPENDIX A

TEST CASESAND PROGRAM OUTPUTS

97

Case 01: complete projection
schemas:

source S1 true ORACLEOMEGA
relation R1

attribute A char(9)

attribute B char(9)

attribute C char(9)

atribute D char(9)

relation R2

attribute E char(9)

attribute F char(9)

atribute G char(9)

attribute H char(9)

warehouse DW

reaion R

atribute A char(9)

attribute B char(9)

attribute C char(9)

attribute D char(9)

Output 01

Warehouse Relation: R
no of possible Mappings-- 1
Mapping No:: 1

agngle source relation projection
And it isacomplete projection of the source relation

Source Name -- S1
Rdation Name-- R1

Common Attributes::

Case 02: partial projection
schemas:

source S1 true ORACLEOMEGA
relation R1

attribute A char(9)

atribute B char(9)

attribute C char(9)

attribute D char(9)

relation R2

attribute D char(9)

atribute E char(9)

attribute F char(9)
warehouse DW

relaion R

attribute A char(9)

attribute B char(9)

atribute C char(9)

Output 02:

Warehouse Rdation: R

no of possble Mappings-- 1

Mapping No:: 1

asingle source relation projection
And it isapartia projection of the source relaion

Source Name -- S1
Rdation Name-- R1

Common Attributes::

Case 03: cartesian join (complete projection on join)
schemes:

source Sl true ORACLEOMEGA

relation R1

attribute A char(9)
attribute B char(9)
atribute C char(9)

rdaion R2

attribute D char(9)
attribute E char(9)
attribute F char(9)

warehouse DW
rdation R

attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)
attribute E char(9)
atribute F char(9)

100

Output 03:

Warehouse Relation: R

no of possble Mappings-- 1
Mapping No:: 1

join of two source relaions
And it is a complete projection on join

Cartesan join with no join attribute

Source Name -- S1
Rdation Name-- R2

Common Attributes:

Source Name -- S1
Rdation Name-- R1

Common Attributes::

Case 04: cartesian join (partial projection on join)
schemes:

source Sl true ORACLEOMEGA

relation R1

attribute A char(9)

attribute B char(9)
atribute C char(9)

101

102
reation R2

attribute D char(9)
attribute E char(9)
atribute F char(9)
warehouse DW
reaion R

attribute A char(9)
atribute B char(9)
attribute C char(9)
attribute D char(9)
Output 04:
Warehouse Rdation: R
no of possible Mappings-- 1
Mapping No:: 1

join of two source relaions
Anditisapartid projection on join

Cartesan join with no join attribute

Source Name -- S1
Rdation Name-- R2

Common Attributes::

Source Name -- S1
Rdation Name-- R1

Common Attributes::

103
Case 05: join (singlejoin attribute & complete projection on join)

schemas:

source Sl true ORACLEOMEGA
relation R1

attribute A char(9)
attribute B char(9)
attribute C char(9)
relation R2

atribute C char(9)
attribute D char(9)
attribute E char(9)
warehouse DW
relaion R

attribute A char(9)
attribute B char(9)
atribute C char(9)
attribute D char(9)
attribute E char(9)
Output 05:
Warehouse Relation: R
no of possible Mappings-- 1
Mapping No:: 1

join of two source relaions
And it is a complete projection on join

Equi join with join attributes—
Join Attribute(s)::

Source Name -- S1
Rdation Name-- R2

Common Attributes::

Source Name -- S1
Rdation Name-- R1

Common Attributes:

Case 06: join (Snglejoin attribute & partial projection on join)
schemes:

source S1 true ORACLEOMEGA
relation R1

atribute A char(9)

attribute B char(9)

attribute C char(9)

relation R2

attribute C char(9)

atribute D char(9)

attribute E char(9)

warehouse DW

rdation R

atribute A char(9)
attribute B char(9)

104

105

attribute C char(9)
atribute D char(9)

Output 06:

Warehouse Relation: R

no of possible Mappings-- 1
Mapping No:: 1

join of two source reations
Anditis apartid projection on join

Equi join with join attributes --
Join Attribute(s)::

Source Name -- S1
Rdation Name-- R2

Common Attributes::

Source Name -- S1
Rdation Name-- R1

Common Attributes:

Case 07: join (multiplejoin attributes & complete projection on join)
schemas:
source S1 true ORACLEOMEGA

rdation R1

atribute A char(9)
attribute B char(9)
attribute C char(9)
atribute D char(9)

rdation R2

attribute C char(9)
attribute D char(9)
attribute E char(9)
atribute F char(9)

warehouse DW
rdaion R

attribute A char(9)
attribute B char(9)
attribute C char(9)
atribute D char(9)
attribute E char(9)
attribute F char(9)

Output 07:

Warehouse Rdlation: R

no of possible Mappings-- 1

Mapping No:: 1

join of two source relaions
And it isacomplete projection on join

Equi join with join attributes --

Join Attribute(s)::

Source Name -- S1

106

107
Rdation Name-- R2

Common Attributes::

Source Name -- S1
Rdation Name-- R1

Common Attributes:

Case 08: join (multiplejoin attributes & partial projection on join)
schemes:

source S1 true ORACLEOMEGA
relation R1

attribute A char(9)

attribute B char(9)

atribute C char(9)

attribute D char(9)

relation R2

attribute C char(9)

atribute D char(9)

attribute E char(9)
attribute F char(9)

warehouse DW

reaion R

attribute B char(9)

atribute C char(9)

attribute D char(9)

attribute E char(9)

Output 08:

Warehouse Rddion: R

no of possible Mappings-- 1
Mapping No:: 1

join of two source relaions
Anditisapartid projection on join

Equi join with join aitributes --
Join Attribute(s)::

Source Name -- S1
Rdation Name-- R2

Common Attributes::

Source Name -- S1
Rdation Name-- R1

Common Attributes::

108

109
Case 09: projection or join

schemas:;
source S1 true ORACLEOMEGA
rdation R1

attribute A char(9)
attribute B char(9)
attribute C char(9)
atribute D char(9)
attribute E char(9)

rdation R2

attribute D char(9)
atribute E char(9)
attribute F char(9)
attribute G char(9)
attribute H char(9)

warehouse DW
relaion R

attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)
attribute E char(9)
Output 09:
Warehouse Rdlation: R
no of possble Mappings-- 2
Mapping No: 1

asingle source relation projection
And it isa complete projection of the source relation

110

Source Name -- S1
Rdation Name-- R1

Common Attributes:

Mapping No:: 2

join of two source relaions
Anditisapartid projection onjoin

Equi join with join attributes —

Join Attribute(s)::

Source Name -- S1
Rdation Name-- R2

Common Attributes:

Source Name -- S1
Rdation Name-- R1

Common Attributes::

111
Case 10: union / inter section

schemas:

source S1 true ORACLEOMEGA
relation RL

attribute A char(9)
attribute B char(9)
attribute C char(9)
atribute D char(9)
relation R2

attribute A char(9)
attribute B char(9)
atribute C char(9)
attribute D char(9)
warehouse DW
relation R

attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)
Output 10:
Warehouse Rdlation: R
no of possble Mappings-- 4
Mapping No:: 1

asingle source relation projection
And it isacomplete projection of the source relation

Source Name -- S1
Rdation Name-- R2

Common Attributes::

Mapping No:: 2

asingle source relation projection
And it isa complete projection of the source relation

Source Name -- S1
Rdation Name-- R1

Common Attributes::

Mapping No:: 3

join of two source relaions
And it is a complete projection on join

Equi join with join attributes --
Join Attribute(s)::

Source Name -- S1
Rdation Name-- R2

Common Attributes:

112

113
C
B

Source Name -- S1
Rdation Name-- R1

Common Attributes:

Mapping No:: 4
union or intersection of two source reations

Source Name -- S1
Rdation Name-- R2

Common Attributes:

Source Name -- S1
Rdation Name-- R1

Common Attributes:

Case 11: synonyms

schemas:

source S1 true ORACLEOMEGA
relaion R1

attribute A char(9)
attribute B char(9)
attribute C char(9)
atribute D char(9)

rdation R2

attribute E char(9)
attribute F char(9)
atribute G char(9)
attribute H char(9)

warehouse DW
relaion R
attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)
attribute F char(9)

attribute G char(9)
atribute H char(9)

Synonyms:
SLR1D: SLR2E
Output 11:

Warehouse Rdation: R

no of possible Mappings-- 1

114

115
Mapping No:: 1

join of two source relaions
And it is a complete projection on join

Cartesian join with no join atribute --
Source Name -- S1
Rdation Name -- R2

Common Attributes:

Source Name -- S1
Rdation Name-- R1

Common Attributes:

Case 12: homonyms

schemes:

source S1 true ORACLEOMEGA
relation R1

attribute A char(9)

attribute B char(9)

atribute C char(9)

attribute D char(9)

relation R2

attribute A char(9)

attribute B char(9)
atribute C char(9)
attribute D char(9)

warehouse DW
relation R
attribute A char(9)
attribute B char(9)

atribute C char(9)
attribute D char(9)

homonyms:

C:SLR1;S1LR2
D:SLR1;S1L.R2

dwmapping::

DW.RC: SLR1C
DW.RD: S1LR1D
Output 12:

Warehouse Relation: R

no of possible Mappings-- 2
Mapping No:: 1

asingle source relation projection
And it isacomplete projection of the source relation

Source Name -- S1
Rdation Name -- R1

Common Attributes::

116

C
B

Mapping No:: 2

join of two source relaions
Anditisapartid projection onjoin

Equi join with join aitributes --
Join Attribute(s)::

Source Name -- S1
Rdation Name-- R2

Common Attributes::

Source Name -- S1
Rdation Name-- R1

Common Attributes::

117

10.

11.

12.

REFERENCES

Madhavan, J., P.A. Berngtein, and E. Rahm, Generic Schema Matching with Cupid.
2001, Microsoft Corporation.

Rahm, E. and P.A. Berngtein, On Matching Schemas Automatically. 2001, MSR Tech.
Report. p. 5-18.

Li, W.-S. and C. Clifton. Semantic Integration in Heterogeneous Databases Using
Neural Networks in 20th VLDB Conference. 1994. Santiago, Chile.

Doan, A., P. Domingos, and A. Haevy. Reconciling Schemas of Disparate Data
Sources. A Machine-Learning Approach. in SGMOD. 2001.

Mitra, P., G. Wiederhold, and J. Jannink. Semi-automatic Integration of Knowledge
Sources.in FUSON. 1999,

Milo, T. and S. Zohar. Using Schema Matching to Smplify Heterogeneous Data
Trandation. in VLDB. 1998.

Pdopali, L., G. Terracing and D. Ursino. The System DIKE: Towards the Semi-
Automatic Synthesis of Cooperative Information Systems and Data Warehouses. in
ADBIS-DASFAA. 2000: Matfyzpress.

Bergamaschi, S, S. Cagtano, and M. Vincini, Semantic Integration of Semistructured
and Structured Data Sources. SIGMOD, 1999. 28(1).

Ursino, D., Semi-automatic approaches and tools for the extraction and the
exploitation of intensional knowl edge from heter ogeneous information sources, in
Dipartimento di Elettronical Informatica e Sstemistical. 1999, Universtadelgi Studi
dellaCaabria p. 15-34.

Doan, A., P. Domingos, and A. Levy, Learning Source Descriptions for Data
Integration, University of Washington: Seettle, WA.

Clifton, C., E. Housman, and A. Rosenthal. Experience with a Combined Approach to
Attribute-Matching Across Heter ogeneous Databases. Proc. 7th IFIP Conf. On DB
Semantics. 1997: Chapman & Hall.

Berlin, J. and A. Motro, Database Schema Matching Using Machine Learning with
Feature Selection.

118

BIOGRAPHICAL INFORMATION

Karthik Jagannathan was born May 14, 1977 in Coimbatore, India He received his
Bachelor of Architecture degree from The School of Architecture and Planning, Anna Universty,
Madras, India in June 1999. In the Fal of 1999, he dtarted his graduate sudies in Computer
Science and Engineering a The Univergty of Texas, Arlington. He recaived his Magter of Sciencein
Computer Science and Engineering from The Universty of Texas at Arlington, in December 2002.

His research interests revolve around data warehousing and schema matching.

119

	FOR DATA WAREHOUSING
	FOR DATA WAREHOUSING
	ACKNOWLEDGMENTS

