

AN APPROACH TO SCHEMA MAPPING GENERATION

FOR DATA WAREHOUSING

The members of the Committee approve the masters
thesis of Karthik Jagannathan

Sharma Chakravarthy ____________________________________
Supervising Professor

Mohan Kumar ____________________________________

David Kung ____________________________________

Copyright © by Karthik Jagannathan, 2002

All Rights Reserved

To My Wife, Family and Friends

AN APPROACH TO SCHEMA MAPPING GENERATION

FOR DATA WAREHOUSING

by

KARTHIK JAGANNATHAN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

 of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2002

v

ACKNOWLEDGMENTS

Before anything, I would like to thank my advisor, Dr. Sharma Chakravarthy, for

giving me an opportunity to work on this challenging topic and for guiding and supporting

me through the course of this research.

I would like to thank Dr. Mohan Kumar and Dr. David Kung for serving on my

committee, and for their valuable comments and guidance.

This work was supported, in part, by the Office of Naval Research, the SPAWAR

System Center-San Diego & by the Rome Laboratory (grant F30602-01-2-0543), and by NSF

(grants IIS-0123730 and IIS-0097517).

I would also like to thank my wife for her endless love and constant support

throughout my thesis; from the day I started to the day I defended my thesis.

November 18, 2002

vi

ABSTRACT

AN APPROACH TO SCHEMA MAPPING GENERATION

FOR DATA WAREHOUSING

Publication No. ____________

Karthik Jagannathan, M.S.

The University of Texas at Arlington, 2002

Supervising Professor: Sharma Chakravarthy

In data warehousing, the source schemas are defined independently from the

warehouse schemas, which are typically designed based on the information need of the

warehouse users. The mappings between the source and warehouse schemas are also

determined manually. Typically, more than one mapping between the warehouse schema and

the source schemas is possible and the designer might miss the most appropriate mapping

from the viewpoint of updates and maintenance of the warehouse.

Automated generation of the mappings between the source and the warehouse

schemas would generate a complete list of mappings from which the warehouse designer can

choose the appropriate mapping.

The issues encountered during automation are numerous, including but not restricted

to the presence of synonyms, homonyms and derived attributes in the source and warehouse

schemas. This thesis focuses on automating mapping generation in data warehousing for the

relational domain and handles select, project, join, union and intersection mappings.

 vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... v

ABSTRACT ... vi

LIST OF FIGURES ... xii

LIST OF TABLES ... xv

Chapter

1. INTRODUCTION ... 1

1.1. Overview .. 1

1.2. Motivation ... 1

1.3. Automating the process of mapping generation ... 2

1.4. Related work ... 2

1.5. Automation issues ... 3

1.6. Problem statement ... 5

1.7. Contributions of this thesis ... 5

2. RELATED WORK .. 7

2.1. Generic Vs domain-specific model ... 7

2.2. Overview of matching techniques ... 7

2.2.1. SemInt .. 9

2.2.2. LSD .. 9

2.2.3. SKAT ... 9

2.2.4. TranScm ... 9

2.2.5. DIKE .. 9

2.2.6. ARTEMIS .. 10

viii

2.2.7. CUPID .. 10

2.3. Comparison ... 11

2.4. Chapter summary .. 12

3. DESIGN .. 13

3.1. Introduction ... 13

3.2. Automation issues ... 13

3.2.1. Synonyms ... 13

3.2.2. Homonyms ... 14

3.2.3. Attribute mappings ... 14

3.2.4. Derived attributes ... 14

3.3. Type of mappings .. 15

3.3.1. Single source relation projection ... 15

3.3.2. Join of two or more source relations .. 15

3.3.3. Union/intersection of two or more source relations 16

3.4. Design approach .. 17

3.5. User input .. 18

3.6. Design of the matching algorithm ... 19

3.7. Transformation .. 20

3.7.1. Applying the homonyms .. 21

3.7.2. Applying the synonyms ... 23

3.7.3. Applying the attribute mappings .. 27

3.7.4. Applying the derived attributes .. 28

3.7.5. Summary .. 28

ix

3.8. Intersection .. 29

3.8.1. Summary .. 31

3.9. Mapping generation .. 31

3.9.1. Projection ... 32

3.9.2. Join, union and intersection ... 35

3.9.3. Joins of more than two relations .. 39

3.9.4. Summary .. 43

3.10. User validation .. 44

3.11. Reverse transformation ... 44

3.12. Chapter summary .. 45

4. DATASTRUCTURES IN DETAIL ... 46

4.1 Overview .. 46

4.2 Initial data structure ... 46

4.2.1 Description .. 46

4.3 Data structure intersection ... 49

4.3.1 Description .. 49

4.4 Data structure check vector .. 50

4.5 Chapter summary ... 52

5. DESIGN IMPLEMENTATION ... 53

5.1 Overview .. 53

5.2 User input ... 53

5.2.1 Schemas .. 55

5.2.2 Homonyms .. 56

x

5.2.3 Synonyms .. 56

5.2.4 Attribute mapping ... 57

5.2.5 Derived .. 57

5.3 Storing the data .. 58

5.3.1 Storing the source and warehouse schemas 58

5.4 Transformation ... 63

5.4.1 Applying the homonyms ... 64

5.4.2 Adding the synonyms ... 68

5.4.3 Storing the attribute mappings .. 72

5.4.4 Storing the derived attributes .. 73

5.4.5 Completing the hashtable .. 73

5.5 Intersection ... 74

5.5.1 Issues ... 76

5.5.2 Implementation ... 76

5.6 Mapping generation ... 81

5.6.1 Issues ... 82

5.6.2 Implementation ... 83

5.6.3 Check for projection .. 83

5.6.4 Check for join, union and intersection .. 85

5.7 User validation ... 90

5.8 Chapter summary ... 90

6. PERFORMANCE OPTIMIZATION AND TESTING .. 91

6.1 Overview .. 91

xi

6.2 Implemented optimization techniques ... 91

6.2.1 Use of hashtables .. 91

6.2.2 Reduced number of cycles .. 91

6.2.3 Filtered source relations .. 93

6.3 Techniques to improve optimization ... 93

6.3.1 Parallelization .. 93

6.4 Testing & test cases .. 94

7. CONCLUSIONS AND FUTURE WORK .. 95

7.1 Summary .. 95

7.2 Future work .. 96

7.2.1 Implementing a data dictionary/ thesaurus 96

7.2.2 Integrating triggers and updates .. 96

7.2.3 Extending the system to multiple platforms 96

Appendix

A. TEST CASES AND PROGRAM OUTPUTS ... 97

REFERENCES .. 118

BIOGRAPHICAL INFORMATION ... 119

 xii

LIST OF FIGURES

Figure Page

3.1. Single source relation projection. .. 15

3.2. Join of source relations .. 16

3.3. Union/ intersection of source relations .. 17

3.4. Classification of schema matching approaches. .. 18

3.5. The initial schemas... 21

3.6. Relations after applying the homonyms. ... 22

3.7. Relations after applying the synonyms. ... 24

3.8. Relations after applying the attribute mappings. ... 28

3.9. The matching algorithm - intersection. .. 29

3.10. Example illustrating intersection ... 30

3.11. End of intersection. .. 31

3.12. The matching algorithm - projection. .. 33

3.13. Example illustrating projection. ... 34

3.14. End of projection. ... 35

3.15. The matching algorithm - join, union/ intersection ... 36

3.16. Example illustrating join. ... 37

3.17. Illustrating generation of multiple joins – pass 1 ... 41

3.18. Illustrating generation of multiple joins – pass 2 ... 42

3.19. Example illustrating check for mapping .. 43

3.20. End of mapping generation phase. ... 44

4.1. Initial data structure. .. 48

xiii

4.2. Data structure that stores the set of intersecting attributes. 50

4.3. Structure that holds the final generated mappings. .. 52

5.1. Source file. ... 54

5.2. Schema part of a sample source file... 59

5.3. Storing source/ warehouse schemas - stage 1. ... 59

5.4. Storing source characteristics... 60

5.5. Storing relation characteristics... 62

5.6. Storing attribute characteristics.. 63

5.7. Homonym part of the sample source file. .. 64

5.8. Applying homonyms – step 1. ... 66

5.9. Adding homonyms – step 2. .. 67

5.10. Synonym part of the sample source file... 68

5.11. Adding synonyms – step 1. .. 70

5.12. Adding synonyms – step 2. .. 71

5.13. Completing the hashtable HT4. ... 74

5.14. Example to demonstrate the matching algorithm. ... 75

5.15. Initial intersect vector... 78

5.16. Intersect vector – after creating an entry for the first warehouse relation. 79

5.17. Intersect vector – after adding the first source relation. ... 80

5.18. Intersect vector – at the end of intersection. .. 81

5.19. Initial check vector... 84

5.20. Check vector after projection. .. 84

5.21. Check vector after join. .. 87

5.22. Check vector after union / intersection. ... 89

xiv

6.1. Reducing the number of cycles. ... 92

6.2. Parallelization. .. 94

 xv

LIST OF TABLES

Table Page

2.1. Characteristics of matching techniques. ... 8

2.2. Comparison of characteristics. .. 12

3.1. All possible cases while applying synonyms ... 25

3.2. Example for join. .. 38

5.1. Example schemas. .. 75

5.2. All possible joins.. 86

1

CHAPTER 1

INTRODUCTION

1.1 Overview

Time and again, the problem of “schema matching” keeps sprouting. Schema

matching refers to the problem of finding mappings between the attributes of any given pair

of schemas that are semantically related, or in other words, a homogeneous pair of schemas.

Schema matching is a generic problem pertinent in many domains including XML, relational

and object-oriented. Though the problem is comparable, the complexity of this problem is

dependent on the richness of the schema involved.

To state an example, if one tried to map attributes between two XML schemas, one

has to take the level in the hierarchy tree, and the sub-structure of the attributes involved. But

if the same case were to be considered in the relational domain, attribute matching would

involve matching attributes based on the name and the type.

1.2 Motivation

Schema matching plays an imperative role in data warehousing, wherein, given

source and warehouse schemas, one is required to find the attribute mappings between the

warehouse and the source schemas.

In a typical scenario, the source schemas are created independently and at various

points in time. The warehouse schemas are designed based on the information need of the

warehouse users/ analysts, and the warehouse designer determines the mappings between the

warehouse and the source schemas manually.

 2

Given source and warehouse schemas, one should note that there would be more than

one possible mapping to generate a particular warehouse schema from the given source

schemas. The warehouse designer might miss the most appropriate mapping from the

viewpoint of updates and maintenance of the data warehouse as a result of trying to map the

schemas manually.

1.3 Automating the process of mapping generation

Automating the process of the generation of the mappings between the source and the

warehouse schemas would result in a system that requires less time and energy to be spent by

the designer, and at the same time will be correct and complete. This would generate a

complete list of all the mappings that are possible for the warehouse schemas from the source

schemas, enabling the warehouse designer to choose the appropriate mapping for that given

case. This would allow the designer to explore several mappings before finalizing the

warehouse schemas.

1.4 Related work

Though not in the commercial world, where they still largely depend on manually

generating the mappings, some research has been done in the area of schema matching. As

the problem of schema matching is more generic in the sense that it is prevalent in many

other domains including XML message mapping and schema integration [1], most of the

research that has been done is largely domain specific i.e., pertaining to a specific domain or

caters to a totally different set of requirements and needs. Thus the need for a domain

specific solution for this generic problem arises.

 3

1.5 Automation issues

Questions arise as to the simplistic straightforwardness in automating the process of

schema mapping. But in reality, the issues encountered during automation are numerous. If

the name space follows a single convention, then mapping would have been quite

straightforward. But since the sources and hence the source schemas are created

independently and at different points in time, one cannot assume a uniform naming

convention for the attributes. Hence, the complications that arise are numerous and not

limited to:

Ø Attributes that have the same name and same or different type, but need to be

considered as two separate attributes (called homonyms)

Ø Attributes that are structurally similar but semantically dissimilar, that is, attributes

with different names but which have the same type (called synonyms)

Ø An attribute of a warehouse schema that is referred to by a different name in the

corresponding source schema

Ø Derived attributes of the warehouse schema, that are computed from more than one

attribute of the source schemas (Cumulative GPA, Gross Total, etc.)

The process of automation should be able to comprehend and differentiate between

these variations and arrive at a set of mapping that is relevant to the schemas in question. If

these were not to be taken into consideration, it would result in an incomplete and incorrect

generation of the mappings, as it would not have covered all cases. It is obvious that given

the set of analogous, overlapping inputs, more than one plausible mapping can be arrived at.

In the end, it is left to the warehouse designer to aptly choose the mapping appropriate to the

case. Though validation by the designer still plays a major role, the objective is to generate

 4

the set of mappings between the source and the warehouse schemas that are pertinent. Some

of the pros and cons of the process of automation are summarized below:

Pros:

Ø Enables proper understanding of the mapping space

Ø Enables evaluation of mappings from different viewpoints

Ø Enables the warehouse designer to choose the appropriate schemas based on his

understanding of the mapping space

Ø Eliminates the strenuous manual process and saves time

Ø Requires less exertion on the part of the designer as it generates all the mappings

possible for the warehouse schemas

Ø Eliminates the possible fault on the part of the designer who might miss the most

appropriate mapping from the viewpoint of updates and maintenance of the data

warehouse

Cons:

Ø An initial effort on the designer in the form of the source file

Ø Designer has to validate the results and choose the appropriate mapping

From this, it is bare that it is still the designer who specifies the various semantics

(synonyms, homonyms, and the like) that come into play in generating the mappings, as one

requires a base on which to build the automation. Thus, automation here is not really

complete, as some amount of interaction is involved at some level or the other. But this

entirely eliminates any ambiguity or errors in the generated mapping that might otherwise

occur as a result of human intervention, and generates all possible mappings that might be

overlooked.

 5

1.6 Problem statement

Given a set of semantically related source and warehouse schemas, the problem

involves in automating the process of matching the schemas, and arriving at a resulting set of

all possible mappings between the warehouse schemas and the given source schemas that are

comparable. Once the appropriate mappings are determined, the problem also involves in

generating the triggers and other code for propagation of the updates from the source to the

warehouse schemas.

This forms the basis and the motivation for this thesis, which works towards an

optimal solution for automating the process of schema matching and mapping generation,

especially pertaining to data warehousing for the relational domain. The tool would enable

understanding of the mapping space, and the evaluation of mappings from different

viewpoints (ease of implementation, etc). But, it is up to the user to choose the most

appropriate mapping (may be based on other considerations). The tool would also generate

triggers and other code for propagation of the updates to the warehouse schemas. This thesis

handles select-project-join (or SPJ), union and intersection mappings.

1.7 Contributions of this thesis

This thesis contributes to the following:

ü Designing a solution for automating the process of schema matching and mapping

generation for the warehouse schemas pertaining to data warehouses for the relational

domain handling SELECT-PROJECT-JOIN, UNION and INTERSECTION

mappings.

ü Presenting the design of the algorithm and the implementation issues, including the

handling of homonyms, synonyms and the attribute mappings

 6

ü Looking at performance issues and ways to improve the performance of the algorithm

including parallelization

In the forthcoming chapters, the goal of automating schema matching and the

generation of mappings is realized. Chapter 2 gives an overview of the related work in the

area of automating schema matching. Chapter 3 gives a broad view of the design and the

algorithm. Chapter 4 goes into the depths of the data structures involved in the design.

Chapter 5 takes a walk through the various stages of implementation of the design and the

implementation issues involved. Chapter 6 evaluates the performance of the algorithm and

covers the various test cases that were tested out for consistency and correctness. Finally

chapter 7 derives conclusions and discusses the scope for future work in this area, including

parallelization leading to improvements in performance of the design.

 7

CHAPTER 2

RELATED WORK

As mentioned in the previous chapter, some work has been done in this pervasive

area of automating the process of schema matching. This chapter gives an overview of the

existing research, and draws a parallel of the matching approach of this thesis with the rest,

giving its pros and cons against the other systems.

2.1 Generic Vs domain-specific model

To start with, this thesis is working towards solving the problem of automating the

process of schema matching and mapping generation specific to the relational domain, as we

believe that at this point, it is more relevant to look at this problem from the perspective of

relational systems, rather than trying to achieve a more generic system that would then have

to be tweaked again for it to be of any use to the domain we want to use it under.

2.2 Overview of matching techniques

This section gives an overview of the different matching techniques that have been

presented to date. One needs to note at this point that save a very few techniques, most of the

rest have been/ are developed specific to a certain domain, for a definite cause. A list of the

available techniques include - SemInt [2, 3], LSD [2, 4], SKAT [2, 5], TranScm [2, 6],

DIKE [2, 7], ARTEMIS [2, 8] and CUPID [1]. Table 2.1 [2] gives an overview of the various

matching techniques and their characteristics.

 8

Table 2.1. Characteristics of matching techniques.

 SemInt LSD SKAT TranScm DIKE ARTEMIS
Schema types Relational, files XML XML, IDL,

text
SGML, OO ER Relational, OO,

ER
Metadata representation Unspecified XML,

schema
trees

Graph-based
OO DB model

Labeled
graph

Graph Hybrid relational/
OO data model

Match granularity Element-
level:attributes

Element-
level

Structure-
level: classes

Element-level Element/structure-
level:entities/
relationships/
attributes

Element/structure-
level:entities/
relationships/
attributes

Match cardinality 1:1 1:1 1:1 and 1:n 1:1 1:1 1:1
Name-based - Name

equality
/synonyms

Name equality;
Synonyms;
Homonyms;
Hypernyms

Name
equality;
Synonyms;
Homonyms;
Hypernyms

Name equality;
Synonyms;
Hypernyms

Name equality;
Synonyms;
Hypernyms

Constraint-
based

15 criteria: data
type, length..

- Is-a(inclusion);
Relationship
cardinalities

Is-
a(inclusion);
Relationship
cardinalities

Domain
compatibility

Domain
compatibility

Schema-
level
match

Structure
Matching

- - Similarity
w.r.t. related
elements

Similarity
w.r.t. related
elements

Matching of
neighborhood

Matching of
neighborhood

Reuse/auxillary
information used

- Comparison
with
training
matches;
lookup for
valid
domain
values

Reuse of
general
matching rules

- - Thesauri

Combination of matchers Hybrid matcher Automatic;
weighted
combination
of all
learners per
instance
object;
combination
of instance
predictions

- Hybrid
matchers;
fixed order of
matchers

- Hybrid of name
and structure
matchers

Manual work/user input Selection of
match criteria

User-
supplied
matchers
for training
sources

Match/
mismatch rules

Resolving
multiple
matches,
adding new
matching
rules

Resolving structural
conflicts

User can adjust
weights in match
calculations and
validate match
choices

Application area Data integration;
3 test cases

Data
integration
with pre-
defined
global
schema

Ontology
composition to
support data
integration/
interoperability

Data
translation

Schema integration Schema integration

remarks Neural
networks; c
implementation

 “algorithms”
implicitly
represented by
rules

Rules
implemented
in Java

Algorithms to
calculate new
synonyms,
homonyms,
similarity metrics

Also embedded in
the MOMIS
mediator, with
extensions

The following sections detail out the various systems and their relevance to this

thesis, and the problem statement at hand.

 9

2.2.1 SemInt

 The SemInt match prototype [3] creates a mapping between individual attributes

using neural networks to determine the same [2]. This does not support name-based

matching.

2.2.2 LSD

The LSD (Learning Source Descriptions) system [4] uses machine-learning

techniques to match a new data source against a previously determined global schema,

producing a 1:1 atomic-level mapping [2]. This technique was developed mainly for the

XML domain.

2.2.3 SKAT

The SKAT (Semantic Knowledge Articulation Tool) prototype [5] follows a rule-

based approach to semi-automatically determine matches between two ontology [2]. This

technique is relevant to the XML domain, and the schemas are transformed into a graph-

based object-oriented database model.

2.2.4 TranScm

The TranScm prototype [6] uses schema matching to derive an automatic data

translation between schema instances. Input schemas are transformed into labeled graphs,

which is the internal schema representation [2]. This is relevant in the objected oriented

domain.

2.2.5 DIKE

DIKE [7] focuses on finding pairs of objects in two schemas that are similar, in the

sense that they have the same attributes and relationships, but are of different “types” [2].

The motivation involves in the need for schema abstraction for large systems. The solution

 10

requires clustering objects into subsets and producing an abstracted schema obtained by

substituting each subset with one single object representing that subset. The various steps

involved are:

1. Enrichment of schema description obtained by semi-automatically extracting

knowledge

2. Exploit inter-schema properties from the data repository

3. Exploitation of the repository derived in step 3 to support the designer in realizing a

data warehouse over available data.

One requires to note here that this system is mainly used to support the designer of the

warehouse by supplementing with additional information about the sources in question,

which is very much different from the requirements of the problem statement as described in

this thesis, which aims at solving the problem of generating the warehouse mappings, given

the source and the warehouse schemas.

2.2.6 ARTEMIS

ARTEMIS [8] is a schema integration tool which completes schema integration by

clustering attributes based on computed affinities and constructing views based on the

clusters [2]. It is used to integrate independently developed schemata into a virtual global

schema, the area of application of which is again differing from the one this thesis involves.

2.2.7 CUPID

CUPID [1] is a generic schema matching algorithm that discovers mappings between

schema elements based on their names, data types, constraints and schema structure. The

approach involves in attacking the problem by computing similarity coefficients between the

elements of the two schemas and then deducing a mapping from those coefficients.

 11

The input is via initial mapping, dictionary or thesaurus, library of known mapping

etc. Calculating the coefficients are done in two stages namely, linguistic mapping and

structural mapping. It involves normalization and clustering the schema elements into

categories to reduce the number of element-element comparison. Comparison involves in

calculating the linguistic similarity of each pair of elements from compatible categories,

resulting in a table of linguistic similarity coefficients between elements of the comparing

two schemas. The mapping generation involved in choosing pairs of schema elements with

maximal weighted similarities.

Though the claim is that it is a generic schema matching algorithm, it is more specific

to XML structures, and involves in finding similarities between schemas in a hierarchical

manner, similar to XML. The algorithm leans towards a specific purpose in the XML

domain.

2.3 Comparison

The following table [table 2.2] gives a comparison of the characteristics of the design

approach of this thesis along with two other systems, the DIKE and the CUPID system that

were somewhat comparable to what has been done in this thesis.

 12
Table 2.2. Comparison of characteristics.

 DIKE CUPID OURS

Schema Types ER XML Relational

Metadata
Representation Graph Tree Graph Tables

Match-granularity Element-level - Element-level
Name-
Based

Name Equality;
Synonyms, Hypernyms Name Equality Name Equality;

Type Check on Input

Schema-
level
match

Structure
matching - Similarity in structure -

Reuse/auxiliary
information used -

Data Dictionary,
Thesauri, Library of
known mappings

-

Manual Work/User
Input

Resolving structural
conflicts; specification
of some synonyms +
inclusions with
similarity probabilistic;
validation

-

Specification of
synonyms, homonyms
and attribute mappings;
Validation at the end

Application Area Schema Integration Schema Integration

Understanding of the
mapping space;
Evaluation of
mappings;
Update and
maintenance of
warehouses

Remarks
Algorithms to calculate
new synonyms,
homonyms

-

Algorithms to generate
all possible mappings;
Select, Project, Join,
Union and Intersection

2.4 Chapter summary

This chapter gives an insight into the other related work that has been done around

this problem of schema matching. It is lucid that though some amount of research has gone

into this, schema matching still remains a largely elusive problem, as the applications are

varies and spans several domains/ areas, and a generic solution is still evasive.

 13

CHAPTER 3

DESIGN

3.1 Introduction

This chapter discusses the issues involved in automating the process of mapping

generation, the different possible mappings that need to be taken care of, and the design of

the matching algorithm.

3.2 Automation issues

As mentioned in chapter 1, automating the process of schema matching and mapping

generation does not come easy, as it may seem like. Since the source schemas are defined

and created independently and at various points in time, a single uniform naming convention

for the attributes of the source schemas is hard to realize. Hence one needs to consider the

presence of the following in the attributes of the source and warehouse schemas:

1. Synonyms

2. Homonyms

3. Attribute mappings

4. Derived attributes

These are described in detail in the following sections.

3.2.1 Synonyms

By synonyms, one refers to the attributes that are represented by different names in

the various schemas, but which are the same attribute. For example, SSN of relation R1 and

SNO of relation R2 might represent the same attribute, though referred to by different names.

These attributes have different names, but the same type.

 14

3.2.2 Homonyms

By homonyms, one refers to the attributes that are represented by the same names in

the various relations, but which are different in structure. For example, the attributes TYPE

of relation R1 and TYPE of relation R2 might be called by the same name, but which might

refer to two totally disparate attributes. Here, one needs to note that the two attributes can

have the same or different types.

3.2.3 Attribute mappings

This is similar to the synonyms in the respect that this represents the attributes of the

warehouse relations that are referred by different names than the ones that are used to

represent the same attributes in the respective source relations. For example,

EMPLOYEE_ID {varchar (10)} of DW relation R1 and SSN {varchar (10)} of source

relation R2 might be the same attribute, but referred to by two different names. This basically

comes into the picture when the warehouse attributes need to be given a name that is more

appropriate to the situation than what is there in the corresponding source schema.

3.2.4 Derived attributes

These list all the attributes of the warehouse relations that are derived or computed

from more than one attribute from the source relation (s). Some examples of this type of

attributes would include Cumulative Grade Point Average, Grand Total or any kind of

sum, that requires more than one attribute of the source schemas to be computed from.

From this, it is clear that these issues need to be taken care of during automation, as

missing out on any of these would not give a complete possible list of mappings between the

warehouse and the source schemas. Hence, the system should be able to comprehend this and

incorporate all the necessary changes to arrive at the correct and complete result of all the

possible mappings.

 15

3.3 Type of mappings

Various types of mappings are possible between the warehouse and source schemas.

The System would have to be able to generate the complete list of all these different kinds of

mappings. The following sections give some insight into the types of mappings.

3.3.1 Single source relation projection

As the name denotes, this is a selection/ projection of a single source relation. The

warehouse relation can be either a complete projection of the source relation or a partial

projection, as illustrated in figure 3.1.

S Relation WH Relation

E

D

C

B

A

Partial Projection Complete Projection

D

C

B

A

S Relation WH Relation

E

D

C

B

A

D

C

B

A

E

Figure 3.1. Single source relation projection.

3.3.2 Join of two or more source relations

This mapping would cover all the joins between the source relations that make up the

warehouse relations. Again, here, one needs to consider two types of mappings namely, a

join with join attributes and a cartesian join with no join attributes in common. One also

needs to consider the kind of join – whether it is a complete or partial join of the source

 16

relations. The joins are not limited to a simple join of pairs of relations, and would be

comprehensive. This is illustrated in figure 3.2.

S Relation 1 WH Relation

E D C B A

Join with join attributes [D , E]

H G F E D

S Relation 2 F

E

D

C

G

S Relation 1

E D C B A

Join with no join attributes

J I H G F

S Relation 2

Figure 3.2. Join of source relations

3.3.3 Union/intersection of two or more source relations

This would cover all the mappings that are either unions or intersections of the source

relations. One will not be able to comprehend whether it is a union or a join at this point, as

one is not dealing with the tuples here. Union or intersection can be detected between source

schemas if the schemas have the same set of attributes as each other and with the warehouse

schema. This is illustrated in figure 3.3. Again, it can be either a complete or a partial union/

intersection of the source schemas.

 17

S Relation 1 WH Relation

E D C B A

Union/ intersection (complete)

E D C B A

S Relation 2 D

C

B

A

E

S Relation 1

E D C B A

Union/ intersection (partial)

G F E D C

S Relation 2

WH Relation

D

C

E

Figure 3.3. Union/ intersection of source relations

3.4 Design approach

From the various classifications of schema matching approaches [2], as shown in

figure 3.4 [2], the approach that this thesis takes is the “schema-only based approach”. As

described in [2], schema-level matching only considers schema information and not instance

data. The information includes the usual properties of schema elements, such as name,

description etc [2]. Again, under schema-based, the approach is element-level, in the sense

that the match is performed for individual schema elements, which are attributes in this case.

Once again, one deals with both linguistic-based and constraint-based approaches under

element-level. What is carried out here is a name-based matching under linguistic matching,

and a type-based matching under constraint-based matching, wherein, for each element of a

relation R1, all elements of the relation R2 with same or similar name and type are identified.

 18
 Schema Matching Approaches

Individual matcher
approaches

Combining matchers

Schema-only
based

Instance /
contents-based

Hybrid matchers
Combining
independent

matchers

Element-level Structure-level Element-level

Linguistic Linguistic Constraint-
based

Constraint-
based

Manually Automatically

Further Criteria:
-Match cardinality
- auxillary information used

Constraint-
based

… … … … …

Figure 3.4. Classification of schema matching approaches.

3.5 User input

The process begins with the user providing the system with initial inputs that are

crucial for arriving at the correct set of mappings between the source relations and the data

warehouse relations. They are listed below in the order in which they need to be specified in

the source file, the details of which are covered later in chapter 5.

The various possible inputs are:

1. The source schemas

2. The warehouse schemas

3. The list of homonyms

4. The list of synonyms

 19

5. The attribute mappingsThe set of derived attributes and the corresponding source

attributes

Care should be taken to stick to the same ordering of the inputs, the reason for which

would be covered later in this chapter.

3.6 Design of the matching algorithm

Given a data source, the approach to creating appropriate mappings is to start by

finding those elements of the source that are also present in the warehouse. This forms the

match operation. After an initial mapping is created, the detailed semantics of each of the

source elements need to be examined and transformations created that reconcile those

semantics with those of the target. The algorithm is divided into three phases:

1. Transformation: This involves transforming the data for optimal generation of all

possible mapping. This requires adding additional information about attributes that

form part of homonyms, synonyms, and attribute mappings, as detailed out in the

previous sections. The attributes in question are renamed (transformed) as required

and the new names are stored separately for easy retrieval later. This would facilitate

accurate and complete comparison of the attributes in the next stage namely

Intersection, as this takes all synonyms, homonyms, attribute mappings and derived

attributes into consideration. Hence starting from the next stage, the new transformed

names of these attributes would be considered for comparison as against the original

attribute names.

2. Intersection: For each of the warehouse relations, generate a list of possible source

relations that have at least one attribute in common with it (the warehouse relation in

question), along with the set of attributes that the relations have in common with the

 20

warehouse relation in question. This information is stored in a separate list, the design

of which will be discussed in detail in the next chapter on data structures.

3. Mapping generation: From the resulting subset of information obtained from the

structure as described in the previous part, generate all possible mappings of the

source relations to the warehouse relations, which includes select-project-join (SPJ

mappings), union and intersection mappings.

3.7 Transformation

As described in the previous section, transformation takes care of the homonyms,

synonyms, attribute mappings and derived attributes transforming the data for the next phase,

viz. Intersection. The data from the input file is read in by the system and stored in such a

way that facilitates easy storing and retrieving of the same. It is best illustrated with an

example. Assume an example with two source relations R1 and R2 of sources 1 and 2

respectively. Also assume a warehouse relation R1. The set representations of the source and

warehouse schemas are as shown in figure 3.5, where R1 gives the original attributes and R1'

gives the transformed attributes, after applying homonyms, synonyms and the attribute

mappings. One assumption here is that the warehouse relation R1 is a partial projection of

relation R2 of Source 2.

 21
 SOURCE 1 RELATION R1

A

B

C

R1′

SOURCE 2 RELATION R2
C

D

E

R2′

DW RELATION R1
C

D

E_DW

R1′

Figure 3.5. The initial schemas.

3.7.1 Applying the homonyms

When the homonyms are read from the source file, the data is modified to

accommodate these new entries. New unique names are generated for all the attributes

involved. As homonyms refers to attributes that have the same name, and same or different

types, but are totally different attributes, each of the attribute involved is given a newly

generated name as part of transformation.

For example, assume that attribute C of relation R1 of source 1 and attribute C of

relation R2 of source 2 are homonyms, i.e., though they have the same names, both the

attributes are to be considered as separate attributes. As per the design, the names of both the

attributes in this case attribute C of relation R1 and attribute C of relation R2 are assigned

new unique generated names. This is apparent from figure 3.6, which shows the sets R1′ and

 22

R2′ for relations R1 & R2 being modified and the new names of “C_001” & “C_002” being

assigned to the attributes C of relations R1 and R2 respectively. As shown, the mapping

between the original attribute names (R1) and the new names (R1′) is retained for future

reference. Again, R1′ refers to the normalized set of attribute names of relation R1, and so

forth for all the relations.

One should again note at this point that the change in the name to attribute C of

relation R2 is not reflected in the warehouse relation R1. This is the reason why the

warehouse mapping is specified separately after specifying the homonyms and the synonyms.

 SOURCE 1 RELATION R1

A

B

C

R1′
A

B

C_001

SOURCE 2 RELATION R2
C

D

E

R2′
C_002

D

E

DW RELATION R1
C

D

E_DW

R1′
C

D

E_DW

Figure 3.6. Relations after applying the homonyms.

 23

3.7.1.1 Issues in applying homonyms

While applying the homonyms to the initial data, two different cases need to be

considered:

Case 1: Attribute has already been transformed

Assume the following example,

 R1.A : R2.A

 R2.A : R3.A

Where R1, R2, R3 denote the source relations and A referring to the attribute name. R2.A has

already been transformed in the previous step. Hence in the next step, it is not transformed

again, and only R3.A is transformed. Case 2: Both attributes have been transformed

In the following example,

 R1.A : R2.A

 R3.A : R4.A

 R2.A : R3.A

R2.A and R3.A have already been transformed in the previous couple of steps. Hence, no

change is necessary in the third step.

3.7.2 Applying the synonyms

When the synonyms are read from the source file, the data is modified to

accommodate these new entries. For the attribute names, new names are assigned as required.

The mapping between the old names and the new names are stored separately, which would

facilitate easy retrieval of the original names given the new normalized names and vice versa.

For example, assume that attribute A of relation R1 of source 1 and attribute D of

relation R2 of source 2 are synonymous, i.e., though they have different names, both the

attributes are essentially the same for all matching purposes. Hence, the design involves in

 24

retaining the name of one of the attributes, in this case the former one (of relation R1) as is

and renaming the latter attribute (of relation R2), which is the same as the first attribute

which would be “A”. This is apparent from figure 3.7, which shows the normalized attribute

set R2′ for relation R2 being modified and the new name of “A” being assigned to the

attribute D. Again, the mapping between the original attribute names (R2) and the new

names (R2′) needs to be retained for future cross reference.

One should note at this point that the change in the name to attribute D of relation R2

is not reflected in the warehouse relation R1. This problem of transitivity is the reason why

the warehouse mapping is specified separately after specifying the synonyms and the

homonyms.

 SOURCE 1 RELATION R1

A

B

C

R1′
A

B

C_001

SOURCE 2 RELATION R2
C

D

E

R2′
C_002

A

E

DW RELATION R1
C

D

E_DW

R1′
C

D

E_DW

Figure 3.7. Relations after applying the synonyms.

 25

3.7.2.1 Issues in applying synonyms

While applying the synonyms to the initial data, many different cases need to be

considered. All the possible cases are listed as shown in table 3.1.

Table 3.1. All possible cases while applying synonyms

 ATTRIBUTE 1 ATTRIBUTE 2

1 NOT TRANSFORMED NOT TRANSFORMED
2 NOT TRANSFORMED TRANSFORMED – HOMONYMS

3 TRANSFORMED – HOMONYMS NOT TRANSFORMED

4 TRANSFORMED – SYNONYMS NOT TRANSFORMED

5 TRANSFORMED – HOMONYMS TRANSFORMED – HOMONYMS

6 TRANSFORMED – SYNONYMS TRANSFORMED – HOMONYMS

7 NOT TRANSFORMED TRANSFORMED – SYNONYMS
8 TRANSFORMED – HOMONYMS TRANSFORMED – SYNONYMS

9 TRANSFORMED – SYNONYMS TRANSFORMED – SYNONYMS

The various possible cases have been grouped together by similarity. All the similar cases

need to be handled separately, as described below:

Case 1:

Given two attributes R1.A : R2.B being synonyms,

A - Not transformed

B - 1. Not transformed (or)

 2. Transformed by homonyms

This is the typical case, where, the name of attribute A is taken and the attribute B is

transformed with this name of A.

 26

Case 2:

Given two attributes R1.A : R2.B being synonyms,

A - 1. Transformed by synonyms (or)

 2. Transformed by homonyms

B - 1. Not transformed (or)

 2. Transformed by homonyms

In this case, the transformed name of attribute A is considered and the attribute name of B is

transformed with this name.

Case 3:

Given two attributes R1.A : R2.B being synonyms,

A - 1. Not transformed (or)

 2. Transformed by homonyms

B - 1. Transformed by synonyms

In this case, the transformed name of attribute B is considered and the attribute name of A is

transformed with this name. This is the switch case of case 2.

Case 4:

Given two attributes R1.A : R2.B being synonyms,

A - 1. Transformed by synonyms

B - 1. Transformed by synonyms

This is an error case, which cannot be handled.

 27

3.7.3 Applying the attribute mappings

Applying the attribute mappings to the datastructure is no different than that for

synonyms and homonyms. Three different cases are possible here.

Case 1: A direct mapping from a regular attribute of a source relation to that of a warehouse

relation, wherein, the attribute is referred to by a different name than what is specified in the

source relation.

Case 2: A mapping between an attribute of a source relation that has been modified earlier

due to the adding of homonyms and the corresponding attribute in the warehouse relation.

Case 3: A mapping between attributes of a source relation that has been modified earlier due

to the adding of synonyms and the corresponding attribute in the warehouse relation.

From the earlier example, as per the assumption, attributes C, D and E of relation R2

of source 2 are projected on to the warehouse relation R1. Under attribute mappings, a one-

one mapping for each of these attributes that have been changed is given. It should be noted

here that there might be other attributes of the warehouse relation that are not modified by

any of the cases as mentioned earlier. Such attributes are not mentioned under this section.

All the three cases can be seen in the example in figure 3.7.

Case 1: Attribute E of relation R2 of source 2 is being referred by a different name in the

warehouse relation R1, which is “E_DW”.

Case 2: Attribute C of relation R2 of source 2 has been modified and is now being referred to

with a new name, which is “C_002”.

Case 3: Attribute D of relation R2 of source 2 has been modified and is now referred to with

a new name, which is “A”.

Once the attribute mappings are read in, the changes are updated in the warehouse relation as

shown in figure 3.8.

 28
 SOURCE 1 RELATION R1

A

B

C

R1′
A

B

C_001

SOURCE 2 RELATION R2
C

D

E

R2′
C_002

A

E

DW RELATION R1
C

D

E_DW

R1′
C_002

A

E

Figure 3.8. Relations after applying the attribute mappings.

3.7.4 Applying the derived attributes

The derived attributes, which are attributes of the warehouse relation that are derived/

computed from more than one attributes of the source relations, need to be handled

separately. They cannot be added to the data structure until after the generation of the

mapping. Hence, the derived attributes are removed from the warehouse relations and need to

be stored separately along with the attributes these are derived from.

3.7.5 Summary

Finally, at the end of transformation, the schemas would have the transformed

attribute names as shown in the third column for each of the schemas in figure 3.8, which are

then considered for the next phase, namely Intersection.

 29

3.8 Intersection

For each of the warehouse relations, this stage involves in generating a list of possible

source relations that have at least one attribute in common with the warehouse relation in

question. This information is stored separately in a list, which at the end of this stage would

contain a list of sources for each of the warehouse relations. Both name-based and type-based

matches are performed between the attributes of the source and the warehouse schemas. The

pseudo code for this part of the algorithm is as shown in figure 3.9.

 for each of the warehouse relations wrm

{
 interSetm [] = new Set
 for each of the sources s i
 {
 for each of the source relations rj
 {
 aSetj = new Set
 aSetj = r j intersection wrm (get set of intersecting attributes)

 if aSetj != empty (implying that some common attribute exists)
 {
 add aSetj, si and rj to interSetm[j]
 }
 }
 }
}

Figure 3.9. The matching algorithm - intersection.

This process is done only once initially, which facilitates the effective filtering of

source relations that form no part of any particular data warehouse relation from

consideration in the next step which is to generate the mapping between the data warehouse

relations and the corresponding source relations, and to figure out the type of the mapping –

 30

whether it is a projection, join, union or intersection. This process is illustrated with an

example as shown in figure 3.10. Assume two source relations R1 and R2, and a warehouse

relation WR1. Now, in Intersection, for each of the warehouse relations, in this case, WR1,

each of the source relations are considered and the intersecting set of attributes is obtained. A

non-empty intersecting set of attributes implies that the source relation in question has some

attribute in common with the warehouse relation. Hence whenever a non-empty set is

obtained between a pair of source and warehouse relations, the corresponding source and the

set of common attributes are added to a set for each of the warehouse relations, as illustrated

in figure 3.10.

R1′

R2′

WR1′ F E C B D G

E D B A C

E D B C F G H
D

C

B

E

WR4

WR3

WR2

WR1

D

C

B

E

F

G

R2 R1

Figure 3.10. Example illustrating intersection

 31

3.8.1 Summary

At the end of this stage, for each of the warehouse relations, one would be left with a

set of source relations that have at least one attribute in common with the warehouse relation

and the intersecting set of common attributes between that pair of source and warehouse

relations, as described in figure 3.11.

WR4

WR3

WR2

WR1

R2 R1 . .

R2 R1 . .

Set of common
attributes of each of
the source relations

Set of source relations those have
some common attribute for each of
the warehouse relations

Figure 3.11. End of intersection.

3.9 Mapping generation

At the end of the previous stage, which is Intersection, for each of the warehouse

relations involved, one would end up having a set of all the sources that have some attribute

in common with the warehouse relations. The design in this stage involves in generating all

the possible mappings between the warehouse and the source relations. One needs to

comprehend at this point, that there may exist more than one source relation that has a part in

deriving the data warehouse relation. So the quest here is to identify how this warehouse

 32

relation is derived – it might be a projection of a single source relation or a join of more than

one source relations, or a union or an intersection of similar source relations. For each of the

warehouse relations, the sets of attributes of the source relations are retrieved and analyzed

and the plausible mappings generated. The various steps/ checks involved are – one for

projection and one for join and union/intersection. The set generated in the previous stage

[figure 3.11] is all that is required in this stage to generate all the possible mappings. At this

juncture in the design, the source relations have been filtered and only those relations that

have any common attribute with the warehouse relations are considered. This considerably

reduces the number of comparisons that need to be performed.

3.9.1 Projection

The pseudo code for this part of the algorithm is given in figure 3.12. As illustrated in

figure 3.12, for each of the warehouse relations in question, the set of source relations that

have some attribute in common with this warehouse relation is obtained from the previous

stage, and for each of these relations, the set of common attributes is compared with the

attribute set of the warehouse relation for equality. If they turn out to be equal, it implies that

the warehouse relation is indeed a projection of that source relation.

 33
 for each of the warehouse relations wrm

{
 mapSetm = new Set
 dwSetm = new Set
 dwSetm = set of attributes of the warehouse relation wrm

// start of check for projection

 for each of the source relations rj in interSetm (refer Intersection)
 {
 get aSetj (the set of common attributes of this relation with the warehouse
relation)

 if (aSetj = = dwSetm)
 {
 (implies that the warehouse relation is a projection of this source
relation- can be complete or partial)

 if ((rj intersection aSetj) != empty
 {
 (implies it is a partial projection)
 add r j to mapSetm as partial projection
 }
 else
 {
 (implies it is a complete projection)
 add r j to mapSetm as complete projection
 }
 }
 }
// end of check for projection

Figure 3.12. The matching algorithm - projection.

This again, is best illustrated with an example. Consider the following example with a

single warehouse relation W.R1. Assume that the source relations R1 and R2 have some

attributes in common with this warehouse relation as illustrated in figure 3.13.

 34

WR1

D

C

B

E

WR4

WR3

WR2

WR1

D

C

B

E

F

G

R2 R1

For each relation,
check the set of
common attributes
with the warehouse
relation for equality

D

C

B

E

F

G

WR4

WR3

WR2

WR1 R1

Set of source relations for each of the
warehouse relations

Set of common
attributes of each of
the source relations

Whenever there is a
match, add it to a set
for each of the
warehouse relations

1

2

3

Figure 3.13. Example illustrating projection.

From figure 3.13, 1 gives the set of warehouse relations that has the set of source

relations that have common attributes for each of the warehouse relations. The first step is

illustrated in 2, where for each of the warehouse relations, for each of the source relation in

the set, the set of common attributes is compared with the warehouse relation for equality. A

match implies the presence of a projection. Whenever there is a match, as in 2, the source

relation involved is added to another set for each of the warehouse relations, as illustrated in

figure 3.13.

One other check that needs to be done at this juncture is the check to see if it is a

complete or a partial projection. This can be done by intersecting the set of common

attributes of each of the sources with the complete attribute set of the same. If the resultant

set has attributes, it simply implies that it is a partial projection of the source relation, and a

complete projection otherwise. This check is not stopped when a match is found, and is done

 35

for all the source relation entries in the set for each of the warehouse relations, as one might

be able to derive the warehouse relation from more than one source relations. For each of the

possible projection, the source relation is added to a set as detailed out in figure 3.13.

At the end of this stage, for each of the warehouse relations, one would have a list of

all the mappings that can be generated by means of projection of a single source relation, as

illustrated in figure 3.14.

WR4

WR3

WR2

WR1

R2 R1 . .

R2 R1 . .

Set of common
attributes of each of
the source relations

Set of source relations from which
the warehouse relation can be
generated by projection

Figure 3.14. End of projection.

3.9.2 Join, union and intersection

The pseudo code for this part of the algorithm is given in figure 3.15. As illustrated in

figure 3.15, for each of the warehouse relations in question, this stage involves in generating

all possible pairs of source relations. For each of these pairs of relations, the combined set of

common attributes is compared with the attribute set of the warehouse relation for equality. If

 36

they turn out to be equal, it implies that the warehouse relation can be one of join, union or

intersection.

 // start of check for join, union/ projection

 for all combinations of the source relations (ri r j) in interSetm (refer
Intersection)
 {
 get aSetij (the combined set of common attributes of each pair of relations)

 if (aSetij = = dwSetm)
 {
 (implies that the warehouse relation is a join of this source relation- can
be complete or partial)

 if ((ri intersection aSeti) != empty || (rj intersection aSet j) != empty
 {
 (implies it is a partial projection)
 add the pair (ri rj) to mapSetm as partial projection on join
 }
 else
 {
 (implies it is a complete projection)
 add the pair (ri rj) to mapSetm as complete projection on join
 }
 }
 if (aSet i = = aSeti)
 {
 (implies that it might be a join or an intersection)
 add the pair (ri rj) again to mapSetm as union / intersection
 }
 }
// end of check for join, union/ projection

}

Figure 3.15. The matching algorithm - join, union/ intersection

This is again best illustrated with an example as illustrated in figure 3.16.

 37

WR1

D

C

B

E

WR4

WR3

WR2

WR1

G

F

E

R2 R1

For each pair of
relations, check the
combined set of
common attributes
with the warehouse
relation for equality

D

C

B

E

F

G

WR4

WR3

WR2

WR1 R1,
R2

Set of source relations for each of the
warehouse relations

Set of common
attributes of each of
the source relations

Whenever there is a
match, the pair is
added to a set for
each of the
warehouse relations

1

2

3

R1,R2 R1,R3 R1,R4 R2,R3 R2,R4

R3,R4

R4 R3

D

C

B

E D

C

B

E

F

G

G

F

R1,
R3

R1,
R4

.

All
possible
pairs

Figure 3.16. Example illustrating join.

To explain figure 3.16, this step starts with the same set of all source relations that

have some attribute in common with each of the warehouse relations. The first step is to

generate all possible pairs of source relations. In the example, warehouse relation WR1 has

four source relations that have some attribute in common with it. Hence all the possible pairs,

namely – [R1, R2] , [R1, R3] , [R1, R4] , [R2, R3] , [R2, R4] and [R3, R4] are generated. For

each of these generated pairs of source relations, the combined set of common attributes is

compared with the warehouse relation WR1 for equality. Equality implies that there is a

possibility of a join. Again, here the check for union or intersection is an addition to this

check, where in a pair can be assumed to be a union / intersection of the warehouse relation if

 38

the set of common attributes of each of the source relations in the pair is the same, and is also

the same as the warehouse relation. In the given example, the pair R3, R4 would give a

possible union/ intersection, as they have the same set of attributes as shown in figure 3.16.

One other check that needs to be done at this juncture is the check to see if the mapping is

complete or partial.

This check is not stopped when a match is found, and is done for all the source

relation pairs generated for each of the warehouse relations, as one might be able to derive

the warehouse relation from more than one join of source relations. For each of the possible

joins, the pair of source relations is added to a set for each of the warehouse as illustrated in 3

of figure 3.16. Another check that needs to be done here is the kind of join – a join with a

common attribute (usually the key attribute), or a cartesian product, with no attributes in

common. The following example illustrates multiple joins of source relations deriving the

warehouse relation. Assume the set of attributes of the warehouse relation (excluding the

derived attributes) in question is as follows:

Set of attributes of DW relation= { A B C D E F }

Assume that the source relations and the corresponding sets of common attributes for this

DW relation are as shown in table 3.1.

Table 3.2. Example for join.

Source Relation Attribute Set
S1 R1 {A B C D}
S1 R2 {E F}
S2 R3 {A B C}
S2 R4 {D E F}

 39

From the table, it is clear that both the combinations of [R1, R2] and [R3, R4] do

make up the same warehouse relation shown above. This leaves us with the check for union/

intersection. Referring back to the top of this section would reveal that pairs of source

relations are considered for the check for join. Now, each pair is obtained and a check of

equality is done on the common attributes of the source relations of that pair. If the check

turns out to be true, it implies that there is a possibility of a union or intersection.

3.9.3 Joins of more than two relations

So far, all the possible mappings that have been generated under joins, union /

intersection are joins of pairs of source relations. Following the same method for generating

all possible mappings of size three or more is not effective. Hence, a different approach has

been followed to generate all possible mappings of size greater than two, the details of which

would be covered in the following sections.

To start with, one has the set of source relations that have some attribute in common

with each of the warehouse relations as shown in figure 3.14. One also requires the

maximum length of joins that need to be generated for the give warehouse relations. Assume

N as the number of source relations for the warehouse relation WR1, and M being the

maximum length of joins that need to be generated. Since one starts with joins of pairs of

relations, the remaining joins that need to be generated are from three onto M. The process

involves in generating all possible combinations of source relations of length three up to M.

For each combination generated, check is done to see if there is a possibility of a join, union/

intersection there. But for sake of explanation, the two stages of generating the possible

combinations and checking for join have been split into two separate sections.

 40

3.9.3.1 Generating all possible combinations

This follows a compare and elimination algorithm, which reduces the number of

comparisons to a minimum as against an exhaustive comparison. In the first pass, the check

is between a set of the source relations in question for each of the warehouse relations, and

the complete set of all the possible pairs of relations that have already been generated. Now,

all the possible joins of length three are generated. The subsequent pass would do a

comparison between the same set of source relations and the set of newly generated joins of

length three and so on, until the limiting length of M is reached. This is best illustrated with

an example.

Assume a warehouse relation WR1 with four source relations (N) having some

attribute in common with it. Also assume that one is required to generate all the possible

joins of all possible lengths. So, M in this case would be four, which would be the maximum

length of the join that is possible. Now, figure 3.17 details out the comparison and

elimination process for the first pass, and the generation of all the joins of length three. From

figure 3.17, it is clear that the process of comparison and elimination has reduced the number

of comparisons considerably.

 41

3

2

1

4

If the relation
exists in the pair,
eliminate the pair
from set 2

1-4

1-3

1-2

2-3

2-4

3-4

SET 1 SET 2

1-2-3

1-2-4

1-3-4

Pass 1 – Cycle 1

3

2

1

4

2-3

2-4

3-4

SET 1 SET 2

Pass 1 – Cycle 2

2-3-4

If the relation
does not exist in
the pair, generate
a combination

Continue the next cycle
with the remaining set of
pairs from the previous
cycle

Continue until all
possible combinations
of the same length are
generated

Figure 3.17. Illustrating generation of multiple joins – pass 1

Now, in the next pass, as mentioned earlier, the set of relations is compared with the

set of generated joins of length three to generate all joins of the next length, viz., four. The

second pass is illustrated in figure 3.18.

 42

3

2

1

4

If the relation
exists in the pair,
eliminate the pair
from set 2

SET 1 SET 2

Pass 2 – Cycle 1

1-2-3-4

1-2-3

1-2-4

1-3-4

2-3-4

If the relation
does not exist in
the pair, generate
a combination

Figure 3.18. Illustrating generation of multiple joins – pass 2

 Figure 3.18 illustrates the second pass, where the comparison is between the same set

of source relations and the set of newly generated joins of length three, to generate joins of

length four in a similar way as described for pass 1. This is repeated until all possible joins

have been generated.

3.9.3.2 Check for possible mappings

As mentioned at the start of this section, the check for a possible mapping is done

right after the generation of the joins. The process of checking for mapping is described in

this section.

For each generated join, assume n as the length of the join. Now, taking all the

relations that make up the join into consideration, the list of all the pairs of these relations are

obtained. For each of these pairs of relations, a check is done to see if the intersecting set

between them is not empty. If it is not, then a counter is incremented. At the end of the cycle,

the counter is compared with a pre-set threshold [(n-1)(n-2)/2 + 1]. There would be a

 43

possible mapping if the counter value is greater than or equal to the threshold value. The

threshold value makes sure that all the relations involved in the join have been considered,

and none have been left out. Figure 3.19 gives an example to illustrate this.

1-2-3-4

Assume this join of length
four

n = 4
Threshold = (n-1)(n-2)/2 + 1 = 4
When Counter >= Threshold = 4, it
implies that it might be a possible
mapping

1-2

1-3

1-4

2-3

2-4

3-4

Set of all possible pairs of
relations from the given
join is considered, and
check is done to see if the
intersecting set between the
relations of each pair is
non-empty. If it is, a
counter is incremented

Figure 3.19. Example Illustrating check for mapping

Again, when a possible mapping is found, as before, it is added to the set of mappings

for each of the warehouse relations. As in the check for pairs, all the checks are done here to

check for join, union/ intersection, complete/ partial join and joins with/ without join

attributes as described in the previous section 3.9.2.

3.9.4 Summary

At the end of this stage, for each of the warehouse relations, one would have the

complete set of all the possible mappings including projection, pair-wise and joins of lengths

more than two, unions/ intersections, as illustrated in figure 3.20.

 44

WR4

WR3

WR2

WR1

R2 R1 . .

R2 R1 . .

Set of common
attributes of each
possible mapping

Set of all possible mappings from
projection, join, union/ intersection

R1, R2 R1, R3 .

Figure 3.20. End of mapping generation phase.

3.10 User validation

Now, it is apparent that more than one possible mapping would be possible for each

of the warehouse relations. Hence, to overcome this ambiguity, all the possible mappings for

each of the warehouse relations are presented to the user, and the user finally validates the

results. It is only after the user validation, that execution proceeds on to generating the

appropriate code for setting the triggers for updates and maintenance of the warehouse

relations.

3.11 Reverse transformation

Once the mappings have been generated, the process of reverse-transformation

returns the attribute names that have been transformed back to the original form to facilitate

 45

the generation of code for setting the triggers on the source schemas to propagate updates to

the warehouse schemas.

3.12 Chapter summary

In this chapter, one looked at the issues involved in automating schema matching and

mapping generation. All the various possible mappings that were considered were also

discussed. Then, the discussion went on to talk about the matching algorithm, detailing out

the various stages in the algorithm and the issues involved. The next chapter would look at

the data structures used for storing and retrieving the data and for generating the mappings.

 46

CHAPTER 4

DATASTRUCTURES IN DETAIL

4.1 Overview

The various data structures required for effective storing and retrieving data are

explained in detail in this chapter.

4.2 Initial data structure

The Initial data structure forms the base for the whole design to rest on. It stores all

the information furnished by the user as discussed in the previous chapter. It typically stores:

1. Various Schemas (source and data warehouse) and their specifications

2. The homonyms

3. The synonyms

4. The attribute mappings

5. The derived attributes

4.2.1 Description

The data structure, [figure 4.1] consists of a hashtable named “dwdatabases” which

would serve as the outer most structure that would have the list of sources and data

warehouses, with the name of the databases as the key and a vector as the value. This vector

in turn consists of these three elements:

Vector[0] – A Boolean that is set to true or false depending on whether the database in

question is trigger-based or difference-based respectively

Vector[1] – A string value that has the DBMS information for the given source

Vector[2] – A Hashtable

 47

This hashtable in-turn has the relation names as the key and a vector as the value for each of

the sources. This vector will have two elements:

Vector[0] – This points to a hashtable again, that contains the attribute names in the key

field and a vector in the value for each attribute of the relation in question, and

this vector in turn contains from two elements to many depending on the type of

attribute. The various cases possible are listed below:

Case 1. A normal attribute of a relation:

Vector[0] – The type of the attribute (as a String)

Vector[1] – Field to specify whether it is a key or a derived attribute (would be

null in this case)

Vector[2] – An optional field that would be added if the current attribute needs

to be renamed later (discussed later)

Case 2. A key attribute of a relation:

Vector[0] – The type of the attribute (as a String)

Vector[1] – Field to specify whether it is a key or a derived attribute (would

have “KEY” in this field)

Vector[2] – An optional field that would be added if the current attribute needs

to be renamed later (discussed later)

Case 3. A derived / computed attribute of a warehouse relation:

Vector[0] – The type of the attribute (as a String)

Vector[1] – Field to specify whether it is a key or a derived attribute (would

have “DERIVED” in this field)

Vector[1] – This points to another hashtable that contains the new names of the attributes in

the key fields and the old names of the same attributes in the value fields. (This

would be discussed in detail later)

 48
 source1

source2

source3

<key> <value>

TriggerTrue

DBMS

Relation1

Relation2

Relation3

<key> <value>

Attribute1

Attribute2

Attribute3

<key> <value>

NewName1

NewName2

NewName3

<key>

OldName1

OldName2

OldName3

<key>

newName

Type

“ ”

HT1

HT4

V1 V2

V3

HT2

HT3

LEGEND

HT - Hash Table
V - Vector

Type

“ DERIVED ”

 newName

Type

“ KEY ”

1

2 3

Either 1 or 2 or 3

Figure 4.1. Initial data structure.

 49

4.3 Data structure intersection

In addition to the main data structure, another data structure [figure 4.2] was needed

to save the set of intersecting attributes between any (source relation – data warehouse

relation) pair, which would be required later on to set the triggers appropriately. This

structure can be described as:

4.3.1 Description

A vector named “intersectVector” the will contain one element for each of the

relations of the data warehouse (assuming a single data warehouse for now). Each element of

this vector is another vector that in turn contains four to five elements as shown:

1. The name of the data warehouse

2. The name of the data warehouse relation

3. An integer value that gives the count of the number of source relations that have

attributes in common with this warehouse relation.

4. A data Structure “AttribSet” (described next)

5. Another AttribSet if required (for union or multiple partial projection)

In the case where multiple source relations are involved, additional elements are

added to the vector as shown above. The data structure AttribSet mentioned above has the

following elements:

1. Name of the source database

2. Name of the source relation

3. Set of intersecting attributes (between this source relation and the data warehouse

relation in question)

 50

DW Rel Name

#Relations

DW Name

S Rel Name

Set of Attribs

Source Name

attribSet V1

V2

DW Rel 2

DW Rel 3

DW Rel 1

DW Rel 4

Figure 4.2. Data structure that stores the set of intersecting attributes.

4.4 Data structure check vector

The data structure “checkVector” is the structure that will host the final required

mappings between the source and the data warehouse relations. There is one instance of

checkVector for each of the data warehouse relation in question. This structure consists of a

vector v1 that has the total number of elements equal to the number of possible mappings

between the source relations and the data warehouse relation. The type of mapping, whether

it is a single source relation projection, or a join of two source relations, or a union or

 51

intersection is defined by another vector v2 [figure 4.3]. This vector V2 has the following

elements:

1 – A string field that would have either “complete” or “partial” as its value, depending on

whether the mapping is a complete or partial projection of the source relation, join or union,

whatever the case maybe.

2 – The source relation information, i.e., the attribSet structure of the source relation (refer

previous section) for a single source relation in case of projection, and more than one as

required for a join, union or intersection.

 52

V2

AttribSet

com/partial

S Rel Name

Set of Attribs

Source Name

com/partial

S Rel Name

Set of Attribs

Source Name

V1

S Rel Name

Set of Attribs

Source Name AttribSet

Figure 4.3. Structure that holds the final generated mappings.

4.5 Chapter summary

In this chapter, one looked at the various structures that made the realization of the

design possible in this thesis. The next chapter goes into the design implementation in detail,

and talks about the algorithm and the issues involved in implementation.

 53

CHAPTER 5

DESIGN IMPLEMENTATION

5.1 Overview

This chapter discusses about the design implementation in detail, starting with the

description of the source file provided by the user to how the data is read and stored, and the

implementation of the schema-matching algorithm in detail. This also deals with the different

implementation issues involved in the same and the methods used to overcome them.

5.2 User input

The input is read from a source file given by the user as explained in chapter 4. Figure

5.1 provides us with an accurate representation of the source file.

 54

schemas::

source <S name> <true/false> <platform>
relation <R name>
attribute <A name> <type> {key/Derived}
attribute <A name> <type> {key/Derived}
.
.
relation <R name>
attribute <A name> <type> {key/Derived}
attribute <A name> <type> {key/Derived}
.
.
source <S name> <true/false> <platform>
relation <R name>
attribute <A name> <type> {key/Derived}
attribute <A name> <type> {key/Derived}
.
.
warehouse <DW name>
relation <R name>
attribute <A name> <type> {key/Derived}
attribute <A name> <type> {key/Derived}
.
.
homonyms::
<A name> :: <S name>.<R name> ; <S name>.<R name>
.
.
synonyms::
<S name>.<R name>.<A name> :: <S name>.<R name>.<A name> ; <S name>.<R name>.<A
name>
<S name>.<R name>.<A name> :: <S name>.<R name>.<A name>
.
.
attributemapping::
<DW name>.<R name>.<A name> :: <S name>.<R name>.<A name>
.
.
derived::
<DW name>.<R name>.<A name> :: <S name>.<R name>.<A name> ; <S name>.<R name>.<A
name>

.

 Legend:

S name – Source Name
R name – Relation Name
A name – Attribute Name
DW name – Warehouse Name

Figure 5.1. Source file.

 55

The keywords “schemas”, “synonyms”, “homonyms”, “attributemapping” and

“derived” make the design perform various operations when encountered. For example,

when the keyword “schemas” is encountered, the system knows that it will be followed by a

set of schemas, source or warehouse. Likewise, the sub keyword “source”, “relation” and

“attribute” make it easier for the system to identify the type of input that it is reading in. A

more precise description of the various parts of the source file provided by the user is given

below. This is subdivided into 5 sections, analogous to the source file [figure 5.1] as split up

by the keywords.

5.2.1 Schemas

This refers to the source and the data warehouse schemas that the user wants to use.

The syntax for specifying the schema in the source file [figure 5.1] is as shown below:

For the source,

source <S name> <true/false> <platform>

where,

<source name> gives the name of the source relation

<true/false> specifies whether the source is trigger-based (true) or difference based

(false)

<platform> gives the DBMS platform e.g. Oracle on NT

For the relation,

relation <R name>

where,

 <relation name> gives the name of the relation

and for the attribute,

attribute <A name> <type> {key/Derived}

 56

where,

<attribute name> gives the name of the attribute

<type> gives its type (char, varchar, integer etc)

{Key/Derived} is an optional field that is specified as “KEY” or “DERIVED” if that

attribute is a key or a derived attribute (for data warehouse relations only) respectively

The data warehouse schemas are specified in a similar manner, except that the name “source”

is replaced with the name “warehouse” [figure 5.1].

5.2.2 Homonyms

Under homonyms, we list all the attributes of the source relations that are referred to

by the same name, but that are dissimilar. The syntax for specifying the homonyms in the

source file [figure 5.1] is as shown below:

<A name> :: <S name>.<R name> ; <S name>.<R name>

To state an example,

s1.r1.attribute1 :: s2.r1.attribute4 ; s3.r2.attribute2

which means, attribute1 of relation r1 of source s1, is the same as (or homonymous to)

attribute4 of relation r1 of source s2 and attribute2 of relation r2 of source s3.

5.2.3 Synonyms

Under synonyms, we list all the attributes of the source relations that have different

names, but are the same. The syntax for specifying the synonyms in the source file [figure

5.1] is as shown below:

<S name>.<R name>.<A name> :: <S name>.<R name>.<A name> ; <S name>.<R name>.<A name>

To state an example:

s1.r1.attribute1 :: s2.r1.attribute4 ; s3.r2.attribute2

 57

which means, attribute1 of relation r1 of source s1, is the same as (or synonymous to)

attribute4 of relation r1 of source s2 and attribute2 of relation r2 of source s3.

5.2.4 Attribute mapping

Under attribute mapping, all the attributes of the data warehouse relations that are

referred to by different names as against their analogous counterparts in the source relations

are listed, and the mapping between them is given. The syntax for specifying the attribute

mapping in the source file [figure 5.1] is as shown below:

<DW name>.<R name>.<A name> :: <S name>.<R name>.<A name>

To state an example,

dw1.r1.attribute1 :: s2.r1.attribute4

which means, attribute1 of relation r1 of datawarehouse dw1, is the same as attribute4 of

relation r1 of source s2. As explained in chapter 3, three unique kinds of mappings are

possible here:

Case 1: a direct mapping from a regular attribute of a source relation to that of a warehouse

relation, wherein, the attribute is referred to by a different name than what is specified in the

source relation.

Case 2: a mapping between an attribute of a source relation that has been modified earlier

due to the adding of homonyms and the corresponding attribute in the warehouse relation.

Case 3: a mapping between attributes of a source relation that has been modified earlier due

to the adding of synonyms and the corresponding attribute in the warehouse relation.

5.2.5 Derived

Under derived, all the attributes of the data warehouse relations that are derived or

computed from more than one attribute of the source relations are listed. The syntax for

specifying the derived attributes in the source file [figure 5.1] is:

 58

<DW name>.<R name>.<A name> :: <S name>.<R name>.<A name> ; <S name>.<R name>.<A name>

To state an example,

dw1.r1.attribute1 :: s2.r1.attribute4 ; s2.r1.attribute5 ; s2.r1.attribute6

which means, attribute1 of relation r1 of datawarehouse dw1, is derived from attributes

attribute4, attribute5 & attribute6 of relation r1 of source s2

5.3 Storing the data

The data is read in from the source file [Figures 5-1]. Once the source file is open,

depending on the keywords read in, various operations are performed accordingly. The data

is stored in a datastructure named “initial datastructure”, that is described in detail in chapter

4 [figure 4-1]. This structure stores the data in a hierarchical manner, with the sources at the

top level, followed by the relations of the sources, followed by the attributed of the relations.

This structure holds good for the warehouse relations too. The process of storing the various

parts of the source file is explained in detail in the following sections, along with the issues

involved in the implementation of the same, and the solution arrived at.

5.3.1 Storing the source and warehouse schemas

This is a straightforward implementation of the design, wherein, the source

characteristics are read in from the source file and the datastructure updated accordingly.

Since the file stores the schema information in a hierarchical order, the storing of the same is

done in a similar manner, starting with the sources, and going down to the relations and the

attributes of each of the relations and so on.

 59
 source S1 true ORACLEOMEGA

relation STUDENTINFO

attribute SSN char(9) key
attribute FIRSTNAME varchar(15)
attribute LASTNAME varchar(15)
attribute AGE int
attribute GENDER char(1)
attribute NATIONALITY varchar(15)
attribute RACE varchar(15)
attribute ADDRESS varchar(30)
attribute HOMATT1 varchar(10)
attribute HOMATT3 int
attribute SYNATT1 varchar(30)
attribute SYNATT4 char(20)

Figure 5.2. Schema part of a sample source file.

The storing of the data is best illustrated with a live example. Consider a source file, a

part of which is shown in figure 5.2. Figure 5.3 shows the initial datastructure at

initialization, before any data is added to it.

HT1

Figure 5.3. Storing source/ warehouse schemas - stage 1.

 60

Figure 5.4 shows the same structure after the source characteristics are read in from

the source/input file, which is the first line of figure 5.2.

source S1 true ORACLEOMEGA

A new element has been added to the hashtable HT1 with the source name “S1” as

the key and a new Vector “V1” as the value. Again, two elements are added to this vector,

and the values “true” and “oracleomega” are added to the first and the second elements of the

vector V1, representing whether the source is trigger/difference based (true being trigger-

based) and the platform and the RDBMS where the source resides in that order. A new empty

hashtable is added as the third element of the vector V1 for the relations of this source.

 S1

“true”

“oracleomega
”

HT1 V1

Figure 5.4. Storing source characteristics.

When the next line is read in, which has the keyword “relation”, a new element is

added to the newly added hashtable “HT2” with the relation name as the key as shown in

figure 5.5. For the value, a new vector V2 is added. Now this vector will have a single

element to start with, but another one might be added later on. This would be covered in

detail in the following sections, starting with section 5.3.2 covering the storing of synonyms.

 61

For now, a new hashtable HT3 is added as the first element of this vector V2, as shown again

in figure 5.5.

Now, when the attributes are read in line by line, for each of the attributes, a new

entry is added into the hashtable HT3 as shown in figure 5.6, with the attribute name as the

key and a new vector V3 as the value. Again, V3 has only two elements to start with, and the

third one is added as when necessary. This is also covered in detail in the subsequent

sections. For now, based on the type of attribute- either a normal, key or a derived attribute

(for attributes of the warehouse relations only), the vector V3 will have either “ “ or “key” or

“derived” as the second element, with the attribute name as the first. This too is shown in

figure 5.6, for the given example. Two attributes are shown added to the hashtable.

 62

HT2

 S1

“true”

“oracleomega
”

HT1 V1

 studentinfo

HT3

V2

Figure 5.5. Storing relation characteristics.

 63
 HT3 SSN

varchar(15)

“ ”

V3

Char(9)

“ KEY ”

FIRSTNAME

Figure 5.6. Storing attribute characteristics.

Once the source schemas are added, the same process is repeated for the warehouse

schemas. One needs to note here that the source and the warehouse schemas are stored in the

same structure to avoid unnecessary wastage of space. Once the source and the warehouse

schemas are stored in the datastructure as described in this section, the synonyms are read in

and are stored as described in the next section.

5.4 Transformation

This forms the first stage of the matching algorithm where in the data that has been

read in from the source file is transformed to include the homonyms, synonyms, attribute

mappings and the derived attributes. The following sections detail out the implementation

and the issues involved in applying all these to the initial data.

 64

5.4.1 Applying the homonyms

When the homonyms are read from the source file, demarked by the keyword

“homonyms”, the data structure is modified to accommodate these new entries. Again, for

easy comprehension, assume a source file, part of which is shown in figure 5.7.

 homonyms::

HOMATT1 :: S1.STUDENTINFO ; S2.COURSETAKEN ; S3.STAFFINFO

HOMATT2 :: S1.STUDENTACADINFO ; S2.COURSETAKEN

HOMATT3 :: S1.STUDENTINFO ; S3.STAFFSTATUS

HOMATT4 :: S2.STUDENTSTATUS ; S3.STAFFSTATUS

Figure 5.7. Homonym part of the sample source file.

Each line is read in from the source file. For this case, assume that the first line is read

in as shown below:

HOMATT1 :: S1.STUDENTINFO ; S2.COURSETAKEN ; S3.STAFFINFO

Now, as described earlier, this means that the attributes homatt1 of relations

STUDENTINFO, COURSETAKEN and STAFFINFO are homonymous, or in other words,

these three attributes, though being referred by the same name, need to be identified as three

different attributes. The solution involves in generating new names for all the involved

attributes, and replacing the original attribute names with the newly generated names.

5.4.1.1 Issues

The solution involves in manipulating the attributes involved in such a way that all

the involved attributes (homatt1, homatt1 and homatt1 of the three different relations in this

case) would not be identified as the same when a search is done on any one of these

 65

particular attribute (homatt1). A simple solution would be to add the newly generated name

as a new entity to each of the attributes involved, in this case, homatt1 of each of the three

source relations. But again, problems would arise in the next stage, which is generating the

mapping, where in, the updated attribute names need to be readily accessible to generate the

intersection and finally the mapping. Hence another solution needs to be arrived at by way of

which, the new attribute names would be readily and easily accessible, as would the original

names of these attributes if necessary and the mapping between the original and the new

names.

5.4.1.2 Implementation

The solution involves in adding the new name for the involved attribute as the third

element to vector V3 [figure 5.6] of the attribute in question. One also needs to keep track of

the original names of these attributes. The solution involves in adding a new hashtable to the

vector V2 (for the specific relation in question), which retains the mapping between the old

and the new attribute names. This step is detailed out later in this section. So the steps that

are involved in renaming each of the attributes are:

1. Generating new names for each of the attributes involved

2. Adding the new attribute name to the vector V3

3. Adding a new hashtable (if it does not already exist for that particular relation) and

adding an entry into that table with the new name of the attribute as the key and the

original name as the value

The steps mentioned above are detailed with the example below.

 66

Step1: Generating new attribute names

This step involves generating new names for each of the attributes involves, as all the

attributes have the same name, and need to be changed. A method has been written, which

takes the current name of the attribute as the input and returns a new generated name as the

result. In our example, passing homatt1 of relations STUDENTINFO, COURSETAKEN and

STAFFINFO in turn will generate three different names – homatt1_001, homatt1_002 and

homatt1_003 respectively.

Step2: Updating vector V3

Figure 5.6 shows the vector V3 as it would look for all the attributes initially, when

no new name has been added. Figure 5.8 shows the vector V3 of the attribute homatt1 being

updated with the new name homatt1_002 by adding it as the third element to V3.

 HT3

V3 Char(9)

“ ”

HOMATT1_002
Note how the new name is added as a new

element to vector V3

SSN

NAME

HOMATT1

SYNATT2

Figure 5.8. Applying homonyms – step 1.

 67

Step3: Adding an entry into hashtable

For each of the attributes that need to be renamed, a method would return the vector

V2 for this specific source relation, as each of the source relations will have one such vector.

In this example, as one considers the attribute homatt1, the method will be called with

S2 and COURSETAKEN as the parameters for the source and relation names. This method

would return the vector V2 for this specific relation COURSETAKEN.

HT3

V2

SSN

NAME

HOMATT1

SYNATT2

V3

“ ”

HOMATT1_002

Char(9)

“ ”

HT4

HOMATT1_002 HOMATT1

LEGEND

 Newly added

HT Hashtable
V Vector

Since Hashtable HT4 does not
exist already, it is newly created
and an entry for HOMATT1_002
is added as shown

Figure 5.9. Adding homonyms – step 2.

 68

Once vector V2 is obtained, a check is done to see if the hashtable HT4 already

exists, as only one such table is created for each of the relations. So while renaming an

attribute of a relation that already had one attribute renamed, an initial check is done to see if

the table exists. If the hashtable does not exist, then a new element is added to vector V2 and

the hashtable HT4 is created. Then a new entry into the hashtable with the new name of the

attribute as the key and the old name as the value is added, as shown in figure 5.9. If the

hashtable HT4 does exist, then a new entry is added to the existing table, without creating a

new one. In our example, the hashtable HT4 does not exist already. Hence the hashtable is

created for the source relation COURSETAKEN, and a new entry is added to it. This

example demonstrates the renaming process for one attribute, namely homatt1 of source

relation COURSETAKEN.

5.4.2 Adding the synonyms

When the synonyms are read from the source file, demarked by the keyword

“synonyms”, the data structure is modified to accommodate these new entries. Again, for

easy comprehension, assume a source file, part of which is shown in figure 5.10.

 synonyms::

S1.STUDENTINFO.SYNATT1 :: S2.COURSETAKEN.SYNATT2 ; S3.STAFFINFO.SYNATT3

S1.STUDENTINFO.SYNATT4 :: S2.STUDENTSTATUS.SYNATT5

S2.COURSETAKEN.SYNATT6 :: S3.STAFFSTATUS.SYNATT7 ; S1.STUDENTACADINFO.SYNATT8

S2.STUDENTSTATUS.SYNATT9 :: S3.STAFFSTATUS.SYNATT10

Figure 5.10. Synonym part of the sample source file.

 69

Each line is read in from the source file. For this case, assume that the first line is read in as

shown below:

S1.STUDENTINFO.SYNATT1 :: S2.COURSETAKEN.SYNATT2 ; S3.STAFFINFO.SYNATT3

Now, as described earlier, this means that synatt1, synatt2 and synatt3 of the respective

source relations are synonymous, or in other words, these three attributes, though having

different names, need to be identified as the same attribute. Hence, the attributes synatt2 and

synatt3 are renamed to “synatt1” as per the design, wherein, the first name is retained and the

rest of the attributes are transformed with the first attribute’s name.

5.4.2.1 Issues

The solution involves in manipulating the attributes involved in such a way that all

the involved attributes (synatt1, synatt2 and synatt3 in this case) would be identified when a

search is done on this particular attribute (synatt1). A simple solution would be to add the

new name as a new entity to each of the attributes involved, in this case, synatt2 and synatt3.

But problems would arise in the next stage, which is generating the mapping, where in, the

updated attribute names need to be accessed to generate the intersection and finally the

mapping. Hence another solution needs to be arrived at by way of which, the new attribute

names would be readily and easily accessible, as would the original names of these attributes

if necessary and the mapping between the original and the new names.

5.4.2.2 Implementation

The solution here involves two steps, the first being adding the new name for that

attribute as the third element to vector V3 [figure 5.6] of the attribute in question. The second

step is necessary to make the new names easily accessible and to keep track of the original

names of the attributes. This step involves in adding another hashtable to the vector V2 (for

the specific relation in question), which retains the mapping between the old and the new

 70

attribute names. This step is detailed out later in this section. So the two steps that are

involved in renaming each of the attributes are:

1. Adding the new attribute name to the vector V3

2. Adding a new hashtable (if it does not already exist for that particular relation) and

adding an entry into that table with the new name of the attribute as the key and the

original name as the value

The two steps mentioned above are detailed with the example below.

Step1: Updating vector V3

Figure 5.6 shows the vector V3 as it would look for all the attributes initially, when

no new name has been added. Figure 5.11 shows the vector V3 of the attribute synatt2 being

updated with the new name synatt1 by adding it as the third element to V3.

 HT3

V3 Char(9)

“ ”

SYNATT1
Note how the new name is added as a new

element to vector V3

SSN

NAME

HOMATT1

SYNATT2

Figure 5.11. Adding synonyms – step 1.

 71

Step2: Adding entry into hashtable

Figure 5.5 shows a vector V2, which initially had only one element. Section 5.3.1

describes the purpose of this vector. Now, for each of the attributes that need to be renamed,

a method would return the vector V2 for this specific source relation, as each of the source

relations will have one such vector. In this example, if the attribute synatt2 is considered,

then the method will be called with S2 and COURSETAKEN as the parameters for the

source and relation names. This method would return the vector V2 for this specific relation

COURSETAKEN.

HT3

V2

SSN

NAME

HOMATT1

SYNATT2

V3

“ ”

SYNATT1

Char(9)

“ ”

HT4

HOMATT1_002 HOMATT1

Since hashtable HT4 already
exists, only a new entry is added as
shown for this attribute SYNATT1

LEGEND

 Newly added

SYNATT1 SYNATT2

Figure 5.12. Adding synonyms – step 2.

 72

Once vector V2 is obtained, a check is done to see if the hashtable HT4 already

exists, as only one such table is created for each of the relations. So while renaming an

attribute of a relation that already had one attribute renamed, an initial check is done to see if

the table exists. If the hashtable does not exist, then a new element is added to vector V2 and

the hashtable HT4 is created. Then a new entry into the hashtable with the new name of the

attribute as the key and the old name as the value is added, as shown in figure 5.9. If the

hashtable HT4 does exist, then a new entry is added to the existing table, without creating a

new one. In this example as shown in figure 5.12, as the hashtable HT4 already exists, one

just adds a new entry to it. This example demonstrates the renaming process for one attribute,

namely synatt2 of relation COURSETAKEN.

5.4.3 Storing the attribute mappings

The process involved in storing the attribute mappings to the datastructure is no

different than the storing of the synonyms and homonyms as detailed out in the previous

couple of sections. From section 5.2.4, it is clear that the attribute mappings are defined very

much similar to the synonyms, except for the fact that this mapping is between the source

and the warehouse schemas, as against two sources. Though it supports three different cases,

there is simply a one to one mapping between the DW attribute and the corresponding

attribute from the source relation, which simply means that this attribute of this warehouse

relation is the same as the attribute of the given source relation, the only difference being the

change of name by which it is referred by.

Again, the steps involved here are the same as that covered under section 5.4.2 for

storing the synonyms, differing only by the relations involved, warehouse relations in this

case against source relations in the former case (synonyms).

 73

5.4.4 Storing the derived attributes

As mentioned in chapter 3, the derived attributes need to be handled separately. They

cannot be added to the data structure until after the generation of the mappings, as they are

not required to generate the same. As they are not required until after the generation of the

mappings and user validation, the derived attributes and the deriving attributes from the

source relations are stored in a temporary store initially, and would be covered again after the

generation of the mappings for all the warehouse relations.

5.4.5 Completing the hashtable

From sections 5.4.1, 5.4.2, 5.4.3, it is bare that for all attributes of the source and the

warehouse relations that require to be referred to by a different name (under normalization),

an entry is created in a new hashtable HT4 which would contain the <new name, old name>

pair for each of the attributes. But at the end of the normalization process, those attributes

that do not require a name change, or in other words, those attributes that have not been

transformed are not accounted for in this new hashtable HT4. The problem arises in the later

stage when this hashtable is the only structure referred to, to get the set of attributes for the

various relations to generate the possible mappings.

5.4.5.1 Implementation

The implementation is a simple on which involves in obtaining a set of attributes for

each of the source and warehouse relations that are not present in the hashtable HT4 for the

same, and adding an <original name, original name> pair to the hashtable for each of the

remaining attributes. Figure 5.12 shows the incomplete hashtable HT4 that would be

completed as shown in figure 5.13.

 74

HT3

V2

SSN

NAME

HOMATT1

SYNATT2

V3

“ ”

Char(9)

“ ”

HT4

HOMATT1_002

For the remaining attributes of the
relation, SSN and NAME in this
example, the pair <SSN, SSN> and
<NAME, NAME> have been added
to HT4 to complete it.

LEGEND

 Newly added

HT Hashtable
V Vector

SYNATT1

NAME

SSN

HOMATT1

SYNATT2

NAME

SSN

Figure 5.13. Completing the hashtable HT4.

5.5 Intersection

As mentioned earlier, this stage involves generating a list of possible source relations

that have at least one attribute in common with the warehouse relation in question, along with

the set of attributes that the relations have in common with this warehouse relation. This

information is stored in a structure, the description of whose implementation follows in this

section. At the end of this stage, one is required to have the following information for each of

the warehouse relations in question namely,

 75

1. The list of source relations that have at least one attribute in common with this

warehouse relation in question.

2. For each of these source relations, a set of attributes that these relations have in

common with the warehouse relation.

The implementation would be best explained with an example. This would be

referred back in both the remaining parts of the algorithm. Let us assume a single warehouse

relation. The same would be repeated for each of the rest of the warehouse relations. Assume

the following information for the warehouse relation as described in figure 5.14 and table

5.1. One needs to note here that the source relations and the attributes are selected in such a

way that they cover all the possible scenarios.

 Warehouse Name: DW1

Warehouse Relation Name: DW-R1
Attribute Set: [A B C D E F]

Also assume that the following source relations have some attributes in
common with this warehouse relation as shown below (note that all the
common attributes are highlighted):

Figure 5.14. Example to demonstrate the matching algorithm.

Table 5.1. Example schemas.

Source Relation Attribute Set
S1 R1 {A B C D X Y Z}
S1 R2 {D E F M N}
S2 R3 {A B C D E F}
S2 R4 {A B C D E F}

 76

5.5.1 Issues

This section covers the various issues involved in implementing this part of the

algorithm.

1. To enable proper comparisons of the attributes, one is required to consider the

transformed [refer chapter 3, section 3.5] attribute names for the purpose of

comparison.

2. As the pseudo-code of the intersection part of the algorithm in chapter 3 illustrates,

for each of the warehouse relations, one is required to do an attribute-attribute

comparison between the attributes of the warehouse relation and the attributes of the

various source relations. The problem involves in arriving at some way to improve

the performance of this attribute-attribute comparison, which otherwise would require

one to do the comparison N x M times [N being the total number of attributes of all

the source relations and M the number of attributes of the warehouse relation in

question].

3. For each of the warehouse relations, a way has to be devised by which the result of

the comparisons, which is the list of source relations that have any attribute in

common with the warehouse relation and the set of common attributes for each of the

source relations in question can be stored somewhere for easy retrieval in the next

stage.

5.5.2 Implementation

Sections 5.4.1, 5.4.2 and 5.4.3 detail out part of the transformation process, wherein

the transformed attribute names are stored in a hashtable HT4 as illustrated in figure 5.13.

This hashtable is completed as described in section 5.3.6. One needs to note at this point that

this hashtable HT4 with the <new, old> attribute name pairs would exist for all the relations

 77

of the schemas, including the warehouse relations. Hence getting back a set of transformed

attributes for any of the relations doesn’t seem to pose a problem anymore.

The other main issue involved here is the attribute comparison between the source

and the warehouse relations. To improve the comparison from a naïve N x M number of

comparisons, [N being the total number of attributes of all the source relations and M the

number of attributes of the warehouse relation in question] a method has been formulated

that would decrease the number of comparisons from N x M to just N. For each of the

warehouse relations, instead of obtaining the set of normalized attributes, the whole hashtable

HT4 is obtained. For each of the source relations, the set of normalized attributes is obtained

by returning just the key set of the hashtable HT4 for that source relation in question. Now,

comparison involves in checking if each of the attribute of the source relations exist in the

warehouse relation, by hashing into the hashtable HT4 for the warehouse relation. This way,

the performance of the comparison is tremendously improved from N x M to just N.

One still needs some way to store the list of source relations and the common

attributes for each of the warehouse relations. To implement this, a new data structure

“intersectVector” is created, which, will contain the following information for each of the

warehouse relations at the end of this stage:

1. The warehouse name.

2. The warehouse relation name (of the relation in question).

3. The number of source relations that it has at least one attribute in common with.

One needs to note here that it will be updated as and when a new source relation

with some common attribute with the warehouse relation is found.

4. A list of the source relations that have common attributes with this warehouse

relation. Again, for each of these source relations added to this structure, the set of

common attributes of that relation are added too.

 78

Section 4.3 of chapter 4 details out this data structure and figure 4.2 illustrates the

same. The storing of data in this structure is best described with the given example [figure

5.14]. The structure “intersectVector” is shown in figure 5.15 when it is first created. It

would consist of only the main vector V1.

 V1

Figure 5.15. Initial intersect vector.

Now, as per the example, an instance for the warehouse relation “DW-R1” is created,

where by, vector V2 is added as an element to vector V1 and the first three elements of this

new vector V2 would contain the warehouse name, the warehouse relation name, and a field

that gives the number of source relations that have attributes in common with this warehouse

relation (initialized to ZERO) respectively, as shown in figure 5.16.

 79

V1

DW-R1

0

DW1 V2

LEGEND

 Newly added

 Figure 5.16. Intersect vector – after creating an entry for the first warehouse relation.

As explained earlier, for each of the source relations, the set of attributes is retrieved

from the stored data structure. Each attribute of each of the source relation is considered and

compared with the hashtable HT4 of the warehouse relation (DW-R1 in this case), by

hashing the attribute name into the hashtable to check if that attribute exists. If it exists, then

that particular attribute is added to a temporary set. Once all the attributes of a source relation

have been checked for existence with the warehouse relation, this temporary set of attributes

along with the source name and the source relation name are added to the datastructure

“intersectVector” by adding a new entry into vector V2, which would be a structure

(attribSet) which has exactly three elements – one for the source name, one for the source

relation name and the third, a set (for the attribute set).

This is illustrated in figure 5.17 for the first source relation, namely R1 of source S1

as per the example. In the example one can see that this relation R1 has the attributes [A B C

 80

D] in common with the warehouse relation DW-R1. One thing to note here is that if a source

relation has no attribute in common with the current warehouse relation, it is simply ignored.

V1

DW-R1

1

DW1 V2

LEGEND

 Newly added

R1

ABCD

S1

AttribSet

Figure 5.17. Intersect vector – after adding the first source relation.

Again, the same steps are followed for each of the remaining source relations until all

the relations have been compared against this warehouse relation in question. Then the whole

cycle is repeated for the rest of the warehouse relations. The structure “intersectVector” after

comparing the attributes of the warehouse relation DW-R1 with the source relations of the

given example is as shown in figure 5.18.

 81

V1

DW-R1

4

DW1 V2

R1

[A B C D]

S1

attribSet

R3

[A B C D E F]

S2

R4

[A B C D E F]

S2

R2

[D E F]

S1

LEGEND

 Newly added

Figure 5.18. Intersect vector – at the end of intersection.

5.6 Mapping generation

Once the set of source relations that have some attribute(s) in common with the

warehouse relation is obtained and stored in the structure “intersectVector” as detailed out in

the previous section, the next stage would be to generate all mappings that can possibly result

from the source relations to the warehouse relation in question. One also needs to figure out

the kind of the mapping – whether it is a projection, join, or a union/ intersection. The

remaining sections describe the implementation of this final stage of the matching algorithm.

 82

The resulting structure “intersectVector” from the previous stage, that stores the set

of intersecting attributes and the corresponding source and relation names for each of the data

warehouse relation is the only structure that is required in this stage. As mentioned in chapter

3, the quest here is to identify how each of the warehouse relations is derived from the source

relations. The various possible scenarios are:

1. A projection from a single source relation (maybe complete or partial)

2. A join of two or more source relations (it maybe a normal join or a cartesian

join, and a complete or a partial projection on join)

3. A union or intersection of two or more source relations (again, it may be a

complete or partial projection on union)

For each of the warehouse relations, the sets of attributes of the source relations are retrieved

and analyzed and the plausible mappings generated. The various stages involved are:

1. Check for any projection

2. Check for a join, union and intersection

Again, at the end of this stage, one is required to have the following information for each of

the warehouse relations in question namely,

1. The various mappings that can be possible between the source relations and

the warehouse relations, giving the various possible mappings of the source

relations that make up a projection, join or a union / intersection.

5.6.1 Issues

One issue that is involved in the implementation of this stage of the matching

algorithm is the storing of the generated mapping information for each of the warehouse

relations. One needs the following information to be stored for each of the generated

mappings for any warehouse relation:

 83

1. The type of mapping- whether a projection, join, or union / intersection

2. In any case, one needs to store the source name, the relation name and the set

of attributes that the particular source relation has in common with the

warehouse relation.

5.6.2 Implementation

A third and final structure named “checkVector” is created for the sole purpose of

storing the information of the generated mappings for each of the warehouse relations. There

would exist an instance of this structure for each of the warehouse relations. This structure

has been detailed out in section 4.4, chapter 4. The next couple of sections describe the two

steps involved in this stage namely check for projection and check for join.

5.6.3 Check for projection

For each of the source relations from the structure “intersectVector”, the set of

common attributes is compared with the set of attributes of the warehouse relation (excluding

the derived attributes if any) in question for equality. If the result of the check is true, it

implies that the warehouse relation is indeed a projection of that source relation. This check

is not stopped when a match is found, and is done for all the source relation entries in the

structure “intersectVector” that warehouse relation in question, as one might be able to derive

the warehouse relation from more than one source relation. For every check where the result

is true, the source relation information is added to the new data structure “checkVector”. A

new vector V2 is added as a new element to the existing vector V1, and this in turn would

have two elements, one for the type of projection (complete or partial) and the other to store

the “attribSet” structure of the source relation in question, which would contain all the

required information about the source relation, namely, the source name, the source relation

 84

name and the set of common attributes. Again, this is best illustrated with an example. The

initial empty “checkVector” is as shown in figure 5.19.

 V1

Figure 5.19. Initial check vector.

 In the given example [figure 5.18], relations R4 and R5 of source S2 would satisfy

this check condition, as there is a possibility of the warehouse relation DW-R1 being a partial

projection of these relations. The checkVector after this information being added to it is as

illustrated in figure 5.20.

 V1 SYNATT1 V2

“complete”

AttribSet

R3

[A B C D E F]

S2

SYNATT1

“complete”

R4

[A B C D E F]

S2

LEGEND

 Newly added

Figure 5.20. Check vector after projection.

A new vector V2 is added as a new entry to vector V1 and the attribSet structure of relations

R4 and R5 are added to V2 as shown in figure 5.20.

 85

5.6.4 Check for join, union and intersection

This check is done only if the no of source relation entries in “intersectVector” is

greater than ONE, as it takes at the least two relations to make up a join or a union. Now,

again, for all of the source relations that are listed in the data structure “intersectVector” for

the warehouse relation in question, all possible combinations of source relations are

considered, and the combined set of common attributes of each pair of source relations are

obtained and checked with the warehouse relation for equality. Join and union/ intersection

are determined by the following checks.

5.6.4.1 Check for join

Whenever there is a match between the combined attribute set of the source relation

pair and the warehouse relation, it implies that this join of source relations forms the

warehouse relation, and that it is a valid mapping. This mapping information is added to the

data structure “checkVector”. The things to figure out here are

1. The kind of join – a join with a common attribute (usually the key attribute), or a

Cartesian join, with no attributes in common

2. Whether it is a complete or a partial projection on join

Again, a new vector V2 is added as a new element to the existing vector V1, and this in turn

would have three elements instead of two as in projection, one for type of join (complete or

partial projection on join) and the remaining two to store the “attribSet” structures of the two

source relations that make up the join of the warehouse relation in question, which would

contain all the required information about the source relations, namely, the source name, the

source relation name and the set of common attributes. Again, this is best illustrated with an

example. From the given example [figure 5.18], it is obvious that a number of joins can be

possibly generated to derive the warehouse relation as illustrated in table 5.2.

 86

Table 5.2. All possible joins.

JOIN OF JOIN ATTRIBUTES TYPE
S1.R1 U S1.R2 [D] PARTIAL
S1.R1 U S2.R3 [A B C D] PARTIAL
S1.R1 U S2.R4 [A B C D] PARTIAL
S1.R2 U S2.R3 [D E F] PARTIAL
S1.R2 U S2.R4 [D E F] PARTIAL
S2.R3 U S2.R4 [A B C D E F] COMPLETE

All of these possible mappings are added to the structure checkVector. But for the

purpose of illustration, only the first mapping is added as illustrated in figure 5.21. This

completes this stage wherein the various plausible mappings in the form of joins are

generated for each of the warehouse relations.

 87
 V1 V2

“complete”

AttribSet

R6

[A B C D E F]

S3

“partial”
R1

[A B C D]

S1

R2

[D E F]

S1

“complete”

R4

[A B C D E F]

S2

LEGEND

 Newly added

Figure 5.21. Check vector after join.

5.6.4.2 Check for union or intersection

Whenever there is a match between the combined attribute set of the source relation

pair and the warehouse relation, and also, if the common attributes of the two source

relations of that pair turn out to be equal, then it implies that this is a case of union or

intersection of the source relations forming that particular pair. This mapping information is

added to the data structure “checkVector”. The thing to figure out here is the kind of union /

intersection – Whether it is a union on a complete or a partial projection of the source

relations.

 88

Again, for each valid mapping, a new vector V2 is added as a new element to the

existing vector V1, and this in turn would have three elements as in join, one for type of

union / intersection (complete or partial projection) and the remaining two to store the

“attribSet” structures of the two source relations that make up the union / intersection of the

warehouse relation in question, which would contain all the required information about the

source relations, namely, the source name, the source relation name and the set of common

attributes. One needs to note here that any one pair of source relations that satisfy the above

checks can either be a union or an intersection, which can only be determined by examining

the tuples of each of the source relation in question as well as those of the warehouse

relation. As that is not done at this point, where all the relations are handled at a relational

level, it is left as is for now. Again, this is best illustrated with an example. From the given

example [figure 5.18], it is obvious that the only possible union or intersection is the one of

relations R3 and R4 of source S2.

All of these possible mappings are added to the structure checkVector as illustrated in

figure 5.22. This completes this stage wherein the various plausible mappings in the form of

unions or intersections are generated for each of the warehouse relations.

 89
 V1 V2

“complete”

AttribSet

R6

[A B C D E F]

S3

“partial”
R1

[A B C D]

S1

R2

[D E F]

S1

“complete”

R4

[A B C D E F]

S2

“comp union”
R3

[A B C D E F]

S2

R4

[A B C D E F]

S2 LEGEND

 Newly added

Figure 5.22. Check vector after union / intersection.

 90

5.7 User validation

The final step in the design involves the intervention of the user, where the system

spews out all the possible mappings that it has generated for each of the warehouse relations

and waits for the user to validate the results with the one mapping that would be appropriate

for the case as required by the user. One needs to note here again that as already illustrated in

the previous chapters, this is not a completely automated process, and still requires the user

validation at the end to obtain the final exact mapping for the warehouse relation as required

or envisioned by the user at an earlier stage. Once this validation is done for all the

warehouse relations in question, the next step would be the generation of the triggers for

setting up the warehouse for updates. This part is left as part of future work that would be

covered in the following chapter.

5.8 Chapter summary

This chapter covered the implementation of the matching algorithm and the issues

involved in the same. The next chapter talks about the performance optimizations done on

the algorithm.

 91

CHAPTER 6

PERFORMANCE OPTIMIZATION AND TESTING

6.1 Overview

This chapter evaluates the performance of the matching algorithm and presents one

with the various optimization techniques that have been implemented to improve the

performance of the algorithm, and also presents other techniques that can be implemented to

further improve the performance of the same. It also describes the various tests that have

been performed on the algorithm to check for consistency and exactness.

6.2 Implemented optimization techniques

6.2.1 Use of hashtables

An un-optimized code would take an extended time period for searching for attributes

or a set of attributes, which have been extensively used in the algorithm.

Optimization here involves in implementing the source and the warehouse relations

as hashtables, which facilitates a more easier and effective search for the attributes of the

relations, be it source or warehouse.

6.2.2 Reduced number of cycles

In any single run of the intersection phase of the algorithm [section 3.5, chapter 3],

given the number of attributes of the source relation being M and the number of attributes of

the warehouse relation being N, an un-optimized code would have to run MxN cycles to

facilitate the comparison of each of the attributes of the source relation with all the attributes

of the warehouse relation.

 92

Optimization here involves in implementing the source and the warehouse relations

as Hashtables as mentioned in the previous section, which enables hashing an attribute into

the hashtable to check for existence as against making a run through all the attributes of the

warehouse relation. This optimization reduces the number of cycles from MxN as described

above to just M, which would be just the number of attributes of the source relation for each

run. This is illustrated in figure 6.1.

source relation

WA2

WA3

WA1

WA5

WA6

WA4

N

A2

A3

A1

A5

A6

A4

M

warehouse relation source relation

A2

A3

A1

A5

A6

A4

M

warehouse relation

A. Before optimization – each of attributes of
the source relation is compared with each of the
attributes of the warehouse relation, resulting in
MxN number of cycles per source relation per
warehouse relation

B. After optimization – each of attributes of the
source relation is hashed into the warehouse
relation, which is considered as a hashtable, thus
reducing the number of cycles per source relation
per warehouse relation to just M

MxN M

Warehouse relation as
a hashtable

Figure 6.1. Reducing the number of cycles.

 93

Figure 6.1 illustrates a single cycle of the algorithm for the intersection phase that is

the main phase that needs optimization. As explained in the previous chapters, in this phase

of the algorithm, for each of the warehouse relations, the attributes of each of the source

relations need to be compared with the attributes of the warehouse relation to check for

equality. As illustrated in the figure, without optimization, this would result in MxN number

of cycles to be performed for each source, warehouse relation pair. On optimization, this

reduces to just M, which is the number of attributes of the source relation in question, as

illustrated in part B of the figure.

6.2.3 Filtered source relations

After the second stage, which is intersection, the list of source relations is effectively

filtered, and one ends up with only the list of source relations that have some attribute in

common with each of the warehouse relations. This again reduces the total number of

comparisons that are required in the subsequent stages.

6.3 Techniques to improve optimization

6.3.1 Parallelization

The algorithm has been implemented in such a way that each cycle involving each

one of the warehouse relations can be executed independent of the other. This paves a way

for the algorithm to be further optimized by means of parallelization where in the algorithm

can be run in parallel for all the involved warehouse relations. Though not implemented, this

can be implemented to further improve the performance. This is illustrated in figure 6.2.

When one refers back to the structure “intersectVector” [sections 4.3 & 5.7] and the

proceedings of the algorithm, it is clear that for each cycle involving each of the warehouse

relations, the same steps are executed. One would note at this juncture that each of the cycles

have been implemented in such a way that they are totally independent of each other. Hence,

 94

to further optimize the process, one can easily implement parallelization here, wherein, each

of the cycles can be made to perform in parallel, without obstructing any of the other cycles.

Threads can be safely spawned to perform the same.

 intersectVector

DWR2

DWR3

DWR1

DWR5

DWR6

DWR4

intersectVector

A. Before optimization – Each cycle involving
each of the warehouse relations is executed in
sequence – in other words, execution is done
serially

B. After optimization – Each cycle involving
each of the warehouse relations is executed in
parallel with the rest of the cycles, thus saving
on execution time

DWR2

DWR3

DWR1

DWR5

DWR6

DWR4

Execution of
each cycle
proceeding in
sequence –
serially

Execution of all
the cycles
proceeding in
parallel

Figure 6.2. Parallelization.

6.4 Testing & test cases

A comprehensive and exhaustive testing has been done on the system to check for

consistency and correctness, ranging from checks for boundary conditions to checks to

ensure that each part and phase of the algorithm performs as claimed. The list of the tests

performed and the results from the system have been included as part of Appendix A.

 95

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Summary

To summarize, this thesis addresses the problem of schema matching and the need for

automating mapping generation. The complexities involved in automation were also

addressed in detail. This thesis designed and implemented a solution for automating schema

matching and mapping generation pertaining to data warehouses for the relational domain.

This thesis designed and presented a new matching algorithm, and talked about the

performance and implementation issues involved. This thesis also looked at improving the

performance of the algorithm in various ways, including parallelization.

In conclusion, one needs to realize that this is not the final version of the tool. The

tool that has been developed in this thesis:

Ø Enables understanding of the mapping space

Ø Enables evaluation of mappings from different viewpoints (Ease of implementation,

etc)

Ø Enables the warehouse designer to choose the appropriate mapping for the warehouse

schemas

Ø Allows warehouse designers to explore several mappings before finalizing the dw

schemaThis tool can be extended to include generation of triggers and code for

propagating the updates from the source schemas to the warehouse schemas, which has

been left as part of future work.

 96

7.2 Future work

Future work on this thesis can involve the following areas as described in the

following sub-sections.

7.2.1 Implementing a data dictionary/ thesaurus

This would involve integrating the algorithm with a data dictionary and a thesaurus

that would effectively reduce the amount of work that needs to be performed on the part of

the user, who at present, has to provide the system with the list of synonyms that would be

found in the schemas. Adding a data dictionary and/or a thesaurus would facilitate the system

to obtain the set of similar attributes which would be comparable to any given attribute of the

schemas in question, which would enable the same to generate a more comprehensive list of

mappings between source and warehouse relations, with little user intervention.

7.2.2 Integrating triggers and updates

This would involve extending the system to include the setting of triggers to

effectively update the warehouse relations as the source relations are modified by means of

CREATE, DELETE or UPDATE. Updating the warehouse relations by means of a

difference-based approach as against the trigger-based approach can also be implemented as

an alternative.

7.2.3 Extending the system to multiple platforms

Once triggers and updates are integrated with the system as described in the previous

section, the system can be extended to support multiple RDBMs, wherein, the system should

be able to update the warehouse, irrespective of the platform of the source and warehouse

relations. It should be able to support updates across multiple platforms.

97

APPENDIX A

TEST CASES AND PROGRAM OUTPUTS

98
Case 01: complete projection

schemas::

source S1 true ORACLEOMEGA

relation R1

attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)

relation R2

attribute E char(9)
attribute F char(9)
attribute G char(9)
attribute H char(9)

warehouse DW

relation R

attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)

Output 01:

Warehouse Relation: R

no of possible Mappings -- 1

Mapping No:: 1

a single source relation projection
And it is a complete projection of the source relation

 Source Name -- S1
 Relation Name -- R1

99

 Common Attributes::

 A
 D
 C
 B

Case 02: partial projection

schemas::

source S1 true ORACLEOMEGA

relation R1

attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)

relation R2

attribute D char(9)
attribute E char(9)
attribute F char(9)

warehouse DW

relation R

attribute A char(9)
attribute B char(9)
attribute C char(9)

Output 02:

Warehouse Relation: R

no of possible Mappings -- 1

100
Mapping No:: 1

a single source relation projection
And it is a partial projection of the source relation

 Source Name -- S1
 Relation Name -- R1

 Common Attributes::

 A
 C
 B

Case 03: cartesian join (complete projection on join)

schemas::

source S1 true ORACLEOMEGA

relation R1

attribute A char(9)
attribute B char(9)
attribute C char(9)

relation R2

attribute D char(9)
attribute E char(9)
attribute F char(9)

warehouse DW

relation R

attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)
attribute E char(9)
attribute F char(9)

101
Output 03:

Warehouse Relation: R

no of possible Mappings -- 1

Mapping No:: 1

join of two source relations
And it is a complete projection on join

Cartesian join with no join attribute

 Source Name -- S1
 Relation Name -- R2

 Common Attributes::

 F
 E
 D

 Source Name -- S1
 Relation Name -- R1

 Common Attributes::

 A
 C
 B

Case 04: cartesian join (partial projection on join)

schemas::

source S1 true ORACLEOMEGA

relation R1

attribute A char(9)
attribute B char(9)
attribute C char(9)

102
relation R2

attribute D char(9)
attribute E char(9)
attribute F char(9)

warehouse DW

relation R

attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)

Output 04:

Warehouse Relation: R

no of possible Mappings -- 1

Mapping No:: 1

join of two source relations
And it is a partial projection on join

Cartesian join with no join attribute

 Source Name -- S1
 Relation Name -- R2

 Common Attributes::

 D

 Source Name -- S1
 Relation Name -- R1

 Common Attributes::

 A
 C
 B

103
Case 05: join (single join attribute & complete projection on join)

schemas::

source S1 true ORACLEOMEGA

relation R1

attribute A char(9)
attribute B char(9)
attribute C char(9)

relation R2

attribute C char(9)
attribute D char(9)
attribute E char(9)

warehouse DW

relation R

attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)
attribute E char(9)

Output 05:

Warehouse Relation: R

no of possible Mappings -- 1

Mapping No:: 1

join of two source relations
And it is a complete projection on join

Equi join with join attributes –
 Join Attribute(s)::

 C

104

 Source Name -- S1
 Relation Name -- R2

 Common Attributes::

 E
 D
 C

 Source Name -- S1
 Relation Name -- R1

 Common Attributes::

 A
 C
 B

Case 06: join (single join attribute & partial projection on join)

schemas::

source S1 true ORACLEOMEGA

relation R1

attribute A char(9)
attribute B char(9)
attribute C char(9)

relation R2

attribute C char(9)
attribute D char(9)
attribute E char(9)

warehouse DW

relation R

attribute A char(9)
attribute B char(9)

105
attribute C char(9)
attribute D char(9)

Output 06:

Warehouse Relation: R

no of possible Mappings -- 1

Mapping No:: 1

join of two source relations
And it is a partial projection on join

Equi join with join attributes --
 Join Attribute(s)::

 C

 Source Name -- S1
 Relation Name -- R2

 Common Attributes::

 D
 C

 Source Name -- S1
 Relation Name -- R1

 Common Attributes::

 A
 C
 B

Case 07: join (multiple join attributes & complete projection on join)

schemas::

source S1 true ORACLEOMEGA

relation R1

106

attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)

relation R2

attribute C char(9)
attribute D char(9)
attribute E char(9)
attribute F char(9)

warehouse DW

relation R

attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)
attribute E char(9)
attribute F char(9)

Output 07:

Warehouse Relation: R

no of possible Mappings -- 1

Mapping No:: 1

join of two source relations
And it is a complete projection on join

Equi join with join attributes --
 Join Attribute(s)::

 D
 C

 Source Name -- S1

107
 Relation Name -- R2

 Common Attributes::

 F
 E
 D
 C

 Source Name -- S1
 Relation Name -- R1

 Common Attributes::

 A
 D
 C
 B

Case 08: join (multiple join attributes & partial projection on join)

schemas::

source S1 true ORACLEOMEGA

relation R1

attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)

relation R2

attribute C char(9)
attribute D char(9)
attribute E char(9)
attribute F char(9)

warehouse DW

108

relation R

attribute B char(9)
attribute C char(9)
attribute D char(9)
attribute E char(9)

Output 08:

Warehouse Relation: R

no of possible Mappings -- 1

Mapping No:: 1

join of two source relations
And it is a partial projection on join

Equi join with join attributes --
 Join Attribute(s)::

 D
 C

 Source Name -- S1
 Relation Name -- R2

 Common Attributes::

 E
 D
 C

 Source Name -- S1
 Relation Name -- R1

 Common Attributes::

 D
 C
 B

109
Case 09: projection or join

schemas::

source S1 true ORACLEOMEGA

relation R1

attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)
attribute E char(9)

relation R2

attribute D char(9)
attribute E char(9)
attribute F char(9)
attribute G char(9)
attribute H char(9)

warehouse DW

relation R

attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)
attribute E char(9)

Output 09:

Warehouse Relation: R

no of possible Mappings -- 2

Mapping No:: 1

a single source relation projection
And it is a complete projection of the source relation

110
 Source Name -- S1
 Relation Name -- R1

 Common Attributes::

 A
 E
 D
 C
 B

Mapping No:: 2

join of two source relations
And it is a partial projection on join

Equi join with join attributes –

 Join Attribute(s)::

 E
 D

 Source Name -- S1
 Relation Name -- R2

 Common Attributes::

 E
 D

 Source Name -- S1
 Relation Name -- R1

 Common Attributes::

 A
 E
 D
 C
 B

111
Case 10: union / intersection

schemas::

source S1 true ORACLEOMEGA

relation R1

attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)

relation R2

attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)

warehouse DW

relation R

attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)

Output 10:

Warehouse Relation: R

no of possible Mappings -- 4

Mapping No:: 1

a single source relation projection
And it is a complete projection of the source relation

 Source Name -- S1
 Relation Name -- R2

112

 Common Attributes::

 A
 D
 C
 B

Mapping No:: 2

a single source relation projection
And it is a complete projection of the source relation

 Source Name -- S1
 Relation Name -- R1

 Common Attributes::

 A
 D
 C
 B

Mapping No:: 3

join of two source relations
And it is a complete projection on join

Equi join with join attributes --
 Join Attribute(s)::

 A
 D
 C
 B

 Source Name -- S1
 Relation Name -- R2

 Common Attributes::

 A
 D

113
 C
 B

 Source Name -- S1
 Relation Name -- R1

 Common Attributes::

 A
 D
 C
 B

Mapping No:: 4

union or intersection of two source relations

 Source Name -- S1
 Relation Name -- R2

 Common Attributes::

 A
 D
 C
 B

 Source Name -- S1
 Relation Name -- R1

 Common Attributes::

 A
 D
 C
 B

114
Case 11: synonyms

schemas::

source S1 true ORACLEOMEGA

relation R1

attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)

relation R2

attribute E char(9)
attribute F char(9)
attribute G char(9)
attribute H char(9)

warehouse DW

relation R

attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)
attribute F char(9)
attribute G char(9)
attribute H char(9)

synonyms::

S1.R1.D :: S1.R2.E

Output 11:

Warehouse Relation: R

no of possible Mappings -- 1

115

Mapping No:: 1

join of two source relations
And it is a complete projection on join

Cartesian join with no join attribute --
 Source Name -- S1
 Relation Name -- R2

 Common Attributes::

 H
 G
 F
 E

 Source Name -- S1
 Relation Name -- R1

 Common Attributes::

 A
 D
 C
 B

Case 12: homonyms

schemas::

source S1 true ORACLEOMEGA

relation R1

attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)

relation R2

attribute A char(9)

116
attribute B char(9)
attribute C char(9)
attribute D char(9)

warehouse DW

relation R

attribute A char(9)
attribute B char(9)
attribute C char(9)
attribute D char(9)

homonyms::

C :: S1.R1 ; S1.R2
D :: S1.R1 ; S1.R2

dwmapping::

DW.R.C :: S1.R1.C
DW.R.D :: S1.R1.D

Output 12:

Warehouse Relation: R

no of possible Mappings -- 2

Mapping No:: 1

a single source relation projection
And it is a complete projection of the source relation

 Source Name -- S1
 Relation Name -- R1

 Common Attributes::

 A
 D

117
 C
 B

Mapping No:: 2

join of two source relations
And it is a partial projection on join

Equi join with join attributes --
 Join Attribute(s)::

 A
 B

 Source Name -- S1
 Relation Name -- R2

 Common Attributes::

 A
 B

 Source Name -- S1
 Relation Name -- R1

 Common Attributes::

 A
 D
 C
 B

118

REFERENCES

1. Madhavan, J., P.A. Bernstein, and E. Rahm, Generic Schema Matching with Cupid.
2001, Microsoft Corporation.

2. Rahm, E. and P.A. Bernstein, On Matching Schemas Automatically. 2001, MSR Tech.

Report. p. 5-18.

3. Li, W.-S. and C. Clifton. Semantic Integration in Heterogeneous Databases Using

Neural Networks. in 20th VLDB Conference. 1994. Santiago, Chile.

4. Doan, A., P. Domingos, and A. Halevy. Reconciling Schemas of Disparate Data

Sources: A Machine-Learning Approach. in SIGMOD. 2001.

5. Mitra, P., G. Wiederhold, and J. Jannink. Semi-automatic Integration of Knowledge

Sources. in FUSION. 1999.

6. Milo, T. and S. Zohar. Using Schema Matching to Simplify Heterogeneous Data

Translation. in VLDB. 1998.

7. Palopoli, L., G. Terracina, and D. Ursino. The System DIKE: Towards the Semi-

Automatic Synthesis of Cooperative Information Systems and Data Warehouses. in
ADBIS-DASFAA. 2000: Matfyzpress.

8. Bergamaschi, S., S. Castano, and M. Vincini, Semantic Integration of Semistructured

and Structured Data Sources. SIGMOD, 1999. 28(1).

9. Ursino, D., Semi-automatic approaches and tools for the extraction and the

exploitation of intensional knowledge from heterogeneous information sources, in
Dipartimento di Elettronical Informatica e Sistemistical. 1999, Universitá delgi Studi
della Calabria. p. 15-34.

10. Doan, A., P. Domingos, and A. Levy, Learning Source Descriptions for Data

Integration, University of Washington: Seattle, WA.

11. Clifton, C., E. Housman, and A. Rosenthal. Experience with a Combined Approach to

Attribute-Matching Across Heterogeneous Databases. Proc. 7th IFIP Conf. On DB
Semantics. 1997: Chapman & Hall.

12. Berlin, J. and A. Motro, Database Schema Matching Using Machine Learning with

Feature Selection.

119

BIOGRAPHICAL INFORMATION

Karthik Jagannathan was born May 14, 1977 in Coimbatore, India. He received his

Bachelor of Architecture degree from The School of Architecture and Planning, Anna University,

Madras, India in June 1999. In the Fall of 1999, he started his graduate studies in Computer

Science and Engineering at The University of Texas, Arlington. He received his Master of Science in

Computer Science and Engineering from The University of Texas at Arlington, in December 2002.

His research interests revolve around data warehousing and schema matching.

	FOR DATA WAREHOUSING
	FOR DATA WAREHOUSING
	ACKNOWLEDGMENTS

