

WEBVIGIL: SENTINEL SPECIFICATION AND USER-INTENT BASED CHANGE

DETECTION FOR EXTENSIBLE MARKUP LANGUAGE (XML)

The members of the Committee approve the master’s
thesis of Jyoti Jacob

Sharma Chakravarthy
Supervising Professor ______________________________________

Alp Aslandogan ______________________________________

Mohan Kumar ______________________________________

Copyright © by Jyoti Jacob 2003

All Rights Reserved

WEBVIGIL: SENTINEL SPECIFICATION AND USER-INTENT BASED CHANGE

DETECTION FOR EXTENSIBLE MARKUP LANGUAGE (XML)

by

JYOTI JACOB

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2003

 iv

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dr. Sharma Chakravarthy,

for giving me an opportunity to work on this challenging topic and providing me ample

guidance and support through the course of this research.

I would like to thank Dr. Mohan Kumar and Dr. Alp Aslandogan for serving on

my committee.

I am grateful to Anoop Sanka and Naveen Pandrangi, part of the WebVigiL

team, for their invaluable help and advice during the implementation of this work. I

would like to thank all my friends in the ITLAB especially Raman, Alpa and Ambika

for their help, support and encouragement.

I would like to acknowledge the support of the Office of Naval Research, the

SPAWAR System Center-San Diego & by the Rome Laboratory (grant F30602-01-2-

0543), and by NSF (grants IIS-0123730 and IIS-0097517).

I would like to thank my friend, Ganeshram Iyer for his guidance, support and

patience. I would also like to thank my family and friends for their love and constant

support throughout my academic career.

March 31, 2003

 v

ABSTRACT

WEBVIGIL: SENTINEL SPECIFICATION AND USER-INTENT BASED CHANGE

DETECTION FOR EXTENSIBLE MARKUP LANGUAGE (XML)

Publication No. ______

Jyoti Jacob, M.S

The University of Texas at Arlington, 2003

Supervising Professor: Sharma Chakravarthy

With the exponential increase of information on the web, there is a need for

efficient retrieval and notification of selective information. Currently, users have to

retrieve (by pull/poll) the pages manually to check for changes of interest, resulting in

waste of human resources and associated high cost. Hence, WebVigiL is designed as a

general-purpose, active capability-based monitoring and notification system, for

handling the specification, management, and propagation of changes on

unstructured/semi-structured documents based on user specification.

 vi

In this thesis, we present the semantics of a change specification language for

specifying user policies for web page monitoring. We also present a design for efficient

validation and storage of user specifications in a persistent repository. For handling

customized change detection based on user-intent, we propose an algorithm for change

detection to the contents of semi-structured documents. Though the approach taken is

general, we will explain the change detection in the context of XML documents.

 vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iv

ABSTRACT.. v

LIST OF ILLUSTRATIONS... xii

LIST OF TABLES ... xiv

Chapter

 1. INTRODUCTION... 1

 1.1 Background ... 3

 1.2 WebVigiL Architecture... 3

 1.3 XML ... 4

 1.4 Focus of the Thesis ... 6

 2. CURRENT ARCHITECTURE ... 8

 2.1 User specification.. 9

 2.2 Knowledgebase (KB) .. 9

 2.3 ECA Rule Generator ... 9

 2.3.1 Activation/Deactivation... 10

 2.4 Change Detection .. 11

 2.5 Change Detection Graph (CDG)... 12

 2.6 Event-Based Fetching ... 14

 2.6.1 ECA Paradigm for Fetching... 14

 viii

 2.7 Caching and Management of pages .. 15

 2.8 Presentation and Notification.. 16

 2.9 Summary ... 16

 3. RELATED WORK .. 17

 3.1 Approaches for unstructured documents .. 18

 3.2 Approaches for XML (semi-structured) documents 19

 3.2.1 Change detection in hierarchical structured documents........... 19

 3.2.2 Fast Change Detection for unordered XML documents 20

 3.2.3 Change detection in ordered XML documents 21

 3.3 Other approaches for XML change detection ... 22

 3.4 Approaches for user specification... 23

 3.5 Summary ... 24

 4. CHANGE DETECTION IN XML DOCUMENTS... 25

 4.1 XML as an ordered labeled tree .. 26

 4.2 Importance of Customized Change Detection .. 27

 4.2.1 Types of changes supported ... 28

 4.3 Problem Overview .. 30

 4.4 Design Issues in XML .. 31

 4.5 Change Operations .. 33

 4.6 CX-Diff: Customized Change Detection for ordered XML documents . 35

 4.6.1 Object Extraction and Signature Computation 38

 4.6.2 Filtering Unique Inserts/Deletes... 40

 ix

 4.6.3 Finding the Common Order Subsequence 42

 4.6.4 Optimization .. 44

 4.7 Summary ... 45

 5. CHANGE SPECIFICATION LANGUAGE ... 46

 5.1 Sentinel Name... 49

 5.2 Sentinel Target .. 49

 5.3 Sentinel Type ... 50

 5.4 Fetch ……... 55

 5.5 Sentinel Duration .. 57

 5.5 Notification .. 58

 5.7 Compare Options .. 60

 5.8 Summary .. 61

 6. DESIGN ISSUES FOR KNOWLEDGEBASE .. 62

 6.1 Meta-data .. 63

 6.2 Knowledgebase Schema.. 66

 6.3 Validation module .. 67

 6.4 Semantic Validation ... 68

 6.5 Design and Flow Diagram of the Validation module 72

 6.6 Summary ... 72

 7. IMPLEMENTATION .. 74

 7.1 User Interface and Knowledgebase... 74

 7.1.1 Parser for Change Specification Language 75

 x

 7.1.2 Semantic Validation .. 76

 7.1.3 Knowledgebase .. 77

 7.2 Implementation of Change Detection algorithm..................................... 78

 7.2.1 Object Extraction and Signature Computation 79

 7.2.2 Filtering Unique Inserts/Deletes.. 81

 7.2.3 Finding the Common Order Subsequence 82

 7.2.4 Optimization ... 83

 7.3 Summary ... 83

 8. CONCLUSIONS AND FUTURE WORK .. 85

 8.1 Conclusions ... 85

 8.1.1 Knowledgebase and Validation Module 85

 8.1.2 Change Detection for XML documents 86

 8.1.2.1 Performance... 86

 8.2 Future Work .. 92

 8.2.1 Change Detection to XML documents 93

 8.2.2 WebVigiL .. 94

Appendix

 A. TOTALMATCH AND SIGNATUREMATCH ALGORITHMS FOR
 KEYWORDS ... 95

 B. FINDING THE COMMON ORDER SUBSEQUENCE AND DETECTING

CHANGE OPERATIONS FOR KEYWORDS ... 97

 C. PSEUDO-CODE FOR FINDING THE ABSOLUTE TIME OF AN EVENT 99

REFERENCES ... 101

 xi

BIOGRAPHICAL INFORMATION ... 105

 xii

LIST OF ILLUSTRATIONS

Figure Page

 1.1 XML document.. 5

1.2 DOM tree of the XML document .. 5

 1.3 Description of DOM Nodes... 6

 2.1 WebVigiL Architecture ... 8

 2.2 Change Detection Graph.. 13

 4.1 Part of an XML document ... 25

 4.2 Ordered Labeled XML tree.. 27

 4.3 Synopsis of changes... 30

 4.4 Difference in XML and HTML ... 32

 4.5 Change Operations on trees T1 and T2 .. 34

 4.6 Outline of the algorithm for keywords ... 37

 4.7 Extracted phrase ... 39

 4.8 Phases of CX-Diff algorithm .. 43

 5.1 Sentinel Syntax .. 47

 5.2 Compare Methods.. 60

 6.1 Modules accessing Knowledgebase .. 64

 6.2 Schema diagram for Knowledgebase ... 67

 6.3 Flow chart for validation and insertion of sentinel in KB 73

 xiii

 7.1 Input Flow..75

 7.2 Pseudo-code for validity of duration ... 76

 7.3 Input parameters for the method detectChange ... 79

 7.4 Pseudo-code for phrase extraction... 80

 8.1 Effect of increase of matching sub-trees on optimization................................. 90

 8.2 Effect of increase of change operations... 91

 8.3 Effect of increase of change operations with optimization 92

 xiv

LIST OF TABLES

Table Page

 6.1 Combinations of Compare, Notification and Fetch options 71

 8.1 Effect of increase in sub-trees of tree on optimization 88

 8.2 Effect of increase in depth of tree on optimization.. 89

To My Family and Friends

1

CHAPTER 1

INTRODUCTION

The data on the Internet is growing at a rapid rate. The number of documents is

large and spread over multiple repositories. This has greatly affected the way

information is accessed, delivered and disseminated.

Users at present are not only interested in the new information available on the

web pages but also in retrieving the changes of interest in a timely manner. For

example, the user may not be interested in structural changes. Even for the content, the

user may only be interested in specific changes (to keywords, phrases etc.).

Traditionally, the burden of information retrieval is on the user, as he has to poll the

interested websites manually to learn about changes to the contents of the page and pose

appropriate user query to extract the information. As the amount of information is large

and distributed over large number of sites, the users prefer the new information to be

pushed to them rather than pulling it every time it changes. Hence, the emphasis is on

selective change notification i.e. the changes are notified to the user based on specified

interest/ policy. There are many situations when the user needs to be made aware of

changes as soon as a document is modified. Manual polling for information change will

result in missing some changes or delay in notification. For example, in many

industries, the life cycle of projects are in years. Large number of documents such as the

specification, requirement analysis, design etc are required and updated during the

project life cycle. These changes need to be notified immediately to the project team

 2

members to ensure that the changes are propagated properly to other relevant

documents for immediate actions. Hence, an approach is needed which replaces

periodic polling and notifies the user of the relevant changes in a timely manner. This

issue is even more relevant to web documents. People want to monitor stocks and need

to know as and when the prices change. Students need to be notified immediately of

changes to the course web page for which they are registered. Web administrators need

to know, when and what has been changed on the web page by the developers. In

addition, web site developers need to keep track of changes to their competitor�s web

pages. People need to know of changes to specific news items or articles of interest on

the web.

Different paradigms have been used for monitoring the pages of interest. The

different approaches used for information extraction are:

Pull Paradigm: In the traditional pull paradigm, the user retrieves information

by performing an explicit action in the form of a query, application, or transaction

execution at a pre-defined polling interval. The limitations of this approach are that the

pages of interest have to be checked manually on a periodic basis. Hence, this approach

results in changes being missed and there is added burden of checking all pages. In

addition, when large number of web sites need to be monitored, it becomes very

difficult for the user to keep track of all the changes to the web pages. Many websites

such as stock pages provide the facility to notify the users of periodic changes to the

page but they too rely on pull paradigm to refresh the pages at a regular interval.

Push Paradigm: In the push paradigm, the user does not have to query or

retrieve information as it changes. The system is responsible for accepting user needs

(in the form of situations to monitor, business rules, constraints, profiles, continuous

search queries) and informs the user (or a set of users) when something of interest

 3

happens. Though it reduces the amount of data transfer, the underlying system requires

a lot of enhancements or has to incorporate agents or mediators that can carry this out in

a non-intrusive manner. In other words, the system needs to have the capability to

selectively push information. At present most of the systems use a mailing list to send

the same compiled changes to all the users. The limitation of this approach is that

irrespective of the user�s interest, he/she receives all the changes to the page.

1.1 Background

Monitoring Systems: For efficient retrieval and propagation of information, a

system is needed, which combines both push and pull paradigms. WebVigiL is a

monitoring system, which offers an alternate paradigm to monitoring changes using the

combination of push-pull paradigm with the help of active capability. WebVigiL pulls

the information from the web server based on user profile and propagates/pushes the

relevant information to the end user. Though work in active technology has been well

established in the database field, to use this technology for advanced applications such

as monitoring rapidly changing web pages on a large network centric environment such

as the web, enhancements need to be made to the existing architecture. WebVigiL also

considers quality of service requirements such as timeliness into consideration to detect

and notify the changes. In addition, WebVigiL is a scalable system, designed to detect

even composite changes for large number of users. The overview of the paradigm used

and the basic approach taken for effective monitoring is discussed in [1]

1.2 WebVigiL Architecture

A well-defined change specification language is designed, which the user can

use to submit his monitoring request or a sentinel. User-defined sentinels are verified

 4

both syntactically and semantically prior to persisting their details in the

Knowledgebase. The change specification language, the verification module and the

design of the Knowledgebase are discussed in detail in the subsequent chapters. Once a

sentinel is validated, the ECA Rule Generator generates ECA rules for the run time

management of that sentinel. The fetch module fetches pages for all active (or enabled)

sentinels, forwards them to the version management module for adding them to the page

repository and notifies the change detection module. The change detection module

detects the changes according to the specification and notifies the presentation module.

All the modules have been designed for efficient execution and scalability requirements.

Details about the WebVigiL architecture are given in [2] and also discussed in

chapter 2. WebVigiL monitors changes to documents such as the Hypertext Markup

language (HTML) and the eXtensible Markup Language (XML). As the focus of this

thesis report is on change detection to XML documents, the structure and format of

XML documents is described in section 1.3.

1.3 XML

eXtensible Markup Language (XML) is a simple text driven language derived

from SGML for structured documents and data on the Web [3]. It was introduced in

1998 after being approved by the World Wide Web consortium. XML was originally

designed to meet the challenges of large-scale electronic publishing, but now is

increasingly used for data exchange. XML is likely to replace HTML as the standard

web publishing language in the near future.

XML is a well- formed document and is extensible. The user can define his/her

tags, which describe the contents. The given XML tags in a document is validated by a

Document Type Definition (DTD)[4] or XML Schema, both of which are self-

 5

descriptive. An XML document does not contain presentation tags. Unlike HTML,

presentation and contents are separate in XML. To briefly describe XML, consider a

small part of a well-formed XML document as shown in Figure 1. 1. The tags are called

elements in XML. Every XML document must have only one root element that contains

all other elements in the document. All tags must be properly terminated with an end

tag. Hence, XML is a well-formed document.

Figure 1. 1 XML document

Figure 1.2 DOM tree of the XML document

The XML document can be represented as a Document Object Model (DOM).

According to [4], the W3C DOM is a language and platform-neutral definition, which

represent the XML documents as objects, which allows the user to read, search, modify,

add to and delete data from a document. Hence, DOM allows for a standard

functionality for document navigation and manipulation of the content of the XML

documents. Apart from elements, many other DOM nodes constitute the XML

document. The DOM of the XML document given in Figure 1. 1 is shown in Figure 1.2.

 6

Details about the various types of DOM nodes and their description are given in Figure

1. 3.

Figure 1. 3 Description of DOM Nodes

1.4 Focus of the Thesis

The main contributions of this paper are:

Use of a new algorithm for customized change detection of ordered semi-

structured documents such as XML: An XML document is a semi-structured, well-

formed document with ordered elements. In addition, WebVigiL supports customized

changes to sections of the document such as phrases, keywords etc. The existing tools

outlined in Chapter 3 cannot be used for customized change detection for ordered XML

documents as per the requirements of WebVigiL. Hence, a new algorithm is proposed,

which takes into consideration the structure and order of the XML document and

detects customized changes.

 7

Expressiveness of change specification and its semantics: In order for the user to

specify his/her notification and monitoring requirements, an expressive change

specification language is needed which incorporates the monitoring requirements of the

user and also captures inheritance, event-based duration and composite changes. We

have formulated a change specification language wherein the user can specify the page

of interest, the type of change, the duration of the monitoring request, fetching and

notification details and the preferences for comparison.

Efficient storage and retrieval of the meta-data: The meta-data extracted from

the user specification needs to be stored in a persistent and recoverable manner. In

addition, WebVigiL allows the user to inherit properties from previous sentinel to create

a new sentinel. Hence, the meta-data information should be stored only after proper

syntactic and semantic validation for correctness of the data. The data stored in the

Knowledgebase should be available for other WebVigiL modules at run-time. Hence,

efficient retrieval of information is important. In addition, APIs have been developed

for efficient retrieval for inheritance of sentinel properties.

The remainder of the thesis is organized as follows. In Chapter 2, we give an

overview of the current architecture. In Chapter 3, related change monitoring tools and

specification languages are discussed. Chapter 4 addresses issues related to change

detection to XML pages and proposes an algorithm to detect customized changes on

XML documents. In Chapter 5, we discuss the syntax and semantics of the change

specification language. In Chapter 6, the design of the Knowledgebase and the

validation and verification module is discussed in detail. Chapter 7 deals with the

implementation issues of these modules and Chapter 8 concludes the thesis with

emphasis on future work.

8

CHAPTER 2

CURRENT ARCHITECTURE

WebVigiL is a change detection and notification system, which can monitor and

detect changes to unstructured and semi-structured documents in general. The current

work addresses HTML/XML documents that are part of a web repository. WebVigiL

aims at investigating the specification, management, and propagation of changes as

requested by the user in a timely manner while meeting the quality of service

requirements[2].

Figure 2. 1 WebVigiL Architecture

 9

The high-level block diagram shown in Figure 2. 1 details the architecture of

WebVigiL. Users specify their interest in the form of a sentinel that is used for change

detection and presentation. Information from the sentinel is extracted, and based on

user-profile, changes are detected and notified to the user in an appropriate manner. The

functionality of each module in the architecture is described briefly in the following

sections.

2.1 User specification

User-specified changes need to be monitored and notified to the user in different

ways and on different devices as specified in their profiles/policies. Hence, there is a

need to define an expressive specification language to specify user profile. WebVigiL

provides an expressive language with well-defined semantics for specifying the

monitoring requirements of a user, pertaining to the Web. The Change Specification

language is discussed in detail in Chapter 5.

2.2 Knowledgebase (KB)

 Knowledgebase is a persistent repository containing meta-data about each

user, and details of the contents of the sentinel (frequency of notification, change type

etc.). User input is parsed and required information is extracted and stored for later use.

Details about the Knowledgebase and validation module are discussed in Chapter 6.

2.3 ECA Rule Generator

Every valid user request arriving at WebVigiL, initiates a series of operations

that occur at different points in time. Some of these operations are: creation of a

sentinel (based on start time), monitoring the requested page, detecting changes of

 10

interest, notifying the user(s) of the change, and deactivation of sentinel. In WebVigiL,

for every sentinel, the ECA rule generation module generates Event Condition Action

(ECA) rules [5, 6] to perform some of these operations.

Briefly, an event-condition-action rule has three components: an event

(occurrence of an event), a condition (checked when the associated event occurs), and

an action (operations to be carried out when the condition evaluates to true). The ECA

rules along with the local event detector (LED) [7] are used for: i) generating fetch rules

for retrieving pages, ii) detecting events of interest and propagating pages to detect

primitive and composite changes, and iii) for activation and deactivation of sentinels.

2.3.1 Activation/Deactivation

WebVigiL does not monitor continuous queries but monitors interval-based

monitoring request. Hence, each sentinel has a start and end time during which a

sentinel is enabled by default. A sentinel can be disabled (does not detect changes

during that period) or enabled (detects changes) by the user during its lifespan. In

WebVigiL it is the responsibility of ECA rule generation module to create appropriate

events and rules to enable/disable sentinels. We achieve this as follows. Consider the

scenario where s1 is defined in the interval [12/02/02, 01/02/03]. At time 12/02/02

sentinel s1 has to be enabled. Following are the events and rules that are generated to

enable sentinel s1at compile time:

Event Temp1 = createTemporalEvent(12/02/02)

Event start_s1 = createEvent(�start_s1�)

Rule T1 = createRule (Temp1)

Event Fetch_s1 = createPeriodicEvent (Start_s1, 2, End_s1)

 11

Fetch_s1 is a periodic event [8] created with �start_s1� as the start event, the

frequency of page fetch, and End_s1 as the end event. The rule associated with it

handles the fetching of pages for s1. A rule associated with an event is fired/triggered

when the event is raised. More than one rule can be associated with an event. When

event Temp1 is triggered at the specified time point, rule T1 is executed, which in turn

raises the event start_s1. Triggering of the event start_s1 activates the sentinel s1 by

activating the periodic event used for fetching the web page specified in s1. Now, if

another sentinel s2, which is defined over the interval [start(s1), end(s1)] arrives, the

following events and rules are generated in order to enable s2:

Event start_s2 = createEvent(�start_s2�)

Rule r_start_s2 = createRule(start_s1)

Here we are associating the rule r_start_s2 to the event start_s1, which was

created at the arrival of sentinel s1. This rule actually raises the start_s2 event to

activate the periodic event associated with s2. In this manner, ECA rules are used to

asynchronously activate and deactivate sentinels at run time. Once the appropriate

events and rules are created, the local event detector handles the execution at run time.

By enabling/disabling of sentinel we mean addition/deletion of that sentinel to the

change detection graph that is detailed in section 2.5.

2.4 Change Detection

 The web user�s interest has extended from mere viewing of information to

monitoring evolution of selective information on the pages. Hence, the change detection

tool should be capable of detecting preferred change, such as the

appearance/disappearance of objects of user�s interest on a page. Consider the scenario:

A student wants to monitor the college schedule of classes for a particular course name

 12

(keyword). In such cases, detecting changes to the complete page results in excessive

computation and dissemination of irrelevant information. Hence, there is a need to

support detecting changes based on user�s intent. WebVigiL supports change detection

of Hypertext Markup Language (HTML) and eXtensible Markup Language (XML),

which are the standard formats for electronic publishing on the web. In HTML, the

changes are detected to content-based tags such as links and images, presentation tags

and changes to specific content such as keywords, phrases etc. In XML, currently, we

support only change detection to content. The change detection will be discussed in

Chapter 4.

2.5 Change Detection Graph (CDG)

When a page is fetched, for every sentinel that is interested in that page, change

is computed and notified to the user. In situations where there are two or more sentinels

interested in the same type of change on the same page we have to compute the change

more than once. We avoid this by capturing the relationship between the pages and

sentinels, and grouping the sentinels on the change and target web page. Hence all

sentinels interested on the same type of change and on the same page are grouped

together. In order to represent this relationship we construct a change detection graph

(CDG). Consider a sentinel s3, monitoring the change �images� on the URL

www.yahoo.com. Another sentinel s1 also monitors the same web page but for a

composite change �links� and �images�. The change detection graph for these two

sentinels is shown in Figure 2. 2. The different types of nodes in the graph are as

follows:

 13

URL node: A URL node is a leaf node that denotes the page of interest. The

number of URL nodes in the graph is equal to the number of distinct pages the system is

monitoring at any particular instant of time.

Figure 2. 2 Change Detection Graph

Change type node: All level-1 nodes in the graph belong to this category. This

node represents the type of change on a page (all words, links, images, keywords,

phrases, table, list, regular expression, any change).

Composite Node: A Composite node represents a combination of change types.

The combinations are created using binary operators as explained in section 5.3. All

higher-level nodes (> level-1) in the graph belong to this type. Currently we support

composite changes on a single page.

In the graph, to facilitate the detection and propagation of changes, the

relationship between nodes at different levels is captured using the

subscription/notification mechanism. The higher-level nodes subscribe to the lower

level nodes in the graph. This subscription information is maintained in the subscriber

list at each node. At the URL node, this list contains the references to the change type

 14

nodes. At the change type nodes each sentinel will have a subscriber that will contain

the references to the composite nodes. When a page is fetched, the associated URL node

is notified about the page. The URL node propagates this page to all the change type

nodes that have subscribed to it. Finally at the change type nodes the change is

computed between the current pages received and an appropriate reference page (based

on the compare option) that is fetched from the page repository. If there is any change

then the sentinels subscribed to it are notified. When this change type is a part of a

composite change, those composite nodes are notified.

2.6 Event-Based Fetching

WebVigiL monitors only those pages that are registered with it. For this purpose

it has to fetch the pages when a change in meta-data (such as the last modified time

stamp or checksum) is detected.

2.6.1 ECA Paradigm for Fetching

Event-Based Fetch module is responsible for monitoring and fetching pages that

are of interest to the sentinels registered with WebVigiL. Periodic events [8] are defined

and rules are associated with them as discussed earlier. Whenever a periodic event

occurs, the corresponding rule is fired, which then checks (condition part of the rule) for

change in meta-data of the page and fetches the page (action part of the rule) if there is a

change in meta-data. Thus the periodic event controls both the polling interval and the

lifespan of the fetch process. By meta-data of the page, we mean page properties such

as the page size, last modified time stamp and checksum of the page. A fetch cycle for a

page is triggered only when there is a change between the meta-data of the current

version of the page to that of the previous version. Depending upon the nature

 15

(static/dynamic) of page being monitored the complete set or subset of the meta-data is

used to evaluate the change. A fetch rule is created and used to poll the page of interest

specified in the sentinel.

Best Effort Rule: In situations where the user has no information about the

change frequency of a page, it is necessary to tune the fetch frequency to the actual

change frequency of a page. BE Rule uses a best-effort Algorithm [9] to achieve this

tuning. In the best-effort algorithm (BEA), the next fetch interval (Pnext) is determined

from the history of changes to that page. When the next polling interval is determined,

the BE Rule changes the interval �t� of the periodic event.

Interval-Based Rule: The user can explicitly specify a fetch frequency. A

periodic event with periodicity (interval t) equal to the given interval is created and an

IB rule IBi is associated with it to fetch the page. As a result there will be more than

one IB rule on a given page with different or same periodicity, where each rule is

associated with a unique periodic event (i.e., with different start and end times).

2.7 Caching and Management of pages

An important feature of WebVigiL architecture is its centralized server based

repository service that archives and manages versions of pages. WebVigiL retrieves and

stores only those pages needed by a sentinel. The primary purpose of the repository

service is to reduce the number of network connections to the remote web server, there

by reducing network traffic. When a remote page fetch is initiated, the repository

service checks for the existence of the remote page in its cache and if present, the latest

version of the page in the cache is returned. In cases of cache miss, the repository

service requests that the page be fetched from the appropriate remote server.

 16

Subsequent requests for the web page can access the page from the cache instead of

repeatedly invoking a fetch procedure.

2.8 Presentation and Notification

 Change presentation is the last phase of web monitoring where the detected

changes are presented to the user. The presentation method selected should clearly show

the detected differences between two web pages to the user. Therefore, computing and

displaying the detected differences in a meaningful manner is very important. Based on

the number of changes detected and the notification mechanism (email, PDS, fax)

where the changes need to be displayed, we plan to use a heuristic cost model for

choosing the presentation mechanism for displaying changes.

The user may want to be notified immediately of changes on particular pages. In

such cases, immediate notification should be sent to the user. WebVigiL provides the

semantics of immediate and best effort (section 5.4). Alternatively, frequency of change

detection will be very high for web pages that are modified frequently. Since frequent

notification of these detected changes will prove to be a bottleneck on the network, it is

preferable to send notification periodically. In addition, WebVigiL provides the

provision to the user to view the information when required. A user dashboard is

provided for that purpose. The user can specify the desired notification interval in the

sentinel. The WebVigiL server, based on the notification frequency can push the

information to the user, thus propagating the �just in time�(JIT) paradigm.

2.9 Summary

The system incorporates the concepts of active paradigm for effective

monitoring of web pages based on user profiles/policies.

17

CHAPTER 3

RELATED WORK

WebVigiL is a self-monitoring system, which allows for composite changes and

notifies the user of changes as soon as it is detected. To achieve this capability, active

technology can be effectively used. Active rules incorporated to make databases active

has been well developed. Active database systems, based on rule definition, event

detection, and action execution, add the additional functionality to recognize specific

situations (external situations) and react to them in contrast to the traditional passive

databases. Such databases not only detect composite events but also incorporate

coupling and parameter modes for added capability. Active databases such as HiPAC,

Sentinel, Ariel [10-12] have incorporated the active capability into the database. The

usage of this capability has been very limited in web-based systems. WebVigiL uses

active capability for the run time management of user-defined specifications to monitor

and detect changes efficiently.

Many research groups have been working to address detecting changes to

documents. GNU diff detects changes between two Unix and Linux files. Commercial

products such as WordPerfect have a �mark changes� facility that can detect changes

based on how documents can be compared (on either a word, phrase, sentence, or

paragraph basis). Considerable work has been done investigating methods and

techniques for detecting duplicated portions of code or portions of similar code in

 18

procedural software systems. But most of the previous work in changed detection has

dealt only with flat-file and not for structured or unstructured web documents.

 The adaptive push/pull [13] approach evaluates the effect of various approaches

(push, pull, and combinations there-of) from the point of view of propagating changes

from server to the client. Some change�monitoring tools such as ChangeDetection.com

[14] have been developed using the push-pull paradigm. But these tools detect changes

to the entire page instead of tracking changes to user specified components. The

changes can be tracked only on limited pages and the user will be loaded with all the

changes, irrespective of whether he/she requires it or not. Hence, these tools solve the

problem of when to refresh a page but not how and when a page is modified. In

addition, these tools have limited capabilities in terms of types of changes detected. The

scalability of these systems is not very clear. Some tools have been developed, which

allows detection of customized changes to web documents. The rest of the section

discusses these tools.

3.1 Approaches for unstructured documents

Tools such as WebCQ and AIDE [15, 16] offer detection and notification of

customized changes on the web pages. WebCQ detects changes based on user-profile.

But it is not very clear whether, more than one type of change detection is supported for

each request. WebVigiL provides the flexibility to detect multiple changes on a page.

[16] presents a set of tools (collectively called AT&T Internet Difference

Engine), which view a HTML document as a sequence of sentences and sentence-

breaking markups. A token is either a sentence-breaking markup or a sentence, which

can be a sequence or words and non-sentence-breaking markups. AIDE uses HTMLdiff,

which uses weighted LCS algorithm [17] to compare two tokens and computes a non-

 19

negative weight reflecting the degree to which they match. All markups are represented

and are compared. This approach may be expensive computationally as each sentence

may need to be compared with all sentences in the document. Thus in situations where

the user is interested in change to a particular phrase, HTMLdiff will end up computing

change to the whole page, resulting in excessive computational cost. In addition, the

mechanisms used for HTML change detection cannot be mapped directly to XML as

XML is used to define content rather than presentation unlike HTML [3, 18]. Users can

create their own tags in XML to define the context of the contents. Hence the use of

tags as a sentence-breaking markup, as is used by AIDE [16] cannot be used in XML as

contents between different tags denote different context.

3.2 Approaches for XML (semi-structured) documents

XML documents are semi-structured and contain well-defined tags, which

define the text Hence an XML document can be represented as a tree. Tree to tree

comparison to detect differences is a NP-hard problem but many algorithms have been

proposed for tree-tree comparison taking some tree features into consideration. [19-21].

3.2.1 Changes detection in hierarchical structured documents

Chawathe et. al.[21] proposed algorithms for detecting changes in hierarchical

structured data. The algorithm proposed for hierarchical structured data can be given as:

Given two trees T1(old tree) and T2(new tree) , a minimum cost edit script is

generated , which gives a sequence of edit operations such as insert, delete, update and

move, which transforms one tree to another. The definition of the edit script is : Given a

sequence of edit sequence E= e1���..em of edit operations, T1 →
E Tm+1, if there

exists T2 ,�Tm such that T1 →
1e T2 →

2e ��.Tm+1. A sequence of edit operations

 20

transforms T1 →
E T2 then T1 is considered isomorphic to T2. A matching function

�compare� finds the matching nodes in T1 and T2 after satisfying the �equal� function

and includes them in the matching M nodes set. This equal function is given as:

1. For leaf nodes x ∈ T1 and y∈ T2, (x,y) ∈ matching only if labels l(x) =

l(y) and compare(v(x),v(y)) ≤ f for some parameter f such that 0 ≤ f ≤ 1.

2. For internal nodes, if x is the internal node in T1 and y is the internal

node in T2, then (x,y) ∈ M if l(x) =l(y) and |common(x,y)|/max(|x|,|y|)>

t for some t satisfying ½≤ t ≤ 1. common(x,y) is defined as: {(w,z) ∈ M|

x contains w and y contains z}.

To ensure that the tree is aligned using minimum number of moves, the longest

common subsequence (LCS) method is used. The LCS given by [22] is used. The LCS

is given three inputs: two sequences S1 and S2 to be compared and an equal(x,y)

function to compare the sequence. This algorithm successfully detects inserts, deletes,

updates and move on the trees.

 This algorithm works for hierarchical structured documents such as latex. But

the assumption may not hold good for XML documents as they contain duplicate nodes

and sub-trees.

3.2.2 Fast Change Detection for unordered XML documents

X-diff [23] is a fast change detection algorithm for XML, which takes advantage

of the structure and label given to all XML element nodes. X-diff detects edit operations

such as insert, delete and update on parsed unordered label tree of XML documents.

Given two unordered tree T1 and T2, X-diff finds the equivalent second level

sub-trees by comparing their XHash values. XHash is computed using a general hash

function such as MD5 [24] or SHA [25] on the entire sub-tree. For unmatched sub-trees,

 21

signature is computed for every node. Signature of a node is obtained by concatenating

the names of all its ancestors with its own name and type. Using dynamic programming,

the nodes are compared for matches and matching nodes are extracted. This algorithm

detects inserts, deletes and updates to a node.

 For this algorithm, the basis assumption is that XML is unordered tree but

according to the definition [18], XML is an ordered tree except the attributes, which are

unordered. For a tree rooted at R with children pi to pm, if a node along with the

complete path is moved from j where i<=j<=m to k in tree T2 , where k≠ j, such

changes cannot be detected in an unordered tree.

3.2.3 Change Detection in ordered XML documents

Algorithms have also been proposed for XML documents represented as ordered

labeled trees. Cobena et. al. [26] have formulated a change detection algorithm called

Xydiff to detect changes between two XML documents for the Xyleme project. XyDiff

algorithm computes the changes by computing the four phases:

1. Compute Signature and order sub-trees by weight: Given two ordered tree T1

and T2, a signature is computed. The signature is computed by computing the node�s

content and its children. Thus, the weight is calculated by taking the size of its text

nodes and sum of its weight of its children for element nodes. The weight of the text

node is: 1+ log(length(text)) and weight of the element node is : 1+

sum(weight(children)). A priority queue is used and each sub-tree is inserted by its

weight, the heaviest being the first.

2. Trying to find matching starting from heaviest nodes: Starting from the

heaviest nodes, the sub-trees are matched by their signature. The best match is the one

in which the nodes match and the parent matches the reference node�s parent. When a

 22

candidate is accepted as matched, the pair of sub-trees and ancestors is matched as long

as they have the same label. If there are no matches and the node is an element, the

children are added to the queue.

3. Use structure to propagate matching: The tree is traversed top-down and the

nodes are matched from the old and new documents as long as the nodes have the same

label and their parents match.

4. Compute the delta: All the non-matching nodes are denoted as inserts/deletes

respectively depending whether they are in the new documents or the old documents.

All nodes, which are matching but with non-matching parents are termed as moves. For

the matched sub-trees, the additional moves are detected by computing the largest order

preserving subsequence.

The change detection is done at the node level. Hence, when changes have to be

detected on part of the node or when content to be monitored exceed a node, this

method cannot be used without modifications.

3.3 Other approaches for XML change detection

XMLTreeDiff [27], a tool developed by IBM, is a set of Javabeans and does

ordered tree to tree comparison to detect changes between XML documents. It

generates a hash values using DOMHash [28] function and filters the identical sub-trees

based on equal values of the DOMHash. XMLTreeDiff uses an optimal tree-

differentiating algorithm together with a fast subtree matching procedure to detect

changes between given two XML DOM trees.

XMLDiff [29] is another tool for detecting changes between XML documents,

developed by the Logilabs. It is a python based tool for detecting differences between

similar XML documents and was developed as part for the Narval project. It computes

 23

both structural changes and changes to the leaf nodes and detects changes in terms of

insert-after, rename, move, update, append etc.

Though most of the described tools detect changes between two XML

documents, these algorithms rely on the fact that either an entire node can change or

there is no change. WebVigiL is a system, which monitors changes to sections of the

content of a page, which in terms of tree can be part of the node or can exist as part of

more than one node. Hence, the given algorithms cannot be mapped directly to satisfy

the monitoring requirements of WebVigiL.

3.4 Approaches for user specification

Present day users are interested in monitoring changes to pages and want to be

notified based on his/her profile. Hence, an expressive language is necessary to specify

user-intent on fetching, monitoring and propagating changes.

WebCQ [15] detects customized changes between two given HTML pages and

provides an expressive language called sentinel for the user to specify his/her interests.

But WebCQ only supports changes between the last two pages of interest. Hence

compare options is not provided to the user. The semantic correctness for the fetch and

notification specifications only need to be verified unlike in WebVigiL, which needs to

verify the correctness of the combination of fetch, notification and compare options. In

addition, inheritance of properties or lifespan of correlated sentinels are not supported

as in WebVigiL, which is able to support these properties because of the use of active

paradigm.

In [30], the authors allow the user to submit monitoring requests and continuous

queries on the XML documents stored in the Xyleme repository. WebVigiL supports

only time- based monitoring request and not continuous queries. To the best of our

 24

knowledge, customized changes, inheritance, different reference selection or correlated

specifications cannot be specified in the monitoring request on Xyleme.

3.5 Summary

WebVigiL supports customized changes based on user-intent. Hence, the

existing methods cannot be mapped for WebVigiL. In addition, as WebVigiL provides

lot more flexibility to the user, an expressive semantic language needs to be devised.

25

CHAPTER 4

CHANGE DETECTION IN XML DOCUMENTS

WebVigiL is targeted for large network-centric environment such as the

Internet. We support customized change detection to Hypertext Markup Language

(HTML) and eXtensible Markup Language (XML), which are the standard formats for

electronic publishing on the web.

Figure 4. 1 Part of an XML document

In section 1.3, we introduced and explained the eXtensible Markup Language

(XML). XML is semi-structured and differentiates between presentation and content

unlike HTML which is unstructured. The tool designed to detect changes to XML must

consider the semi-structured nature of XML documents and be able to detect

customized changes to the document based on user-intent.

 26

As explained in section 1.3, the user-defined tags known as elements, define the

context in XML. Elements consist of attributes and the text value, which describe the

properties and value of the element. Hence, for detecting changes to XML documents,

the nodes such as elements, attributes and text nodes are of interest. As shown in Figure

4. 1, the content �Harry Potter And the Chamber of Secrets� is defined as the name of a

book in the books section by the elements �Books�, �Section�, �Book�, and �Name�.

From the above example and the definition given in [18], it is clear that XML

documents are semi-structured.

Section 4.1 describes the ordered labeled XML tree. In section 4.2, we will

describe why customized change detection should be supported followed by the

problems faced in detecting these changes in XML in section 4.3. Section 4.4 discusses

the various design alternatives. In section 4.5, we define changes and the change

detection modules will be discussed in detail in section 4.6.

4.1 XML as an ordered labeled tree

A document written in XML can be mapped into a hierarchal tree. In XML, the

elements are ordered while the attributes are unordered [18]. Each node x in XML

consists of a label l(x) and content denoted as value v(x). The ordered XML tree for the

text shown in Figure 4. 1 is shown in Figure 4. 2.

As shown in the Figure 4. 2, the root (section 1.3) of the tree is �Books�. The

root is divided into elements, which define the main context of the documents. The

parent element node connects with its corresponding child node, which could be

elements, attribute or text nodes. The text and attribute are the leaf nodes of the tree.

The text node contains the content/value but have a common label as �Text�. The

 27

attributes nodes contain both label and value. According to [18], the attributes are

considered unordered in XML. But as the elements and text nodes are considered

ordered for the tree, for consistency in change detection, the attributes are also assumed

to be ordered.

Figure 4. 2 Ordered Labeled XML tree

4.2 Importance of Customized Change Detection

The Internet is evolving as a repository of information, and the user�s interest

has expanded from querying information to monitoring the evolution of the pages. The

ability to specify changes to arbitrary documents should be coupled with dissemination

of information properly without resulting in wasteful computation and waste of

resources due to manual polling or querying the information.

 28

The emphasis is on selective change detection, as the users are typically not

interested in changes to the entire page but to a particular portion or section. For

example, a student may be interested in knowing whether a particular course is offered

in the semester and would like to monitor changes on the keyword �coursename�.

Similarly users may be interested in monitoring a particular new item (e.g. keywords,

phrases) in the news web page or particular stocks in the stock web page. Change

detection on the entire page will be an overkill and computationally costly in this case.

Hence, the change mechanism should be capable of not only detecting changes to the

entire page but to objects of user interest such as keywords, phrases etc. WebVigiL

monitors customized changes such as changes to a phrase and keywords on web pages

based on user-intent.

In addition, it has been observed that the user�s interest pertains to the content

and not to the context (structure), which is hidden from the user. Detecting changes to

the structure may not only increase the computational cost but may not achieve any

purpose for the end user. Hence, WebVigiL supports changes only to the content of a

document. But the context (structure/tags) information can be used for efficient change

detection as the context defines the content. Hence, to detect changes, the content in a

particular context should be matched with similar content in the same context.

4.2.1 Types of changes supported

WebVigiL supports customized changes such as any change, all words, link

change, image change, table change, list change, keyword change, phrase change and

regular expression. These changes can be divided into word-based changes and

presentation based changes. Changes such as any change, all words, keyword change

and phrase change constitute the word-based change while the rest can be defined as the

 29

presentation based changes. As XML documents separate the presentation from the

content, the presentation-based changes can only be detected by additional information

from the style sheet or other presentation documents or the document type definition

(DTD). At present, WebVigiL supports changes on only a single page level. Hence,

currently the presentation-based changes are not detected for XML pages.

The change detection approach for XML called the CX-Diff supports changes to

the content such as any change, phrase change and keyword change. CX-Diff does not

detect structural change to the document but only detects changes to the content. In an

XML tree, the leaf nodes represent the content. Hence changes to the leaf nodes are of

interest. The element information is extracted to take advantage of the semi-structural

nature of the XML documents and detect efficient changes with respect to position and

context. As XML is ordered, the changes detected are position dependent.

Taking the above definitions into consideration, the changes can be defined at

the page-level and tree level as:

Keyword change: Appearance or disappearance of unique word(s) of user�s

interest, in an XML page. In terms of tree definition, the word could be the leaf node or

part of the leaf node. For example, as shown in Figure 4. 2, keyword �Harry� is part of

the entire node �Harry Potter and the Chamber of Secrets�.

Phrase: Appearance or disappearance of contiguous set of objects defined by the

user, which could be a leaf node, part of a leaf node or can span across multiple node.

For example, as shown in Figure 4. 2, the phrase �the Sorcerer�s stone by J.K. Rowling�

spans across multiple nodes.

Any Change: Appearance, disappearance or move (defined in section 4.5) of any

of the leaf nodes (i.e. complete content of a node) are tracked and detected as a change.

 30

Any Change Appearance/disappearance
/realignment of leaf nodes

Phrase Change Appearance/disappearance
/update of a given phrase

Keyword Change Appearance/
disappearance of given
keyword

Figure 4. 3 Synopsis of changes

The synopsis of these changes is shown in Figure 4. 3. As apparent from the

synopsis, move is only detected for any change as move defines realignment of

complete nodes between given two trees.

4.3 Problem Overview

The changes need to be captured on contents constituting part of the node or

spanning several nodes and considering the context and order of occurrence of the leaf

node in the page in an ordered XML labeled tree. Change detection for semi-structured,

ordered XML tree is complex because of the following issues:

Duplicate Nodes: XML contains duplicate nodes. By duplicate nodes, we mean

similar leaf nodes containing the same context. As shown in Figure 4. 2, the node �J K

Rowling� appears twice in the tree for the same context (i.e. �Books-Section-Book-

Author�). Duplicate sub-trees defined for the same context are also possible in XML.

Order becomes very critical for such duplicate nodes as a node n, existing at position pi

in the old tree should be compared to the node existing in the equivalent ith position in

the new tree with respect to their siblings

Realignment of nodes: Two XML documents may contain the same content

having the same structure but the nodes may be realigned in different sub-trees or with

 31

respect to the siblings. For example, for a tree T1 rooted at R with children pi to pm, a

node along with its structural information can be moved from j where i ≤ j ≤ m in T1 to

position k in T2 where j ≠ k, when considered with respect to the siblings. The change

mechanism developed should be capable of detecting such move operations.

Customized changes: WebVigiL supports customized change detection to the

contents, such as phrase and keyword change. Keywords and phrases can be part of the

node or can span multiple nodes. Detecting changes to contents constituting part of the

node or spanning several nodes complicates the extraction of the content and change

detection. Hence, the algorithm should be capable of extracting the required content of

interest and detect changes.

The change detection tools discussed earlier in section 3.2 for XML documents

do not handle customized changes. The proposed algorithms for HTML are for

unordered trees. Hence, an algorithm is proposed, taking into consideration an ordered,

labeled XML tree and the position of occurrence of the node with respect to its sibling.

4.4 Design Issues in XML

1) Adopting approaches for HTML: There are two fundamental differences

between XML and HTML as apparent from Figure 4. 4:

• Separation of form and content: HTML mostly consists of tags defining the

appearance of text. Hence, usage of tags in HTML is for presentation

purpose. In XML, the tags generally define the structure and content of the

data. A specific application or an associated style sheet specifies the

presentation for XML. Hence, the content and presentation for XML is

separate.

• XML is extensible: In XML, users or organizations can define tags.

 32

Figure 4. 4 Difference in XML and HTML

These differences can be clearly deduced from the example given in Figure 4. 4.

The documents contain information about a children�s book. The tags in XML such as

section, author etc. defines the context of the contents. But in HTML, the tags such as

H1, BR etc. define the presentation.

As the format and representation of both HTML and XML documents are different,

the proposed approaches for HTML change detection cannot be adopted for XML.

2) Considering XML as unordered tree: As per the definition of XML, the

elements in XML are ordered. [18]. In addition as described in section 4.3, XML

documents contain duplicate nodes. The assumption that the tree format of XML as

unordered tree is not correct. In addition, only by considering XML as an ordered tree,

moves (section 4.3) can be efficiently detected. Hence, a change detection algorithm

considering XML as an ordered tree needs to be proposed.

3) Customized changes to content rather than structure: WebVigiL detects

customized changes to contents such as keyword change, phrase change etc. as

discussed in section 4.2. Hence the proposed change detection algorithm must be

capable of detecting changes not only to the content leaf nodes but also to content that

are part of the node or contents spanning multiple nodes. In this case, detecting changes

 33

to the structure will result in unnecessary computation, which will make the algorithm

computationally expensive.

4) Assigning unique Ids to the leaf nodes: Each leaf node can be assigned a unique

id depending on the position of occurrence and nodes can be compared on basis of the

basis of unique ids. But between two given XML documents, due to inserts and deletes,

comparing two nodes based on their ids will not be sufficient. Hence, the position of

occurrence of the leaf nodes needs to be considered relative to the value of the sibling

instead of just position.

4.5 Change Operations

The change detection for XML defined as CX-Diff, detects changes between

two ordered labeled XML trees. The changes are detected by considering the change

operation, which transform a tree T1 to T2. Given two ordered XML trees T1 and T2,

consider the change operations from the set E = {insert, delete, move} which when

applied to T1 transforms it into a new tree T2. To detect the change operations, the

structure (element information) is also taken into consideration. The content of a leaf

node is defined as its value and is denoted as v(x) where x is a leaf node. All the

element nodes pertaining/associated to a leaf node define the context of the leaf node.

All the element nodes, which constitute the path of the leaf node, are extracted and this

additional structural information is used for effective change detection.

The structural information denoted as path or signature is defined as:

Definition 1: Signature: - The ancestral path of a leaf node from the parent to

the root, denoted by path(x) for node x. For attributes, the label of the attribute also

becomes a part of the signature. For example in Figure 4. 2, the signature for the node

 34

�Harry Potter and the Chamber of Secrets� is Books-Section-Book-Name. For Figure 4.

5, the signature of the node having value �D� is �R-S-P�.

Given two trees T1 and T2, if leaf node x ∈ T1 and leaf node y ∈ T2, v(x), v(y)

denotes the value of the node x and y respectively. The labels of the leaf nodes x and y

are represented as l(x) and l(y) and signatures are denoted as path(x) and path(y). Given

these properties, the change operations can be defined as follows:

Figure 4. 5 Change Operations on trees T1 and T2

Definition 2: Insert:- Insertion of a new leaf node at the ith position is denoted

by insert (v(x),i). If n1�nm are the leaf nodes in T1 and for 1< k< m, if n1�.nk-

1,x,nk�.nm are the leaf nodes in T2, then the node x is considered inserted. As structure

defines the context for the content in XML, a node of the same value but different

signature is considered inserted. Insert of a keyword is defined as the appearance of a

keyword k in the ith leaf node x of the tree T1, denoted by insert_keyword (k,x,i) where

 35

the keyword can be part of the leaf node x or the node itself. Insert of a phrase is

defined as appearance of a complete phrase at position i in the tree T1, denoted by (p,i).

Definition 3: Delete: - The deletion of an old leaf node at the ith position is

denoted by delete(v(x),i). A leaf node x having the value v(x) is deleted from the ith

position in tree T1 rooted at root R. Given two ordered XML trees T1 and T2, T1 will be

same as T2 except that it will not contain x. Delete of a keyword is defined as the

disappearance of the keyword k in the ith leaf node x of the tree T1, denoted by

delete_keyword (k,x,i). Delete of a phrase is defined as the disappearance of a phrase p

at ith position in the tree T1, denoted by (p,i).

Definition 4: Move:- For the tree T1 , containing leaf nodes from n1 to nm, a leaf

node x containing signature s is shifted from position j in T1 to position k in the new

tree T2 where 1<=j<=m and j ≠ k with respect to the siblings. Move is denoted as move

(x,j ,k) where x is the leaf node moved from position j to position k. Move is only

applicable to a complete node. Keyword and phrase changes are changes detected to

part of the node or on the contents of more than one node. Hence, move is not

applicable to keyword and phrase change but only for any change on the leaf nodes.

As shown in Figure 4. 5, leaf nodes having value �D� and �G� are deleted in tree

T1 in position 2 and 3 respectively and leaf node with value �F� is inserted in tree T2.

Leaf node �C� is moved from position 4 in Tree T1 to position 5 in T2.

4.6 CX-Diff: Customized Change Detection for ordered XML documents

XML contain different kinds of nodes as described in section 1.3. As we are

interested in changes to only the content, the leaf nodes consisting of text and attributes

are of interest. But these changes have to be detected in terms of the correct context.

Hence element nodes are also important for structural information for efficient

 36

detection. We process only these three kinds of nodes and do not currently process

DTD, CData, Entity and Processing Instructions nodes.

In XML, the elements are considered ordered. Hence the content or value of the

element represented by text nodes is also ordered. Though according to the XML

definition, the attributes are not considered ordered, but as the changes are detected

considering the content to be ordered, the attributes are assumed ordered for the

proposed change detection algorithm. Attributes defining ID and IDREFS are also

considered as simple ordered attributes.

The matching nodes in an ordered tree, should satisfy the following conditions:

• Ancestor Order preservation

• Must satisfy some defined function equal

• Sibling order preservation

Definition 5: For an ordered, semi-structured tree, the best match for ordered

leaf nodes are the ones satisfying the following:

1. For ∀ (x,y) ∈ M, ,if xp ∈ path(x) and yp ∈ path(y) where p is the position

in the signature list, then xp is the ancestor of x iff yp is the ancestor of y

and xp = yp. (ancestor order preservation)

2. For ∀ (x,y) ∈ M, iff v(x) = v(y)

3. For ∀ (x1, y1) ∈ M, iff x1, y1 ∈ common order subsequence L such that

x1 has the same order of occurrence in L as y1.

According to [3, 4]in a document object model (DOM), by which an XML

document is converted into a tree, the root contains all the other nodes in the tree. Based

on this and definition 5, the following assumption is considered valid:

Assumption 1: For given trees T1 and T2, if Root(T1) ≠ Root(T2), the match

set M=φ

 37

The assumption holds true because if the root of the tree do not match, then the

first condition of definition 5 will never be satisfied.

Figure 4. 6 Outline of the algorithm for keywords

 38

For customized change detection based on user-intent, extraction of the

objects of interest such as keywords and phrases is necessary to detect changes to a

page. Signature is computed for each extracted leaf node. To detect change operations

between given trees T1 and T2, the unique inserts/deletes are filtered and matching

nodes and signatures are extracted. The common order subsequence is detected on the

extracted matching nodes to detect move and insert/deletes to duplicate nodes.

The algorithm consists of following steps: i) object extraction and signature

computation, ii) filtering of unique inserts/deletes and iii) finding the common order

subsequence between the leaf nodes of the given trees. For reducing the computational

time for detecting changes, an optimization is also proposed.

4.6.1 Object Extraction and Signature Computation

Based on the user-intent, the object of interest needs to be extracted from the

contents of the XML document and the structural information derived by computing the

signature. To access the content and extract the structure of the XML document, it is

first transformed into a Document Object Model (DOM) and the value of the leaf nodes

is extracted and their signature is computed from the element information.

For keyword extraction, the keywords are matched with the value of the leaf

node. If the keyword is found, it is extracted along with the order of occurrence and its

associated signature is computed.

Phrase can span multiple nodes. Hence, once the phrase is detected, the part of

the nodes containing the phrase is extracted as a new tree. The old tree is realigned and

the new tree is attached as a sub-tree in the original tree at the proper position. In Figure

4. 7, for the phrase �the Sorcerer�s Stone by J.K.Rowling�, the part of the phrase is

extracted and realigned.

 39

Figure 4. 7 Extracted phrase

As shown in Figure 4. 2,�the Sorcerer�s Stone� is part of the node value �Harry

Potter and the Sorcerer�s stone� while �by J.K. Rowling� is a separate node. Once the

string-matching algorithm detects the phrase, the range is set. The start index in this

case will be the 4th word of the node at position 2 i.e. �Harry Potter and the Sorcerer�s

stone �. The end index is placed at the end of the node at position 3. The appropriate

part of the nodes are extracted and inserted as new node in the tree with inserted

�phrase� node differentiating it as a phrase. The rest of the nodes are realigned as shown

in Figure 4. 7. The signature for the extracted phrase �the Sorcerer�s stone by

J.K.Rowling� will be �Books-Section-Book-Name-Author�.

 40

For the given tree T1 and T2 in Figure 4. 5, the tree is traversed and the leaf

nodes and their associated signatures are extracted and added to the T1set and T2set

respectively as shown in Figure 4. 8.

4.6.2 Filtering Unique Inserts/Deletes

In a given tree T, a node x containing value v(x) can be distinct or can have

multiple occurrences. Insertion/Deletion of distinct nodes can result in unique

insert/delete unless they are moved, and can be detected on an unordered tree.

Similarly, leaf nodes containing non-matching signature can also be considered as

unique inserts/deletes as the signature define the context.

Definition 6: For each leaf node x in tree T1, if there is no matching node y in

tree T2 such that v(x) = v(y) or path(x) = path(y), then x is a unique insert. For a set

matching M for old tree T1 and new tree T2:

M(x,∅) where x ∈ T1 = Unique insert

M(∅ ,y) where y ∈ T2 = Unique delete

To reduce the computation cost of finding the common order subsequence

between two ordered trees, by considering all the leaf nodes, the unique inserts/deletes

are filtered out and matching nodes extracted by the defined functions totalMatch and

signatureMatch.

totalMatch algorithm: For each extracted node, the function

totalMatch(old_tree, new_tree) extracts the set of best matches denoted as M such that

for the given trees T1 and T2 and leaf node x in T1 and leaf node y in T2, (x, y) ∈ M if

v(x) =v(y) and path(x) = path(y).

The value of the node along with the signature is mapped to a unique value for

both the trees and compared. If a match is found, then it is inserted into the matched set.

 41

For a node n, if no match is found, then according to the definition 6, it is flagged as

�insert� or �delete�. For phrase change, the associated phrase for each node is also

marked as �insert/delete�. To determine inserts/deletes for keywords, further processing

is needed. For some cases, though the value of the leaf node do not match, as keyword

can be part of the leaf node, instances of the keyword in the leaf node may be matching.

In order to detect such matching, we compare the signature of the node. If the signature

matches, the instances of the keyword in the leaf node are also considered matched. To

detect nodes containing common signature, the signatureMatch algorithm (defined

below) is used.

In addition, as XML is well-defined document, it can be assumed that the

structure is generally stable. Hence, many times, though the contents change, the

structure remains the same and this information can be included for optimal detection of

common order subsequence between two trees. The non-matching nodes of totalMatch

algorithm are given to the function signatureMatch, to extract common signatures.

signatureMatch algorithm: All the matching signatures in the old and new

tree, containing non-matching leaf nodes are included in the set M. For leaf node x in

tree T1 and y in tree T2, if path (x) = path (y) and v(x) ≠ v(y), then path(x) and path(y)

are included in the match set M.

The distinct leaf node having value �G� in Tree T1 and node having value �F� in

Tree T2 in Figure 4. 5 are detected as deleted and inserted after computation of the

function totalMatch as shown in Figure 4. 8. Though value of leaf nodes �G� in T1 and

�F� in T2 do not match but their signatures match i.e. path(G)=path(F). Hence, for

efficient computation of common order subsequence, the common signature

information is extracted by the function signatureMatch and included as elements in the

matchedT1set and matchedT2set. As shown in Figure 4. 8, at the end of phase I, all

 42

unique inserts i.e. �F� and unique deletes i.e. �G� are detected and common structural

information of such unique inserts/deletes are extracted.

For keywords and phrase change, if all the extracted keywords and phrases

result in unique insert/delete, then the computation can be considered complete at this

stage.

4.6.3 Finding the Common Order Subsequence

For change detection to multiple occurrences of a node with common signatures

and for moved nodes, it is necessary to consider an ordered tree. As per definition 5,

apart from signature match and equal values of the leaf nodes, the best match should

satisfy the 3rd condition i.e. the node must belong to the common order subsequence

extracted from the two trees. Due to realignment of the node and inserts and deletes, the

order of occurrence needs to be considered with respect to the value of the sibling. The

common order subsequence is computed by finding the Longest Common Subsequence

(LCS) [17] between the matched nodes of both the trees.

All the matched nodes are aligned in the order of occurrence. For keyword

change, the extracted keywords, which are part of the leaf node, are also aligned with its

matching leaf node and signature. For the matching signatures extracted from

signatureMatch, the instances of the keyword/s along with the signature is aligned for

LCS. As explained in section 4.6.1, the phrase is inserted as a text node and hence is

treated as a complete leaf node. For detecting LCS, each node is mapped into its

equivalent hash code and the nodes resulting in the common order subsequence are

extracted.

The nodes, which do not constitute the common order subsequence between the

given two trees, are differentiated as inserts, deletes or moves. At the end of this phase,

 43

all the moved nodes and the duplicate inserts/deletes will be detected. For example, in

Figure 4. 2, if �J.K Rowling� at 3rd position is deleted, the delete will be detected for

correct position. Similarly, at the end of the LCS computation on the matched nodes in

Figure 4. 5, the deletion of the node �D� at position 2 in T1 as well as the move of node

�C� from position 4 in T1 to position 5 in T2 can be detected. Hence, this algorithm

detects customized changes such as keywords, phrases etc based on user-intent. In

addition, changes to duplicate leaf nodes containing common structural information and

moves are accurately detected.

Figure 4. 8 Phases of CX-Diff algorithm

For phrase change, update to a phrase can also be detected. After computing the

common order subsequence, if a phrase in tree T1 is not matched, then using the

signature information, the leaf node values of the element constituting similar signature

in tree T2 can be extracted. Using LCS, the common subsequence can be extracted from

the node values. A value f can be defined such that if the common subsequence is

 44

greater than or equal to f, then the phrase can be considered updated and non-matching

value in the phrase can be extracted. If the common subsequence is less than the value f,

then the phrase can be termed as deleted. The user or the system can determine the

value of f.

4.6.4 Optimization

To improve the time taken by the above algorithm, an additional phase of

eliminating common second level sub-tree is introduced. Sub-trees are computed at the

second level as the second level defines the main context of the contents in the

document. For given trees T1 and T2, the second level element node is denoted as l(s)

where l is the label of node s. if l(s1) is the second level node of T1 and its equivalent

node in T2 is l(s2), the sub-trees of T1 and T2 are considered matched if l(s1) = l(s2) and

all the leaf nodes along with the signature in T1 is equal to the leaf nodes and their

associated signature in T2 in the same order of occurrence. All the nodes of the matched

sub-trees are removed from the matched set M. Hence, the size of M for LCS is reduced

and the cost of computation is improved. But accurate results cannot be achieved if the

sibling information is lost. Hence this optimization trades computation time for

accuracy. Our experience has indicated that doing LCS at the 2nd level does not affect

the accuracy of change detection except in very rare cases. Currently, WebVigiL

includes optimization as default for change detection to XML documents. In future, we

plan to allow the user to decide whether accuracy of change detection or time is

important. Based on the user policy, the decision to utilize the optimization technique

will be made.

 45

4.7 Summary

CX-Diff is an approach proposed for detecting customized changes to ordered,

semi-structured documents such as the XML. Though this algorithm has been applied to

XML documents, this approach can be effectively used for other semi-structured or

hierarchically structured documents, which are ordered or for which position dependent

changes need to be detected.

46

CHAPTER 5

CHANGE SPECIFICATION LANGUAGE

The Internet has evolved as an indispensable repository of information. The

present day web user�s interest has extended from mere retrieval of information to

monitoring the sequence of changes (to web pages) that are of interest. As the web

pages are distributed over multiple large repositories, the emphasis is on selective and

timely propagation of information/changes. Changes need to be notified to the user in

different ways based on user preferences as specified in their profiles/policies. In

addition, the notification of these changes may have to be sent to different devices that

have different storage and communication bandwidths. The language for establishing

the user policies should be able to accommodate the requirements of a heterogeneous

distributed large network centric environment. Hence, there is a need to define an

expressive and extensible specification language wherein the user can specify his

policies to specify details, such as the web page(s) to be monitored, the type of change

(keywords, phrases etc.), and the interval for comparing occurrence of changes. The

user should also be able to specify how, when, and where to be notified, taking into

consideration the quality of service factors (timeliness, size vs. quality of notification)

for example). The user should be allowed to specify the type of comparison between

two pages from a set of compare alternatives. In addition, the user should be allowed to

specify a reference page with which a new page is compared for changes.

WebVigiL provides an expressive language with well-defined semantics for

specifying the monitoring requirements of a user, pertaining to the Web. The Sentinel

 47

Specification language developed for this purpose allows the user to create a monitoring

request based on his requirements. Each monitoring request is termed a Sentinel.

The semantics of the sentinel specification language for WebVigiL has been formalized.

The syntax of the language is shown in Figure 5.1.

Figure 5. 1 Sentinel Syntax

Following are some scenarios and their representation using the sentinel

specification language.

 48

Scenario1: Jill wants to monitor the UTA class schedule website "http:// w w w.

u t a.edu/class schedule" for the keywords �5331,5324 � to take a decision for

registering for these courses for a particular semester. The sentinel starts from December

2, 2002 to January 2, 2003 and she wants to be notified as soon as possible when the

change is detected. The sentinel (s1) for the above scenario is as follows:

Create Sentinel s1 Using http:// w w w. u t a.edu/class schedule

Monitor keyword (5331, 5324)

Fetch 1 day

From 12/02/02 To 01/02/03

Notify By email jill@aol.com Every best effort

Compare pairwise

Scenario2: Jill wants to be notified for any change to the page

�http://www2.uta.edu/sharma/courses/cse5331And4331/

Spring2003/General/course_sc hedule.htm� as this may affect her decision for

registering for the course 5331. As it is correlated with sentinel s1, the duration is

specified between the start of s1 and the end of s1. The sentinel (s2) for the above

scenario is: Create Sentinel s2

Using www2.uta.edu/sharma/courses/cse5331And4331/

Spring2003/General/course_schedule.htm

Monitor all words OR anychange

Fetch on change

From start (s1) To end (s1)

Notify By email jill@aol.com Every 1 day

Compare pairwise

http://www.uta.edu/classschedule
http://www.uta.edu/classschedule
mailto:jill@aol.com
mailto:jill@aol.com

 49

Scenario3: Jill decides to monitor another course �Optical Network� on the

class schedule web page "http:// w w w. u t a.edu/class schedule". As she has already

specified a sentinel s1 on the same link and requires similar properties for this sentinel

too, she can specify a new sentinel s3 using her previously defined sentinel s1. The

sentinel (s3) for the above scenario is:

 Create Sentinel s3

 Using s1

 Monitor phrase (�Optical Network�)

The rest of this section elaborates on the semantics of a sentinel, using the above

scenarios.

5.1 Sentinel Name
Create Sentinel <sentinel name>

For every sentinel, the system generates a unique identifier. In addition, the

system also allows the user to specify a sentinel name of his choice. This is to facilitate

the user, when he wants to specify another sentinel in terms of his previously defined

sentinels, as it would be difficult for the user to track the system defined sentinel name.

The user is required to specify a distinct name for all his sentinels.

5.2 Sentinel Target

The user should be allowed to specify the reference web page, which is of

interest and needs to be monitored for changes. In addition, the user should be allowed

to specify the monitoring target based on previously defined sentinels, which are

correlated. Sentinels are correlated if they inherit properties during runtime like start

http://www.cnn.com/
http://www.uta.edu/classschedule

 50

and end of a sentinel. Otherwise, they merely inherit static properties (e.g. URL, name

etc. of the sentinel)

Using <sentinel- target>

 The sentinel-target could be either a URL or a previously defined sentinel si. If

the new sentinel sn, specifies the sentinel target as si, then sn inherits its properties from si

, unless the user overrides those properties in the current specification. Consider the

scenario 4, where the user requires monitoring changes to the same web page based on

the same policies defined in a previously defined sentinel s3. But he wants to monitor

the links on the page instead of the images. The language provides the user the facility

to inherit his/her properties from the user�s previous sentinel unless overwritten by the

user. Hence, in the given scenario 3, all the properties of s1 will be inherited except the

sentinel type, which will be replaced from �keywords� to �phrase�.

When a sentinel is defined in terms of a previously defined sentinel, the

validation module first validates the inherited properties before the created monitoring

request is started.

5.3 Sentinel Type

Meaningful change monitoring can be provided only if changes are detected at a

finer level of granularity. The user may be interested in selective changes (e.g., phrases,

keywords etc) on the content of the page rather than changes to the entire page.

Consider scenario 1 where the student Jill wants to monitor the college schedule of class

to find whether a particular course (cse5331) is offered or not for that semester. Hence,

she has to monitor the web page for that particular keyword i.e., cse5331. In such cases,

detecting changes to the complete page is: i) not meaningful to Jill ii) disseminates

 51

irrelevant information, and iii) leads to wasteful computation. WebVigiL allows the

detection of customized changes in the form of sentinel type and provides explicit

semantics for the user to specify his desired type of change. The semantics of sentinel

type is given as:

Monitor <sentinel-type>

sentinel-type=[<unary op>]<change type> [<binary op> <change type>]

Change is computed between two versions of the same page with respect to the

type of change specified. The sentinel-type is the change type t selected from the set T =

{any change, all links, all images, all words except <set of words>, phrase:<set of

phrases>, keywords:<set of words>, table: <table id>, list :<list id>, regular expression:

<exp> }. The user is interested in the contents of a web page. The contents can be

defined as a set of words, links and images. From the set of words, the user may be

interested in monitoring changes to some particular keywords or a sequence of words

such as phrase. Similarly, the user�s object of interest may be links and images also.

Thus a page can be defined as a set of objects of user�s interest, which can be classified

as, Key Words, Phrases, All Words, Links and Images. Based on this, the content of a

page can be classified into the following:

Keywords: Corresponds to a set of unique words from the page. A change is

flagged when any of the keyword appears or disappears in a page with respect to the

previous version of the same page.

Phrase: Corresponds to a set of contiguous words from the page. A change is

flagged on the appearance or disappearance of a given phrase in a page with respect to

the previous version of the same page. Update to a phrase is also flagged depending on

the percentage of words that has been modified in a phrase. If the number of words

changed exceeds above a threshold, it is deemed as a delete (or disappearance).

 52

Links: Corresponds to a set of hypertext references. Links are presentation-based

object. In HTML, links are represented between the hypertext tag ().

Given two versions of a page, if any of the old links are deleted in the new version or

new links are inserted, then a change is flagged.

Images: Corresponds to a set of image references extracted from the image

source. Images are also presentation based objects and in HTML are represented by the

image source tag (IMG src=�.�>). The changes detected are similar to the links except

that the images are monitored instead of the links.

Table: Corresponds to the content of the page represented in a tabular format.

Though the table is a presentation object, the changes are tracked on the contents of the

table. Hence, whenever the table contents are changed, it is flagged as a table change.

Currently changes to the content of a table are not supported in WebVigiL but we

intend to support this type of change in the future.

List: corresponds to the contents of a page represented in a list format. The list

format can be bullets or numbered. Any change detected on the set of words represented

in a list format is flagged as a change. Currently changes to the content of a table are not

supported in WebVigiL.

Regular expression <exp>: Expressed as valid regular expression syntax for

querying and extracting specific information from the document data. Currently, we do

not support regular expression but intend to do so in the future.

All words: A page can be divided into a set of words, links and images. Any

change to the set of words between two versions of the same page is detected as a all

words change.

 53

Anychange: Anychange encompasses all the above given types of changes.

Changes to any of the defined set (i.e. all words, all links and all images) are flagged as

anychange. Hence, the granularity is limited to a page for anychange.

Any change is the superset of all changes. All words encompass phrases,

keywords and words in the table and list. While considering changes to all words, the

presentation objects such as table and list are not considered and only the content in

these presentation objects are taken into consideration.

If V1 and V2 are two different versions of the same page, then Change C on V2

with reference to V1, is defined as:

Ct (V1, V2) = True if the change type t is detected as insert in V2 or delete in V1

or update in V2.

 False otherwise

Primitive change is the detection of a single type of change C between two

versions of the same page. For keyword change, the user must specify a set of words.

For phrase change, a set of phrases is specified. For regular expression, a valid regular

expression is given. In some cases, the user may want to detect the non-occurrence of a

type of change on a page. For example, the user may be interested in monitoring a page

only as long as it contains the required links or a particular keyword. To facilitate

detection of such changes, the unary operator NOT is specified in the SSL.

NOT: NOT is a unary operator, which detects the non-occurrence of the given

change type t on version V2 with reference to version V1 of the same page.

(NOT Ct)(V1,V2) = ~Ct (V1,V2)

Many times, the user may be interested in detecting more than one type of

change on a given page. For example, in the given scenario 2, Jill wants to be notified

of a change if any words from the set of words in a page change or anychange type are

 54

flagged. Hence, the user should be allowed to specify more than one type of change on

a page at a finer granularity. WebVigiL detects such types of combination of change

and the change specification language (CSL) defines it as a composite change.

Composite change comprises of a combination of distinct primitive change(s) specified

on the same page, using one of the binary operators AND and OR. The semantics of

composite change formed by the use of an operator can be defined as follows (Note that

Λ , V, and ~ are Boolean AND, OR, and NOT operators, respectively):

OR: Disjunction, denoted by Ct
1 OR Ct

2, of two primitive changes Ct
1 and Ct

2

specified on version V2 with reference to version V1 of the same page, is detected if

either Ct
1

 is detected or Ct
2 is detected. Formally,

(Ct
1 OR Ct

2) (V1,V2) = Ct
1(V1,V2) V Ct

2(V1,V2)

where t1, t2 are the types of changes and t1<>t2

AND: Conjunction, denoted by Ct
1 AND Ct

2
 of two primitive changes Ct

1 and

Ct
2 specified on version V2 with reference to version V1 of the same page, is detected

when both Ct
1 and Ct

2
 are detected. Formally,

(Ct
1 AND Ct

2) (V1,V2) = Ct
1 (V1,V2) Λ Ct

1(V1,V2)

where t1, t2 are types of changes and t1 <>t2

The unary operator NOT can be used to specify a constituent primitive change

in a composite change. For example, for a page containing the list of fiction books, a

user can specify a change type as: All words AND NOT phrase {� Lord of the Rings�}.

A change will be flagged only if given two versions of a page, at least some words may

change such as insertion of a new book and author etc. but the phrase �Lord of the

Rings� must not have changed. Hence, the user is interested in monitoring the arrival of

new books or removal of old books, only as long as the book �Lord of the Rings� is

available.

 55

For detection of these changes as defined, the change detection module detects

the type of changes on a page as insertion of the changes in the new page or deletion of

object of interest from the old page. For XML type of documents, the changes are

detected based on the order of the user�s object of interest in the page. Hence, the

change detection definition is extended to include �move� of a user�s object of interest

also. By �move�, we detect the movement of change from position n in old page to

position m in new page where n ≠ m.

The change monitoring of all the created sentinels is done by the change

detection graph (CDG) as discussed in section 2.5, which uses the active capability. The

CDG fetches the pages of interest when a change needs to be detected and based upon

whether it is a primitive change or a composite change and the type of change, takes the

appropriate actions to detect the changes. As HTML is unstructured and XML is

structured, different methods of change computation are performed for both the kinds of

documents. The CDG, depending upon the type of document and change, calls the

appropriate mechanism for change detection.

5.4 Fetch

To detect changes on a given web page, a new version of the page has to be

fetched. Ideally, the new version should be fetched only when certain page properties

change. Page properties such as last modified date for static pages or checksum for

dynamic pages denoted as meta-data, define whether a page has been modified.

WebVigiL�s fetch module relies on a learning algorithm based on the meta-data

properties and history of changes to the page to determine an effective interval with

which a page should be fetched. In some cases, the user may be aware of the change

pattern of the page or may be interested in detecting changes only at a particular

 56

interval. For example, user Don knows that the project status page gets updated every

morning at 9 am and wants to monitor changes at that time. Hence, the user may be

interested in monitoring changes only with a fixed frequency.

The fetch attribute allows a user to specify how often a new page should be

fetched:

Fetch <time interval>| on change

On change: Indicates that the system is responsible for fetching the page as soon

as it is modified. The specification of the actual change frequency relieves the user of

knowing when the page changes and requests the system to do its best effort to fetch the

page on modification. The interval with which a page should be fetched, is determined

by a heuristics-based fetch algorithm called Best Effort Algorithm [9], a learning

algorithm dependent on change history and meta-data of the page.

<time interval> td : is a fixed user-defined fetch interval when a page is fetched

by the system . td can be in terms of minutes, hours, days or weeks and is a non-negative

integer.

In WebVigiL, we are able to support both �on change� and �interval� based

changes because we use periodic events [8]. To actually fetch the page, we associate a

fetch rule with this periodic event. Hence whenever a periodic event occurs, the rule

associated with it is triggered. The rule could either be an interval based rule (section

2.6) or a best effort rule (section 2.6). In interval based rule, the page is fetched at the

given user defined fetch frequency (i.e. time interval) which is associated with all pages

which has to be fetched at fixed frequency. For changes with a fetch frequency of �On

change�, the best effort rule is associated, which uses the Best Effort algorithm [9].

 57

5.5 Sentinel Duration

WebVigiL is not a continuous query processing system. It uses the duration of

the sentinel as the interval for monitoring. The duration defines the lifespan of a sentinel

and is the closed interval formed by the start time and end time of the sentinel, during

which the change is monitored. This is defined as:

From <timepoint>| <from event>

To <timepoint>|<to event>

Let time line be a equidistant discreet time domain having �0� as the origin and

each time point as a positive integer as defined in [5]. Defining it in terms of the

timeline, occurrences of the created Sentinel S are specific points on the time line and

the duration (lifespan) defines the closed interval within which S occurs. The From

modifier denotes the start of a sentinel S and the To modifier denotes the end of S. The

start and end times of a sentinel can be a specific time or can depend upon the attributes

of other correlated sentinels. Users can specify the duration as one of the following: (a)

Now (b) Absolute time (c) Relative time (d) Event-based time

Now: A system-defined variable that keeps track of the current time.

Absolute time: Denoted as time point T, it can be specified as a definite point on

the time line. The format for specifying the time point is MM/DD/YYYY.

Relative time: It is defined as an offset from a time point (either absolute or

event-based). The offset can be specified by the time interval td defined in

section 5.4.

Event-based time: Events, such as the start and end of a sentinel can be mapped

to specific time points and can be used to trigger the start or end of a new sentinel. Start

of a sentinel can also be dependent on the active state of another sentinel and is

specified by the event �during�. During si defines that a sentinel should be started in the

 58

closed interval of si and the start should be mapped to Now. Start si defines that the

sentinel should be started/ended as soon as si starts. End si defines that the sentinel

should be started/ended as soon as si ends.

The sentinel is activated at the start time and is deactivated at the end time by

the events and rules defined by the ECA Rule Generator module, using the rules defined

in [5, 6]. This is explained in detail in section 2.3. If the duration is not specified

correctly, the sentinel will never start or continue forever without ending which

WebVigiL currently does not support. For example, in scenario 2, if sentinel s2 is

dependent on sentinel s1 to start it�s monitoring. But if s1 has already started before the

creation of s2, then s2 will never start. Hence, the semantic check should capture such

errors and notify the user. When a sentinel is inherited (as in scenario 3), the properties

of that sentinel are inherited. If a sentinel inherits from another sentinel having a start

time of Now, as the properties are inherited, the time of the current sentinel will be

mapped to the current time. Similarly, if the sentinel duration is defined as a relative

time on an event and if the event has already occurred, the validation module is required

to map it into the appropriate absolute valid time.

5.6 Notification

Users need to be notified of detected changes. How, When and Where to notify

is an important criterion for notification and should be resolved by the change

specification semantics. The mechanism selected for notification is important especially

when multiple types of devices with varying capabilities are involved. The semantics

for specifying the notification mechanism is given by:

 Notify By <contact options>

 59

 The <contact options> allows the users to select the appropriate mechanism for

notification from a set of options O = {email, fax, PDA}. The default mechanism is

email. The user will also provide the appropriate contact address e.g. email id etc in the

contact options. This contact id will also be the userId of the user and all the sentinels of

the particular user will be tracked based on the contact address. The notification module

has to ensure that the detected changes are presented to the user at the user specified

frequency. The system should incorporate the flexibility to allow users to specify the

desired frequency of notification. For example, in sentinel s2, Jill wants to be notified

once per days, irrespective of when the changes are detected. The semantics of

notification frequency has been defined as:

Every best effort | immediate | interactive| <time interval> where

<time interval> is as defined in section 5.4.

immediate means to be notified immediately on change detection.

best effort is defined as notify ASAP (as soon as possible) after change

detection. Hence, best effort is equivalent to immediate but will have lesser priority than

immediate for notification.

Interactive is a navigational style notification approach where the user visits the

WebVigiL dashboard to retrieve the detected changes at his/her convenience. A

WebVigiL dashboard will be provided to the user to view and query the changes

generated by his sentinels.

In the given scenario, for sentinel s2, the user wants to be notified when the

change is detected but can tolerate some delay and hence has specified a notification

frequency of best effort. Depending upon the changes detected and the mechanism to

transmit the changes, the presentation module (section 2.8) will select the appropriate

presentation method and notify the user.

 60

5.7 Compare Options

Changes are detected between two versions of the same page. Each fetch of the

same page is given a version number. The first version of the page will be the first page

fetched after a sentinel starts. Given a sequence of versions V1, V2 ��Vn, of the same

page, the user may be interested in knowing changes with respect to different

references. By default, the page previous (based on user-defined fetch interval where

appropriate) to the current page is used for change detection. For example, a user may

want to monitor changes between every n versions of the page. In order to facilitate this,

the compare option can be selected from a set P = {pairwise, moving n, every n} and is

specified by: Compare <compare options>

Figure 5. 2 Compare Methods

Pairwise: The default is pairwise, which will allow change comparison between

two chronologically adjacent versions (Figure 5. 2).

Every n: This compare option allows a user to detect changes between versions

Vi and Vi+n. For the next comparison, the nth page becomes the reference page. For

example if a user wants to detect changes between every 4 versions of the page, the

versions for comparing will be selected as shown in Figure 5. 2. This option is useful if

the user is aware of the changes occurring on a page such as a web developer or

 61

administrator and can assume that the cumulative changes between only n versions are

important.

Moving n: This is a moving window concept for tracking changes. For moving

n, the first reference page is compared with the nth page. For the next comparison, the

subsequent version is taken as the reference page and is compared with its nth page,

starting from the reference page. In the given scenario, for sentinel s3, Jill specifies the

compare option of moving n where n=4. As shown in Figure 5. 2, V1 will be the

reference page for V4. The next comparison will be between V2 and V5. The moving

window concept is useful for tracking changes to stock pages or other pages where

meaningful change detection is only possible between particular set of pages occurring

in a moving window.

The user-given compare type is used by the change detection graph (section 2.5)

to select the appropriate versions of the page for change detection. Most of the tools

developed for change detection (chapter 3) only give the user the option for pairwise

change detection. WebVigiL emphasizes on giving the users more flexibility and

options for change detection and hence have incorporated several compare options for

efficient change detection.

5.8 Summary

The change specification language gives the flexibility to the user to specify

his/her intent WebVigiL is one of the few change monitoring system, which allows

specification and detection of more than one type of change (composite) on the web

page. In addition, choice of selection of reference page, inheritance and event-based

duration is novel to WebVigiL system.

62

CHAPTER 6

DESIGN ISSUES FOR KNOWLEDGEBASE

The sentinel defined by a user is a monitoring request, which contains the

policies provided by the user for monitoring and notification of selective changes on a

page. Many modules use the sentinel details at runtime. For example, the change

detection module detects changes based on sentinel information such as the URL to be

monitored, the change and compare specifications, and the start and end of a sentinel.

The fetch module fetches the pages based on the user specified fetch policy. The

notification module requires appropriate contact information and notification

mechanism to notify the changes. User information, such as the sentinel creation date,

and the page versions for change detection and storage path of detected changes also

need to be stored to allow a user to keep track of his/her sentinels. Hence, there is a

need to extract the sentinel information known as meta-data and store it in a persistent

and recoverable manner. WebVigiL stores the sentinel information in a persistent

repository called the Knowledgebase (KB).

A central repository containing meta-data that is accessible to the different

modules of the system should contain the following properties:

• The relevant information should be collected and stored in a manner, which

can be easily accessed by all the modules of WebVigiL.

• The information should be persistent and recoverable.

• The repository should be robust and scalable to store large amount of data.

 63

• Efficient data retrieval mechanism is very important when large amount of

data is stored and many modules need to retrieve this information.

• There should be a mechanism to store historical information. This separates

the historical information from the main data and yet provides a way to

retrieve it when needed.

Relational database have in-built robust features for persistence and recovery.

They can store large amounts of data as well. In addition, relational databases provide

mechanisms to extract the required information in a convenient manner in form of

queries or through the JDBC Bridge. Hence, WebVigiL system uses a relational

database (Oracle 9i on a Linux platform) for KB.

6.1 Meta-data

The monitoring request is parsed and sentinel properties are extracted, validated

and stored in the KB. These sentinel properties; useful to different modules at run-time

is referred to as meta-data. In addition, certain run-time meta-data of different modules

is also stored in KB. As shown in Figure 6. 1, the various modules access the KB to

extract the required information and also to store data, which will be required by

different modules or by itself for later use.

User Interface: A sentinel submitted by a user contains user policies. These

policies such as the web page to monitor, the change detection interval and version of

pages, notification options etc are disseminated from the sentinel information, validated

and stored in the KB. User properties such as the userId of the user, user�s contact

address and login access information are stored in the KB. In addition, the sentinel

creation time is also persisted.

 64

The user can specify a sentinel based on his/her previously created sentinels. In

that case, all properties of the previous sentinel are inherited unless overwritten by the

user in the current sentinel. On request from the user interface, these properties are

retrieved from the KB and sent to the user interface.

Figure 6. 1 Modules accessing Knowledgebase

ECA Rule Generator: When a sentinel is created, the ECA Rule Generator

(ECARG) is notified. The ECARG retrieves the start and end time of a sentinel from the

KB. Based on this information, a periodic event [8] for activation and deactivation of

the sentinel is created. Additional information such as the target webpage, the fetch

details etc. are also extracted by the ECARG. The fetch details indicate whether the user

wants to fetch the page at a particular frequency irrespective of the time of change or

wants to fetch the pages, upon a change. Based on these details, the interval based rule

or the best effort rule (section 2.6) is associated with the periodic event to fetch the

pages and detect changes.

 65

Once the sentinel is activated/deactivated, the status of the sentinel is updated in

the KB by the ECARG. The validation module retrieves this information for validation

for other dependent sentinels.

 Change Detection Module: The Change Detection modules extract information

such as the web page to monitor, the type of change (i.e. primitive or composite)

(section 5.3) and the compare options for change comparison.

Once the change is detected, change details such as the time of change detection

and the location, where the changes are stored are updated in the KB. This information

will be utilized by the user dashboard to display the sentinel history and also by the

presentation module to notify the user.

Presentation Module: The presentation module extracts the change details such

as type of changes and the location where the changes are stored, from the KB. Based

on this information, the presentation module selects the type of presentation from

alternative presentation choices.

The notification details such as user�s notification frequency selected from the

set {time interval, interactive, best effort, immediate} and the contact information of the

user to propagate the changes are extracted from the KB by the notification module

(part of the presentation module) to notify the user of the detected changes.

User Dashboard: Information such as the status (i.e., enabled, disabled etc) of

the user�s sentinels, the sentinel creation details and the change details are retrieved

from the KB and displayed to the user.

During the lifespan of the sentinel, the user is allowed to enable or disable, the

user�s sentinel. This status change of the sentinel is updated in the KB. Based on this

information, the ECA Rule Generator enable/disables the rules (section 2.3) associated

 66

with the sentinels. The user is also allowed to delete the sentinel during its lifespan. In

such cases, all information pertaining to that sentinel is removed from the KB.

6.2 Knowledgebase Schema

The Knowledgebase (KB) is implemented in a relational database and the meta-

data is stored in different relational tables. As shown in Figure 6. 1, different modules

access the KB to extract and store the required information, which are useful to other

modules. The schema is designed in such a way that all the modules can access and

retrieve their required information with ease. Similarly, the information is stored also in

an efficient way. Updates to certain meta-data information that affect other meta-data

information are captured using referential integrity. For example, the lifespan of a

sentinel can be defined on another previously defined sentinel. The referential integrity

ensures the validity of the previously defined sentinel. Similarly as WebVigiL supports

only interval-based sentinels and not continuous queries, each sentinel should have a

valid start and end time. Such referential details are incorporated in the KB schema. If

these validations are not satisfied, a database error is declared.

Figure 6.2 shows the UML conceptual schema for the KB. As shown in the

figure, the main sentinel details and user related details are obtained from the

wv_sentinel table. The user interface allows only authenticated users to create sentinels.

For this the user has to provide a correct username (email id) and password. The user

authentication information is stored in the wv_userauthentication table. The lifespan

details of a sentinel are stored in the wv_sentinelstart and wv_sentinelend tables. The

notification details are stored in the wv_notify table and the fetch details in the

wv_fetch table. The composite and primitive types of change details are specified in the

 67

wv_composite and wv_primtive tables respectively. The status of the sentinel (start,

enable, disable, end) is stored in the wv_sentinelstatus table.

wv_Sentinel
sent inel_name
url
target
compare_method
change_type
userid
sid

Insert()
Update()
Delete ()

wv_fetch
sid
f_freq
f_interval

Insert()
Update()
Delete()

wv_SentinelStart
sid
>=t ype
s_tmept
s_interval
>=event
s_eventst atus

Insert ()
Update ()
Dele te()

wv_SentinelEnd
sid
e_type
e_tmept
e_event
e_eventst
e_interval

Insert ()
Update()
Delete()

wv_notify
sid
n_mech
contact_info
n_freq
n_interval

Insert()
Update()
Delete()

wv_primitive
sid
change_details
unary_op

Insert ()
Update()
Delete()

wv_composite
sid
change1
change1_details
change2
change2_details
binary_op

Insert ()
Update ()
Dele te()

 Figure 6. 2 Schema diagram for Knowledgebase

6.3 Validation Module

WebVigiL allows selective monitoring of web pages and notification based on

user-defined policies. The system manages and propagates the changes using the active

paradigm depending upon the user policies extracted from the sentinel. Hence, it is very

 68

important that the information extracted from the sentinel is correct syntactically and

semantically. Each monitoring request is checked for correctness before being persisted

in the KB.

The validation module does three types of validation: syntax, semantics and

database. Syntax validation checks the correctness of sentinel in terms of the defined

grammar of the change specification language (CSL). The syntax and semantics of CSL

is described in chapter 5. The user specification is parsed and checked for correctness in

terms of the defined grammar and the data types of the value. For example, the value of

time interval has to be specified in either minutes, hours, days or weeks. Time interval

specified in any other type will not be accepted. As described in (section 5.5), the start

and end time can be specified as an event in terms of previous defined sentinel status.

The event status �during� cannot be specified for the end time of a sentinel in the CSL

and a syntax error will be thrown if specified. Similarly, the format for specifying the

time point is mm/dd/yyyy i.e. month/ day/ year in four digits. Time point specified in

any other format will not be accepted.

6.4 Semantic Validation

The accepted sentinel should be semantically correct for the policies to be

meaningful and used by different modules of WebVigiL. Semantic validation is done on

the content of the monitoring request.

Start/ End time: WebVigiL supports interval-based monitoring request. The

activation and deactivation of a sentinel depends upon the start and end time defined for

the sentinel. The ECA rules for fetching the pages and detecting changes will also be

enabled depending on the start and end time. Hence, the semantic correctness of the

specified start and end time of a sentinel has a bearing on the correct output of the

 69

different modules. If the duration is not specified correctly, the sentinel will never start

or will continue forever without ending. This is unacceptable, as WebVigiL does not

support continuous queries.

As explained in section 5.5, the start and end time can be defined as either Now

(i.e. current time), absolute time, relative time point or as an event. If the start is defined

as time point or event-based and if the specified time has already lapsed before sentinel

creation, the semantic check will throw an error. In case of relative time, during

sentinel creation, the absolute time/event may have lapsed but not the interval/offset. In

such cases, the appropriate total absolute time (absolute time + interval) needs to be

computed by the validation module. Conversion to absolute time is a requirement for

the ECA generator also. An event, which is in future, can be scheduled to be fired but

not an event, which has already, lapsed. This problem, defined as the time lapse

problem, would result in malfunctioning of the system as certain events will never be

fired and hence the associated sentinels will never be active. Hence, these values should

be converted in to the appropriate absolute time before the ECA agent retrieves the

information.

If end time is specified as Now, it is syntactically valid but semantically invalid,

as the sentinel will end as soon as it starts. However Now + time interval can be

allowed.

For event-based time specification, semantic validation is very critical. The

event status specified should be satisfied for acceptance. As defined in section 5.5, the

following cases are allowed for a sentinel s1 whose start or end are event-based and

specified on event s:

• If the given status is �start� of another sentinel s, then s should not have

started.

 70

• If the status is �end� of s, then s can be active but should not have ended.

• If the status is �during� of s1, then the lifespan of s starts during the

lifespan of s1. s1 should have already started but should not have ended.

The end time of a sentinel cannot be specified as �during� of a

previously defined sentinel.

For event-based events, the defined events� start/end time can also be an event,

creating many dependencies and making validation more complex. For example start of

sentinel s2 may be defined on end of sentinel s1 and the end of s1 can be start of s plus

some time interval. The time lapse problem explained above can also affect these cases.

For example, when s1 was defined, s may not have started but when s2 was created, s

had already started. But s1 will not end, as the time interval has not lapsed. To validate

such cases, the validation modules have to convert the events into absolute time based

on either their activation time or the specified time for activation and validate

according.

Sentinel name: Each Sentinel has to be identified by a unique name. The user

can denote a name for his created sentinels but the validation module should ensure that

the sentinel name is unique.

Change Type: The specified change type should be semantically meaningful.

For example change type: �all links and not any change� is not valid as link change

would trigger the change type �any change�.

Inheritance: WebVigiL allows the user to inherit properties from previously

defined sentinels. The properties are the specifications provided by the user in the

sentinel and not the current status of the sentinel. In case of inheritance, all the

properties are inherited unless overwritten by the user. If the properties are overwritten,

then the validation module has to ensure that correctness of the inherited properties as

 71

well as the overwritten properties are maintained. If the start and end time of the

previous sentinel is inherited, the semantic validation module has to ensure that the time

has not lapsed. If the start time is Now, the current time is taken instead of the start time

of the previous sentinel as the specification are inherited and not the status. Because of

inheritance, there is number of dependency issues to be considered for the validity of

the sentinel duration as explained above.

Table 6. 1 Combination of Compare, Notification and Fetch options

Compare Options

Notification options

Pairwise Everyn Movingn

Best Effort OC T OC OC T

Immediate OC T OC OC T

Time interval OC T OC OC T

Interactive OC T OC OC T

Fetch frequency: On change - OC, Time interval: - T

Other Semantic Validations: Taking the notification, fetch and compare options

definition into consideration, it was verified that all combination of these three options

are valid as shown in Table 6.1. But for a specification of everyn compare method with

<time interval> fetch frequency is equivalent to a specification containing pairwise

compare method with <time interval> fetch frequency. For example, every3 with 10

minutes fetch frequency is equivalent to pairwise comparison with 30 minutes fetch

frequency. The fetch module should take into consideration such equivalent conditions

to avoid redundant fetching. Specifying a time interval for everyn is redundant. Hence,

only �on change� option is considered in the given table.

 72

6.5 Design and Flow Diagram of the Validation Module

The flowchart diagram for validation and insertion into Knowledgebase is given

in Figure 6. 3. As shown in the figure, once the user is authenticated, if the user

specifies the sentinel target to be a previous sentinel, all properties of that sentinel are

inherited. The user can overwrite the properties, as required. Once the user submits the

request, the validation process starts. First, the system ensures that the created sentinel

name is unique. The main emphasis is on duration especially if the duration is specified

as event-based. This is because, if the specified properties were correct, the ECA Rule

Generator would not be able to activate and deactivate the sentinel. Once the validation

process is complete, the sentinel properties are inserted into the Knowledgebase.

6.6 Summary

 The Knowledgebase is the repository from which all the WebVigiL modules

retrieve the required information for efficient monitoring and notification. Hence,

proper validation, storage and retrieval of the data stored in Knowledgebase are

important.

 73

Figure 6. 3 Flow chart for validation and insertion of sentinel in KB

74

CHAPTER 7

IMPLEMENTATION

This chapter discusses issues that need to be considered for the implementation

of the change specification language, the change detection tool for XML and the

Knowledgebase. Section 7.1 deals with the implementation of the parser, needed for

parsing the change specification language. Section 7.2 explains the semantic validation

of the user specification and the flow from the user interface to Knowledgebase to

various modules of WebVigiL. Section 7.3 discusses the implementation details for the

various steps of XML change detection tool.

7.1 User Interface and Knowledgebase

Once the user provides his/her sentinel specification using the user interface, the

flow of control for accepting the sentinel is shown in Figure 7. 1. On user login, the user

is authenticated by the system. Once authenticated, sentinels created by that user are

extracted and displayed. The user can define a new sentinel either by providing a target

as a URL or use a previously defined sentinel. If the sentinel target is a previously

defined sentinel, then all the properties of the target sentinel are extracted and displayed

to the user. The user has the option to overwrite the inherited properties. Once the user

submits a completed sentinel, its properties are extracted and validated semantically,

and if correct, stored in the Knowledgebase. The ECA Rule Generator is notified. The

ECA Rule Generator extracts the required properties from the Knowledgebase and

 75

appropriate events that would start the sentinel. The ECA Rule Generator updates the

status of the sentinel such as start and end in the Knowledgebase.

Figure 7. 1 Input Flow

7.1.1 Parser for the Change Specification Language

The change specification language described in chapter 4 needs to be parsed to

check for correctness and extract the required information. This parser should be

capable of understanding the syntax of the developed language. A parser has been

implemented using JavaCC [32]. The language syntax such as �Create�, �Using� etc., are

considered as tokens and based on the token definition the input is parsed. In the

sentinel syntax, only the sentinel name and target are �not null� fields.

 76

7.1.2 Semantic Validation

The required semantic validation has been discussed in section 6.4. Syntactically

correct specification details are extracted from the sentinel and validated for semantic

correctness as well. As the validity of duration is critical, we will discuss the

implementation of the validation module for duration.

Figure 7. 2 Pseudo-code for validity of duration

For duration, the defined start and end time should be valid and furthermore the

end time should be less than start time. In addition, for relative time specifications, if

the reference time has lapsed but the offset is remaining, then the specified time need to

 77

be transformed into an absolute time for the ECA agent. The pseudo-code for duration

validation is shown in Figure 7. 2. For event-based specification, a part of the code for

calculating the event time is given in Appendix C.

7.1.3 Knowledgebase

The Knowledgebase is stored in Oracle database (Oracle 9i on Linux). The

schema for the database is already given in section 6.2. A JDBC connection object is

created for the application to access the relational database. The JDBC connect string is

given as:

ConnectString=openConnection("oracle.jdbc.driver.OracleDriver",

 "jdbc:oracle:thin:username/password@berlin.uta.edu:1521:MAVHOME")

Various APIs have been implemented for efficient retrieval and insertion of

values in the relational schemas by different modules. The properties of a specified

sentinel, which are extracted are member variables of the KnowledgeBase class. Once a

sentinel is submitted by the user, the API public void generateSid() generates a unique

id for each sentinel. The API�s associated with insertion are: insertMain() : wv_sentinel

table (contains the main properties of the sentinel) , insertSentinelStart():

wv_sentinelstart table(start time of sentinel), insertSentinelEnd(): wv_sentinelend

table(end time of sentinel), insertNotify() : wv_notify table (notification details) ,

insertFetch(): wv_fetch table (fetch details) , insertPrimitiveChange(): wv_primtive

table (primitive changes) and insertCompositeChange(): wv_composite table

(composite changes).

For inheritance, the appropriate sentinel specification has to be extracted from

the Knowledgebase. The API�s associated with inheritance are:

 78

1. public Vector inheritAll(int refSentinel) : Given the sentinel id, it

extracts all the properties of the sentinel and returns a Vector containing

the properties.

2. public void inheritSentinelDuration(int refSentinel) : Given the sentinel

id, extracts the duration properties i.e. start and end time of a sentinel.

3. public void inheritSentinelPropertiesminusDuration(int refSentinel) :

Given the sentinel id, extracts all the properties of the sentinel except the

duration.

7.2 Implementation of Change Detection algorithm

The change detection of XML documents consists of three steps:

1. Object Extraction and Signature Computation

2. Filtering the unique inserts/deletes

3. Finding the common order subsequence

The main class for XML change detection is XMLChangeDetector. The function

for anychange is: detectAnyChange(oldFilename, newFilename). It takes two XML

files and detects �anychange�. The function for detecting changes to keywords is:

detectKeywordChange(oldFilename, newFilename,keywords). It takes two XML files

and a vector containing keywords. For detecting changes to phrases, the function is:

detectPhraseChange(oldFilename, newFilename,phrases). It takes two XML files and a

vector containing phrases to be detected. The main method in XMLChangeDetector

class is detectChange which calls the appropriate method for change detection The

input parameters for the method detectChange is given as shown in Figure 7. 3.

 79

private static void usage() {

System.err.println("Usage: XMLChangeDetector (oldFilename, newFilename, Vector

[<keyword>/<phrase>], Vector exceptWords, TypeOfChange, Boolean Optimize");

System.err.println(" Type of change are: ");

System.err.println(" P = phrase change");

System.err.println(" K = keyword change");

System.err.println(" A = any change ");

System.err.println(" optimize = true will detect changes with optimization. Default is true�) ; }

Figure 7. 3 Input parameters for the method detectChange

7.2.1 Object Extraction and Signature Computation

To access the content and extract the structure of the XML document, it is first

transformed into a Document Object Model (DOM) [4]. The Xerces-J 1.4.4 java parser

[33] for XML is used for this purpose. The tree is traversed and the leaf node consisting

of text and attribute nodes are extracted. The signature of each node is also computed

from the extracted element information. The associated API for extraction is defined in

the class: XMLObjectExtractor. Two vectors containing old nodes and new nodes are

returned containing the leaf nodes and signature in both the trees. For phrase and

keyword, additional vectors containing extracted phrases and keywords are returned.

For phrase extraction, value of all the leaf nodes are divided into words and

extracted in the order of occurrence. The Knuth-Morris-Pratt (KMP) string-matching

algorithm is applied against the sequence of words and the start and end index of all

exact matches to the given phrase are extracted. A range is set for the indexes, which

defines a phrase, and using the range, the sub-tree containing the phrase along with the

 80

parent elements is extracted. A separate tree with �wv_phrase_03� (unique signature) as

the root node is created for the extracted sub-tree. The old tree is realigned and the

newly created tree is inserted in its correct order of occurrence into the old tree and the

tree is realigned. The tree is then traversed to extract the nodes to compute the

signature. When the �wv_phrase_03� node is encountered, all its child elements

constitute the signature while the leaf nodes contain the value of the phrase. The

pseudo-code for phrase extraction is shown in Figure 7. 4.

Phrase Extraction (Tree T1, Tree T2)

1. Parse T1
2. Parse T2
3. Extract all the words ∈ leaf nodes in T1
4. Extract all the words ∈ leaf nodes in T2
5. Run the Knuth-Morris-Pratt string-matching algorithm to extract the phrase in T1 and T2
6. Find all the start index and end index of all the phrases in T1 and T2
7. Extract all the leaf nodes in T1 and T2 in the document order.
8. ∀ phrase detected in T1
9. Based on the start and end index of the phrase, set the range for the phrase in T1
11. Extract the range from T1
12. Realign the rest of the nodes in T1.
13. Insert a new node � wv_phrase_03� as root node for the extracted tree
14. Insert the new sub-tree in T1
15. ∀ phrase detected in T2
 repeat steps 9 �14
16. Parse modified tree T1
17. Parse modified tree T2
18.Extract the value of leaf nodes and compute signature for every leaf node in T1 and T2
19. If element node is �wv_phrase_03�, the signature will consist of all its child elements and
path to the root. The value of the leaf node will be the phrase.

Figure 7. 4 Pseudo-code for phrase extraction

For keyword extraction, if v(x) is the value(content) of leaf node x, the value is

divided into its respective words w1 to wn where n is the number of words in v. A string

compare is carried for each word w and the given keyword k. If a word wi equal to the

 81

keyword k is found, the order of occurrence of the keyword in the node, value of the

leaf node v(x) and its signature is extracted.

7.2.2 Filtering Unique Inserts/Deletes

totalMatch: The function is defined in the XMLChangeDetector class .The value

v of the node along with the signature is mapped to the java-generated hash code[34].

The value and signature are matched and matching nodes are extracted. The nodes with

the associated signature are sorted on the hash code. For phrase change and any change,

every element in the new tree set with a hash code greater than the upper bound or

lower than the lowerbound of the old tree set is flagged as an �insert�. Elements that

have their hash code within [lowerbound, upperbound] are searched for occurrence of

similar elements in the old tree set. If not found, these elements are flagged as �insert�.

Similarly, the nodes with their associated signatures not matched in old tree set are

flagged as �delete�. For phrase change, the associated phrase for each node is also

marked as �insert/delete�. For keyword change, the matched nodes are extracted but

keywords are inserted into �insert�/�delete� vector only after applying the

signatureMatch algorithm and if no match is found as discussed in section 4.6.2.

signatureMatch: The function is defined in XMLChangeDetector class .The

matching is done in the same way as totalMatch algorithm but here only the signature is

matched. This is to detect instances of keyword where the leaf node value may have

changed but the structure has not. In addition, the common structural information

between the two trees can be taken advantage of.

The inserts are stored in the insert vector and deletes in the delete vector. The

matching nodes are stored in matchedOldNodes and matchedNewNodes vector and

given as input to compute the common order subsequence. The matched nodes are

 82

sorted according to the position of occurrence in the tree by the function public

String[][] sortByPosition(String array[][]), which takes an unsorted array and returns

a sorted array by position of occurrence. For keywords, the node value, signature and all

instances of keyword in the node are sent for detecting the common order subsequence

(COS). For matching nodes extracted after applying signatureMatch, the signature and

instances of keyword are sent for detecting the COS. In case of keyword and phrases, if

all keywords and phrases result in unique insert/delete, then the algorithm stops here.

7.2.3 Finding the Common Order Subsequence

LCS given in [17] is used for detecting the common order subsequence. The

function public void LCS(String[][] oldTree, String[][] newTree) takes two arrays

containing the matched nodes of old tree and new tree and compute the LCS. The

fuction:

public void printNonSeq(char[][] table, String[][] oldTree,String[][] newTree, int

oldTreePos,int newTreePos) takes the output of the LCS and detects the leaf nodes,

keywords and phrases which are not part of the common subsequence between given

two trees. The inserts/deletes for keyword change and phrase change are stored in the

insert and delete vectors.

For any change, the non-matching nodes are stored in a vector and given as

input to the function: public void detectMoves(String[][] oldMoveNodes, String[][]

newMoveNodes) for detecting moves. In this fuction, the value of the non-matching

nodes is converted into unique values using hashcode, then sorted and compared to

detect common values but at different position. These nodes are termed as �moved�.

 83

7.2.4 Optimization

The optimization methods are implemented in the Optimization class. For

optimization, once the nodes are extracted, signature is computed and inserted into

vectors, the vectors are given as input to the function: public void matchSubtree(Vector

oldTree, Vector newTree). The hash value of each sub-tree is computed by adding the

hash value of each node and its signature in the sub-tree. The Java hashCode[34]

function is used for this purpose. The function: public Vector

computeSubtreeHash(String[][] Tree) computes the hash value of each sub-tree. The

generated hash values of the sub-trees are given to the function: public void

match(int[][] oldTree, int[][] newTree, Vector oldT, Vector newT) which checks for

matching sub-trees. If the hash values of two sub-trees are matched, then the function:

public boolean exactCompare(Vector oldT, Vector newT, int subtreeO, int subtreeN)

checks the correctness of the match by comparing each node and its signature of the

matching sub-trees in the order of position of occurrence. If two sub-trees are matching,

the function: public Vector extractSubtree(Vector tree, int subtree) extracts the

matching sub-trees from the old and the new tree. After the removal of the matching

sub-trees, the nodes of non-matching old and new tree are given as input to the second

(filtering unique inserts/deletes) and third (finding longest common subsequence) phase.

7.3 Summary

The above implementation has been tested vigorously with various test cases for

performance and scalability. To the best of our knowledge, WebVigiL is the only

system, which supports customized change detection to XML documents. Hence, we

couldn�t compare the results of our algorithm with any other system. But there is a

definite performance improvement as compared to the primary algorithm by using the

 84

optimization techniques. For phrase, currently we detect inserts/deletes and

implementation of phrase updates is underway.

85

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

The semantics of the specification language has been defined and validated. A

parser has been developed for the change specification language. For the WebVigiL

system, the inheritance module, the ECA Rule Generator to activate and deactivate the

sentinels, the change detection tools for XML and HTML and the fetch mechanism has

been designed and implemented. The design of the change detection graph is currently

underway. We are currently in the process of integration of the entire module for a

complete running system.

8.1.1 Knowledgebase and Validation Module

The relational schema for storing the extracted sentinel information in the

Knowledgebase has been designed and the various tables have been created. Additional

tables for storing user information, status of the sentinels and detected changes have

also been created. APIs for the insertion of extracted sentinel properties and for the

retrieval of these properties as described in the chapter 7 has been implemented. In

additions, APIs for extracting required information for inheritance have also been

implemented.

 86

The validation module has also been designed and implemented. The parser

does syntax validation. APIs for the semantic validation and the various functions that

validate a specification as described in chapter 7 have been implemented.

8.1.2 Change Detection for XML documents

The change detection of keywords, phrases and any change for semi-structured

documents such as the XML has been designed and implemented. To the best of our

knowledge, this is the first algorithm, which detects customized changes to XML

documents. For phrase and keywords, insertion and deletion has been implemented. The

algorithm for detecting update to a phrase has been designed and is being implemented.

The implemented algorithm has been tested for various XML documents. We have also

tested the proposed optimization method for different characteristics of a tree (such as

size, height and number of sub-trees in a tree). From the results obtained, it can be

concluded that the optimization improves the performance of the primary algorithm

while maintaining the correctness of the changes detected. Though this algorithm has

been tested for XML documents, the same approach is also applicable to other similar

semi-structured documents, as the proposed method is a generalized approach.

8.1.2.1 Performance

A series of performance tests have been carried out to observe the effect of

optimization on the performance of the primary change detection algorithm. The change

detection algorithm detects changes between two ordered labeled XML trees. Hence,

the effect of the optimization and performance of the algorithm had to be tested for

different tree characteristics. The performance tests were carried out for the following

tree characteristics a) Deep trees to understand the effect on increase of height of a tree.

 87

In this case, the path taken from root to leaf node is increased. Hence, the number of

element nodes increase considerably. b) Bushy trees to understand the effect of increase

of the leaf nodes and the number of sub-trees.

An XML page generator was implemented for synthetic test data generation.

The parameters given as input to the generator are the depth of the tree, the number of

sub-trees and leaf nodes, the size of the leaf nodes and the number of common second

level sub-trees between the two XML ordered trees. Based on these parameters, the

generator randomly creates tags and value for the nodes to generate two XML

documents according to the specification. Analysis of the actual XML web pages found

from the existing XML repositories on the Internet such as the ACM Sigmod XML

repository, indicated that the depth (height) of the tree was usually around 5 to 7 nodes

(number of nodes from root to leaf node) deep. The number of second level sub-trees

was usually in the range of 5 to 20 and the number of leaf nodes observed was in the

range of 300-500 leaf nodes. Taking this observation into consideration, the test cases

were designed.

Each test case was run 4 times using both �with optimization� and �without

optimization� options. The average of the 4 runs was taken as the final result. As the

cost for parsing the old tree was high in the first run and then consistent later, the cost

for second run for parsing the old tree was taken in the total time for change detection.

Below, we discuss the performance results for various tree characteristics:

a. Wide trees: Wide trees means tree having more number of leaf nodes and

more second level sub-trees. The dataset characteristics of the tree consisted of 1) leaf

nodes: 100-400 2) Sub-trees: 10-40 3) Common second level sub-trees: n-3 where n is

the number of sub-trees 4) depth: 4. The observed performance is shown in Table 8. 1.

As observed from the results, the optimization improves performance by reducing the

 88

total time taken for change detection for trees having more number of leaf nodes and

more number of common second level sub-trees.

Table 8. 1 Effect of increase in sub-trees of tree on optimization

 No of second level sub-trees

 10 20 25 30 40

Without Optimization (change detection

time in ms)

307 655 926 1185 2055

With Optimization (change detection time

in ms)

256 632 886 1139 1655

Leaf nodes: 101-401 Sub-trees: 10-40 nodes in Sub-tree: 10 common second level

sub-trees: n-3 where n is the number of sub-trees.

b. Deep trees: To observe the effect of optimization on the increase in height

of the tree, a tree containing a small number of leaf nodes was selected. The dataset

characteristics consisted of 1) leaf node: 20 2) Sub-trees: 5 each having size of 4 leaf

nodes 3) Common second level sub-trees: 2 (hence 8 nodes were common) and 4) depth

was varied from 5 � 30. The observed performance is shown in Table 8. 2.

As can be inferred from the results, the performance improvement due to

optimization is not significant for deep trees having small number of leaf nodes. It is

observed that the cost after optimization increases in some cases as the number of

matching leaf nodes in the common second level sub-trees is small due to the small size

of the sub-tree. The increase in cost is due to additional cost is incurred for checking the

common second level sub-trees, negating the small improvement due to the removal of

common second level sub-trees. As the height of the tree increases, the parsing cost

 89

increases. Hence, the optimization is not effective for deep trees having small number

of leaf nodes. But it has been observed that for deep trees containing large number of

leaf nodes, the optimization improves the performance. Hence, we can conclude that the

optimization works effectively for trees having large number of leaf nodes and more

second level sub-trees.

Table 8. 2 Effect of increase in depth of tree on optimization

 Depth (height �1) of a tree

 5 10 20 30

Without Optimization (change detection

time in ms)

87 88 115 160

With Optimization (change detection time

in ms)

91 84 114 166

Leaf nodes: 21 Sub-trees: 5 nodes in Sub-tree: 4 common second level sub-trees:

2

The optimization is based on the fact that as the number of common second

level sub-tree nodes are removed; the amount of time taken for computing the longest

common subsequence (LCS) is reduced, decreasing the overall cost of change detection.

To test this hypothesis, trees were generated with the following characteristics a) leaf

nodes: 300 b) second level sub-trees: 30 c) depth: 5 d) common second level sub-trees:

range 1- 27 and e) Change operations: were increased in consistent manner as the

number of common sub-trees decreased. These data characteristics were selected based

on the characteristics of the actual XML web pages observed on the Internet (e.g. ACM

Sigmod XML repository). As the performance observed was for the same tree, the

 90

parsing cost was not considered. The observed performance on optimization with

increase in matching second level sub-trees on the same tree is shown in graph given in

Figure 8. 1. From the graph, it can be clearly observed that there is a considerable

improvement in performance with increase in matching second level sub-trees.

Figure 8. 1 Effect of increase of matching sub-trees on optimization

In addition to optimization, in the primary algorithm contains a phase for

pruning unique inserts and deletes. This phase is intended to reduce the amount of time

taken for change detection by pruning the nodes resulting in unique inserts/deletes and

hence decreasing the number of nodes for LCS. The performance test was carried out

for two XML trees with the following characteristics a) leaf nodes: 300 b) second level

sub-trees: 30 c) depth: 5 d) common second level sub-trees: range 1- 27 and e) change

Effect of increase in matching trees on performance

300
400
500
600
700
800
900

1000

0 10 20 30

no of matching trees (out of 30)

c
h

a
n

g
e
 d

e
te

c
ti

o
n

ti

m
e
(w

it
h

o
u

t
p

a
rs

in
g

c
o

s
t)

 i
n

 m
s

w ithout optimization

With Optimization

 91

operations: were increased in consistent manner as the number of common sub-trees

decreased. The performance graph is shown in Figure 8. 2.

As observed from the graph, a performance improvement of 55% in terms of

execution time was observed. This improvement is due to the increase of unique

inserts/deletes with the increase in change operations, resulting in reduction of time

taken for change detection. This is because, as more number of nodes result in unique

inserts/deletes, they are filtered out at the second level. Hence, the number of nodes for

LCS decreases considerably leading to an overall decrease in the time taken for change

detection.

Figure 8. 2 Effect of increase of change operations

If the optimization technique is applied to this primary algorithm, then as the

number of change operations increase, the time taken for change detection converges

Effect of increase in change operation on performance

300

400

500

600

700

800

900

1000

0 100 200 300 400

change operations

ch
an

ge
 d

et
ec

tio
n

tim
e(

w
ith

ou
t

pa
rs

in
g

co
st

)
in

 m
s

primary algorithm

 92

with the time taken without optimization as can be seen in the graph shown in Figure

8.3. This is because, as the number of change operations increase for a tree, the number

of matching (common) second level sub-trees decrease. As the number of nodes

removed due to common second level sub-trees is less, the time taken with optimization

is almost equal to the time taken without optimization.

Effect of change operations on performance

300

400

500

600

700

800

900

1000

0 100 200 300 400

change operations

ch
an

ge
 d

et
ec

tio
n

tim
e

(w
/o

pa

rs
in

g
co

st
) i

n
m

s

Without Optimization
With Optimization

Figure 8. 3 Effect of increase of change operations with optimization

8.2 Future Work

The input to the parser for parsing the sentinel specification is a simple text file.

As WebVigiL is designed for large network centric environment such as the Internet,

the users need a flexible web browser enabled interface for submitting the specification.

In addition, the user should not be burdened with remembering all the options that can

be specified in a sentinel. Hence, a user-friendly interface is needed; using which the

user can specify easily his/her policies without invalidating the syntax or semantics of

 93

the sentinel. We have designed and are developing a user-friendly web browser enabled

interface using various client and server-side scripting languages. This interface will

authenticate the user, extract information from the inheritance module and display to the

user, if user desires to inherit the properties from previously specified sentinels and will

allow the user to specify his/her policies with ease. The interface will then call the APIs

of the validation modules. Once validated, the information will be stored in the

Knowledgebase.

8.2.1 Change detection to XML documents

The present change detection mechanism supports changes to the contents of an

XML document. This can be extended to detect changes to the presentation and content-

based tag objects such as tables, list, links and images. For this purpose, additional

information regarding the presentation and defined structure of the documents is needed

which is available in the DTD or the presentation documents such as the style sheet or

html, which embeds the XML file for presentation. In addition, if the DTD or XML

schema information of a particular document is available, then queries such as �Notify

me when the price of a particular stock increases or decreases by a particular ratio� on

stock pages etc. can be supported.

At present, the level of granularity for change detection is a page. We support

customized changes on a single document. This can be extended to detecting composite

changes (more than one type of change) on multiple XML document for a particular

specification. Hence, the user can specify correlated changes on multiple XML

documents in a single specification.

 94

8.2.2 WebVigiL

Most of the modules as discussed in this thesis have been implemented. The

design of change detection graph is ready and will be implemented soon. We are at

present finalizing the design of the presentation/notification module and a naïve version

controller. We plan to have a complete running system in a couple of months.

 95

APPENDIX A

TOTALMATCH AND SIGNATUREMATCH ALGORITHMS FOR KEYWORDS

 96

TotalMatch algorithm

SignatureMatch Algorithm

 97

APPENDIX B

FINDING THE COMMON ORDER SUBSEQUENCE AND DETECTING CHANGE

OPERATIONS FOR KEYWORDS

 98

99

APPENDIX C

PSEUDO-CODE FOR FINDING THE ABSOLUTE TIME OF AN EVENT

100

CalculateEventTime
Input: eventStatus , event , offset
Output : absolute total time \\ absolute time + offset if offset I is not zero

1. If offset ≠ null
2. Convert the offset into appropriate date format I
3. Check if the event has already lapsed
4. if lapsed
5. Extract appropriate time from wv_sentinelstatus table, calculate absolute time

and return
6. else if event = start(sentinel s)
7. Extract the start properties T of s from wv_sentinelstart table
8. else if event = end (sentinel s)
9. Extract the end properties T of s from wv_sentinelend table
10. else if event = during
11. Extract the sentinel creation time.
12. Calculate absolute total time and return
13. If T is Now
14. Extract sentinel creation time, calculate absolute total time and return
15. else if T is timepoint
16. Calculate the absolute total time and return
17. else if T is relative
18. Convert the offset into appropriate date format and add it to I
19. Calculate absolute total time and return
20. else if T is event
21. repeat steps 4 - 16

101

REFERENCES

1. Chakravarthy, S., et al. WebVigiL: An approach to Just-In-Time Information

Propagation In Large Network-Centric Environments. in Second International

Workshop on Web Dynamics. 2002. Hawaii.

2. Jacob, J., et al., WebVigiL: An approach to Just-In-Time Information

Propagation In Large Network-Centric Environments(to be published), in Web

Dynamics Book. 2003, Springer-Verlag.

3. Extensible Markup Language(XML)., World Wide Web

Consortium,http://www.w3.org/XML/.

4. Document Object Model., http://www.w3.org/DOM/.

5. Chakravarthy, S. and D. Mishra, Snoop: An Expressive Event Specification

Language for Active Databases. Data and Knowledge Engineering, 1994.

14(10): p. 1--26.

6. Chakravarthy, S., et al., Composite Events for Active Databases: Semantics,

Contexts and Detection, in Proc. Int'l. Conf. on Very Large Data Bases VLDB.

1994: Santiago, Chile. p. 606--617.

7. Tanpisut, W., Design and Implementation of Event based

subscription/notification paradigm for distributed environments. 2001, The

University of Texas at Arlington.

8. Krishnaprasad, V., Event Detection for Supporting Active Capability in an

OODBMS: Semantics, Architecture, and Implementation, in MS Thesis. 1994,

Database Systems R&D Center, CIS Department, University of Florida,

Gainesville, FL 32611.

 102

9. Chakravarthy, S., et al., WebVigiL: Architecture and Functionality of a Web

Monitoring System.

10. Chakravarthy, S., et al., HiPAC: A research project in active, time-constrained

database management. 1989, Tech. Report (89-02), Xerox Advanced

Information Technology: Cambridge.

11. Wells, D., et al., Architecture of an Open Object-Oriented Database

Management System. IEEE Computer, 1992. 25(10): p.74--81.

12. Hanson, E., The Ariel Project, in Active Database Systems - Triggers and Rules

For Advanced Database Processing. 1996, Morgan Kaufman Publishers Inc. p.

63--86.

13. Pavan Deolasee, A.K., Ankur Panchbudhe, Kirthi Ramamritham and Prashant

Shenoy. Adaptive Push-Pull: Disseminating Dynamic Web Data. in Proceeding

of the 10th International WWW Conference. 2001. Hong Kong.

14. Changedetection.com, http://www.changedetection.com.

15. Liu, L., et al. Information Monitoring on the Web: A Scalable Solution. in World

Wide Web. 2002.

16. Douglis, F., et al., The AT&T Internet Difference Engine: Tracking and Viewing

Changes on the Web, in World Wide Web. 1998, Baltzer Science Publishers. p.

27-44.

17. Hirschberg, D., Algorithms for the longest common subsequence problem.

Journal of the ACM, 1977: p. 664-675.

18. S.Abiteboul, P.Buneman, and D.Suciu, Data on the Web: From Relations to

Semistructured Data and XML. 1999: Morgan Kaufmann.

 103

19. K.Zhang and D.Shasha, Simple Fast Algorithms for the Editing Distance

between Trees and Related Problems. SIAM Journal of Computing, 1989. 18(6):

p. 1245-1262.

20. K.Zhang, R.Statman, and D.Shasha, On the Editing Distance between

Unordered Labeled Trees. Information Processing Letters, 1992. 42: p. 133-139.

21. S.Chawathe, et al. Change detection in hierarchically structured information. in

Proceedings of the ACM SIGMOD International Conference on Management of

Data. 1996. Montréal, Québec.

22. E.Myers, An O(ND) difference algorithm and its variations. Algorithmica, 1986.

1: p. 251-266.

23. Y.Wang, D.DeWitt, and J.Cai, X-Diff: An Effective Change Detection Algorithm

for XML Documents. 2001, Technical Report, University of Wisconsin.

24. Rivest, R., The MD5 Message-Digest Algorithm. 1992,

http://www.faqs.org/rfcs/rfc1321.html.

25. Eastlake, D. and P. Jones, US Secure Hash Algorithm 1 (SHA1). 2001,

http://www.faqs.org/rfcs/rfc3174.html.

26. G.Cobena, S.Abiteboul, and A.Marian, Detecting Changes in XML Documents.

Data Engineering, 2002.

27. F.P.Curbera and D.A.Epstein, Fast Difference and Update of XML Documents.

XTech'99, 1999.

28. H.Maruyama, K.Tamura, and R. Uramoto, Digest values for DOM (DOMHash)

proposal. 1998, IBM Tokyo Research

Laboratory.

29. XMLDiff.

 104

30. Nguyen, B., et al. Monitoring XML Data on the Web. in Proceedings of the 2001

ACM SIGMOD International Conference on Management of Data. 2001.

31. S.Chawathe, S.Abiteboul, and J.Widom, Representing and Querying Changes in

Semistructured Data. ICDE, 1998.

32. Java Compiler Compiler™ (JavaCC) - The Java Parser Generator.,

http://www.webgain.com/products/java_cc/.

33. Xerces-J, http://xml.apache.org/xerces2-j/index.html.

34. Java1.3, http://java.sun.com/j2se/1.3/docs/api/.

105

BIOGRAPHICAL INFORMATION

Jyoti Jacob received her Bachelor of Engineering degree in Computer Science and

Engineering from Sardar Patel University, Gujarat, India in August 1997. In the Spring of

2001, she started her graduate studies in Computer Science and Engineering at The

University of Texas, Arlington. She received her Master of Science in Computer Science and

Engineering from The University of Texas at Arlington, in May 2003. Her research interests

include XML, active database techniques, data on the web and tree structures.

	Background
	WebVigiL Architecture
	XML
	Focus of the Thesis
	User specification
	Knowledgebase (KB)
	ECA Rule Generator
	Activation/Deactivation

	Change Detection
	Change Detection Graph (CDG)
	Event-Based Fetching
	ECA Paradigm for Fetching

	Caching and Management of pages
	€Presentation and Notification
	Summary
	Approaches for unstructured documents
	Approaches for XML (semi-structured) documents
	Changes detection in hierarchical structured documents
	Fast Change Detection for unordered XML documents
	Change Detection in ordered XML documents

	Other approaches for XML change detection
	Approaches for user specification
	Summary
	XML as an ordered labeled tree
	Importance of Customized Change Detection
	Types of changes supported

	Problem Overview
	Design Issues in XML
	Change Operations
	CX-Diff: Customized Change Detection for ordered XML documents
	Object Extraction and Signature Computation
	Filtering Unique Inserts/Deletes
	Finding the Common Order Subsequence
	Optimization

	Summary
	Sentinel Name
	Sentinel Target
	Sentinel Type
	Fetch
	Sentinel Duration
	Notification
	Compare Options
	Summary
	Meta-data
	Knowledgebase Schema
	Validation Module
	Semantic Validation
	Design and Flow Diagram of the Validation Module
	Summary
	User Interface and Knowledgebase
	Parser for the Change Specification Language
	Semantic Validation
	Knowledgebase

	Implementation of Change Detection algorithm
	Object Extraction and Signature Computation
	Filtering Unique Inserts/Deletes
	Finding the Common Order Subsequence
	Optimization

	Summary
	Conclusions
	Knowledgebase and Validation Module
	Change Detection for XML documents
	Performance

	Future Work
	Change detection to XML documents
	WebVigiL

	FinalFirstpart.pdf
	WEBVIGIL: SENTINEL SPECIFICATION AND USER-INTENT BASED CHANGE DETECTION FOR EXTENSIBLE MARKUP LANGUAGE (XML)
	W
	WEBVIGIL: SENTINEL SPECIFICATION AND USER-INTENT BASED CHANGE DETECTION FOR EXTENSIBLE MARKUP LANGUAGE (XML)
	WEBVIGIL: SENTINEL SPECIFICATION AND USER-INTENT BASED CHANGE DETECTION FOR EXTENSIBLE MARKUP LANGUAGE (XML)

