
PROCESSING QUERIES OVER PARTITIONED GRAPH DATABASES: AN

APPROACH AND IT’S EVALUATION

by

JAY DILIPBHAI BODRA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2016

Copyright c© by JAY DILIPBHAI BODRA 2016

All Rights Reserved

To the almighty God, my father Dilip and my mother Geeta

ACKNOWLEDGEMENTS

I express my sincere gratitude and thankfulness to Dr. Sharma Chakravarthy

for his constant motivation, support and guidance throughout this research work.

Without his persistent help and advice, this work would not have been complete. I

would also like to thank Dr. Ramez Elmasri and Mr. David Levine for taking their

time and serving on my committee.

I would like to thank the administrative staff, specifically Ms. Pam McBride

and Ms. Sherri Gotcher for their valuable support and services. Special thanks to

Ms. Camille Costabile in helping me through the final requirements of my thesis, and

the department of computer science, UTA. I am extremely grateful to Ankur Goyal,

Soumvaya Das and Abhishek Santra for continually and convincingly conveying the

spirit of adventure in regard to research.

My heartfelt thanks to my family for continuous support and inspiration. I

would like to express my appreciation to my friends Manish kumar Annappa, Anisa

Gilani, Nandan Prakash, Valay Shah and the ITLABians. I also greatly appreciate

my numerous other friends for their love and support. I thank the Almighty for the

infinite grace and benevolence.

April 21, 2016

iv

ABSTRACT

PROCESSING QUERIES OVER PARTITIONED GRAPH DATABASES: AN

APPROACH AND IT’S EVALUATION

JAY DILIPBHAI BODRA, M.S.

The University of Texas at Arlington, 2016

Supervising Professor: Dr. Sharma Chakravarthy

Representation of structured data using graphs is meaningful for applications

such as road and social networks. With the increase in the size of graph databases,

querying them to retrieve desired information poses challenges in terms of query

representation and scalability. Independently, querying and graph partitioning have

been researched in the literature. However, to the best of our knowledge, there is no

effective scalable approach for querying graph databases using partitioning schemes.

Also, it will be useful to analyze the quality of partitioning schemes from the query

processing perspective.

In this thesis, we propose a divide and conquer approach to process queries over

very large graph database using available partitioning schemes. We also identify a set

of metrics to evaluate the effect of partitioning schemes on query processing. Querying

over partitions requires handling answers that: i) are within the same partition, ii)

span multiple partitions, and iii) requires the same partition to be used multiple

times. Number of connected components in partitions and number of starting nodes

of a plan in a partition may be useful for determining the starting partition and the

v

sequence in which partitions need to be processed. Experiments on processing queries

over three different graph databases (DBLP, IMDB, and Synthetic), partitioned using

different partitioning schemes have been performed. Our experimental results show

the correctness of the approach and provide some insights into the metrics gleaned

from partitioning schemes on query processing. QP-Subdue a graph querying system

developed at UTA, has been modified to process queries over partitions of a graph

database.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF ILLUSTRATIONS . ix

Chapter Page

1. INTRODUCTION . 1

2. RELATED WORK . 8

2.1 Query processing on Graph Database 9

2.1.1 Graph-grep . 9

2.1.2 G-index . 10

2.1.3 G-Ray . 11

2.2 Graph partitioning schemes . 11

2.2.1 METIS . 12

2.2.2 Karlsruhe High Quality Partitioning (KaHIP) 13

2.2.3 SEDGE . 14

3. OVERVIEW OF GRAPH MINING AND GRAPH QUERYING 16

3.1 Overview of Graph Mining . 16

3.2 Overview of Graph Mining System Subdue 17

3.2.1 Parameters for control flow . 19

3.2.2 Substructure Discovery in Subdue 21

3.3 Graph Mining to Graph Querying . 22

4. GRAPH AND QUERY REPRESENTATION 25

4.1 Graph Representation . 25

vii

4.1.1 Partitioned graph representation 28

4.2 Graph Query Representation . 31

5. NEED FOR QUERYING PARTITIONED GRAPH 34

5.1 Metrics for Evaluating Partitioning Schemes 38

5.1.1 Number of starting nodes in each partition 39

5.1.2 Number of partitions used to evaluate a query 41

5.1.3 Number of connected components in each partition 43

6. DESIGN ISSUES AND ALGORITHMS 46

6.1 Partitioning Graph Database . 47

6.2 Connected components . 49

6.3 Initial Starting Partition . 52

6.4 Partition Chooser . 55

6.5 Partitioned Graph Query Processor (PGQP) 58

7. IMPLEMENTATION DETAILS . 62

7.1 Configuration Parameters . 65

7.2 Graph Generation . 66

7.3 Partition Chooser . 67

7.4 Partitioned Graph Query Processor (PGQP) 68

8. EXPERIMENTAL EVALUATION . 71

8.1 Experimental Analysis . 71

8.2 Querying a partitioned DBLP graph 73

8.3 Querying partitioned IMDB graph . 80

8.4 Querying over a partitioned Synthetic graph 86

9. CONCLUSIONS AND FUTURE WORK 93

REFERENCES . 96

BIOGRAPHICAL STATEMENT . 101

viii

LIST OF ILLUSTRATIONS

Figure Page

1.1 Query evaluation observation . 5

3.1 High-level view of shapes . 17

3.2 Graph representation of shapes example 18

3.3 Subdue Input for shapes example . 18

3.4 Subdue Output for shapes example . 19

4.1 An example graph about movie information 25

4.2 An example graph with type information 27

4.3 An example graph with two partitions 28

4.4 Partitions of graph 4.3 . 29

4.5 Input to modified QP-Subdue of a graph Partition P1 30

4.6 General query graph . 31

4.7 Representation of Query with Logical and Range Operator 33

5.1 Different Partition Quality . 43

5.2 Partitions of a graph database using two different partitioning schemes 44

6.1 System architecture . 46

6.2 Partitioned graph database using METIS 48

6.3 Two partitions of graph database 6.2 49

6.4 Graphical representation of query . 52

6.5 Input query plan to PGQP . 53

6.6 Start Node Info File (Book Keeping) 53

6.7 Results from the plan executor for the input query plan 61

ix

7.1 Start node info file (SNI File) . 68

7.2 Input graph and query plan of PGQP 69

8.1 Connected components generated by METIS for DBLP graph 74

8.2 Connected components generated by KaHIP for DBLP graph 75

8.3 Starting node label information for METIS generated partitions of DBLP

graph . 76

8.4 Starting node label information for KaHIP generated partitions of DBLP

graph . 77

8.6 Partition usage information for KaHIP generated partitions (selection

= max) . 78

8.5 Partition usage information for METIS generated partitions (selection

= max) . 78

8.7 Query execution time on partitions generated by METIS for DBLP graph 79

8.8 Query execution time on partitions generated by KaHIP for DBLP graph 79

8.9 Connected components generated by METIS for IMDB Graph 81

8.10 Connected components generated by KaHIP for IMDB Graph 81

8.11 Starting node label information for METIS generated partitions of IMDB

graph . 82

8.12 Starting node label information for KaHIP generated partitions of IMDB

graph . 83

8.13 Partition usage information for METIS generated partitions of IMDB

graph (selection = max) . 83

8.14 Partition usage information for KaHIP generated partitions of IMDB

graph (selection = max) . 85

8.15 Query execution time on partitions generated from METIS for IMDB

graph . 85

x

8.16 Query execution time on partitions generated from KaHIP for IMDB

graph . 86

8.17 Different queries for Synthetic graph 87

8.18 Connected components generated by METIS for Synthetic Graph . . . 87

8.19 Connected components generated by KaHIP for Synthetic Graph . . . 88

8.20 Starting node label information for METIS generated partitions of Syn-

thetic graph . 89

8.21 Starting node label information for KaHIP generated partitions of Syn-

thetic graph . 90

8.22 Partition usage information for METIS generated partitions of Synthetic

graph (selection = max, min) . 90

8.23 Partition usage information for KaHIP generated partitions of Synthetic

graph (selection = max, min) . 91

8.24 Query execution time on partitions generated from METIS for Synthetic

graph . 91

8.25 Query execution time on partitions generated from KaHIP for Synthetic

graph . 92

xi

CHAPTER 1

INTRODUCTION

Today, massive amounts of data are being generated. HTTP links connect bil-

lions of documents on the Web. The Linked Open Data project has published more

than 20 billion RDF triples [1]. Digital Bibliography and Library Project (DBLP)

[2], which is a computer science bibliography, has around 2.8 million records of con-

ference/workshop papers, and journal articles. Freebase [3], an online collection of

structured data, harvested from various sources, has around 47 million topics and 2.7

billion facts. Internet Movie Database (IMDB) [4] contains information of 3.3 million

titles and 6.6 million people about movies, TV-series etc.

Most of the above data have relationships that can be captured and represented

in the form of a graph. Forcing a structure on the data may not only lose the

intuitive understanding but also requires the design of a schema in order to store it

in traditional Database Management Systems (DBMS). Freebase and others already

exist as a graph and in order to query them in their native form, a query processing

approach over graph databases is needed. Furthermore, if the size of the graph is

massive, it cannot be loaded and stored as a single graph for processing queries. Given

the growth in the sizes of data sets, the ability to process queries on partitioned graph

databases is becoming important. Several, techniques and approaches for partitioning

graphs already exist (developed for other purposes). However, processing queries over

graphs have received attention only recently and to the best of our knowledge query

processing on partitions have not been explored systematically. Since partitioning

1

may affect query processing efficiency, there is a need for evaluating the partitioning

schemes as related to query processing.

Answers can be obtained from this data by posing queries and evaluating them

which can be useful for understanding and exploring the data sets. For example,

people use Freebase to find information, such as “find Vietnamese restaurant in Palo

Alto, California” [5]. As another example using DBLP which has the information

of authors, journals, and conference paper queries can be posed to infer co-authors

of a topic over specific time periods as well as publishing venues. If a research and

development division wants to hire people who have published papers on a partic-

ular topic, querying the DBLP data will provide useful information. In addition,

nowadays social networking has also become very popular which gives a platform to

build social relationships among people who share interests, activities, backgrounds

or real-life connections. Currently, many social networking sites are available, such

as Facebook, Twitter, LinkedIn, etc. and users may want to query these sites to

find relevant and useful information. Most of this information in these domains have

explicit relationships (e.g., works for, founder of) unlike traditional applications such

as payroll, airline reservation, etc. Despite the richness of data sets in the form of

structural relationships, currently they cannot be queried the way user wants to.

Queries are limited and decided by the vendors or corporate stakeholders. For exam-

ple, DBLP provides an option to find papers of a particular author, but instead if a

user is interested in finding a paper written in a certain period of time, then these

types of queries are not supported. IMDB -, a movie database can be queried to

find information about movies, genres, actors, etc. But again, complex queries such

as “find movies where “ ‘person1’ and ‘person2’ has worked as actors and ‘person3’

has worked as director in ‘1995’ and movie genre should not be ‘drama’ ” cannot

be supported by the existing interface. QP-Subdue [6] developed at UT Arlington,

2

supports expressive queries over these data sets that have rich representation already

captured in the form of a graph. Providing a capability to allow queries over these

representations will avoid conversion of this data into a traditional relational repre-

sentation for querying purposes. However, these queries need to be processed using

a different representation of data than relations or tables.

QP-Subdue [6] is a system which processes queries over databases expressed

in the form of a graph, where an entity is represented as a node and a relationship

between entities is represented as an edge. Nodes and edges can have labels. Labels

are not assumed to be unique. Queries are smaller graph patterns(relative to the

size of the database graph) given by a user (may contain conditions and wildcards)

which the system accepts and retrieves patterns from the data graph that match the

query. Typically, a query is in the form of a connected sub graph which is small as

compared to the size of the data graph. The major drawback of this system is that

it uses Subdue [7], which requires the entire graph to be loaded into main memory

for computing answers. This is unrealistic if the graph size is large and available

memory is not sufficient for holding the entire graph. We are interested in answering

queries on any size graph and memory availability. This is possible if we can partition

the graph based on memory availability and modify the query processing engine to

work on partitions to compute answers. This work assumes and uses existing graph

partitioning approaches as there is considerable work in the literature where the

graph is partitioned into smaller parts in many ways by providing user requirements

as parameters.

Partitioning a graph is an NP-complete problem. But, many heuristics-based

algorithms have been developed to partition the graph to create reasonably good

partitions. There are spectral partitioning methods [8, 9] which produce good quality

of partitions but require intensive computations because of the eigenvectors.

3

There are geometric partitioning techniques [10, 11] which require less amount

of time for partitioning but the quality of partitioning produced is inferior. Due to

the random nature of these algorithms they can end up taking multiple runs to find a

good partitions. The other drawback of the geometric partitioning scheme is that it

requires coordinate information (x,y or x,y,z) to partition the graph. If no coordinate

information is available one cannot partition the graph.

Another class of partitioning techniques is termed multilevel graph partitioning

[12, 8, 13, 14] where the graph size is reduced by coarsening. Coarsening is done by

collapsing the vertices and edges and then partitioning the coarsened graph which is

much smaller than the original graph, and finally uncoarsen the partitions to construct

the partition of the original graph. This algorithm provides good quality partitions as

compared to geometric partitioning schemes and has better time complexity as well.

Few multilevel schemes such as METIS [12], KaHIP [14] have been discussed briefly

in chapter 2.

Processing queries on a partitioned graph is very different as compared to pro-

cessing a query on a single graph. When a graph is partitioned it will generate k

partitioned small graphs (G0,G1,...,Gk) such that all the k small graphs can be com-

bined to form the original graph. Evaluating a query on these partitions requires

additional strategies for query processing based on the following observations:

1. Query answers are entirely in a single partition.

2. Query answers are entirely in multiple single partitions.

3. Query answers can span across multiple partitions.

Both case-2 and case-3 entail keeping track of partial answers and continuing

them in relevant subgraphs in the same or different partitions. These evaluations

may also require visiting the same partition more than once. This again needs to be

handled by proper book keeping in order to ensure correctness of results.

4

(a) Answer within a partition (b) Answer crossing multiple
partitions

(c) Answer using a partition
more than once

Figure 1.1: Query evaluation observation

Figure 1.1 graphically depicts different observation of query evaluation. Query

answer generated within a partition is shown in Figure 1.1(a). This case needs infor-

mation of partitions which contain the starting node label of the query to initiate the

query computation. While figure 1.1(b) shows the case where a query answer crossing

multiple partitions, figure 1.1(c) shows the cases where computation of a query for its

answer(s) requires a partition to be loaded more than once. These cases are handled

by storing intermediate information regarding the partition and node details in that

partition as part of proper book keeping to compute complete and correct answers to

a given query.

The efficiency of evaluating a query on partitioned graph database depends on

two basic factors:− query access pattern and the quality of the partition. Assessing

the quality of partition is important since a graph database can be partitioned in

multiple ways using different partitioning schemes. In other words, when a graph

database is partitioned using partitioning scheme PS1 it generates an edge-cut set

which is defined as number of edges whose incident vertices belong to different parti-

5

tions. If the same graph database is repartitioned using the other partitioning scheme

PS2 it is possible that the size of the edge-cut set generated is smaller. If this process

is repeated using k different partitioning schemes, k sets of partitions are generated

for the same graph database. How a query expands in different partition schemes can

be very different based on the connected components and edge-cuts in that partition-

ing scheme. We term this the query access pattern. Hence, query access pattern can

differ based on the partition characteristics. In order to evaluate query access pat-

tern cost, we consider a set of metrics to evaluate the partition quality for processing

queries.

To the best of our knowledge, we are not aware of any work on processing

queries over partitioned graph databases. Also, the choice of the starting partition as

well as the sequence in which partitions need to be used for query processing is not

straight forward. Whether any arbitrary query can be processed using each partition

at most once is also not clear. As far as we know, partitioning schemes have not been

evaluated for query processing requirements.

This thesis considers a set of metrics to evaluate partitioning schemes specif-

ically for query processing. Also it proposes an approach for extending a query

processor that works on a single graph to process the same queries on any number of

partitions of that single graph. This is not straightforward as the answer instances

are spread across partitions and one or more partitions have to be processed multiple

times. This thesis extends and addresses processing of query on a partitioned graph

an extension to QPSubdue [6]. The metrics are also analyzed empirically on couple

of real world graphs.

The remainder of the thesis is organized as follows. Chapter 2 presents the

related work in the areas of graph query processing and multilevel graph partition-

ing. Chapter 3 discusses an overview of graph mining and querying. Chapter 4

6

discusses graph representations and specification of query. Chapter 5 discusses query

processing over partitioned graph, elaborated design for extending QP-Subdue and

different metrics to evaluate the quality of partitions generated by different graph

partitioning schemes. Chapter 6 details the query processor architecture and algo-

rithms for all the metrics computation. Chapter 8 describes the implementation of all

the metrics, processing of a query plan using modified QP-Subdue over a partitioned

graph, experimental setup and results. Conclusions and future work are outlined in

Chapter 9.

7

CHAPTER 2

RELATED WORK

Graph querying is useful for retrieving information from emerging graph databases

such as Freebase. Querying a graph database is different from graph mining but use-

ful for retrieving desired information based on the conditions we already know. For

example, the query “find all founders of a company who attended Stanford or Harvard

university” is more specific than mining where one is looking for patterns that may be

of interest because it occurs frequently in the database. For querying a graph database

one needs a query specification that is easy to understand and provide. As mentioned

earlier, graph database sizes can be very large and hence systems that use main mem-

ory approach are not useful. To evaluate a query over any size of graph and memory

availability, one feasible solution is to partition the graph database to make each

partition fit in main memory. This is an alternative to disk-based approaches where

the graph is indexed in some manner and stored on a disk and portions retrieved as

appropriate during query processing. Query processing and graph partitioning have

been well researched separately and a number of techniques have been proposed for

each. This chapter briefly presents an overview of some of the widely used approaches

for query processing and graph partitioning systems. Various techniques proposed for

query processing are Graph-grap [15], G-index [16], G-ray [17], Subdue [7], and graph

partitioning are Chaco [18, 8], METIS [12, 19, 20], KaHIP [21, 14, 22] and SEDGE

[23]. The following subsections describe some of the query processing and graph

partitioning approaches.

8

2.1 Query processing on Graph Database

Graph is a powerful tool for representing and understanding objects and their

relationships in various application domains. Due to increasing popularity of graph

databases, graph query processing has been researched to some extent. Graph query-

ing is the process of finding exact/similar query patterns in the graph data. In this

section we discuss about earlier and related work on graph querying (Graph-grep [15],

G-Index [16], and G-Ray [17]).

2.1.1 Graph-grep

Shasha, Wang and Guino [15] propose an algorithm called Graph-grep which

is a variable path index approach. This algorithm constructs an index of all possible

paths up to length l, from all nodes and stores all possible paths in a hash table.

When a query is submitted, the query graph is parsed to build its fingerprint (hashed

set of paths). The indexed database is filtered by comparing the fingerprint of the

query with the fingerprint of the database. A graph, for which at least one value in

its fingerprint is less than the corresponding value in the fingerprint of the query, is

discarded when looking for an exact sub graph match. The last step is finding sub

graphs matching the query; after filtering, this algorithm searches for all the matching

sub graphs in the remaining graphs. The branches of a depth-first traversal tree of

the query are decomposed into sequences of overlapping label-paths, which are called

patterns. Then, it joins all the sub paths on an overlapping node to get the final

results. Since all the paths are already hashed so this approach provides fast results.

However if the graph size is large, keeping all paths up to length l takes huge space.

Since this approach breaks the query and graph into different paths, it loses

the structural information which makes it difficult for the chemical compounds that

require structural information to be preserved. The proposed approach do not sup-

9

port queries containing comparison or logical operators and it evaluates the query

graph from the main graph using indexing techniques. There is no distributed imple-

mentation of this approach. Also, there is no mechanism to handle multiple graphs

(forest or partitions). In our approach, we use systematic graph expansion instead

of indexing, support any graph database size using any partitioning technique and

process queries on multiple graphs (or forest).

2.1.2 G-index

Another approach (G-index) proposed by Yan, Yu and Han [16] indexes frequent

structures. In this approach the authors define the substructure to be frequent if its

threshold is greater than the minimum support threshold (provided by the user) and

all frequent substructures are indexed. Each substructure is associated with an id list.

Given a graph query Q, if Q is frequent the graphs containing Q can be retrieved

directly since Q is indexed. The G-index only indexes structures which are distinct,

which means that if the same substructure is generated twice, it indexes only once.

G-index uses Depth First Search (DFS) coding to translate the graph into

unique edge sequence called canonical label. If two substructures are the same that

means, they must share the same canonical label; the G-index holds canonical labels

in a prefix tree. Given a query, G-index enumerates all its fragments up to a maximum

size and locates them in the index and then it intersects the id lists associated with

these fragments, which is the candidate answer set. After getting the candidate answer

set, it verifies whether the graphs in answer set really contain the query graph.

This approach does not answer infrequent queries because it only indexes the

frequent substructures, and if graph is large then index size becomes large as well.

Also there is no parallel implementation of the algorithm to handle graphs of any

10

size. Our approach use graph expansion rather than an index. Also, our system is

capable of processing any query whether frequent or not.

2.1.3 G-Ray

Another approach presented by Gallagher, Faloutsos and Eliasi-Rad [17] called

G-Ray- finds both exact and inexact matches. This approach first ends a seed node

and then expands the seed node by finding a matching node followed by bridging

both nodes by the best possible path. G-Ray proposes a goodness score which is a

measure of proximity between two nodes. Based on this goodness score, it ranks the

results. In this approach each vertex stores the information of remaining vertices.

Therefore, space requirement is significant and it also does not differentiate between

two results having the same goodness score. Unlike other approaches, G-ray keeps

the attribute information of each node.

This approach provides inexact matches of the query while on the other hand

our system does not deal with inexact results. Also, these approaches do not handle

large size graphs but our system can handle graph database of any size and generates

exact result of a query.

2.2 Graph partitioning schemes

Graph partitioning is an important problem with extensive applications in many

areas, including web graphs, social graphs, circuit placement, parallel computing and

scientific simulation. The problem is to partition the vertices of a graph in p roughly

equal parts, such that the number of edges connecting vertices in different parts is

minimized. Many large scale graph partitioning tools are available. For this work,

we use some of partitioning schemes for partitioning the graph on which queries are

11

processed. This section provides a comprehensive overview of METIS, KaHIP and

SEDGE.

2.2.1 METIS

George Karypis and Vipin Kumar presented METIS [12], one of the earliest

graph partitioning schemes that uses multilevel algorithm proposed by Chaco [18, 8].

It supports different heuristics in each phase to partition the graph. It also presents

a new variation of the Kernighan-Lin (KL) [24] algorithm for refining the partition

during the uncoarsening phase. And the approach has a parallel implementation

which reduces overall partitioning time.

A graph G can be bisected using a multilevel algorithm. The working of a mul-

tilevel algorithm is very simple, first the input graph G is coarsened to few hundred

vertices, a bisection of this coarsest graph is computed and finally this partition is pro-

jected back to the original graph by refining the partitions to decrease the edge-cut.

In the coarsening phase METIS provides four different heuristics- Random Matching

(RM), Heavy Edge Matching (HEM), Light Edge Matching (LEM)and Heavy Clique

Matching (HCM). For computing the initial partitioning, spectral partitioning algo-

rithm [25] is used. And for the uncoarsening phase, to minimize the edge-cut set,

Boundary Kernighan-Lin Refinement (BKLR) [26] is used.

METIS is a system that is widely used. It provides high quality partitions and

supports many different heuristics to accommodate different types of graphs. But

METIS consumes a fair amount of time in the coarsening and uncoarsening of the

graph. Also, if the structure of the original graph changes frequently as in the case of

web graphs and social network graphs where vertices and edges are added or deleted

frequently, partitioning needs to be done again as METIS partitions graphs statically.

12

2.2.2 Karlsruhe High Quality Partitioning (KaHIP)

Another recently developed technique KaHIP presented by Peter Sanders and

Christian Schulz [21], is a family of graph partitioning programs. It includes KaFFPa

(Karlsruhe Fast Flow Partitioner), which is a multilevel graph partitioning algorithm.

KaFFPa is a classical matching based graph partitioning algorithm with focus on lo-

cal improvement methods and overall search strategies. It is a system that can be

configured to either achieve the best known partitions for many standard benchmark

instances or to be the fastest available system for large graphs while still improving

partitioning quality [22]. There are three phases of KaFFPa- coarsening, initial parti-

tioning and uncoarsening. KaFFPa employs the Global Path Algorithm (GPA) [27] as

a matching algorithm to coarse the graph. In the initial partitioning phase, KaFFPa

employs Scotch [13] as an initial partitioner since it empirically performs better than

METIS [19]. KaFFPa also has its own initial partitioning algorithm which uses the

multilevel recursive bisection scheme [28]. In the uncoarsening phase, KaFFPa it-

eratively uncontracts the matchings contracted during the contraction phase. After

a matching is uncontracted, local search based refinement algorithms move nodes

between block boundaries in order to reduce the edge-cut while maintaining the bal-

ancing constraint.

KaHIP looks at various local and global search techniques, different coarsening

strategies as well as several meta-heuristics to tackle the graph partitioning prob-

lem. KaHIP provides very high quality partitions by using KaFFPa as the initial

partitioner to make a good trade-off between quality and running time, or to be the

fastest system on some graphs while still improving partitioning quality compared to

the previous fastest system, METIS [12] and Scotch [13]. KaHIP implements novel

local improvement schemes to fit most kind of graphs such as continental-sized road

networks as well as large social networks and web graphs compared to METIS.

13

2.2.3 SEDGE

Unlike METIS and KaHIP, SEDGE (Self Evolving Distributed Graph Manage-

ment Environment) [23] proposed by Shengqi Yang and Xifeng Yan, is not a static

partitioning scheme but based on the workload it manages partitions in large graphs.

It also tries to minimize the inter-machine communication during graph query process-

ing such as breadth first search, random walk, and SPARQL queries across multiple

machines. SEDGE is based on Pregel [29] and uses two level partitioning i.e. primary

partitioning and secondary partitioning which are able to adapt to real time changes

in query workload and uses a workload analyzing algorithm for workload change.

Mainly SEDGE focuses on three types of query patterns:

1. Random query, a query that touches most part of the graph.

2. Internal query, the query that touches the node inside the partition.

3. Cross-partition query, the query that touches the node inside the partition as

well as the nodes outside the partition.

The three techniques used by sedge to make it adapt to real-time changes in

query workload are:

1. Complementary partition, it is a technique to find different partition schemes

which have different edge cuts.

2. Partition replication, it is a technique to replicate the partition which has a

high workload on a different machine to balance the workload of that partition.

3. Dynamic partitioning, it is a technique to construct a new partition to serve

the cross partition queries locally using color blocks and envelope.

The Complementary partition is termed as primary partition while partition repli-

cation and dynamic partition together form the on demand partitioning which will

generate secondary partitions.

14

Sedge uses partition management techniques to make new partitions which

result in faster query processing. But it may require more space to store partitions

due to creation of multiple complementary partitions. Our work is different for sedge

in many ways. We do not create extra partitions. Neither do we keep track of the

queries to replicate them into a new partition. Our system solves the queries on

multiple partition and evaluates the partitioning scheme based on a set of metric

discussed in a later chapter.

In this chapter, we have presented an overview of related work in the area of

query processing and graph partitioning. The discussion on graph mining techniques

and overview of graph query processing approach is presented in the next chapter.

15

CHAPTER 3

OVERVIEW OF GRAPH MINING AND GRAPH QUERYING

3.1 Overview of Graph Mining

Data mining is the process of discovering hidden patterns in large data. The

goal of data mining is to extract non-intuitive information from a data set and use it

for making business decisions. Data, in many applications, have an inherent structure

and converting them to non-structural (RDBMS) format will result in loss of infor-

mation. Graph representation provides a natural format for preserving the inherent

structural characteristics. If processing can be done directly on this representation,

it will provide better results as the semantics of the applications (in the form of re-

lationships) is preserved during processing. Complex structural relationships can be

modeled as graphs if no constraints are assumed (such as cycles, multiple edges, only

directional edges, and constraints on vertex and edge labels). Graphs model the data

in the form of a vertex (to characterize the entities), and edges (that typify extra

information). Graph mining is used to mine structural data such as DNA sequences,

electrical circuits, chemical compounds, social networks, schemes (such as money

laundering and fraud) that have associations and relationships among transactions,

etc. A graph representation comes across as a natural choice for representing com-

plex relationships as the data visualization process is relatively simple as compared

to a data in traditional RDBMS representation. Data representation in the form of

a graph preserves the structural information of the data which may otherwise be lost

if it is translated into other representation schemes.

16

3.2 Overview of Graph Mining System Subdue

Subdue [7], the earliest work on graph mining, uses information-theoretic model

for determining the best substructure given a forest of unconstrained graphs. This

substructure discovery system was developed by Cook and Holder. The Subdue dis-

covery algorithm discovers repetitive patterns and interesting substructures in graph

representations of input data. A substructure is a connected sub graph within the

graph representation. In a graph, entities and objects are mapped to the vertices and

the relationship between these objects is represented as the edge between the corre-

sponding pair of vertices. An instance of a substructure in an input graph is a set of

vertices and edges from the input graph that matches the graphical representation of

the substructure.

The input to Subdue is a forest of graphs and the output is a set of substructures

that are ranked based on their ability to compress the input graph using the Minimum

Description Length (MDL) principle.

Figure 3.1: High-level view of shapes

The input is in the form of a table consisting of a list of unique vertices in the

graph and edges between them. The output is a list of representative substructures

discovered in the input graph that compress the graph most and each is qualified by its

17

size and occurrence frequency in the input graph. Consider the example in Figure 3.1.

It is a high-level view of shapes resting on a table. The graphical representation of

these shapes is shown in Figure 3.2 below.

Figure 3.2: Graph representation of shapes example

The input for Subdue (for this particular example) is as shown in Figure 3.3.

This input is in the form of a file consisting of the list of vertices and the edges

between the vertices.

Figure 3.3: Subdue Input for shapes example

18

Subdue generates the best substructures that compress the input graph the

most and lists out the top n substructures. The output given by subdue for the

example in Figure 3.2 is displayed in Figure 3.4.

Figure 3.4: Subdue Output for shapes example

3.2.1 Parameters for control flow

There are a number of parameters that Subdue provides the user in order to

control the flow of the substructure discovery process. The input to Subdue is the file

containing the list of vertices and corresponding edges as shown in Figure 3.2. The

parameters which drive the discovery process of Subdue are as follows:

19

1. BEAM: This parameter specifies the number of top substructures. Top BEAM

substructures are retained for the expansion in each iteration of the discovery

algorithm. The default value of the beam is 4.

2. ITERATIONS: Iterations is used to specify the number of iterations to be made

over the input graph. The best substructure from the previous iterations is taken

to compress the graph for the next iteration. The default is no compression.

3. LIMIT: Limit specifies the number of different substructures to be considered in

each iteration. The default value is (number of vertices + number of edges)/2.

4. NSUBS: This parameter is used to specify the number of substructures to be

returned as the result from the total number of substructures that Subdue

discovers.

5. OVERLAP: Specifying this parameter to Subdue allows the algorithm to con-

sider overlap in the instances of the substructures. Instances of substructures

are said to overlap if they have a common substructure in them.

6. PRUNE: If this parameter is specified, then the child substructures whose value

is lesser than their parent substructures are ignored. Since the evaluation heuris-

tics are not monotonic, pruning may cause SUBDUE to miss some good sub-

structures, however, it will improve the running time. The default is no pruning.

7. SIZE: This parameter is used to limit the size of the substructures that are con-

sidered. Size refers to the number of vertices in the substructure. A minimum

and maximum value is specified that determines the range of the size parameter.

8. THRESHOLD: This is the parameter that provides a similarity measure for

the inexact graph match. Th reshold specifies how a different one instance of

a substructure can be from the other instance. The instances match if match-

cost(sub, inst) ≤ size(inst)∗ threshold. The default value is 0.0, which means

20

that the graphs should match exactly. Currently, Subdue supports threshold

values up to 0.3.

3.2.2 Substructure Discovery in Subdue

The substructure discovery in Subdue is done by using a beam search and

progresses in an iterative manner starting with substructures of size 1 and expanding

to successively larger substructures. A list consisting of a set of substructures to be

expanded is maintained. The input graph is compressed by replacing the instances of

these substructures by a single node. The resulting input graph is then used for the

next iteration to find other interesting substructures. This process continues until

the number of iterations specified by the user is reached or it meets one of the several

halting conditions such as the total number of substructures needed provided by the

user. The occurrences of substructures that have an exact match are unlikely to occur

in most domains. Substructure instances that are not exactly the same but are similar

can also be discovered by Subdue. Subdue is capable of discovering both exact and

inexact (isomorphic) substructures in the input graph. Subdue employs a branch and

bound algorithm that runs in polynomial time for inexact graph match and discovers

graphs that differ by a threshold given by the user. This discovery process is used to

find repetitive and interesting substructures or patterns. After that it compresses the

graph by replacing the instances of these patterns by a single node in order to provide

a hierarchical view of the original input graph. Subdue compresses the input graph

using the substructures generated. In order to determine which of those substructures

compress the graph best, Subdue uses the MDL principle to evaluate the compressed

substructure. After compressing the substructure in multiple iterations, the best

substructures are output. Subdue system finds interesting and repetitive patterns

using graph mining.

21

However, if a user wants matches of a specific pattern then graph mining may

not be the best idea because the user is interested in specific pattern. Graph querying,

on the other hand, takes graph pattern as an input and retrieves similar patterns from

the data graph. In graph querying, we find all the exact matches of a query pattern.

In the following section we discuss the relationship between graph mining and graph

querying and also discuss how a graph mining system can be modified into a graph

querying system.

3.3 Graph Mining to Graph Querying

The abundance of graph data in a variety of domains implies that graph query-

ing is needed in addition to graph mining as a form of information retrieval and

analysis. Graph querying can be seen as a special case of graph mining where ex-

ploration looks for specific patterns that match a query and hence can be deemed as

restrictive mining. Graph mining identifies frequent and significant graph patterns,

classifies new graphs based on the knowledge of known graphs, or clusters graphs

into subclasses according to the mutual relevance. A graph query, on the other hand,

takes a graph pattern as input and retrieves exact match patterns from the data. In

graph querying, the goal is to find all the occurrences of a given substructure. Graph

mining, unlike graph querying, starts with all the vertices in the graph and hence, is

called unrestricted search. Therefore, for querying specific patterns, general purpose

mining approach can be modified based on the nodes in a query. We can make use

of information from query graph to improve our search.

In general, for a mining system there is no input pattern. Hence, a typical min-

ing algorithm starts from every node in the graph and expands them systematically

by using some heuristics to prune the search space. For example, subdue uses MDL,

G-ray uses goodness score for each vertex while Graph-grep and G-index uses hash

22

based indexing techniques. However, in querying processing there is always an input

pattern that we are trying to match in the larger graph. Hence, following the mining

approach for query processing does not make sense.

As mentioned earlier, QP-Subdue is a query processing system developed re-

cently by modifying Subdue, a graph mining system. QP-Subdue accepts an input

query plan which restricts the selection of the start node followed by constrained ex-

pansion to desired nodes or next nodes in the plan. The intermediate substructures

which match the query plan are stored for expansion in the next round. Constrained

expansion is carried out for each edge in the plan. Also, QP-Subdue has developed a

query optimizer along the lines of Relation Database Management Systems (RDBMS)

query optimizers that generates alternate plans, evaluates them using a cost metric,

and chooses the best one for execution. The quality of the plan is assessed using

cost metric parameters such as cardinality, average connectivity, degree of a node etc.

The metric used for determining the quality of a plan is the number of intermediate

substructures generated during the evaluation of a query. The more the number of

intermediate substructures, more effort is needed to evaluate a query which trans-

lates to a costly plan. The query processor computes and maintains a catalog that is

similar to a RDMS catalog.

Since, QP-Subdue uses main memory to construct the graph, it can process

queries on small size graph database restricted by available main memory. There is

no distributed implementation of QP-Subdue to process large size graph as well as

no provision to handle multiple graphs (partitions). Thus, we propose an approach

which can process queries on any graph size by partitioning the graph database into

smaller size which fits into main memory. Our work on processing queries over parti-

tioned graph database requires handling of multiple cases as discussed in chapter 1.

We modify existing QP-Subdue which enable switching of partition (multiple small

23

graph) based on the intermediate results by doing proper book keeping which con-

tains information about frontier nodes along with their partition id that needs to be

resumed in another partition. The book keeping information helps in loading correct

partition to evaluate a query over partitions of graph. Also, processing queries is

a function of partition quality and query access pattern. To ensure the efficiency of

query processing system over partitioned graph we also define metrics to justify which

partitioning scheme better suits for a given set of queries. In upcoming chapters we

explain our graph and query representation of our approach.

24

CHAPTER 4

GRAPH AND QUERY REPRESENTATION

4.1 Graph Representation

In this section, we discuss the representations used by Subdue (also QP-Subdue)

for the graph databases. A graph consists of nodes and edges. A node typically has

a node label, a unique node identifier(node id) and an edge connecting to the other

node. An edge is a connection between two nodes which can be either labeled or

unlabeled, directed, or undirected. In a general graph, loops, cycles, and multiple

edges are allowed. Consider the graph shown in Figure 4.1.

Figure 4.1: An example graph about movie information

25

Figure 4.1 shows a portion of a graph database consisting of a movie and its

related information. Nodes are connected to each other based on the relationship

between them. If a user wants to retrieve the information from this graph, s/he

should be able to query this graph. For example, “Find all actors in the movie

‘Beyond all boundaries’ and year of it production ” is a query on the above graph.

This query will answer information about the actor and the year of production. Thus,

all the nodes which are connected to the movie ‘Beyond all boundaries’ with the edge

labeled as ‘actor’ or year, would be the answer(s).

Nowadays, graphs- IMDB, DBLP, Freebase, Knowledge graph exist with the

property information along with the nodes and edges also termed as property graphs

[30]. That is, a graph where the edges are labeled and both vertices and edges can

have any number of properties associated with them. In other words, each node

belongs to some category. Therefore, to group node labels with the same attribute

or semantics (e.g., author, city) in the graph, the concept of type nodes can be used.

Non-type nodes are viewed as instance nodes. Every instance node is connected to its

respective type node and other instance nodes. The concept of type node is analogous

to an attribute name/type and instance nodes belong to a type node. For example, in

the case of a social network graph, if two instance nodes “John” and “Mary” belong

to the type “Person” then “John” and “Mary” nodes would be connected with its

type node “Person”. In case of DBLP there are four types of nodes: author; paper;

year; and conference. Each type of node is connected to all instances which are of

that type. For example, instances of conferences are the values of conferences such as

“sigmod”, “cikm”, etc., and the instances for author are names of author who have

published a paper, such as “Jeffrey D. Ullman”, “Shantunu Sharma”, etc. Consider

the graph in Figure 4.2, which is an extended version of the graph in Figure 4.1

including the type information.

26

Figure 4.2: An example graph with type information

In Figure 4.2 six type nodes are shown. Number of type nodes is application

dependent. This number is an indicator of how many different categories of the nodes

exist in the graph data. All instance nodes are connected to their respective type

nodes and with other instance nodes as appropriate. This signifies the connection

among instances. It captures both property relationship of an entity and relationship

across entities.

27

4.1.1 Partitioned graph representation

Figure 4.3: An example graph with two partitions

Generally, the size of graphs are massive which can easily overwhelm the main

memory. Thus, in our approach we partition the graph. When a graph database is

partitioned using any graph partitioning scheme such as METIS [19], KaHIP [14],

Chaco [8]. Edge-cuts are generated which connects two different partitions. In other

words, these edges connects nodes in one partition to a node in another partition.

The graph in figure 4.2, when partitioned into two parts using METIS generates the

graph shown in figure 4.3 where edges between the nodes ‘Beyond all boundaries’,

28

‘Paramount’, ‘2011’, ‘drama’ and ‘Romance’ form the edge-cut set along with the

vertex id.

(a) Graph partition P1 (b) Graph partition P2

Figure 4.4: Partitions of graph 4.3

In our approach, replication of edge cut along with the node is used for (shown

in Figure 4.4(a) and Figure 4.4(b). The two graph database partition P1 and P2

after partitioning along with the replicated edges is shown in Figure 4.4(a) and Fig-

ure 4.4(b) respectively. The dotted lines show the replicated edges along with nodes

in each partition. For example, consider a query “Find actors in the movie ‘Beyond

all boundaries’ in the year ‘2011’ ” and the staring node for this query is ‘2011’. The

node ‘2011’ belongs to partition P2 which is initially loaded then it finds ‘Beyond all

boundaries’ which is a replicated node and belongs to partition P1. Node label, node

id and partition id of node ‘Beyond all boundaries’ is stored as book-keeping informa-

tion because the query is crossing the partition. Finally, the system loads partition

29

P1 and searches for the all the actors. Details of query processing over partitioned

graph is explained in the next chapter.

Figure 4.5: Input to modified QP-Subdue of a graph Partition P1

The input file to the modified QP-Subdue consists of vertex and edge entries

corresponding to the graph. Each entry corresponding to a vertex is represented as

unique vertex id with every vertex label and partition id. Each entry corresponding to

an edge is represented as an undirected edge between a pair of vertices and the corre-

30

sponding edge label. The input file to the modified QP-Subdue system corresponding

to the representation in Figure 4.4(a) is shown in Figure 4.5

4.2 Graph Query Representation

A query is a request to retrieve the information from the graph database and

it can be as simple as, “Find names of restaurants in Arlington”, or more complex

like, “Find movies with all its cast information where the movie genre should not be

‘Drama’, and all movies should be before ‘2005’, cast should be ‘male’ and working as

an ‘actor’, and movies should belong to the company ‘Paramount pictures’ ”. Based

on the different types of queries, it can be classified into several categories. Thus, a

general graph query processing system should be able to answer all query categories.

Consider a conjunction of conditions of the form attribute(attr) operator(op) value,

where op is one of the comparison operators (<, >, =, >=, <=, ! =), and attr could

be a type or an instance node. This is called conjunctive normal form (CNF). General

query can be represented as follows.

Figure 4.6: General query graph

31

Figure 4.6 is a general representation of a query graph. There can be any number

of nodes in a query. The above mentioned query categories can be represented using

this general representation. In this section, we discuss the query representation used

in our approach.

Consider a query containing combination of more than one logical operator and

range operators- “ Find movies with all the persons working as actors where genre

should be romance and the production year should be after ‘2009’. Movie should

not belong to the company ‘American Broadcasting Company(ABC)’ ”. In this case

each single query operator- “=”, logical operator- “AND, NOT” and range operator-

“>” is represented as

1. Single query operator: In the query, for each instance node only the equal

operator present.

2. Logical operator: AND- This operator is used in queries where all the conditions

have to be true. NOT- is used to get all the results except for a particular

condition. Our approach also support OR- This operator is used if any one out

of all given conditions is true.

3. Range operator: These operators(=<,>=,<,>) are used to get all the result(s)

which qualify the given range.

and the result(s) would include the answers satisfying all the conditions specified in

the query. Following is the representation of this query.

32

Figure 4.7: Representation of Query with Logical and Range Operator

Figure 4.7 represents the graph form of the query having a combination of

multiple logical and range operators. Each instance node is connected to its respective

type node along with other instances.

In this chapter, we have discussed graph and query representation. A graph

query generally consists of a small number of nodes and edges compared to the graph

database. A querying system takes a query as an input and retrieves all the exact

matches of the query in the main graph. A general query processing system can start

from any node in the query and expand to a sequence of edges in the query graph until

all matches are found. An ordering of nodes in which each node (with the desired

label) is expanded exactly once, forms a query plan. Having provided a comprehensive

description of the query categories, in the next chapter we discuss about processing

queries over a partitioned graph, system architecture of our approach, metrics to

evaluate the quality of partitions generated by different graph partitioning schemes

and algorithms for their computation.

33

CHAPTER 5

NEED FOR QUERYING PARTITIONED GRAPH

Recent work on querying a graph database (QP-Subdue [6]) generates a query

plan using cost estimates that is appropriate for a graph database and uses a modified

version of the Subdue [7] mining algorithm to evaluate a query plan. Subdue, a main

memory mining algorithm has been modified minimally for evaluating a plan. The

modifications use a constrained expansion (instead of the unconstrained expansion

needed for mining) for a query plan which indicates the order in which nodes should

be expanded to obtain answer instances that match the given query. QP-Subdue being

a main memory algorithm loads the entire graph in main memory before processing

queries. This makes sense for mining as substructures need to be generated starting

from all nodes, some of the generated substructures pruned after applying a metric

(such as MDL or frequency) and the process repeated again. However, for query

evaluation the expansion is constrained and the nodes to be used for expansion are

also known from the generated plan. Clearly, loading the entire graph into memory

is not needed as only small portions of the graph need to be expanded to answer

the query. Subdue approach makes it unrealistic for querying (or even mining) large

graphs that do not fit in main memory. The question this thesis is addressing is “how

to process queries if the graph database size is large and cannot be held in main

memory still using the Subdue approach?”.

Divide and conquer has been around for a long time as a potential solution to

reduce a larger problem into a number of smaller problems and solve each one individ-

ually and combine the results to solve the larger problem. This has been successfully

34

applied in sorting (e.g.,- quicksort [31], mergesort [32]) and also in processing large

data sets. Map/reduce has scaled this approach to arbitrary number of partitions to

deal with analytics needed for big data.

Partitioning of graphs has also been addressed in the literature to deal with

limitation of main memory when dealing with large graphs. However, to the best of

our knowledge, this has not been applied in the context of query processing which

is the main focus of this thesis. For our work, we will use partitioning to reduce

the size of the graph used for query processing on which we will use QP-Subdue for

processing queries. Many partitioning schemes such as - METIS [12], KaHIP [21],

Scotch [13] and Chaco [18] are available in the literature. Partitioned approach to

query processing poses a number of issues that need to be addressed. The scope of

this thesis is to identify these challenges and propose viable solutions. When a query

is evaluated over a partitioned graph additional cases need to be handled properly.

The problems that need to be handled are:

1. Dealing with many answer instances in a partition (similar to single graph

approach)

2. Dealing with answer instances that span multiple partitions (not present in the

previous approach QP-Subdue)

3. Dealing with answer instances that require the same partition to be used mul-

tiple times (not present in the previous approach QP-Subdue)

4. Processing of a query on a partition and continuing it in subsequent partitions

(not handled by QP-Subdue [6])

In our approach, we handle all of the above mentioned cases. In addition,

we also propose several metrics to understand the behavior and effect of partitioned

approach on the cost of query processing. Case-1 above does not require any change

except keeping track of the answers. Case-2 and 3 require that a query be processed

35

over multiple partitions in a sequence and the results collected to form answers. This

is done by storing some continuation information when a partition is used and use that

for determining the next partition to be used until the query is completely processed.

The results from multiple partitions need to be combined to generate query results.

Finally, QP-Subdue has been modified to accept graph partitions along with minimal

partition information to determine whether an answer continues in another partition

and if so in which partition. This has to be determined at run time and may lead

to inefficiency if the order if partitions are not chosen properly. For case-1, a query

may have multiple starting nodes in different partitions. The number of starting

nodes in each partition for a query may vary based on the partitioning scheme used.

Also, if there is no start node in a partition that does not necessarily mean that

partition is not required; an answer may grow into that partition which can only be

figured out at runtime. Currently, the number of start nodes in each partition for a

given query is computed at the end of the partitioning phase. For answers that are

entirely contained in a single partition, there is not any difference between QP-Subdue

and this approach except for handling the partition instead of the entire graph. In

contrast, case-2 requires additional book keeping information to be maintained to

resume the computation of an answer in a different partition. Note that many answer

instances may grow into different partitions from a given partition. To handle this,

each answer instance maintains the node to be resumed and the partition info of that

node so that this answer instance can be resumed when the corresponding partition

is loaded. Note that we load the partitions sequentially and the order of this loading

is also important for efficient computation of answers as will be illustrated later in

this thesis. Case-3, is a special case of case-2 in which the answer grows back into

the partition which was used earlier. The book keeping information needed is that

same as that of case-2. A query need to be processed using partitions as needed

36

(even if it is the same partition a number of times) until there are no more answers.

Note that intermediate result(s) generated in case-2 and 3 provide starting point(s)

for continuing in the relevant partition, in addition to the starting points in that

partition. The correctness of partitioned approach to query processing is to produce

the same results as if the entire graph was processed as a single graph using the earlier

approach.

In the presence of partitions, an additional decision is to determine whether we

will be processing all or several partitions in parallel or we will load the partitions

sequentially and process each one at a time. Processing partitions sequentially will

of course increase the total response time but reduces the complexity of case 2 and

3 discussed above which will require inter-process communication, synchronization,

and putting all answers together in some meaningful manner. In this thesis, we

have chosen to process partitions sequentially to avoid inter-process communication

and the additional complexity associated with synchronization, number of processors

needed based on the number of partitions, or combination of both if one were to use

less number of processes than the number of partitions.

A graph database can be partitioned in multiple ways using different partition-

ing schemes. A set of queries (or a query workload) can exhibit different costs in

terms of total response time, number of partitions used for processing queries and

the number of times a partition has to be used for processing the workload. Some of

the above costs are affected by the choices made in terms of the starting partition for

processing a query as well as the sequence of partitions. Ideally, the goal is to match

a partitioning scheme with a workload for optimizing the cost of processing a query

workload. In this thesis, we have proposed and analyzed the metrics for a single query

instead of a workload. We have made some preliminary attempts in understanding

the effect of some metrics on the cost of processing queries. To understand the effect

37

of partitioning schemes in a meaningful way, we define a few intuitive metrics which

we use to evaluate the partitioning schemes for processing queries.

5.1 Metrics for Evaluating Partitioning Schemes

With overview of issues and evaluation of queries in the presence of partitions,

it would be useful to understand the effect of partitioning schemes, if any, on pro-

cessing a single query or workload of queries. The questions to be answered is “is

one partitioning scheme is better suited for a given workload than other partitioning

schemes and if so, what aspects of partitioning can be used to determine this?” The

general problem can be defined as follows. Given a workload (a set of queries) and

a graph database, “how do we determine which partitioning scheme is good for that

workload?”. In other words, are there metrics that can be used to predict (or reason

about) the total amount of work done in answering queries in the workload on that

graph.

One of the widely used metrics for graph partitioning is the edge-cut. An edge

cut is defined as the total number of edges that connect the original graph from a

partition to any other partition. Partitioning schemes try to minimize the edge-cut

to reduce inter-partition book keeping in the presence of partitions. For our problem,

edge-cuts are the means by which an answer to a query can span multiple partitions.

In general, if the number of edges in an edge-cut is small, the likelihood of an answer

crossing to another partition from that partition is likely to be small as well (a single

partition is an extreme case). Of course, this depends on the query mix and the

characteristics of the edge-cut (e.g., labels).

In this thesis, we propose three metrics. Some of them can be computed after

the partitioning the graph directly even before a query is evaluated where as others

may have to be computed at runtime after partition is used for query evaluation.

38

For example, the number of connected components in a partition does not change

and can be computed before starting query evaluation (static metric). This metric is

based on the structure of partitions determined by the partitioning parameters used.

Similarly, the number of starting nodes in each partition for a given plan can be

initially computed prior to query evaluation. However, the number of continuations

of answers from a partition to other partitions (both the number of partitions in

which it continues and the number of continuations in each partition) can only be

computed after a partition is used for query evaluation (hybrid metric as it is a

combination of a static and a dynamic metric). The first metric, termed a static

metric, is based on the partitions of the graph database and can be calculated before

evaluating any query. The edge-cut is also a static metric as it can be computed after

the partition phase and does not change. While the number of start nodes for a plan

can be calculated statically, the continuation of answers can only be calculated after

using each partition and hence it is termed a dynamic metric (runtime). The number

of starting points in a partition after the first partition can be viewed as a hybrid

metric as it is a combination of static and dynamic metrics. In the following section,

we provide details of all the three metrics used to assess the quality of partitions

generated by any partitioning scheme.

5.1.1 Number of starting nodes in each partition

For a partitioned approach to query evaluation, identifying the first partition

for query evaluation can benefit from knowing the number of starting nodes in each

partition. Obviously, if a partition does not have any starting nodes, it makes sense

to use it later (or not at all) if other partitions grow answers into that partition. To

determine the initial sequence (or order) of partitions to be used, a partial ordering

of partitions can be beneficial. An initial partial order of partition sequence can be

39

determined using the ascending (starting with non-zero), descending, or a random

order of the number of starting nodes in partitions. After the first partition is used,

this metric needs to be recalculated using the dynamic component and a new partial

order is generated. This process will continue until the query is completely evaluated.

It is difficult to speculate or theoretically establish which property (max, min,

or random) is better from the perspective of total number of partitions (including

partitions that may have to be loaded multiple times) that need to be used for eval-

uating a query. The goal is find a metric or combination of metrics that can be used

to minimize the number of partitions used for answering a query. This needs to be

extended for a set of queries in which case an objective function need to be estab-

lished. Our experimental evaluation using different properties may throw some light

on this.

Once the initial partition to be used is identified, the system loads that parti-

tion to evaluate the query for its exact matches and continuations. The number of

continuations are added to each partition to determine the next partition to be used.

During the evaluation of a query using a partition, partial answers of the query as

well as continuation node ID (if any) and their partition are written to a file to be

used for determining the next partition. In each iteration this book keeping informa-

tion is appended/updated and this updated book keeping information is used for the

next iteration. We want to see whether a property such as max or min will perform

better than the random property for determining the partial order. An explanation

for selecting a partition having maximum starting nodes in each iteration is to get

maximum number of complete result(s) as well as continuations from that partition.

Similarly, min property may help accumulate continuations and process them later

once. It would be useful if one can establish a property (one or a composition of

40

metrics) that limits the number of a partition may have to be loaded to at most twice

for processing any query or a query load.

Another application of this metric is to identify the distribution of vertex labels

across all the partitions generated by different partitioning schemes. There are few

partitioning schemes- hash based partitioning and random partitioning which cre-

ates partitions based on vertex labels. This approaches creates partitions containing

higher number of homogeneous labels resulting in high edge-cut which increases com-

munication latency amongst all the partitions [33, 34] and the generated partitions

may not be balanced in terms of size. In a distributed environment for processing

queries, homogeneous label distribution can result in severe performance issues as

query having the same starting (seed) label will have to wait for the partition con-

taining the starting node label. In other words, a query waits on the previous query

for the partition.

This metric may shed some light on the relative distribution of a node label

among the partitions. However, it is not clear as to how it can be leveraged for query

processing. Edge-cut information combined with start node information may be more

useful in determining the number of continuation of answers from one partition to

other partitions.

5.1.2 Number of partitions used to evaluate a query

It is clear that all partitions that have starting nodes of a query plan need to

be used (or loaded) at least once for evaluating a query. However, the presence of

partial answers in a partition and its continuation in a different partition makes query

evaluation of partitioned graphs more challenging. This partial answer flow is affected

by the partitioning scheme as well as the number of partitions. It is also affected by

41

the number of connected components within a partition which is further discussed in

the next subsection.

Given a partition of a graph and the query, there is no way to guarantee that

each partition is needed at most once. In some cases, it may be possible to sequence

the partitions to be executed to achieve this. Our goal is to accomplish this wherever

possible by understanding and is possible establishing a relationship between query

processing and the metrics defined in this section.

Figure 5.1 shows the same graph being partitioned using two different schemes

PS1 and PS2. For simplicity, a single query answer is shown on these partitions. It is

easy to infer that when the graph database is partitioned using different partitioning

schemes (PS) the number of partition(s) needed (as well as their order) by the query

can differ. For processing a query over graph database partitioned using partitioning

scheme PS1 in figure 5.1(a), three different partitions are needed to get the complete

results. On the other hand, processing the same query over graph database parti-

tioned using PS2 in figure 5.1(b), only two partitions are needed to get all the results.

Hence, the number of partitions used by a query changes based on the characteristics

of partitioning schemes. This metric provides information on the number of partitions

used by a query as well as number of times the same partition is needed for evaluating

the query. The metric is calculated during query processing a runtime metric.

42

(a) Partition using Partition-
ing Scheme(PS1)

(b) Partition using Partition-
ing Scheme(PS2)

Figure 5.1: Different Partition Quality

Another information provided by this metric is, frequently used partitions to

solve the query. Most of the time queries are related to important nodes in the graph.

For example, in a social network graph it is often seen that one particular user is

followed by a large number of people, making the user an important node and there

can be many such important nodes in a graph. But when the graph is partitioned

multiple important nodes can belong to same partition. If these important nodes are

trending most of the queries will consist of these nodes resulting in frequent usage of

the partition to answer the query. Based on this metric, in a distributed environment

replication of the whole partition on a different machine can be done to efficiently

handle the query workload of a frequently used partition.

5.1.3 Number of connected components in each partition

This metric is useful to determine the extent to which a partitioning scheme

preserves the structure of a graph after it is partitioned into multiple smaller graphs.

43

A graph before partitioning can be viewed as one single clique of connected nodes.

When the graph is partitioned,

1. Each partition can be a completely connected graph.

2. Each partition can contain multiple connected components. In the worst case,

the number of connected components can be equal to the number of nodes in

that partition.

Figure 5.2 depicts a graph database partitioned using two different partition-

ing schemes. In figure 5.2(a) the partitioned graph database using partitioning

scheme(PS1) contains multiple connected components in each partition. On the other

hand, in figure 5.2(b) the partitions generated by another partitioning scheme(PS2)

has one connected components in two partitions and multiple connected components

in one partition.

(a) Partitions using Parti-
tioning Scheme(PS1)

(b) Partitions using Parti-
tioning Scheme(PS2)

Figure 5.2: Partitions of a graph database using two different partitioning schemes

Number of connected components in a partition can adversely affect the total

number of partitions needed (or need to be loaded) to answer a query. For example,

if an answer were to span more than one connected component within a partition,

44

it has to happen through one or more different partitions. This indicates that using

a partitioning scheme that produces less number of connected components in each

partition is better than a partitioning scheme that generates more connected compo-

nents in each partition. This metric can be used to assess the quality of a partitioning

scheme. The edge-cut discussed earlier can be used in conjunction with this to assess

the quality of a partitioning scheme.

Having provided an overview of various problems in processing queries over a

partitioned graph database and metrics to assess the quality of partitioning and query

evaluation, the next chapter we elaborates on the design along with the algorithms for

our approach to process queries over a partitioned graph and evaluation of metrics.

45

CHAPTER 6

DESIGN ISSUES AND ALGORITHMS

The partitioned graph query processor (PGQP) developed by modifying QP-

Subdue as a part of this thesis, aims at processing queries over a partitioned graph

database. It uses the book keeping technique and stores partial and complete results

generated during query evaluation. In this chapter, we discuss working of our system

and algorithms. Following is the architecture of our query processor for partitioned

graph databases.

Figure 6.1: System architecture

As shown in the Figure 6.1, catalog is generated from the graph G (input graph)

which is input to the plan generator. A query plan is generated using the catalog

46

and input query. Catalog generator and plan generator were developed as a part of

QP-Subdue [6]. Partitions of the graph are generated using a partitioning scheme

(METIS, KaHIP) which outputs a single file (partition file) containing information

about the vertex id and partition id. This file is further processed by partition

creator to generate partitions with the representation described in chapter 4.1. The

partition files with PGQP representation is used to calculated number of connected

components in each partition. Query plan, graph G and partition file are input to

the initial starting partition and outputs start node info (SNI) file which contains

information about partition id, occurrence, start label and vertex id of the start node

of the query plan. After start node info file is generated, partition chooser selects

a partition to initiate query evaluation. Once a partition is selected, PGQP takes

query plan, partition of a graph database and start node info file to process the query

on the graph database and outputs complete and continuing answer file. PGQP can

also generate new start node info file which is interpreted by the partition chooser

to select a partition to be loaded in next iteration. This is continued until no more

answers need to be processed. At the end, log file is processed to calculate metric

for computing Metric-2 (number of times and sequence of partition loading). In the

following section we discuss details of each component described in Figure 6.1 along

with the algorithm.

6.1 Partitioning Graph Database

The goal of graph partitioning scheme is to divide the graph database in to k

smaller parts such that it minimizes the edge-cuts set while preserving the structure

in the partitions. Many large scale graph partitioning tools are available. In our

approach, to process queries over any size of graph database we use existing graph

partitioning schemes such as- METIS and KaHIP. A given graph G is partitioned in

47

to k partitions such that each partition fits into the available main memory. Consider

the graph in Figure 6.2 which is partitioned using METIS [12] into two different

partitions.

Figure 6.2: Partitioned graph database using METIS

The figure above shows two partitions of the graph database. The dotted edges

form the edge-cut set. The partitions are shown in figure 6.3 which are generated by

METIS. KaHIP generated similar partitions but the format is same. In our approach,

the partitions are not used in the way they were generated. But we pre-process this

partitions and replication of edge cut along with the node is done which helps in

effective query processing for queries spanning multiple partitions. It is also clear

that the structure of the original graph changes which can affect query processing.

48

In partition P1 there are two different components while in partition P2 there is only

one connected component.

(a) Graph partition P1 (b) Graph partition P2

Figure 6.3: Two partitions of graph database 6.2

6.2 Connected components

As discussed earlier, in this work we use a metric for finding connected compo-

nents in every partition of graph database. As shown in the figure 6.1, this metric is

calculated separately (offline). In other word, this metric does not include any query

evaluation information. It only requires partitions of the graph database in PGQP

representation. This metric can be calculated after query processing or before query

processing but not for all the queries. Hence, if the partitioning scheme is changed

or graph is repartitioned this metric needs to be recalculated for accurate informa-

tion. In our approach, we use sets to find connected components. The algorithm for

calculating connected components is discussed in Algorithm 1.

49

Algorithm 1 Connected Components Algorithm

1: Input : PGQP Format Partition Files for each partition i (i = 0 to k)

2: Output : # of connected components in each partition

3: initialize totalSets=0, Map<vertexId, setId> M = null, vertexList = null

4: for each edge e in partition i do

5: Get the source vertex id(svid) and destination vertex id(dvid)

6: if findSet(svid) = -1 and findSet(dvid) = -1 then

7: Increase totalSets by 1

8: M ← add svid and dvid with value = totalSets and update ver-

texList[findSet(svid)] ← add svid and dvid

9: end if

10: if findSet(svid) 6= -1 and findSet(dvid) = -1 then

11: M ← add dvid with value = findSet(svid) , vertexIdList[findSet(svid)] ←

add svid and dvid

12: end if

13: if findSet(svid) = -1 and findSet(dvid) 6= -1 then

14: M ← add svid with value = findSet(dvid) , vertexIdList[findSet(dvid)] ←

add svid and dvid

15: end if

16: if findSet(svid) 6= -1 and findSet(dvid) 6= -1 then

17: if findSet(svid) = findSet(dvid) then

18: vertexIdList[findSet(svid)] ← add svid and dvid

19: else

20: Merge(findSet(svid), findSet(dvid)); totalSets = totalSets - 1

21: end if

22: end if

50

23: end for

24: function findSet(vertexId)

25: for each vId in M do

26: if vId = vertexId then

27: return SetId

28: end if

29: end for

30: return −1

31: end function

32: function Merge(set1 , set2)

33: if vertexList[set1].size < vertexList[set2]. size then

34: vertexList[set1] ← add vertexList[set2]

35: for each vid in vertexList[set2] do

36: update M ← vid with value=set1

37: vertexList[set2] = null

38: end for

39: else

40: vertexList[set2] ← add vertexList[set1]

41: for each vid in vertexList[set1] do

42: update M ← vid with value=set2

43: vertexList[set1] = null

44: end for

45: end if

46: return

47: end function

51

The algorithm for connected components takes the PGQP format partition file

(each partition separately) as input and outputs number of connected components

in each partition (line 1 to line 2). The algorithm uses totalSets to count number of

connected components, map M which maintains vertex id and set to which it belongs

and vertexList array for tracking of all the vertex in ith set (line 3). For the source and

destination vertex in the edge, algorithm finds the set to which it belongs and assign

appropriate set, merging of set can occur if both the vertex id belongs to different set

(line 6 to line 22). The algorithm continues for all the edges in partition file (line 4

to line 23).

6.3 Initial Starting Partition

For a given query Q, a plan is generated using the query optimizer (catalog

generator and plan generator) developed in QP-Subdue [6]. In other words, query

plan(QP) is a sequence in which the query evaluation must be done. The metric used

for determining the quality of a plan is the number of intermediate substructures

generated during the evaluation of a query. The more the number of intermediate

substructure, more effort is needed to evaluate a query which translates to a costly

plan. Figure 6.4 shows the graphical representation of the query “Find persons who

have worked as actors in the movie Beyond all boundaries in 2011” and figure 6.5

shows the query plan.

Figure 6.4: Graphical representation of query

52

Figure 6.5: Input query plan to PGQP

For a given query Q and partitions (G0,G1,...,Gk) of graph database, the start

node label of query can be present in single partition or multiple partitions. The

partitioned graph query processor (PGQP) requires to load a relevant partition in

order to evaluate the query for its exact results. The first step for evaluating a query

on partitions of the graph database is to identify all partitions containing the starting

label of the query plan. The algorithm for finding the initial starting partition (ISP)

is discussed in Algorithm 2 which generates a Start Node Info (SNI) file shown in

Figure 6.6(a) for the query plan of Figure 6.5. During evaluation of the query, if

another partition is required for further computation the partitioned graph query

processor writes the continuing start label (frontier node) to a new start node info

file (book keeping) as the starting node(s) in that partition shown in Figure 6.6(b).

In our approach, if there are multiple partitions containing the starting label of the

query, selection of partition is done based on the number of occurrence of starting

nodes. In other words, a partition can be selected based on maximum or minimum

number of occurrence of start nodes.

(a) Computed starting node by metric-1 (ISP) (b) Continuation info written by PGQP

Figure 6.6: Start Node Info File (Book Keeping)

53

Algorithm 2 Initial Starting Partition Algorithm

1: Input : Subdue Format Graph (Input Graph G), Partition File (Partitioning

Scheme Output), Query Plan

2: Output : Start Node Info (SNI) File

3: Get the starting label S from the query plan

4: Create a Map<Partition #, Count> M ← null

5: for each vertex v in the subdue format graph do

6: Match the vertex label VL with S

7: if VL matches get the vertexId(vid) then

8: Get the partition id from Partition File

9: if partition # exist in M then

10: count++

11: else

12: Add the partition # and initialize count ← 1

13: end if

14: end if

15: end for

16: for each partition # in M do

17: Write out partition Id, count, label, vid ← null and edgeLabel ← null to

Start Node Info . SNI File

18: end for

The algorithm for initial starting partition takes subdue format graph (input

graph G), partition file (partitioning scheme output) generated by METIS or KaHIP

and query plan as input and outputs start node info file which consists of information

54

about partition(s) containing the starting node label of the query plan (line 1 to line

2). The algorithm starts by getting the starting node label from the given query

plan and creates a map which maintains the partition id and the occurrence of the

starting node label in that partition (line 3 to line 4). The algorithm now matches

the starting node label of the query plan with the label of each vertex in the original

graph (line 6). For every matching label, the algorithm takes the vertex id and gets

the information about partition id from Partition File (Partitioning Scheme Output

file) (line 8). The occurrence for corresponding partition id in the map is updated

accordingly (line 9 to line 14). Algorithm continues till all the vertices of the subdue

format graph are visited at least once (line 5 to line 15).

6.4 Partition Chooser

Once the initial starting partition(s) are identified, the partition chooser selects

a partition which has maximum or minimum number of starting nodes. In each itera-

tion the partition chooser maintains the sequence in which the partition(s) are loaded

to evaluate the query for its complete answers. Also, partition chooser is responsible

for making calls to partitioned graph query processor (PGQP) and providing rele-

vant information about the graph partition, query plan and the start node info file

which contains information of all the nodes starting in that partition. In every itera-

tion, PGQP can generate new start node info file which contains the starting nodes

for intermediate results. Hence, in each iteration the partition chooser computes for

partition containing maximum or minimum occurrence of starting nodes.

Since, the partition chooser computes the sequence in which partitions should

be loaded during evaluation of query. Partition usage information is generated as a by

product. This information need simple processing for counting which partition was

used how many times. The sequence provides information about the way in which

55

partition(s) were loaded. In section 5.1.2, importance of partition usage information

has been discussed. The algorithm for partition chooser is discussed below.

Algorithm 3 Partition Chooser algorithm

1: Input : Start Node Info (SNI) File, Query Graph, Selection

2: Output : Query Results

3: initialize currentSnifile with sniFile

4: while true do

5: if currentSniFile 6= null then

6: if Selection = max then

7: pid ← PartitionSelection(currentSnifile, Selection)

8: else

9: pid ← PartitionSelection(currentSnifile, Selection)

10: end if

11: PGQP(Graph pid, query graph, currentSniFile, newSniFile)

12: currentSniFile ← newSniFile

13: else

14: break

15: end if

16: end while

17: function PartitionSelection(sniFile , selectBy)

18: create a map<PartitionId, Count> M ← null

19: while EOF do

20: get the partitionId and occurrence from sniFile

21: if M contains partitionId then

22: get the Count

56

23: if occurrence 6= null then

24: Count ← Count + occurrence

25: else

26: Count ← Count++

27: end if

28: end if

29: end while

30: inititalize i leftarrow 0 and partitionArray ← null

31: if selectBy = random then

32: for each partitionId in M do

33: initialize the partitionArray[i++] ← partitionId

34: end for

35: randomPartition ← random.nextInt(partitionArray.length-1)

36: partitionId ← partitionArray[randomPartition]

37: else

38: for each entry in M do

39: get the partitionId containing count based on selectBy

40: end for

41: end if

42: return partitionId

43: end function

Above is the algorithm for the Partition Chooser. This algorithm takes the

Start Node Info (SNI) file, query graph and selection (min or max) as input and

generates query result(s) as an output (line 1 to line 2). The sequence of loading a

57

partition can be decided based on partition containing maximum or minimum number

of starting nodes (line 6 to line 10). Partition chooser calls the Partitioned Graph

Query Processor (PGQP) with relevant partition of the graph database, SNI file and

query graph and the new SNI file which is empty and acts as book-keeping for next

iteration (line 11). After each call to PGQP, a new SNI file may be generated which

is used the partition chooser to select a relevant partition for processing query in the

next iteration (line 12). Algorithm continues until the new SNI file is empty which

means no answers needs to be processed (line 4 to line 16).

6.5 Partitioned Graph Query Processor (PGQP)

In this section, we discuss the modifications in the QP-Subdue to enable it to

process queries over partitions of a graph database. As discussed earlier in previous

chapters that QP-Subdue is a graph querying system which takes the graph database

and a query plan as an input to find all the exact matches of the query. For processing

queries over partitions of graph database, the system needs to keep track of partition

id of the vertex. This information helps the system to track continuing answers

(intermediate result) in other partitions as well as storing the frontier vertex along

with its vertex id and label in the start node info file as book keeping information.

Since, we process the query by sequentially loading a partition in each iteration a

new start node info file is written. Another modification we did to QP-Subdue is,

creation of substructures from the start node info file. When a graph partition is

loaded, substructures are created from a frontier node of start node info file only if

the partition id of the loaded partition and partition id of the frontier node is same

otherwise the frontier node is written to a new start node info file.

Processing queries over partitioned graph database is different from single graph

database. In our approach, to process queries over partitioned graph database, the

58

system needs a relevant partition to compute the query results and query plan which

restricts the expansion to the particular node with specified edge label. We also

support multiple operators <, <=, >, >=, ! =, and = in a query. When the node is

expanded to the desired node label, operators are checked to ensure that whether the

node (which algorithm is going to expand upon) meets the condition. If the node does

not meet the condition it is discarded. Also if the expanded node meets the criteria

but belongs to different partition, the intermediate result is stored and book-keeping

is done in the form of new start node info file. We continue until all the nodes and

edges in the plan get covered. Following is the algorithm for partitioned graph query

processor (PGQP).

Algorithm 4 Partitioned Graph Query Processor (PGQP) algorithm

1: Input : Partition of graph database, Query graph, Current Start Node Info (SNI)

File, New Start Node Info File

2: Output : Complete and Continuing Answer File, New Start Node Info File

3: Get the currentPartitionId from currently loaded graph partition

4: if partitionId of starting node label of the currentSniFile = currentPartitionId

then

5: Create substructure for starting node label of the order file

6: else

7: Create a new start node info file(book-keep) and write the label

8: end if

9: while all the nodes and edges in the plan get visited do

10: if partitionId of expanded node matches currentPartitionId then

11: Expand the current node of substructure to the desired node with specific

edge based on the plan

59

12: else

13: write out partitionId, label, vertexId and edgeLabel of expanded node to

new start node info file; intermediateList ← add newly expanded information

14: end if

15: end while

16: Write out complete results and intermediate results; Done

The algorithm for partitioned graph query processor (PGQP) takes a partition

of the graph database, query graph and start node info file as input and outputs all the

exact matches which can be complete and/or intermediate of the query, new start node

info file containing the starting nodes for continuing (intermediate) results in relevant

partition (line 1 to line 2). Each plan is a sequence of nodes to be traversed. This

algorithm starts by getting the partition id of the currently loaded graph partition

from its file name (line 3). In the next step, substructures are created for the starting

node label of the start node info file present in currently loaded partition of the graph

database (line 4). The other starting points not relevant to the currently loaded

partition are written out to new start node info file (line 7). The substructures are

expanded to next node as specified in the plan if next node belongs to same partition

otherwise the next node is added to new start node info file generated in line 7 and

the intermediate result is stored. The algorithm keeps on expanding the nodes to the

desired nodes according to the plan until all the nodes and edges get covered (line 9

to line 15).

60

Figure 6.7: Results from the plan executor for the input query plan

After executing the query plan of figure 6.5 in modified QP-Subdue results are

shown in the above Figure 6.7 in the form of a graph which are the exact matches.

The system utilized both the partitions to compute the given query. Two nodes of the

query are found in partition-1 while the rest of the four nodes are found in partition-

2. In this chapter we have explained the design of the system architecture and also

elaborated the detailed algorithm of each component involved. Having provided this

discussion, in the next chapter we elaborate the implementation aspects and present

our findings for our approach with experimental results.

61

CHAPTER 7

IMPLEMENTATION DETAILS

This chapter provides a brief overview of the system implementation. The

system consists various modules namely- Catalog generation, Plan generation, Par-

titioning schemes, Partition graph creator, Initial start info file generator (Metric-1),

Partition chooser, and Partitioned graph quer processor (PGQP). The catalog gen-

erator and plan generation modules has been inherited from QP-Subdue [6]. All

the other modules are developed as a part of this work and explained in detail with

examples.

The partition chooser is implemented in Bash Script. Bash Script has been

chosen as the language of choice, as it provides excellent support for working with

files and getting data from one program into another (assuming that data is text). The

partitioned graph query processing (PGQP) algorithm is implemented in C as it is a

modification of the QP-Subdue system that has been implemented in C. QP-Subdue

itself is a modification of Subdue mining algorithm which has been implemented in C

and is a main memory algorithm in that the entire graph is loaded and a main memory

representation is created before starting mining. The QP-Subdue modification has

introduced constrained expansion without modifying the main memory aspect of the

algorithm.

The choice of using an interpreted language for developing the various modules

of our system is mainly to present the user a single invocation with minimum amount

of input in the form of a graph and the queries. Multiple files are written over

the course of this execution and multiple programs with appropriate parameters are

62

invoked. A configuration file is input containing the minimum parameters (including

partitioning schemes until that time when we can decide it automatically). This

provides ease of use and has a very insignificant learning curve. This does not have

any penalty on the overall performance. In order to make it easier for a user, the

inputs are kept to minimum and a configuration file is used to provide either defaults

or user-provided choices. A scripting language is used to accept the configuration

file containing all the information. The configuration file contains all the named

parameters needed (allows for comments for understanding of the configuration file

by others or for later analysis; default values are used if no user-input value is provided

for a parameter) for the PGQP system to process a query on a graph database. The

partitioned graph query processor system consists of the following modules:

1. Preprocessing of input graph (Subdue format), is done to generate METIS/KaHIP

format representation to partition the graph.

2. Graph Partitioning system, which is used to generate k partitions for a given

graph database. The partitioning algorithm to be used as well as the partition-

ing scheme and the number of partitions can be specified.

3. Postprocessing of partitions, is done to generate all the partitions with vertex,

its id and label along with edge, its node IDs and label. This step is carried

out because METIS/KaHIP generates a single output file in which each line

represents a vertex ID and contains the partition ID.

4. Augmenting subdue input with partition information, in this step we add par-

tition number to all the vertices in the graph which is further utilized by PGQP

to detect cross-partition edges.

5. Computation of metric 1 and 3, after partitioning and generation of subdue

format partitions we compute the the number of connected components (Metric-

63

3) with each partition using the edges. Metric-1 (Number of starting nodes in

each partition) is also generated to initiate the query processing using PGQP.

6. A query plan is generated using QP-Subdue for the query provided. To generate

the query plan, the metadata catalog is generated for the input graph database

7. Partition chooser, decides the relevant partition to load, interpret the start node

info file to guarantee all the exact matches for the given query

8. Partitioned graph query processor, takes a partition of graph database, a query

plan, start node info file and outputs the complete and intermediate answers

to that plan and may generate new start node info file for answers crossing the

partition.

Using the plan and the output of partitions, the metric “number of starting node

in each partition” (Metric-1) and order of partition usage are determined by a program

implemented in Java. The order of partition usage is determined using alternative

metric values (e.g., Max, Min, random) for understanding their effects. These can also

be specified as part of the configuration file. And the number of connected components

in each partition (Metric-3) is also computed after the partitioning of the graph

database (is a program implemented in Java). Java has been chosen as the language

of choice, as it provides excellent support for string processing. In the implementation

of the various routines, we have been able to optimize greatly due to the use of Java,

which is geared towards string processing and substring extraction. The availability

of pre-developed classes and methods for many routine tasks and the ability to handle

complex data structures that have been utilized in the implementation justify its use.

In the discussion that ensues we will briefly describe some of the implementation

aspects of the various modules and the set of configuration parameters used.

64

7.1 Configuration Parameters

The partitioned graph query processor (PGQP) system accepts parameters for

different tasks in the form of a configuration file. We have provided options for

various parameters such as selection of graph, choice of graph partitioning algorithms,

choice of graph partitioning schemes for the chosen algorithm, number of partitions

to be generated and so on. Also, values of certain other parameters that are are

used by the underlying system for substructure discovery are provided. In the case

where certain parameters are absent in the configuration specification, the system

uses default values for the same. Listed below are the set of configuration file options

for various parameters.

1. Input Graph File: over which queries need to be processed. Specified as a file

name with a specific file format.

2. Input Query File: The query which the user wants to evaluate on the above

graph database.

3. Log File: The file name to log the results of plan generation, partitioning scheme

and various other parameters used by the system to evaluate the query on

partitioned graph.

4. Catalog Output: The file to which generated catalog is stored for the given

input graph. Catalog is further used for generating query plans.

5. Selection criteria for Plan: Generation of query plan for the given query. Pos-

sible values can be min, max or k. If k is large, all plans are generated. A min

plan has a lower estimated cost than any other possible plan.

6. Plan Output File: The file to which the generated query plan is written.

7. Partitioning Scheme: This parameter specifies which partitioning schemes should

be used. Possible schemes can be METIS and KaHIP. And it takes i number

of the partition as input to generate i partitions of the given graph. Also, it

65

takes different heuristics values to partition the graph. In case of METIS the

possible configuration for partitioning and coarsening can be (k-way, recursive

bisection) and (random, sorted heavy edge matching) respectively. while for

KaHIP the configuration can be eco, ecosocial, fast and fastsocial.

8. Partition Selection: In our system, we allow the user to decide the order of

loading the partition based on the number of starting points in the partition(s).

The values for this parameter can be min, max, random. In case of min the

system load a partition which has minimum number of starting points and vice-

versa if max is used. This value is re-computed after each partition usage based

on the number of continuations in other partitions. The ordering is re-evaluated

after the query is evaluated on each partition. The same partition may have to

be used again depending on the answer distribution among the partitions.

9. Output Query Result File: The file to which all the exact result(s) of the query

is written. This file contains all the complete and intermediate results generated

during query evaluation over partitions of a graph database.

Above are the parameters that can be specified to the partitioned graph query

processor system. We think they cover a range of issues we have addressed as part

of the thesis, including graphs from different domains, different partitioning schemes,

different ways to load relevant partition(s) and so on. With this overview of the

configuration settings, we can move onto the details of graph generation.

7.2 Graph Generation

The graph data set used in this work are DBLP, IMDB and synthetically gen-

erated graph using SubGen (included along with subdue). The DBLP data set is

in the form of XML file which consist of tags to represent author, paper, conference

and year. This XML data is parsed to create a subdue format graph which consists

66

of vertices, edges and their corresponding labels. In this work we have used author,

paper, conference and year as vertex labels and the edge labels show the relation-

ship between these vertices. Similarly, the IMDB data set is in the form of JSON

object which consist of movie information, year, genre, person, gender and movie

company. These JSON objects are parsed to create subdue format graph where each

vertex represents an instance of either movie information, year, genre, person, gen-

der, movie company and edges represents relationship amongst these instances. The

synthetic graph is generated using SubGen which generates a subdue format graph

with predefined number of vertices, edges, unique vertex and edge labels. Hence, no

preprocessing is required.

7.3 Partition Chooser

Initial starting partition takes a query plan, input graph database and partition

file as input. Based on the starting node label of the query plan it finds all the relevant

partitions containing the starting node label and generates a start node info file. This

file has a line for each partition consisting of the partition number, node label, and

a list of vertex ids if available for that node label in that partition. There is a line

for each partition if there is a start node in that partition. Figure 7.1 shows the

representation of start node info file (SNI file). This information in the start node

info file is used to sequence the loading of a partition by the partition chooser using

the min, max, or random criterion specified by the user.

67

Figure 7.1: Start node info file (SNI File)

After choosing a relevant partition, partition chooser calls the partitioned graph

query processor (PGQP) by passing partition of the graph database, query plan, start

node info file and a new start node info file. While computing the query result if

PGQP generates a new start node info file. The partition chooser interprets this

newly generated information for loading a partition in the next iteration. Also, if the

new start node info file is empty the system will terminate as the query is completely

evaluated and all the exact matches have been found and are stored in a file. The

partition chooser generates partition usage information using all the files generated

and used during the evaluation of a query and is processed separately to find out

number of times a partition was used during query evaluation. The sequence of

loading a partition is logged in the log file which can be analyzed for the selection of

partition in each iteration. With the implementation overview of partition chooser,

the details of the plan executor is explained in the following section.

7.4 Partitioned Graph Query Processor (PGQP)

The partitioned graph query processor (PGQP) developed by modifying QP-

Subdue system carries out processing of a query over the partitions of a graph

database. The partition chooser invokes the partitioned graph query processor it-

eratively by supplying parameters needed- partition of the graph database, query

68

plan, start node info file and new start node info file. In the previous chapter, we

have discussed the algorithm (Algorithm 4) for PGQP. Partitioned graph query pro-

cessor first processes the partition of the graph database and stores the information

of vertices and edges along with the partition identifier to track results crossing the

currently loaded partition. Figure 7.2(a) depicts an example of a vertex and an edge

of graph in PGQP format. The plan file contains the sequence of nodes with operators

and edges with their labels. A sample plan file is as shown in figure 7.2(b).

(a) PGQP graph representation (b) Query plan file

Figure 7.2: Input graph and query plan of PGQP

Modified QP-Subdue (PGQP) starts the discovery process by finding the start-

ing node mentioned in the start node info file relevant to the currently loaded parti-

tion. If the frontier node in the start node info file does not belong to the currently

loaded partition, it is written to the new start node info file. From the plan file, next

node along with edge label and operator is looked up.

After the first iteration, all these instances (starting nodes) are expanded in all

possible ways but only those substructures are kept which meet the conditions (next

69

node label, edge label connecting both the nodes and operator) specified in the plan

file. For the substructure meeting the condition but requires a different partition for

further evaluation are considered as continuation (intermediate) nodes and are added

to the intermediate list. Thus, the node(s) which crosses the partition is treated as

starting nodes for that partition which will be added to the new start node info file

before the substructure containing continuing result(s) are discarded. This process

continues until all the nodes and edges in the plan file get visited. The complete

and/or continuing results generated are written out to the output result file. If there

are no intermediate results crossing the partition for further computation and new

start node info file is empty and the system terminates.

With the detailed overview of our implementation. In the next chapter, we

discuss the experimental analysis of various queries evaluated on partitioned graph

database using different partitioning schemes and metrics to evaluate partitioning

schemes in presence of query processing.

70

CHAPTER 8

EXPERIMENTAL EVALUATION

This chapter presents the results of extensive experimental analysis performed

on evaluating queries with different characteristics on partitions of graph databases

generated by different graph partitioning schemes. The experimental results are

meant to ascertain two aspects: i) queries are processed correctly over partitioned

graph databases irrespective of the approach used for partitioning and ii) understand

the effects of partitioning on query evaluation to associate (if possible) partitioning

schemes with efficient query evaluation. Also, the purpose of these experiments is

to test various metrics identified in the previous section and their impact on query

evaluation. The correctness as well as the performance of our system across different

types of queries, graph databases and different graph partitioning schemes establishes

the applicability of our proposed approach for processing queries over partitions of a

graph database. Additional work is needed to establish and validate conclusions.

As we have considered different real world and synthetic graph databases and

queries, the performance of query evaluation and different metrics for each partitioned

graph database is presented in detail in a separate section. The experimental setup

and a brief description of the data sets used are also provided.

8.1 Experimental Analysis

The results of processing queries over partitioned graph database are discussed

in this section. All experiments have been carried out on Dual Core AMD Opteron

2 GHz processor machine with 16 GB memory. Extensive experiments on different

71

queries with diverse characteristics have been carried out to study the behavior of

queries on partitions generated using a different graph partitioning scheme. For this

work, we have used three different data sets- DBLP, IMDB and synthetic graph to

perform our experiments. To test the correctness of our approach, we need to make

sure PGQP gives the same results as the QP-Subdue which is a non-partitioned, main-

memory query processor for graph databases. The largest graph size we have been able

to handle in QP-Subdue on our 16GB machine is 550K nodes and 1700K edges. The

DBLP data set contains the information of publications along with the information

of their authors, conferences and years. Similarly, IMDB graph database contains

the information of movies, actors, genres, year, company, etc. And the synthetic

graph contains 2000 unique vertex labels and 4000 unique edge labels which provides

duplication of labels in the graph resulting in the computation of many possible

answers.

For the above mentioned graph databases, we took queries having different

characteristics that are relevant to the partitioning problem, such as query answers

are completely inside a single partition, query answers spanning multiple partitions

for exact results, and and queries that need to use the same partition more than

once. We have also used queries with a comparison operator (<, <=, >, >=, ! =,

=), queries with a combination of multiple comparison operators, queries with logical

operator (OR, AND) and queries with a combination of logical and comparison oper-

ators. Query plans were generated for all the queries on DBLP and IMDB data sets.

For queries on the synthetic graph, instead of generating a query plan, known and

embedded substructures were used. This is mainly because of the limitation of QP-

Subdue needing type nodes and the synthetic generator does not generate any type

nodes. Intuitively, a plan which generates less number of intermediate substructures,

should take less amount of time to evaluate. Therefore the minimum cost plan would

72

be a plan which will span partition(s) for minimum number of intermediate substruc-

tures among all possible plans. The following sections describes query processing on

the set of graph databases used for experiments along with an introduction to the

data set used for experimenting along with presenting and discussing the results.

8.2 Querying a partitioned DBLP graph

The DBLP data set contains information about authors, papers, conferences

and years as vertex labels and edges showing relationship among these vertex labels.

For this data set, we have made three different types of queries. Query-1: “Find

authors and papers in the conference ‘Object Oriented Programming, Systems, Lan-

guages and Applications”’ show an example of a query containing a logical operator.

In this query the results would contain authors and their publications in the given con-

ference by accessing multiple partitions of a graph database. Query-2: “Find authors

along with their papers and conferences in year 2005” contains both comparison and

logical operators. The results for this query will include authors their publications

and conferences particularly in year 2005. This query uses a partition more than

once for its evaluation for most of the partitioning schemes used. Finally query-3:

“Find author(s) who published ‘Transaction Management in Multidatabase Systems’

along with the conference AFTER the year 1990” which again contains comparison

and logical operator but all the results are found inside a partition for most of the

partitioning schemes. For these queries detailed discussion of their computation and

evaluation of all the metrics is presented in this section.

The DBLP graph consists of 1600K (or 1.6M) vertices and 4800K (or 4.8M)

edges. In this thesis, we have used all four configurations of METIS namely-, k-way

as partitioning type and random matching (rm) as coarsening type, kway as parti-

tioning type and shorted heavy edge matching (shem) as coarsening type, recursive

73

bisection (rb) as partitioning type and random matching (rm) as coarsening type,

recusive bisection (rb) as partitioning type and sorted heavy edge matching (shem)

as coarsening type to partition the graph into 4 partitions. The resulting partition

contains around 450K vertices and 1300K edges in each partition including replica-

tion of the edge-cuts along with its node. For the same data set, we also used all the

four configuration of KaHIP to partition the graph into 4 partition. Note that the

number of partitions can be tailored to the available memory and machine character-

istics. The configurations are fast, eco, fastsocial and ecosocial. When ‘fast’ is used

for partitioning the graph in minimum amount of time while ‘eco’ is used for a good

tradeoff between partition quality and execution time. Configurations with a social

in their name are used for social networks and web graphs.

Figure 8.1: Connected components generated by METIS for DBLP graph

After partitioning the graph into four parts. We compute the number of con-

nected components(metric-3) in all the partitions. Figure 8.1 shows connected com-

ponents generated by different configurations of METIS and Figure 8.2 shows com-

ponents generated by all four configurations of KaHIP. It is clear that the maximum

number of connected components generated by METIS using recursive bisection as

74

Figure 8.2: Connected components generated by KaHIP for DBLP graph

the partitioning algorithm and random matching as the coarsening algorithm is 73863

while KaHIP has generated maximum of 22749 number of components using fast con-

figuration which is 4 times less than the maximum components generated by METIS.

Also, KaHIP with ecosocial configuration has generated 29854 minimum number of

connected components amongst all the configuration of KaHIP and METIS. This is as

expected, since ecosocial takes huge amount of time as compared to other configura-

tion of KaHIP and METIS for finding good partitions of the graph. The performance

of different queries on partitions generated using ecosocial is likely to take less amount

of time for their computation due to less number of connected components. To un-

derstand the relationship between connected components and queries in the following

section we use metric-2, number of times a partition was used to compute the query.

It appears that the number of connected components has a bearing on the number of

partitions needed as well as the number of times a partition is needed for processing

the query.

To process query-1, query-2 and query-3 on DBLP graph, the first step is to

identify the starting node labels across all the partitions. Figure 8.3 represents start-

75

Figure 8.3: Starting node label information for METIS generated partitions of DBLP
graph

ing node vertices (or vertex IDs) for the starting node label in partitions generated

by different configurations of METIS. From the figure, it is evident that for a given

query starting node labels can be present in different partitions. For example, the

starting node label of query-1 is present in partition-1 when METIS is used with

configuration kway rm while for kway shem, rb rm and rb shem the starting node

label is present in partition-3, partition-4 and partition-2 respectively. Similarly,

Figure 8.4 represents starting node label in partitions generated using KaHIP with

different configurations. As expected the starting node labels of query-1, query-2

and query-3 belong to different partitions generated using different configurations of

KaHIP. From Figure 8.4 another noticeable observation, for query-2 the starting node

label belongs to partition-2 for fast, fastsocial and ecosocial configurations of KaHIP.

This reinforces that starting node label of the query can belong to same or different

partitions which are generated using different partitioning schemes.

76

Figure 8.4: Starting node label information for KaHIP generated partitions of DBLP
graph

Figure 8.5 and Figure 8.6 provide information about number of times a partition

was loaded (metric-2) to compute query-1, query-2, and query-3 for its exact matches

on partitions generated using METIS and KaHIP respectively. The partition usage

information is based on selecting a partition containing maximum number of starting

node labels. Evaluation of query-1 used multiple partitions on different configuration

of METIS and KaHIP. For social and ecosocial configuration, query-1 utilized single

partition while on partitions generated using rb shem configuration of METIS query-

1 has utilized three different partitions. Computations of query-2 have used multiple

partitions where one of the partition is used more than once for most of the partitions

generated using different configurations of METIS. On the other hand, query-2 uses

multiple partitions on KaHIP but for social configuration partition-3 has been utilized

more than once and for ecosocial configuration single partition is used to get the exact

matches. Processing of query-3 on partitions generated by different configurations

of METIS and KaHIP utilizes single partition for all of its matches. For rb rm

configuration of METIS, computation of query-3 used two different partitions.

77

Figure 8.6: Partition usage information for KaHIP generated partitions (selection =
max)

Figure 8.5: Partition usage information for METIS generated partitions (selection =
max)

The results of metric-2 reinforces our premise of the partitioning scheme which

generates less number of connected components tends to produce exact matches by us-

ing minimum number of partitions. The ecosocial configuration of KaHIP has utilized

minimum number of partitions for query workload containing query-1, query-2, and

query-3. The execution for all the queries on different configurations of METIS and

78

KaHIP are shown in Figure 8.7 and Figure 8.8 respectively. Thus, all the queries take

less execution time on partitions generated using different configurations of KaHIP

as show in Figure 8.8.

Figure 8.7: Query execution time on partitions generated by METIS for DBLP graph

Figure 8.8: Query execution time on partitions generated by KaHIP for DBLP graph

79

8.3 Querying partitioned IMDB graph

The IMDB data set contains information about movies, year, genre, person,

gender, movie company as vertex labels and edges represents relationship among

these vertex labels. For this data set, we use three different queries. Query-4, “Find

tv-series and its company name by “Kelsey, Wagner” where genre should be animation

AND comedy” shows an example of a query containing a logical operator. Results for

query-4 will contain all the tv series and production companies which have comedy

and animation as genre. For most for the partitioning scheme, this query uses a

partition more than once for obtaining results. Query-5, “Find movie and its company

by “Adam Sandler” where the genres should be comedy AND Sci-Fi but the year

should be NOT EQUAL to 2000” contains both comparison and logical operators.

The results for this query will include movies with comedy and Sci-Fi genre and its

production company by accessing multiple partitions of a graph database. Query-

6, “Find all the companies where “Fred Wolf” has worked as a writer OR “Salma

Hayek” has worked as an actress” contains the OR logical operator. All the results

of query-6 are found inside a single partition for most of the partitioning schemes.

In this section, we present a detailed discussion of our experimental analysis of these

queries with respect to the metrics proposed.

The IMDB graph consists of 1750K (or 1.75M) vertices and 5100K (or 5.1M)

edges. In this thesis, we have used four configurations of METIS and four configu-

rations of KaHIP to partition the graph in four partition. The resulting partitions

contain around 500K vertices and 1500K edges in each partition including replica-

tion of the edge-cuts along with its node (PGQP representation). After partitioning,

we compute the number of connected components(metric-3) in all the four parti-

tions. Figure 8.9 shows connected components generated by different configurations

of METIS and Figure 8.10 shows components generated by all four configurations of

80

Figure 8.9: Connected components generated by METIS for IMDB Graph

KaHIP. From the figure, it is clear that rb rm configuration of METIS has generated

96525 number of connected components which is the highest amongst all the configu-

rations. This partitioning scheme also seems to distribute the connected components

somewhat evenly among all the partitions. On the other hand, ecosocial configura-

tions of KaHIP has generated minimum number of connected components as expected

which is 40975.

Figure 8.10: Connected components generated by KaHIP for IMDB Graph

81

Figure 8.11: Starting node label information for METIS generated partitions of IMDB
graph

As discussed earlier, we compute the starting node info file for each query

(query-4, query-5 and query-6). Figure 8.11 represents starting node label in par-

titions generated by a different configurations of METIS. From the figure, it is

clear that for query-4 the starting node label is present in partition-1, partition-

3, partition-2 and partition-3 when METIS is used with configuration kway rm,

kway shem, rb rm and rb shem. While for query-5 the starting node label is present

in partition-1, partition-2, partition-1 and partition-2 for kway rm, kway shem, rb rm

and rb shem configuration of METIS, and for query-6 the starting node label is

present in parition-2, partition-1, partition-3 and partition-4 for kway rm, kway shem,

rb rm and rb shem configuration of METIS. Similarly, Figure 8.12 represents start-

ing node label in partitions generated using KaHIP with different configuration. As

expected the starting node labels of query-4, query-5 and query-6 belongs to different

partitions generated using different configurations of KaHIP. From Figure 8.11 and

Figure 8.12 it is evident that starting node label of the query can belong to same or

different partitions which are generated using different partitioning schemes.

82

Figure 8.12: Starting node label information for KaHIP generated partitions of IMDB
graph

Figure 8.13: Partition usage information for METIS generated partitions of IMDB
graph (selection = max)

During evaluation of query partition chooser keeps track of number of times a

partition was loaded (metric-2) to find the answers. For computing all the answers

for query-4, query-5 and query-6 Figure 8.13 and Figure 8.14 provide information

about number of times a partition was loaded which were generated using METIS

83

and KaHIP respectively. The partition usage information is based on selecting a par-

tition containing maximum number of starting nodes in a partition. Computation

of Query-4 has used three distinct partitions for one partitioning scheme (rb shem)

and has used four for the rest where one partition has been used twice. Certainly, in

the absence of multiple use of the same partition, it would have been three. Hence,

rb shem partitioning scheme is better for this query than the others. It turns out the

partitioning scheme rb shem is also better for this workload of three queries as the

number of partitions used is minimum without any partition being used more than

once. It is also interesting to note that this partitioning scheme has also the least

number of connected components overall as well as a distribution of connected com-

ponents in all partitions. Also for fast and eco configuration of KaHIP, query-4 shows

similar usage pattern. On the other hand, for fastsocial and ecosocial configuration

of KaHIP query-4 uses multiple partitions to get the exact matches. Evaluation of

query-5 used multiple partitions on different configuration of METIS and KaHIP. For

eco configuration, query-5 utilized single partition while for partitions generated us-

ing fast configuration query-5 has utilized partition-4 more than once. Processing of

query-6 on partitions generated by different configuration of METIS and KaHIP uti-

lizes single partition for its complete matches. For kway rm and rb rm configuration

of METIS, computation of query-6 used two different partitions.

The execution for all the queries (query-4, query-5, and query-6) on different

configurations of METIS and KaHIP are shown in Figure 8.15 and Figure 8.16 re-

spectively. Again, the results reinforce our premise of the partitioning schemes that

generate less number of connected components need fewer number of partitions. Thus,

translates to minimum execution times.

84

Figure 8.14: Partition usage information for KaHIP generated partitions of IMDB
graph (selection = max)

Figure 8.15: Query execution time on partitions generated from METIS for IMDB
graph

85

Figure 8.16: Query execution time on partitions generated from KaHIP for IMDB
graph

8.4 Querying over a partitioned Synthetic graph

Synthetic graphs are generated using Subgen which is included along with the

Subdue system. A synthetic graph allows us to test our premises for characteristics

that may not be present in a real world graph database. Hence, this is very useful

for analysis and for understanding the effects of various graph types. For this work,

we generated a graph containing 400K vertices and 1200K edges, 2000 unique ver-

tex labels and 4000 unique edge labels. Hence, the generated graph contains, on a

average, 200 vertices for each vertex label and 300 vertices for each edge label. We

also embedded 200 instances of a structure containing 9 vertices and 9 edges. We

formulate three different queries from this embedded substructure. Figure 8.17 shows

the graphical representation of all the three queries. Query-7 which represents a line

shape containing 5 vertices and 4 edges. Query-8 represents the substructure that

we embedded which contains a cycle and is a T-shaped query. Finally, query-9 con-

tains 5 vertices and 4 edges and represents a T-shape. This query contains two nodes

(v1,v2) and one edge (e1) from the embedded structure while the other three nodes

86

(v19,v1500,v1791) and three edges (e101,e218,e1233) are not part of the embedded

substructure. The purpose of query-9 was to check the correctness of the system for

non embedded structure. The expected answer instances of query-7 and query-8 are

100.

(a) Query−7 (b) Query−8 (c) Query−9

Figure 8.17: Different queries for Synthetic graph

Figure 8.18: Connected components generated by METIS for Synthetic Graph

87

The synthetic graph was partitioned using different configurations of METIS

and KaHIP and we calculated connected components in each partition. The resulting

partitions contained around 150K vertices and 470K edges. Figure 8.18 shows con-

nected components generated by different configurations of METIS and Figure 8.19

shows components generated by all four configurations of KaHIP. From the figure, it

is clear that ecosocial configuration of KaHIP has generated 5367 connected compo-

nents which is almost three times less than 16606 connected components generated

by kway shem configuration of METIS.

Figure 8.19: Connected components generated by KaHIP for Synthetic Graph

Before processing the query, we compute the starting node information for each

query (query-7, query-8, and query-9) which will be same for all queries has the same

starting node label is used for all the queries (v1). Note that plan generation is not

used for queries on the synthetic graph as there are no type information making it

not amenable to catalog usage and plan generation. Figure 8.20 represents starting

node label for all the queries (query-7, query-8 and query-9) in partitions generated

by different configurations of METIS. And Figure 8.21 represents starting node label

88

for all the queries (query-7, query-8 and query-9) in partitions generated using KaHIP

with different configurations. From both the figures, it is clear that the start node

label of all the queries is present in multiple partitions because the graph contains

duplicate vertex labels. The start node info file generated for these queries is different

as compared to the start node info file generated for different queries on DBLP and

IMDB graph where the vertex labels are unique. This set of queries also signify the

importance of partition chooser for selecting a partition since all the partitions contain

starting node label and any partition can be loaded first to initiate query processing.

Figure 8.20: Starting node label information for METIS generated partitions of Syn-
thetic graph

To compute answers for query-7, query-8, and query-9 Figure 8.22 shows the

loading of partitions and number of times a partition was loaded. The partitions

were loaded using MAX and MIN number of occurrence of the start node label in

each iteration of query processing. Figure 8.23 provides information about number of

times a partition was loaded for partitions generated using KaHIP and the selection

of loading a partition was done based on MAX and MIN number of occurrence of

89

Figure 8.21: Starting node label information for KaHIP generated partitions of Syn-
thetic graph

the start node label. From the figures, it is evident that sequencing the partition by

MAX has loaded minimum number of partitions when compared to MIN.

Figure 8.22: Partition usage information for METIS generated partitions of Synthetic
graph (selection = max, min)

Figure 8.24 and Figure 8.25 shows the time taken for executing all the queries

(query-7,query-8 and query-9) on different configurations of METIS and KaHIP re-

90

Figure 8.23: Partition usage information for KaHIP generated partitions of Synthetic
graph (selection = max, min)

spectively. It can be concluded from the figure that partitioning scheme which gener-

ates less number of connected components produces exact matches by using minimum

number of partitions. Hence, minimum time is taken for processing the query.

Figure 8.24: Query execution time on partitions generated from METIS for Synthetic
graph

91

Figure 8.25: Query execution time on partitions generated from KaHIP for Synthetic
graph

In summary, we have carried out exhaustive experiments across various do-

mains and presented the results of our findings. The consistent performance of the

partitioned graph query processor has validated our expectation about the feasibility

of the proposed novel approach for various types of queries over partitioned graph

database. And the metrics proposed provides insights into the effects of partitioning

schemes on query processing.

92

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

In this thesis, we have proposed an approach for processing queries over a par-

titions of a graph database. This is one way to ensure scalability of query processing

to a graph database of any size. We have developed a framework that allows us to

partition a graph database using existing partitioning techniques (METIS, KaHIP)

and process queries on these partitions. This allows one to use existing methods as

well as choose different properties for making partitions to meet the needs of the

graph database as well as queries that are processed often. We have identified infor-

mation needed for computing the correct result of a query over partitions of a graph

database by loading one partition at a time. Although the partitions can be loaded

in any order until all results are obtained, by choosing the partitions as well as the

order judiciously, one can minimize the total number of partitions that are needed

for processing a query or a set of queries. The answers of a query are separately ac-

cumulated as the partitions are processed by writing to a file initial start node label

and partial results from each partition. In this work, we have defined a set of metrics

to analyze the relationship between the properties of partitions (obtained by using

a partitioning scheme) such as the number of start nodes in each partition and the

number connected components in each partition and their effect on query processing.

We also have tried to minimize the total number of partitions used for processing

a query (or a query load) using the properties of the partitions and other runtime

information such as how many answers continue from a partition to other partitions.

It is clear that the total number if partitions required to compute a query depends on

93

a partition characteristics. For example, a partitioning scheme that generates more

number of connected component within a partition is likely to require more number

of total partitions to compute the query results. This is because a query answer that

is distributed over two components with in partition needs to go out to a different

partition and come back requiring the same partition to be loaded (used) multiple

number of times. Apart from minimizing the effort required to process queries over

partitioned graphs, the proposed approach overcomes the limitation of techniques

which uses main memory to load the entire graph databases to evaluate queries.

In order to efficiently evaluate queries over partitions of a graph database, we

have modified an existing query system QP-Subdue to process partitions along with

storing the partition information with each vertex. Also, we preprocess the partitions

of a graph to replicate the edge-cut information which helps in processing queries

spanning more than one partitions. The need for analyzing the partitioning scheme

from a query processing perspective has been established. Various parameters such

as number of starting and continuing nodes, total number of partition(s) required

to compute the query results, and the number of components with in each partition

which can affect query processing over partitioned graph have been identified and

analyzed in detail. Experiments were carried out to validate our approach and provide

some insights into the metrics gleaned from partitioning schemes on query processing.

Some of the enhancements that can be carried out are outlined in the following

discussion.

The evaluation of queries over a partitioned graph database using the proposed

approach results in metric-based sequence of partition loading. However, as we have

not used all possible metrics, further improvements can be done by identifying ad-

ditional metrics for optimizing partition sequence to process a query. For example,

edge-cuts information combined with the number of starting nodes in a partition may

94

be used instead of the start node information alone. The intuition behind this idea

is if the loaded partition has less number of starting partitions and more number of

edges going to other partition, the chances for a query spanning to other partition

increases because of more edge-cut between the currently loaded partition and other

partitions. Other improvement that can be made in determining best sequence of

partitions for the given query by using the graph and query characteristics. Also

catalog information can be utilized to determine the best partitioning quality.

QP-Subdue has modified the Subdue system developed for mining (substructure

discovery) for processing a query. This system used the entire graph for processing a

query. QP-Subdue was further modified to accommodate for loading a partition and

processing a query partially on that partition. Additional modifications were needed

to collect information during the execution of one partition to be used during the

next partition. Also, complete results needed to be accumulated over the execution

of queries over several partitions. The current system expands its instances by either

one edge or one node and one edge. For query processing, if a node has k edges

associated with it, it will take k iterations to obtain a k edge substructure. Instead,

it may be more useful to expand all the k edges in a single iteration which will further

improve the execution time for query processing.

In conclusion, we believe the adaptation of partitioning schemes to process

queries over large size graph databases are effective and opens up new possibilities

and a research direction that is novel and different from contemporary techniques.

95

REFERENCES

[1] T. Heath and C. Bizer, Linked data : evolving the web into a global data space,

ser. Synthesis lectures on the semantic web : theory and technology. Morgan

& Claypool publishers, 2011.

[2] (2015) The DBLP website. [Online]. Available: http://dblp1.uni-

trier.de/statistics/recordsindblp.html

[3] (2015) The FREEBASE website. [Online].

[4] (2015) The IMDB website. [Online]. Available: http://www.imdb.com/stats

[5] (2015) The FREEBASE website. [Online].

[6] A. Goyal. (2015) QP−SUBDUE: PROCESSING QUERIES

OVER GRAPH DATABASES. [Online].

[7] N. S. Ketkar, L. B. Holder, and D. J. Cook, “Subdue: Compression-

based frequent pattern discovery in graph data,” in Proceedings of the 1st

International Workshop on Open Source Data Mining: Frequent Pattern Mining

Implementations, ser. OSDM ’05. New York, NY, USA: ACM, 2005, pp. 71–76.

[Online]. Available: http://doi.acm.org/10.1145/1133905.1133915

[8] B. Hendrickson and R. Leland, “A multilevel algorithm for partitioning graphs,”

in Proceedings of the 1995 ACM/IEEE Conference on Supercomputing, ser.

Supercomputing ’95. New York, NY, USA: ACM, 1995. [Online]. Available:

http://doi.acm.org/10.1145/224170.224228

96

[9] A. Pothen, H. D. Simon, and K.-P. Liou, “Partitioning sparse matrices with

eigenvectors of graphs,” SIAM J. Matrix Anal. Appl., vol. 11, no. 3, pp.

430–452, May 1990. [Online]. Available: http://dx.doi.org/10.1137/0611030

[10] M. T. Heath and P. Raghavan, “A cartesian parallel nested dissection

algorithm,” SIAM J. Matrix Anal. Appl., vol. 16, no. 1, pp. 235–253, Jan. 1995.

[Online]. Available: http://dx.doi.org/10.1137/S0895479892238270

[11] G. L. Miller, S. Teng, and S. A. Vavasis, “A unified geometric approach to graph

separators.” Puerto Rico: IEEE, Oct 1991, pp. 538–547.

[12] G. Karypis and V. Kumar, “Multilevel graph partitioning schemes,” in Pro-

ceedings of the 1995 International Conference on Parallel Processing, Urbana-

Champain, Illinois, USA, August 14-18, 1995. Volume III: Algorithms & Appli-

cations., 1995, pp. 113–122.

[13] F. Pellegrini and J. Roman, “Scotch: A software package for static

mapping by dual recursive bipartitioning of process and architecture

graphs,” in Proceedings of the International Conference and Exhibition on

High-Performance Computing and Networking, ser. HPCN Europe 1996.

London, UK, UK: Springer-Verlag, 1996, pp. 493–498. [Online]. Available:

http://dl.acm.org/citation.cfm?id=645560.658570

[14] P. Sanders and C. Schulz, “High quality graph partitioning,” in Graph

Partitioning and Graph Clustering, 10th DIMACS Implementation Chal-

lenge Workshop, Georgia Institute of Technology, Atlanta, GA, USA,

February 13-14, 2012. Proceedings, 2012, pp. 1–18. [Online]. Available:

http://www.ams.org/books/conm/588/11700

[15] R. Giugno and D. Shasha, “Graphgrep: A fast and universal method for querying

graphs.” in ICPR (2). IEEE Computer Society, 2002, pp. 112–115. [Online].

Available: http://dblp.uni-trier.de/db/conf/icpr/icpr2002-2.html#GiugnoS02

97

[16] X. Yan, P. S. Yu, and J. Han, “Graph indexing: A frequent structure-based

approach,” in Proceedings of the 2004 ACM SIGMOD International Conference

on Management of Data, ser. SIGMOD ’04. New York, NY, USA: ACM, 2004,

pp. 335–346. [Online]. Available: http://doi.acm.org/10.1145/1007568.1007607

[17] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad, “Fast best-

effort pattern matching in large attributed graphs.” in KDD, P. Berkhin,

R. Caruana, and X. Wu, Eds. ACM, 2007, pp. 737–746. [Online]. Available:

http://dblp.uni-trier.de/db/conf/kdd/kdd2007.html#TongFGE07

[18] B. Hendrickson and R. Leland, “The Chaco User’s Guide: Version 2.0,” Sandia

National Lab, Tech. Rep. SAND94–2692, 1994.

[19] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for

partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 359–392,

Dec. 1998. [Online]. Available: http://dx.doi.org/10.1137/S1064827595287997

[20] G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme for irregular

graphs,” J. Parallel Distrib. Comput., vol. 48, no. 1, pp. 96–129, Jan. 1998.

[Online]. Available: http://dx.doi.org/10.1006/jpdc.1997.1404

[21] P. Sanders and C. Schulz, “Engineering multilevel graph partitioning

algorithms,” in Algorithms - ESA 2011 - 19th Annual European Symposium,

Saarbrücken, Germany, September 5-9, 2011. Proceedings, 2011, pp. 469–480.

[Online]. Available: http://dx.doi.org/10.1007/978-3-642-23719-5 40

[22] P. Sanders and C. Schulz, “Think locally, act globally: Highly balanced graph

partitioning,” in Experimental Algorithms, 12th International Symposium, SEA

2013, Rome, Italy, June 5-7, 2013. Proceedings, 2013, pp. 164–175. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-38527-8 16

[23] S. Yang, X. Yan, B. Zong, and A. Khan, “Towards effective partition

management for large graphs,” in Proceedings of the 2012 ACM SIGMOD

98

International Conference on Management of Data, ser. SIGMOD ’12.

New York, NY, USA: ACM, 2012, pp. 517–528. [Online]. Available:

http://doi.acm.org/10.1145/2213836.2213895

[24] T. N. Bui and C. Jones, “A heuristic for reducing fill-in in sparse matrix factor-

ization,” in PPSC, 1993, pp. 445–452.

[25] S. T. Barnard and H. D. Simon, “Fast multilevel imple-

mentation of recursive spectral bisection for partitioning unstruc-

tured problems.” Concurrency - Practice and Experience, vol. 6,

no. 2, pp. 101–117, 1994. [Online]. Available: http://dblp.uni-

trier.de/db/journals/concurrency/concurrency6.html#BarnardS94

[26] B. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning

Graphs,” The Bell Systems Technical Journal, vol. 49, no. 2, 1970.

[27] J. Maue and P. Sanders, “Engineering algorithms for approximate weighted

matching,” in Proceedings of the 6th International Conference on Experimental

Algorithms, ser. WEA’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 242–

255. [Online].

[28] C. Schulz. (2013) High quality graph partitioning.phd thesis. [Online]. Available:

http://algo2.iti.kit.edu/schulz/dissertation christian schulz.pdf

[29] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski, “Pregel: A system for large-scale graph processing,”

in Proceedings of the 2010 ACM SIGMOD International Conference on

Management of Data, ser. SIGMOD ’10. New York, NY, USA: ACM, 2010,

pp. 135–146. [Online]. Available: http://doi.acm.org/10.1145/1807167.1807184

[30] M. A. Rodriguez and J. Shinavier, “Exposing multi-relational networks to

single-relational network analysis algorithms,” CoRR, vol. abs/0806.2274, 2008.

[Online]. Available: http://arxiv.org/abs/0806.2274

99

[31] J. L. Bentley and M. D. McIlroy, “Engineering a sort function,” Softw.

Pract. Exper., vol. 23, no. 11, pp. 1249–1265, Nov. 1993. [Online]. Available:

http://dx.doi.org/10.1002/spe.4380231105

[32] J. Katajainen, T. Pasanen, and J. Teuhola, “Practical in-place mergesort,”

Nordic J. of Computing, vol. 3, no. 1, pp. 27–40, Mar. 1996. [Online]. Available:

http://dl.acm.org/citation.cfm?id=642136.642138

[33] D. Nicoara, S. Kamali, K. Daudjee, and L. Chen, “Hermes: Dynamic

partitioning for distributed social network graph databases,” in Proceedings of

the 18th International Conference on Extending Database Technology, EDBT

2015, Brussels, Belgium, March 23-27, 2015., 2015, pp. 25–36. [Online].

Available: http://dx.doi.org/10.5441/002/edbt.2015.04

[34] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, “Fennel:

Streaming graph partitioning for massive scale graphs,” in Proceedings of the 7th

ACM International Conference on Web Search and Data Mining, ser. WSDM

’14. New York, NY, USA: ACM, 2014, pp. 333–342. [Online]. Available:

http://doi.acm.org/10.1145/2556195.2556213

100

BIOGRAPHICAL STATEMENT

Jay D. Bodra was born in Mevasa, Gujarat, India. He received his Bache-

lors Degree in Computer Science and Engineering from Narsee Monjee Institute of

Management Studies, India in August 2012. His interest in research brought him

to University of Texas at Arlington where he later obtained his Masters degree in

Computer Science and Engineering in May 2016. His research interests include graph

mining, information retrieval and data mining.

101

