
SIEVE: AN INTERACTIVE VISUALIZATION
AND EXPLANATION TOOL FOR AN ACTIVE OODBMS

By

JUN ZHOU

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

1995

In memory of my mother

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Dr. Sharma Chakravarthy,

for his excellent guidance, and for giving me an opportunity to work on this chal-

lenging topic. I am grateful to Dr. Stanley Su and Dr. Herman Lam for agreeing to

serve on my supervisory committee and for their perusal of this thesis.

Thanks are due to Ms. Sharon Grant for maintaining a well administered research

environment.

I will also take this opportunity to thank all the graduate students in the Sentinel

group and the Database R&D Center for their help and friendship.

Last, but not the least, I thank my parents and brother for their love. Without

their encouragement and endurance, this work would not have been possible. And

I feel words are inadequate to expressing my thanks to the love of my life, my wife

Jinning, for everything.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS : iii

LIST OF FIGURES : vi

ABSTRACT : viii

CHAPTERS : 1

1 INTRODUCTION : 1

2 RELATED WORK : 6

2.1 An Application-Level GUI to Active Databases { EVE : : : : : : : : 6
2.2 System-Level GUIs to Active Databases : : : : : : : : : : : : : : : : 8

2.2.1 DEAR : 9
2.2.2 SimBug : 10

3 MOTIVATION : 12

3.1 Application-level GUIs : 12
3.2 System-level GUIs : 14

4 OVERVIEW OF OPEN OODB AND SENTINEL : : : : : : : : : : : : : : 16

4.1 Passive Open OODB : 17
4.1.1 Functional Features of Open OODB : : : : : : : : : : : : : : : 17
4.1.2 Operational Features : 20

4.2 Active Capability of the Sentinel System : : : : : : : : : : : : : : : : 23
4.2.1 Architecture : 23
4.2.2 Rule Implementation : 26
4.2.3 Functionality of the Sentinel Modules : : : : : : : : : : : : : : 27

5 DESIGNING GRAPHICAL USER INTERFACES FOR SENTINEL : : : 30

5.1 User Requirements on Data Visualization : : : : : : : : : : : : : : : : 30
5.2 MDP - An Application Level GUI : 32

5.2.1 Description of the MDP Application : : : : : : : : : : : : : : 32
5.2.2 Design of the MDP Graphical User Interface : : : : : : : : : : 33

5.3 Sentinel Rule Debugger - A System-Level GUI : : : : : : : : : : : : : 36
5.3.1 Background, Observations and Objective : : : : : : : : : : : : 36
5.3.2 Design Choices : 43

iv

5.3.3 Existing Sentinel Rule Visualization Tool : : : : : : : : : : : : 46
5.3.4 Interactive Rule Debugger - A Revised Design : : : : : : : : : 52

6 IMPLEMENTATION : 54

6.1 An Overview of X/Motif : 54
6.1.1 The X Window System : 54
6.1.2 Libraries for Developing X Applications : : : : : : : : : : : : : 55
6.1.3 Application-System Interaction in X/Motif : : : : : : : : : : : 57

6.2 Implementation of the MDP User Interface : : : : : : : : : : : : : : : 57
6.3 Implementation of SIEVE : 59

6.3.1 Layout and Functionality : 59
6.3.2 GUI Implementation Notes : : : : : : : : : : : : : : : : : : : 61
6.3.3 Implementation Issues on GUI-System Interactions : : : : : : 66
6.3.4 An Example: Stock Demo : 72

7 CONCLUSION AND FUTURE WORK : : : : : : : : : : : : : : : : : : : 76

7.1 Conclusion : 76
7.2 Future Research : 77

REFERENCES : 79

BIOGRAPHICAL SKETCH : 83

v

LIST OF FIGURES

1.1 Event Hierarchy : 2

4.1 Functional Class Lattice of Open OODB : : : : : : : : : : : : : : : : 21

4.2 Sentinel Architecture : 23

4.3 Class Hierarchy and Functionality of Sentinel : : : : : : : : : : : : : 25

4.4 Sentinel Event Speci�cation Syntax : : : : : : : : : : : : : : : : : : : 26

4.5 Sentinel Rule Speci�cation Syntax : 26

4.6 Local and Global Event Detector Architecture : : : : : : : : : : : : : 28

5.1 MDP Layout : 35

5.2 Functional Modules of the Non-interactive Sentinel Rule Debugger : : 47

5.3 Layout of the Non-interactive Sentinel Rule Debugger : : : : : : : : : 50

6.1 Underlying X Libraries of Sentinel Graphical User Interfaces : : : : : 56

6.2 Zooming Feature of the Sentinel Rule Debugger : : : : : : : : : : : : 63

6.3 Before Pruning : 65

6.4 After Pruning : 65

6.5 Graphical Representation of Subtransaction States for Monochrome

Displays : 66

6.6 Functional Modules of the Revised Sentinel Rule Debugger : : : : : : 68

6.7 Global Event History : 69

6.8 Control Flow at a Break Point : 71

vi

6.9 A Snapshot of Trace : 75

7.1 Overall Architecture for Global Event Detection and Rule Visualization 78

vii

Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Ful�llment of the

Requirements for the Degree of Master of Science

SIEVE: AN INTERACTIVE VISUALIZATION

AND EXPLANATION TOOL FOR AN ACTIVE OODBMS By

JUN ZHOU

August 1995

Chairman: Dr. Sharma Chakravarthy
Major Department: Computer and Information Sciences

Of late, there has been a surge of interest in active databases. Active database

management systems (ADBMSs) have evolved considerably to meet the increasing

requirements of non-traditional applications. The active feature can be incorporated

into DBMSs by the event-condition-action (ECA) rule abstraction.

Using ECA rules in active database systems for real-life applications involves

implementing, debugging, and maintaining large numbers of rules. For the e�ective

deployment of active database systems, there is a clear need for providing
exible user

interfaces to cater to di�erent application requirements. Furthermore, experience in

developing large production rule systems has amply demonstrated the need for under-

standing the behavior of rules especially when their execution is non-deterministic.

In this circumstance, a graphical debugging and explanation facility to assist under-

standing of the interactions { among rules, among events, between rules and events,

and between rules and database objects becomes necessary.

Research and development of graphical user interfaces (GUIs) in the realm of

database management systems have lagged behind advances in other database man-

agement and visualization technologies. This is especially true in the fast-growing

area of active DBMSs. The active semantics demands appearance, design and imple-

mentation that are di�erent from those of traditional passive DBMSs. Research of

active database visualization has been a novel area.

In the context of active databases, the functionality of data visualization will

switch its emphasis from traditional data navigation/browsing (data-oriented tasks)

to re
ecting the changes resulting from event triggering/rule �ring (action-oriented

tasks).

In addition to the new requirement imposed by active databases and general rules

for GUI design, di�erent user perspectives create a diversity of design choices. There

is a dichotomy between application-level and system-level GUIs for active DBMSs.

The debugging of rules involves both static and run-time analysis. The importance

of runtime analysis becomes more noteworthy in applications using a large number

of rules.

In this thesis we concentrate on the design and implementation of both application-

level and system-level GUIs for an active object-oriented DBMS { Sentinel, with an

emphasis on the development of SIEVE { Sentinel InteractiveECARuleVisualization

Environment. To elaborate, this tool enables the user to visualize the event detection

and rule execution details at run-time in on-line mode as well as at post-run-time on

a replay basis. The architecture and layout have been re-tuned to accomplish this

functionality. Moreover, the user gains a new dimension of interactivity through the

debugger's two-way communication channel i.e. rather than passively receiving infor-

mation delivered out of the user interface, the user is able to input changes to the

rule system, modify and monitor the execution in a more active fashion. Run-time

analysis is also addressed in a primitive approach of trapping execution cycles.

CHAPTER 1
INTRODUCTION

Over the last few years database management systems (DBMSs) have evolved

considerably to meet the diverging requirements of the application domains. These

requirements include monitoring of situations and responding to them automatically.

Conventional DBMSs have been passive which implies that the database changes its

state only on user speci�ed operations, queries or update operations. New generation

databases requires active capability for meeting application requirements. This new

paradigm implies that a DBMS (as opposed to user/application program) would con-

tinuously monitor user-de�ned situations and initiate appropriate actions in response

to certain database updates, occurrences of particular states or transitions of states

without user or application intervention.

The feature of active capability can be incorporated into DBMSs by Event-

Condition-Action (ECA) rule abstraction [16]. ECA Rules, in the context of an

active DBMS, consists of three components: an event, a condition and an action. An

event is an indication of an happening, mostly a state change produced by a database

operation such as insert, delete and update. There also exist external/explicit and

temporal events which are externally detected and signalled to the DBMS by the sys-

tem or user. The condition can either be a simple or a complex query on the existing

database states and the set of data objects, transitions between states of objects and

even trends and historical data. Actions specify the operations to be performed when

an event is detected and its associated condition evaluates to true. Once rules are

speci�ed declaratively, it is the responsibility of the DBMS to monitor the situation

and trigger the rules when the event happens and the condition is satis�ed.

1

2

Events are further classi�ed into

� i) primitive events { events that are prede�ned in the system (using primitive

event expressions and event modi�ers), and

� ii) composite events { events that are formed recursively by applying a set of op-

erators (described in the event language Snoop [10]) to primitive and composite

events.

The event hierarchy is illustrated in Figure 1.

Database Events

Transaction Access Insert Delete Update

Procedure /
Function

/

Explicit Events Temporal Events

Absolute Relative

Conjunction Disjunction Sequence Aperiodic Periodic

A PA* *P

Events

Primitive Events Composite Events

Event Classification

Figure 1.1. Event Hierarchy

The mechanism for primitive event detection is assumed to be available. The

detection of composite events may require the detection of one or more constituent

events as well as one or more occurrences of a constituent event type. The imple-

mentation of event detection has been discussed by Krishnaprasad [19].

For the e�ective deployment of active database systems, there is a clear need

for providing
exible user interfaces to cater to di�erent application requirements.

Furthermore, a debugging and explanation facility to understand the interaction {

among events, among rules, between rules and events, and between rules and database

objects becomes necessary.

3

The visualization technology, along with hardware technology, have progressed

signi�cantly from command line interpreters to What You See Is What You Get

(WYSIWYG) graphical user interfaces (GUIs). With the rapid evolution of window-

ing environments, users of DBMSs are expecting and demanding more from their

user interfaces.

Unfortunately, research and development of GUIs in the realm of database man-

agement systems have lagged behind advances in other database management and

visualization technologies. This is especially true in the fast-growing area of active

DBMSs. The active semantics demands appearance, design and implementation that

are di�erent from those of traditional passive DBMSs. Research of active database

visualization has been a novel area in which inadequate work has been done.

User interfaces to advanced DBMSs should make available to the users the entire

gamut of functionalities provided by the underlying DBMSs. The user interface

should take advantage of the additional semantics to provide a \semantics-driven"

GUI which is simple and user friendly. Usability is an important aspect of a GUI

design as the principle function of a GUI is to facilitate the human-computer dialogue.

Portability is another common requirement in the context of current programming

environments.

In data visualization, objects that appear before the user can be thought of as

\widgets" while various behaviors are assigned to screen visuals. These behaviors

might be elicited when pointed at with a picking device (typically, a mouse) via

a callback routine. Such actions can trigger additional database interactions and

visualizations, thus a�ording a mechanism with which to do database browsing.

The emergence of active databases has added a new dimension to the interaction

between applications and DBMSs. Traditionally all these interactions have been

4

driven by the application. Visualization tools following this driving force are data-

oriented. In such applications the user normally submits requests to the DBMS

and receives responses from the system in synchronous or conversational fashion. In

contrast, in an active database application there is no way for the user to completely

predict what event(s) might occur and what action(s) the system might take as a

consequence; responses are received from the DBMS in an asynchronous way. In

many circumstances the user may not receive any reply if no rule �res. This kind

of human-computer interaction distinguishes itself with traditional ones in passive

database environments. We call it action-oriented.

In the context of active databases, the functionality of data visualization will

switch its emphasis from traditional data navigation/browsing to re
ecting the changes

resulting from event triggering/rule �ring.

In addition to the new requirement imposed by active databases and general

rules for GUI design, di�erent user perspectives may also create a diversity of design

choices.

Non-database experts/end-users are more interested in application related data

than system related data. In other words, they only expect to carry out requests

in the application and receive results out of the system, without understanding the

details of the execution process. The user interface is meant to highlight information

related to the application without it being clustered with irrelevant data re
ecting

the states of the underlying system.

Application developers, on the other hand, need to understand the details of

the system's functioning modules, trace the execution, discover existing or potential

errors and correct the errors if necessary. Their interests can go well beyond a speci�c

application's running behavior. More information of the system kernel should be

presented expressively via the user interface to ensure a good understanding. For this

5

community of users, an emerging need in the context of an active database system

is to provide an environment for debugging and visualization of rule execution. The

debugging of rules involves both static analysis and runtime analysis. Static analysis

checks the termination, con
uence, and observable determinism characteristics [28, 1].

Runtime analysis deals with features such as the execution trace of rules, interaction

between events and rules, and rules and the database. The importance of runtime

analysis becomes even more clear in applications using a large number of rules.

In this thesis we concentrate on the design and implementation of both application-

level and system-level GUIs for an active object-oriented DBMS named Sentinel.

The remainder of this thesis is structured as follows. Chapter 2 brie
y describes

related work in the area of graphical user interfaces to active databases. Chapter 3

presents the motivation for our design and implementation. Chapter 4 provides a

description of the Sentinel system. In chapter 5 we discuss design issues and present

an application-level GUI and a system-level rule debugger. Chapter 6 details the

implementation and functionalities of the user interfaces with illustrative examples.

Chapter 7 concludes this thesis and shows future directions.

CHAPTER 2
RELATED WORK

In this chapter we provide a summary of the graphical user interfaces for active

DBMSs found in current literature. Both-application level and system-level examples

are discussed. Later in this thesis, we provide a comparison of our work for Sentinel

with other work discussed here.

Although active DBMS research is a fast growing area, the development of graphi-

cal user interfaces for such new-concept systems has not been given enough emphasis.

A literature survey showed that most of related work on GUIs to databases was done

in support of illustrating data browsing and schema editing [24, 20, 18, 6, 23, 25].

They were not only data-oriented, but also for passive databases.

Presented here are an application level-GUI and two system-level GUIs designed

for active object-oriented databases.

2.1 An Application-Level GUI to Active Databases { EVE

A variety of non-traditional database applications will bene�t from the active

capability. These applications include process control, work-
ow control, computer-

aided manufacture (CIM), battle management, network management, etc. Graphical

user interfaces are needed in many of these applications to help users query and

visualize data, and the active capability of underlying DBMSs may play an important

role in the design and functionality of the interfaces. When the following visualization

tool is discussed we highlight its relationship with the system's rule mechanism and

the impact of the latter on the design.

6

7

EVE [13] is a graphical browser used to visualize objects in an active OODB

system, ADAM [14].

EVE aims to support dynamic displays based on active rules. Graphical database

interfaces allow some portion of the data stored in the database to be displayed for

browsing or manipulation. Changes to database objects which are depicted on screen

can lead to inconsistencies between the data stored and the information displayed.

Dynamic display is de�ned as propagating changes to the state of the database to

interface where the a�ected data is being displayed.

An active DBMS is able to support dynamic displays if the interface is informed

automatically of changes to the state of objects which it is currently displaying. The

approach taken is to de�ne a rule which �res only when changes are made to objects

that are actually on screen. For example, the following rule corresponds to the objects

11#student and 23#course:

rule 1

active_object: [11#student, 23#course]

active_method: modify_method

when: after

condition: true

action: warn the interface of the change

active object, active method and when stand for an event which occurs before or

after (speci�ed by when) the invocation of active method of object active object.

This approach reduces the overhead of rule triggering because only those instances

which are actually being displayed, rather than every potentially diaplayable instance

will be involved.

In EVE the interface is seen as an event generator which warns the active mecha-

nism but the reaction to this warning is handled within the database. Such reactions

can be expressed by another rule which is triggered by external events (e.g. clicking

8

on the next button) and whose action updates the active object item in rule 1. The

second rule is described as follows:

rule 2

active_object: [adam_browser]

active_method: user interface event

when: before

condition: displayed objects changed

action: update the list of displayed objects

Hence the communication with the database interface is described by rule 2 rather

than the code in the callbacks within the interface. Here EVE is integrated within

ADAM as an object, thus the detection of events generated by the interface is sim-

pli�ed.

In summary, EVE's dynamic displaying feature works as follows: a list of currently

displayed database objects is maintained by the system. This list is updated whenever

an external user interface event such as clicking of the \next" button occurs (rule 2

�res). If any object that is currently being displayed is modi�ed then its new content

is
ushed to screen (rule 1 �res).

2.2 System-Level GUIs to Active Databases

The complexity of a rule's action and the automatic execution nature of rules with-

out user intervention, makes it necessary to provide a debugger/explanation toolkit

for active DBMSs. System level visualization tools for active databases are developed

for the purpose of demonstrating the event-condition-action active mechanism and

assisting application analyzers in understanding and debugging the rule system. This

is achieved by making explicit the context in which rules are �red, i.e., which event

cause the rule(s) to �re. Described here are two rule debuggers of di�erent design

approaches.

9

2.2.1 DEAR

DEAR [12] is implemented for the EXACT rule system on top of an object-

oriented DBMS { ADAM [14].

DEAR keeps track of both rules and events. The purpose of DEAR is to provide

mechanisms to

� make explicit the context in which the active rule is �red,

� focus the search during the debugging process,

� automatically detect inconsistencies and potentially con
icting interactions among

rules.

The model of traditional debuggers cannot be totally migrated into the context

of active rules. Conventional debuggers for programming languages are context-

independent while the con
ict set of rules (i.e., rules eligible for �ring) depends on

the events raised hence it is context-dependent.

DEAR shows the intertwined cycle of rules and events by presenting a tree whose

root is arti�cially created and direct descendents are the �rst events to be raised.

Nodes can represent either events or rules, where event nodes alternate with rule

nodes. An arc from an event node to a rule node means that the event awakens the

rule, and an arc from a rule node to an event node means that the event was produced

by the rule. The debugger also makes explicit the con
ict set of simultaneously

triggered rules in the displayed tree. A link between event nodes shows that these

events arose simultaneously. This group of events can de�ne a con
ict set of rules

since a rule is eligible for �ring if its event is awakened.

To provide a more focused tracking, DEAR has a \pruning" feature to reduce

the size of the tree shown by the debugger. Debugging can be restricted to certain

rules and/or events by the spy rule and spy event facilities. The tree will show only

10

those nodes corresponding to any of the spy points speci�ed by the user. DEAR also

allows the designer to trace when some situation changes rather than by following

certain events and/or rules. The user can indicate which database attributes should

be watched, so that the tree will be generated once an update is detected on any of

these attributes. This is supported by the data spy window.

For detection of inconsistencies and con
ict interaction, DEAR can point out

potential cycles by highlighting the branch where an event is awakened twice.

2.2.2 SimBug

The approach of SimBug [5] is to pursue the debugging of active databases with

simulated event schedules. A set of event schedules will be generated for each activity

description to simulate di�erent real world scenarios. Relevant atomic and complex

events including their parameters are mapped on a time line using a simulator �ring

these �ctitious events. During this process of �ring �ctitious events the user can com-

pare the observed behavior with the expected one. A small explanation component

is included to support understanding of the active behavior. Moreover, the user can

decide at di�erent points how the execution should go on.

SimBug provides asynchronous simulation using event-oriented clock technique.

The complex event detector is bound to receive the information about the occurrence

of each �ctitious event by the simulator.

The execution of the debugging process can be described as follows: once a pro-

gram has been compiled successfully and a set of event schedules has been created,

one schedule will be chosen to run. The clock values of the system will be set to

the time of the �rst �ctitious event marked on the timeline of the event scheduler.

Subsequently raised atomic-, composite events and �red rules will be presented on

the graphical user interface through icons and their relationships (event triggering

rule) can be shown through lines and arrows.

11

The debugging process will be interrupted at points where, for instance, parameter

values of �ctitious events are missing, but needed for the evaluation of a condition.

Con
icting rules will be presented through
ashing icons. During the simulation the

user can select one of the con
icting rules and decide how the simulation should go

on.

Net-shaped presentation of icons relate to cycles of rule execution. These cycles

may have implication on the guaranteed termination of the rule system. The user

shall decide if the cycles are a bug.

CHAPTER 3
MOTIVATION

3.1 Application-level GUIs

Current research has shown that both the end-users of visualizations and databases

can strongly bene�t from the integration of these systems [4]. To support this inte-

gration, there are three types of architectures that can be identi�ed from the human

user perspective:

� close-coupled: all components reside on one machine, sometimes all written in

the same language, and even existing in the same process, i.e., the database

manages its own visualization. Close-coupling is best suited for single-user,

frequent-transaction scenarios.

� client-server: two di�erent processes connected over a network. The database

acts as a server and visualization acts as the client. This architecture allows

the distribution of services and multiple clients.

� distributed asynchronous process communication: database and interface sepa-

rated by a manager layer, where separated objects of the database are respon-

sible for informing the display layer about changes in the database.

Also, appropriate software components such as libraries, toolkits and various hard-

ware environments need to be researched.

The generalization of application-level database user interfaces is not well de�ned.

A rough categorization of this large and diverse group of applications includes schema-

level and data-level browsers, according to the types of objects they manipulate.

12

13

Normally there are two kinds of tasks that a browser can conduct: display and query.

Both operations entail the mapping from database objects to visual objects. We refer

to this mapping as visualization { a set of conventions for obtaining pictures from

data.

However, the emergence of active database applications has produced a new kind

of higher-level database user interfaces. We call it action-oriented GUIs, as opposed

to the schema- and data- browsers, which can be called data-oriented GUIs. Unlike

the latter, action-oriented visualization tools are interested in some user/application-

de�ned situation or abstraction of data rather than data itself. The situation usu-

ally changes without user knowledge and these changes are the result of the active

database system. Clearly this situation is tightly related to the rules of the sys-

tem. When some rule �res the action may cause the situation to change. The task

of the user interface is to demonstrate the situation changes and convey them to

users graphically. As mentioned before, integration of visualization module into the

database favors performance, reusability and extensibility. It is advantageous to cou-

ple action-oriented GUIs with the rule system, especially with the action module of

the ECA mechanism.

Action-oriented graphical user interfaces is a new concept which has not been

fully addressed in the literature so far.

EVE [13] adopts active capability to achieve dynamic displays. As we have seen,

updates of display is done by the action part of rule 1, i.e., architecturally speaking

EVE is tightly coupled with the rule system. However, EVE is a data-oriented

browser. The functionality of EVE is not totally action-driven.

Our goal is to examine the idiosyncrasies of action-oriented graphical user inter-

faces, focusing on the architecture, design and implementation.

14

3.2 System-level GUIs

As discussed earlier, it is necessary to have a debugging tool to monitor events,

rules, database objects and their inter-relationships at run-time. In order to test the

correctness of hypothetical scenarios it is often desirable to allow user intervention

(e.g., enable/disable an event or a rule, compose new event/rule).

Apparently this kind of interactive feature is lacking in both of DEAR [12] and

SimBug [5] discussed in 2.2.1 and 2.2.2 respectively. In DEAR, events and rules

are monitored and displayed at run-time without user interruption. The only user-

initiated request that may alter the visualization is the \spy" command prior to

execution. In SimBug, all events in execution are �ctitiously created by a simulator,

so the user cannot specify any desired sequence to trace and the visualization process

is uninterruptable. Furthermore, there is no actual run-time debugging of any real

application in SimBug because the trace is a simulated one.

While examining the extant rule debugging tools we also �nd the following limi-

tations in addition to the above one:

� The intricacy of composite event detection is not adequately explained.

� Relationships among events are not shown.

� Rule-database interactions are not addressed.

Below, we enumerate some design goals of our approach:

1. Enhance interactivity by allowing user-input dynamic changes to the rule sys-

tem at \break points".

2. Make both run-time and post-analysis trace available.

3. Demonstrate event detection process by displaying parameter contexts and

global event history.

15

4. Clearly show event-event, event-rule, rule-database relationships.

5. Explore alternative loosely-coupled architecture using communication network

facilities.

The design and implementation of application- and system-level visualization

tools for the Sentinel active OODBMS is detailed in Chapter 5 and Chapter 6.

CHAPTER 4
OVERVIEW OF OPEN OODB AND SENTINEL

It is clear that the capabilities of the conventional record-oriented data models

are limited in capturing complex structural relationships and behavioral properties

in advanced application domains. These limitations have led to the transition to

the object-oriented models which o�er a variety of modeling constructs, which sim-

plify the task of modeling complex data. An object-oriented database management

system (OODBMS) has the following salient features which distinguish it from the

conventional systems.

1. Every object has a unique, system wide object identi�er (OID). objects can be

created to permanently exist, or persist.

2. Flexible abstract data types are supported by encapsulation of data and oper-

ations in the object type de�nitions. Complex objects are de�ned in terms of

hierarchies.

3. Inheritance of structural and behavioral properties is supported among object

classes in the hierarchies.

Bene�ts of the object-oriented paradigm is many-folded. One of them is extensi-

bility and reusability of existing software. Using the feature of abstract classes and

the inheritance mechanism, we can easily extend an existing system. In this thesis a

prototype active OODBMS called Sentinel (which is based on a passive OODBMS

named Open OODB) was used as the basis for design and implementation of our

work.

16

17

4.1 Passive Open OODB

The Open OODB project [27, 17], initiated by Texas Instruments, was an e�ort

to build a high performance, multi-user object oriented database management system

(OODBMS) in which the the database functionality can be tailored for the diverse

needs of applications.

The system provides an incrementally improvable framework that can also serve

as a common testbed for research by database, framework, environment and system

developers who intend to experiment with di�erent system architectures or compo-

nents.

The Open OODB system architecture is divided into

i) a meta-architecture consisting of a collection of kernel modules and de�nitions

providing the infrastructure for creating environments and boundaries, specifying and

implementing event extensions and regularizing interfaces among modules, and

ii) an extensible collection of policy manager modules which provide functionality

to the system.

Since Open OODB is an Object-oriented front end, it uses Exodus storage man-

ager as its underlying storage manager through an interface.

4.1.1 Functional Features of Open OODB

� Seamless Interfaces: Open OODB seamlessly adds functionality such as: per-

sistence, concurrent transactions, and schema evolution to developers' existing

programming environments. Open OODB does not require changes to either

type (class) de�nitions or the way in which objects are manipulated. Rather,

applications \declare" normal programming language objects to possess cer-

tain additional properties; such objects then transparently \behave properly"

according to the declared extensions when manipulated in the normal fashion.

For example, if an object is declared as persistent, the DBMS is responsible for

18

moving it between the computational and long term memory as needed to en-

sure both its residency during computation and its preservation during program

termination. This allows programmers to:

i) stay within familiar programming paradigms,

ii) stay within familiar programming languages, and

iii) support legacy code and data.

OODB extends existing languages (C++ and Common Lisp) rather than trying

to invent a new \database language".

� Sentry mechanism: The Open OODB computational model allows devel-

opers to de�ne behavioral extensions of events, which is an application of an

operation to a particular set of objects. In this model all objects accessible to a

program exist in an \universe of objects". This universe is partitioned into \en-

vironments" by \environmental attributes". Environmental attributes include

information about the address space where the object resides (e.g., persistent or

transient, local or remote), replica of object, lock status and transaction owning

the lock, etc. These environments and boundaries of the environments identify

where extensions may be required. For example, if we need an extension to

allow objects to reside in a remote address space, we can de�ne an environ-

mental attribute named \address space" that de�nes the location of the object

using the domain values which are the set of address spaces where the object

could reside. To perform these extensions we must be able to interrupt or trap

operations. Thus, the trapping mechanism combined with the protocol for per-

mitting the entity performing the trapping to invoke an arbitrary extension is

known as a \sentry". The primary function of sentries is to detect events which

are interaction with objects, and to pass control to a policy manager which

19

controls and performs the actual extension if it is determined that an event

should be extended. The sentry manager is used for specifying events to be

extended, and is responsible for deploying sentries to detect extended events.

� Extensibility: When an object is declared to Open OODB to have \extended"

behavior, there are certain \invariants" associated with the extension that must

be enforced. When an operation involving an extended object occurs, the sen-

try is called which as detailed above interrupts the operation and transfers

control to a policy manager module responsible for ensuring that operations

against extended objects \behave properly". Each semantic extension is im-

plemented by a di�erent policy manager. Thus, there is a policy manager for

persistence, another for index maintenance, etc. Policy managers can be added

independently, and are inherited from a common root class to make them type

compatible for invocation purposes. This strategy allows new extensions to be

added, the semantics of a given extension to be changed, and implementation

of a given policy to be changed or selected dynamically. It allows for hiding

the semantic extension from applications to obtain seamlessness. Basic services

used by policy managers are provided by a collections of \support modules".

� Reusability: With an open system, researchers can focus on modules of in-

terest without having to build complete systems. This reduces duplication by

encouraging the reuse of system components, and increases the quality and

depth of components of the system by allowing developers to focus on smaller

portions of the system. To achieve this, Open OODB uses a generic framework

for extensibility that allows reuse of components developed by di�erent research

groups and organizations. It should be noted that OODBs by their very nature

facilitate code reuse, since stored objects contain code as well as state.

20

� Persistence: Persistence is the ability of objects to exist beyond the lifetime

of the program that created them. The Persistence Policy Manager in Open

OODB provides applications with an interface through which they can create,

access and manipulate persistent objects. Exodus is used as the persistent store

for objects. The interaction with Exodus in transferring and saving objects is

built into the Persistence Policy Manager and hence is transparent to the user.

� Application Programming Interfaces: Open OODB provides seamless ex-

tensions to both C++ and Common Lisp. The features of each of these APIs

include:

{ full coverage of C++ and Common Lisp type system (including CLOS).

{ persistence.

{ recoverable, concurrency controlled transactions.

{ remote access to data via a client/server model.

{ SQL-like object queries in C++ API.

The various features outlined above encouraged the use of Open OODB for

our project. Moreover, the availability of the source code for the Release 0.2

(Alpha) helped us modify the Open OODB system to suit our requirements.

The primary class OODB has been extended to have reactive capability. Also

the sentry mechanism helped us build wrapper functions wherever necessary.

The persistent feature will be useful when the current system is extended to

detect global events.

4.1.2 Operational Features

The class lattice that manifests the functionality of the system is shown in Fig-

ure 4.1.

21

OODB

asmLasm

Name mgr

Persist mgr

Translation mgr

APPILICATION

EXODUS

OPENOODB

Friend classes

Figure 4.1. Functional Class Lattice of Open OODB

� OODB main class. This is the main interface class between the application

and the system. In every application an instance of this class must be created at

the very beginning. The constructor of this class, does the following: establishes

connection with the Exodus storage manager, loads all the system tables into

the main memory.

� Preprocessor. The Open OODB extends every application class with certain

additional member functions to take care of object translation, sentry mecha-

nism and persistence. This is achieved by the preprocessor. By default every

application class is derived from the wrapper class. However, if the user does

not wish to extend a certain class, the application class can be left as such and

not derived from the wrapper class by use of the -n option of the preprocessor.

� Cache manager. Open OODB does not maintain a true Cache of its own.

The tables implemented by the class lasm (which is the local address space

manager) and the C heap serve as the cache. When objects are fetched from

the persistent store they are placed in the C heap. Each persistent object is

given a global identi�cation (GID). The tables maintained by the local address

22

space manager map the local address to the GID when the persistent object is

fetched.

� Name manager. The name manager has a
at namespace. This implies that

we cannot have two objects with the same name in two di�erent databases. To

distinguish them, however, we can qualify them by the name of the database

they are stored in.

� Persist manager. This is the policy manager which takes care of persistence.

An object is made persistent by invoking the persist function. The persist

manager �rst assigns a Global identi�er (GID) and uses the services of the

name manager to associate the name of the object with its GID. Secondly the

persist manager determines the transitive closure which includes every object

reachable from the original object. Only the root object (original object) is

assigned the GID.

� Translation manager. The class implements the Object translation from

an external to an internal computational format. In particular, the transla-

tion converts C++ objects (along with its transitive closure) into a particular

format and vice versa. Also addresses (of objects) are swizzled by the Object

Translation module when a persistent object is fetched. The fetched objects

are allocated on the heap. If the persistent object contains a pointer to another

persistent object, a surrogate for that object is created and pointer is swizzled

to the address of the surrogate. Later, when a member function is called which

accesses the state of the referenced object, that object is fetched.

� Address space manager. The address space manager, implemented by

the class ASM Client, serves as the interface to Exodus. It is responsible for

establishing connections with Exodus, and also fetching and storing objects in

23

Exodus. This interface actually utilizes the client interface functions of Exodus.

It consists of functions to create, modify and delete objects.

4.2 Active Capability of the Sentinel System

The Sentinel architecture [8] shown in �gure 4.2 extends the passive Open OODB

system [27, 17]. This approach has been an integrated one, i.e., support for primitive

event detection and nested transactions is incorporated as part of Open OODB's

kernel. In addition, support for composite event detection and rule management is

added as separate modules.

4.2.1 Architecture

PRIMITIVE

EVENT DETECTION

SENTINEL
PRE-PROCESSOR

OBJECT

TRANSLATION

ADDRESS
SPACE MANAGER

TRANSACTION
MANAGER

MANAGER
NAME

MANAGER
PERSISTENCE

LOCAL
COMPOSITE

EVENT

DETECTOR

RULE SCHEDULER

LOCAL

Event specification Rule specification

Event details

Rule & transaction
details

C++ Code

Lock table

using threads

(using threads
priority)

 +

Implemented Sentinel modules Open OODB modules

Nested transactions

Open OODB Toolkit

OPEN OODB
PRE-PROCESSOR

POST-PROCESSOR
SENTINEL

RULE / EVENT

DEBUGGER

Figure 4.2. Sentinel Architecture

This section describes the overall architecture of Sentinel and its components,

highlighting its extensions to the passive Open OODB system. These extensions

include:

24

� Implementation of a full Sentinel C++ pre-processor (and a Sentinel post-

processor) to transform the ECA rules speci�ed either as part of a class def-

inition or as part of an application; these processors are di�erent from the

C++ pre-processors used by the Open OODB in that Sentinel pre- and post-

processors convert the high-level user speci�cation of ECA rules into appropri-

ate code for event detection, parameter computation, and rule execution, while

the tasks of the Open OODB pre- and post-processors are of object level.

� Detection of primitive events by notifying the local composite event detector

from within each wrapper method if that method is identi�ed as an event.

Sentinel post-processor adds this noti�cation into the wrapper method, which

is provided by Open OODB's Sentry mechanism.

� Implementation of a local composite event detector for detecting composite

events (within an application) and parameter computation in various contexts

[19, 7]. The event detector is implemented as a class and there is a single

instance of this class per application.

� Implementation of a transaction manager for supporting nested transactions

used for concurrent execution of rules. Light weight processes are used for both

prioritized and concurrent rule execution. Nested transactions are supported in

the client address space (as opposed to the server address space) and a separate

lock table is maintained by Sentinel. This gives a two level transaction man-

agement (top level transaction concurrency is provided by Exodus at the server

and the nested transaction concurrency by Sentinel for each client). There is

no recovery at the nested subtransaction level.

25

� Implementation of a rule debugger for visualizing the interaction among rules,

between events and rules, and between rules and database objects. This will

be discussed further in 5.3.3.

Figure 4.3 shows how the class lattice of Open OODB has been extended. The

classes outside the dotted box have been introduced for providing active capability.

This �gure also shows the kernel level enhancements to the Open OODB modules to

accommodate nested subtransactions.

Open OODB

REACTIVE NOTIFIABLE

RULE EVENT

EVENT DETECTOR

LOCAL ASM NAME MGR PERSIST MGR

ADDRESS SPACE MGR

OODB

TRANSLATION MGR

TRANSACTION MGR

 LOCK MGR SYNCHRONIZATION

SENTINEL CLASS LATTICE

SYNCHRONIZATION

LOCK MANAGER

AHT

EXODUS CLIENT

EXODUS SERVER

(Top level transaction

info held here)

here)
(Some lock info held

(Nested transactions

lock info held here)

Open OODB NESTED TRANSACTION MANAGER

Derived class Friend class

Figure 4.3. Class Hierarchy and Functionality of Sentinel

The architecture (new classes and modules) shown in Figures 4.2 and 4.3 supports

the following features:

i) detection of primitive events,

ii) detection of local composite events,

iii) parameter computation of composite events,

iv) clean separation of composite event detection with application execution,

v) execution of rules in immediate and deferred coupling modes, and

vi) prioritized and concurrent rule execution.

26

[begin ()] [&& end (eventName)] methodNameeventName

event eventName = eventExpression

event

Event Specification Syntax

Figure 4.4. Sentinel Event Speci�cation Syntax

rule ruleName ([eventName =] eventExpression | eventName,

conditionFunction , actionFunction

][

[, priority][], ruleTriggerMode

Rule Specification Systax

, parameterContext[[], couplingMode

Figure 4.5. Sentinel Rule Speci�cation Syntax

4.2.2 Rule Implementation

A high level event/rule format was introduced to allow users to specify events and

rules at an abstract level. This event/rule format is preprocessed and changed into

Sentinel system calls.

The syntax of a Sentinel event/rule speci�cation is:

Event interface is speci�ed to deal with methods as primitive events. This event

interface speci�cation is pre-processed by adding wrapper methods to notify the event

detector when they are invoked. Event expressions specify primitive and composite

events using event speci�cation detailed in Snoop [11] which supports a number of

event operators (e.g., and, or, sequence, aperiodic). The BNF of the event speci�ca-

tion language can be found in [22].

Currently, the condition and action component of a rule are global functions. The

condition function returns an integer to indicate whether the condition is satis�ed or

not. The action function does not return any value.

27

Parameter contexts are useful for di�erent classes of applications. Four parameter

contexts have been introduced in Sentinel: recent, chronicle, continuous, cumulative.

The default context is assumed to be recent.

Coupling mode refers to the execution points. Currently, immediate and deferred

coupling modes are supported between event and condition-action pair. There are

some implementation di�culties for supporting detached mode.

Priority classes are used for specifying rule priority. Sentinel provides a global

con
ict resolution mechanism among the priority classes and concurrent execution of

rules that belong to the same priority class.

Rule speci�cation is done at class de�nition time and as part of an application.

Sentinel supports rule activation and deactivation at run-time.

(Rule trigger mode) is used for specifying the time from which event occurrences

to be considered for the rule. Two options, NOW and PREVIOUS are supported,

with NOW being the default.

The syntax of a rule is the same for both class level and instance level rules. A

class level rule satis�es the inheritance property. Any class whose events are used in

rules (either class level or instance level) need to be REACTIVE. When a user-de�ned

reactive class is pre-processed, appropriate primitive events and rule declarations are

generated and inserted in the application program. Since this rule will subscribe to

an event expression that is speci�ed on a class level, this rule will be noti�ed whenever

any object of this class invokes the method that are potential event generators.

4.2.3 Functionality of the Sentinel Modules

The control
ow for supporting Sentinel's active features is further elaborated in

Figure 4.6.

Detection of primitive events is based on the design proposed in [3]. Primitive

events are signaled by adding a notify procedure call in the wrapper method by the

28

Sentinel post-processor. Both primitive and local composite events are signaled as

soon as they are detected. However, the detection of a composite event may span

a time interval as it involves the detection and grouping of its constituent events in

accordance with the parameter context speci�ed. A clean separation of the detection

of primitive events (as an integral part of the database) from that of composite events

allows one to

i) implement a composite event detector as a separate module (as shown in Fig-

ure 4.2) and

ii) introduce additional event operators without having to modify the detection

of primitive events.

a
n
d
l
e
r

H

t

E
v
e
n

a
n
d
l
e
r

H

t

E
v
e
n

Application n’
to execute
detached rule

begin
Transaction

begin
Transaction

end
Transaction

end
Transaction

2 - Composite event detection for immediate rules
4 - Causally dependent commit signaled
6 - Rules executed as subtransactions

Application 1 Application N

Local Event
Detector

Local Event
Detector

1 1

2

3

2

3

4 5 5 4

6 6

Global Event Detector

G
lo

b
al

 E
ve

n
ts

G
lo

b
al

 E
ve

n
ts

detached rule
to execute
Application 1’

1 - Primitive Event signaled
3 - pre-commit and abort signaled
5 - Inter-application events detected

Forked processForked process

Figure 4.6. Local and Global Event Detector Architecture

Each application has a local composite event detector (Figure 4.6) to which all

primitive events are signaled. The implementation uses threads (light weight pro-

cesses), instead of processes, for separating composite event detection (as well as for

the execution of rules) from application.

29

When a primitive event occurs it is sent to the local composite event detector and

the application waits for the signaling of a composite event that is detected in the

immediate mode. The local composite event detector and the application share the

same address space and the event detector uses an event graph similar to operator

trees [7].

For rule execution, a nested transaction manager (Figure 4.3) is implemented with

its own lock manager. This is in addition to the concurrency control and recovery

provided by the Exodus storage manager for top-level transactions. Each rule (i.e.,

condition and action portions of a rule) is packaged into a sub-transaction. A number

of sub-transactions are spawned as a part of the application process. The order of rule

execution is controlled by assigning appropriate priorities to each thread based on the

priority of the rule and the priority of the triggering rule (if there is one). Support

for multiple rule execution and nested rule execution entails that the event detector

be able to receive events detected within a rule's execution in the same manner it

receives events detected in a top level transaction. This is accomplished relatively

easily by separating the local composite event detection from the application as shown

in Figure 4.6. This separation also readily supports both online and batch (or after-

the-fact) detection of composite events.

CHAPTER 5
DESIGNING GRAPHICAL USER INTERFACES FOR SENTINEL

5.1 User Requirements on Data Visualization

As indicated in Chapter 1, database users from di�erent communities have drasti-

cally varied requirements on the appearance and functionality of visualization tools.

Particularly, non-database experts usually expect the visualization tool to be easy to

perform and understand, i.e., it should allow complex interaction between the user

and the database to be conducted in natural and intuitive manners. Furthermore,

results of database execution should be presented e�ectively and unambiguously.

With the advent of high speed graphical display devices, windowing operating

systems, multimedia and other GUI advances in various computer disciplines, the

users of database management system are expecting and demanding more from their

user interfaces.

User interfaces for advanced database management systems di�er from ordinary

visualization tools in that they should provide the users a way of interaction with the

underlying DBMS in addition to being capable of displaying the entire spectrum of

di�erent types of data e�ectively.

The design of a user interface should observe the following rules:

i) Usability is an important aspect of GUI design since the principal function of

a graphical user interface is to facilitate the human-computer dialogue.

ii) Simplicity and User-friendliness are of ultimate importance for users to reduce

the learning curve.

iii) Portability has become an imperative in present day's software arena.

30

31

During the past years windowing systems have gained the position of the underly-

ing programming environment of most graphical user interfaces. This is due to their

interactive nature from the human-machine relation perspective. In a data visualiza-

tion objects that appear before the user can be thought of as \widgets" while various

behaviors are assigned to screen visuals. These behaviors might be elicited when

pointed at with a picking device (typically, a mouse) via a callback routine. Such

actions can trigger additional database interactions and visualizations, thus a�ording

a mechanism with which to do database browsing.

The emergence of active databases has added a new dimension to the interac-

tion between applications and DBMSs. Traditionally all these interactions have

been driven by the application. Visualization tools following this driving force are

application-oriented. In such applications the user normally submits requests to

the DBMS and receives responses from the system in synchronous or conversational

fashion. In contrast, in an active database application, it is di�cult for the user

to predict what event(s) might happen and what actions the system might take as

a consequence; he/she receives responses from the DBMS in an asynchronous and

passive way. In some circumstances the user may not receive any reply if no rule

�res. This kind of human-computer interaction distinguishes itself from traditional

ones in passive database environments.

In the context of active databases, the functionality of data visualization will

switch its emphasis from traditional data navigation/browsing to re
ecting the changes

resulting from event triggering/rule �ring.

In addition to the new requirement imposed by active databases and general rules

for GUI design, di�erent user perspective may also create a diversity of design choices.

Non-database expert users are more interested in application related data than

system related data. In other words, they only expect to carry out requests in the

32

application and receive results out of the system, without understanding the details

of the execution process. The user interface is meant to highlight information related

to the application without it being clustered with irrelavant data re
ecting the states

of the underlying system.

Application developers, on the other hand, need to understand the details of

the system's functioning modules, trace the execution, discover existing or potential

errors and correct the errors if necessary. Their interests can go well beyond a speci�c

application's running behavior. More information of the system kernel should be

presented expressively via the user interface to ensure that the user make a good

understanding of it.

The following sections elaborate the design of an application level GUI and a

system level rule debugger for the Sentinel active DBMS, illustrating the observations

discussed above.

5.2 MDP - An Application Level GUI

MDP, Plan Monitoring Application, is a military application utilizing the active

capability of the Sentinel DBMS.

5.2.1 Description of the MDP Application

In this application there are two kinds of critical situations that may create alerts

when they occur:

� non-weather related

The navy consists of various units (termed as unit objects), positioned at various

locations for performing some task. Each unit has a readiness status indicating

whether they are in a position to perform certain operations. Readiness can be

de�ned based on personnel, training, supplies etc. and is maintained in terms

of ratings (e.g., 1 signifying Combat Ready and 5 signifying Overhaul). A

33

readiness rating of 2 or below is desired for any unit. As a crisis arises a plan

has to be prepared to deal with it. A set of units have to be assigned to carry

out each plan. Once this is done any change to either the plan or a unit's

readiness status has to be monitored continuously.

� weather related

There are a �xed number of geographic regions in which the weather will be

monitored. The weather is described by wind speed, wave height and the date

on which this weather is valid. When severe weather condition is reported for

a certain region, for example:

a) wind speed > MAX WIND SPEED or

b) wave height > MAX WAVE HEIGHT

where MAX WIND SPEED and MAX WAVE HEIGHT are prede�ned limits, the follow-

ing action will be taken: identify units in the a�ected region and warn comman-

ders of the severe weather. Two kinds of weather-related tasks can be done:

weather monitoring and weather forecasting.

It is clear that the active capability of Sentinel can be used to achieve automatic

monitoring of the above situations.

5.2.2 Design of the MDP Graphical User Interface

Currently, MDP is a single-user application, which means every user runs an

instance of MDP locally. In this environment the user interface is appropriate to be

designed as tightly coupled or integrated with the system. The Sentinel DBMS and

the underlying Open OODB are easily accessible by MDP as libraries. The bene�t

of this design approach is that the system and the visualization program run in the

same address space hence system data can be readily shared by parameter passing

and procedure invocation. Thus the user interacts with the Sentinel system in a

simple and asynchronous manner: he/she submits one or many reports at a time

34

and wait for the system to process the messages, detect events and carry out actions

according to rules that would �re. Results of actions are sent back to the front end

for the user to visualize.

Since there are two types of critical situations to monitor (weather related and

non-weather related) they must be treated di�erently to suit user's need.

In our design, non-weather related result message is shown as plain text. For

weather related messages in addition to text output we have arranged a 2-D raster

image representing the geographic area we are currently monitoring, which is a partial

world map containing most of the Paci�c Ocean and its Asian and American coast

lines. A region is de�ned as a rectangular area in the map. Currently there are

10 regions of interest. When severe weather change emerges in a region and some

appropriate alert should be issued the region will be highlighted around its border

in an eye-catching color. Newly created color rectangle will blink to enhance user

attention until a newer update happens.

Corresponding to di�erent severity a region can be highlighted in one of 3 colors:

violet, orange, red, representing the weather condition in the ascending order of

gravity.

Figure 5.1 shows the layout of the MDP graphical user interface. It contains a

group of subwindows and a set of action buttons.

1) Regions Monitored: this is a scrolled list containing the names of all regions

being monitored.

2) Region Information: this is a scrolled text pane showing the position (longi-

tude/latitude) of a region.

3) Incoming Reports: this is a scrolled list of possible reports that user may

submit.

35

Figure 5.1. MDP Layout

36

4) Action Taken: this is a scrolled text pane that gives the result of execution or

action taken by the MDP system according to the report(s) submitted.

5) World Map: this is a canvas containing a portion of a gridlined world map. All

regions are inside this map. At di�erent execution stages a region's border rectangle

may be highlighted and its color may change to one of the following colors:

blue, when the region is picked statically in the Regions Monitored window to

retrieve its position information.

violet, orange and red, represent di�erent severity of weather in that region, in

ascending order.

6) View Button: for browsing the content of reports.

7) Send Button: for submitting report(s) after selecting one or more reports in

the Incoming Reports window.

8) Quit Button: for exiting from the MDP application.

9) Explanation Button: for \help" purpose. When this button is clicked there pops

up a dialog window with a scrolled text pane containing explanation information.

In the future we plan to distribute the execution of MDP over many distant sites.

Each site runs a copy of the Sentinel system and MDP. These sites can send messages

(including plain text, graphics and possibly audio data) to a remote message server

via a network communication interface. Once the interface is developed MDP can be

seamlessly upgraded to run distributedly without drastic architectural reformation.

5.3 Sentinel Rule Debugger - A System-Level GUI

5.3.1 Background, Observations and Objective

Using ECA rules in active database systems for real-life applications involves

implementing, debugging, and maintaining large numbers of rules. Experience in

developing large production rule systems has amply demonstrated the need for un-

derstanding the behavior of rules especially when their execution is non-deterministic.

37

Availability of rules in active database systems and their semantics creates additional

complexity for both modeling and verifying the correctness of such systems.

There has been an obvious lack of suitable mechanisms to examine whether the

active behavior designed for an application corresponds to the intended one. Even

though the active capability in terms of rules can be used bene�cially in a wide range

of applications, it is not a trivial task to understand, debug and maintain a large

number of rules. The static analysis of database production rules has been discussed

in [28, 1].

The static analysis methods are used for determining whether arbitrary sets

of database production rules are guaranteed to terminate (Termination), produce a

unique �nal state when multiple rules are triggered at the same time (Con
uence),

produce a unique stream of observable actions (Observable determinism). Termina-

tion is analyzed by constructing a directed triggered graph for a set of rules R. If

there are no cycles then rules are guaranteed to terminate. Rules in R are said to

be con
uent if every execution graph of R has at most one �nal state. Also par-

tial con
uence is analyzed by analyzing con
uence for a subset of rules in R. The

algorithms presented in [28, 1] are conservative: they may not always detect when a

rule set satis�es these properties. However, they isolate the responsible rules when a

property is not satis�ed.

Run-time analysis is in terms of interaction among rules, between rules and

events and between rules and database. Runtime analysis augments the static anal-

ysis and gives the user a better understanding of the system. In addition to static

analysis it is also necessary to provide a runtime analysis of rules for the following

reasons.

� We need to have an expressive rule language to accommodate a diversity of

applications. However the expressiveness adds complexity. One solution is to

38

�nd an appropriate declarative rule language which would allow detection of

rule inconsistencies at compile time. This is static analysis. Although these

languages are appropriate for specifying conditions over database states, some

problems arise when trying to describe reactive capability declaratively. For

example, reactions could be arbitrary operations other than database opera-

tions. It may be di�cult to formalize these operations in order to do static

analysis. Hence the expressiveness of the rule language can be limited to focus

on a particular application (e.g. integrity rules which have restricted reactions

only to update/restore the state of a database once a violation occurs). As the

number of rules increases it becomes di�cult for the administrator to foresee

possible interactions between rules. A rule debugger would be of immense help

in this regard.

� The nature of rule execution is dynamic. The rules are �red in response to a

certain event. Due to the event based nature of rule execution the user does

not know in advance when a rule would be �red. Hence there ought to be some

sort of explanation mechanism which allows the users to ascertain what rules

are activated and when. There needs to be some visualization of the runtime

trace of rule execution.

� Rules are eligible for �ring if appropriate events are raised. We could have

multiple rules being triggered by an event and these rules can be executed in

any order. These rules form a con
ict set. The user can focus on this set and

change priorities if required. Presentation of event-rule context is a run-time

issue.

� There can be nested execution of rules. Sometimes the nested execution may

lead to potential cycles i.e. a set of rules repeatedly triggering each other (which

39

may have been determined by static analysis). It will be helpful to recognize

and highlight these potential cycles at runtime.

� It is also very helpful to show how the execution of rules e�ects the state of the

database. This could be shown in terms of the objects modi�ed by the rules.

This makes sense in an object-oriented context since we have object identi�ers

to keep track of the objects.

We conclude that both static and run-time analysis are important in an active

database management system. In this thesis we concentrate on the runtime analysis

of rules.

It is clear that we cannot adopt the model of traditional debuggers (of imperative

languages) readily in the context of active rules. The reason is twofold:

� The conventional debuggers show the sequence in which the tracked units (in-

structions in a programming language) executed. The situation is context inde-

pendent since the user is already aware of the context. For example, the instruc-

tions of a program are executed in a �xed sequence given by the programmer.

If there is an error such as an over
ow, non-existent pointer dereferencing, etc.,

then the program fails and with the help of the debugger the user can locate

where the error has occurred.

� In a conventional program debugging environment, the factors considered are

variables, subroutine calls, exceptions (stack over
ows), pointer referencing /

dereferencing, etc. The debugger aids the user in this process by furnishing low-

level details such as the line number of the program where the error occurred,

variables accessed, etc.

By contrast, the rules in an active database system are executed without any user

intervention. There is no means by which the user can know in advance which rules

40

will be �red. Hence the debugger geared for active rules has to be context dependent.

The context for rules is determined by the events which caused them to �re [12].

When we consider debugging in the context of an Active database system, we

need to take into account the following factors.

� Database component. Di�erent from conventional program execution, the

database operations are performed on database objects and carried out in well

de�ned atomic units namely transactions. In order to ensure atomicity and

the correctness of the operations, locking schemes are used according to the

transaction model adopted. These locking mechanisms enforce concurrency

control mechanisms when several transactions compete for access to database

objects. To get a complete picture of the states of a database system we need

to trace the transactions, database objects and locks held (especially when there

are concurrent operations).

� Event/event relationships. The active feature of a database system adds

another dimension to the process of debugging. We have to consider the in-

teractions among events, among rules, between rules and events and between

rules and database objects. Events are divided into two categories: primitive

and composite. A composite event is de�ned recursively as an event expression

formed by using a set of primitive event expressions, event operators, and com-

posite event expressions constructed up to that point. In an active database

application, the dependency graph of all primitive and composite events form

a structure similar to decision tree. To ease the understanding of the interrela-

tions between the events there is a need to visualize this tree structure.

� Event detection. The core functional module of the Sentinel active database

system is the local composite event detector. Since it is di�cult for the user

41

to know which event(s) would be triggered and which rule(s) would �re in ad-

vance, it would be desirable to keep track of the event triggering and rule �ring

sequence to help the user understand the result. Hence extracting informa-

tion such as parameter contexts and time stamps from the event detector, and

displaying the global event history graph will signi�cantly enhance the user's

understanding.

� Rule/event interactions. When event(s) are raised appropriate rule(s) �re.

An event may trigger several rules simultaneously. It is desirable to visualize

the context of rule �ring, i.e., which event causes which rule(s) to �re. This

interaction can happen in a reciprocal fashion: a rule may raise an event which

may cause some other rule to �re and so on. This may result in a nested

execution of rules.

� Rule/database interactions. In the process of concurrent rule execution

the extended Open OODB lock manager will handle concurrency control among

nested transactions. Rule/database interactions are conveyed in terms of locks

acquired/released on database objects.

� Rule execution. The nested transaction model is used in Sentinel rule

execution. Condition checking and action running are packaged in a light weight

process (thread) as a subtransaction. This implementation supports sibling

concurrency.

� User intervention. In an active database application the user is not meant to

direct the execution intentionally. However at times the system developers and

analyzers wish to trace the system behavior more closely or need to compare

di�erent results with di�erent initial conditions for debugging purpose. For this

the user may desire to change the asynchronous nature of execution by running

42

the visualization program in a step-by-step mode, or changing the states of

the rule system. Another case of possible user intervention appears when the

number of events and rules grow and the user's interest becomes only a subset

of the entire event/rule set. In this case, it is appropriate to reduce the number

of objects to trace to suit the user's need. The above situations show it is

helpful to allow the user to be able to interrupt the execution, input changes to

existing event/rule attributes and choose a subset to monitor at certain \break

points".

These requirements are initiated by application developers and system analyzers

in contrast to non-database experts or end-users. The two communities of users di�er

in their interest.

From the above observations we depict that objective of a rule debugger for an

active object-oriented database management system is itemized as follows.

� The rule debugger should concentrate on the high level details such as relation-

ships between primitive events and composite events, rule-event interactions,

interaction between rules and interaction of rules with database objects rather

than the low-level details as in a programming environment.

� The debugger should show the execution of rules graphically preserving the

triggering order, current status, and other relevant details. This is particularly

useful when there is a nested execution of rules.

� In addition to the rule trace, the context (i.e., the events raised, whether the

event was raised from within a rule or the top level transaction) should be

shown.

43

� The debugger should allow the user to input changes and monitor only certain

rules/events of his interest. This is useful in applications having a large number

of rules.

� Finally, it should be possible to visualize application execution either at run-

time or after the execution of an application for the analysis of rule execution.

This should be accomplished without having to change either the architecture

of Sentinel or the visualization tool.

5.3.2 Design Choices

Besides the issues concerning general design of graphical user interfaces discussed

in Chapter 3, the following design alternatives also have an impact on the overall

architecture and functionality.

� Problem-oriented vs. program-oriented: One approach to debugging

a program is to provide a high-level description of the expected behavior of

the program to the debugger. The expected behavior is in terms of what the

program is intended to do rather than the low level details of the program such

as program variables, subroutines, etc. For example, in an approach adopted

in debugging of parallel programs [15], the expected behavior is formulated

in such a way that it aids the debugger in bringing out or detecting certain

problems in the application domains e.g. deadlock, starvation etc in distributed

programming. This would help the programmer to compare the actual behavior

and the expected behavior at execution time. The expected behavior is speci�ed

abstractly in terms of control
ow, data
ow and synchronization events. This is

in contrast to the conventional debugging approach (of conventional programs)

as exempli�ed by dbx [21] where the program behavior is modeled at low-level,

in terms of the source code entities such as subroutine names, line numbers,

44

etc. As categorized in Hseuh and Kaiser [15] the former approach is termed

as problem-oriented and the latter low-level approach is termed as program-

oriented. When we try to debug/visualize rule execution and event detection

in an active database management system, the problem-oriented approach is

desirable. This is due to the fact that rule execution is dynamic as rules are

�red in response to a situation without any user intervention. Due to the event

based nature of rules the user does not have any priori knowledge of rules that

will be �red in a given execution of an application. Hence the \context" of

program/application is not available to the user as in the case of a conventional

debugging model. The \context" has to be provided by the system. The

expected behavior of rule execution is speci�ed in the event speci�cation and

rule speci�cation language [19, 9], which details that rule(s) are �red in response

to event(s). Even though the user may be able to input changes to the system

at \break points" the rule execution context is still provided by the system,

only with altered result.

� Integrated vs. loosely-coupled: When the rule debugger is an integral part

of the underlying database management system, it is termed as integrated. The

integrated approach favors rule debugging per application as opposed to global

rule debugging (across applications). The integrated approach makes it easy to

show the modi�cation of data (attributes) in certain object-oriented environ-

ments since we are operating within the same address space. In contrast in a

loosely-coupled approach the rule debugger would be envisaged as a separate

system which would be linked to the underlying database system by means of

some communication mechanism (sockets, pipes, RPC, etc.) or by using the �le

system as a message passing channel. This approach favors global monitoring

of rules, that is, we could have event detection and execution of rules across

45

applications. An application may be interested and respond to events gener-

ated in some other application. For example, a stock broker application may

respond to the event of decrease in IBM stock in a stock exchange application.

The main advantage of this approach is that since it can be built as a separate

module independent of the active database system, it will not be constrained

by the features of the latter. Also it is likely for di�erent applications to run

on di�erent sites in a distributed manner. The main disadvantage with this

approach particularly in an object oriented context is that we are operating

in di�erent address spaces. This makes tracking of data modi�cation di�cult

since it would involve issues of accessing remote objects.

� Online vs. post-execution analysis: We can visualize events and rules

when they occur at run-time (online) or we can do so later via a stored event/rule

log(post-analysis). The advantage of the �rst approach is it has the real sense

of debugging { debugging time and run-time are identical. As a result of online

debugging the user is able to interact with the system during execution and pos-

sibly change the result of execution. By contrast when post-analysis is adopted

there exists a lag of debugging time with respect to run-time. It is probably

desirable to have both options in a debugging environment. To support online

debugging we need to have some mechanism by which there is instantaneous

noti�cation of event occurrences and �ring of rules. In an integrated approach

this could be easily achieved by accessing variables and invoking procedures; In

an loosely-coupled approach this can be done by means of socket mechanism.

� Using preprocessing vs. not using preprocessing: The preprocessor

parses static event/rule speci�cations in an application at compile time. This

information can be gathered for analysis and display. In this approach the

rule debugger may show all prede�ned events, rules and their relationships

46

before run-time. However, to support it the preprocessor needs modi�cations.

Alternatively, the rule debugger can obtain event/rule information exclusively

at run-time as event and rule objects are instantiated. This approach does not

utilize the compile-time information and can not support static analysis.

� Batch vs. step: The user can choose to debug the rule execution in a step-by-

step fashion, i.e., the system halts every instant when there is an event raised,

a rule �ring, a transaction commit, etc. Alternatively, the application can run

consecutively until it �nishes (batch mode). Both options may be desirable

because the step mode enables the user to watch the system change in a �ner

scale and interact with the system in the middle of execution, while the batch

mode suits the situation when the user wish to visualize and understand the

result of execution as a whole.

� Interactive vs. non-interactive: The debugger may support \break points"

and allow user intervention during run-time, or it only displays results. Clearly

the interactive approach is more desirable for a debugging tool, although there

may exist a number of di�culties in implementing this feature.

5.3.3 Existing Sentinel Rule Visualization Tool

Design, Architecture and Implementation

The departure point for our work is from the �rst version of Sentinel Rule Debug-

ger designed and implemented by Ziauddin [26]. The Rule debugger was implemented

to monitor rules and events within an application, i.e., there is no global visual-

ization of event detection and rule execution. A problem-oriented, loosely-coupled,

post-analysis and non-interactive approach was adopted. The way of communication

between the debugger and the active database system was achieved via log �les which

47

Sentinel
Pre-processor

C++ Compiler

Event detection

Rule execution

Parser

Event repository Rule repository

SENTINEL RULE DEBUGGER

Static info (class level and instance level rules/events)

Runtime info (event detection, rule firing)

C++
Pre-processor

Sentinel
Post pre-processor

Program

Execution

Application source code

Display

Figure 5.2. Functional Modules of the Non-interactive Sentinel Rule Debugger

contain information of rule/event de�nitions, rule/event object id's, the actual occur-

rence of events and �rings of rules, and other transaction related information. From

the rule/event de�nition the information concerning which rule subscribes to which

event and hence rule-event interactions can be obtained. The transaction related

information manifests rule-database interactions. The information in the log �les

is furnished by the pre-processor at compile-time, and the event detector and rule

manager at run-time. After execution of the application �nished the Rule debugger

reads these �les to obtain the trace of event occurrence and rule execution. Since the

debugging is done as a post-analysic there is no actual run-time visualization. Run-

time visualization is simulated by showing the occurrence of events and rule �rings

as and when they happened.

The architecture for the visualization tool is dictated by the architecture for event

detection in Sentinel. The functional architecture of the visualization tool is shown

in Figure 5.2.

The input to the rule debugger consists of

48

� class and instance level rule/event de�nitions: This information is supplied by

the user in the application program using the event [9] and rule [2, 19] de�nition

language. The preprocessor gathers this static information in the form of a �le.

� event detection information: This is the run-time information obtained on the

occurrences of events and the creation of event objects. This information is

provided by the local event detector and written to the run-time log �le.

� rule �ring information: This is furnished to the visualization tool in the same

way as the event detection information. In addition, the transaction in which

rules were �red and the information concerning locks acquired/released on

database objects are also furnished.

The visualization tool's parser reads the static information and stores the event

and rule information in the in-memory event and rule repositories, which are linked

list structures.The data structure which captures the nested execution of rules is

an n-ary tree. The root node represents the top-level transaction of the application.

When this transaction triggers a rule and since rules are executed as subtransactions,

the child node of the top-level transaction represents the �rst rule �red. This node in

turn could trigger another rule and it is represented as the child node (subtransaction

of subtransaction) and so on. The transaction tree grows in a top-down way: it starts

from the top-level transaction and spans to the descendents.

Layout and Functionality

The user interface window consists of the following parts:

� Trace: This is one of the buttons in the Rule debugger. When this button is

activated by the mouse click the run-time trace of the transactions is shown.

The trace is shown on step-by-step basis or in a continuous mode, depending

49

on the user's choice. In the step mode after each node is drawn, the display

routine checks for a buttonpress event (mouse event) and afterwards the next

node is drawn. Each node represents a subtransaction which maps to a rule.

The color of the nodes changes at each step of the execution. A green node

represents an active transaction, yellow for suspended, and red for committed.

A sample trace is illustrated in Figure 5.3.

� Besides the Trace button a group of push buttons provide the following func-

tions.

CONTMODE: select the continuous tracing mode.

STEPMODE: select the step tracing mode.

CLEAR: clear the drawing-area windows.

QUIT: exit from the program.

� Rules This is a list with all the rules de�ned in a particular application. When

an item is chosen a dialog window pops up showing the description of the rule.

� Events This has a similar functionality as that of Rules. It lists the events to

be monitored in the application.

� rule visualization window This is a drawing-area window displaying the rule

execution (nested transaction) tree during a trace.

� Execution console window This is a drawing-area window displaying exe-

cution information in plain text. The information includes all transaction /

subtransactions with their IDs, events that were raised and rules that were

�red. This window records the event detection, subtransaction and rule �ring

sequence.

50

Figure 5.3. Layout of the Non-interactive Sentinel Rule Debugger

51

Limitations of the Existing Rule Debugger

The following lists some restrictions of the rule debugger described above. Both

of design and implementation issues are covered.

� The visualization of rule execution in the existing Sentinel Rule Debugger is

done in post-execution analysis using log �les. There is no actual run-time

visualization. On account of this restricted debugging nature, the rule debugger

allows no user interaction with the system at run-time.

� All event detection information is supplied in the console window in text form.

It is di�cult for the user to envision the complex event-tree structure and the

context of composite event detection.

� Rule �ring context is shown only in text. There needs to be a more expressive

demonstration of the event-rule relationship.

� The user is not able to choose a subset of events / rules to trace. As the number

of traced objects increases the information presented to the user will tend to

cluster.

� No dynamic analysis is done by the rule debugger. Speci�cally, there is no

indication of the existence of potential cycles in rule execution.

� Use of di�erent colors to represent di�erent execution stages has enhanced the

quality of illustration, but it also degrades portability | the visualization can-

not be run on monochrome displays.

52

5.3.4 Interactive Rule Debugger - A Revised Design

To overcome the de�ciencies in the existing rule debugger, we have improved the

design without the sacri�ce of losing any existing functionalities. The resulting debug-

ging environment is termed SIEVE { Sentinel Interactive ECA Rule Visualization

Environment. The following is an outline of proposed improvements.

� Online choice allows the user to run the debugger in the interactive mode in

addition to the post-analysis mode. When the debugger runs in online mode

the debugging is achieved at run-time. If the users set up break points in an

application, he/she is able to input changes to the system in the course of

execution and visualize the e�ect of these changes.

� Event tree demonstrates the structure of primitive and composite events de-

�ned in an application, helps the user better understand the event-event rela-

tionships.

� Rule �ring context is shown by connecting the event-rule pairs across the

event tree and rule execution tree (subtransaction structure).

� Event detection context is retrieved from the event detector at run-time and

displayed in the form of global event history graph .

� Pruning of the event and rule trees is enabled to let the user choose a subset

of events or rules of interest to trace. Thus one can avoid the interference of

unwanted information.

� Cycle checking is done continuously during execution to alert the user of

potential non-terminant rules.

The interactive debugging mode presents new requirements to the rule debugger's

architecture. To preserve the design of existing modules and support code reuse, we

53

have implemented a communication interface using BSD sockets. Each module of

the Sentinel system that needs to interact with the rule debugger will pass messages

through the communication interface without changing its inner structure and func-

tionality. These modules include the Transaction Manager and Lock Manager within

the extended Open OODB Kernel and the Local Composite Event Detector and Rule

Manager of the Sentinel active DBMS.

The implementation and functionality of SIEVE is further elaborated in Chap-

ter 6.

CHAPTER 6
IMPLEMENTATION

In this chapter, we discuss various issues related to the implementation of both

application-level and system-level GUIs for Sentinel, with emphasis on the imple-

mentation aspects of the interactive rule debugger - SIEVE. We begin in Section 6.1

with an overview of the X Window System and the OSF/Motif toolkit. Then in

Section 6.2 and 6.3, the implementation of the MDP user interface and the Sentinel

Rule Debugger are discussed in detail respectively.

6.1 An Overview of X/Motif

6.1.1 The X Window System

The X Window System is an industry-standard software system that allows de-

signers to develop portable graphical user interfaces. One of the most important

features of X is its unique device-independent architecture. X allows programs to

display windows containing text and graphics on any hardware that supports the X

protocol without modifying, re-compiling or re-linking the application.

One salient di�erence between X and other windowing systems is that X does

not de�ne a particular user interface style. In X only a
exible set of primitive

window operations is provided without dictating the \look and fee"l of any particular

application's user interface. Applications depend on higher level libraries built on top

of the basic X protocol to provide components like menus, push buttons and dialog

boxes. Open Software Foundation's (OSF) Motif widget set is used for this purpose

in our applications.

54

55

The architecture of the X Window System is based on a client-server model. A

single process known as the server, is responsible for all the input and output devices

such as the display monitor, the keyboard and mouse. The X server typically runs on

a workstation (or personal computer) with a graphics display. An application that

uses the facilities provided by the X server is known as a client. The client communi-

cates with the X server via a network connection using an asynchronous byte-stream

protocol. The X architecture hides most of the details of the device-dependent im-

plementation of the server and the hardware it controls from the clients. When a

client application needs to use a service provided by the X server, it issues a re-

quest to the server. Typical client requests include window creation and destruction,

recon�guration and text or graphics displaying.

6.1.2 Libraries for Developing X Applications

X applications normally use libraries that provide an interface to the base window

system. The most widely used low-level interface to X is the standard C language

library known as Xlib. Xlib de�nes an extensive set of functions that provide complete

access and control over the display, windows and input devices. Besides Xlib there

are some higher-level toolkits (based on Xlib) available including the X Toolkit, which

consists of two parts: a layer known as the Xt Intrinsics and a set of user interface

components known as Widgets. The best-known OSF/Motif widget set implements

user interface components including menus, scroll bars and buttons, etc., while the Xt

Intrinsics provides a framework that allows the designer to combine these components

and produce a complete user interface.

Each of the Motif widgets provides certain appearance, functionality and struc-

ture. The widgets are divided into classes based on general functionalities.

Another toolkit, the Xpm widget set is based on Xlib as well. It is used mainly

for displaying X pixmaps. Xpm complements Motif's functionality in handling color

56

Other
Libraries Xlib (X Window System)

Xt Intrinsics

Xpm View

Sentinel User Interface

SENTINEL APPLICATIONS

Motif (Xm)

Applications

Non-GUI

Applications

GUI

Opreating System

Figure 6.1. Underlying X Libraries of Sentinel Graphical User Interfaces

graphics. Motif can only load and store X11 bitmaps which are single depth black-

and-white pixmaps. In the implementation of the interactive rule debugger for Sen-

tinel the Xpm toolkit is used to manage push buttons with color images.

Developed by BBN, the View library is a toolkit based on Motif and Xt In-

trinsics. View is suitable for user interface implementation in and object-oriented

programming environment. Using the View library one can �t the design with the

o-o paradigm therefore avoid the problem caused by the fact that all of the Xlib, Xt

and Motif functions are written in C. Another beni�t of using View is that upon the

instance creation by invoking the View class constructor the necessary steps of top-

level shell widget creation and application context retrieveing involved in traditional

Motif programming have been included, thus reduces coding complexity. In both of

our GUI applications the View library is used to exploit the above advantages.

Figure 6.1 shows the architecture of Sentinel user interfaces with their underlying

libraries and operating systems.

57

6.1.3 Application-System Interaction in X/Motif

The essence of X programming is the handling of asynchronous events. Events can

occur in any order, in any window, as the user moves the pointer, switches between the

mouse and the keyboard, moves and resizes windows, and invokes functions through

user interface components.

Xlib provides many low-level functions for handling events. For example, in the

interactive rule debugger the \up" and \down" mouse events of the �rst and third

mouse buttons are traced to handle user requests such as locating cursor position

and zooming of a certain area in the drawing canvas.

Xt simpli�es event handling by having widgets handle many events themselves,

without any application interaction. Once all of the widgets for an application have

been created and managed, a last statement, XtAppMainLoop will turn control of the

application over to Xt Intrinsics and let Xt handle the dispatching of events to the

appropriate widgets. However, an application can gain back the control for certain

events if it registers for the events with callback routines. In this case Xt will pass

the control to callback routines in which user speci�ed action can be carried out.

6.2 Implementation of the MDP User Interface

� Support for Temporal Events Temporal events are a special kind of prim-

itive events which are time-related. Temporal events can be categorized into

absolute and relative event subclasses. An absolute temporal event is speci�ed

with an absolute value of time and is represented as: < timestring >. For exam-

ple, 2 p.m. on August 15th, 1995 is speci�ed as < (14 : 00 : 00)08=15=1995 >.

A relative temporal event is speci�ed by a reference point and an o�set.

Currently Sentinel supports temporal events using Unix signal handling ser-

vices. The temporal event handler is a separate module independent of the

58

local composite event detector and the primitive event subscription module

which is inside the extended Open OODB kernel.

As described in 6.2, MDP interacts with Sentinel asynchronously. When a

temporal event is de�ned, the temporal event handling module is called to set

timer. At the same time the user interface manages a warning dialog in green

color stating that temporal event will happen either at an absolute time or after

a de�nite time interval, depending on the event's nature. As the timer runs

out a signal is triggered and the event handler starts executing. Reply message

is sent to the front-end inside the event handler. At this point the MDP user

interface noti�es the user of the temporal event by changing the color of the

warning dialog and the text content in the dialog.

� Timeout Event - Blinking graphics As mentioned in section 6.2, a newly

arriving region-related action message will cause an appropriate rectangle box

on the world map canvas to blink. This is achieved by utilizing Xt Intrinsics'

signal handling services through invocation of the callXtAppAddTimeOut. This

call registers a timer procedure that is called after a speci�ed amount of time.

In our case, when a new region-related message arrives the user interface in-

stalls a timer procedure which draws the target rectangle in a color. This timer

procedure is set to run after 0.25 second. Inside this timer procedure another

timer procedure is installed with a same time interval (0.25 second). The lat-

ter performs in the same way as the �rst procedure except that it draws the

rectangle in white. These two timer procedures repeatedly invoke each other

after waiting for 0.25 second. As a result the user envisions a blinking rect-

angle. The blinking will be stopped when a new message arrives by calling

XtRemoveTimeOut.

59

6.3 Implementation of SIEVE

6.3.1 Layout and Functionality

The visualization tool's interface and functionality has been designed to provide as

much information as possible in an uncluttered manner. Some information (e.g., event

detection and rule execution) is provided as part of the visualization whereas other

information (e.g., objects held by a rule/subtransaction) is provided on a demand

basis.

The display area of SIEVE contains the following:

1. Primitive Events

2. Composite Events

3. Rules

These are three scrolled lists containing the names of all primitive events, com-

posite events and rules de�ned in an application. This information is provided

by the preprocessor via a log �le.

4. Output

this is a scrolled text pane that gives the description of current execution of the

system. Also, when an item inside a scrolled list is chosen by a mouse click,

its detailed description will appear in this pane. The description includes,

depending on what it is { for a primitive event, its method, modi�er (when to

notify in the execution of the method function { begin or end) and OID; for a

composite event, its type, OID and constituent events (which can be primitive

or composite); for a rule, its condition, action, priority, coupling mode, context,

OID and the name of the associated event.

60

5. Canvas

this is a drawing-area widget displaying the event tree, nested transaction tree

and rule �ring context graph. During a trace, the upper half of this drawing-

area window shows the event tree, with leaf nodes (primitive events) on the top.

Composite events link with their component nodes with straight lines. Initially,

since no event has been detected/raised, all nodes are in the color of grey.

The lower half of the drawing-area displays rule execution tree, which demon-

strates the nested nature of transactions. Each node stands for a subtransac-

tion. Di�erent colors are used for the three states of sub-transactions: green

for running, yellow for suspended and red for committed. Whenever a rule is

�red a line connecting the transaction node of the rule and the triggering event

is shown, and the color of the triggering event is changed to brown.

6. Start Button

for starting debugging.

7. Step Button

for choosing step debugging mode. In this mode the system will halt every time

a system update happens. These updates include event detection, rule �ring,

start and commit of a transaction or subtransaction, acquirement and release

of a database object, and encounter of a break point.

8. Continuous Button

for choosing continuous debugging mode. In this mode the application will

execute continuously until it meets the end or a break point.

9. Help Button

for online help.

61

10. Select Button

for selecting a subset of events or rules to trace.

11. Global clock

shows global time in event detection.

12. Dialogs

accept choices to be input at break points

6.3.2 GUI Implementation Notes

1. Dialogs

Various popup dialog boxes are used to assist the user in making choices in

di�erent stages of execution. For example, At the beginning when the user

click the \Start" button a question dialog box pops up with a toggle box to

inform the user to choose between \Passive" and \Online" options. If \Pas-

sive" is chosen then the interaction between the visualization program and the

Sentinel system is done using log �les on a post-analysis base. Otherwise the

two communicate via their socket interfaces. Another example is, when a break

point is encountered the user has the following choices: (zero or many can be

chosen)

� add a new event

� add a new rule

� update an existing event

� update an existing rule

62

Once a certain choice is made there may be additional more choices. For ex-

ample, to update an existing rule, the next choice may be one or a combination

of the following:

� enable/disable the rule

� change its priority

� change its context

� change its coupling mode

Prompting multiple choices and reading user response is achieved by dialogs.

Dialogs help the user make decision intuitively and avoid errors. To further

enhance user-friendliness we have added the \cancel" option at every stage

where the user needs to make decisions.

2. Mouse Events

When the size of the event tree and subtransaction tree becomes large, the

number of rectangles representing event and subtransaction nodes may �ll the

entire canvas area. The straight lines connecting events and rules add more

complexity to the appearance of the picture. With all the lines, rectangles, text

information and colors tangling together the user may have di�culty visualizing

clearly. To overcome this potential problem we have implemented two features

that will help the user in viewing the canvas:

� graphical information querying

If the user move the mouse cursor inside a rectangle and click the �rst

(left) mouse button, the corresponding information about the node will

show in the output text pane. This gives the user a better knowledge of

the nodes in the canvas. To support this feature, we let the �rst mouse

63

Figure 6.2. Zooming Feature of the Sentinel Rule Debugger

button event associate with an action procedure that catches the position

of the mouse cursor and searches through the event tree and transaction

tree data structure for a position match, then prints the information of

the matched node on the text pane.

� zooming

The other feature lets the user choose a small area of the canvas and zoom

it in to a scale twice �ner as the original scale. if the user presses down

the third (right) mouse button at a starting point, holds and moves the

mouse cursor to a second position and releases it, the area enclosed in the

two points will be zoomed. The enlarged image will appears in a popup

dialog box containing a drawing-area canvas.

Figure 6.2 shows a part of the original canvas and the zoomed area.

64

3. Auto-zooming

As the number of nodes drawn in the canvas increases the image size may

exceed the boundary of the canvas. Though we can use scroll bar to move out-

of-sight portions of the image back into the window, the entire picture can not be

viewed at the same time, and the image size always has an upper limit. We have

implemented an automatic zooming feature to solve this problem. Whenever

the image size approaches the size of the canvas window, the drawing scale will

be adjusted in such a way that the new image drawn using the reduced scale

will remain in the canvas window.

4. Pruning of the event and subtransaction trees

The user may be interested only in a subset of all events de�ned in an ap-

plication. To avoid tracing all events exhaustively we have added a pruning

feature to allow the user to specify certain events and/or rules to trace and

let unrelated information screened away. This is accomplished by forming two

reduced trees containing only the nodes in the selection. This is possible since

events and rules are objects and moreover there is a one to one correspondence

between rules and transactions. When the trees are truncated in this way a

child node may not be an immediate subtransaction of its parent, but rather a

descendant of the parent transaction; and sibling nodes may not be real siblings

which stand for concurrent subtransactions.

Figure 6.3 shows the entire rule graph for an application. Figure 6.4 shows

the graph after pruning. In the pruned graph, only transaction nodes that are

related to rules R2 and R3 are present.

65

Figure 6.3. Before Pruning

Figure 6.4. After Pruning

66

Begin Transaction

Suspended

Commit Transaction

Figure 6.5. Graphical Representation of Subtransaction States for Monochrome Dis-
plays

5. Hardware Portability

SIEVE enhances hardware portability by distinguishing between color and

monochrome displays automatically and treating them di�erently. This is ac-

complished by the checking the default depth of the display. For color monitors

the color representation of di�erent subtransaction states remains consistent

with that of the older implementation [26], but for monochrome displays the

graphical representation has been modi�ed as shown in Figure 6.5.

6.3.3 Implementation Issues on GUI-System Interactions

In this thesis we have implemented a debugger for active rules in an object-

oriented context. The rule manager supports the event-condition-action paradigm.

Apart from tracing the execution of rules the Rule debugger also keeps track of the

events. As mentioned in Diaz et al. [12] tracing of events gives important hints to

the user: the event-rule cycle allows the user to know not only which rules �red but

also which event(s) caused the rule(s) to �re. The occurrence of the events sets the

context for the rule execution. The following features of the rule manager of Sentinel

have in
uenced the development of the Rule debugger.

67

� Events and Rules in Sentinel are treated as �rst class objects. Hence rule and

event de�nitions are identi�ed by their object identi�ers, described by attributes

and are manipulated through methods.

� Both events and rules can be de�ned either at class level or at instance level.

The class level rules �re for all objects of that particular class when a certain

situation (event-condition) is satis�ed while the instance level rule �res only for

a speci�c object.

� Events can be either primitive or composite. Currently, Sentinel supports prim-

itive events as behavior invocations: either as global functions or as member

methods. The system supports composite events by incorporating all the oper-

ators de�ned in Chakravarthy and Mishra [9].

� The condition and action are packaged into a single thread of execution. This

thread is executed as a subtransaction of the parent triggering transaction.

Hence we could typically have a cascaded �ring of rules and there is a one to

one mapping between the subtransactions and the rules.

� The nested transaction model supported by Sentinel allows sibling concurrency.

The functional architecture of the Rule debugger is as shown in Figure 6.6.

The input to the debugger is threefold:

� Static information Class instance level rule and event de�nitions are supplied

by the user in the application program using the event [9] and rule [2, 19]

de�nition language, which is incorporated on top of C++. As the de�nitions

are preprocessed the preprocessor supplies static information in the form of a

log �le.

The debugger requires the following information with respect to an event:

68

C++ Compiler

Static log file

Runtime log file

Static info (class level and instance level rules/events)

Application source code

Event detection
Rule execution

Transaction

Manager

Socket
Interface

Socket
Interface

Parser

Event repository Rule repository

Display

Runtime info (event detection, rule firing)

SENTINEL RULE DEBUGGERUser

Sentinel
Post pre-processor

Pre-processor
C++

Pre-processor
Sentinel

Execution
Program

Figure 6.6. Functional Modules of the Revised Sentinel Rule Debugger

1. The user-supplied name of the event.

2. If it is a class level event then the classname with which the event is

associated.

3. The type of the event (primitive or composite).

4. The signature of the method on which the event is de�ned along with the

event modi�er. (whether it is raised before or after the invocation of the

method).

5. If the event is composite then the event expression.

Also the following information is provided to the debugger with respect to a

rule:

1. The user supplied rule name and the classname to which it is associated

if it is classlevel rule.

69

2. The signature of the methods implementing the condition and action of

the rule.

3. The context for which the rule is �red (recent, continuous, cummulative,

chronical), coupling mode (immediate, deferred, detached), rule trigger

mode (now, before) and the rule priority.

� Event detection information This is the runtime information on the occur-

rence of events and the creation of event objects. In addition to the name and

OID the event detector also provides context parameter of composite events

to the rule debugger. This information is useful for demonstrating the global

event history graph. 1 The way of transmitting information, depending on the

debugging mode the user speci�ed { either passive or online, can be di�erent

in implementation { by using �les or stream sockets, but the appearance of the

user interface will not di�er. This approach hids the intricacies of implementa-

tion from the user.

E1 E2

A

;

E3

1
1 1

e
2 1

e
2

e e
3
1 2

e
2 4

e
1 2

e
3

e
4
2

time

Figure 6.7. Global Event History

1Global event history (event-log) is a set of all primitive event occurrences and is denoted by H.
Each primitive event occurrence is represented as a set in the log.

H = ffeijg j for all Ej , the primitive event ej

has occurred at instance i relative to events Ejg

Illustrated in Figure 6.7 is the event expression A = (E1 4 E2) ; E3 and the occurrences of dif-
ferent instances of event E1, E2 and E3 as well as the event graph for A.

70

� Rule �ring information This is furnished to the rule debugger in the same

way as the event detection information. The rule object identi�ers and the user

supplied rule names are associated when the rule objects are created.

� Transaction information The TID of the transaction in which a rule is �red

is provided to the rule debugger by the transaction manager in Open OODB

kernel. This association between the rule and the transaction helps the user

visualize the nested transaction approach Sentinel adopted in rule execution.

� Locking information The ids of database objects which were accessed in the

process of rule execution are provided by the lock manager. This information

helps the user visualize rule-database interaction.

� Break points The user can indicate several break points in the application.

When the preprocessor parses the application code, a new primitive event is

de�ned as \break point". At an actual break point this event is explicitly

raised, detected and the rule debugger is noti�ed of the break point. Then

the debugger accepts input requests from the user and transfers these requests

(textual strings) to Sentinel for processing. In implementation the rule debugger

collects all of the user-input request messages and dispatches them one after

another to the Sentinel socket interface at once. The parser in the system

processes the textual messages and executes them accordingly as if they were

statements of the application. As a result, the execution of these requests

may trigger more events, �re more rules and alter the database, but the front-

end has no knowledge of what may happen and only waits for output from

the system asynchronously. This approach is strictly consistent with the event-

condition-action nature of rules i.e. active behavior. Adding break points to the

application enables the user to change and monitor the behavior of events and

71

Update

Event

Add
Event

Update

Rule
Add

Rule

Change

PriorityName
Enable

Disable

Name Composite
Primitive

Name

Event

Condition

Enable/

Change

Mode

Change

Disable

Parameter

Figure 6.8. Control Flow at a Break Point

rules. This feature increases the interaction between the visualization front-end

and the underlying system from the user's perspective.

Figure 6.8 shows the control
ow at a break point.

SIEVE o�ers uniform supports for

� step/batch mode tracing of rules: The user can switch between step and batch

mode during execution. When the step is chosen, the unit of consecutive execu-

tion is the interval between any event, rule or break point. When batch mode is

chosen, the unit of trace is the entire application (if break points are ignored) or

the interval between two break points (when break points are accepted). The

user can enable/disable break points at run-time.

� using information from preprocessing/post-analysis/run-time execution: The

user can specify if preprocessor should be used by the debugger. Also, he/she

can choose from post-execution and run-time analysis before and a trace and

72

change this preference afterwards. SIEVE utilizes either �les or sockets accord-

ingly, but the appearance of the front-end remains the same.

� context dependency on system/user: The displayed rule execution information

may be the result of the original application or dynamic input from the user at

break points. SIEVE treats di�erent context in the same asynchronous way.

The implementation requires the following changes to existing Sentinel modules:

� preprocessor: In order to support prede�ned break points in an application, such

additional feature is added to the preprocessor that it recognizes break points

and maps them into a kind of explicit primitive event. This approach enables

the event detector to notify the user interface at run-time when break points

occur. Moreover, the preprocessor creates a data structure which contains all

procedures (pointers) that are potentially conditions/actions with their names

(strings). This one-to-one correspondence between the names and pointers

makes it possible to search pointers by name at run-time. This feature is

extremely useful for run-time rule creation, when the condition and action part

need to be de�ned dynamically without recompiling.

� event detector: A parser is added to process user input coming from SIEVE and

translate the textual messages into appropriate execution statements. Besides,

a socket interface is used for communication with SIEVE.

� transaction manager: A socket interface is needed to send transaction-related

information to SIEVE.

6.3.4 An Example: Stock Demo

Consider the following code example:

� before preprocessing:

73

{

......

event end(e1) int sell_stock(int qty);

begin(e2) void set_price(float price);

event e3 = e1^e2;

rule R1[e3, cond1, action1, CUMMULATIVE, DEFERRED];

......

}

� after preprocessing: For the above application, the log �le would contain the

following information:

Event Stock Primitive e1 [int sell_stock(int qty)] end

Event Stock Primitive e2 [void set_price(float price)] begin

Event Stock Composite e3 e1 AND e2

Rule R1 Stock cond1 action1 CUMULATIVE DEFRRED NOW e3

......

break

The preprocessed code for the events and rules is:

{

//pre-define break_point as a primitive event;

break_point = new PRIMITIVE("break_point", "OODB", "end", "break");

......

//instantiate events and rules that are defined in the application;

PRIMITIVE * Stock_e1 = new PRIMITIVE("e1", "Stock", "end", "sell_stock");

PRIMITIVE * Stock_e2 = new PRIMITIVE("e2", "Stock", "begin", "set_price");

AND * Stock_e3 = new AND("e3", Stock_e1, Stock_e2);

RULE * Stock_R1 = new RULE("R1", Stock_e3, cond1, action1, CUMULATIVE);

Stock_R1->set_mode(DEFERRED);

......

//explicitly raise break_point event to notify the front-end;

Notify(NULL, "OODB", "break", "end", system_list);

......

}

74

� after execution: The run-time log �le used for post-analysis may has the

following contents:

......

e2

......

e1

e3

R1

......

BREAK

......

Figure 6.9 shows a snapshot of the canvas when subtransaction 10001 has just

started. Composite event STOCK e4 has triggered rule R1, whose corresponding

subtransaction 10000 has committed. The top-level transaction 1 and subtransaction

100 are being suspended to allow for nested transactions.

75

Figure 6.9. A Snapshot of Trace

CHAPTER 7
CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this thesis we have addressed the visualization issues on active databases. Em-

phasis has been focused on the taxonomy between application-level and system-level

user interfaces to Sentinel, an active object-oriented database management systems.

As an illustrative example, we have designed and implemented MDP, an action-

oriented application-level user interface. We have discussed the impact of the ap-

plication's requirement on the architecture, layout, functionality and the interaction

with the rule system.

A more innovative contribution of this thesis is the extension of the rule debugger

to support interactive event/rule visualization. The debugging tool { SIEVE supports

visualization of event detection and rule execution both at run-time and in batch post-

analysis mode. We have revised the overall architecture to re
ect and monitor the

execution status of key modules of the Sentinel system, with emphasis on the context

of event-rule relationships. In order to assist the user in understanding the rule

mechanism the rule debugger is augmented with explanation features by furnishing

the user with relavent information including

� event objects and tree structure

� transaction/rule objeccts and tree structure

� event detection context parameters

� global event history graph

76

77

� lock information of database objects being held/released by subtransaction

The visualization tool enables the user to interrupt the execution at \break points"

and input feedbacks to the rule system, therefore conters the di�culty of run-time

tracing caused by the asynchronous nature of ECA rules. The user-initiated changes

include

� add new events

� disable/enable existing events

� add new rules

� disable/enable existing rules

� change rule priority, context, and coupling mode

The functionality of the interactive rule debugger has been further improved in

the following aspects:

� portability among hardware platforms

� on-line help

� automatic zooming

� illustrative dialogs

7.2 Future Research

The near-future goal of the extension to the Sentinel OODBMS is to upgrade

it to support global active database applications in which events can be de�ned

distributedly accross many user applications. The overall architecture is proposed

in Tamizuddin [26] and illustrated in Figure 7.1. Each application has a local event

78

a
n
d
l
e
r

H

t

E
v
e
n

begin
Transaction

end
Transaction

a
n
d
l
e
r

H

t

E
v
e
n

begin
Transaction

end
Transaction

detached rule
to execute
Application 1’ Application n’

to execute
detached rule

5 - Inter-application events detected

5 5

1

2

3

6

1

2

3

6

Application 1 Application N

Global Event Detector

Local event
Detector

Local event
Detector

DEBUGGER

 RULE

LOCAL

DEBUGGER

 RULE

LOCAL

2 - Composite event detection for immediate rules

6 - Rules executed as subtransactions
4 - Causally dependent commit signaled

1 - Primitive Event signaled
3 - pre-commit and abort signaled

DEBUGGER

GLOBAL

RULE

Figure 7.1. Overall Architecture for Global Event Detection and Rule Visualization

detector to which all the primitive events are signaled. In addition, each application

has a global event handler thread that handles the execution of rules whose events

span across applications (which can be running at distant address spaces). The core

functional module that is needed for accomplishing global event detection will be the

global event detector, which is a separate process running remotely. When a primitive

event occurs, it is noti�ed to the local event detector. The application waits for the

signaling of any composite event of immediate mode. In the mean time the global

event detector communicates with the local event detectors via remote procedure

calls (RPCs) to receive local events, detects the occurrences of global events and

notify the appropriate local event detectors of these occurrences.

The role of the rule debugger in this environment is to monitor global events as

well local events. It needs to communicate with not only the local event detector and

rule manager of each application but also the global event detector. This requirement

raises several design and implementation issues listed in the following:

� Choice of communication protocol and architecture

79

� Network security and authentication

� Clarity of display { avoiding the clustering of information

Besides global visualization we also plan on incorporating static analysis tools

as part of the visualization toolkit so that runtime execution can be compared with

static analysis. The preprocessor may play an important role in supporting static

analysis.

Also, we plan to add interactive query language capability to view database states.

The user interface will be tuned to perform data-oriented tasks. Ideally (i.e., for the

long term), it would be useful to have a cumstomizable visualization toolkit to which

the user can specify expected behavior and the tool provides a visual feedback on how

the actual execution di�ers from the speci�cation and o�ers guidance for correction.

REFERENCES

[1] A. Aiken, J. Widom, and J. M. Hellerstein. Behavior of Database Production
Rules: Termination, Con
uence, and Observable Determinism. In Proceedings,
International Conference on Management of Data, pages 59{68, May 1992.

[2] E. Anwar. Supporting Complex Events and Rules in an OODBMS: A Seamless
Approach. Master's thesis, CIS Department, University of Florida, Gainesville,
FL, November 1992.

[3] E. Anwar, L. Maugis, and S. Chakravarthy. A New Perspective on Rule Support
for Object-Oriented Databases. In Proceedings, International Conference on
Management of Data, pages 99{108, Washington, DC, May 1993.

[4] M. Arya, N. Grady, G. Grinstein, P. Kochevar, D. Swanberg, V. Vasudevan,
L. Wanger, A. Wierse, and M. Woyna. Database Issues for Data Visualization:
System Integration Issues. In Proc. IEEE Visualization Workshop, San Jose,
1993.

[5] H. Behrends. Simulation-based Debugging of Active Databases. In Proc. IEEE
Workshop on Research Issues in Database Engineering, RIDE 94, Houston, 1994.

[6] P. Borras, J. C. Mamou, and D. Tallot. Building User Interfaces for Databases
Applications: The O2 Experience. SIGMOD Record, 21(1):32{38, March 1992.

[7] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite
Events for Active Databases: Semantics, Contexts, and Detection. In Pro-
ceedings, International Conference on Very Large Data Bases, pages 606{617,
August 1994.

[8] S. Chakravarthy, V. Krishnaprasad, Z. Tamizuddin, and R. Badani. ECA Rule
Integration into an OODBMS: Architecture and Implementation. Technical Re-
port UF-CIS-TR-94-023, University of Florida, Gainesville, FL, Feb. 1994. (In
ICDE-95, Taiwan, March 1995.).

[9] S. Chakravarthy and D. Mishra. An Event Speci�cation Language (Snoop)
for Active Databases and its Detection. Technical Report UF-CIS TR-91-23,
University of Florida, Gainesville, FL, Sep. 1991.

[10] S. Chakravarthy and D. Mishra. Snoop: An Expressive Event Speci�cation
Language for Active Databases. Technical Report UF-CIS-TR-93-007, Univer-
sity of Florida, Gainesville, FL, March 1993. (Revised and extended version of
UF-CIS-TR-91-23.).

[11] S. Chakravarthy and D. Mishra. Snoop: An Expressive Event Speci�cation
Language for Active Databases. Data and Knowledge Engineering, 14(10):1{26,
October 1994.

80

81

[12] O. Diaz, A. Jaime, and N. W. Paton. DEAR: A DEbugger for Active Rules in
an Object-Oriented Context. In Proc. of the 1st International Conference on
Rules in Database Systems, September 1993.

[13] O. Diaz, A. Jaime, N. W. Paton, and G. al Quimari. Supporting Dynamic
Displays Using Active Rules. SIGMOD Record, 23(1):21{26, Mar. 1994.

[14] O. Diaz, N. Paton, and P. Gray. Rule Management in Object-Oriented
Databases: A Uni�ed Approach. In Proceedings 17th International Conference
on Very Large Data Bases, Barcelona (Catalonia, Spain), Sept. 1991.

[15] W. Hseush and G.E. Kaiser. Modelling Concurrency in Parallel Debugging. In
ACM S IGPLAN Notices, number 3, pages 11{20, March. 1990.

[16] M. Hsu, R. Ladin, and D. McCarthy. An Execution Model for Active Data Base
Management Systems. In Proceedings 3rd International Conference on Data and
Knowledge Bases, Washington, DC, Jun. 1988.

[17] Texas Instruments. Open OODB Toolkit, Release 0.2 (Alpha) Document,
September 1993.

[18] R. King and M. Novak. Building Reusable Data Representations with FaceKit.
SIGMOD Record, 21(1):11{17, March 1992.

[19] V. Krishnaprasad. Event Detection for Supporting Active Capability in an
OODBMS: Semantics, Architecture, and Implementation. Master's thesis, CIS
Department, University of Florida, Gainesville, FL, March 1994.

[20] M. Kuntz. The Gist of GIUKU Graphical Interactive Intelligent Utilities for
Knowledgeable Users of Data Base Systems. SIGMOD Record, 21(1), March
1992.

[21] M. Linton. A Debugger for the Berkley Pascal System. Master's thesis, Univer-
sity of California at Berkeley, June 1981.

[22] D. Mishra. SNOOP: An Event Speci�cation Language for Active Databases.
Master's thesis, CIS Department, University of Florida, Gainesville, FL, August
1991.

[23] P. Neeta. An X-based Graphic Browsing Interface for OSAM�. Master's thesis,
CIS Department, University of Florida, Gainesville, FL, 1992.

[24] J. Paredaens, M. Andries, M. Gemis, and M. Gyssens. An Overview of GOOD.
SIGMOD Record, 21(1):25{29, March 1992.

[25] A. Sharma. On Extensions to a Passive DBMS to Support Active and Multi-
media Capabilities. Master's thesis, CIS Department, University of Florida,
Gainesville, 1992.

[26] Z. Tamizuddin. Rule Execution and Visualization in ActiveOODBMS. Master's
thesis, CIS Department, University of Florida, Gainesville, FL, May 1994.

[27] D. Wells, J. A. Blakeley, and C. W. Thompson. Architecture of an Open Object-
Oriented Database Management System. IEEE Computer, 25(10):74{81, Octo-
ber 1992.

82

[28] J. Widom and S. Finkelstein. Set-Oriented Production Rules in Relational
Database Systems. In Proceedings, International Conference on Management
of Data, pages 259{270, May 1990.

BIOGRAPHICAL SKETCH

Jun Zhou was born on January 29, 1968, at Shanghai, China. He received his

Bachelor of Science degree in physics from the University of Science and Technology

of China, Hefei, China in July 1990. He also received his Master of Science degree

in physics from Tulane University, New Orleans, in May 1993. He will receive his

Master of Science degree in computer and information sciences from the University

of Florida, Gainesville, in August 1995. His research interests include active, object-

oriented databases and graphical user interfaces.

83

