
1

A RECOVERABLE ASYNCHRONOUS EVENT MANAGER
FOR SUPPORTING DISTRIBUTED ACTIVE DATABASES

BY

JENNIFER C. SUNG

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

1998

2

Dedicated to my
family

iii

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest sincere gratitude to my

advisor, Dr. Sharma Chakravarthy, for giving me an opportunity to work on such an

interesting and challenging Sentinel project and providing me great guidance and support

through the course of this research work. I would also like to thank Dr. Eric Hanson and

Dr. Herman Lam for serving on my committee.

I am also grateful to Sharon Grant for maintaining a well administered research

environment and her commitment to work. Sincere appreciation is due to Hyoungjin Kim,

Shiby Thomas, and Roger Le for their invaluable help and advice during the

implementation of this work. I would also like to thank all my friends for their support

and encouragement.

I would like to thank the Office of Naval Research and the Navy Command,

Control and Ocean Surveillance Center, RDT&E Division, as well as the National Science

Foundation for supporting this work.

Last, but not the least, I thank my parents and family for their endless love and

support. Without their encouragement and endurance, this work would not have been

possible.

iv
 TABLE OF CONTENTS

ACKNOWLEDGMENTS ..iii

LIST OF FIGURES...vi

ABSTRACT OF THESIS PRESENTED TO THE GRADUATE SCHOOL...VII

FOR SUPPORTING DISTRIBUTED ACTIVE DATABASES ..VII

CHAPTER
1 INTRODUCTION..1

2 RELATED WORK ..4

2.1 CORBA..4
2.2 SCHWIDERSKI THESIS ..4
2.3 TIBCO... ERROR! BOOKMARK NOT DEFINED.
2.4 JAEGER’S THESIS... ERROR! BOOKMARK NOT DEFINED.
2.5 ARIES..5
2.6 SHADOW PAGE ...6
2.7 POSTGRES STORAGE SYSTEM ..8

3 SUMMARY OF SNOOP IN SENTINEL ...9

3.1 SNOOP FLAGS ..9
3.2 EVENT DEFINITION ..11

4 SUMMARY OF EVENT DETECTORS ..13

4.1 LOCAL EVENT DETECTOR..13
4.2 EXTENDED LOCAL EVENT DETECTOR...16
4.3 GLOBAL EVENT DETECTOR ...18

4.3.1 Communication Architecture...18
4.3.2 Global Event Detection..20
4.3.3 Global Event Graph ...23

4.4 SUMMARY OF LED, ELED, AND G_GED ...24

5 DESIGN AND ALGORITHM ...27

5.1 CONFIGURATION FILE ..27
5.2 RESUME OR INITIALIZE MODE ...28
5.3 ROBUST TO FAILURES OF PRODUCERS ...29
5.4 ROBUST TO FAILURES OF CONSUMERS ..29
5.5 GUARANTEED DELIVERY OF EVENTS ..30
5.6 MUTEX LOCKS..31
5.7 BUFFER MANAGEMENT..31

6 USAGE OF THE GED SERVER AND APPLICATONS ..33

7 IMPLEMENTAION DETAILS ...35

7.1 IMPLEMENTATION OF A CONFIGURATION FILE AND A CONFIGURATION LIST ..35
7.2 IMPLEMENTATION OF THE REGISTRATION MESSAGE..37

v
7.3 IMPLEMENTATION OF ROBUST PRODUCERS ..37
7.4 IMPLEMENTATION OF LOG FILES ...38
7.6 IMPLEMENTATION OF RECOVERY LOCK ..45
7.5 IMPLEMENTATION OF BUFFER MANAGEMENT ..46
7.6 A SAMPLE SCENARIO...48

8 CONCLUSIONS AND FUTURE WORK ..55

8.1 CONCLUSION ..55
8.2 FUTURE WORK ...56

REFERENCES ...57

APPENDIX LOG FILES..58

BIOGRAPHICAL SKETCH..60

vi

LIST OF FIGURES

Figure 4.1 Data Structure of LED..15

Figure 4.2 Event Class Hierarchy of LED ..17

Figure 4.4 Class Hierarchy of GED..17

Figure 4.3 Data Structure of ELED ...19

Figure 4.5 Data Structure of LED, ELED,
GED… … … … … … … … … … … … … … … … 21

Figure 4.6 Global Composite Event Detection ...22

Figure 4.7 Architecture of G_GED ..25

Figure 4.8 Data Structure of LED, ELED and G_GED..26

Figure 7.1 Data Structure of config_list ...36

Figure 7.2 Data Structure of site_evnt_list (producer event list)40

Figure 7.4(c) After Producer1 Updates site_evnt_list ...43

Figure 7.3 Example of How site_evnt_list is Managed ...42

Figure 7.4 Data Structure of cli_addr_list (client address list)...43

Figure 7.5 Data Structure of event_para_list (consumer event list)43

vii
Abstract of Thesis Presented to the Graduate School

of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

A RECOVERABLE ASYNCHRONOUS EVENT MANAGER
FOR SUPPORTING DISTRIBUTED ACTIVE DATABASES

By

Jennifer C. Sung

May 1998

Chairman: Dr. Sharma Chakravarthy
Major Department: Computer and Information Science and Engineering

An active Database Management System (DBMS), unlike the traditional DBMS,

allows users to specify actions to be taken automatically when certain conditions evaluate

to true without user intervention. Thus, it enhances the functionality of conventional

database systems by supporting event-based rules. Once rules are declared, the DBMS is

responsible for detecting the occurrence of the event, evaluating the condition when the

event is signaled, and executing the action if the condition evaluates to true.

Most of the active Object-Oriented Database Management Systems (OODBMS)

developed so far do not address event specification outside of their own address space.

However, many applications in the real world are distributed in nature and hence require

support for distributed computing. A distributed application is a collection of multiple and

logically interrelated applications distributed over a computer network. A computer

system, like any other mechanical or electrical device, is subject to failures. In addition to

the above events occurring during normal execution, they can be affected by failures.

viii
There are a variety of causes of such failure, including logical errors, system errors, system

crash and disk failure. In addition to these failures, a distributed environment needs to

also deal with the failure of a site, the failure of a link, and loss of message and network

partition. Moreover, when we are dealing with a distributed application, it becomes much

more complicated since several sites may be participating in its execution. The failure of

one of these sites or the failure of a communication link connecting these sites may result

in erroneous computations.

The work on the Global Event Detector only supported monitoring events that

were distributed in multiple applications. Robustness of the Global Event Detector and

event persistence issues were not addressed. However, it is important to address

robustness and recovery issues since rules can be specified on events that occur in one or

more applications, and in the presence of failures, events are not delivered making

distributed applications prone to failure. Thus, in order to have a reliable event detection

and propagation, we want a recoverable Global Event Detector that can be brought to a

consistent state following various types of failures, can tolerate system failures, and can

continue to provide services when it recovers from failures. Therefore, the motivation of

this thesis is to design a recoverable Global Event Detector, which is robust to failures of

producers and consumers and guarantees delivery of events.

1

CHAPTER 1
INTRODUCTION

An active Database Management System (DBMS), unlike the traditional DBMS,

allows users to specify actions to be taken automatically when certain conditions evaluate

to true without user intervention. Thus, it enhances the functionality of conventional

database systems by supporting event-based rules. Once rules are declared, the DBMS is

responsible for detecting the occurrence of the event, evaluating the condition when the

event is signaled, and executing the action if the condition evaluates to true.

Most of the active OODBMSs developed so far do not address event specification

outside of their own address space. However, many applications in the real world are

distributed in nature and hence require support for distributed computing. A distributed

application is a collection of multiple and logically interrelated applications distributed

over a computer network.

A distributed application is subject to failures in many ways. There are a variety of

causes of such failure, including logical errors, system errors, system crash and disk

failure. In addition to these failures, a distributed environment needs to also deal with the

failure of a site, the failure of a link, and loss of message and network partition.

Moreover, when we are dealing with a

distributed application system, it becomes much more complicated since several sites may

2
be participating in its execution. The failure of one of these sites, or the failure of a

communication link connecting these sites, may result in erroneous computations.

The work on the Global Event Detector only supported monitoring events that

were distributed in multiple applications. It adopts the client/server model and uses the

Remote Procedure Call and sockets communication. The Global Event Detector acts as a

server and provides global event detection services to clients through Remote Procedure

Calls and sending socket messages. However, robustness on the Global Event Detector

and event persistence issues were not addressed in the previous work of the Global Event

Detector. It is important to address these issues since rules can be specified on events that

occur in one or more applications, and there should be no surprise that when a failure

occurs, as the distribution of events is not sufficient to make the distributed application

reliable.

There are several cases that explain the importance of these issues. First, if a

consumer crashes, events that are detected by the producer while it was down will be lost

if there is no event persistence. Hence, the consumer will lose the events while it was

down. This may result in a buffer overflow and the server may fail. Second, when a

producer recovers, events that need to be sent to the server once it has been detected by

Local Event Detector will be lost if there is no mechanism to properly maintain the event

list at the server. Third, the Global Event Detector can also face failures and should be

able to reconstruct its state at the time of recovery. Moreover, when a site crashes due to

a failure, the other sites should not be affected by it and should perform normally.

3
Thus, in order to have a reliable DBMS, we want a recoverable Global Event

Detector that can recover to a consistent state following various types of failures, can

tolerate client failures, and can continue to provide services after it recovers from a failure.

 Therefore, the motivation of this thesis is to design a recoverable Global Event Detector

with the characteristics of robustness to failures of producers and consumers, guaranteed

delivery of events, recoverability for the Global Event Detector, and persistence of events

and their parameters.

4

CHAPTER 2
RELATED WORK

In this chapter, several research efforts on monitoring the behavior of distributed

systems and fault tolerance and recovery mechanisms are discussed.

2.1 CORBA

One of the services provided by CORBA [1] is an event service. Event service

supports producers that produce events, and consumers that process them via event

handlers. The push model and pull model are supported as event notification models. In

the push model, a producer of events takes the initiative and initiates the transfer of event

data to consumers. In the pull model, a consumer takes the initiative and requests event

data from a producer.

2.2 Schwiderski Thesis

In Schwiderski’s thesis [2], she presents a strategy to monitor the behavior of

distributed systems and proposes an approach to event-driven monitoring of distributed

systems which provides the full functionality of event specification, event semantics, and

event detection.

In this section, a few research efforts on fault tolerance and recovery mechanisms

are discussed.

5
2.3 ARIES

ARIES (Algorithm for Recovery and Isolation Exploiting Semantics) [3] supports

fine-granularity locking and partial rollbacks using write-ahead logging (WAL). The

WAL-based system record all transaction into a log. The log can be considered as an

ever-growing sequential file. Hence, the log becomes the source of ensuring that either

the transaction’s committed actions are reflected in the database despite various types of

failures, or that its uncommitted actions are undone. ARIES assigns a unique log

sequence number (LSN) to every log record when that record is appended to the log. The

LSNs are in an ascending order, so only when a transaction’s committed status and all its

log data are safely recorded on stable storage, by forcing the log up to the transaction’s

commit log record’s LSN, can it be considered complete. This allows a restart recovery

procedure to recover any transactions that were completed successfully but whose

updated pages were not physically written to nonvolatile storage before the failure of the

system. This means that a transaction is not allowed to commit until the redo portions of

all log records of that transaction have been written to stable storage. The LSN concept

will avoid attempting to redo an operation when the operation’s effect is already present in

the page. It also will avoid attempting to undo an operation when the operation’s effect is

not present in the page. ARIES also introduced the notion of compensation log records

(CLR) that record updates performed during partial or total rollbacks of transactions

during both normal and restart processing so that it will make redo idempotent.

6
Another paradigm that ARIES introduced is that during restart recovery the first

thing it does is analysis, which is to repeat history. During redo phase, ARIES, by

repeating history is to essentially reestablishes the state of the database as of the time of

the system failure. A log record’s update is redone if the affected page’s page_LSN is less

than the log record’s LSN. The next phase is the undo pass during which all loser

transactions’ updates are rolled back, in reverse chronological order. This is done by

continually taking the maximum of the LSNs of the next log record to be processed for

each of the yet-to-be completely-undone loser transactions, until no transaction remains to

be undone.

To extend the capabilities of ensure persistence of events and recovery of the

Global Event Detector, we only adopted the write-ahead logging and the log sequence

number concept. We did not apply ARIES algorithm in full because we do not have an

undo for our global event detection.

2.4 Shadow Page

Shadow paging [3, 5] is a crash recovery mechanism for which two page tables are

maintained during the life of a transaction: the current page table and the shadow page

table. When the transaction starts, both page tables are identical. The shadow page table

is never changed during the execution of a transaction. The current page table may be

changed when a transaction performs a write operation. All input and output operations

use the current page table to locate database pages on disk. When the transaction

commits, the current page table is written to nonvolatile storage. The current page table

7
then becomes the new shadow page table and the next transaction is allowed to begin

execution. When the system comes back up after a crash, shadow page table will be

copied into main memory and use it for subsequent transaction processing. If the

transaction aborts, the current page table is simply discarded. This guaranteed that the

shadow page table points to the database pages corresponding to the state of the database

prior to any transaction that was active at the time of the crash. Thus, aborts are

automatic and no undo operations need be invoked. The advantages of shadow paging

over log-based techniques are that the overhead of log-record output is eliminated, and

recovery from crashes is significantly faster (since no undo or redo are needed).

However, the drawbacks are data fragmentation and garbage collection and is more

difficult than logging to adapt to systems that allow several transactions to execute

concurrently.

2.5 POSTGRES Storage System

POSTGRES storage manager [4] provides transaction management and access to

database objects in a collection of modules. Unlike ARIES, it does not use conventional

write-ahead log. Instead, recovery from crashes is essentially instantaneous due to the fact

that there is no code to run at recovery time. This is achieved because POSTGRES has

adopted a novel storage system in which no data is ever overwritten but rather all updates

are turned into insertions. The storage manager allows a user to optionally keep the entire

past history of database objects on a write-once-read-many (WORM) optical disk (or

other archival medium) in addition to the current state on an ordinary magnetic disk.

8
Thus, it has a vacuum cleaner that moves archival records of magnetic disk onto an

archival storage system. Moreover, POSTGRES DBMS avoided the large monolithic

single-flow-of-control architectures that are prevalent today, and instead, it uses one that

supports a collection of asynchronous processes with concurrently performing DBMS

functions.

9

CHAPTER 3
SUMMARY OF SNOOP IN SENTINEL

SNOOP [9, 10] is an event specification language in Sentinel for specifying ECA

rules. It supports temporal, explicit, and composite events in addition to the traditional

database events. The Snoop preprocessor transforms the ECA rules specified either as

part of a class definition or as part of an application to C++ codes.

3.1 SNOOP Flags

Several flags are provided by spp to facilitate the use of global event detection and

rules execution.

• -s :

SPP is integrated with OpenOODB preprocessor ppCC. -s flag invokes the spp

preprocessor to convert ECA rule specification in Sentinel applications into C++

codes.

• -Lgen <filename>, -Luse <filename> :

These two flags are for local event detector (LED). In spp, filename is an event

definition file that is created for each application. This file contains all the events

and rules definition in C++, which is translated by spp. This C++ code is then

inserted into the main module of an application by spp. Since the main module of

10
an application can exist under a different path from other modules, it is difficult for

the main program to get the event and rule definition file created from other

modules. By using -Lgen and -Luse flags this problem is solved. -Lgen

<filename> is to create filename, which contains the events and rules definition. -

Luse <filename> is to specify the filename that is created by the –Lgen. There

could be as many –Luse flags as needed.

• -ged

This flag is to invoke the GED server and can connect a stand-alone application to

distributed applications. Applications that do not involve global event detection

should not give this flag and can run without this overhead.

• -Ggen <filename1>, -Guse <filename1>, -Gsend <filename2>

These three flags are for global event detector (GED). In spp, global specification

file, filename1, is created for each application that has defined global event

definitions in its application. A global specification file contains global event

information for the server to build the global event graph. -Ggen <filename1>

defines the global event specification filename1 that is generated by the

application. This flag is used for each module that contains any global event

definitions using SNOOP language. -Guse <filename1> provides the path and

name of the event specification file generated by -Ggen flag. There could multiple

–Guse flags and each is corresponding to a –Ggen. -Gsend <filename2> defines

the final global event specification file, filename2, used by the application. This

11
filename2 is used by the main module to create the linked list of global event

information before sending it to the server to build the event graph.

3.2 Event Definition

Events can be classified into two categories: local events and global events. Each

local event and global event can also subdivided into primitive events and composite

events. Hence, there are four types of events that can be identified in a distributed

database system:

• Local Primitive Event

Local Primitive Events are events that are predefined in the application. Local

Primitive Events can be database events and temporal events. Database events

refer to database operations to manipulate data, such as insert, delete, etc., and can

be transformed into events using event modifiers (begin and end). Temporal

events refer to specific points on the time line.

Primitive_event ::= event event_modifier method_signature

• Local Composite Event

Local Composite Events are composed of local primitive events and other local

composite events conjunct with event operators.[10]

Composite_event ::= E1 operator E2

• Global Primitive Event

Global Primitive Events are events, could be primitive or local composite, that are

defined with events that are defined and detected outside of the current application

12
and are referenced by the current application in a distributed database system.

Since global primitive events are associated with events that are defined and

detected outside of the current application, there must be some way to

acknowledge that event has occurred. Three attributes are added to primitive

event syntax to solve this problem. App_name, Remote_event_name and

Host_name indicate the remote application ID, event name at the remote site, and

the machine name where the remote application is running on respectively.

Global_primitive_event ::= Remote_event_name::Host_name__App_name

• Global Composite Event

Global Composite Events are events that related to event occurrences from many

sites (including the local site). At least one of the constituent events must be a

global event. This constituent event can be presented as a global event name or a

global primitive event specification.

Global_composite_event : E1 operator E2
(at least one of E1/E2 has to be a global event)

Please refer to [9, 10] for detailed descriptions on the BNF of the SNOOP

language.

13

CHAPTER 4
SUMMARY OF EVENT DETECTORS

Database events correspond to the execution of methods; therefore, there must be

a mechanism to trap the invocation of (or return from) a method when an event is

signaled. In a centralized system, a Local Event Detector (LED) [7] should not only be

detecting primitive events but composite events as well. In a distributed computing

system, event detection should monitor the behavior of events in a distributed

environment. This requires a mechanism to detect events occurring not only at a local

site, but also at other remote sites. To accommodate global event detection, some

extensions are added to the LED. Global Event Detector (GED) [8] is responsible for

detecting events from different applications in a distributed database environment. It

recognizes the occurrence of events, collects and records their parameters, and passes it to

application rule managers to trigger the action of ECA rules.

4.1 Local Event Detector

The purpose of the local event detector (LED) is to detect the occurrence of local

primitive events and local composite events. Each application has a local event detector at

its own site, and when a primitive event occurs, it is detected by the local event detector

(LED) and the application waits for the signaling of rules that are detected in the specified

14
mode. Composite events are detected by using a sequence of primitive events detected

according to the specified parameter context of the composite event. The architecture of

LED is illustrated in Figure 4.1.

Primitive events are signaled by adding a Notify procedure call and appropriate

calls for the parameter collections, which are inserted in wrapper method by Sentinel

preprocessor into the application. Hence, whenever a primitive event is detected, the LED

will traverse an event graph as shown in Figure 4.1.

The LED is an EVNT_LIST, which is a linked list of EVNT_NODE. Each

EVNT_NODE corresponds to a unique REACTIVE class. Every method of a

REACTIVE class is a potential primitive event. EVNT_NODE has a begin_of event list,

end_of event list, and subscribe_list. begin_of and end_of correspond to a primitive event

that should be raised at the beginning or at the end of the method, respectively.

Subscribe_list is a list of composite events. This is added in addition to the original LED

architecture for the purpose of checking global events. The leaf nodes of the event

graph correspond to primitive events and from which composite events are constructed.

Each node of the event graph has an event subscriber and a rule subscriber that record the

related composite events and rules. Whenever a primitive event is raised, it will notify its

subscribers, which are their parent nodes. The composite events will maintain the

occurrence of its constituent event occurrences as part of their parameter lists, which are

stored separately for each context relevant to the node. For details of LED, refer to [7].

15

Figure 4.1 Data Structure of LED

16
4.2 Extended Local Event Detector

In addition to detecting local events, the LED will have to send an event

notification to the GED server when an event is raised that is needed by other remote

sites. Moreover, the LED will detect a global event only when it receives an event

notification from the GED server. To accommodate global events, a REMOTE class is

added to the class hierarchy in the LED. REMOTE class is a derived class of the EVENT

class, and it represents global event objects. Figure 4.2 shows the event class hierarchy of

LED. Each client has a LED at each own site to detect local events. An Extended LED

(ELED) is added for the capability of detecting global events in every local site. Similar to

LED, ELED is an instance of EVNT_LIST; however, unlike LED, all of the

NOTIFIABLE classes that it points to are all REMOTE classes instead of PRIMITIVE

classes. Also, each EVNT_NODE uses producer’s application ID as its key instead of the

class name. In other words, each node of the EVNT_LIST is related to a unique

application, and each node has a list of ELIST which only points to a REMOTE object

that contains only global event instances that are detected outside of this application.

Therefore, a local composite event can be constructed from REMOTE nodes, Primitive

Event nodes, and other composite event nodes.

Hence, whenever a producer detects a global event, the GED server will receive an

event notification with its application ID and parameter list. Then, the GED server will

notify the consumer and after the consumer receives the event, it will then notify its

17

Figure 4.2 Event Class Hierarchy of LED

Figure 4.4 Class Hierarchy of GED

 REACTIVE

 NOTIFIABLE RULE

 EVENT

 REMOTE PRIMITIVE AND PLUS

 AND

 SEQ OR

 NOT

 EVENT

 NOTIFIABLE

 A* A PLUS

 GLOBAL

18
ELED. The ELED uses the application ID to determine which EVENT_LIST node and

propagates the event notification to its corresponding REMOTE event instance. A

REMOTE class works just like a PRIMITIVE class that the ELED will further notify its

related composite events, which will be its parent nodes. Figure 4.3 demonstrate the

structure of ELED.

4.3 Global Event Detector

The purpose of the global event detector (GED) is to detect events occurring not

only at a local site, but also at other remote sites. Hence, the global event detector detects

events that span several applications in a distributed database environment. It recognizes

the occurrence of events, collects and records their parameters, and passes it to

application rule managers to trigger the action of ECA rules.

4.3.1 Communication Architecture

Since each application has its own local event detector, a global event detector is

to detect events that are defined at a remote site. Therefore, the global event detector

(GED) adopts the client/server model and must be able to communicate with local event

detectors at remote sites through RPC and socket-based communication. Detailed

descriptions on the GED alternative architectures are in [8]. First, a client process makes a

socket connection to register with the GED server, and the server will record the socket

address of this client and events that need to be detected by the GED if this client is a

consumer. This event name list (cname_l) will be sent to the corresponding producer and

19

Figure 4.3 Data Structure of ELED

20
GED_forward_flag will be set to 1 with corresponding event in cname_l. Then, whenever

the LED detects an event, it checks its GED_forward_flag to see if this event needs to be

sent to the GED server. When an event is notified to the GED server, it sends a message

to each consumer through socket. After the consumer has gotten this message, it makes a

remote procedure call to the server and gets the event (event and its parameter list).

Finally, the consumer traverses its ELED and the global event will be detected. The

architecture is in Figure 4.4.

4.3.2 Global Event Detection

First, global primitive events are detected by their local event detectors at the

corresponding remote sites. Then, event notifications are sent to the GED server.

However, global composite events, unlike global primitive events, are more complex since

the constituent events can be either local or global. The mechanism that is used to detect

global composite events is to detect all the constituent local events of a composite event at

its corresponding remote sites. Figure 4.5 illustrates this approach. In (A), the LED in S1

detects SOR and (B) the LED in T2 detects TAND. Once SOR or TAND got detected,

S1 or T2 send the event to the GED server. Hence, G_AND will be detected in GED

server in Figure 4.5 (C). By detecting global composite events at the local site will reduce

the network communication overhead and improve the system performance compare to

detecting global composite events at GED server.

21

 GED SERVER

 event get event(s) hand-shake
 detection
 request

 Figure 4.5 RPC and Socket Design Model of GED

 LWP GLOBAL EVENT DETECTOR (G_GED) LWP

SERVICE SOCKET CONNECTION

 LWP LWP
 app1 (consumer)

LED Socket
connection

 LWP LWP
 app2 (producer)

LED Socket
connection

LWP LWP
 app n (both consumer & producer)

LED
Socket
connection

namelist
update

namelist
update

hand-shake

global events detected

hand-shake

global events
detected

event detection request

get
events

event
notification

22

(A) Application S1 : SOR is a composite event of L1 OR L2

 (B) Application T2: TAND is a composite event of M1 ^ M_SEQ
 M_SEQ is a composite of M1 << M3

(c) This is a global composite tree graph in GED server.
 Application V3: defined an event G_AND = SOR ^ TAND.

 SOR, and TAND are global events from application S and T.

 Figure 4.6 Global Composite Event Detection

V3:
 G_AND

 SOR

S1:
 SOR

 L1 L2

M1

 T2:
 TAND

M_SEQ

M2 M3

 TAND

23

4.3.3 Global Event Graph

A PRIMITIVE class in the LED specifies primitive event objects; however, it is

not appropriate to use this terminology in the GED since global primitive events denotes

to external events that are detected outside of the local application. Therefore, we

introduce the GLOBAL class instead. GLOBAL class stands for the global primitive

event objects. There are three attributes in GLOBAL class: send_sname, send_ename,

and event_no. send_sname indicates the (consumer) application ID (machine

name__application name) that notified by the server after this event is raised. send_ename

is the name of this event that is defined in send_sname. event_no denotes the instance

number of the occurrence of this event. Figure 4.4 shows the class hierarchy of GED.

Because of the possible time delay during communication and network failure, “P” and

“P*” operators are not supported by GED.

Since the favor of reducing the network communication overhead to improve the

system performance, we decided that global composite event is detected at the local site

and a producer sends the event notification to GED server. Hence, whenever a client

registers with the GED server, it must send some information to the GED server to build

the global event graph (G_GED) if global events are wanted. The information that a client

sends is obtained from the global event specification file that is generated by spp. Refer to

[8] for more information on global event specification file. Similar to the LED and the

ELED, the G_GED is also an instance of EVNT_LIST. However, the NOTIFIABLE

class that each ELIST points to is a GLOBAL class instead of a PRIMITIVE or a

24
REMOTE. So, when a global event is notified to the GED server, it traverses the

G_GED and further notifies related composite events (parent nodes), and compute its

parameter link list. It has the similar concept as the LED and the ELED. Figure 4.7

shows the architecture of GED.

4.4 Summary of LED, ELED, and G_GED

First, whenever a client defines local primitive events or local composite events in

its application, an event tree (LED) is built. In addition to primitive events, if a client also

defines global events that are defined in remote sites, an Extended Local Event Detector

(ELED) is built. Therefore, we have an Extended Local Event Detector (ELED)

combined with a Local Event Detector (LED) at each client site to detect local events and

global events that are wanted by remote sites. Then, we have a GED interface that allows

communication between the GED server and clients that sends event detection requests

and receives global event notifications. During the registration, the client’s application ID

is sent to the GED server, and the event specification file is sent to the GED server by a

remote procedure call. By using the information in event specification file, a global event

graph (G_GED) is built. So, the GED server receives an event notification from a

producer whenever a global event is detected. Then, the GED server propagates G_GED,

computes its parameter link list, and further notifies its parent nodes according to its

subscribers. Finally, it sends this notification along with event’s parameter list back to the

consumer. In other words, the ELED then propagates and further notifies its parent

nodes. Figure 4.8 shows the how these three coordinate with each other.

25

Figure 4.7 Architecture of G_GED

26

Figure 4.8 Data Structure of LED, ELED and G_GED

 NETWORK COMMUNICATION

 GLOBAL EVENT DETECTOR

 ELIST ELIST ELIST

GLOBAL GLOBAL GLOBAL GLOBAL GLOBAL GLOBAL

Event Subscriber Link List

 GED Interface

Local Event Detector (LED) Extended Local Event Detector (ELED)

 ELIST ELIST ELIST ELIST ELIST ELIST ELIST ELIST ELIST

PRIMITIV
E

PRIMITIV
E

PRIMITIV
E

PRIMITIV
E

REMOTE REMOTE REMOTE

Rule Subscriber Link Likst Composite Events

27

27

CHAPTER 5
DESIGN AND ALGORITHM

In this chapter, a design and algorithms for supporting machine independent on

global event detection and a recoverable GED that can recover to a consistent state

following various types of failures will be discussed.

5.1 Configuration File

As we discussed in section 3.2, the GED server identifies a global event by its

producer’s application ID (Hostname__appname), which is hard coded in the application.

However, if for some reason that the producer is unable to run on the machine specified in

the application, then we need to go back to the code, change the machine name, and

recompile it. Therefore, by having a configuration file, we could make the producer

application ID machine independent. Both old and new application IDs are specified in

the configuration file, and the GED server will read both IDs and insert them to a linked

list for mapping.

Mapping between the new and the old application ID is needed in several places.

First, when a client registers with the GED server by using socket connection, it sends its

application ID as a part of the message. Since the application ID is obtained from the

28
system call gethostname, it will get the name of the current machine where the client is

currently running on. Hence, this application ID is the new application ID if it differs from

the hard coded one. However, the GED server builds global event graph (G_GED) by

using the global event specification file. Since the global event specification file is

generated by spp, it contains the hard coded application ID. Therefore, mapping is needed

whenever the GED server needs to access G_GED. This also applies to producer event

list (site_evnt_list) since it reads the same data as G_GED. The other place where

mapping is necessary is when reading or writing the event log file. Since the GED server

receives the new application IDs from clients, it records everything under new application

IDs. Event log files are named by using consumer application IDs. However, in this case,

it would be useful to use the hard coded application ID instead of the new one because the

user might change the machine where the application will be running on the next time.

Therefore, by having this list, we are able to run applications on different machine without

recompilation if desired.

5.2 Resume or Initialize Mode

If a client has disconnected from the GED server, the GED server must have a way

to determine if this client wants to continue where it left off previously, or it wants to

restart at the beginning when the client registers with the GED server the next time. To

support this, we can add a flag at the command line when starting an application. When

this flag is given, the client is to connect in a resume mode and sends a resume message

along with its application ID, otherwise, it is to connect in an initialize mode.

29
The GED server determines the running mode of the client by the socket message.

If the client is to run in an initialize mode, any previous log files must be deleted and must

empty its buffer space so that events inserted previously do not get sent. On the other

hand, if the client is to run in a resume mode, number of consumers must be calculated

appropriately.

5.3 Robustness to failures of Producers

The GED server must maintain a list to keep track of events to be detected and

sent to the GED server by a producer. This list is changed when a new consumer starts.

Our original algorithm was to delete this list once the producer has received it. This

causes a problem when a producer crashes and restarts. The producer can not remember

the list when it restarts. Hence, the producer can not propagate global events properly.

The algorithm to solve this problem is, first, not to delete the list when the producer

receives it. Second, since the list can keep growing, the GED server must keep track of

events that has been sent and events that need to be sent. We can add a pointer, which

separates the events that have already been sent to the producer. Also, an attribute is

added to the client address list, and the GED server sets this attribute when a client

reconnects. Hence, the GED server will send the whole event list if this attribute is set.

5.4 Robustness to failures of Consumers

When a consumer registers with the GED server, it sends its global event

specification file to build the global event graph (G_GED). Therefore, a consumer only

needs to build the global event graph when it is connected in an initialize mode. In other

30
words, when a consumer reconnects in a resume mode, it does not need to rebuild the

global event graph since it has already been built previously. This can be accomplished by

using the same flag specified in section 6.2.

5.5 Guaranteed Delivery of Events

Since our communication protocol uses the non-blocking communication, when a

consumer has crashed, its producers and the GED server cannot determine its state.

Therefore, producers still send events to the GED server, but the consumer will not

receive them. Hence, we need a mechanism to guaranteed delivery of events.

Write-ahead log files are adopted to ensure persistence of events and recovery of

the event manager. Information is saved in a file before the data structures are modified.

In addition to write-ahead log, log sequence number (lsn) is also used. LSN is assigned in

ascending sequence and every event has a unique lsn. By doing write-ahead log and using

log sequence number, the information in the log is used in restoring the state of the

consumer. Hence, the GED server can send all pending events obtained from the log file

when the consumer reconnects. The GED server can also recovers to its original state in

case of a crash by obtaining from log files.

The GED server inserts a global event in a log file before it has inserted the event

in the consumer list. An event log file contains two other lsns. One indicates that the

consumer has received events up to this number, and the other indicates that the buffer

contains events for this consumer up to this number.

31
5.6 Mutex Locks

Since the GED server creates a thread when it receives an event notification from

the producer, there could be many applications that want to access the same data

structure. Therefore, we used mutex locks to synchronize access to shared data structure.

 When the GED server recovers from a crash, it issues a lock that locks the entire

recovery process, and releases the lock only when the recovery is over. This is to ensure

that others can not access to the share data during the GED server recovery.

5.7 Buffer Management

As we discussed earlier, when a consumer has crashed, its producer cannot know

its state and will still send events to the GED server. The GED server also cannot know

that the consumer has crashed due to the non-blocking communication protocol. Hence,

the GED server keeps insert events in the consumer event list. This may result in a buffer

overflow and the GED server may fail. Therefore, we need a mechanism to mange the

buffer pool for storing events.

There are two situations when the individual buffer is full. One is when a

consumer cannot consume events fast enough, and the other is when a consumer has

crashed. We propose an algorithm that there is a maximum number of events that the

GED server can hold in its main memory. Each consumer is allowed to have a number of

events in its buffer by dividing the maximum number of events that the GED server can

hold by the number of consumers that are connecting to the GED server. We also assign a

time out variable that helps to indicate the consumer’s status. Every time an event cannot

32
be inserted to the list , the GED server updates a consumer’s counter. When this counter

has reached the time out limit, the GED server assumes that this consumer has crashed.

There are several cases when the GED server needs to insert an event to the

buffer. First, during the normal execution where there are no new consumer registers with

the GED server and no consumer has crashed, and if the buffer for this consumer is not

full, then the GED server inserts the event to the list. If the buffer is full, it updates the

consumer’s counter. Second, if a new consumer has connected with the GED server, the

number of events that each consumer is allowed to have will be smaller than the previous

number. Hence, if the buffer is not over the new limit, then insert the event to the list.

However, if the buffer is over the new limit, the GED server deletes the excess buffer

space and updates the event log file and the consumer’s counter. If a consumer has

crashed, the number of events that the consumer is allowed to have will be larger than the

previous one. So, if the consumer has no pending events in the log file, the GED server

just insert the event to the list. If the consumer has pending event in the log file, and since

there is more buffer space to hold events, the GED server inserts pending events to the list

until either the buffer is full or there are no more pending events in the log file. Third, if

the GED server has assumed that the consumer has crashed, it deletes the event list if it is

not NULL.

33

CHAPTER 6
USAGE OF THE GED SERVER AND APPLICATONS

 First of all, if global event detection is requested, we need to start the GED server

before starting any client that participates in global event detection. (If an application that

is neither a consumer nor a producer, it could run independently without the GED server.)

 The usage of the GED server is as follows:

• ged_server [-cfile path_name] [-nopersist]

-cfile <path_name>

This flag specifies the path name (directory) of the configuration file. If this flag is

not given, the GED server gets the path name from the environment variable. The

purpose of specifying the path name of the configuration file is that if multiple

GED servers are running, each server will be able to read a different configuration

file since each server could have a different port number and could have different

clients connecting to it.

-nopersist

This flag indicates that the GED server will not be recoverable. In other words, no

log files will be generated for recovery purpose. If this flag is not given, the

default is to persist, which means that log files will be created under the specified

directory in the configuration file.

34
The usage of running a client application that involves global event detection is as follow:

• <application_name> <GED_machine_name> <global_event_specification_file >

[-resume] [-port port_number]

application_name is the name of the application and is the first argument in the

command line. GED_machine_name is the second argument and is the machine

name where the GED server is running. global_event_specification_file is the

third argument in the command line and is the global event specification file

generated by spp for that application.

resume

This flag is to run the client in a resume mode, which means that the client has

crashed previously and is restarting. This means that the GED server will treat the

client as an existing one and will send all the information about what events to

propagate to the client. If this flag is not given, the client will start in an initialize

mode as if it were a new client. The purpose of having this flag is to have the

ability to recover after a client has terminated abnormally. On the other hand, we

would also like to have the ability to start fresh if some changes have been made to

the client.

-port port_number

This flag specifies the port number of a GED server. If multiple GED servers are

running, we need to specify which GED server does the client wants to connect

with. By giving this flag, the above requirement is satisfied.

35

CHAPTER 7
IMPLEMENTAION DETAILS

In chapter 5, we proposed the design and algorithms to support machine

independent on global event detection and a recoverable GED that can recovers to a

consistent state following various types of failures. In this chapter, implementation details

on those design and algorithms are discussed.

7.1 Implementation of a Configuration File and a Configuration List

When we start running the GED server, the first thing it does is to read a

configuration file, which is named Global.config, from the specified directory. The

purpose of having a configuration file is to make the producer application ID machine

independent. The configuration file contains the old application ID and the new

application ID and the GED server will do the mapping at run time. In addition to the

mapping of an old application ID to a new application ID, other run time values can be

supplied into the configuration file. For instance, a log directory where we want to keep

the log files and a port number for the server are specified in the configuration file, so that

we could have the capability to run multiple GED servers. The format of a configuration

file is as follows:

36
::log_dir /cis/database15/sentinel/OpenOODB.1.1/Sentinel0.9/sentinel/

::mapping juice__app1 eagle__app1

::port 6000

The translation of the above configuration file is to create and save all the log files

into /cis/database15/ sentinel/OpenOODB.1.1/Sentinel0.9/sentinel/. juice__app1 is the

hard coded (old) application ID, eagle__app1 is the new application ID, and port number

for the GED server is 6000.

The config_list (configuration list) table is a linked list that stores the old (hard

coded) application IDs and the new application IDs. Figure 7.1 shows the data structure

of the config_list. Mapping between the old application and the new application is

accomplished by using this list. Log directory and port number are stored in two global

variables.

 Figure 7.1 Data Structure of config_list

Old name New name Old name New name Old name New name

head tail

config_node

config_list

37
7.2 Implementation of the Registration Message

When a client registers with the GED server, it sends its application ID through the

socket. However, the GED server needs to know if the client is running in a resume mode

or an initialize mode. This can be implemented by adding a character and “::” to the

beginning of the list. The “::” separates the keyword and the application ID. Therefore, if

the client is running in a resume mode, the message will be r::application_ID, and the

message will be i::application_ID if the client is running in an initialize mode.

7.3 Implementation of Robust Producers

When an event is detected by a Local Event Detector at its own site, the producer

needs to know if this event has to be sent to the GED server so that the GED server can

further notify the consumer that a global event of interest has been raised. Hence, when a

consumer makes a Remote Procedure Call with evnt_decl_l, which contains information in

the global event specification file, as its parameter, the procedure updates the global event

graph and the consumer event list using the event_decl. This is done when a new

consumer starts. The site_evnt_list (consumer event list) is an instance of

SITE_EVNT_LIST_STR, which is a list of SITE_EVNT_NODE_STR.

SITE_EVNT_NODE_STR contains site_name, and name_list, which correspond to the

producer’s application ID and a list of event names. There were originally two pointers

that point to this list of event names. Our algorithm is to add a third pointer, start, which

separates the events that have already been sent to the producer.

start points to events that stand for the starting point where this event name list

38
should be sent to the producer. After the event name list has been sent to the producer,

start will be pointing to the last node of the list which will be NULL. Figure 7.2 shows

the data structure of the producer event list. In Figure 7.3(a), shows the order of clients

that register with GED server with respect to the time line. Figure 7.3(b) to (e) show how

start pointer is managed.

We also add another attribute, recovery_flag, to the client address list

(cli_addr_list). The GED server sets the recovery_flag to 1 when a client has reconnected

with the GED server. This is accomplished by checking the application ID in the

cli_addr_list. When the reconnecting client is a producer and its recovery_flag is set to 1,

the GED server moves the start pointer to the head of the event list. Hence, when the

producer reconnects, it receives all of the events in the event list. Therefore, By having

the start pointer and the recovery_flag, the producer will not lose any events that are

interested by its consumers. Figure 7.4 illustrates the data structure of cli_addr_list.

7.4 Implementation of Log Files

Information that is written in the event log file, in the case for client recovery, are

global events. Whenever the GED server receives a global event from a producer, before

it inserts it into the consumer event list (event_para_list), the GED server saves the global

event into the log file. So, even if the client has crashed, it can be in a consistence state

when it comes back using the log files created by the GED server. If all the global events

are written into only one log file, then when a consumer has comes back up only a few

seconds after its crash, the consumer has to read the entire file even if it has only a small

39
number of records in the file. This could cause a lot of overhead. Therefore, the

alternative is to have multiple physical files, which will ease the job of archiving log

records. In our design, we have a log file for each consumer since guaranteed event

delivery is applicable only to consumers. The file name for each event log file is the

consumer’s old application ID with .log as its post-fix. The information written in an event

log file is only the information about global events. This information only contains the

consumer application ID, producer application ID, event name, and its parameter list.

With only this information, the GED server can not know up to what point has it received

the events, and hence cannot recover after a crash.

We have adopted the LSN concept in ARIES [3] into our design to solve this

problem. The LSN concept is that every log record is assigned a unique log sequence

number when that record is appended to the log. A log record corresponds to a global

event that the GED server receives. The LSNs are assigned in ascending sequence and is

a global variable in the GED server, which is called event_counter. It is initialized to 0

when the GED server starts, and it is incremented by 1 every time a global event is written

into one of the event log files along with the global event information. Every time a

consumer receives a global event, and before the GED server deletes the event from

event_para_list, the GED server writes the last lsn from the consumer event list to the

beginning of the log file. This LSN (dlsn) indicates that the consumer has received global

events up to this

40

Figure 7.2 Data Structure of site_evnt_list (producer event list)

Figure 7.3 (a) The Order of Clients that registers with the GED server

prod_appid ename_list

head tail

prod_appid ename_list

head start tail

head start tail

ename ename ename

ename ename ename

SITE_EVNT_LIST_STR

SITE_EVNT_NODE_STR

name_list

name_nod
e

Consumer1 Producer1 Consumer2 Producer2
Time line

41

Figure 7.3(b) After Consumer Updates site_evnt_list

producer1 ename_list

head tail

 producer2 enme_list

head start
tail

head start
tail

event NUL event NUL

producer1 ename_list

head tail

producer2 ename_list

head start tail head start tail

event1 NULL event3 NULL

Figure 7.3 (c) After Producer1 Updates site_evnt_list

42

Figure 7.3 Example of How site_evnt_list is Managed

producer1 ename_list

head tail

producer2 ename_list

head start tail head start tail

event1 event2 event3 event4NULL NULL

Figure 7.3(d) After Consumer2 Updates site_evnt_list

producer1 ename_list

head tail

producer2 ename_list

head start tail head start tail

event1 event2 event3 event4NULL NULL

 Figure 7.3(e) After Producer2 Updates site_evnt_list

43

Figure 7.4 Data Structure of cli_addr_list (client address list)

Figure 7.5 Data Structure of event_para_list (consumer event list)

appid recover_flag socket address appid recover_flag socket address

head tail

Client_addr_list

Client_addr_node

head tail

Consumer_appid para_list append_times buffer_size count

Consumer_appid para_list append_times buffer_size count

head tail

evnt_counter send_para

head tail

evnt_counter send_para

evnt_counter send_para

event_noti_list

event_noti_node

para_l_list

para_l_nod
e

pid… … … .

44
number. If the consumer has crashed, the GED server still writes the event_counter and

global events in the event log file. However, when the consumer recovers, the GED

server knows up to what point has the consumer received the events before its crash by

reading the dlsn. See Appendix for the format of each log file.

Information that is written in the log, in the case of the GED server recovery, is

information to rebuild client address list (cli_addr_list), global event graph (G_GED), and

producer event list (site_evnt_list). Therefore, we need to persist all information that is

used to build these tables in log files. When a client registers with the GED server, the

GED server receives the application ID and its socket ID. Before the GED server inserts

in cli_addr_list, it writes application ID and socket ID into the log. The socket ID is

written by using the sa_data[14] in struct sockaddr that is defined in sys/socket.h. This

sa_data is a char array up 14 bytes of protocol-specific address. The contents of the 14

bytes of protocol-specific address are interpreted according to the type of address [11].

The GED server creates this log file as client_addr.log if it does not already exists, and the

data is written in append mode. After the client has registered with the GED server, it will

call the remote procedure global_notify and this is where the G_GED and site_evnt_list

are built by using evnt_decl_l. Therefore, for the GED server to be able to rebuild these

two lists when it recovers, it needs the data in evnt_decl_l. Hence, the GED server writes

the data in evnt_decl_l in a log file named GED_Spec.log before it inserts them into

G_GED or site_evnt_list. The GED_spec.log is also written in append mode.

45
7.5 Implementation of Recovery Lock

There could be multiple clients that connect to the GED server, and could be

running concurrently. Locks are used to synchronize access to shared data structure. In

the GED, there are five locks: mutexPtr_Addrlist, mutexPtr_paralist,

mutexPtr_site_evntlist, and mutexPtr_eventfile, used on access to cli_addr_list,

event_para_list, site_evnt_list and event log files respectively. The fifth lock is

mutexPtr_recoverlock, which is used when the GED server recovers from a crash. All

locks are exclusive locks, which means that nobody else will be able to access the data

until the locks have been released. All locks will be released right after the operation has

finished. mutexPtr_recoverlock is used when the GED server recovers. It is to lock the

entire recovery process and release the lock only when recovery is over so that the GED

server can send and receive events in the correct order. This is to ensure that others can

not access to the share data during GED server recovery. Below is the pseudo code for

recovery lock algorithm.

When GED Recovers :
 Obtain Recovery Lock
 client address recovery

 global event graph recovery

 event recovery

 Release Recovery Lock

When server accesses to the share data
structure:

 If (recovery lock is available)
 Does not obtain the recovery lock,
 but obtains the individual lock
 on the data structure
 Else
 Wait until the recovery lock is
 available .

46
7.6 Implementation of Buffer Management

The algorithm for buffer management that we used is that, first, we introduce a

second variable blsn, which is written to the event log file. This blsn is placed after the

dlsn that we described in section 6.3. When the GED server appends an event in the event

log file, it also writes the event_counter to the blsn field. This indicates that events have

been inserted in the buffer up to this number (blsn). We also assign a maximum number of

events (BUFFER_MAX) that the buffer can hold, and calculate the amount of buffer size

that each consumer is allowed to have. The equation is Each_buff_size = BUFFER_MAX

/ number_of_consumers. number_of_consumers is added by 1 every time a consumer has

registered with the GED server. Hence, each consumer has a buffer size (Each_buff_size)

that each can hold, and we also extend the data structure of the event_para_list (consumer

event list) to accommodate buffer management.

buff_size, count, and append_times, are added into the data structure of

event_para_list, which indicate the previous buffer size, how many events are in the buffer,

and how many appending events are in the log file after its buffer is full respectively. We

also assign a number to the TIMEDOUT variable. This variable helps to indicate the

status of the consumer. Every time the consumer’s buffer is full, the GED server adds its

append_times by 1 until the append_times is greater than the TIMEOUT VARIABLE.

When the append_times is greater than the TIMEOUT variable, the GED server assumes

that this consumer has crashed and deletes its event list (para_l_list) from the buffer.

Figure 7.5 shows the data structure of event_para_list (consumer event list). Therefore, if

47
the reason that the buffer is full is due to slow consumer, as long as it does not reach the

TIMEOUT point, the consumer will eventually receive them. If the consumer has crashed,

it will eventually reach the point where append_times is greater than TIMEDOUT, and the

GED server will free up the buffer space. The GED server will assume that the consumer

has crashed and will not insert any more events to the buffer for this consumer.

number_of_consumers is subtracted by 1 and the Each_buff_size is recalculated. Hence,

Each_buff_size is greater than the previous one since the number_of_consumers is smaller

than the previous number_of_consumers. Therefore, when a consumer compares the

Each_buff_size with the buff_size, if the Each_buff_size is greater than the buff_size, then

the GED server checks if there is any event that is pending in the event log file. If there is,

then insert those events either until the buffer is full or there when there is no more

pending event.

If a new consumer connects with the GED server, the GED server adds 1 to the

number_of_consumers and recalculates the Each_buff_size. In this case, the

Each_buff_size is less than the previous one. Hence, if the buffer for the consumer is not

over the new limit, then insert the event to the list. However, if the buffer is over the new

limit, then the GED server deletes the excess buffer and adds 1 to append_times.

Below is the pseudo code of Buffer Management Algorithm.

if (the consumer has not crashed)
 {
 if (no consumer has came in and no consumer has crashed)
 if (buffer for the consumer is not full)
 Insert the event to the buffer;
 else

48
 append_times++;
 else if (a consumer has crashed)
 if (node has no event pending in the log file)
 Insert the event to the buffer;
 else
 Insert events to the buffer from log file until buffer is full or no
 more events are pending in the log file;
 else if (a new consumer has came in)
 if (the number events in buffer < the new buffer size limit)
 Insert the event to the buffer;
 else if (the number of events in buffer > the new buffer size limit)
 Delete the exceeding events from the buffer and change the
 blsn in the log file;
 else if (the number of events in buffer = the new buffer size limit)
 append_times++;
 }
 else if (the consumer has considered crashed)
 {
 if (node’s para_list != NULL)
 delete its para_list;
 }

7.7 A Sample Scenario

To summarize what we have been talked about in this chapter, let us go over an

scenario and start at the very beginning. There are two applications listed below. Client1

is running on coconut and client2 is running on manatee. Below are the codes for

application Client1 and Client2 and also a time chart which specify what has been done at

each site at a given point in time.

Client1

event e1(end) void temp1
G_e2 = e2::rain__client2
G_e4 = e4::rain__client2

Client2

event e2(end) void temp2
event e3(end) void temp3
event e4(begin) void temp4
G_e1 = e1::oconut__client1

49
 Client1

 Hand-shakes with
 GED server, send
 msg to server

 Read global event
 specification file
 and insert in
 event_decl_l

 Send detection
 request by RPC

 GED SERVER

 Read configuration
 file, Create
 config_list. Check
 for recovery .

 Receive msg=
 i::coconut_client1
 insert appid and
 socket ID to
 cli_addr.log and
 cli_addr_list. Call
 Sendback_evnt_name
 (site_evnt_list is
 NULL at this point.)

 write evnt_decl_l
 to GED_spec.log,
 insert client1 into
 consum_list, build
 G_GED and
 site_evnt_list, call
 sendback_name
 (site_evnt_list has
 name list for client2,
 but it is not connect
 yet. So nothing is sent.)

 Receive msg=
 i::manatee_client2
 insert appid and
 socket ID to
 cli_addr.log and
 cli_addr_list.

 Client2

Hand-shakes with GED
server, send msg to
server.

Read global event
specification file and
insert into event_decl_l

Call global_notify

Start G
ED

 server
Start client1

Start client2

50
 Client1

 Receive msg=11
 from server. Call
 name_list_update

 Return cname_l.
 Traverse cname_l
 and set the
 corresponding
 event’s

GED_forward_flag
 to 1

 LED detects e1.
 Check its

GED_forward_flag.
 call global_req_1.
 GED server
call
sendback_evnt_name
(client2 is in
site_evnt_list, so server
will send 11 to client2)
get client2 socket ID
from cli_addr_list and
send msg=11 to client2.

write evnt_decl_l into
GED_spec.log, insert
client1 into consum_list,
 build G_GED and
 site_evnt_list, call
sendback_name
(site_evnt_list has name
list for client1.) get
client1 socketID from
cli_addr_list and send
msg=11 to client1.

Get name list from
site_evnt_list with
prod_appid=
manatee__client2

Get name list from
site_evnt_list with
prod_appid=
coconut__client1

Pack para_G to para_l
Traverse G_GED find
prod_appid=
coconut__client1, then
find e1. Pack para_l to
para_G. call
back_prog_1 with
consumer appID, prod

appID, event name, and
para_G as its parameter.
 Client2

 Send detection request
 by RPC

Receive msg=11 from
server. Call
name_list_update

 Return cname_l.
Traverse cname_l and
set the corresponding
event’s
GED_forward_flag to 1

e1 occur

51
 Client1 GED server

back_prog_1 :
event_counter is equal to
1.Mapping. Insert
event_counter, consum
appID, prod appID,
event name, and para_G
to rain__client2.log.
Insert into
event_para_list. Get
socket ID from
cli_addr_list and send
msg=22 to client2.

recv_notify: get
event_noti_node from
event_para_list with
manatee__client2 as key.
 Copy to result. Get the
event_counter from last
node of
event_noti_node.
Mapping. Write this
event_counter into
rain__client2.log. delete
this event_noti_node and
return.

Pack para_G to para_l
Traverse G_GED find
prod_appid=
coconut__client1, then
find e1. Pack para_l to
para_G. call
back_prog_1 with
consumer appID, prod
appID, event name, and
para_G as its parameter

 Client2

 Receive msg=22
 from server. Call
 recv_notify

Return result. Call its
G_Notify, which will
traverse ELED.

LED detects e2. Check
its GED_forward_flag.
It is set to 1. Pack para_l
to para_G. call
global_req_1.

e2 occur
C

lient1 crash

52
 Client1

 CLIENT1
 IS
 CRASHED

 GED server

back_prog_1 :
event_counter is equal to
2.
Mapping. Insert
event_counter, consum
appID, prod appID,
event name, and para_G
to coconut__client1.log.
Insert into
event_para_list. Get
socket ID from
cli_addr_list and send
msg=22 to client1.

Pack para_G to para_l
Traverse G_GED find
prod_appid=
coconut__client1, then
find e1. Pack para_l to
para_G. call
back_prog_1 with
consumer appID, prod
appID, event name, and
para_G as its parameter

back_prog_1 :
event_counter is equal to
3.Mapping. Insert
event_counter, consum
appID, prod appID,
event name, and para_G
to coconut__client1.log.
Insert into
event_para_list. Get
socket ID from
cli_addr_list and send
msg=22 to client2.

 Client2

LED detects e3. Check
its GED_forward_flag.
It is set to 0, so don’t
need to send to server.

LED detects e4. Check
its GED_forward_flag.
It is set to 1. Pack para_l
to para_G. call
global_req_1.

e3 occur
e4 occur

53
 Client1

 Hand-shakes
 with GED
 server,send
msg to server

 Read global
 event
 specification
file and insert to
 event_decl_l

 Send
detection
request by
 RPC

 Receive msg=
 11 from
 server. Call
 name_list_update

 Return cname_l.
 Traverse cname_l
 and set the
 corresponding
 event’s
 GED_forward_
 flag to 1

 Receive msg=22

 from server.
 GED server

Receive
msg=r::coconut_client1.
 Insert appid and socket
 ID to cli_addr.log and
 cli_addr_list. Appid
already in cli_addr_list,
so set recovery_flag to
1. Call
sendback_evnt_name
(coconut__client1 is in
site_evnt_list. Since
reovery_flag=1, then set
start = head and send
msg=11 to client1)
check if evnt_noti_node
belongs to client1 is not
NULL. If it is not
NULL, then send
msg=22 to client1

 write evnt_decl_l into
 GED_spec.log, insert
 client1 into
 consum_list, build
 G_GED and
 site_evnt_list, call
 sendback_name
 (site_evnt_list has no
 unNULL start)

Get name list from
site_evnt_list with
prod_appid=
coconut__client1

 Client2

C
lient1 recover

54

 Client1

 Call recv_notify

 Return result.
 Call its
 G_Notify,
 which will
 traverse
 ELED.

 SAME AS
 BEFORE

 GED server

recv_notify: get
event_noti_node from
event_para_list with
manatee__client2 as key.
 Copy to result. Get the
event_counter from last
node of
event_noti_node.
Mapping. Write this
event_counter into
rain__client2.log. delete
this event_noti_node and
return.

 Client2

e1 occur

55

CHAPTER 8
CONCLUSIONS AND FUTURE WORK

8.1 Conclusion

This thesis extends earlier work on Global Event Detector in Sentinel to make

Global Event Detector robust. Global Event Detector was to monitor events in a

distributed database environment. An event specification language SNOOP, its

preprocessor spp, and a Local Event Detector were also developed as part of Sentinel to

define and detect events in a centralized environment. Since Sentinel supports events

across multiple applications, we need to address the robustness and recovery aspects of

the system.

This thesis uses the existing architecture of Global Event Detector and adopted the

Write Ahead Log, Log Sequence concept, and Locks to complete the goal of this thesis.

Chapter 1 and chapter 2 describe recent work on distributed database management

systems and related work on recovery and consistency.

Chapter 3 provides a summary of SNOOP language and its preprocessor.

Chapter 4 gives an overview of event detectors. Architectures of LED and GED

are discussed.

Chapter 5 provides a detail description on tables that are used for GED, including

Extended Local Event Detector.

56
Chapter 6 gives the design and implementation of how to make GED robust.

Several recovery alternative algorithms are presented and compared. Write Ahead Log is

chosen and Log Sequence Number is adopted to incorporated with log files. Exclusive

locks are introduced for consistence issue. A buffer management technique is also

introduced to solve the problem when memory is full. The last section of this chapter

gives a simple example of how everything incorporates with each other.

8.2 Future Work

• A check point mechanism can solve the problem of ever growing log files.

• Define rules at the GED through an interface. This can be used for propagating event

notifications from one application to another. Updating data across databases can be

realized in this approach.

• Use a distributed transparent mechanism such as CORBA for generalizing the concept

proposed in this thesis.

• Have a multi-threaded GED server.

• Implement one event log file instead of multiple files.

• Use of operator P* (as well as A and A*) at the server to propagate information from

one client to the other. This can be used for asynchronous transfer of data, update

propagation etc

57

REFERENCES

 [1] A. Schade An Event Framework for CORBA-Based Monitoring and Management
 System. IBM Research Division, Zurich Research Laboratory. Jan. 1997.

 [2] S. Schwiderski. Monitoring the Behavior of Distributed Systems. Ph.D thesis,
 University of Cambridge, London, 1996.

 [3] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh and Peter Schwarz.
 ARIES: A Transaction Recovery Method Supporting Fine-Granularity Locking and
 Partial Rollbacks Using Write-Ahead Logging. IBM Almaden Research Center and
 IBM Santa Teresa Laboratory.

 [4] M. Stonebraker. The Design of the POSTGRES Storage System. EECS Department,
 University of California, Berkeley, CA.

 [5] H. Korth, Abraham Silberschatz. Database System Concepts. McGraw Hill, Inc.
 University of Texas at Austin, 1991

 [7] L. Hyesun. Support for Temporal Events in Sentinel: Design, Implementation,
 and Preporcessing. Master’s thesis, University of Florida, Gainesville, 1996.

 [6] M. Ozsu and P.Valduriez. Principles of Distributed Database Systems. Prentice
 Hall.University of Alberta, Edmonton, Canada, 1991.

 [8] H. Liao. Global Events in Sentinel: Design and Implementation of a Global Event
 Detector. Master thesis, University of Florida, Gainesville, 1997.

 [9] D. Mishra. SNOOP: An Event Specification Language for Active Database.
 Master’s thesis, University of Florida, Gainesville, 1991.

[10] S. Chakravarthy and D. Mishra. Snoop: An Expressive Event Specification
 Language for Active Databases. Data and Knowledge Engineering, 14(10):1-26,
 October 1994.

[11] W. Stevens. UNIX Network Programming. Prentice-Hall, Inc. Englewood
 Cliffs, New Jersey, 1990.

58

APPENDIX
LOG FILES

• Event Log File

65 65 27 coconut__consprod rain__prod CONSPROD_cs3 PRODUCE_e2
PRODUCE 13 881872860 11711 PRODUCE_e2 g 1 25 ! NULL# 0.000000 0
NULL# NULL# NULL#
34 coconut__consprod rain__prod CONSPROD_cs3 PRODUCE_e2 PRODUCE
15 881872890 10459 PRODUCE_e2 g 1 25 ! NULL# 0.000000 0 NULL#
NULL# NULL#
40 coconut__consprod rain__prod CONSPROD_cs3 PRODUCE_e2 PRODUCE
17 881872920 963
1 PRODUCE_e2 g 1 25 ! NULL# 0.000000 0 NULL# NULL# NULL#
46 coconut__consprod rain__prod CONSPROD_cs3 PRODUCE_e2 PRODUCE
19 881872950 8639 PRODUCE_e2 g 1 25 ! NULL# 0.000000 0 NULL# NULL#
NULL#
51 coconut__consprod rain__prod CONSPROD_cs3 PRODUCE_e2 PRODUCE
21 881872980 7756 PRODUCE_e2 g 1 25 ! NULL# 0.000000 0 NULL# NULL#
NULL#
56 coconut__consprod rain__prod CONSPROD_cs3 PRODUCE_e2 PRODUCE
23 881873010 6858 PRODUCE_e2 g 1 25 ! NULL# 0.000000 0 NULL# NULL#
NULL#
58 coconut__consprod rain__prod CONSPROD_cs3 PRODUCE_e2 PRODUCE
27 881873070 5106 PRODUCE_e2 g 1 25 ! NULL# 0.000000 0 NULL# NULL#
NULL#
65 coconut__consprod rain__prod CONSPROD_cs3 PRODUCE_e2 PRODUCE
29 881873100 4243 PRODUCE_e2 g 1 25 ! NULL# 0.000000 0 NULL# NULL#
NULL#

59
• GED_spec.log

juice__cons 5503 0 CONSUM_c1 1 juice__cons global sugar__prod
PRODUCE_e1 * !NULL 5503 0 CONSUM_c2 1 juice__cons global sugar__prod
PRODUCE_e2 * !NULL 5503 0 CONSUM_c3 1 juice__cons global sugar__prod
PRODUCE_e_AND * !NULL 5503 0 CONSUM_c4 1 juice__cons global
coconut__consprod CONSPROD_cs1 * !NULL 5503 0 CONSUM_c5 1
juice__cons global coconut__consprod CONSPROD_cs2 * NULL#
coconut__consprod 25060 0 CONSPROD_cs3 1 coconut__consprod global
sugar__prod PRODUCE_e2 * !NULL 25060 0 CONSPROD_cs4 1
coconut__consprod global rain_prod PRODUCE_e_AND * NULL#

• client_addr.log

juice__cons üãø0
sugar__prod ÙÇãø%
coconut__consprod Ñ:ãø&
juice__cons ü2ãø0
coconut__consprod ÑQãø&

60

BIOGRAPHICAL SKETCH

Jennifer Chun-Chun Sung was born on August 17, 1973, at Taipei, Taiwan. She

received her Bachelor of Science degree in computer science from Old Dominion

University, Norfolk, VA, in August 1995. In the spring of 1996, she started her graduate

studies with a major in computer and information science and engineering at the University

of Florida. She will receive her Master of Science degree in computer and information

science and engineering from the University of Florida, Gainesville, in May 1998. Her

research interests include active and object-oriented databases.

