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Jeyakumar Muthuraj

August, 1992
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Major Department: Computer and Information Sciences

The design of distributed databases is an optimization problem requiring solutions

to several interrelated problems: data fragmentation, allocation, and local optimiza-

tion. Each problem can be solved with several di�erent approaches thereby making

the distributed database design a very di�cult task.

Although there is a large body of work on the design of data fragmentation, most

of them are either ad hoc solutions or formal solutions for special cases (e. g., bi-

nary vertical partitioning). In this paper, we address the problem of n-ary vertical

partitioning problem and derive an objective function that generalizes and subsumes

earlier work. The objective function derived in this paper is being used for devel-

oping heuristic algorithms that can be shown to satisfy the objective function. The

objective function is also being used for comparing previously proposed algorithms for

vertical partitioning. We �rst derive an objective function that is suited to distributed

transaction processing and then show how it can be extended to include additional

v



information, such as transaction types, di�erent local and remote accessing costs and

replication. Finally, we indicate the current status of implementation.
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CHAPTER 1
INTRODUCTION

The design of distributed databases is an optimization problem requiring

solutions to several interrelated problems: data fragmentation, allocation, and local

optimization. Each problem phase can be solved with several di�erent approaches

thereby making the distributed database design a very di�cult task. Traditionally

database design has been heuristic in nature. Although the metric being optimized

is not stated quantitatively, it is implicitly assumed to be the processing cost for a

given set of important transactions that constitute the bulk of transaction load for

the given database.

Figure 1.1 gives an outline of the overall distributed database design method-

ology [4]. Distributed database design deviates from conventional non-distributed

database design only in the distribution aspect which is highlighted by the box titled

distribution design in �gure 1.1. The distribution design involves data acquisition,

partitioning of the database, allocation and replication of the partitions and local op-

timization. Partitioning of the database is done in several ways: vertical, horizontal,

and hybrid (also called mixed). Our long-term objective is to develop a distributed

database design testbed in which di�erent algorithms for various components of dis-

tribution design can be mixed and matched. This work is a �rst step in that direction

and addresses the partitioning (or fragmentation) problem.

In this paper, we delimit our discussion to one of the data fragmentation problems,

namely the vertical partitioning problem. Vertical Partitioning (also called attribute

partitioning) is a technique that is used during the design of a database to improve

the performance of transactions [20]. In vertical partitioning, attributes of a relation

1
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R1 are clustered into non-overlapping2 groups and the relation R is projected into

fragment relations according to these attribute groups. In distributed database sys-

tems, these fragments are allocated among the di�erent sites. Thus the objective of

vertical partitioning is to create vertical fragments of a relation so as to minimize the

cost of accessing data items during transaction processing. If the fragments closely

match the requirements of the set of transactions provided, then the transaction pro-

cessing cost could be minimized. Vertical partitioning also has its use in partitioning

individual �les in centralized databases, and dividing data among di�erent levels of

memory hierarchies etc. [20, 25]. In the case of distributed database design, trans-

action processing cost is minimized by increasing the local processing of transactions

(at a site) as well as by reducing the amount of accesses to data items that are not

local. The aim of vertical partitioning technique (and in general data partitioning

techniques) is to �nd a partitioning scheme which would satisfy the above objective.

It should be noted that the problem of partitioning can be addressed at various

levels of detail by taking additional information into consideration. Figure 1.1 clearly

distinguishes various levels and a feedback path is provided to re�ne the outcome of

the earlier levels if it does not suit the objectives of the next level. In this thesis, we

are taking only transaction information as input to keep the problem manageable.

In essence, the global optimization problem (which includes a large number of pa-

rameters and a very complex metric) is partitioned into several smaller optimization

problems to reduce the search space and the complexity of each problem. Other

detailed information need to be considered on the outcome of this stage in order to

obtain a design at the physical level.

1For most of our discussion it does not matter whether R is a Universal relation or a relation
that is in some normal form as long as key attributes are identi�ed. In the chapter on extensions,
we discuss how we can take that information into account.

2Overlapping partitions (of non-primary key attributes) may also be considered when availability
is an important criterion. This is discussed in the chapter on extensions.
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Several vertical partitioning algorithms have been proposed in the literature.

Ho�er and Severance [11] measure the a�nity between pairs of attributes and try

to cluster attributes according to their pairwise a�nity by using the bond energy

algorithm (BEA) [18]. Hammer and Niamir [10] use a �le design cost estimator and

a heuristic to arrive at a \bottom up" partitioning scheme. Navathe, et al [20] ex-

tend the BEA approach and propose a two phase approach for vertical partitioning.

Cornell and Yu [6] apply the work of Navathe [20] to physical design of relational

databases. Ceri, Pernici and Wiederhold [5] extend the work of Navathe [20] by con-

sidering it as a `divide' tool and by adding a `conquer' tool. Navathe and Ra [22]

construct a graph-based algorithm to the vertical partitioning problem where the

heuristics used includes an intuitive objective function which is not explicitly quanti-

�ed. In addition to these vertical partitioning algorithms, there are many data clus-

tering techniques [13], traditionally used in pattern recognition and statistics, some

of which can be adapted to partitioning of a database. These data clustering algo-

rithms include Square-error clustering [13], Zahn's clustering [32], Nearest-neighbor

clustering [17] and Fuzzy [13]clustering.

The partitioning algorithms mentioned above use some heuristics to create

fragments of a relation. The input to most of these algorithms is an Attribute Usage

Matrix (AUM). AUM is a matrix which has attributes as columns, and transactions

as rows and the access frequency of the transactions as values in the matrix. Most of

the earlier data fragmentation algorithms use an Attribute A�nity Matrix (AAM)

derived from the AUM provided as input. An AAM is a matrix in which for each

pair of attributes, the sum total of frequencies of transactions accessing that pair of

attributes together is stored. The results of the di�erent algorithms are sometimes

di�erent even for the same attribute a�nity matrix indicating that the objective
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functions used by these algorithms are di�erent. Most of the proposed vertical par-

titioning algorithms do not have an objective function to evaluate the \goodness" of

partitions that they produce. Also, there is no common criterion or objective function

to compare and evaluate the results of these vertical partitioning algorithms.

1.0.1 Contributions

This thesis makes several contributions to the problem of data fragmentation in

general and the design of vertical partitioning in particular. Speci�cally:

1. We have, perhaps for the �rst time, studied the applicability of some data

clustering algorithms for distributed database design3 proposed in areas such

as pattern classi�cation, statistics etc., [13], [32], [17], to data fragmentation

problem. In fact, we start from one such objective function proposed for data

clustering and modify and extend it to the speci�c problem at hand.

2. We have formulated an objective function for n-ary partitions, with two compo-

nents that provide the desirable behavior for minimizing transaction processing

cost.

3. Finally, we are using the approach of formulating an objective function (termed

Partition Evaluator in this thesis) before developing (heuristic) algorithms for

the partitioning problem. This approach enables us to study the properties

of algorithms with respect to an agreed upon objective function, and also to

compare di�erent algorithms for \goodness" using the same criteria. The ob-

jective function formulated in this thesis is a step in this direction. Moreover,

the objective function derived in this thesis can be easily extended to include

3Schkolnik [25] uses data clustering techniques for partitioning a hierarchical structure for an
IMS database using detailed cost information which is di�erent from the problem addressed in this
thesis.
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additional information (e. g., query types { retrieval/update, allocation infor-

mation about the partitions, remote processing cost, and the transaction usage

pattern at any particular site). Some of these extensions are discussed at the

end of the thesis.

Our long-term objective is to either extend this objective function or to de-

velop new objective functions to take into account additional information pertaining

to replication, storage, and transmission costs that are critical to a distributed envi-

ronment. However, we view this work as �lling a void that currently exists even at

the conceptual level.

1.0.2 Thesis Organization

The organization of the thesis is as follows. Chapter 2 discusses previous related

work on data fragmentation and explains three di�erent vertical partitioning algo-

rithms which will be evaluated using the Partition Evaluator that we will develop.

In Chapter 3 we will explain a few data clustering algorithms used in other areas

of applications and how to adapt these algorithms for data fragmentation. Chapter

4 summarizes the need for the development of our Partition Evaluator(PE) and de-

rive the same with appropriate characteristics for distributed databases. In Chapter

5, we illustrate the use of our Partition Evaluator with an example. We show the

actual behavior of the PE and compare it with the expected behavior. In Chapter

6, we discuss the extensions to the Partition Evaluator and the implementation of a

prototype database design testbed. Chapter 7 concludes the thesis with suggestions

on how to extend the Partition Evaluator by incorporating additional information

available at the design stage. It also includes future work.



6

Requirement Specification

Implementation Schema

  Distribution of the enterprise schema into local logical schemas

Vertical Partitioning

Data

Acquisition

Partitioning

Allocation
&

Replication

Optimization

Local

Horizontal Partitioning

Mixed Partitioning

VIEW ANALYSIS AND INTEGRATION

REQUIREMENT COLLECTION

USERS

PHYSICAL DATABASE DESIGN FOR EACH LOCAL DATABASE

OPERATIONAL DATABASE

Enterprise

Schema

Transaction

Definition

Distribution

Requirement

DISTRIBUTION DESIGN

Feedback

Figure 1.1. Distributed Database Design Methodology



CHAPTER 2
VERTICAL PARTITIONING ALGORITHMS

2.1 Previous Related Work

The concept of using fragmentation of data as a means of improving the perfor-

mance of a database management system has often appeared in the literature on �le

design and optimization. Attribute partitioning and attribute clustering have studied

earlier by Day [7], Seppala [26], Osman [24], Yue and Wong [31], Benner [3], Alsberg

[1], Babad [2], Stocker and Dearnley [28],[8], Kennedy [15], [14], Eisner and Sever-

ance [9], March and Severance [19], Ho�er and Severance [11], Hammer and Niamir

[10], Navathe et al. [20], and Navathe and Ra [22]. Stocker and Dearnley [28],[8]

discuss the implementation of a self-reorganizing database management system that

carries out attribute clustering. They also show that in a database management

system where storage cost is low compared to the cost of accessing the sub�les, it

is bene�cial to cluster the attributes, since the increase in storage cost will be more

than o�set by the saving in access cost. Kennedy [15], [14] considers a mathematical

model of attribute partitioning where each attribute ai is of known length, and has

probability pi of being requested by a query. The joint probability that attributes

ai and aj are requested by the same query is assumed to be pipj . A cost function

based on this assumption is derived, which re
ects the expected amount of data that

must be transmitted in order to answer to query. The objective here is to choose

a partition such that this cost function is minimized. Ho�er [12] developed a non-

linear, zero-one program which minimizes a linear combination of storage, retrieval

and update costs, with capacity constraints for each �le. Babad [2] formulated a less

7
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restrictive vertical partitioning problem for variable length attributes as a non-linear

zero-one program.

In the work of Eisner and Severance [9], a �le can be partitioned into two sub�les:

a primary and secondary sub�le. Two forms of cost function are used in this approach.

The �rst function is the sum of storage charges for subtuples in the primary sub�le,

and the cost of accessing all the subtuples residing in the secondary sub�le. The

second function is nonlinear, and measures the total costs of access, transfer, and

storage for subtuples in both primary and secondary sub�les. The search cost for

�nding the optimal solution for the general nonlinear objective function is even higher

than for the simpli�ed linear cost function. The limitation of this approach is that

at most two sub�les are allowed and the cost associated with processing a query

is taken to be the cost of accessing the whole (primary or secondary) sub�le in its

entirety rather than the cost of retrieving just those subtuples of the sub�le that

are really needed to answer the query. Also the cost of �nding the optimal partition

using the linear objective cost function grows in the cube of the sum of the number of

attributes and the number of queries; this cost is very large for practical purposes [23].

March and Severance [19] extended this model to incorporate block factors for both

primary and secondary memories. The page sizes in the primary and the secondary

sub�les are not necessarily the same, but the constraint is imposed that the sum of

the primary sub�le page size and the secondary sub�le page size is constant. The

nonlinear objective cost function they derive not only depends on how the attributes

are partitioned among the two sub�les, but also on the page sizes selected for each

of the primary and secondary sub�les. The model of March and Severance has the

disadvantage that it does not contain an accurate model of the cost of accessing

subtuples that are selected in queries. Rather, the primary and secondary sub�les

are assumed to be accessed in their entirety whenever any of their attributes are
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requested by a query. Using integer programming techniques March and Severance

obtained the optimal partition for their model. Ho�er and Severance [11] grouped

the attributes of a relation based on the extent to which they were used together

(measured the \a�nity between pairs of attributes"). This clustering of attributes

based on their pairwise a�nity was done using the bond energy algorithm (BEA).

The BEA produced matrix in which an cost function was minimized for the entire

matrix using the a�nity attribute matrix. Clusters of objects can be identi�ed such

that every pair of objects within the cluster carries a large measure of similarity, and

every pair of objects across cluster boundaries carries a small measure of similarity.

They provide attributes as objects to the clustering algorithm. They left the creation

of partitions to the subjective evaluation of the designer.

Hammer and Niamir [10] developed two heuristics, grouping and regrouping, and

used them to perform the partitioning. The grouping heuristic starts by initially

assigning each attribute to a trivial partition and generates all partitions that can be

obtained by grouping together pairs of blocks in the trivial partition. The heuristic

then evaluates all the generated partitions with the �le cost estimator, and �nds the

partition whose performance cost is the least of all the generated partitions. On

each iteration all possible grouping of these partitions is considered and the one with

maximum improvement is chosen as the candidate grouping for the next iteration.

During regrouping, attributes are moved between partitions to achieve any additional

improvements possible.

Navathe et al [20] use a two step approach for vertical partitioning. In the �rst

step, they use the given input parameters in the form of an attribute usage matrix

to construct the attribute a�nity matrix on which clustering is performed. After

clustering, an empirical objective function is used to perform iterative binary parti-

tioning. In the second step, estimated cost factors re
ecting the physical environment
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of fragment storage are considered for further re�nement of the partitioning scheme.

Cornell and Yu [6] propose an algorithm as an extension of Navathe et al [20] approach

which decreases the number of disk accesses to obtain an optimal binary partitioning.

This algorithm uses speci�c physical factors such as number of attributes, their length

and selectivity, cardinality of the relation etc. Navathe and Ra [Nava 89] present a

graph-based approach to the vertical partitioning problem. This approach is based

on the observation that all pairs of attributes in a fragment must have high \within

fragment a�nity" but low \between fragment a�nity". Reduction in complexity is

claimed as the main advantage of their approach.

2.2 Input to the Vertical Partitioning Algorithms

The input to the Vertical Partitioning algorithms that we are going to explain is

an Attribute Usage Matrix (AUM). An example AUM is given below.

Input: Attribute Usage Matrix

Trans:nAttrs: 1 2 3 4 5 6 7 8 9 10

T1 25 0 0 0 25 0 25 0 0 0
T2 0 50 50 0 0 0 0 50 50 0
T3 0 0 0 25 0 25 0 0 0 25
T4 0 35 0 0 0 0 35 35 0 0
T5 25 25 25 0 25 0 25 25 25 0
T6 25 0 0 0 25 0 0 0 0 0
T7 0 0 25 0 0 0 0 0 25 0
T8 0 0 15 15 0 15 0 0 15 15

Algorithms such as Bond Energy Algorithm, Binary Vertical Partitioning Algo-

rithm and Ra's Algorithm use the Attribute A�nity Matrix (AAM) formed from

the AUM. Attribute a�nity measures the bond between two attributes of a rela-

tion according to how they are accessed by applications. Attribute a�nity between
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0                  0                  15                 40                0                  40                 0                0                    15                40 

25                75                115               15                25                15                 25              75                 115               15

25                110              75                 0                  25                0                   60              110               75                 0

50                60                25                 0                  50                0                   85              60                 25                 0 

0                  0                  15                 40                0                  40                 0                0                  15                  40  

75                25                25                 0                  75                0                  50               25                25                  0

0                  0                  15                 40                0                  40                0                 0                  15                 40

25                75                115               15                25                15                25               75                115               15

25                110              75                 0                  25                0                  60              110               75                 0

   75                25                25                 0                  75                0                 50               25                 25                 0

10

9

8

7

6

5

4

3

2

1

Attribute  1                   2                  3                   4                  5                  6                 7                 8                    9                10

Figure 2.1. Attribute A�nity Matrix

attributes i and j is de�ned as

Affij =
TX
t=1

qt;ij (2:1)

where qt;ij is the number of accesses of transaction t referencing both attributes i

and j.

So for the AUM given above the attribute a�nity matrix is given in �gure 2.1

Attribute A�nity Matrix
Attrs:nAttrs: 1 2 3 4 5 6 7 8 9 10

A1 75 25 25 0 75 0 50 25 25 0
A2 25 110 75 0 25 0 60 110 75 0
A3 25 75 115 15 25 15 25 75 115 15
A4 0 0 15 40 0 40 0 0 15 40
A5 75 25 25 0 75 0 50 25 25 0
A6 0 0 15 40 0 40 0 0 15 40
A7 50 60 25 0 50 0 85 60 25 0
A8 25 110 75 0 25 0 60 110 75 0
A9 25 75 115 15 25 15 25 75 115 15
A10 0 0 15 40 0 40 0 0 15 40

2.3 Bond Energy Algorithm

The Bond Energy Algorithm [18] is used to group the attributes of a relation

based on the attribute a�nity values in AAM. It is considered appropriate for the

following reasons [11]:
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� It is designed speci�cally to determine groups of similar

items as opposed to a linear ordering of the items. (ie. it

clusters the attributes with larger a�nity values together,

and the ones with smaller values together).

� The �nal groupings are insensitive to the order in which

items are presented to the algorithm.

� The AAM is symmetric, and hence allows a pairwise permutation

of rows and columns, which reduces complexity.

� Because of the de�nition of Affij, the initial AAM is

already semiblock diagonal, in that each diagonal element has

a greater value of any element along the same row or column.

� The computation time of the algorithm is reasonable.

O(n2), where n is the number of attributes.

This algorithm takes as input the attribute a�nity matrix, permutes its rows and

columns, and generates a clustered a�nity matrix (CAM). The permutation is done

in such a way to maximize the following global a�nity measure (AM).

AM =
nX
i=1

nX
j=1

Affi;j [Affi;j�1 +Affi;j+1 +Affi�1;j +Affi+1;j] (2:2)

where Aff0;j = Affi;0 = Affn+1;j = Affi;n+1 = 0

The last set of conditions takes care of the cases where an attribute is being placed

in CAM to the left of the leftmost attribute or to the right of the rightmost attribute

during column permutations, and prior to the topmost row and following the last row

during row permutations. Before explaining the algorithm we have to de�ne some
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more quantities. Let us de�ne the bond between two attributes i and j as

bondij =
nX

z=1

AffziAffzj (2:3)

The net contribution to the global a�nity measure of placing the attribute k between

i and j is

contikj = 2 � bondik + 2 � bondkj � 2 � bondij (2:4)

Generation of the Clustered A�nity Matrix is done in three steps:

Initialization: Place and �x one of the columns of AAM arbitrarily into CAM.

Iteration: Pick each of the remaining n-i columns (where i is the number of columns

already placed in CAM) and try to place them in the remaining i+1 positions in

the CAM matrix. Choose the placement that makes the greatest contribution

to the global a�nity measure described above. Continue this until no more

columns remain to be placed.

Row Ordering: Once the column ordering is determined, the placement of the rows

should also be changed so that their relative positions match the relative posi-

tions of the columns [29].

When the CAM is big, usually more than two clusters are formed and there are

more than one candidate partition. The result of applying Bond Energy Algorithm

is shown in �gure 2.2 The following algorithm extends bond energy algorithm to

identify all the clusters in the CAM matrix.

2.4 Binary Vertical Partitioning

The Bond Energy Algorithm determines an ordering of attributes, but it is still left

to the subjective judgment of the designer to decide how to \clump" the attributes

together to form fragments. Similarity of pairs of attributes can be inadequate if

the similarity among larger groups of attributes is not taken into account. Navathe
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Attributes

 5              75           75           50            25           25           25           25          0              0              0

5             1            7             2               8             3             9          10            4              6

 1              75           75           50            25           25           25           25          0              0              0

8               25           25           60            110         110         75            75         0               0             0

3               25           25            25            75           75          115          115       15             15           15

9               25           25            25            75           75          115          115       15             15           15

2               25           25           60            110         110         75           75          0              0              0

7               50           50           85            60           60           25           25          0              0              0

10              0              0              0              0             0           15            15         40            40           40

6                0              0              0              0             0           15            15         40            40           40

4                0              0              0              0             0           15            15         40            40           40

Figure 2.2. Clustered A�nity A�nity Matrix

et al. [20] extended the results of Ho�er and Severance [11] by giving algorithms to

quantitatively \clump" the attributes together and by taking into account \blocks" of

attributes with similar properties. The approach taken in this algorithm is splitting

rather than grouping. The rationale behind this approach is that the \optimal"

solution, is much closer to the group composed of all attributes, assumed to be the

starting point, than to groups that are single attribute partitions. The objective of

splitting activity is to �nd sets of attributes that are accessed solely, or for the most

part, by distinct sets of applications. The binary vertical partitioning algorithm

uses the clustered a�nity matrix to partition an object into two non-overlapping

fragments. Assume that a point x is �xed along the main diagonal of the clustered

AAmatrix, as shown in �gure 2.3 The point x de�nes two blocks U (for \upper") and

L (for \lower"). Each block de�nes a vertical fragment given by the set of attributes

in that block.

Let At be the set of attributes used by transaction t de�ned as follows:

At = (ijqti > 0) (2:5)
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Attributes

 5              75           75           50            25           25           25           25          0              0              0

5             1            7             2               8             3             9          10            4              6

 1              75           75           50            25           25           25           25          0              0              0

8               25           25           60            110         110         75            75         0               0             0

3               25           25            25            75           75          115          115       15             15           15

9               25           25            25            75           75          115          115       15             15           15

2               25           25           60            110         110         75           75          0              0              0

7               50           50           85            60           60           25           25          0              0              0

10              0              0              0              0             0           15            15         40            40           40

6                0              0              0              0             0           15            15         40            40           40

4                0              0              0              0             0           15            15         40            40           40

X

Figure 2.3. Partitioned Attribute A�nity Matrix

Using At, it is possible to compute the following sets:

T = (tjt is a transaction)

LT = (tjAt � L)

UT = (tjAt � U)

IT = T � (LT [ UT )

T represents the set of all transactions. LT and UT represent the set of transactions

that \match" the partitioning, as they can be entirely processed using attributes in

the lower or upper block, respectively; IT represents the set of transactions that

needs to access both fragments.

CT =
P

t�T qt

CL =
P

t�LT qt

CU =
P

t�UT qt

CI =
P

t�IT qt
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CT counts the total number of transaction accesses to the considered object.

CL and CU count the total number of accesses of transactions that need only one

fragment; CI counts the total number of accesses of transactions that need both

fragments. Totally n�1 possible locations of point x along the diagonal is considered,

where n is the size of the input matrix (ie. the number of attributes). A non-

overlapping partition is obtained by selecting the point x along the diagonal such

that the following objective function z is maximized:

max z = CL � CU � CI2 (2:6)

The partitioning that corresponds to the maximal value of the z function is ac-

cepted if z is positive, and is rejected otherwise. The objective function shown above

comes from an empirical judgment of what should be considered a \good" partition-

ing. The function is increasing in CL and CU and decreasing in CI. For a given value

of CI, it selects CL and CU in such a way that the product CL �CU is maximized.

This results in selecting values for CL and CU that are as nearly equal as possible.

Thus the above z function will produce fragments that are \balanced" with respect

to the transaction load. This algorithm has the disadvantage of not being able to

partition an object by selecting out an embedded \inner" block. This disadvantage

can be avoided by using the procedure SHIFT, which moves the leftmost column of

the AAM to the extreme right, and the topmost row of the matrix to the bottom.

SHIFT is called a total of n times, so that every diagonal block gets the opportunity

of being brought to the upper left corner in the matrix. When the SHIFT procedure

is used, the complexity of the algorithm increases by factor n.Experience has shown

that the use of the SHIFT procedure improves the solution of the binary vertical

partitioning problem in several cases. Designing an n-way partitioning is possible
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but computationally expensive. The solution is to recursively apply the binary par-

titioning algorithm to each of the fragments obtained during the previous iteration.

2.5 Graph-based Vertical Partitioning Algorithm

The input to this algorithm is the Attribute A�nity Matrix. In previous ap-

proaches, a clustering algorithm is applied to the AAM. In this approach the AAM is

considered as a complete graph called the a�nity graph in which an edge value rep-

resents the a�nity between the two attributes. Then, forming a linearly connected

spanning tree, the algorithm generates all meaningful fragments in one iteration by

considering a cycle as a fragment. A \linearly connected" tree has only two ends.

Figure 2.4 shows the a�nity graph corresponding to the a�nity matrix of �gure 2.1.

A note about the attributes: in this proposed technique as well as in the previous

techniques, the set of attributes considered may be

(a) the universal set of attributes in the whole database.

(b) the set of attributes in a single relation.

By using (a), the fragments generated may be interpreted as relations or record

types. By using (b), fragments of a single relation are generated.

In the previous approaches, they apply a clustering algorithm to the AAM. In

this approach, however, the AAM is considered to be a complete graph called a�nity

graph in which an edge value represent the a�nity between the two attributes. Then,

forming a linearly connected spanning tree, the algorithm generates all meaningful

fragments in one iteration by considering a cycle as a fragment.

The major advantages of the proposed method over that in [20] are as follows:

(1) There is no need for iterative binary partitioning. The major

weakness of iterative binary partitioning is that at each step

two new problems are generated increasing the complexity.
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Figure 2.4. A�nity Graph

(2) The method obviates the need for using any empirical objective

functions as in [20].

(3) The method requires no complementary algorithms such as the

SHIFT algorithm of [20].

(4) The complexity of the algorithm is O(n2), better than

the O(n2logn) complexity of the previous algorithms

[21].

2.5.1 De�nitions and Notations

- A,B,C, : : :denotes nodes.

- a,b,c, : : :denotes edges.

- p(e) denotes the a�nity value of an edge e.
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- \primitive cycle" denotes any cycle in the a�nity graph.

- \cycle completing edge" denotes a \to be selected \ edge

that would complete a cycle.

- \cycle node" is that node of the cycle completing edge, which

was selected earlier.

- \a�nity cycle" denotes a primitive cycle that contains a cycle

node. It is assumed that a cycle means an a�nity cycle,

unless otherwise stated.

- \former edge" denotes an edge that was selected prior to

the cycle node.

- \cycle edge" is any of the edges forming a cycle.

- \extension of a cycle" refers to a cycle being extended by

pivoting at the cycle node.

2.5.2 Fundamental Concepts

Based on the above de�nitions the mechanism of forming cycles could be ex-

plained. For example, in �gure 2.5, suppose edges 'a' and 'b' were selected already

and 'c' was selected next. At this time, since 'c' forms a primitive cycle, we have

to check if it is an a�nity cycle. This can be done by checking the possibility of a

cycle. Possibility of a cycle results from the condition that no former edge exists, or

p(former edge) � p(all the cycle edges). The primitive cycle a,b,c is an a�nity cycle

because it has no former edge and satis�es the possibility of a cycle. Therefore the

primitive cycle a,b,c is marked as a candidate partition and node A becomes a cycle

node.

Now let us explain how the extension of a cycle is performed. In �gure 2.5,

after the cycle node is determined, suppose edge 'd' was selected. At this time, 'd' is
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Figure 2.5. Cycle and Extension

checked as a potential edge for extension. It can be done by checking the possibility

of extension of the cycle by 'd'. Possibility of extension results from the condition

of p(edge being considered) or cycle completing edge � p(any one of the cycle edges).

Thus the old cycle a,b,c is extended to the new cycle a,b,d,f if the edge 'd' under

consideration, or the cycle completing edge f, satis�es the possibility of extension

which is: p(d) or p(f) � minimum of (p(a),p(b),p(c)). Now the process is continued:

suppose 'e' was selected as the next edge. But we know from the de�nition of the

extension of a cycle that 'e' cannot be considered as a potential extension because the

primitive cycle d,b,e does not include the cycle node A. Hence it is discarded and the

process is continued. There are two cases in partitioning. (1) Creating a partition

with a new edge.
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In the event that the edge selected next for inclusion (eg. d in �gure 2.5) was

not considered before, we call it a new edge. If a new edge by itself does not satisfy

the possibility of extension, then we continue to check an additional new edge called

cycle completing edge (eg. f in �gure 2.5) for the possibility of extension. In �gure

2.5, new edges d and f would potentially provide such a possibility of extension of

the earlier cycle formed by edges a,b,c. If d,f meet the condition for possibility of

extension stated above (namely p(d) or p(f) � minimum of (p(a),p(b),p(c))), then

the extended new cycle would contain edges a,b,d,f. If the condition were not met,

we produce a cut on edge d (called the cut edge) isolating the cycle a,b,c. This cycle

can now be considered a partition.

(2) Creating a partition with a former edge.

After cutting in (1), if there is a former edge, then change the previous cycle

node to that node where the cut edge was incident, and check for the possibility of

extension of the cycle by the former edge. For example, in �gure 2.6, suppose that

a,b, and c form a cycle with A as the cycle node, and that there is a cut on d, and

that the former edge w exists. Then the cycle node A is changed to C because the

cut edge d originates in C. We are now evaluating the possibility of extending the

cycle a,b,c into one that would contain the former edge w. Hence we consider the

possibility of the cycle a,b,e,w. Assume that w or e does not satisfy the possibility

of extension, i.e., if \p(w) or p(e) � minimum of (p(a),p(b),p(c))" is not true. Then

the result is the following:

(i) w will be declared as a cut edge.

(ii) C remains as the cycle node, and

(iii)a,b,c becomes a partition.

Alternately, if the possibility of extension is satis�ed, the result is:

(i) cycle a,b,c is extended to cycle w,a,b,e,
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Figure 2.6. Partition

(ii) C remains as the cycle node, and

(iii) no partition can yet be formed.

The de�nitions above are used in this algorithm to process the a�nity graph and

to generate possible cycles from the graph. Note that each cycle gives rise to a vertical

fragment. [22]

2.5.3 Description of the Algorithm

� 1. Construct the a�nity graph of the attributes of the object

being considered. Note that the AAM is itself an adequate data
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structure to represent this graph. No additional physical

storage of data would be necessary.

� 2. start from any node.

� 3. Select an edge which satis�es the following conditions:

a) It should be linearly connected to the tree already

constructed.

b) It should have the largest value among the possible

choices of edges at each end of the tree. Note that

if there are several largest values, anyone can be

selected.

This iteration will end when all nodes are used for tree construction.

� 4. When the next selected edge forms a primitive cycle,

a) If a cycle node does not exist, check for the

\possibility of a cycle" and if the possibility exists,

mark the cycle as an a�nity cycle. Consider this

cycle as a candidate partition. \Possibility of a

cycle results from the condition that no former edge

exists, or p(former edge) � p(all the cycle edges).

Go to step 3.

� 5. When the next selected edge does not form a cycle and a

candidate partition exists.

a) If no former edge exists, check for the possibility

of extension of the cycle by this new edge. \possibility

of extension" results from the condition of p(being

considered edge or cycle completing edge) � p(any of
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the cycle edges). If there is no possibility, cut this

edge and consider the cycle as a partition. Go to step 3. b) If a former edge

exists, change the cycle node and check

for the possibility of extension of the cycle by the

former edge. If there is no possibility, cut the former

edge and consider the cycle as a partition. Go to step 3.

The result of applying this algorithm to �gure 2.4 is given in �gure 2.7.



CHAPTER 3
ADAPTATION OF DATA CLUSTERING ALGORITHMS FOR DATA FRAGMENTATION

3.1 Data Clustering Problem

The problem clustering can be formally stated as follows: Given n attributes in

a d-dimensional metric space, determine a partition of the attributes into M groups,

or clusters, such that the attributes in a cluster are more similar to each other that

to attributes in di�erent cluster. The value of M may or may not be speci�ed.

A clustering criterion, such as square-error, must be adopted. A global criterion

represents each cluster by a prototype and assigns attributes to clusters according to

most similar prototypes. A local criterion forms clusters by utilizing local structure

in the data. A simple theoretical solution to this partitional problem is to select a

criterion, evaluate it for all possible partitions containing M clusters, and pick the

partition that optimizes the criterion. The �rst di�culty encountered is selecting

a criterion that translates one's intuitive notions about \cluster" into a reasonable

mathematical formula. The second di�culty with this approach is that the number

of partitions is astronomical, even for moderate numbers of attributes, so evaluating

even the simplest criterion over all partitions is impractical. The total number of

partitions for a given number of attributes is given by the Bell Number, which is

de�ned as follows.

Bn+1 =
nX
i=0

 
n
i

!
Bi (3:1)

For example B30 = 1023. To avoid this combinatorial explosion, a small set of

\reasonable" partitions. This implies that heuristics must be used. In the heuristic

25
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approach, an optimal or near optimal partition is found for the attributes by a process

of stepwise minimization. An attribute partitioning heuristic which is based upon

stepwise minimization starts with a given partition (eg. the trivial partition), and

attempts to derive from it a new partition that is incrementally superior to the

original one, in that the database partitioned according to the new partition will

have a lower performance cost. When this is achieved, the heuristic further tries

to improve upon the newly derived partition. Each time an improved partition is

derived, the performance cost of the database is reduced. The stepwise minimization

process is continued until no improvement can be made to the latest partition. This

last partition will then be returned as the result of the attribute partitioning heuristic

[10].

3.2 Previous Related Work

In the previous chapter, we have discussed only those algorithms that were devel-

oped speci�cally for Data fragmentation problem. However, a number of data clus-

tering algorithms have been developed in other application areas such as statistics

and pattern classi�cation and analysis which could be adapted, with some changes,

to the data fragmentation problem. Criteria used in clustering algorithms impose a

certain structure on the data, and if the data happen to conform to the requirements

of a particular criterion, the true clusters are recovered.

The most commonly used partitioning clustering strategy is based on the square-

error criterion [13]. The general objective is to obtain that partition which, for a �xed

number of clusters, minimizes the square-error. Minimizing square-error, or within-

cluster variation, has been shown to be equivalent to maximizing the between-cluster

variation. Clusters can also be viewed as regions of the attribute pattern space in

which the patterns are dense, separated by regions of low attribute pattern density.

In the mode-seeking partitioning algorithm due to Torn [30], clusters are identi�ed
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by searching for regions of high density, called modes, in the pattern space. Each

mode is associated with a cluster center and each pattern is assigned to the cluster

with the closest center.

Zahn [32] has demonstrated how the minimum spanning tree (MST) can be used

to detect clusters. His choice of MST was in
uenced by the Gestalt principle, which

favors the grouping of attribute patterns based on Euclidean distance measure. Shaf-

fer et al [27] demonstrate the similarity of the mode-seeking partitioning algorithm

[16] to the graph algorithm of Zahn [32] based on minimumspanning trees. Lu and Fu

[17] used another graph-based approach called Nearest-Neighbor clustering algorithm

to cluster patterns used in character recognition [13].

3.3 Square-Error Clustering Algorithm

The most commonly used partitional clustering algorithm is based on the square-

error criterion. The general objective is to obtain that partition which, for a �xed

number of clusters, minimizes the square-error.

Let us assume that n attributes have been partitioned intoM fragments (P1; P2; ::::::PM)

with ni attributes in each fragment. Thus
PM

i=1 ni = n. The mean vector Vi for frag-

ment i is de�ned as follows.

Vi =
1

ni

niX
j=1

Aij 0 < i �M (3:2)

This mean vector represents an average access pattern of the transactions over all

attributes of fragment i. For an attribute vectorAij, (Aij�Vi) is called the \di�erence

vector" for attribute j in fragment i. The square-error for the fragment Pi is the sum

of the squares of the lengths of the di�erence vectors of all the attributes in fragment
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i. It is given by

e2i =
niX
j=1

(Aij � Vi)
T (Aij � Vi) 0 < i �M (3:3)

If Aij = Vi then e2i will be zero. This will occur for the trivial case when there

is a single attribute in each fragment or for the case when all the attribute in each

fragment are relevant to all the transactions that access that fragment. It is the latter

case that we are interested in and to avoid the former case, we will use the second

component.

The square-error for the entire partition scheme containing M fragments is given

by

E2
M =

MX
i=1

e2i (3:4)

The objective of a square-error clustering method is to �nd a partition containing

M fragments that minimizes E2
M for a �xed M . The square-error criterion views the

centroids of clusters as prototypes. The error represents deviations of the patterns

from the centroids. A general algorithm for iterative partitional clustering method is

given below.

Step 1. Select an initial partition with M clusters.

Repeat steps 2 through 5 until the cluster membership stabilizes.

Step 2. Generate a new partition by assigning each pattern to its closest

cluster center.

Step 3. Compute new cluster centers as the centroids of the clusters.

Step 4. Repeat steps 2 and 3 until an optimum value of the criterion
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function is found.

Step 5. Adjust the number of clusters by merging and splitting existing

clusters or by removing small, or outlier, clusters.

The details of the above algorithm can be found in [13].

3.4 Clustering by Graph Theory

Various kinds of geometric structures or graphs for analyzing multidimensional

patterns have led to some useful algorithms which can identify clusters. A graph

is constructed whose nodes represent the patterns to be clustered and whose edges

represent relations between the nodes. In the simplest case, every node is connected

to the remaining (n � 1) nodes, resulting in the complete graph. The edge weights

are distances between pairs of patterns. Several graph structures, such as minimum

spanning trees, relative neighborhood graphs, have been imposed on the set of pat-

terns to capture perceptual grouping. These graphs choose a subset of the n(n�1)=2

edges in the complete graph to re
ect the \structure" or the inherent separation

among clusters. The edges in these graphs mostly correspond to small interpoint

distances. These graphs depend only on the ordering of the lengths of edges. Clus-

tering methods decompose the graphs into connected components by identifying and

deleting \inconsistent" edges. Each component represents a cluster.

3.4.1 Zahn's Clustering Algorithm

Step 1. Construct the minimum spanning tree for the set of n attributes given.

Step 2. Identify inconsistent edges in the MST.

Step 3. Remove the inconsistent edges to form connected components and call

them clusters.

Zahn considers several criteria for inconsistency. In one, an edge is inconsistent

if its weight is signi�cantly larger than the average of nearby edge weights. Thus
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the inconsistent edges are related to cluster separation. The number of standard

deviations by which an edge weight di�ers from the average of nearby edge weights

and the ratio of the edge weight to the average of nearby edge weights are two means

for identifying inconsistent edges [13].

3.5 Adaptation of Data Clustering Algorithms for Data Fragmentation

There are important di�erences in the criteria that is used in traditional clustering

problems and data fragmentation problem. In data clustering algorithms, the number

of clusters is usually �xed. Otherwise, the extreme case of only a single cluster in the

partition will minimize the inter-cluster variation. However in the database design

application, there is a need to determine the number of clusters as well and hence the

objective function used in data clustering algorithms cannot be borrowed without

any changes to vertical partitioning in databases. Algorithms such as Bond Energy

Algorithm, Binary Vertical Partitioning, Ra's algorithm and Zahn's algorithm etc.

use a�nity matrix as the input. The attribute a�nity is a measure of an imaginary

bond between a pair of attributes. Because only a pair of attributes is involved,

this measure will not be able to re
ect the closeness or a�nity when more than two

attributes are in a partition. Hence the algorithms which use attribute a�nity matrix

are using a measure that has no bearing on the a�nity as measured with respect to

the entire cluster. As a consequence, we believe, it was di�cult to show or even

characterize a�nity values for clusters having more than two attributes.

As we wanted to obtain a general objective function and a criterion for describing

a�nity value for clusters of di�erent sizes, our approach does not assume an attribute

a�nity matrix. The input model that we consider is a matrix which consists of

attributes (columns) and the transactions (rows) with the frequency of access to the

attributes for each transaction, as the values in the matrix. With this input model we
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overcome the disadvantage that is inherent to approaches based on attribute a�nity

matrix.

As we can see from the above discussion, there are a number of partitioning al-

gorithms available both in the database design area and in other application areas.

Many of these algorithms use di�erent objective criteria to arrive at a partitioning

scheme. The objective function used by one algorithm is not suitable for evaluat-

ing the \goodness" of other algorithms. Thus we do not have a common objective

function to compare and evaluate the results of these partitioning algorithms, or in

general evaluate the \goodness" of a particular partitioning scheme. Hence we need

a partition Evaluator to compare and evaluate di�erent algorithms, that use the

same input in the database design process. Since attribute usage matrix is the most

commonly used input available during the design stage, we �rst design an Evaluator

which can be used to evaluate the \goodness" of partition arrived at using this input.

This Partition Evaluator can be used as a basis for developing algorithms to create

fragments of a relation. With this approach, there is hope that admissibility aspects

of algorithms can be shown. In addition, this Partition Evaluator has the 
exibility

to incorporate any other information such as type of queries (retrieval/updates), al-

location information about the partitions, remote processing cost(transmission cost)

and the transaction usage pattern at any particular site. In the next chapter we will

discuss the development of the Partition Evaluator in detail.



CHAPTER 4
DEVELOPMENT OF THE PARTITION EVALUATOR

4.1 Need for an objective function

Algorithms such as Bond Energy, Binary Vertical Partitioning, Ra's algorithm

and Zahn's algorithm etc. use a�nity matrix as the input. The attribute a�nity is

a measure of an imaginary bond between a pair of attributes. Because only a pair

of attributes is involved, this measure does not re
ect the closeness or a�nity when

more than two attributes are involved. Hence the algorithms which use attribute

a�nity matrix are using a measure (that is an ad hoc extrapolation of pairwise

a�nity to cluster a�nity) that has no bearing on the a�nity as measured with

respect to the entire cluster. As a consequence, we believe, it was di�cult to show

or even characterize a�nity values for the resulting clusters having more than two

attributes.

As we wanted to obtain a general objective function and a criterion for describing

a�nity value for clusters of di�erent sizes, our approach does not assume an attribute

a�nity matrix. The input model that we consider is a matrix which consists of

attributes (columns) and the transactions (rows) with the frequency of access to the

attributes for each transaction, as the values in the matrix. With this input model we

overcome the limitations that are inherent to approaches based on attribute a�nity

matrix.

As is evident from the discussion in the previous section, there are a number

of partitioning algorithms available both in the database design area and in other

application areas. Many of these algorithms use di�erent criteria to arrive at a par-

titioning scheme. The objective function used by one algorithm is not suitable for

32
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evaluating the \goodness" of other algorithms. Thus we do not have a common ob-

jective function to compare and evaluate the results of these partitioning algorithms,

or in general evaluate the \goodness" of a particular partitioning scheme. Hence we

need a partition Evaluator to compare and evaluate di�erent algorithms, that use

the same input in the database design process. Since attribute usage matrix is the

most commonly used input available during the initial design stage, we �rst design

an Evaluator which can be used to evaluate the \goodness" of partitions arrived at

using this input. This Partition Evaluator can be used as a basis for developing

algorithms to create fragments of a relation. With this approach, there is hope that

admissibility aspects of algorithms can be shown. In addition, this Partition Eval-

uator has the 
exibility to incorporate other information, such as type of queries

(retrieval/updates), allocation information about the partitions, remote processing

cost (transmission cost) and the transaction usage pattern at any particular site.

In any practical database application, a transaction does not usually require all

the attributes of the tuples of a relation being retrieved during the processing of the

transaction. When a relation is vertically divided into data fragments, the attributes

stored in a data fragment that are irrelevant (i.e., not accessed by the transaction)

with respect to a transaction, add to the retrieval and processing cost, especially

when the number of tuples involved in the relation is very large. In a centralized

database system with memory hierarchy, this will lead to too many accesses to the

secondary storage. In a distributed database management system, when the relevant

attributes (i.e., attributes accessed by a transaction) are in di�erent data fragments

and allocated to di�erent sites, there is an additional cost due to remote access of

data. Thus one of the desirable characteristics of a distributed database management

systems that we wish to achieve through partitioning is the local accessibility at any
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site. In other words, each site must be able to process the transactions locally with

minimal access to data located at remote sites.

Ideally, we would like any transaction to access only the attributes in a single data

fragment with no or minimal access of irrelevant attributes in that fragment. But

this is impossible to achieve in the general cased since transactions access di�erent

and overlapping subsets of attributes of a relation. Moreover, transactions are run at

di�erent sites and hence some of the data fragments that contain relevant attributes

of a transaction may reside in remote sites. The overall transaction processing cost

in a distributed environment thus consists of local transaction processing cost and

the remote transaction processing cost. Though it is possible to replicate the data

to avoid remote processing cost, for the �rst step we assume no data redundancy

to avoid modeling overhead to ensure data integrity and consistency and also ad-

ditional storage costs. In this paper, we assume that during the database design

process, \partitioning" phase is followed by the \allocation" phase during which the

non-overlapping data fragments obtained during the partitioning phase are allocated

to di�erent sites possibly with some replication. Hence the partition evaluator we

propose will evaluate vertical partitioning schemes wherein the data fragments are

non-overlapping in the attributes. Here non-overlapping refers only to non-primary

key attributes. The primary key is preserved in each partition. This is necessary to

obtain the original relation without any loss or addition of spurious tuples. Discus-

sion of our approach to relations that are not in Boyce-Codd normal form is in a later

section.

The goal of partitioning the attributes and allocating to di�erent sites, is to ar-

rive at a minimum processing cost for any transaction originating at any site. Since

the transaction processing cost has two components, one due to local processing

and another due to remote processing, our Partition Evaluator that measures the
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\goodness" of a vertical partitioning scheme also has two corresponding component

terms; we refer to these terms as \irrelevant local attribute access cost" and \rel-

evant remote attribute access cost" terms respectively. For simplicity, we assume

that a single access of a data fragment corresponds to an unit cost; this assumption

can easily be relaxed if more information is available regarding the access methods,

network parameters etc. The irrelevant local attribute cost term measures the local

processing cost of transactions that is due to irrelevant attributes of data fragments

assuming that all the data fragments required by a transaction are available locally.

The relevant remote attribute access term measures the remote processing cost due

to relevant attributes of data fragments that are accessed remotely by transactions;

note that the contribution to remote access cost due to irrelevant attributes is already

included in the �rst term. Since we do not know during partitioning how the data

fragments are allocated, we compute the second term assuming that data fragments

needed by a transaction are located at di�erent sites. In the absence of any informa-

tion regarding the transaction execution strategies, we can compute the second term

either by determining the average of all the remote access costs obtained by running

the transaction at every site containing a fragment needed by the transaction or by

assuming the transaction to be run at one of the fragment sites. If more information

is available regarding the transaction strategies, we can incorporate it in the second

term.

The ideal characteristic of a Partition Evaluator is summarized in Figure 4.1

where the behavior of the two components as a function of partition size (number

of data fragments) is illustrated. The �rst component should be maximum for a

partition size of 1 and should be zero for a partition size equal to number of at-

tributes in the relation. The second component on the other hand should be zero

and maximum respectively for these two extremes. In between the two extremes, the
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Figure 4.1. Ideal characteristics of PE components

�rst component should be more responsive to smaller partition sizes while the second

component should be more responsive to larger partition sizes. This is necessary to

avoid unnecessary bias toward one component or another since we know that in a

distributed database design, it is undesirable to have the two extreme cases of the

partition size. In addition to being responsive to partition sizes, the evaluator func-

tion should discriminate between di�erent distributions of the attributes among the

fragments for a �xed partition size. Later, we will present experimental evidence to

demonstrate that our Partition Evaluator meets these criteria reasonably well.

4.2 Derivation of the Partition Evaluator

4.2.1 Database and Transaction Speci�cation

We derive a partition evaluator in this chapter without making any assumptions

on the input. The input assumed is a relation (consisting of a set of attributes) and an

attribute usage matrix. We really do not have to make any assumptions as to whether

the input relation is a Universal relation or whether it is in a particular normal form.
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The partitioning obtained is non-overlapping except for the key attributes in the

input relation. The key attributes are part of each partition. In a later chapter

we indicate how normalization and functional dependency information can be easily

added to our approach.

The input model that we use is an attribute usage matrix [AUM(t,j)] which con-

sists of the attributes(j) in a relation as columns and the transactions(t) as rows with

the frequency of access to the attributes for each transaction as the values in the

matrix. Note that we are avoiding the construction of any attribute a�nity matrix

which has its own limitation pointed out earlier.

A representative attribute usage matrix1 is shown below:
TransnAttrs A1 A2 A3 A4 A5

T1 0 q1 0 q1 q1
T2 q2 q2 q2 0 q2
T3 q3 0 0 q3 q3
T4 0 q4 q4 0 0
T5 q5 q5 q5 0 0

4.2.2 De�nitions and Notations

A partition (scheme) is a division of attributes of a relation into vertical fragments

in which for any two fragments, the set of attributes of one is non-overlapping with

the set of attributes of another. For example, the partition f(1; 3)(2; 4)(5)g de�nes a

collection of fragments in which attributes 1 and 3 are in one fragment, 2 and 4 are

in another and 5 is in a separate fragment. The following are used in the derivation

of the Partition Evaluator.

n : Total number of attributes in a relation that is being partitioned.

T : Total number of transactions that are under consideration.

qt : frequency of transaction t for t = 1; 2; : : : ; T .

1In this chapter, no distinction is made between update and retrieval transactions; it is discussed
as one of the extensions in a later chapter
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M : Total number of fragments of a partition.

ni : Number of attributes in fragment i.

nrikt : Total number of attributes that are in fragment k

accessed remotely with respect to fragment i by transaction t.

f itj : frequency of transaction t accessing attribute j in fragment i

note that f itj is either 0 or qt

Aij : Attribute Vector for attribute j in fragment i.

t-th component of this vector is f itj

Sit : Set of attributes contained in fragment i that the transaction t

accesses; It is empty if t does not need fragment i.

jSitj : number of attributes in fragment i that the transaction t accesses.

Ritk : Set of relevant attributes in fragment k accessed remotely

with respect to fragment i by transaction t;

these are attributes not in fragment i but needed by t

jRitkj : number of relevant attributes in fragment k accessed remotely

with respect to fragment i by transaction t

The attribute vector A11 (assuming A1 is in partition 1) for the example given

above is as follows.

A11 =

2
6666664

0
q2
q3
0
q5

3
7777775

Consider the partitioning scheme (1,3),(2,4),(5), for the attribute usage matrix

given above. Fragment 1 is (1,3), fragment 2 is (2,4) and fragment 3 is (5). Assume

that transaction T2 (i.e., t = 2) is run at the site where fragment 1 is located. Then

Sit is (1,3) and jSitj is 2. nri2t is 2 and nri3t is 1. jRit2j is 1 and jRit3j is 1.
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Next we explain how each of the two components of our Partition Evaluator is

derived.

4.2.3 Irrelevant local attribute access cost

For the �rst component, we use the square-error criterion as given in [Jain 88] for

data clustering. The objective here is to obtain a partition which will minimize the

square-error for a �xed number of fragments. This criterion assigns a penalty factor

whenever irrelevant attributes are accessed in a particular fragment.

Let us assume that n attributes have been partitioned into M fragments

(P1; P2; ::::::PM) with ni attributes in each fragment. Thus
PM

i=1 ni = n. The mean

vector Vi for fragment i is de�ned as follows.

Vi =
1

ni

niX
j=1

Aij 0 < i �M (4:1)

This mean vector represents an average access pattern of the transactions over all

attributes of fragment i. For an attribute vectorAij, (Aij�Vi) is called the \di�erence

vector" for attribute j in fragment i. The square-error for the fragment Pi is the sum

of the squares of the lengths of the di�erence vectors of all the attributes in fragment

i. It is given by

e2i =
niX
j=1

(Aij � Vi)
T (Aij � Vi) 0 < i �M (4:2)

If Aij = Vi then e2i will be zero. This will occur for the trivial case when there

is a single attribute in each fragment or for the case when all the attribute in each
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fragment are relevant to all the transactions that access that fragment. It is the latter

case that we are interested in and to avoid the former case, we will use the second

component.

The square-error for the entire partition scheme containing M fragments is given

by

E2
M =

MX
i=1

e2i (4:3)

Smaller the value of E2
M , smaller is the cost due to access of irrelevant at-

tributes. E2
M however does not re
ect the cost that might be incurred by access-

ing attributes remotely when the fragments may be in di�erent sites. Hence, for

distributed database applications, we cannot evaluate partitions on the basis of E2
M

alone. The behavior of E2
M is given in �gure 4.2 as curve I for a data set consisting

of 10 attributes and eight transactions (more details of this example are discussed in

the next chapter).

From this graph, we can see that the minimum value for E2
M is certainly achieved

for n partitions in an n attribute system (The minimum value may be reached even

for less than n partitions depending on the AUM). We would like to have a number

of fragments which is typically much less than n and still having the least E2
M value.

In some data clustering techniques, the number of data clusters is minimized using

an index called Davies-Bouldwin (DB) index [13] which is a measure of the spread

between centers of the clusters. For a typical data set with small standard deviation

(less than 0:1), this index reaches a global minimum (highest spread) for a partition

size that falls between the extremes. From the curve I of �gure 4.2, we can see

that the standard deviation of the data set given by the attribute usage matrix is

greater than 0.1, which does not meet the condition for using the DB index. For
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this reason, we seek another quantity which will re
ect the remote access cost. In

the next chapter, we will discuss the development of a quantity for remote attribute

access cost.

4.2.4 Relevant Remote Attribute Access Cost

Now we will include the second component which would compute a penalty factor

that computes the function shown earlier in �gure 4.1. Given a set of partitions, for

each transaction running on a partition compute the ratio of the number of remote

attributes to be accessed to the total number of attributes in each of the remote

partitions. This is summed over all the partitions and over all transactions giving

the following equation. The second term is given by

E2
R =

TX
t=1

�M
i=1

X
k 6=i

"
q2t � jRitkj

jRitkj

nritk

#
(4:4)

Here �2 is an operator that is either an average, minimum or maximum over

all i. These di�erent choices of the operator give rise to average, optimistic and

pessimistic estimates of the remote access cost. If speci�c information is available

regarding transaction execution strategies, then we can determine for each transaction

t, the remote fragments accessed by the transaction and the remote access cost can be

re�ned accordingly. In our experimental investigation, we use the optimistic estimate

for illustration.

We will show in the next chapter how we obtained the above form for the second

term. Our Partition Evaluator (PE) function is given by

PE = E2
M + E2

R (4:5)

2� is introduced to keep the formula general and applicable to a wide class of problems; also, a
desired new operator can be substituted for � without having to change the objective function.
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4.2.5 Compatibility of the Two Components in PE

As the second component has frequency in quadratic form, we need to make

sure that both the components are compatible in terms of the units they produce.

Speci�cally, we need to see whether the frequency appears in the same way in the

�rst component. In order to do that, it is instructive to look closely at the �rst term.

In particular, we will rewrite E2
M di�erently so as to identify the contributions due

to each transaction to the square error term of each fragment in the partition. Thus

E2
M =

MX
i=1

niX
j=1

(Aij � Vi)
T (Aij � Vi) (4:6)

Now the mean Vector Vi for fragment i, can be de�ned as follows.

Vi =

2
6666666666664

jSi1j�q1
ni

jSi2j�q2
ni

� � �
� � �
� � �
� � �

jSitj�qt
ni

3
7777777777775

The attribute vector Aij is,

Aij =

2
666666666664

f i1j
f i2j
� � �
� � �
� � �
� � �
f itj

3
777777777775

Now,
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E2
M =

MX
i=1

niX
j=1

"
f i1j �

jSi1j � q1
ni

; : : : ; f itj �
jSitj � qt

ni

#

2
6666666666664

f i1j �
jSi1j�q1

ni

f i2j �
jSi2j�q2

ni

� � �
� � �
� � �
� � �

f itj �
jSitj�qt

ni

3
7777777777775

(4:7)

The above formula can be rewritten as follows so as to allow us to identify the

di�erent components that make up the irrelevant local attribute access term.

E2
M =

MX
i=1

niX
j=1

TX
t=1

2
4�jt � q2t

 
1 �

jSitj

ni

!2

+ (1 � �jt)

 
qt �

jSitj

ni

!2
3
5 (4:8)

where,

�jt = 1 if the attribute j is accessed by the transaction t

= 0 if the attribute j is not accessed by the transaction t.

The �rst term q2t
�
1 � jSitj

ni

�2
represents relevant attribute accesses and

the second term represents irrelevant attribute accesses. Even if we

have a 0 in Aij, we still have the mean squared quantity
�
qt �

jSitj
ni

�2
.

Therefore,

E2
M =

MX
i=1

TX
t=1

2
4jSitj � q2t

 
1�

jSitj

ni

!2
+ (ni � jSitj)

 
qt �

jSitj

ni

!2
3
5 (4:9)

where

Pni

j=1 �jt = jSitj andPni

j=1(1� �jt) = ni � jSitj
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Hence,

E2
M =

MX
i=1

TX
t=1

2
4q2t jSitj

 
1�

jSitj

ni

!2

+ q2t (ni � jSitj)

 
jSitj

ni

!2
3
5 (4:10)

If ni = jSitj, then E2
M = 0. This implies that the transaction t accesses all

attributes in fragment i whenever it accesses the fragment i. We can still reduce the

above equation as follows.

E2
M =

MX
i=1

TX
t=1

"
q2t � jSitj

 
1 +

jSitj
2

n2i
� 2 �

jSitj

ni

!
+ q2t � jSitj (ni � jSitj)

 
jSitj

n2i

!#

(4:11)

Simplifying the equation above we get,

E2
M =

MX
i=1

TX
t=1

"
q2t � jSitj

 
1�

jSitj

ni

!#
(4:12)

The equation above is the same as equation as 6, but in a much simpler form. We

can clearly see from this equation the contribution to E2
M by the irrelevant attributes;

(1�jSitj)
ni

is the fraction of irrelevant attributes in fragment i as far as transaction t is

concerned. As it was mentioned earlier,E2
M is the cost factor only for local transaction

processing.

Now we can see that the E2
R term shown earlier, is very much similar in form to

the E2
M term. Also the necessity for having a squared frequency term in E2

R is made

clear. Hence the PE is given by

PE = E2
M + E2

R (4:13)
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Figure 4.2. Behavior of PE components for an example

Curve II of Figure 4.2 illustrates the behavior of E2
R for the same example of 10

attributes and 8 transactions.



CHAPTER 5
ANALYSIS OF THE PARTITION EVALUATOR

The �nal form of the Partition Evaluator is given in equation 12. In order

to analyze and test the behavior of the PE, an exhaustive enumeration program was

written. The input to the program is an attribute usage matrix. The following input

was used to test the Partition Evaluator. For each fragment (from 1 to 10), the

Partition Evaluator was computed.

Input: Attribute Usage matrix

Trans:nAttrs: 1 2 3 4 5 6 7 8 9 10

T1 25 0 0 0 25 0 25 0 0 0
T2 0 50 50 0 0 0 0 50 50 0
T3 0 0 0 25 0 25 0 0 0 25
T4 0 35 0 0 0 0 35 35 0 0
T5 25 25 25 0 25 0 25 25 25 0
T6 25 0 0 0 25 0 0 0 0 0
T7 0 0 25 0 0 0 0 0 25 0
T8 0 0 15 15 0 15 0 0 15 15

An exhaustive enumeration program was written in C++ to produce all the pos-

sible combinations of attributes with number of fragments varying from 1 to 10. The

Partition Evaluator was applied to each of these combinations. We assume that if

a transaction is to be run on a fragment, and that fragment does not contain even

a single attribute accessed by that transaction, then that transaction is not run on

that fragment. Each of the transactions is run on each fragment and the minimum,

maximum and the average value of the Partition Evaluator is calculated. It took

about forty minutes to run this Partition Evaluator program on a Sun 4 machine.

Total number of fragments evaluated was 115975. The optimal values (minimum)

46



47

Value
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Figure 5.1. Behavior of partition evaluator for an example

along with the partitioning scheme for each partition size is given below. The results

are plotted in �gure 5.1.
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Number Of Fragments Min PE V alue Partition Scheme

1 15085 (12345678910)

2 8457 (1456710)(2389)

3 5820 (157)(2389)(4610)

4 6024 (15)(2389)(4610)(7)

5 6874 (15)(2389)(46)(7)(10)

6 7724 (15)(2389)(4)(6)(7)(10)

7 8976 (1)(2389)(4)(5)(6)(7)(10)

8 11692 (1)(289)(3)(4)(5)(6)(7)(10)

9 14000 (1)(28)(3)(4)(5)(6)(7)(9)(10)

10 18350 (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)

As we can see from the above table the optimum value (third row above) is found

to be in a partition of three fragments. The Partition Evaluator values above are the

minimum of the values where the second component of the PE is calculated using

optimistic (minimum value) estimate. For this particular example, other algorithms

such as Ra's [Nava 89], Zahn's [Zahn 71] and Binary Vertical Partitioning [Nava 84]

identify the above mentioned partition set (ie 3 fragments) as their optimum. In

Zahn's approach, once the maximum spanning tree is obtained two di�erent condi-

tions can be used to determine the partitions [Jain 88]. For this example, when these

two conditions are applied to Zahn's algorithm, they produce two di�erent partition-

ing schemes. One of them is the same as the optimal partitioning scheme obtained as

above and the other one is not. Hence, one may want to use another criterion (such

as the PE) to guide the selection of the most appropriate condition when faced with

a number of alternatives. Since producing any partitioning scheme using the Bond
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Energy algorithm is subjective in nature, this Partition Evaluator can be used to

guide the partitioning once the Bond Energy Algorithm is applied. Ra's and Binary

Vertical Partitioning algorithms were applied to another example with twenty at-

tributes and �fteen transactions [Nava 84]. The results of these two algorithms were

di�erent. Ra's algorithm produces �ve fragments and Binary Vertical partitioning

algorithm produced four fragments. The Partition Evaluator was applied to both the

results and it was found that indeed the four fragment result is better than the �ve

fragment result. This example highlights the usefulness of the Partition Evaluator to

evaluate the results of the di�erent partitioning algorithms.

The following discussion explains how one of these �gures is arrived at.

Number Of Fragments Min PE V alue Partition Scheme

3 5820 (157)(2389)(4610)

Let us call (1 5 7) as fragment I, (2 3 8 9) as fragment II and (4 6 10) as fragment

III. The �rst step is to calculate the square error for the given input.

Mean for each fragment is:

Fragment I Fragment II Fragment III

25 0 0
0 50 0
0 0 25
12 18 0
25 25 0
17 0 0
0 13 0
0 8 15

1) The square error

E2
M =

MX
i=1

niX
j=1

(Xij � Vi)
T (Xij � Vi)

E2
M = 1234 + 2078 + 0 = 3312
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2) Cost due to relevant remote attribute accesses is:

Value Minimum of the values

T1 run @ Fragment I: 0 0

T1 run @ Fragment II: cannot be run

T1 run @ Fragment III: cannot be run

T2 run @ Fragment I: cannot be run

T2 run @ Fragment II: 0 0

T2 run @ Fragment III: cannot be run

T3 run @ Fragment I: cannot be run

T3 run @ Fragment II: cannot be run

T3 run @ Fragment III: 0 0

T4 run @ Fragment I: 352 � 2 � 2=4 = 1225

T4 run @ Fragment II: 352 � 1 � 1=3 = 408 408

T4 run @ Fragment III: cannot be run

T5 run @ Fragment I: 252 � 4 � 4=4 = 2500

T5 run @ Fragment II: 252 � 3 � 3=3 = 1875 1875

T5 run @ Fragment III: cannot be run

T6 run @ Fragment I: 0 0

T6 run @ Fragment II: cannot be run

T6 run @ Fragment III: cannot be run

T7 run @ Fragment I: cannot be run
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T7 run @ Fragment II: 0 0

T7 run @ Fragment III: cannot be run

T8 run @ Fragment I: cannot be run

T8 run @ Fragment II: 152 � 3 � 3=3 = 675

T8 run @ Fragment III: 152 � 2 � 2=4 = 225 225

Total cost of accessing relevant remote attributes is 408 + 1875 + 225 = 2508

Therefore,

PE = 3312 + 2508 = 5820.

The above example shows that the Partition Evaluator can be used to evaluate

the results of any partitioning scheme.



CHAPTER 6
EXTENSIONS AND IMPLEMENTATION

So far, we have discussed the formulation of an objective function (Partition

Evaluator) assuming that attribute usage matrix is the only information available to

the designer during the partitioning phase of the design process. In this section we

�rst discuss brie
y how we can use the objective function in the presence of additional

information and then discuss the status of the implementation e�ort.

Dependencies: If a universal relation or a relation which is not in the Boyce-Codd

normal form is used as input, several constraints need to be considered when

a partition is generated. The cost of maintaining functional and multi-valued

dependencies is reduced if all the attributes participating in a dependency are

either in the same fragment or at least allocated to the same node. The �rst

case can be easily accommodated without changing the objective function by

de�ning a dependency checker which evaluates whether a partition should be

considered for cost computation. In other words, during the design process

any fragment that violates any of the dependencies would be rejected even

though that fragment might give the minimumvalue for the partition evaluator;

such partitioning schemes are deemed not admissible. For the second case, the

information is passed to the allocation phase.

Fixed partition size: In many cases, the number of sites are known a priori and the

objective function need to minimize the cost for a given number of fragments.

This, again, does not require any changes as one can choose the minimum cost

of all the alternatives for the number of fragments speci�ed.
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Update vs. retrieval transactions: Although no distinction was made between update

and retrieval transaction in the earlier discussion, it is quite straightforward

to distinguish between them. Typically, retrieve only transaction access data

items only once where as there is an additional overhead of writing back for

updated data items on to secondary storage (sometimes more if the data item

has already been 
ushed to secondary storage). A weight factor can be used

to distinguish update type from retrieval type transactions. We can increase

the frequency (for example double it) of update type transactions to re
ect

their processing cost. In our simulation, we can take into account the type

of queries by increasing the frequency for update type queries in the attribute

usage matrix.

Local vs. remote processing cost : In our formulation of PE, we have assumed a unit

cost for processing local as well as remote data once the remote data reaches

the local node. We also assumed a uniform transmission cost between any two

sites in the network. However, realistically, there is di�erence between accessing

local data possibly using access methods and remote data for which there are

no access methods (unless dynamically created at the local site). Also, the

transmission costs between any two nodes is not likely to be the same.

We can include another factor to re
ect the ratio of local processing cost to

the processing of data coming from remote sites. This factor can be included

giving di�erent weights to the two component terms in equation 13. If W1 is

the factor for processing local data and W2 is the factor for processing remote

data, it can be accommodated by modifying equation 13 as follows:

PE = E2
M + (W2=W1)E

2
R (6:1)
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Note, however, that a better way would be to integrate the factors into the

formula.

Non-uniform transmission cost between nodes can be taken into account by

modifying equation 4 to include a multiplicative factor TRik (which re
ects

the actual transmission cost/unit data between sites i and k) inside the inner

summation.

Replication: The Partition Evaluator can be extended with minimal changes to ac-

commodate replication of fragments. In this case, we assume that attributes

are remotely accessed only if they do not exist locally. Thus in computing the

second term, only those attributes that exist in a fragment remotely accessed

with respect to the site of another fragment (call it \local") but do not exist

in the local fragment are taken into account. However, the form of the Par-

tition Evaluator remains the same. Although replication provides availability,

the cost of maintaining consistency of replicated data need to be considered.

The above suggestion takes only the cost of retrieval into account and not the

cost of update propagation.

6.1 Implementation Status

A distributed database design testbed is being developed at the Database Systems

R & D Center, Univ. of Florida, Gainesville. The testbed includes several di�erent

vertical partitioning algorithms and modules that compare and evaluate the results

of these algorithms. The algorithms that were developed as part of this e�ort are as

follows:

Bond Energy Algorithm: Input: Attribute A�nity Matrix (AAM). Output: Clus-

tered A�nity Matrix (CAM). Now it is left to the subjective evaluation of

the designer to split the clustered a�nity matrix. In order to determine the
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split point quantitatively the CAM is given as the input to the Binary Vertical

Partitioning Algorithm.

Binary Vertical Partitioning Algorithm: Input: Clustered A�nity Matrix. Output:

This algorithm determines the split point along the diagonal of the matrix.

The split point splits the attributes into two partitions only. In order to obtain

more partitions the the partitioned matrix is given as the input again until no

improvement is possible. Thus it is possible to obtain n-ary partitions.

Minyoung Ra's Graphical Algorithm: Input: Attribute A�nityMatrix. Output: This

algorithm produces a �xed number of partitions which is determined by the al-

gorithm. Thus it is di�cult to have control over the number of partitions to be

generated.

Exhaustive Enumeration Algorithm: Input: Attribute Usage Matrix (AUM). Out-

put: This algorithm exhaustively enumerates all possible combinations of the

attributes. Hence we can easily choose the number of partitions in the partition

scheme. However we are limited by the number of attributes. We have run this

algorithm for attribute usage matrices with upto ten attributes. This algorithm

is to be modi�ed to incorporate heuristics to reduce the search space. Then

it is possible to work with attribute usage matrix with increased number of

attributes.

These algorithms are explained in chapter 2 in detail. The �gure 6.1 gives an overall

outline of the design testbed.

More algorithms can be easily \hooked" on to this design testbed prototype.
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Figure 6.1. Distributed Database Design testbed prototype



CHAPTER 7
Summary and Future Work

In this paper, we have presented a general approach to the vertical partitioning

problem. Our study brought out the problems associated with the use of attribute

a�nity matrix currently used in almost all of the earlier data partitioning algorithms.

We started with the objective function used in clustering methods and extended it

to suit the requirements of database design. As a result we have brought together

work in two isolated areas and established a correspondence between them. Using the

objective function derived in this paper and the approach proposed, one can evaluate

any vertical partitioning algorithm that uses the same input as our model. We wanted

to identify and express an objective function quantitatively before embarking on the

development of algorithms. It will now be easier to develop algorithms (heuristics-

based or otherwise) exploiting the properties of the function being optimized. Our

Partition Evaluator satis�es the need for a common criteria or objective function

and can be used to compare and evaluate the extant vertical partitioning algorithms.

Finally, the PE developed in this paper has the 
exibility to incorporate additional

design information such as type of queries (retrieval/updates), allocation information

about the partitions, transmission cost and the transaction usage pattern at any

particular site.

We are currently developing heuristic algorithms for the objective function derived

in this paper. We are in the process of incorporating other input to the database

design process, such as query types, constraints on allocation, transmission cost,

transaction usage pattern at any particular site, into the objective function derived

in this paper. We plan on comparing di�erent algorithms in more detail using the
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partition evaluator. We hope to integrate the the Partition Evaluator into a database

design testbed which will help designers to choose the right algorithm for database

initial design as well as for redesign.
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