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As more and more data are collected and stored in multiple databases, data mining
over different relational DBMSs is becoming increasingly important. Usually the data
sets are stored in some different DBMSs, such as DB2, Oracle, Sybase, etc. Data mining
software should be able to use the data from all of these DBMSs. In this thesis we use
JDBC (Java Database Connectivity) to achieve this goal. The test DBMSs we used are
Oracle and DB2.

We implement the association rule algorithm in the form of SQL queries. Three
algorithms in SQL-92 (K-Way Join, 2-Groupby, and Subquery) and three algorithms in
SQL-OR (Vertical, GatherJoin and GatherJoin Variant) are implemented and compared
to each other based on their performance on different kinds of synthetic generated data

sets. Scale-Up experiments have also been conducted for these six approaches.
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We develop an association rule visualization system, which includes tabular form
and three-dimensional graphics. By providing the user sorting and filtering abilities, this
rule visuaization system makes it flexible and efficient for the user to manage and
understand the association rules. As a result, this visualization system becomes an
essential part of our association rule software.

Finally, we compare our association rule software with one of the commercial
data mining tools (Intelligent Miner from IBM) in various aspects, such as data

accessibility, user interface, input/output, and rule visualization.
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CHAPTER 1
INTRODUCTION

As computers are used in more and more areas, large volumes of data have been
collected and stored in the database continuously. This kind of data includes the
transaction records in supermarkets, banks, stock markets, and telephone companies.
With the increasing volume of the stored data, an important issue is to figure out how to
find the useful information from these massive history data. Data mining, also known as
knowledge discovery in databases, is such a research area to extract implicit,
understandable, previousy unknown and potentially useful information from data. In
Section 1.1 we briefly describe different categories of data mining, such as association
rule, clustering, classification, sequential pattern, text mining and active data mining. The
limitations of currently available commercial data mining software (especiadly for
association rule) are discussed in Section 1.2 and in Section 1.3, we outline the thesis

organization.

1.1 Categories of Data Mining

1.1.1 Association Rule

The typical example of association rule is the Basket data analysis [AGR1994]. In
agiven database D, all the records consist of two attributes: transaction 1D (TID), and the
item the customer bought in the transaction. Usually the item attribute in each record

contains only one item, so in the database, there will be more than one row for a



transaction ID since each transaction will involve more than one item. Table 1.1 shows

one example of the basket data set with four transactions.

Table 1.1 Example Basket Data Set

TID ITEM

100
100
100
200
200
200
300
300
300
300
400
400

GINIWN R RWN R W

The formal definition of association rule is the following [AGR1993]: Let I'={i,
I2, ...., im} be aset of literals, caled items. Let D be a set of transactions, where each
transaction T is a set of items such that T [ I'. Associated with each transaction is a
unique identifier, caled its TID. We say that a transaction T contains X, a set of some
itemsin [, if X O T. An association ruleis an implication of theform X O Y, where X [
LY OT, and X intersection Y = @. The support and confidence of an association rule (X
O Y) are calculated by the following two equations:

The.Number Of TransactionThat Contains X and Y
TheTotal Number Of Transactions

Support =

The Number Of TransactionThat ContainsY

Confidence = ' -
The Number Of TransactionThat Contains X




The rule X OO Y holds in the transaction set D if its support and confidence are
equal to or greater than the user specified values. The goa of association rulesis to find
the relationship between any combination of items.

1.1.2 Clustering

The goal of clustering is to identify homogeneous groups of objects based on the
values of their attributes [AGR1998]. For a given set of objects (each object has several
attributes), the task of clustering is to group some objects together (we call these objects
are in one cluster) so that the objects in the same cluster are more similar to each other
than to objects in a different cluster. The technique of solving clustering problems falls
into two categories. partitional and hierarchical [AGR1998]. For the partitional
clustering, the K-means method is widely used. This method first determines K cluster
representatives, then assign each object to the cluster with its representative closest to the
object such that the sum of the distances squared between the objects and their
representatives is minimized. For the hierarchical clustering, it usualy starts by placing
each object in its own cluster and then merges these atomic clusters into larger and larger
clusters until al objects arein asingle cluster.

1.1.3 Classification

The classification problem can be described as the following [MEH1996]: For a
given database D, each record consists of several attributes. Among al the attributes, one
attribute works as class label. Such a database is called as training set. Table 1.2 shows
an example of training set with 3 attributes. age, car type, and risk. Attribute risk (its
value is either high or low) is the class label. The goa of classification is to analyze the
training set and to develop an accurate description or model for each class using the

attributes presented in the data. Many classification models such as neural networks,



genetic models, and decision trees etc, have been developed to solve this kind of
problem. Figure 1.1 shows the decision tree of the training set provided by Table 1.2.
This decision tree shows that all the persons who are less than 25 years old have a high
risk, while in the group of person who are older than 25 years old, the persons who drive
sports cars have high risk, and those who drive other vehicles have low risk. The ability
to solve classification problems quickly and efficiently is very important to several
businesses, such as car insurance companies. In recent years, severa algorithms, such as
SLIQ [MEH1996] and SPRINT [SHA1996], have been developed to solve classification

problems efficiently on large data sets.

Table 1.2 Example Training Set
Age Car Type Risk
23 Family High
17 Sports High
43 Sports High
68 Family Low
32 Truck Low
20 Family High
Age< 25

Car Typein { Sports}

High

Hig Low
Figure 1.1 Decision Tree



1.1.4 Sequential Patterns

The formal definition of sequential patterns is given in Agrawa and Srikant
[AGR1995¢]. For a given database D, which consists of customer transactions. Each
transaction consists of the following fields. customer-1D, transaction-time, and the items
purchased in the transaction. An item-set is a non-empty set of items, and a sequence is
an order list of item-sets. We say a sequence A <ay, &, ag, ..., &> iS contained in another
sequence B <by, by, bs, ..., by> if there exist integers i;<io<iz<...<in, such that &b,
&by, ..., &b, For example, the sequence < (3) (4,5) (8)> is contained in <(7) (3,8)
(9) (4,5,6) (8)>, because (3) U (3,8), (4,5) 0(4,5,6), and (8) [J(8). A customer sequenceis
a sequence of item-sets for each customer-ID. The support of a sequence s is defined by
the following equation:

The Number of SequenceThat ContainsThis Sequence

Support =
Total Number of Sequences

For the example data set in Table 1.3, We can find al the sequences that have

support > 25%, which are < (30) (90) >, and < (30) (40,70) >.

Table 1.3 Sequences of an Example Database

Customer Customer Sequence
<(30) (90) >

< (10, 20) (30) (40, 60, 70) >
<(30,50,70) >

< (30) (40,70) (90) >

<(90) >

G WINEF

The goal of sequential patterns is to find the sequences that have greater than or

equal to a certain user pre-specified support. Usually the process of finding sequential



patterns consists of the following phases: sorting phase, finding the large item-set phase,
transformation phase, sequence phase, and maximal phase.

1.1.5 Text Mining

In the real world, it is very common to find the hidden relationship in the larger
text database. For example, it is very useful to find whether the company is shifting its
interest from one domain to another. Text mining is very good at handling this situation
since the database in full of text, instead of the numeric data. The goal of text mining isto
discover the trends in the text database. Lent et a. [LEN1997] developed a system to
discover the trends in text database. Their basic idea is to use the existing data mining
algorithms and shape query language (SDL) [AGR1995b]. For a given database D of
documents (each document consists of text fields and a timestamp, the unit of text is a
word and a phraseis alist of words), they begin with cleansing and parsing the data, and
then separating the documents based on their timestamp. Each word will be assigned a
transaction 1D based on its document timestamp. Then the sequential pattern algorithm
will be applied for the transformed data to produce the results. The results will be queried
using shape query to find the increasing or decreasing trend of the occurrence frequency.
The purpose of using shape query language is that a “blurry” match (cares about the
overall shape, but not the specific details) is possible. The following is an example of
shape query language:

(in5 (and (no less 2 (any up Up)) (no more 1 (any down Down))))

This statement shows that we are interested in the subsequences five intervals

long that have at least two ups (either up or Up) and at most one down (either down or

Down).



1.1.6 Active Data Mining

Active data mining combines the technology of data mining and active database.
The basic idea [AGR19954] is to divide the whole data into several sub-data sets. The
data mining algorithms will be applied to each sub-data set and the results for each sub-
data set will be produced. Because usually the data sets come from data warehousing and
thus the volume of datais very huge, dividing the data set to several sub-data sets will not
lose the significance of the results. All the rules generated in each sub-data set will be
stored in the rule database with some parameters, such as the support and confidence for
association rule problems. When the new data comes in, and the volume of new data
reached a certain level, the data mining algorithm will be applied to the new data set
again and then check the rule database. If one certain rule does not exigt, it just stores the
rule into the rule database. If this rule exists in the rule database, it will update the
parameters of the existing rules in the rule database. The database uses trigger to monitor
the parameters in the rule database. Once the condition is met, the specific trigger will be
fired. ECA (Event Condition Action) model [CHA1995] can be used for more complex
triggers. Figure 1.2 shows how active data mining works.

One example of active data mining is that the supermarket can use association
rule algorithm and active data mining to monitor the sale trends. Once the support or
confidence parameter for a specific rule reaches the pre-set value, the trigger will be fired

and the manager of the supermarket will be notified.

1.2 Problem Statement

Although lots of efforts have been put in the association rule area, and some

commercial products, such as MineSet [SGI2000], and Intelligent Miner [IBM2000],



have been developed, there are several limitations in these commercial products. Some of

them are as follows:

Dataminin
Sub-data e,
st 1 Algorith Update
gorithm Parameters
LageData |  y————— Datamining Rule
Set Sub-data ) \E/)V?i?]base
set 2 Algorithm !
parameters
D L <
ataminin
Sub-data 9 v
setn Algorithm
Storethe rule
Data mining Istherule
NewDaa [—————————» Rules —p existing?
Algorithm
Firethe Trigger <

If some parameters
meet the condition

Figure 1.2 Active Data Mining

Limitation #1: The first limitation is that the existing software can not connect to
multiple database management systems. These existing commercia products can use the
data from the flat file, or from one specific DBMS as the input data set. For example, the
Intelligent Miner can use the text file or the data stored in DB2 database as the data
source. But in reality, some users may have data stored in multiple database management

systems, so it isvery helpful to have the mining software have this ability.



Solution: We try to address this problem using Java Database Connectivity
(JDBC) so that our software can connect to different database management systems with
very few extra codes.

Limitation #2: The second limitation is that most of the existing softwares use
Cache-Mine architecture [THO1998]. In this architecture, the whole data set is copied to
the local disk from remote database or remote flat file. Then al the computations are
done in the local machine. In additional, only one algorithm is available for one mining
operation.

Solution: Instead of Cache-Mine architecture, we will use another alternative
SQL-based approach [THO1998] in this thesis. Six different approaches will be
implemented since they have advantages as well as disadvantages for the different data
sets. Three of the approaches are based purely on SQL-92 and three of them are based on
SQL-OR.

Limitation #3: The third limitation is that the existing products do not provide the
powerful rule visualization tools. One powerful visualization tool should have not only
the good presentation method, but also a good graphic user interface to provide the user a
convenient interactive environment.

Solution: We use “rule-item” relationship in the association rule visualization to
replace the “item-item” relationship [SGI2000] or directed graph [IBM2000]. Java 3D, a
new feature provided by JDK1.2, will be used to implement the three-dimensional
display. In additional, a table format visualization module will aso be implemented. For

both table format and three-dimensional display, sorting and filtering functions will be
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provided through the graphic user interface. It will make our visualization module easier
to use.

Limitation #4: The fourth limitation is also related to the data source. Right now
all the available products can only use the data from one table, but in redlity, it is very
common to collect the data from different tables as the input data set. So it is very useful
to have the mining software to have this ability.

Solution: We will provide the user an interface to choose the tables he wants to
use as the data source. For each table, the user can specify the columns that he interests.
Once the system got the information, a set of JOIN/UNION operations will be applied to
generate the suitable input data set.

Limitation #5: The fifth limitation is that in the existing products, all of them use
only one mining agorithm. But in fact some algorithms are better than the other ones for
the different kinds of input data sets. It is useful to have different algorithms available for
different kinds of data sets.

Solution: We plan to implement a Mining Optimizer so that our system will have
the capability to decide which one algorithm should be applied to the particular data set
automatically based on the metadata of the given data set.

In this thesis, we will address the solutions of first three limitations. The solutions

of limitation #4 and #5 are addressed in Mahesh’ s thesis [DUD2000].

1.3 Thesis Organization

The remainder of thisthesisis organized as follows. In Chapter 2, we describe the
architecture of JDBC, and explain how the JDBC works with different DBMSs. Some

special characteristics of Oracle, such as stored procedure, will also be introduced in that
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chapter. The six different association rule mining algorithms are presented in Chapter 3.
In Chapter 3, we also provide the performance testing using different kinds of data setsto
verify our analysis of advantage and disadvantage of each mining algorithm.
Visualization of association rules is detailed in Chapter 4. In Chapter 5, we describe the
major parts of the interfaces as well as the architecture of our software. Finally the

conclusions and future work are in Chapter 6.



CHAPTER 2
ARCHITECTURE AND FEATURES OF JDBC AND ORACLE

In this Chapter, We begin with the introduction of the function of JDBC and the
architecture of JDBC application in Section 2.1. Besides the standard SQL statements, we
also use some additional features provided by the specific DBMS to improve the

performance. Section 2.2 describes these specific features for Oracle.

2.1 JDBC

JDBC (Java Database Connectivity) developed by Sun [SUN2000], is a Java API
for connecting to and executing SQL statements in different Database Management
Systems. JDBC includes a set of classes and interfaces written in Java. They are low-
level APIs, and are used to invoke SQL commands directly. There are two kinds of
models for database access: two-tier and three-tire. In the two-tier model, the client
makes request to a DBMS associated with the server, through JDBC by sending SQL
statements to the server and when the results are ready, the server will send the results
back to the client. In the Three-tier model, instead of sending the request directly to the
database server, the client sends requests to an intermediate server (termed application
server), which applies some business logic, and then the SQL statements are sent to the
database server by the application server. Finally, the result will be returned to the client
through the application server. The advantage of the Three-tier model is that the business
logic can be implemented in the application server, so when the business logic changes,

only the program in the application server needs to be modified accordingly, and it is not

12
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necessary to update the program in the clients. Figures 2.1 and 2.2 show the architecture
of two-tier and three-tier models, respectively. Because we are not incorporating any
business logic and hence addition of a tier adds complexity without any gains for what

we are trying to do, we choose the two-tier architecture for our data-mining project.

Java request
.. ———————Pp
Application|  JpB result DBMS
Client Machine Database Server

Figure 2.1 Architecture of Two-tier Model

request - request
Java Eé’;zess JDB DBMS
Application| 4 <
result
result
Client Machine Application Server Database Server

Figure 2.2 Architecture of Three-tier Model

Figure 2.3 illustrates the architecture of JDBC. It has a driver manager that is
responsible for choosing JDBC driver to be used for making a connection. JDBC-ODBC
bridge driver is used to use ODBC through JDBC to access some of the less popular
DBMS (such as M S Access) if JDBC drivers have not been implemented for them.

The most important advantage of using JDBC compared to using ODBC is that
JDBC drivers are written completely in Java, they are platform independent; ODBC is
not completely platform independent and is not appropriate for direct use from Java since

it uses a C interface.
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In rea-life scenarios, mining is typically performed on large volumes of data.

Hence it is appropriate to include as much computation as possible on the server side.

There are some significant advantages to perform computation inside the Server:

Executing functions inside the server means that these functions can be shared by

al of the database applications, so it is not necessary to duplicate codes in each

application.

Java Application

y

JDBC Driver Manager
JDBC- Oracle DB2
ODBC Driver Driver
ODBC Drivers

Database Server

Figure 2.3 Architecture of JIDBC

JDBC API

Execution of function inside the server can minimize the network traffic because

some of the business logic can be processed in the Server, and only the results are sent

back to the client. In DB2, when a UDF (User Defined Function) is created, there is an

option of “FENCED” or ‘UNFENCED” modes [CHA1998]. The FENCED option
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specifies that the UDF must always be run in an address space that is separate from the
database, while UNFENCED option specifies that the UDF runs in the same address
space as the database. FENCED option causes a performance penalty because of the
process-switching when the UDF is called, but it protects the database integrity against
the accidental damage that might be caused by the function. Oracle does not support this
option.

Oracle provides some mechanisms, such as externa procedures, and PL/SQL
procedures to perform computations inside the server. Oracle supports an external
procedure which uses the DLL (Dynamic Link Library) written in the host programming
language such as C. However, Oracle 8.0 does not support the DLL written in Java. If we
used a Java external procedure, we had to use Java Native Interface to communicate
between Java and C programs, as our client is written in Java. This would be inefficient
and increase the implementation effort as well.

PL/SQL stored procedure is another mechanism support by Oracle that meets our
requirements. PL/SQL is a complete, block-structured programming language, and it
provides some additional features that standard SQL does not have, such as loops,
conditional statements, etc. Because the SQL DML (data manipulation language) can be
included inside the PL/SQL stored procedure directly, the results can be saved by
inserting the results into the table. This feature is different from those of DB2. DB2's
table function does not create a physical table, but in Oracle, a physical table can be
created and values stored in the table. Figure 2.4 illustrates the format of one PL/SQL

stored procedure named ‘SaveTid. A PL/SQL stored procedure begins with the
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declaration section followed by the procedure body. The actual code of SaveTid() is

presented and explained in detail in Chapter 3.

CREATE OR REPLACE PROCEDURE SaveTid(rowCount IN INTEGER) AS
Declaration Section
BEGIN
Retrieve the data from source table ‘TIDITEM’ one row by one row using
CUrsor;
Processing the data, combine ‘' Tid' for each same ‘Item’;
Insert the values into the table *tidT";
END;

Figure 2.4 PL/SQL Stored procedure “ SaveTid”

Suppose thereisatable TIDITEM.

Table2.1 TIDITEM Table

Item Tid
100
300
100
200
200

WNN =

The purpose of stored procedure ‘ SaveTid’ is to accept one parameter ‘rowcount’
of table TIDITEM. The data of table TIDITEM will be processed row by row. After
processing, the Tid with the same Item will be combined together to form ‘T_Tids', and
the number of Tid with the same Item will be stored in ‘T_cnt’, and finally, the three
columns ‘T_item’, ‘T_cnt’, and ‘T _tids' will be inserted into table tidT. The data type
CLOB (Character Large Object) is used for ‘T-tids' because sometimes the length of

T _tids will exceed the maximum length of VARCHAR2 and CLOB can contain up to
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two gigabytes (2*!-1 bytes). The ‘INSERT’ statement in the above example will insert the

following values into table tidT as shown in Table 2.2.

Table 2.2 tidT Table

T item | T cnt T tids

1 2 100, 300
2 2 100, 200
3 1 200

If table TIDITEM has millions of rows, and after processing by the stored
procedure, table tidT has only 1,000 rows, the network traffic will be reduced

tremendously since all of the computing work will be done inside the server machine.



CHAPTER 3
ALTERNATIVE APPROACHES TO ASSOCIATION RULE MINING

In this chapter, we begin with reviewing the related work on association rule
mining algorithms and different architectural alternatives in Section 3.1. The association
rule mining can be broadly divided into two phases. support counting phase and rule
generation phase. In Section 3.2, we present three approaches using pure SQL92 and
another three approaches using stored procedures in Oracle for the support counting
phase. The algorithm for rule generation is presented in Section 3.3. In Section 3.4, we
provided some performance testing using different kinds of data sets for the six

approaches.

3.1 Related Work

3.1.1 Apriori Algorithm

Agrawal and Srikant [AGR1994] introduced the apriori algorithm for association
rule mining with input data set from flat files. This algorithm is shown in Figure 3.1.

In Figure 3.1, line 1 is the first pass. In the first pass, first it just smply counts
occurrences for each item in al the transactions, then keeps al the items whose
occurrences are no less than the given minimum support. These items consist of the
frequent 1-itemsets (F1). The loop from line 2 to line 11 is called a pass. In a particular
pass k, there are two phases. In the first phase, a function “apriori-gen” is used to
generate the candidate itemsets Cy using the frequent itemsets Fy.; of the previous pass. In

the second phase, al the transactions in the data set are scanned. For each transaction, a

18
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function “subset” is called to determine the candidates in Cy that are contained in a given
transaction, then the support of candidates in Cy is counted. At the end of pass k, the
candidate itemsets Ci is examined to determine which of the candidates are frequent.
Those candidates consist of the frequent itemsets F¢ of pass k. The loop continues until
F«-1 1sempty, indicating that there is no more frequent itemsets.

The six support counting approaches and rule generation process presented in this

thesis are based on the framework of the above apriori algorithm.

1) F={frequent 1-itemsets};

2) for (k=2; F.1<>0, k++ ) do begin

3) Cx = apriori-gen(Fx-1); /I generate new candidate sets
4) for al transactionst [ D do begin

5) C; = subset(Cy, t); / find al candidate sets contained in t
6) for al candidates c 0 C; do

7) c.count++;

8) end

9) end

10) F«={cOC|c.count=minsup};

11) end

12) Answer = [y F;

Figure 3.1 Apriori Algorithm

3.1.2 Architectural Alternatives

There are severa architectural aternatives for integrating data mining with
relational DBMS [THO1998]. These alternatives include Cache-Mine, SQL-based
approach, and Integrated approach. In this section, we discuss these three architectures.

3.1.2.1 Cache-Mine

Figure 3.2 illustrates the architecture of Cache-Mine approach. In this

architecture, the GUI resides in the client side and the mining kernel can reside in the



20

client side (2-tier architecture), or in the application server (3-tier architecture). When the
user sends the mining request to the mining kernel, the mining kernel reads data from
DBMS only once and copies the data in flat files on local disk for later use. After the
mining algorithm is executed, the results will be first stored in flat files on local disk, then
sent back to the database server and stored in DBMS. This architecture works very
efficiently because once the data are stored on local disk, the access to the data will be
very fast. One of the disadvantages is that it requires additional disk space to store the

data, especially when the data set is very large.

- - Data/
GUI Mining Mining Result
or Reques DBMS
Mining Language Kernel

Figure 3.2 Cache-Mine Architecture

3.1.2.2 SOL-based Approach

The architecture of SQL-based approaches is illustrated in Figure 3.3. When the
user specifies the mining operation, a preprocessor will generate the appropriate SQL
statements for this operation. All the intermediate results are stored in the database. The
SQL statements can be executed on the SQL-92 relational engine, as well as on the newer
object-relational (SQL-OR) engine. SQL-OR provides some more features, such as
CLOB, user-defined function, table function, stored procedure, etc. For this architecture,

al the data and results are stored in the database and the data is never copied into a flat
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file on the local disk. This alternative has the following advantages: (1) Additional disk
space is not needed to store the data (2) The database indexing and query processing
capabilities can be exploited as much as possible. (3) The DBMS check-pointing and
Space management can be especially valuable for long-running mining algorithms on
huge volumes of data. (4) SQL-based mining algorithm is very portable if we use only
the standard SQL features. The disadvantage is that it is not as fast as Cache-Mine
alternative because accessing the database generally is slower than accessing a flat file on

theloca disk.

Extended

Preprocessor L-92
s ——» P N <SQ—> (Object)
DBMS

Figure 3.3 SQL-based Architecture

3.1.2.3 Integrated Approach

In the integrated approach, mining operations are integrated into the DBMS and
become part of the database query engine. This approach is illustrated in Figure 3.4. In
this approach, DBMS encapsulates all the detailed SQL queries for each mining
operation, and gives it a new SQL command. The user can invoke the mining operation
by executing the corresponding SQL command with appropriate parameters. In this case,
there is no clear boundary between simple queries and mining operations to the users. All
they have to do is to issue a SQL command whether it is a simple query or a mining

operation. This approach is most convenient for the users.
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(Object)
Extended SOL  SoL-02 | R@ a“g'S'M <
o T Cevhenced | [
GUI i | |
SQL-OR , Optimizer |

Figure 3.4 Architecture for the Integrated Approach

3.2 Support Counting

For the support counting phase, first we need to generate the candidate sets Ci for
each pass k. Below, we show SQL formulations for candidate set generation.

3.2.1 Candidate Set Generation

For each pass k, Cy is a superset of the set of all frequent k-itemsets and it can be
generated by Fy.1, which isthe frequent set of the previous pass k-1. Fx.; has k-1 columns:
Iltem;, Item,, ..., Itemy;. Because al the k-1 items in each tuple of Fy, are

lexicographically ordered, Cy can be obtained using the query shown in Figure 3.5.

Insert into Cy
Select I.itemy, ly.itemy, ..., lo.itemy.q, count(*)
From F.q 14, Fea 1o
Where |.item; = l,.item; AND
|1.iten'12 = I2.item2 AND

l1.itemyo = lo.itemg AND
l.itemy.g < lo.itemy.q

Figure 3.5 SQL Query for Candidate Sets Cy
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Asanillustration, if Fzis{{1, 2, 3},{1, 2, 4},{1, 3,4},{1, 3,5},{2, 3, 4}}, then
the candidate sets of the next passC, are {1, 2, 3, 4}, and {1, 3, 4, 5}.

Next, in the k-itemset of Cy, if thereisany (k-1)-subset of Cy that isnot in Fy.1, we
need to delete that k-itemset from Cy. We call it “prune step”. In the above example, one
of the 4-itemset in C4is{1, 3, 4, 5}. This 4-itemset needs to be deleted because one of the
3-item subsets { 3, 4, 5} isnot in F3. Because there are k subsets of length (k-1)-subset in
Ck, we can do a k-way join to check if al the (k-1)-subsets are in Fc.;. As shown in
Figure 3.5, Ci has k columns. Ij.item;, I1l.item,, ..., Iiitemy,, lo.itemy.1. Since Ci is
generated using the joining of two Fy.; tables, two (k-1)-subsets are guaranteed in Fy.;.
We only need to check if the remaining k-2 subsets are in F.;. This can be done using
additional joins by skipping one item at atime from the k-itemset. First we skip Item; and
check if the subset (I1.itemy, ly.items, ..., liitemyy, lo.itemy.;) belongs to Fy.1, then we
skip Item; to check if the subset (15.itemy, lq.items, ..., ly.itemy.y, Io.itemy.;) belongs to Fy.
1. This process is repeated until Itemy., is reached. Figure 3.6 illustrates the join

predicates. In Figure 3.6, I4, 12, I3, ... and I refer to frequent set Fy;.

|1.iten'12 = I3.item1

l1.itemy.q = ls.itemy.o Sk|p Itemy
lo.qtemy.q = laitemy,
[1.itemy = li.itemy

Skip Itemy.,

l1.itemy.q = lg.itemg.o
lo.itemy.q = lk.itemy.q

Figure 3.6 Prune step for Candidate Sets Cy
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Combing Figure 3.5 and Figure 3.6, we can put the candidate sets generation and

pruning step into the same query. Figure 3.7 illustrates the diagram of such a query.

(Skip itemy.)
|1.itefn1 = Ik.iteml

T E j |.itemis = l.itemy.
|1.itefn2 = I3.item1 ﬁ |2.1teMy1 = I teMi

'I.ll.itemk_l = lz.itemy.o |><|

I2.itemk-1 = I3.itemk.1

Feala
[,.itemy = lL.itemy

'I'll.itemk-z = |2.itemk-2
Fk'l ll Fk-l |2 |1.iternk-1 < |2.itemk.1

Figure 3.7 The Query of Candidate Set Generation and Pruning

3.2.2 SQL 92

In this section, we present three approaches using SQL-92, which does not
include DBM S specific features, such as user defined function, stored procedure, etc.

3.2.2.1 K-Way Join

For the support counting phase, K-Way join is the most basic algorithm. In the k™
pass, the k input data tables are joined over the ‘tid’ column, and then the result is joined
with the Candidate Set table Cy with the ‘item’ column from k tables and ‘item;, itemy,
..., itemy’ from Cy. Finally, the results are grouped by item,, item,, ..., itemy and filtered
by the count(*). Only the tuples that have count(*) greater than or equal to the user
specified minimum support will be kept in the frequent set F. Figure 3.8 illustrates the

query diagram and SQL query to obtain frequent set F for the K-Way join approach.
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Having count(*) > minsup

Group by ite%l, itemy, ..., itemy
tl.item = Ck.iteml

><I t.1.tid = ti.tid tkltem = Cy.itemy
- totid=totid Tt
T tl T 1:2
Insert into Fy
Select itemy, itemy, ..., itemy, count(*)

FromC, Tt, Tty ..., Tt
Wheret,.item = C,.item; AND
tz.item = C2.item2 AND

ti.item = Cy.item AND
tl.tid = tz.tid AND
to.tid = t3.tid AND

ty1.tid = t.tid
Group by itemy, itemy, ..., itemy
Having count(*) > minsup

Figure 3.8 Query Diagram and SQL Query of K-Way Join

3.1.2.2 2-GroupBy

2-GroupBYy is one of the agorithms to avoid multi-way joins. Figure 3.9 shows
the query of 2-GroupBy. At pass k, there are two phases. In the first phase, two tables Cy
and input data set T are joined based on whether the “item” of a (tid, item) pair of T is
equal to any of the k items of Ci. Then the results are grouped by (itemy, itemy, ..., itemy,

tid), and only the tuples that have occurrence equal to k will be kept and stored in table
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“temp”. After this phase, we get all (itemset, tid) pairs that the tid supports the itemset in
table “temp”. In the second phase, we can ssimply group the item sets by (item,, itemy, ...,
itemy) and keep only the item sets that have occurrence greater than or equal to the user
specified minimum support.

Because Oracle does not support s query such as “Select * From <table name 1>
As <table name 2>", we need to materialize table “temp” first in the query as shown in
Figure 3.9. However, in DB2, the query for table “temp” can be nested into the second

query without the need for the materialization of temp table.

Create Tabletemp AS
Select itemy, items, ..., itemy, count(*)
FromCy, T
Where item = Cy.item; OR
item = CK.itemz OR

item = Ck.itemk
Group by itemg, itemy, ..., itemy, tid
Having count(*) = k

Insert into Fy
Select itemy, items, ..., itemy, count(*)
From temp
Group by item,, itemy, ..., itemy
Having count(*) > minsup

Figure 3.9 Query of 2-GroupBy

3.1.2.3 Sub-Query

Sub-query approach uses the common prefixes between the itemsets in the
candidate sets Cy in the support counting phase. At pass k, we use a series of k sub-
gueries to get the frequent item set Fy. For acertain valuel (1 <1 = k), table D, consists of

the distinct itemsets formed by the first | columns of Cy. The sub-query Q, first finds all
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tids that match the distinct itemsets of D,. Then the result is joined with the input data
table T and table Dy+; to get Qi+1. Finally, the frequent item set F, can be get by grouping
Qk and only keep the tuples that have their occurrence greater than or equal to the user

specified minimum support. Figure 3.10 illustrates the SQL query and query diagram of

this approach.
Insert into F
Select itemy, items, ..., itemy, count(*)
From (Subquery Q) t

Group by item,, itemy, ..., itemy
Having count(*) > minsup

Subquery Q (for any | between 1 and k)
Select itemy, itemy, ..., item, tid
From T t;, (Subquery Q1) asRy.1,
(Select ditinct itemy, items,, ..., item; From Cy) as D,
Where R;.;.item; = Dy.item; AND

R|.1.item|-1 = D|.item|-1 AND
Ri...tid =t.tid AND
t|.item = D|.item|

Subquery Qo: No subquery Qo

Subquery Q

itemy, item,, ..., item, tid

t.item = D,.item,
R.1.item, = D,.item, / \
R.i.item; = Dy.item1

/R|-1 \DI
Select distinct
Subquery Q. itemy, ..., item, from Cy

Figure 3.10 Query Diagram and SQL Query of Sub-Query
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3.2.3 SQL-OR

Besides the standard SQL, each DBMS has some particular features that extend
the ability of standard SQL. For example, DB2 allows the user to create “User Defined
Function” (UDF) using a (host) programming language. The UDF is registered with the
server and executed either within or outside the server address space (unfenced and
fenced, respectively). The unfenced mode executes more efficiently than runs on the
client side in the Client/Server computing environment. In Oracle, the user can define
“Stored Procedure,” which uses PL/SQL (Oracle' s procedural extensions to SQL), as the
programming language. The advantages of using stored procedure in Oracle have been
listed in Chapter 2. In this section, we present three approaches using stored procedure.
For DB2, we use the UDF feature for the following three approaches. The algorithms that
use UDF in DB2 are presented in Mahesh’s thesis [DUD2000]. The major difference of
DB2 UDF and Oracle Stored procedure is that UDF uses a host programming language,
while Oracle Stored procedure uses PL/SQL.

In stored procedure, the table names that are used in the stored procedure should
exist when the stored procedure is compiled because Oracle checks the syntax during
compiling. So we can not pass the table name as a parameter to the stored procedure.
Because of this reason, we reserve “TIDITEM” as the input table name. Each time,
before applying the mining algorithm, we rename the input table to “TIDITEM”, then
table “TIDITEM” is renamed back to the origina name after the mining algorithm is
finished.

3.2.3.1 Vertica

In the vertical approach, first we transfer the input data into a vertical form by

creating a table “TIDT” which has three columns: ITEM, CNT and TIDS. ITEM isthe
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distinct item from all transactions, TIDS contains al the tids that associated with this
particular item, and CNT is the number of tid for a particular item. For the sample data

set mentioned in Chapter 1, the“TIDT” table has the tuples shown in Table 3.1:

Table3.1 Table TIDT Contains All Tids and Count for Each Item

ITEM CNT | TIDS

100, 300
200, 300, 400
100, 200, 300
100

200, 300, 400

Wk WwNZ

G WN (-

After the input data have been transformed into the vertical form like Table 3.1,
the support counting phase begins from pass 1. In each pass, the candidate sets Cy is
generated. The frequent sets Fy for each pass can then be produced using Cy and tidT
tables. The implementation of this approach using Oracle stored procedures is as follows.

Step 1: Transform the input data into the vertical form. The vertical form of
the input data set can be obtained using a stored procedure “ SaveTid’, which isillustrated
in Figure 3.11. This stored procedure first declares a cursor “Select tid, item From
TIDITEM Order by item”, then scans the declared cursor one tuple by one tuple. As
shown in Figure 3.11, there are two loops. The first loop is used to count the number of
transactions for each distinct item. The distinct items and the corresponding CNT are
stored in the table TIDT. In the second loop, for each tuple in the cursor, it checks if the
“item” is the same as the previous “item”. If they are the same, the tid is adding into the
column “TIDS’. Otherwise, the value of “TIDS’ is stored in the table TIDT for this
particular item, and then reset the column “TIDS’ to the value of column “tid”. When

finished scanning the table, the input table will be transformed into the vertical form.
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CREATE OR REPLACE PROCEDURE SaveTid(rowCount IN INTEGER) AS
Vtid NUMBER; Vitem NUMBER,; Vtempltem NUMBER,;
Vcount NUMBER; Vbuffer VARCHAR2(32000); Vleng INTEGER; Vtids CLOB,;
CURSORCc1 IS

SELECT tid, item FROM TIDITEM order by item;
CURSOR c21S
SELECT tid, item FROM TIDITEM order by item;
BEGIN
V count:=0;
FOR emp_rec IN c1 LOOP
if c1%ROWCOUNT=1 then
Vtempltem:=emp_rec.item;
end if;
Vtid ;= emp_rec.tid;
Vitem := emp_rec.item;
if Vitem=Vtempltem then
Vcount:=Vcount+1,

else
insert into tidT1 values(Vtempltem, Vcount, empty_clob());
Vtempltem:=Vitem;
Vcount:=1,

end if;

if c1%ROWCOUNT=rowCount then
insert into tidT 1 values(Vtempltem, V count, empty_clob());
end if;
END LOOP;
FOR emp_rec2 IN c2 LOOP
if C2%ROWCOUNT=1 then
Vtempltem:=emp_rec2.item;
end if;
Vtid := emp_rec2.tid;
Vitem := emp_rec2.item;
if Vitem=Vtempltem then
Vbuffer:=CONCAT(RTRIM(Vhbuffer), TO_CHAR(Vtid));
Vbuffer:=CONCAT(RTRIM(Vbuffer), ’,));
else
Vleng:=LENGTH(Vbuffer);
select tids into Vtids from tidT1 where item=Vtempltem;
doms_lob.write(Vtids, Vleng-1, 1, Vbuffer);
update tidT1 set tids = Vtids where item=Vtempltem;
Vtempltem:=Vitem;
Vbuffer:=";
Vbuffer:=CONCAT(RTRIM(Vhbuffer), TO_CHAR(Vtid));
Vbuffer:=CONCAT (RTRIM(Vbuffer), ’,));
end if;
if c2%6ROWCOUNT=rowCount then
Vleng:=LENGTH(Vbuffer);
select tids into Vtids from tidT1 where item=Vtempltem;
doms_lob.write(Vtids, Vleng-1, 1, Vbuffer);
update tidT1 set tids = Vtids where item=Vtempltem;
end if;
END LOOP;
END;

Figure 3.11 PL/SQL Stored Procedure SaveTid()
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Step 2: Get the frequent set F; in pass 1. Because we aready have the table
TIDT, which contains the columns ITEM, CNT, and TIDS, it is very easy to get the
frequent set F;. We can just keep the ITEM where CNT is greater than or equal to the
given minimum support. This can be done using a query “Insert into F; select ITEM,
CNT from TIDT Where CNT>=:minsupport”.

Step 3: In pass k (k>=2), get the candidate set Cy. Table Cy has k columns
itemy, item,, ..., itemy. It can be obtained using the method described in Section 3.1

Step 4: In pass k (k>=2), get the frequent set Fy. For the support counting, we
need to get the occurrence of each tuplein Cy. After we have the table “TIDT”, we can
obtain the occurrence of “item,, item,, ..., itemy” by counting the number of tids in the
intersection of these items. In this example (Table 3.1), for the item set “2, 3", the
common tids of the items “2” and “3” are “200”, and “300”, so the number of common
tids is 2. Therefore, the support of item set “2, 3" is 2. We created a series of stored
procedures “CountAnd,” for this task. The stored procedure “CountAndy” takes k
parameters (each parameter is a tid-list), and return the number of common tids among
these k tids. . Figure 3.12 illustrates the stored procedure “CountAnd,”. “CountAnd,”
first read the two tid-lists into two arrays, then the number of common tids among these
two tid-lists can be obtained by scanning these two arrays. We can apply the stored
procedure “CountAndy” for each tuple in Cy to get the number of common tid for each
item set. The item sets Cy can be expanded to the frequent sets Fy by adding the support
count for each tuple into the table Cy and then delete the tuples whose support count is

less than the user specified minimum support.
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CREATE OR REPLACE FUNCTION countAnd2(in1 CLOB, in2 CLOB) RETURN NUMBER IS returnCount
NUMBER,;

TYPE vType IS VARRAY (10000) OF VARCHAR2(50);

vl VvType; v2vType;, posl INTEGER; pos2 INTEGER; item VARCHAR2(20);
curChar CHAR(1); patt VARCHAR2(10); len INTEGER; clobllLen INTEGER,;
clob2Len INTEGER; loopCount INTEGER; lastltem INTEGER;

BEGIN

returnCount:=0;

-- initialize the varrays

v1:=vType(NULL);

v2:=vType(NULL);

patt:=")’; -- patterni s’

clobllen:= DBMS _LOB.GETLENGTH(inl); --get the clobl length

item:=",

loopCount:=0;

-- dbms_output.put_line('Varray 1°);

FORi IN 1..cloblLen LOOP
curChar:=DBMS_LOB.SUBSTR(in1,1,i);
IF curChar=patt THEN

loopCount:=loopCount+1;
v1(loopCount):=item;

vl.extend,
item:=",
- dbms_output.put_line('v1( |loopCount]|’) : || v1(loopCount));
ELSE
item:=item || curChar;
END IF;
END LOOP,

loopCount:=loopCount+1;
v1(loopCount):=item;
-- dbms_output.put_line('v1(’ |loopCount||’) : * || v1(loopCount));
----------- Till herefor VARRAY v1
clob2Len := DBMS_LOB.GETLENGTH(in2); --get the clobl length
item:=",
loopCount:=0;
-- dbms_output.put_line('Varray 2));
FORi IN 1..clob2Len LOOP
curChar:=DBMS_LOB.SUBSTR(in2,1,i);
IF curChar=patt THEN
loopCount:=loopCount+1;
v2(loopCount):=item;

v2.extend;
item:=";
- dbms_output.put_line(’'v2(’ [[loopCount]|’) : ’ || v2(loopCount));
ELSE
item:=item || curChar;
END IF;
END LOOP,

loopCount:=loopCount+1;
v2(loopCount):=item;
-- dbms_output.put_line('v2(’ |loopCount|| ") : * || v2(loopCount));
----------- Till herefor VARRAY v2
-- now haveto loop till the end of the arrays and meanwhile count the common items.
clobllLen := v1.COUNT;
clob2Len := v2.COUNT;
FORi IN 1..cloblLen LOOP
FORj IN 1..clob2Len LOOP
IFv1(i)=v2(j) THEN
returnCount:=returnCount+1;
END IF;
END LOOP,;
END LOOP;
return (returnCount);
END;

Figure 3.12 Stored Procedure CountAnda()
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3.2.3.2 GatherJoin

The GathoerJoin approach first transer the input data into a vertica form by
creating atable“ TITEM” which has three columns: TID, CNT and ITEMS. TID contains
the distinct tidsin all transactions. ITEMS contain al the items that belong to a particular
tid. CNT is the number of items for the particular tid. The table TIETM created from the

example input data set is shown in Table 3.2.

Table3.2 Table TITEM Contains All I1tems and Count for each Tid

TID CNT | ITEMS
100 3 1,34
200 3 2,3,5
300 4 1,235
400 2 2,5

After the input data has been transformed into the vertical form like Table 3.2, the
support counting phase begins from pass 1. In each pass, the candidate sets Cy is not
needed because we aready have the table TITEM. The frequent item sets Fx can be
produced based purely on table TITEM. The implementation of this approach using
Oracle stored proceduresis as follows.

Step 1: Transform the input data into the vertical form. The vertical form of
the input data set can be obtained using a stored procedure “ Saveltem”, which is shown
in Figure 3.13. This stored procedure first declares a cursor “Select tid, item From
TIDITEM Order by tid”, then scans the declared cursor one tuple by one tuple. As shown
in Figure 3.13, there are two loops. The first loop is used to count the number of items for
each distinct transaction. The distinct transactions and the corresponding CNT are stored

inthetable TITEM.
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CREATE OR REPLACE PROCEDURE Saveltem(rowCount IN INTEGER) AS
Vtid NUMBER; Vitem NUMBER; VtempTid NUMBER;  Vcount NUMBER,;

Vbuffer VARCHAR2(32000); Vleng INTEGER,; Vitems CLOB,;
CURSORCclIS
SELECT tid, item FROM TIDITEM order by tid;
CURSOR c21S
SELECT tid, item FROM TIDITEM order by tid;
BEGIN
V count:=0;

FOR emp_rec IN c1 LOOP

if C1%ROWCOUNT=1 then
VtempTid:=emp_rec.tid;

end if;

Vtid := emp_rec.tid;

Vitem := emp_rec.item;

if Vtid=VtempTid then
Vcount:=Vcount+1,

else
insert into titem1 values(VtempTid, Vcount, empty_clob());
VtempTid:=Vtid;
Vcount:=1,

end if;

if c190ROWCOUNT=rowCount then

insert into titem1 values(VtempTid, Vcount, empty_clob());
end if;
END LOOP;
FOR emp_rec2 IN c2 LOOP
if C2%ROWCOUNT=1 then
VtempTid:=emp_rec2.tid;
end if;
Vtid := emp_rec2.tid;
Vitem := emp_rec2.item;
if Vtid=VtempTid then
Vbuffer:=CONCAT(RTRIM (Vbuffer), TO_CHAR(Vitem));
Vbuffer:=CONCAT (RTRIM(Vbuffer), ',));
else
Vleng:=LENGTH(Vbuffer);
select items into Vitems from titem1 where tid=VtempTid;
dbms lob.write(Vitems, Vleng-1, 1, Vbuffer);
update titeml set items = Vitems where tid=VtempTid;
VtempTid:=Vtid;
Vbuffer:=";
Vbuffer:=CONCAT(RTRIM(Vbuffer), TO_CHAR(Vitem));
Vbuffer:=CONCAT (RTRIM(Vbuffer), ’,));
end if;
if C2%ROWCOUNT=rowCount then
Vleng:=LENGTH(Vbuffer);
select items into Vitems from titem1 where tid=VtempTid;
dbms lob.write(Vitems, Vleng-1, 1, Vbuffer);
update titem1 set items = Vitems where tid=VtempTid;
end if;
END LOOP;
END;

Figure 3.13 Oracle Stored Procedure Saveltem()
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In the second loop, for each tuple in the cursor, it checksif the “tid” is the same as
the previous “tid”. If they are the same, the item is adding into the column “ITEMS".
Otherwise, the value of “ITEMS” is stored in the table TITEM for this particular tid, and
then reset the column “ITEMS’ to the value of column “item”. When finished scanning
the table, the input table will be transformed into the vertical form.

Step 2: Get the frequent set F; in pass 1. The frequent set F; can be obtained by
guerying the input table TIDITEM. We just keep the items that the occurrence is greater
than or equal to the given minimum support. The query “Insert into F; Select item,
count(*) from TIDITEM Group by item Having count(* )>=:minsupport” should do it.

Step 3: In passk (k>=2), get the frequent set F. Once we got the TITEM table,
we have stored al the items which has the same tid into one column (ITEMS). For the
support counting in pass k, we have a series of stored procedures “Comby” to find al the
k-item combinations of items in the column ITEMS. For example, for the third row of
Table 3.2 (TID=300), at pass 3, the stored procedure “Combs” generates the following
combinations: {1,2,3}, {1,2,5}, {1,3,5}, and {2,3,5} . Figure 3.14 shows stored procedure
“Comby”, which takes one parameter (item-list) and generates al the 2-item
combinations of items in the column ITEMS. As shown in Figure 3.14, it first reads the
item-list into an array, and then the 2-item combinations of items can be obtained by
scanning the array. In pass k, each tuple of table TITEM is processed using the stored
procedure “Comby” and the generated k-item combinations are stored in a table TTy
which has k columns: T_item;, T_item,, ..., T_itemy. Finally, the support of each k-item

combination can be obtained easily by using the “Group By” query and the frequent item
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sets Fx can be obtained by deleting all the tuples that has support less than the user

specified minimum support. The SQL syntax for thistask is listed in Figure 3.15.

CREATE OR REPLACE PROCEDURE Comb2(in1 NUMBER, in2 CLOB) AS

TYPE vType ISVARRAY (10000) OF VARCHAR2(50);

vl vType;

posl INTEGER; pos2 INTEGER; item VARCHAR2(20); curChar CHAR(1);

patt VARCHAR2(10); len INTEGER; clobllLen INTEGER; loopCount  INTEGER,;
BEGIN

-- initialize the varrays

v1:=vType(NULL);

patt:='"; -- patterni s,
cloblLen:= DBMS_LOB.GETLENGTH(in2); --get the clobl length

item:=";
loopCount:=0;
-- dbms_output.put_line('Varray 1);
FORi IN 1..cloblLen LOOP
curChar:=DBMS_LOB.SUBSTR(in2,1,i);
IF curChar=patt THEN
loopCount;=loopCount+1;
v1(loopCount):=item;
vl.extend,
item:=";
- dbms_output.put_line('v1( |loopCount]||’) : ’ || v1(loopCount));
ELSE
item:=item || curChar;
END IF;
END LOOP;
loopCount;=loopCount+1;
v1(loopCount):=item;
-- dbms_output.put_line('v1(’ [[loopCount||’) : * || v1(loopCount));
——————————— Till herefor VARRAY v1

cloblLen:=v1.COUNT;

FOR IN 1..cloblLen-1 LOOP
FORj IN i+1..cloblLen LOOP
INSERT INTO T_COMB2 VALUES(V(i), v1(j));
END LOOP;
END LOOP;
END;

Figure 3.14 Oracle Stored Procedure Comby()
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Insert into Fy
Select T_itemy, T_item,, ..., T_itemy, count(*)
From TTyg
Group by T_itemg, T_item,, ..., T_itemy
Having count(*) >= minimun support

Figure 3.15 Support Counting of GathorJoin

3.2.3.3 GatherJoin Variant

In Gather Join Variant approach, similar to GatherJoin approach, we first
transform the input data into the vertical form. However, this approach uses the candidate
sets Ci in each pass k for support counting phase. The implementation of this approach
using Oracle stored proceduresis as follows.

Step 1: Transform the input data into the vertical form. This step is to
transform the input data from the format of “TID, ITEM” into the format of “TID, CNT,
ITEMS’. The same stored procedure “Saveltem”, which is described in detail in
GatherJoin approach, is used to complete this task. After transforming, a table TITEMS
that has three columns “TID, CNT, ITEMS” is produced.

Step 2: Get the frequent set F; in pass 1. This step is aso the same as step 2 in
GatherJoin approach. The query “Insert into F; Select item, count(*) from TIDITEM
Group by item Having count(* )>=:minsupport” will get all the frequent itemsin pass 1.

Step 3: In pass k (k>=2), get the candidate sets Cy. The candidate sets Cy is
dlightly different than those used in the other approaches. In this approach, table Cy has a
unique identifier for each tuple. So Cy has k+1 columns: oid, item;, itemy, ..., itemy
where oid is the unique identifier for each tuple. To get Cy, first we use the same

algorithm described in Section 3.2.1 (Candidate Set Generation) to generate the candidate
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sets, then we use the stored procedure “CreateCy” to add one column “oid” into the
candidate sets. “oid” will be filled with the unique number begin with 1.

Step 4: In passk (k>=2), get the frequent sets F,. After we get Cy, we create an
index “Cind” on table Cy based on column “oid”. For each tuple in table TITEM, the k-
item combination subset of column ITEMS are generated and stored in table TTy using
the same stored procedures “Comby” described in the GatherJoin approach. Then one
table TEMP is created and populated by joining two tables Cx and TTy. Finaly the
frequent item sets F¢ can be obtained by joining tables C, and TEMPy based on column

“oid”. Figure 3.16 illustrates the SQL query of how to get table TEM Py and F.

Insert into TEM Py
Select oid, count(*)
From Cy, TTy
Where iteml = T_i tem;
Anditem, =T _item,

And itemy = T_itemy
Group by oid
Having count(*) >= minimun support

Insert into Fy
Select itemg, itemy, ..., itemy, cnt
From C, TEMP,
Where TEMPy.oid = Cy.oid

Figure 3.16 Support Counting of GathorJoin Variant
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3.3 Rule Generation

3.3.1 Intermediate Rule Generation

After the support counting phase is finished, all the frequent item sets were stored
in the tables Fx (F1, F, F3, €tc), where ‘X’ denotes the pass number. To generate the
rules, first all the records in these tables are combined together to form a new table called
‘FISETS' (Frequent ItemSets). So the table ‘FISETS' has the format of (ITEM1, ITEM,,

ITEM3, ..., ITEMy, NULLM, COUNT). Table 3.3 shows one example of ‘FISETS'.

Table 3.3 Frequent Item Sets Table ‘FISETS

ITEM; | ITEM;, | ITEM3 | ITEM, | ITEMs | ITEMg | ITEM; | ITEMg | NULLM | COUNT
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In Table 3.3, ‘'NULLM’ indicates ‘null mark’, and ‘COUNT’ indicates the
number of items. For example, the last row means that item 2, 3, and 5 appear together
for 2 times.

For each row in FISETS, we need to find al the non-empty subsets using the
format of ‘rule head => rule body’. One example is that for the items ‘2, 3, 5, dl the
non-empty subsetsare: 2=>3,5;3=>2,5;5=>2,3;2,3=>5;2,5=>3and 3,5=> 2.
For the rows of Table 3.3, the GenSubSets function generates the table Primary-Rules,

which isshown in Table 3.4.
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TNULLM has the same mean as ‘NULLM’ in table ‘FISETS . TRULEM means
‘rule null mark,” which is the position of beginning of rule body. For example, the first
row in Table 3.4 indicates the rule 1 => 3 with support 2 and the last row indicates the

rule 3, 5 => 2 with support 2.

Table 3.4 Table ‘ Primary-Rules

TITEM;: | TITEM; | TITEM3 | TITEM4 | TITEMs | TITEMg | TITEM; | TITEMg | TNULLM | TRULEM | TCOUNT
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Because table primary-rules aready includes al the rules with the minimum
support, to get the rules with minimum confidence, we only need to join the table
‘FISETS and ‘Primary-Rules.” According to the definition of confidence:

TheNumber Of TransactionThat ContainsY
The Number Of TransactionThat Contains X

Confidence =

where X means rule head, and Y means rule body. For each row in table Primary-Rules,
we need to find the same rule head from table ‘FISETS,” and then divide the support by
the corresponding support from table *FISETS.” Again for the last row in table * Primary-

Rules,’ 3, 5 => 2 with support 2, we can find from the ‘FISETS' that the support with
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item ‘3, 5" is 2, so the confidence of rule ‘3, 5 => 2’ is 2/2=100%. Figure 3.17 isthejoin

guery to accomplish this task.

Insert into Rules
Select TITEMy, TITEM,, ..., TITEMy, TNULLM, TRULEM,
TCOUNT, (TCOUNT/COUNT)*100
From Primary-Rules tl, FISETS t2
Where (tl.titem; = t2.item, or t1. TRULEM<=1) AND
(t1.titem, = t2.itemz or t1. TRULEM<=2) AND

(t1.titem=t2.itemy or t1. TRULEM<=k) AND
t1. TRULEM =t2.NULLM AND
(TCOUNT/COUNT)*100 >= min confidence

Figure 3.17 Association Rules Generation Query

Table 3.5 shows all the rules that has the confidence >=50%.

Table 3.5 Table ‘Rules

ITEM, [ ITEM, | ITEM; | ITEM, | ITEMs | ITEMs | ITEM; | ITEMg | NULLM | RULEM | CONF | SUP
1 3 0 0 0 0 0 0 3 2 100 | 50
3 1 0 0 0 0 0 0 3 2 66.67 | 50
2 3 0 0 0 0 0 0 3 2 66.67 | 50
3 2 0 0 0 0 0 0 3 2 66.67 | 50
2 5 0 0 0 0 0 0 3 2 100 | 75
5 2 0 0 0 0 0 0 3 2 100 | 75
3 5 0 0 0 0 0 0 3 2 66.67 | 50
5 3 0 0 0 0 0 0 3 2 66.67 | 50
2 3 5 0 0 0 0 0 4 2 66.67 | 50
3 2 5 0 0 0 0 0 4 2 66.67 | 50
5 2 3 0 0 0 0 0 4 2 66.67 | 50
2 3 5 0 0 0 0 0 4 3 100 | 50
2 5 3 0 0 0 0 0 4 3 66.67 | 50
3 5 2 0 0 0 0 0 4 3 100 | 50
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3.3.2 Mapping Back Process

In the real data set, each item usually is represented by an understandable name
(such as bike, helmet, etc). However, compared to integer representation, text
representation takes more space and computation. Also, most of the algorithms used,
assume lexicographic ordering of items which is also straightforward in integer
representation. Hence, we use integers for internal representation and computing and
when the rules are generated, these integers are mapping back to the original name. This
task can be done by creating a “description” table. When we get the input data set, the
distinct items are selected, and each of them is assigned an integer number begin with 1.
The integer number can be incremented by 1 for each distinct item. So the table named

“description” can be constructed like the format in Table 3.6.

Table 3.6 Example of “Description” Table

Description | [tem Number

Bike
Helmet
Battery
Milk
Eggs

QB WIN|F

After the intermediate rules are generated (shown in Table 3.5), the fina rule
table can be produced by joining the intermediate rule table and the “description” table.

Finally the rules will be presented by the following rule format:

| RueHead | => | RuleBody | Confidence | Support |
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The items can be put in rule head or rule body by checking the value of

“NULLM" and “RULEM” columns of each rule.

3.4 Performance Testing

The performance testing of these six approaches use the synthetic generated data
sets with different size. The description of these data sets is detailed in Section 3.4.1. In
Section 3.4.2, we compare the performance of SQL-92 and SQL-OR approaches with
Intelligent Miner. Scale-Up experiments are conducted with various sized data sets in
Section 3.4.3. All the experiments are conducted on IBM DB2 Universal (Version 5)
installed on Window NT Server with 2 processors, 256 MB main memory, and 12 GB
disk. For all the experiments, the minimum confidence is kept as a constant 50%. We run
3 times for each dataset/approach/support combination and take the average time of the
last 2 run as the average run time for this combination.

3.4.1 Synthetic Data Generation

We use the synthetic data generator from IBM to generate various data sets. This
data generator provides some options to generate different size of data sets. Some of the
options that we used are:

e -ntrans <number_of transactions> (in 1000's) (default: 1000)
» -tlenavg_items per_transaction (default: 10)

e -nitemsnumber_of_different_items (in '000s) (default: 200000)
» -fname <filename> (write to filename.data and filename.pat)

We vary these options to generate different kinds of data sets that are listed in
Table 3.7. For example, if we want to have a data set with the following parameters:

¢ 200K transactions
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» Theaverage number of itemsin one transaction is5
* Thenumber of different itemsis 1000
» Thedataset isstored in file TSD200K.data

We can use the following command:

gen lit —ntrans 200 —tlen 5 —nitems 1 -fname T5D200K

Table 3.7 Synthetic Data Sets
DataSets | Number of Number of Average Number of Items
Records Transactions Per Transaction
T5D1K 5,605 1,000 5
T5D10K 54,948 10,000 5
T5D100K 547,282 100,000 5
T10D10K 105,369 10,000 10

In Table 3.7, we name the data sets using the following format: T,,D, where m
means “the average number of items per transaction,” and n means “the number of
transactions’. For example, data set “T10D10K” means this data set has 10,000
transactions and the average number of items is 10. The number of different items in all
of these data sets is k = 1000. Usually k >> m, otherwise most of the transactions will
have the similar items.

3.4.2 Performance of SOL-92 and SOL-OR Approaches and Intelligent Miner

Three data sets T5D10K, T5D100K, and T10D10K were used to test the run time
of these approaches and Intelligent Miner with respect to four different minimum support
values 0.2%, 0.15%, 0.10% and 0.05%. The experiment results of these three data sets
are shown in Figure 3.18, Figure 3.19 and Figure 3.20 respectively. From these three

figures, we can make the following observations.
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The performance of Kway Join and Subquery are close when the minimum support
value is relatively larger. When the minimum support decreases, Subquery is worse

than Kway Join.

2-Groupby is the worst among all the SQL approaches. Even for the data set TSD10K
with support of 0.2%, it can not finish in 5 hours.

Based purely on performance, Intelligent Miner is better than SQL approaches. This
is because Intelligent Miner is based on “Cache-Min€’ architecture and it copies all
the data from database into the local disk when the mining begins. Once the data are

inthelocal disk, al the computations are local.
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Figure 3.18 Performance Comparison of SQL-92 Approaches and Intelligent Miner for

Data Set TSD10K
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Figure 3.19 Performance Comparison of SQL-92 Approaches and Intelligent Miner for
Data Set T5D100K
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Figure 3.20 Performance Comparison of SQL-92 Approaches and Intelligent Miner for
Data Set T10D10K
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3.4.3 Scale-Up Experiments

We used different synthetic generated data sets to study the scale-up behavior
SQL approaches with respect to increasing number of records. We varied the number of
records using the different number of transactions and the average number of items per
transaction. Figure 3.21 shows how these SQL approaches scales up as the number of
records is increased from 5K to 500K. The minimum support and confidence values are
constant for all the four data sets, which are 0.2% and 50% respectively.

From Figure 3.21 we observed that run time scale quite linearly as the number of
records increased. It also shows that both Kway Join and Subquery approaches have the
similar scale-up behavior. The 2-Groupby approach has not been included in Figure 3.21

because it can not complete even the smallest data sets TSD1K in 2-3 hours.
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Figure 3.21 Scale-Up Experiments for SQL-92 Approaches



CHAPTER 4
VISUALIZATION OF ASSOCIATION RULES

Visualization is the process of transforming data, information, and knowledge into
visual form making use of human’s natural visual capabilities [GER1998]. There are
three kinds of visualization categories in data mining [GRI1995]. The first approach is to
use visualization techniques to present the information obtained from mining the data in
the database, and this approach is conventionally being used in many data mining tools.
The second approach is to visualize the data in database before applying the data mining
algorithms. By using this approach, the user can have a better understanding of the data.
The third approach is to use visuaization techniques to complement the data mining
techniques. It is also known as visual data mining allowing user to understand the data
mining process and the data mining models being used. In this chapter, we will focus on
the first approach by reviewing the related work of visualization in data mining, then we

provide our design of rule table and 3-D rule visualization system for association rule.

4.1 Related Work

In this section, we first summarize the different categories of data visualization
techniques for data mining, then visualization techniques for association rule will be

reviewed.

48
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4.1.1 Classification of Data Visualization Techniques

Data visualization techniques can be classified into five categories. (1) geometric
techniques, (2) icon-based techniques, (3) pixel-oriented techniques, (4) hierarchical
techniques, and (5) graph-based techniques [KEI1996].

Geometric technique is the visualization of geometric transformations and
projections of data. The examples of this technique include Scatter-plot matrices,
Landscapes, Projection Pursuit techniques, Prosection views, Hyperdlice, and Paralel
Coordinates. Icon-based technique, also known as iconic display technique, is the
visualization of data values as features of icons by mapping each multidimensiona data
item to an icon. Examples of this technique include Chernoff Faces, Stick Figures,
Shapping Coding, Color Icons, and TileBars. Pixel-oriented technique is used to
represent each attribute values of a data item as a colored pixel and display the attribute
values belonging to one data item in separate windows. There are two groups for this
technique: Query-independent and Query-dependent technique. Query-independent
technique usually is used to visualize large data sets that have natural ordering based on
some attributes (i.e., time series data), while Query-dependent technique is used to
visualize the relevance of the data items with respect to a query for interactive
exploration.

Hierarchical technique is typicaly used for the visualization of data using a
hierarchical partitioning of k-dimension space into 2D or 3D subspaces. Dimensional
Stacking, Worlds-within-Worlds (n-Vision), Tree-map, Cone Trees, and InfoCube are
some examples of this technique. Graph-based technique is to utilize large graphs to

convey the meaning and structure of the data sets clearly and effectively. The graphs used
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can be 2D-graph or 3D-graph, depends on the needs of the application. Because of the
nature of association rule, graph-based technique is most suitable.

4.1.2 Rule Table

The most straightforward method for the association rule visualization is to use

the rule table. The following rule table format has been used [THO1998]:

Item1]Item2/Item3|Item4|Item5|Item6|Item7]Item8] NullM | RuleM | Confidence| Support |

Here Iteml, Item?2, ..., and Item8 mean the 8 items, NullM means the null mark
of the rule, if there are n items in one rule, the value of NullM should be n+1. RuleM
means the rule mark of therule, if there are mitemsin the rule head, the value of RuleM

should be m+1. An example of thisruletable format isillustrated in Table 4.1.

Table 4.1 Example of Association Rulesin Rule Table Format

Bread | Milk Null | Null Null | Null | Null | Null | 2] 1| 90% | 10%
Eggs | Bread Milk | Null Null | Null | Null | Null | 3] 1| 85% | 7%
Bike | Pumper | Lock | Null Null | Null | Null | Null | 3| 2| 80% | 5%
Bike | Pumper | Lock | Helmet | Null | Null | Null | Null | 4| 2| 60% | 3%

In Table 4.1, rule #3 (the third row), the column ‘NullM=3" means the rule
consists of 3 items. ‘RuleM=2" means there are 2 items in the rule head. ‘Null’ is used to
fill the rest of columns. So the third row means the association rule ‘Bike, Pumper =>
Lock’ with confidence of 80% and support of 5%.

4.1.3 2-D and 3-D Rule Visualization

Rule table is the most straightforward way to show the association rule to the

users. However, the rule table is only suitable to display the limited number of rules to
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the users. If the user needs to have a global view of al the rules, the rule table is not a
suitable approach.

Several commercia data mining products provide a visualization module. Becker
[BEC1998] presented a technique to visualize the decision table classifiers. In this
visualization module, the interactive drill down, drill-up, drill-through, filtering, and
animation gave the user more flexibility.

As to association rule visualization, lots of work has been done using directed
graph, 2-D matrix, and 3-D visualization.

4.1.3.1 Directed Graph

Directed Graph is used as the association rule visualization technique in the
IBM’s data mining software “Intelligent Miner”. In directed graph, the nodes of a
directed graph represent the items, and the edges represent the associations. Figure 4.1
shows 3 association rules (Bread => Milk; Bread => Buitter; Eggs => Bread + Milk).

Milk

O/O Cgread
Brea}\o Eggs : O |
Butter Milk

Figure 4.1 Association Rules Represented by Directed Graph

The confidence and support of the rules can be depicted using different colors and
width of arrow. For example, the wider the length of arrow, the more confidence the rule
has.

Directed Graph is a good visualization technique when the number of rules and

the itemsin each rule is very small. When the number of rules and the items in each rule
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become larger, it is not easy to show the rules using a Directed Graph. For example, if
there are more than ten rules, an association rule graph representation is not very easy to
understand because there will be lots of connections (edges) between the nodes (items).
Hetzler et al. [HET1998] tried to solve this problem by animating the edges to show the
associations of certain items. But the animation technique requires significant human
interaction to turn on and off the item nodes.

4.1.3.2 2-D Matrix

2-D matrix is another technique to visualize the association rules. In this case, the
rules are displayed in a 2-D matrix. The rule head (also called left-hand side or
antecedent) items are on one axis, and the rule body (also called right-hand side or
consequent) items are on the other axis. In the SGI’s data mining software “MineSet”
[SGI2000], 2-D matrix was used to visualize the association rules. Figure 4.2 shows one
example of 2-D matrix (association rule ‘Milk => Eggs’). The confidence and the support

of the rule can beillustrated using the height and color of the bars.

Eggs

Bread
Rule Body
Milk

Eggs

Bread
Rule Head

Milk

Figure 4.2 Association Rules Represented by 2-D matrix
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But Figure 4.2 only can show the ‘one-to-one’ relationship, that is, only one item
can be allowed in rule head and rule body, respectively. For example, in Figure 4.3, it is
almost impossible to tell whether there is only one rule (Bread + Milk => Eggs) or there

are two separate rules (Bread => Eggs; Milk => Eggs).

Eggs
Bread

Rule Body
Milk

Eggs Bread

Rule Head

Milk

Figure 4.3 Association Rules Represented by 2-D Matrix

MineSet tried to allow multiple items in rule head and rule body by grouping the
each of the items combinations in rule head or rule body as one unit. Figure 4.4 shows
that rule “Bread + Milk => Eggs’ can be plotted by adding one more unit “Bread + Milk”
in one axis. The other rulein Figure 4.4is“Milk => Eggs’.

Although Figure 4.4 can show ‘many-to-many’ relationship, it works well only
when the items in the rule head and rule body is very few. When the number of itemsin
the rule head is large, the number of units is expected to be very large if there are lots of
combinations. This is because all combinations of items in the rule head and the rule

body will be added in X or Y axes as one unit.



Eggs
Milk

Milk
Eggs

Bread+Milk

Rule Head

Figure 4.4 Multiple Itemsin Rule Head

4.1.3.3 3-D Visuadlization

Rule Body

To overcome the above problems, Wong et al. [WON1999] presented a new

visualization technique using 3-D visualization.

Instead of using ‘item-to-item’ map in the 2-D matrix, this technique used ‘rule-

to-item’ map. Figure 4.5 illustrates the basic idea of this technique. In Figure 4.5, the
rows are items, and the columns are rules. The identities of the items are shown along the
right side of matrix. The rule head and rule body can be distinguished by using two
different kinds of colors. The confidence and support are displayed at the end of the

matrix using the bars. The height of the bar represents the confidence of the rule. For

example, Figure 4.5 shows 3 rules, they are:

* Rulel: Bread => Milk, with confidence=90%
* Rule2: Pumper, Bike => U-lock, with confidence=80%

e Rule 3: Bread, Butter => Milk, with confidence=85%

The are several advantages of this technique over directed graph and 2-D matrix:
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1. Theidentity of individua items within the rule head is clearly shown.

2. The metadata such as confidence and support are shown at the end of the matrix, so
the whole view is clearer to the users.

3. Intheory, thereis no upper limit on the number of itemsin the rule head.

4. It is not needed any more to create the additional units in the matrix because of the
combination of the items in the rule head. The number of unites in axes is depend
only on the number of items and the number of rules.

Because 3-D visualization has the above advantages, it is a big improvement over

the directed graph and 2-D matrix visualization.

4.2 Rule Table

In Table 4.1, the user has to distinguish the rule head and rule body by the value
of ‘NULLM’ and ‘RULEM’. It's very difficult for the user to understand the rules. To

address this problem, we can introduce the following rule table format.

| Rule Head

‘Imply’ Symbol | RuleBody | Confidence | Support |

So all therulesin Table 4.1 can be represented by thisformat in Table 4.2.

Table 4.2 Example of Association Rulesin Rule Table Format

Bread => Milk 90% 10%
Eggs => Bread, Milk 85% 7%
Bike, Pumper => Lock 80% 5%
Bike, Pumper => Lock, Helmet 60% 3%

There are several reasons for the new rule table format:
1. In Table 4.1, the maximum item numbers in the association rules is fixed. For

example, the maximum item number in Table 4.1 is 8. It can not show the rules that
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have more than 8 items. If we need to display more than 8 items, the additional
columns need to be added. However, the new rule table format does not have this

problem.

QOT

80 [

70

60 -

50

Confidence (%)

40 U-lock
Register
Milk

30 Insurance
Helmet |tem

20— Car

Butter
Bread
Bike
Pumper

Figure 4.5 3-D Visualization of Association Rules
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2. By dropping the ‘NULLM’ and ‘RULEM’ columns, the new rule table is more
compact, so it takes less storage space, especially when the number of rules is very
large.

3. The new rule table looks more obvious to the user since the ‘ Imply Symbol’ separates
the rule head and rule body, however, in Table 4.1, the user needs to figure out what
therulelooks like by using ‘NULLM’ and ‘RULEM’ columns for each rule.

4. By separating the rule head and rule body, the operation of ‘Search specific rules
will be much easier because it is not needed to use the information of column
‘NULLM’ and ‘RULEM’.

In reality, several hundreds of association rules will be generated, and it is not
efficient for the user to look through all the rules generated by the rule generator. Usually
the user isinterested in certain rules. So the user interaction is very important. In the rule
table module, the following functions should be provided to the users:

The rules can be sorted by the value of ‘ Confidence’ and/or ‘ Support’ so the user
can find the strongest association rules.

The user can specify part or al the ‘rule head’ and/or ‘rule body’ to query specific
rules that interest the users. For example, if the users are only interested in the rules that
have ‘Bike' in the rule head, the results of query should only display the rules with *Bike
in the rule head, such as rules with ‘Bike’, ‘Bike, Pumper’ asrule head, etc. The rules that

do not have ‘Bike' as part of the rule head should not be seen by the user.

4.3 3-D Visualization

The 3-D visualization of Wong et a. is a big improvement over directed graph

and 2-D matrix. But there still have the following problems:
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1. Itisbest for the ‘many-to-one’ relationship. That is, the rule body has only one item.
When the rule body has more than 1 item, the matrix floor is covered with many
blocks.

2. The users have to distinguish the rule head and rule body by the different color of
blocks. Usually not all the items in the rule head will be displayed together, so the
users can not figure out what is the rule looks like at the first glance, especially when
the number of itemsin the rule body is more than 1. Figure 4.7 shows this problem. In
Figure 4.7, Rule 4 means rule ‘b, e, i, j => d, g with confidence=58%. But because
not al the items in the rule head display at the one end, and not all the items in the
rule body display at the other end, it is not clear to the user of how the rule looks like.
Itisideaif all theitemsin the rule head can be put on the one end, and all theitemsin
the rule body can by put on the other end so the user can see the rules very clearly.

3. Although it can show lots of rules at the same time, the interaction between the
visualization system and the user is definitely needed because most of the time, the
users are only interested in some specific rules with some specific items in the rule
head and/or rule body. So the system should provide the user a very good interface to
interact with the system.

To address the above three problems, the new 3-D visualization system should try
to achieve the following goals:

1. It should have a very good interactive graphic user interface. The user can sort, filter
the rules according to the user’ sinterest.

2. The items in the rule head and the items in the rule body should be separated very

obvioudy. That means, it isthe best if all theitemsin the rule head are at the one end,
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and al theitemsin the rule body are at the other end. If this goal can be achieved, the
user can understand the rules at the first glance.
Since items of the rules are presented with blocks in the chart, the fewer blocks exist

in the chart, the clearer view the user can get.

70

Confidence (%9

Figure 4.7 Association Rules that have more than 1 Item in Rule Body
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Based on the above goals, we improved the 3-D visualization technique of Wong
et a. by adding the following new features:

1. There will be a graphic user interface provided to the user to do the sorting, filtering,
animation, etc. It will be very flexible for the user to use. Goal #1 is achieved. Details
of the user interface will be discussed in Chapter 6.

2. Theitemsin the rule body are shown in axis X using the text. So the rule head and
rule body is visually separated and the user can see what the rules ook like at the first
glance. Goal #2 is achieved.

3. Removes the blocks of items in rule body, as a result, on the chart only the items in
the rule head remains, and only one color is enough, and there are fewer blocks on the

chart. Goal #3 is achieved.

Figure 4.8 illustrates the basic idea of the above modification.
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CHAPTER 5
SYSTEM IMPLEMENTATION

In the previous chapters, we presented the severa different association rule
algorithms, and then provided our design of association rule visualization technique. The
input of the rule generation algorithm is a table with two columns “tid, item”, and the
output is a table with each rule occupies one row. However, in redlity, the data are
usually not exactly in the form of “tid, item”, and some of them are in text format, instead
of integer format. For example, in the supermarket, each transaction consists of
transaction id, and items that each customer buys. In this case, the date and time may
work as the transaction id, and the items can be identified by their names. To fit this kind
of data set into the input format of our rule generation algorithm, we should have a very
good graphic user interface (GUI) for the user to manipulate their existing data set to feed
to our rule generation agorithm. We choose Java as the programming language for this
project based on the following reasons:

1. Java program is platform independent. Instead of generating the executable
machine instructions by the C++ compiler, Java compiler outputs Java byte
codes. Java byte codes are instructions written for some virtual Java machines
that do not really exist. These byte codes run through the Java Virtual
Machine (JVM), which works as an interpreter to execute the Java byte codes.

Thereisadifferent VM emulator for each different type of machines, so Java

62
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program can be compiled only once and the compiled class file can be run on
any machine that has JVM.

2. Becausein redlity, the user may have data stored in several different database
management systems, it is very useful for the mining algorithm to be able to
retrieve the data from different database management systems. Java provides
the Java Database Connectivity (JDBC) to have this ability. Especially for the
pure SQL92 approaches, the Java program for DB2 is almost the same as for
Oracle, except some features the each individual DBMS have.

For the output of generated rules, we also need a good GUI to let the user get the
information that interests the user very easily. There are two ways to implement the rule
visualization system. The first oneis to use the existing graphics software tools to display
the association rules. There are some softwares such as SAS, ArcView that can be used to
display the designed 3-D graph. By using this choice, it takes less time to implement but
there is not much flexibility, especialy for the graphic user interface part. You can not
get the GUI as you designed. The second way is to implement from scratch using Java.
There are some advantages to use Java compared to using existing software:

1. Because the system will be built from the scratch, we can have whole control

of how it works, and it will give us the flexibility to control the GUI and make
It exactly the same as what we designed.

2. The system can be integrated into the association rule generator and optimizer

that we have implemented, so it will become an integrated and complete

system.
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3. By using Java, it will not only run as the application, also it can be put on the
web and run as the applet.

4. Java provides a set of Java 3D APIs that serve as the interface to a
sophisticated three-dimensional graphics rendering system. A Java 3D
program creates instances of Java 3D objects and places them into a scene
graph data structure. Despite all of the 3D functionality, the Java 3D API is
still straightforward to use.

Because of the above reasons, we choose Java 3D to implement the association

rule visualization module.

In this chapter, the system architecture of our software is presented in Section 5.1.

The interfaces of rule generator and rule visualization, as well as their implementations

are detailed in Section 5.2 and 5.3.

5.1 System Architecture

Our system is based on the two-tier model because no business logic is
incorporated in our system. The system architecture is shown in Figure 5.1.

In Figure 5.1, the database resides in the server machine. The stored procedures
(Oracle) and UDFs (DB2) also reside in the server side. Our Java application runs in the
client machine. It consists of several modules: LogIn, Rule Generator, and Visualization
module. Logln module is used to connect to the database server. Rule Generator is used
to mining the association rules given the information provided by the user. Visualization
module consists of two sub-modules Rule table and 3-D visualization. These modules can
be accessed using the Main window. The interfaces and their implementation are

presented in the following sections.
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Figure 5.1 System Architecture

5.2 Main Window

Figure 5.2 shows the main window of our association rule software. The main
window consists of the menu, toolbar, and a text area. The operations of rule generation
and rule visualization are mainly done through the menu. Under the “File” menu, there
are several submenus, such as “Connect”, “Disconnect”, “Save to File”, “Clear
Messages’, “Exit”. The submenu “Connect” is used to let the user connect to a specified
DBMS, such as Oracle, or DB2 since this software is designed to be able to retrieve the
data from different Database Management Systems. “Disconnect” submenu is to simply

let the user disconnect from the DBMS after he finished the mining operations. But if the
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user forgot to disconnect from the DBMS, when the application is terminated, the
connection will be disconnected automatically. “Save to File’ and “Clear Messages”
submenus are related to the log messages generated by the mining operations. For each
association rule generation algorithm and each input data set, there will be the some
messages output to let the user know what had happened. After each operation, the user
can choose to save these messages into a text file or clear these messages from the
window. For each major function, such as “Connect”, “Disconnect”, “Rule Generation”,
“Exit”, there is an icon on the toolbar corresponding to the operation for the user’s

convenience. So the user can just click the icon on the toolbar once instead of using the

menu.
[E} Association Rules H=] 3
File Import Result Help Approaches Wisualization Mine Data

e | | (=

= %— |]III i

L

Figure 5.2 Main Window of Association Rule Software

We use JBuilder 3 as the software development tool to implement our project.
JBuilder provides an Integrated Development Environment (IDE), which makes interface
design, program debugging very efficiently. The menu can be implemented using the

Menu Designer. All the objects in the main window can be designed visually.

5.3 Logln Module

After the user chooses “Connect” menu item, a Login window will be brought up.

The appearance of login window is shown in Figure 5.3. In this login window, the user
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needs to give the information of user id, password, the DBMS, and the database name
that related the specified DBMS. The password is masked using “*” for the security
reason, and the DBMS names have been predefined, so the user just selects from the
provided Database Management Systems. The database name has not been predefined
and the user has to fill the information himself because the software has no idea of what
databases have in a particular DBMS until the connection has been established, and in
order to establish a connection, a database name has to be provided. In the login window,
there also exists a checkbox called “Admin”. This checkbox is used to let the user decide
If he wants to choose a particular miming algorithm. If the “Admin” checkbox is not
checked, the “ Approach” submenu will be disabled so that the user only needs to give the
input data set, and the software will decide to choose the best agorithm from the
available 6 approaches for the given data set. If the “Admin” is checked, the user has the
freedom to choose any available approaches to generate the association rules. If the user
has time, he can save the output rules from different approaches and compare to each
other for the correctness.

After the user provided all the needed information, the user can choose to
“Connect” to the DBMS, or in case he makes some mistakes, he can choose to clear the
information and fill it again.

The Logln module is implemented with “Logln.class’. Connection to the server is
made possible through JDBC. The man method of the Login class is
“btnConnect_actionPerformed”, which is associated with the button “Connect” in the

Logln window. This method is shown in Figure 5.4.
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Userld: Ihl:uzhang

Password: RN
DBEMS: Oracle v
Database Name: ORCL

Connect Clear

Figure 5.3 Login Window of Association Rule Software

There is a file named “Mining.config” to store the different DBMS server’s
information, such as host |P address and port number. Each DBMS has one entry in this
configure file. For example, the entry of Oracle is “[ORACLE] 128.227.176.49:1521",
which indicates Oracle resides in the host machine with IP address 128.227.176.49 and
the port number is 1521. In case Oracle is moved to another machine, the use only needs
to modify the host IP addressin thisfile. So the program does not need to be changed.

Method “btnConnect_actionPerformed” first gets the DBMS information from the
Logln window, then it is compared with the entries of file “Ming.config”. If there is a
match, the host IP address and port number is retrieved from that entry. The other

information needed to log in to the DBMS, such as user name, password, database name
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can be obtained through the user’ sinput in the Logln window. Once al the information is
ready, JDBC first loads the corresponding database driver using the method
“Class.forName”. After the driver is loaded, a connection can be made using the method
“DriverManager.getConnection (url, user, passwd)”. The highlighted lines of code in

Figure 5.4 illustrates how to |oad the database driver and how to make a connection to the

void btnConnect_actionPerformed(ActionEvent €)
{
fin = new FilelnputStream("Mining.config");
while((bytes read = fin.read(buffer)) != -1);
fileText = new String(buffer);
Vector ve=new Vector();
StringTokenizer st = new StringT okenizer(fileText);
while (st.hasMoreTokens())
vc.addElement(st.nextToken());

for(int i=0;i<vc.size();i++)

if (vc.elementAt(i).toString().equal s("[ORACLE]"))
server = vc.elementAt(i+1).toString();

}

if ((cmbDBM S.getSelectedltem().toString()).equals("DB2") )

{
Class.forName(" COM.ibm.db2.jdbc.app.DB2Driver"); //for .app
url = "jdbc:db2:";
url = url.concat(db);

}
elseif ( (cmbDBM S.getSel ectedltem().toString()).equals("Oracle") )
{
Class.forName(" oraclejdbc.driver.OracleDriver");
1 url = "jdbc:oracle:thin: @tokyo.dbcenter.cise.ufl .edu:1521"
1 server ="128.227.176.49";
url ="jdbc:oracleithin:@" + server +":";
url = url.concat(db);
}
con = Driver M anager .getConnection (url, user, passwd);
} // end of btnConnect_actionPerformed

Figure 5.4 btnConnect_actionPerformed Method
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5.4 Rule Generator

For each input data set, some parameters have to be specified by the user for the
association rule generation. This kind of information can be input by the Parameter Input
window. Parameter Input window is shown in Figure 5.5. For the data source, because
the data is not always in the same table, and sometimes it is needed to obtain the data
from two or more different tables, the user should have the ability to select multiple
tables as the data source. For this reason, the available table names have been populated
in the list box. The user can choose multiple tables by using “ Shift” or “Control” key. For
the multiple tables, the “Join” and “Union” operations are also provided to let the user
manipulate the data source from multiple tables and combine them into one table. The
user may also want to specify the lowest support and confidence value to get the
interested association rules. The value of stop level isused to let the user decide that after
how much passes that the user wants the rule generation needs to be canceled. The
“Statistics’ button is used to show the user some basic statistics (such as number of
transactions, number of rows, number of different items, average number of itemsin each
transaction, etc) of the selected tables. After al of the information is completed, the user
can click the “Generate Rules’ to begin to merge the data from different tables. Then the

association rule generation algorithm will be called to generate the rules.
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Figure 5.5 Parameter Input Window of Association Rule Software

The class that related to Parameter Input window is “Parameterinput.class’. The
key method of this class is to retrieve all the available table names from the given
database and show them to the user. Figure 5.6 shows the implementation of this task.
We used two different mechanisms for DB2 and Oracle. In DB2, we utilized the metadata
of the database. The method “getTables’ in the “DatabaseM etaData” class can be used to
return al the table names in the database. In Oracle, we used the data dictionary. All the
table names are stored in the system table “user_tables’. We can obtain all the table

names using asimple query.
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Statement stmt = Logln.con.createStatement( );

DatabaseM etaData dbmd = Logln.con.getM etaDat&();

if(Logln.cmbDBM S.getSelectedl tem().toString().equals(" DB2"))

{
String[] type={"TABLE"};
ResultSet rs =dbmd.getTables("",Logln.user_id.toUpperCase(),"" type);
ResultSetM etaData rsmd = rs.getM etaData();

boolean more = rs.next();
while ( more)

String rsts=rs.getString(3);
tables.addElement(rsts);
more = rs.next(); // moveto next row

}
rs.close();
} /I end of first 'if’
elseif(Logln.cmbDBM S.get Selectedltem().toString().equals(* Oracle"))
{
String gs="select table_name from user_tables’;
ResultSet rs=stmt.executeQuery( gs);
boolean more = rs.next();
while ( more)
{
String rsts=rs.getString(1);
tables.addElement(rsts);
more = rs.next(); // moveto next row
}
rs.close();
} /I end of "if’
stmt.clos&();

Figure 5.6 Retrieve All the Table Names Available in the Database

5.5 Visualization Module

In the association rule software, we implemented two kinds of rule visualization
toolsto view the mining results: rule table and 3-D graphic. Each tool allows the user to
work in the interactive environment. This section describes these tools in detail.

5.5.1 Rule Table

Figure 5.7 shows the rule table visualization window. In this window, all the rules

shows according to the rule format introduced in Chapter 4. Because usually hundreds of



73

rules will be generated, it is not easy for the user to view al of the rules at one time. In
addition, the user may only interest in some certain rules. For example, in order to answer
the question “what are the items that related to item Lock?’, he may only need to view
the rules that have item “Lock” contained in the rule head and rule body. All the rules
that do not have “Lock” in the rule do not interest the user. Rule table visuaization
window provides this function. In this window, the user can specify any kinds of query
criteria. For example, if the user wants view the rules with the item “Lock” in the rule
head, and he also wants the minimum confidence of the rules is 50%, he can construct
this query by clicking the corresponding list box and radio button in the window. The
filtered rules can be obtained by clicking the “ Show Rules’ button.

The related class of Rule Table is “Rule Table.class’. The constructor of this
class reads all the records from the table RULES and all the tuples are presented to the
user. This is done using the simple query “Select * from RULES’. The key method of
this class is that associated with button “Show Rules’. The implementation of this

method isillustrated in Figure 5.8.
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Figure 5.7 Rule Table Visualization Window with Filter Function

void btShowRules_actionPerformed(ActionEvent €)

/I construct the where clause of the sgl query, such as*where head like ‘% Milk%’ and support>3%"

String wherestring =" where " + txtWhere.getText();

/I because the user will input query like 'SUPPORT > 50%’, we need to

/I remove % in this case

// end of remove extra'%' following 'CONFIDENCE' AND 'SUPPORT'

/I lanuch thefiltered table of rules, passthe table name, and the where clause
Rules Table Filter RulesFilterdlg = new Rules Table Filter(this, Rules tableName, newWhereString);
/l'launch the Rule_Table Filter window

Figure 5.8 Show_Rule Method
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In Figure 5.8, the key point is to construct the where clause for the query. We
provide the user a set of standard SQL operators, such as ‘LIKE’, ‘NOT LIKE’, ‘IN’,
‘NOT IN’, *>', *>=", *AND’, ‘OR’, etc. For example, the query “Head Like ‘%L ock%'”
means that any rules that have “Lock” in the rule head satisfies the requirement. After the
user finished clicking the operators, the where clause is shown in atext box. The string in
the text box needs to be further processed (remove % from the support value, etc) for the
string becomes a where clause that any DBMS will accept it. At last, the final where
clause, together with the “RULE” table name, is passed to another class

Rule Filter Tableto show the user filtered rules.

Egj\fisualization [Filtered Table)
Association Rules: HEAD LIKE "%Lock%' AND CONFIDENCE »= 50 order by confidence a...
HEAD SYMBOL BODY CONFIDENCE SUFFORT
Lock == Fump, Coat B7% 50%
Lock == Coat GY% 0%
Lock = Purmp G7% 50%
Furmp, Lock, Coat = Bike, Eggs 30% 0%
Bike, Lock == Eqas a0% T0%
Bike, Furnp, Lock == Eggs, Milk 0% 50%
Lock, Milk == Coat 90% 70%
Bike, Lock, Eggs == Coat, Milk 95% B5%
Furmp, Lock == Coat 100% 50%
Bike, Lock, Milk == Coat 100% 50%
Lock, Coat == Fump 100% 0%
Lock, Eggs, Coat == Mlilkc 100% 55%
Mumber Of Rules: Sort By
|13  Confidence canfidence asc, support desc,
& Support ¢ pscendin
Re g Sort Clear Zlose

Figure 5.9 Rule Table Visualization Window with Sort Function
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After filtering the rules, the user can also sort these rules by “confidence”, and
“support” columns with descending or ascending order. Figure 5.9 shows one example of
filtered rules with the query “HEAD LIKE ‘%Lock% AND CONFIDENCE >= 50%”
with the order of “confidence ascending, support descending”. This window aso shows
the number of rules that satisfy the above query.

One issue about rule table is the feature of DBMS independence. The rule table
works on a table representation. Because al the operators provided to the user are
standard SQL operators, the corresponding SQL query can be executed in any DBMS. So
by using JDBC, the code for retrieving the rules from any DBMS is exactly the same and
no other extra codes are necessary for the different DBM Ss.

5.5.2 3-D Visudlization

Besides the rule table visualization tool, the other visualization tool is 3-D
graphic. First the rules are classified according to the number of items in the rule head.
Figure 5.10 shows the different categories of rules based on the number of the items in
the rule head. In Figure 5.10, it shows that there are three categories of rules, which have
1, 2, and 3 items in the rule head. In each category, the number of rules that falls into
each confidence or support interval (50%-60%, etc) is labeled. The labels for confidence
and support are in different colors. In Figure 5.10, it shows that for all the rules which
have 1 item in the rule head, 8 rules have the confidence between 60% to 70%, and 2
rules have the confidence between 90%-100%. As to the support, 9 rules have the value
of 40% to 50%, and only 1 rule has the value of 70%-80%. Double click the column bar
will invoke the 3-D visualization window that shows the rules with the particular number

of itemsin the rule head.
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E%%Numher of Rules for Each Category

Mumber of Rules Canfidence Suppart

1% L

14 L

13 L

12 L

I

m L

1 2 3

Mumber of ltems in the Rule Head

IS [=1 E3

Options..

Constraints...

Reset

Figure 5.10 Different Categories of Rules Based on # of Itemsin the Rule Head

The implementation of the window “Number of Rules for Each Category” is class

“TwoD_NumberOfRules.class’. The constructor retrieves al the rules from table RULES

and classified them based on number of items in the rule head, support, and confidence.

The results are shown to the users with the format of column bar.

The user can customize the above window dynamically according to the number

of items in the rule head and the number of the rules. The default values of these two are
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8 and 15, respectively. If the number of items in the rules is fewer than 8, the user can
lower this value so that each column can have more space. These changes can be made
by the options window, which is shown in Figure 5.11. In this figure, the number of items
in the rule is represented by “Max Scale of X-axis’, and the number of rules is
represented by “Max Scale of Y-axis’.

The implementation of the “Options’ window is class “TwoD_Options.class’. It
modified the attributes of class “TwoD_NumberOfRules.class’. When that window
resizes, the “paint” method will be called again and the window will be refreshed with the

modified attributes.

E’-f’,aﬂptiuns —TElx]
¥ axis: Y axis:
Min Scale: |1 Min Scale: 1]
Max Scale: IB Max Scale: 15

Major Units: 1

Minor Lntis: [y

111

] Crefault | Cancel

i

Figure 5.11 Options Window in Association Rule Software

For each category of the rules, just like in rule table visualization tool, the user
can aso specify the constraint to filter the rules. The operations in Figure 5.12 are almost

the same as those in rule table visualization tool. The only difference is that Figure 5.12
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provides the filtering and sorting function in one window. The implementation of this
interface is class “Add_Constraints.class’. The implementation is similar to the class

“Rule_Table.class’, which constructs the where clause to retrieve the rules with certain

conditions.
[E: More Constraints M=l

Column Mame
HEAD o< L
BO0Y ) == " LIKE & AMND
COMFIDEMCE = L  oR
SUPFORT o == ' HOT LIKE
HITEMHEAD =  MOTIN
CORMFIDEMCE == 0% ANMD SUPPORT == 20%

Sort By:

" Confidence | ¢ Descending

& Support & Ascending

confidence asc, support asc,

0] Clear Cancel

Figure 5.12 Constraints Window in Association Rule Software

Figure 5.13 is invoked by double clicking one of the column bars in Figure 5.10.
For example, if the user double click the column bar that labeled wit the “Number of
itemsin rule head = 3", it brings up Figure 5.13. In Figure 5.13, each row represents one
item, and each column represents one rule. The names of the items are labeled along the

right side of each row. Each item in the rule head has a small block covered on the floor.
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The names of the items that are in the rule body are labeled along the X-axis. The
confidence and support for each rule are marked at the far end of the floor with different
colors. For example, Figure 5.13 shows 10 rules. The first rule is “Coat, Lock, Pump =>
Bike, Eggs with confidence of 80% and support of 50%.” From Figure 5.13, we can aso
easily figure out which item appearsin the rule head mostly. Here item “Bike” appearsin
6 out of 10 rules as part of the rule head.

@30 Assgociation Rule Yisualization

| Eges

Bilke

‘ {“oat Rule Head
Lock

Purnp
Bike FurnphBlk Eggs Fike Egps Lock Ceat Coad NI
Eggs Coat Puraphilk Exgs LMEIE

Confidence *~ Support ++

Figure 5.13 3-D Visualization Window in Association Rule Software
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We used Java 3D, which is a standard extension to the JDK 2, to develop our
visualization tool. The Java 3D API is a hierarchy of Java classes which serve as the
interface to a sophisticated three-dimensional graphics rendering and sound rendering
system [SUN1999]. A Java 3D program creates instances of Java 3D objects and places
them into a scene graph data structure. Basically there are five steps to create a Java 3D

program, asillustrated in Figure 5.14 [SUN1999].

1. Create a Canvas3D Object

2. Create a SimpleUniverse object which references the earlier Canvas3D object
a. Customize the SimpleUniverse object

3. Construct content branch

4. Compile content branch graph

5. Insert content branch graph into the Locale of the SimpleUniverse

Figure 5.14 Simple Recipe for Writing Java 3D Programs using SimpleUniverse.

As shown in Figure 5.14, in order to develop a Java 3D program, we first need to
create a Canvas3D object to serve as the canvas of the 3D objects. The second step uses a
SmpleUniverse class to reduce the time and effort needed to create the view branch
graph. The SmpleUninverse class hides |ots of the details of Java 3D programming. As a
result, the programmer has more time to concentrate on the content. The key point in Java
3D programming is step 3, where the programmer develop his own 3D objects and
contents. Once al the objects are ready, step 4 and 5 just compile the content branches
and add them to the SmpleUniverse class. Because this class is associated with the
Canvas3D object we created earlier, the content branches we developed will be displayed

on the screen.
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The implementation of our 3-D visualization is in class “ThreeD_General.class’.
Figures 5.15 and 5.16 are from our implementation and they illustrate the above five

steps using SmpleUniverse class. Next we walk through the code in these figures.

/I main method to implement the 3D rule visuaization
public void paint(Graphics g)
{
Canvas3D canvas3D = new Canvas3D(null); ---Step 1
this.getContentPane().add(" Center", canvas3D);

/I SimpleUniverse is a Convenience Utility class
SimpleUniver se simpleU = new SimpleUniver se(canvas3D); --- Step 2

BranchGroup scene = createSceneGr aph(); -—-Step3& 4
/I Thiswill mov.e.:.the ViewPlatform back a bit so the objectsin the scene can be viewed.
simpleU.getViewingPlatform().setNominal ViewingTransform();

// add all the sub branch groups into the map.
simpleU.addBranchGraph(scene); ---Step 5

} // end of 'paint’

Figure 5.15 Paint Method in ThreeD_General Class

As shown in Figure 5.15, a Canvas3D object canvas3D is created in the first step.
In the second step, a SimpleUniverser object simpleU is created which references the
earlier created Canvas3D object canvas3D. Asto step 3, we classified al the objects into
several categories and designed one function for each of these categories. These
categoriesinclude:

¢ [temsinrule head of al therules

o X-axis

o X-axislabe
e Y-axis

e Y-axislabe
e Support

* Confidence
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»  Support label
» Confidence label
* [temsname.

The purpose of classify these categories is for the convenience of update our
visualization system. For example, if we want to change the color of support, we only
need to modify one function that is related to this category. These functions are
devel oped to create the objects we needed.

Figure 5.16 illustrates one of these functions createSceneGraph. This function is
used to create all the items in rule head of each rule. Each item is represented with a
small cube and al the cubes are displayed on a three-dimensional graph. The default of
the cube shows only one face. To show more than one face of the cube, we need to rotate
the cube. Rotation can be made about X-axis, Y-axis or Z-axis. The method rotX, rotY
and rotZ in class Transform3D are used to for this task. In order to rotate about two axes,
two different transformations should be specified for a single visual object. Figure 5.16
shows how to combine the two transformations to make a complex rotation.

After we specified the rotation, we began to retrieve the data from RULE table.
All theitemsin rule head of each rule are retrieved and stored in a Vector. Then acubeis
created for each item retrieved using the class ColorCube. The position of each cube in
the three-dimensional graph is set by the setTrandation method in Transform3D class.
The parameter of method setTrandation is a Vector 3f object, which stores the position of
each cube in three-dimensional graph.

After al the cubes have been created, we compile these objects in the content
branch in step 4. Compiling the content branch converts it to a more efficient form, thus

this step is used for the optimization.
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public BranchGroup createSceneGraph()  // create the items

I Create the root of the branch graph
BranchGroup objRoot = new BranchGroup();
Appearance app = new Appearance();

TransformGroup objRotate = null;

Transform3D transform = new Transform3D();

Transform3D transformZ = new Transfor m3D();
transform.rotX(Math.P1/6.0d);

transformzZ.rotZ(Math.P1/2.0d); // rotateto adjust the viewer’s color
transform.mul(transfor mz);

for(int i=0;i<rcount;i++)

{
Vector vCurHead = new Vector();

String TotalHead = vHead.elementAt(i).toString().trim();

StringTokenizer st = new StringTokenizer(TotalHead, ",");

while (st.hasMoreTokens()) /l add all itemsin the current rule head
vCurHead.addElement(st.nextToken().trim());  // into the vCurHead

for(int j=0;j<vCurHead.size();j++)

int jPos=0;
String CurHead = vCurHead.elementAt(j).toString().trim();
for(int w=0;w<vDisctHead.size();w++)

if (CurHead.equal s(vDisctHead.elementAt(w).toString().trim()))

jPos=w;
break;

}
} !/l end of for(w)’
/I create ColorCube objects
transform.setTransl ation(new V ector3f( (float)(-1.0+i*0.1), (float)(-0.6+jPos*0.1), (float)(-1.2-
jPos*0.1)));
objRotate = new TransformGroup(transform);
obj Rotate.setCapability(TransformGroup. ALLOW_TRANSFORM_WRITE);
obj Rotate.setCapability(TransformGroup. ALLOW_TRANSFORM_READ);
objRoot.addChild(objRotate);
objRotate.addChild(new ColorCube(0.03));
} // end of inner for’
} !/ end of outer for’
/I Let Java 3D perform optimizations on this scene graph.
objRoot.compile(); ---Step 4
return objRoot;
} [/ end of CreateSceneGraph method

Figure 5.16 Content Branch for Itemsin the Rule Head of All Rules
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Asin rule table module, in the 3-D visualization module, all the operators that we
used for database access, such as ‘LIKE’, ‘IN’, ‘NOT’, ‘AND’, ‘OR’, *>’, efc, are
standard operators. As a consequence, using JDBC, all the operations in our visualization
tool areidentical for any DBMS. No extra code is necessary for different DBMSs. So our

visualization tool is purely independent of specific DBMS.



CHAPTER 6
CONCLUSION AND FUTURE WORK

6.1 Conclusion

We first discussed the architectures of JDBC application. Between 2-tier and 3-
tier architectures, 2-tier is chosen because no business logic is incorporated and hence
addition of atier adds complexity without any gains for what we are trying to do. Next,
the advantages and disadvantages of two data mining architecture aternatives “Cache-
Mine” and “ SQL-based” are analyzed.

We used association rule mining to compare these two architecture alternatives.
Intelligent Miner is chosen as the representative of “Cache-Mine’ architecture. We
implemented three mining agorithms (K-Way Join, 2-Groupby, and Subquery) based
purely on SQL-92 and three ones (Vertical, GatherJoin, and GatherJoin Variant) based on
SQL-OR. We did some performance tests over DB2 for Intelligent Miner and our six
approaches using the different sized synthetic generated data sets. Based only on the
performance, Cache-Mine is better than SQL-based approach, but it needs additional
space to store the data in the local disk. In additional, SQL-based approach can utilize the
SQL capability provided by DBMS. But the Cache-Mine does not have this advantage.
Everything (including results) is stored in the local disk.

We implemented the mapping of intermediate rule table into the format that the

user can understand easily. A visuaization module that includes rule table and 3-D

86
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graphics was developed to help the user get the interested information easier through

sorting, and filtering functions.

Besides the performance, there are some more differences between Intelligent

Miner and our implementation:

Intelligent Miner can use the data stored in flat file and DB2 database.
However, our software can access the data stored in multiple DBMS through
JDBC, such as DB2 and Oracle.

Intelligent Miner can only use the data from one table. However, we can use
the data from multiple tables through join/union operation.

In Intelligent Miner, “Transaction ID” and “Item” has to be asingle field. But
we extend this ability to process multiple fields. The user can specify which
fields are used as “ Transaction ID” and which fields are used as “Item”.
Intelligent Miner uses Directed — Graph as the base of rule visuaization
technique. As described in Chapter 4, it uses ‘item-item’ relationship so it
works well in the situation of few rules. However, our visualization module
uses ‘rule-item’ relationship so that it can display more rules at one time. In
additional, the rule sorting and filtering ability of our visualization module
gives the user more flexibility and efficiency in managing and understanding
the association rule.

Intelligent Miner stores the results in the local disk as flat file. In our
implementation, we store the generated rules in the database. Once the rules
are stored in database, they can be easily handled because of the SQL

capabilities.
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6.2 Contributions

In this thesis, we have addressed the following problems.

Implement three SQL-92 approaches and three SQL-OR approaches using
Oracle stored procedures for association rule mining.

Once the intermediate rule table is generated, map back to the final rule table
so that each item has a self-explain name

Compare the performance of three SQL-92 approaches and three SQL-OR
approaches using different sized synthetically generated data sets.

Conduct the scale-up experiments for our six approaches using different sized
synthetically generated data sets.

Develop a visualization module using Java 3D to help the user manage and
understand the association rules.

Compare our implementation with one of the commercial data mining tools
Intelligent Miner in various aspects, such as user interface, input/output, and

visualization.

6.3 Future Work

We have identified the following work for future research.

1.

In our implementation, although we can access different DBMSs, the data
from only one DBMS (either DB2 or Oracle) are used for mining. We plan to
provide the user an interface to generate the input data set using the data from
al the databases the user specified and apply our mining algorithm to the

generated input data set.
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2. We plan to extend the existing mining operations. In this thesis, we
implemented “association rule” using a series of SQL queries. The next step is
to explore the possibility of implement the other mining operations, such as
classification and clustering using SQL queries.

3. Asto the visualization module, we plan to add more function such as zoom in,
zoom out so that the user can have more control over the rules.

4. We plan to explore the possibility of developing some of the operations for
association rule as the operators of the database. These operations include
SaveTid(), which is used to create the tid list for each item, and CountAndy(),
which is used to get the number of common elements from k CLOBS, etc. If
these operations can be part of the database operators, it will make mining for
an association rule easier. Further, we can explore the possibility of
developing the whole association rule mining as one operator of the database
so that the user only needs to give the DBMS the input table. If this happens,
there is no clear boundary of issuing a basic query command and a data

mining operation to the user.



APPENDIX
ASSOCIATION RULE MINING EXAMPLE USING KWAY JOIN

This appendix lists one example input data set, the intermediate candidate sets C,,
the intermediate frequent item set Fy, and the fina association rules using KWay Join

approach with minimum support of 50%, and minimum confidence of 50%.

Input Data Set

We use a small input data set that has 4 transactions (different TID denotes
different transactions). Each transaction has 2 or 3 items. The total number of records is
12. Table A-1 shows the items of al the transactions. For example, for the transaction

where TID=100, the items are “Milk, Eggs, Bread”.

Table A-1 Example of Input Data Set

TID ITEM
100 Milk
100 Eggs
100 Bread
200 Sugar
200 Eggs
200 Cake
300 Milk
300 Sugar
300 Eggs
300 Cake
400 Sugar
400 Cake

90
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In order to convert the string format of item to integer format, we generate a
“description” table for each item. We can do this by scanning the input data set. For each
distinct item, we assign it a distinct number. Table A-2 shows the description table of the

example input data set. It has 5 distinct items.

Table A-2 Example of Description Table

ITEM NUMBER | DESCRIPTION
Milk
Sugar
Eggs
Bread
Cake

G WNF

The “Mapping” processisto convert all the TID and ITEM from string format to
integer format. Based on Table A-1 and Table A-2, the final input data set is generated

and stored in database as Table A-3.

Table A-3TIDITEM Table

TID ITEM
100
100
100
200
200
200
300
300
300
300
400
400

GIINOIWINRFRPIOIWIN AW
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The rest of this appendix shows all the intermediate results of association rule
mining using Kway Join approach for the given data set. We show the multiple passes of

support counting phase followed by the rule generation phase.

Support Counting:

There are four passes for the given data set.

First Pass

The candidate set C; and frequent item sets F; are shown in Table A-4 and

Table A-5 respectively.

Table A-4 Table“Cy”

ITEM1
1

2
3
4
5

Table A-5 Table“Fy”

ITEM1 COUNT
1 2
2 3
3 3
5 3

Second Pass

The candidate set C, and frequent item sets F, are shown in Table A-6 and

Table A-7 respectively.



Third Pass
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Table A-6 Table “Cy’

ITEM1

ITEM2

AIWWININNRFRFPFPFP

aab~ b wobhwN

Table A-7 Table“Fy”

ITEM1 ITEM2 COUNT
1 3 2
2 3 2
2 5 3
3 5 2

Table A-9 respectively.

The candidate set C3 and frequent item sets F3 are shown in Table A-8 and

Table A-8 Table “C3”

ITEM1 ITEM2 ITEM3
1 2 3
1 2 5
1 3 4
1 3 5
2 3 5
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Table A-9 Table“F5”

ITEM1 | ITEM2 | ITEM3 | COUNT
2 3 5 2

Rule Generation:

Combining the frequent sets of three passes Fi, F», F3, we can get the final

frequent setstable FISETS in Table A-10.

Table A-10 Frequent Item Sets“FISETS’

ITEM; | ITEM;, | ITEM3 | ITEM, | ITEMs | ITEMg | ITEM7 | ITEMg | NULLM | COUNT

NWNNFOTWN -
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elo]ololo]el el ele]
elo]ololo]el el ele]
elo]ololo]el el ele]
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B WWWWNNNN
N N (GO NN (WO (W [N

All of the subsets of each record in table FISETS are generated and stored in table
“Primary-Rules’. The records of table “Primary-Rules’ are shown in Table A-11. Using
table “FISETS’ and table “Primary-Rules’, the association rules can be generated and
stored in the table “Rules’, which isillustrated in Table A-12. Lastly the final association
rules can be presented to the user as Table A-13 by joining “Description” and “Rules’

tables.
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Table A-11 Table “Primary-Rules’

TITEM,

TITEM,

TITEM;

TITEM,

TITEMs

TITEMs

TITEM,
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TNULLM

TRULEM | TCOUNT
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Table A-12 Table “Rules’

ITEM,

ITEM,

ITEM3

ITEM,

ITEMs

ITEMs¢

ITEM,

ITEMsg

NULLM

RULEM

CONF SUP

100 | 50

66.67 | 50

66.67 | 50

66.67 | 50

100 | 75

100 | 75

66.67 | 50

66.67 | 50

66.67 | 50

66.67 | 50

66.67 | 50

100 | 50

66.67 | 50
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elo]eololololo] o]l o] ol el el el
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100 | 50
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Table A-13 Final “Association Rules’

RuleHead | Symbol | RuleBody | Confidence(%) | Support(%)
Milk => Eggs 100 50
Eggs => Milk 67 50
Sugar => Eggs 67 50
Eggs = Sugar 67 50
Sugar => Cake 100 75
Cake => Sugar 100 75
Eggs => Cake 67 50
Cake => Eggs 67 50
Sugar => Eggs, Cake 67 50
Eggs => Sugar, Cake 67 50
Cake => Sugar, Eggs 67 50
Sugar, => Cake 100 50
Sugar, = Eggs 67 50
Eggs, Cake => Sugar 100 50
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