
MINING AND VISUALIZATION OF ASSOCIATION RULES
OVER RELATIONAL DBMSs

By

HONGEN ZHANG

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2000

To my family

iii

ACKNOWLEDGMENTS

I thank all the people who may be related to this research directly and indirectly.

Special gratitude should be given to my advisor, Dr. Sharma Chakravarthy, for his

excellent advice and support in this research. His tireless patience and great

understanding of data mining are the keys for the success of this thesis. I am grateful to

Dr. Stanley Su and Dr. Joachim Hammer for agreeing to serve on my supervisory

committee, for teaching great classes that have helped me in the understanding of

database, and for reading and commenting on my thesis.

I would also like to thank Sharon Grant for maintaining a very nice research

environment. She takes care of everything and she is always available in times of need.

Special thanks go to Mahesh Dudgikar for discussions related to this research project.

The most appreciation from me should be given to my family for their endless

love. They always encouraged me during times of difficulty. Without their support, this

work would not have been possible.

iv

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS..iii

LIST OF TABLES ..vii

LIST OF FIGURES.. ix

ABSTRACT ..xii

CHAPTERS

1 INTRODUCTION... 1

1.1 Categories of Data Mining ..1
1.1.1 Association Rule ..1
1.1.2 Clustering ...3
1.1.3 Classification..3
1.1.4 Sequential Patterns ...5
1.1.5 Text Mining..6
1.1.6 Active Data Mining ..7

1.2 Problem Statement ..7
1.3 Thesis Organization...10

2 ARCHITECTURE AND FEATURES OF JDBC AND ORACLE 12

2.1 JDBC ...12
2.2 Features of Oracle ...14

3 ALTERNATIVE APPROACHES TO ASSOCIATION RULE MINING................... 18

3.1 Related Work...18
3.1.1 Apriori Algorithm ..18
3.1.2 Architectural Alternatives ..19

3.1.2.1 Cache-Mine ...19
3.1.2.2 SQL-based Approach ..20
3.1.2.3 Integrated Approach ..21

3.2 Support Counting ..22
3.2.1 Candidate Set Generation...22
3.2.2 SQL 92 ...24

v

3.2.2.1 K-Way Join ...24
3.1.2.2 2-GroupBy...25
3.1.2.3 Sub-Query ...26

3.2.3 SQL-OR..28
3.2.3.1 Vertical ..28
3.2.3.2 GatherJoin ...33
3.2.3.3 GatherJoin Variant ..37

3.3 Rule Generation...39
3.3.1 Intermediate Rule Generation ..39
3.3.2 Mapping Back Process ...42

3.4 Performance Testing..43
3.4.1 Synthetic Data Generation..43
3.4.2 Performance of SQL-92 and SQL-OR Approaches and Intelligent Miner44
3.4.3 Scale-Up Experiments..47

4 VISUALIZATION OF ASSOCIATION RULES... 48

4.1 Related Work...48
4.1.1 Classification of Data Visualization Techniques ...49
4.1.2 Rule Table ..50
4.1.3 2-D and 3-D Rule Visualization...50

4.1.3.1 Directed Graph ..51
4.1.3.2 2-D Matrix...52
4.1.3.3 3-D Visualization ..54

4.2 Rule Table ...55
4.3 3-D Visualization ..57

5 SYSTEM IMPLEMENTATION .. 62

5.1 System Architecture ..64
5.2 Main Window..65
5.3 LogIn Module..66
5.4 Rule Generator ..70
5.5 Visualization Module ..72

5.5.1 Rule Table ..72
5.5.2 3-D Visualization ...76

6 CONCLUSION AND FUTURE WORK.. 86

6.1 Conclusion...86
6.2 Contributions...88
6.3 Future Work ..88

APPENDIX ASSOCIATION RULE MINING EXAMPLE USING KWAY JOIN........ 90

LIST OF REFERENCES .. 97

vi

BIOGRAPHICAL SKETCH... 100

vii

LIST OF TABLES

Table Page

1.1 Example Basket Data Set ... 2

1.2 Example Training Set... 4

1.3 Sequences of an Example Database ... 5

2.1 TIDITEM Table ... 16

2.2 tidT Table ... 17

3.1 Table TIDT Contains All Tids and Count for Each Item... 29

3.2 Table TITEM Contains All Items and Count for each Tid .. 33

3.3 Frequent Item Sets Table ‘FISETS’ ... 39

3.4 Table ‘Primary-Rules’.. 40

3.5 Table ‘Rules’ .. 41

3.6 Example of “Description” Table .. 42

3.7 Synthetic Data Sets... 44

4.1 Example of Association Rules in Rule Table Format .. 50

4.2 Example of Association Rules in Rule Table Format .. 55

A-1 Example of Input Data Set .. 90

A-2 Example of Description Table .. 91

A-3 TIDITEM Table .. 91

A-4 Table “C1” ... 92

A-5 Table “F1”.. 92

viii

A-6 Table “C2” ... 93

A-7 Table “F2”.. 93

A-8 Table “C3” ... 93

A-9 Table “F3”.. 94

A-10 Frequent Item Sets “FISETS” ... 94

A-11 Table “Primary-Rules”.. 95

A-12 Table “Rules” .. 95

A-13 Final “Association Rules” ... 96

ix

LIST OF FIGURES

Figure Page

1.1 Decision Tree ... 4

1.2 Active Data Mining.. 8

2.1 Architecture of Two-tier Model ... 13

2.2 Architecture of Three-tier Model ... 13

2.3 Architecture of JDBC... 14

2.4 PL/SQL Stored procedure “SaveTid” .. 16

3.1 Apriori Algorithm .. 19

3.2 Cache-Mine Architecture ... 20

3.3 SQL-based Architecture ... 21

3.4 Architecture for the Integrated Approach .. 22

3.5 SQL Query for Candidate Sets Ck.. 22

3.6 Prune step for Candidate Sets Ck.. 23

3.7 The Query of Candidate Set Generation and Pruning.. 24

3.8 Query Diagram and SQL Query of K-Way Join.. 25

3.9 Query of 2-GroupBy .. 26

3.10 Query Diagram and SQL Query of Sub-Query.. 27

3.11 PL/SQL Stored Procedure SaveTid() ... 30

3.12 Stored Procedure CountAnd2()... 32

3.13 Oracle Stored Procedure SaveItem().. 34

x

3.14 Oracle Stored Procedure Comb2().. 36

3.15 Support Counting of GathorJoin .. 37

3.16 Support Counting of GathorJoin Variant ... 38

3.17 Association Rules Generation Query ... 41

3.18 Performance Comparison of SQL-92 Approaches and Intelligent Miner for Data Set
T5D10K... 45

3.19 Performance Comparison of SQL-92 Approaches and Intelligent Miner for Data Set
T5D100K... 46

3.20 Performance Comparison of SQL-92 Approaches and Intelligent Miner for Data Set
T10D10K... 46

3.21 Scale-Up Experiments for SQL-92 Approaches .. 47

4.1 Association Rules Represented by Directed Graph ... 51

4.2 Association Rules Represented by 2-D matrix .. 52

4.3 Association Rules Represented by 2-D Matrix .. 53

4.4 Multiple Items in Rule Head .. 54

4.5 3-D Visualization of Association Rules ... 56

4.7 Association Rules that have more than 1 Item in Rule Body... 59

4.8 Association Rule Visualization .. 61

5.1 System Architecture ... 65

5.2 Main Window of Association Rule Software... 66

5.3 Login Window of Association Rule Software ... 68

5.4 btnConnect_actionPerformed Method ... 69

5.5 Parameter Input Window of Association Rule Software ... 71

5.6 Retrieve All the Table Names Available in the Database .. 72

5.7 Rule Table Visualization Window with Filter Function .. 74

5.8 Show_Rule Method.. 74

xi

5.9 Rule Table Visualization Window with Sort Function .. 75

5.10 Different Categories of Rules Based on # of Items in the Rule Head.......................... 77

5.11 Options Window in Association Rule Software .. 78

5.12 Constraints Window in Association Rule Software... 79

5.13 3-D Visualization Window in Association Rule Software... 80

5.14 Simple Recipe for Writing Java 3D Programs using SimpleUniverse......................... 81

5.15 Paint Method in ThreeD_General Class... 82

5.16 Content Branch for Items in the Rule Head of All Rules... 84

xii

Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Master of Science

MINING AND VISUALIZATION OF ASSOCIATION RULES
OVER RELATIONAL DBMSs

By

Hongen Zhang

August 2000

Chairman: Sharma Chakravarthy
Major Department: Computer and Information Science and Engineering

As more and more data are collected and stored in multiple databases, data mining

over different relational DBMSs is becoming increasingly important. Usually the data

sets are stored in some different DBMSs, such as DB2, Oracle, Sybase, etc. Data mining

software should be able to use the data from all of these DBMSs. In this thesis we use

JDBC (Java Database Connectivity) to achieve this goal. The test DBMSs we used are

Oracle and DB2.

We implement the association rule algorithm in the form of SQL queries. Three

algorithms in SQL-92 (K-Way Join, 2-Groupby, and Subquery) and three algorithms in

SQL-OR (Vertical, GatherJoin and GatherJoin Variant) are implemented and compared

to each other based on their performance on different kinds of synthetic generated data

sets. Scale-Up experiments have also been conducted for these six approaches.

xiii

We develop an association rule visualization system, which includes tabular form

and three-dimensional graphics. By providing the user sorting and filtering abilities, this

rule visualization system makes it flexible and efficient for the user to manage and

understand the association rules. As a result, this visualization system becomes an

essential part of our association rule software.

Finally, we compare our association rule software with one of the commercial

data mining tools (Intelligent Miner from IBM) in various aspects, such as data

accessibility, user interface, input/output, and rule visualization.

1

CHAPTER 1
INTRODUCTION

As computers are used in more and more areas, large volumes of data have been

collected and stored in the database continuously. This kind of data includes the

transaction records in supermarkets, banks, stock markets, and telephone companies.

With the increasing volume of the stored data, an important issue is to figure out how to

find the useful information from these massive history data. Data mining, also known as

knowledge discovery in databases, is such a research area to extract implicit,

understandable, previously unknown and potentially useful information from data. In

Section 1.1 we briefly describe different categories of data mining, such as association

rule, clustering, classification, sequential pattern, text mining and active data mining. The

limitations of currently available commercial data mining software (especially for

association rule) are discussed in Section 1.2 and in Section 1.3, we outline the thesis

organization.

1.1 Categories of Data Mining

1.1.1 Association Rule

The typical example of association rule is the Basket data analysis [AGR1994]. In

a given database D, all the records consist of two attributes: transaction ID (TID), and the

item the customer bought in the transaction. Usually the item attribute in each record

contains only one item, so in the database, there will be more than one row for a

2

transaction ID since each transaction will involve more than one item. Table 1.1 shows

one example of the basket data set with four transactions.

Table 1.1 Example Basket Data Set

TID ITEM

100 1
100 3
100 4
200 2
200 3
200 4
300 1
300 2
300 3
300 5
400 2
400 5

The formal definition of association rule is the following [AGR1993]: Let Γ= {i1,

i2, …., im} be a set of literals, called items. Let D be a set of transactions, where each

transaction T is a set of items such that T ⊆ Γ. Associated with each transaction is a

unique identifier, called its TID. We say that a transaction T contains X, a set of some

items in Γ, if X ⊆ T. An association rule is an implication of the form X ⇒ Y, where X ⊂

Γ, Y ⊂ Γ, and X intersection Y = φ. The support and confidence of an association rule (X

⇒ Y) are calculated by the following two equations:

nsTransactioOfNumberTotalThe

YandXContainsThatnTransactioOfNumberThe
Support

.=

XContainsThatnTransactioOfNumberThe

YContainsThatnTransactioOfNumberThe
Confidence =

3

The rule X ⇒ Y holds in the transaction set D if its support and confidence are

equal to or greater than the user specified values. The goal of association rules is to find

the relationship between any combination of items.

1.1.2 Clustering

The goal of clustering is to identify homogeneous groups of objects based on the

values of their attributes [AGR1998]. For a given set of objects (each object has several

attributes), the task of clustering is to group some objects together (we call these objects

are in one cluster) so that the objects in the same cluster are more similar to each other

than to objects in a different cluster. The technique of solving clustering problems falls

into two categories: partitional and hierarchical [AGR1998]. For the partitional

clustering, the K-means method is widely used. This method first determines K cluster

representatives, then assign each object to the cluster with its representative closest to the

object such that the sum of the distances squared between the objects and their

representatives is minimized. For the hierarchical clustering, it usually starts by placing

each object in its own cluster and then merges these atomic clusters into larger and larger

clusters until all objects are in a single cluster.

1.1.3 Classification

The classification problem can be described as the following [MEH1996]: For a

given database D, each record consists of several attributes. Among all the attributes, one

attribute works as class label. Such a database is called as training set. Table 1.2 shows

an example of training set with 3 attributes: age, car type, and risk. Attribute risk (its

value is either high or low) is the class label. The goal of classification is to analyze the

training set and to develop an accurate description or model for each class using the

attributes presented in the data. Many classification models such as neural networks,

4

genetic models, and decision trees etc, have been developed to solve this kind of

problem. Figure 1.1 shows the decision tree of the training set provided by Table 1.2.

This decision tree shows that all the persons who are less than 25 years old have a high

risk, while in the group of person who are older than 25 years old, the persons who drive

sports cars have high risk, and those who drive other vehicles have low risk. The ability

to solve classification problems quickly and efficiently is very important to several

businesses, such as car insurance companies. In recent years, several algorithms, such as

SLIQ [MEH1996] and SPRINT [SHA1996], have been developed to solve classification

problems efficiently on large data sets.

Table 1.2 Example Training Set

Age Car Type Risk

23 Family High
17 Sports High
43 Sports High
68 Family Low
32 Truck Low
20 Family High

Figure 1.1 Decision Tree

Age < 25

High

Car Type in {Sports}

Hig Low

5

1.1.4 Sequential Patterns

The formal definition of sequential patterns is given in Agrawal and Srikant

[AGR1995c]. For a given database D, which consists of customer transactions. Each

transaction consists of the following fields: customer-ID, transaction-time, and the items

purchased in the transaction. An item-set is a non-empty set of items, and a sequence is

an order list of item-sets. We say a sequence A <a1, a2, a3, …, an> is contained in another

sequence B <b1, b2, b3, …, bn> if there exist integers i1<i2<i3<…<in, such that a1⊆ bi1,

a2⊆ bi2, …, an⊆ bin. For example, the sequence < (3) (4,5) (8)> is contained in <(7) (3,8)

(9) (4,5,6) (8)>, because (3) ⊆ (3,8), (4,5) ⊆ (4,5,6), and (8) ⊆ (8). A customer sequence is

a sequence of item-sets for each customer-ID. The support of a sequence s is defined by

the following equation:

SequencesofNumberTotal

SequenceThisContainsThatSequenceofNumberThe
Support =

For the example data set in Table 1.3, We can find all the sequences that have

support > 25%, which are < (30) (90) >, and < (30) (40,70) >.

Table 1.3 Sequences of an Example Database

Customer Customer Sequence
1 < (30) (90) >
2 < (10, 20) (30) (40, 60, 70) >
3 < (30,50,70) >
4 < (30) (40,70) (90) >
5 < (90) >

The goal of sequential patterns is to find the sequences that have greater than or

equal to a certain user pre-specified support. Usually the process of finding sequential

6

patterns consists of the following phases: sorting phase, finding the large item-set phase,

transformation phase, sequence phase, and maximal phase.

1.1.5 Text Mining

In the real world, it is very common to find the hidden relationship in the larger

text database. For example, it is very useful to find whether the company is shifting its

interest from one domain to another. Text mining is very good at handling this situation

since the database in full of text, instead of the numeric data. The goal of text mining is to

discover the trends in the text database. Lent et al. [LEN1997] developed a system to

discover the trends in text database. Their basic idea is to use the existing data mining

algorithms and shape query language (SDL) [AGR1995b]. For a given database D of

documents (each document consists of text fields and a timestamp, the unit of text is a

word and a phrase is a list of words), they begin with cleansing and parsing the data, and

then separating the documents based on their timestamp. Each word will be assigned a

transaction ID based on its document timestamp. Then the sequential pattern algorithm

will be applied for the transformed data to produce the results. The results will be queried

using shape query to find the increasing or decreasing trend of the occurrence frequency.

The purpose of using shape query language is that a “blurry” match (cares about the

overall shape, but not the specific details) is possible. The following is an example of

shape query language:

(in 5 (and (no less 2 (any up Up)) (no more 1 (any down Down))))

This statement shows that we are interested in the subsequences five intervals

long that have at least two ups (either up or Up) and at most one down (either down or

Down).

7

1.1.6 Active Data Mining

Active data mining combines the technology of data mining and active database.

The basic idea [AGR1995a] is to divide the whole data into several sub-data sets. The

data mining algorithms will be applied to each sub-data set and the results for each sub-

data set will be produced. Because usually the data sets come from data warehousing and

thus the volume of data is very huge, dividing the data set to several sub-data sets will not

lose the significance of the results. All the rules generated in each sub-data set will be

stored in the rule database with some parameters, such as the support and confidence for

association rule problems. When the new data comes in, and the volume of new data

reached a certain level, the data mining algorithm will be applied to the new data set

again and then check the rule database. If one certain rule does not exist, it just stores the

rule into the rule database. If this rule exists in the rule database, it will update the

parameters of the existing rules in the rule database. The database uses trigger to monitor

the parameters in the rule database. Once the condition is met, the specific trigger will be

fired. ECA (Event Condition Action) model [CHA1995] can be used for more complex

triggers. Figure 1.2 shows how active data mining works.

One example of active data mining is that the supermarket can use association

rule algorithm and active data mining to monitor the sale trends. Once the support or

confidence parameter for a specific rule reaches the pre-set value, the trigger will be fired

and the manager of the supermarket will be notified.

1.2 Problem Statement

Although lots of efforts have been put in the association rule area, and some

commercial products, such as MineSet [SGI2000], and Intelligent Miner [IBM2000],

8

have been developed, there are several limitations in these commercial products. Some of

them are as follows:

Figure 1.2 Active Data Mining

Limitation #1: The first limitation is that the existing software can not connect to

multiple database management systems. These existing commercial products can use the

data from the flat file, or from one specific DBMS as the input data set. For example, the

Intelligent Miner can use the text file or the data stored in DB2 database as the data

source. But in reality, some users may have data stored in multiple database management

systems, so it is very helpful to have the mining software have this ability.

Data mining

Algorithm

Data mining

Algorithm

Data mining

Data mining

Algorithm

Algorithm

Update
Parameters

Large Data
Set

Sub-data
set 1

Sub-data
set 2

Sub-data
set n

Rule
Database
With
parameters

 New Data Rules
Is the rule
existing?

N Store the rule

Y

 Fire the Trigger

If some parameters
meet the condition

9

Solution: We try to address this problem using Java Database Connectivity

(JDBC) so that our software can connect to different database management systems with

very few extra codes.

Limitation #2: The second limitation is that most of the existing softwares use

Cache-Mine architecture [THO1998]. In this architecture, the whole data set is copied to

the local disk from remote database or remote flat file. Then all the computations are

done in the local machine. In additional, only one algorithm is available for one mining

operation.

Solution: Instead of Cache-Mine architecture, we will use another alternative

SQL-based approach [THO1998] in this thesis. Six different approaches will be

implemented since they have advantages as well as disadvantages for the different data

sets. Three of the approaches are based purely on SQL-92 and three of them are based on

SQL-OR.

Limitation #3: The third limitation is that the existing products do not provide the

powerful rule visualization tools. One powerful visualization tool should have not only

the good presentation method, but also a good graphic user interface to provide the user a

convenient interactive environment.

Solution: We use “rule-item” relationship in the association rule visualization to

replace the “item-item” relationship [SGI2000] or directed graph [IBM2000]. Java 3D, a

new feature provided by JDK1.2, will be used to implement the three-dimensional

display. In additional, a table format visualization module will also be implemented. For

both table format and three-dimensional display, sorting and filtering functions will be

10

provided through the graphic user interface. It will make our visualization module easier

to use.

Limitation #4: The fourth limitation is also related to the data source. Right now

all the available products can only use the data from one table, but in reality, it is very

common to collect the data from different tables as the input data set. So it is very useful

to have the mining software to have this ability.

Solution: We will provide the user an interface to choose the tables he wants to

use as the data source. For each table, the user can specify the columns that he interests.

Once the system got the information, a set of JOIN/UNION operations will be applied to

generate the suitable input data set.

Limitation #5: The fifth limitation is that in the existing products, all of them use

only one mining algorithm. But in fact some algorithms are better than the other ones for

the different kinds of input data sets. It is useful to have different algorithms available for

different kinds of data sets.

Solution: We plan to implement a Mining Optimizer so that our system will have

the capability to decide which one algorithm should be applied to the particular data set

automatically based on the metadata of the given data set.

In this thesis, we will address the solutions of first three limitations. The solutions

of limitation #4 and #5 are addressed in Mahesh’s thesis [DUD2000].

1.3 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we describe the

architecture of JDBC, and explain how the JDBC works with different DBMSs. Some

special characteristics of Oracle, such as stored procedure, will also be introduced in that

11

chapter. The six different association rule mining algorithms are presented in Chapter 3.

In Chapter 3, we also provide the performance testing using different kinds of data sets to

verify our analysis of advantage and disadvantage of each mining algorithm.

Visualization of association rules is detailed in Chapter 4. In Chapter 5, we describe the

major parts of the interfaces as well as the architecture of our software. Finally the

conclusions and future work are in Chapter 6.

12

CHAPTER 2
ARCHITECTURE AND FEATURES OF JDBC AND ORACLE

In this Chapter, We begin with the introduction of the function of JDBC and the

architecture of JDBC application in Section 2.1. Besides the standard SQL statements, we

also use some additional features provided by the specific DBMS to improve the

performance. Section 2.2 describes these specific features for Oracle.

 2.1 JDBC

JDBC (Java Database Connectivity) developed by Sun [SUN2000], is a Java API

for connecting to and executing SQL statements in different Database Management

Systems. JDBC includes a set of classes and interfaces written in Java. They are low-

level APIs, and are used to invoke SQL commands directly. There are two kinds of

models for database access: two-tier and three-tire. In the two-tier model, the client

makes request to a DBMS associated with the server, through JDBC by sending SQL

statements to the server and when the results are ready, the server will send the results

back to the client. In the Three-tier model, instead of sending the request directly to the

database server, the client sends requests to an intermediate server (termed application

server), which applies some business logic, and then the SQL statements are sent to the

database server by the application server. Finally, the result will be returned to the client

through the application server. The advantage of the Three-tier model is that the business

logic can be implemented in the application server, so when the business logic changes,

only the program in the application server needs to be modified accordingly, and it is not

13

necessary to update the program in the clients. Figures 2.1 and 2.2 show the architecture

of two-tier and three-tier models, respectively. Because we are not incorporating any

business logic and hence addition of a tier adds complexity without any gains for what

we are trying to do, we choose the two-tier architecture for our data-mining project.

Figure 2.1 Architecture of Two-tier Model

Figure 2.2 Architecture of Three-tier Model

Figure 2.3 illustrates the architecture of JDBC. It has a driver manager that is

responsible for choosing JDBC driver to be used for making a connection. JDBC-ODBC

bridge driver is used to use ODBC through JDBC to access some of the less popular

DBMS (such as MS Access) if JDBC drivers have not been implemented for them.

The most important advantage of using JDBC compared to using ODBC is that

JDBC drivers are written completely in Java, they are platform independent; ODBC is

not completely platform independent and is not appropriate for direct use from Java since

it uses a C interface.

Java
Application JDB

request

result DBMS

Client Machine Database Server

Java
Application

request

result

Business
Logic JDB

request

result

DBMS

Client Machine Database ServerApplication Server

14

2.2 Features of Oracle

In real-life scenarios, mining is typically performed on large volumes of data.

Hence it is appropriate to include as much computation as possible on the server side.

There are some significant advantages to perform computation inside the Server:

Executing functions inside the server means that these functions can be shared by

all of the database applications, so it is not necessary to duplicate codes in each

application.

Figure 2.3 Architecture of JDBC

Execution of function inside the server can minimize the network traffic because

some of the business logic can be processed in the Server, and only the results are sent

back to the client. In DB2, when a UDF (User Defined Function) is created, there is an

option of “FENCED” or ‘UNFENCED” modes [CHA1998]. The FENCED option

Database Server

 Java Application

 JDBC Driver Manager
JDBC API

JDBC-
ODBC

 ODBC Drivers

Oracle
Driver

DB2
Driver

15

specifies that the UDF must always be run in an address space that is separate from the

database, while UNFENCED option specifies that the UDF runs in the same address

space as the database. FENCED option causes a performance penalty because of the

process-switching when the UDF is called, but it protects the database integrity against

the accidental damage that might be caused by the function. Oracle does not support this

option.

Oracle provides some mechanisms, such as external procedures, and PL/SQL

procedures to perform computations inside the server. Oracle supports an external

procedure which uses the DLL (Dynamic Link Library) written in the host programming

language such as C. However, Oracle 8.0 does not support the DLL written in Java. If we

used a Java external procedure, we had to use Java Native Interface to communicate

between Java and C programs, as our client is written in Java. This would be inefficient

and increase the implementation effort as well.

 PL/SQL stored procedure is another mechanism support by Oracle that meets our

requirements. PL/SQL is a complete, block-structured programming language, and it

provides some additional features that standard SQL does not have, such as loops,

conditional statements, etc. Because the SQL DML (data manipulation language) can be

included inside the PL/SQL stored procedure directly, the results can be saved by

inserting the results into the table. This feature is different from those of DB2. DB2’s

table function does not create a physical table, but in Oracle, a physical table can be

created and values stored in the table. Figure 2.4 illustrates the format of one PL/SQL

stored procedure named ‘SaveTid’. A PL/SQL stored procedure begins with the

16

declaration section followed by the procedure body. The actual code of SaveTid() is

presented and explained in detail in Chapter 3.

Figure 2.4 PL/SQL Stored procedure “SaveTid”

Suppose there is a table TIDITEM.

Table 2.1 TIDITEM Table

Item Tid
1 100
1 300
2 100
2 200
3 200

The purpose of stored procedure ‘SaveTid’ is to accept one parameter ‘rowcount’

of table TIDITEM. The data of table TIDITEM will be processed row by row. After

processing, the Tid with the same Item will be combined together to form ‘T_Tids’, and

the number of Tid with the same Item will be stored in ‘T_cnt’, and finally, the three

columns ‘T_item’, ‘T_cnt’, and ‘T_tids’ will be inserted into table tidT. The data type

CLOB (Character Large Object) is used for ‘T-tids’ because sometimes the length of

T_tids will exceed the maximum length of VARCHAR2 and CLOB can contain up to

CREATE OR REPLACE PROCEDURE SaveTid(rowCount IN INTEGER) AS
Declaration Section

BEGIN
Retrieve the data from source table ‘TIDITEM’ one row by one row using

cursor;
Processing the data, combine ‘Tid’ for each same ‘Item’;
Insert the values into the table ‘tidT’;

END;

17

two gigabytes (231-1 bytes). The ‘INSERT’ statement in the above example will insert the

following values into table tidT as shown in Table 2.2.

Table 2.2 tidT Table

T_item T_cnt T_tids

1 2 100, 300
2 2 100, 200
3 1 200

If table TIDITEM has millions of rows, and after processing by the stored

procedure, table tidT has only 1,000 rows, the network traffic will be reduced

tremendously since all of the computing work will be done inside the server machine.

18

CHAPTER 3
ALTERNATIVE APPROACHES TO ASSOCIATION RULE MINING

In this chapter, we begin with reviewing the related work on association rule

mining algorithms and different architectural alternatives in Section 3.1. The association

rule mining can be broadly divided into two phases: support counting phase and rule

generation phase. In Section 3.2, we present three approaches using pure SQL92 and

another three approaches using stored procedures in Oracle for the support counting

phase. The algorithm for rule generation is presented in Section 3.3. In Section 3.4, we

provided some performance testing using different kinds of data sets for the six

approaches.

3.1 Related Work

3.1.1 Apriori Algorithm

Agrawal and Srikant [AGR1994] introduced the apriori algorithm for association

rule mining with input data set from flat files. This algorithm is shown in Figure 3.1.

In Figure 3.1, line 1 is the first pass. In the first pass, first it just simply counts

occurrences for each item in all the transactions, then keeps all the items whose

occurrences are no less than the given minimum support. These items consist of the

frequent 1-itemsets (F1). The loop from line 2 to line 11 is called a pass. In a particular

pass k, there are two phases. In the first phase, a function “apriori-gen” is used to

generate the candidate itemsets Ck using the frequent itemsets Fk-1 of the previous pass. In

the second phase, all the transactions in the data set are scanned. For each transaction, a

19

function “subset” is called to determine the candidates in Ck that are contained in a given

transaction, then the support of candidates in Ck is counted. At the end of pass k, the

candidate itemsets Ck is examined to determine which of the candidates are frequent.

Those candidates consist of the frequent itemsets Fk of pass k. The loop continues until

Fk-1 is empty, indicating that there is no more frequent itemsets.

The six support counting approaches and rule generation process presented in this

thesis are based on the framework of the above apriori algorithm.

Figure 3.1 Apriori Algorithm

3.1.2 Architectural Alternatives

There are several architectural alternatives for integrating data mining with

relational DBMS [THO1998]. These alternatives include Cache-Mine, SQL-based

approach, and Integrated approach. In this section, we discuss these three architectures.

3.1.2.1 Cache-Mine

Figure 3.2 illustrates the architecture of Cache-Mine approach. In this

architecture, the GUI resides in the client side and the mining kernel can reside in the

1) F1 = {frequent 1-itemsets};
2) for (k=2; Fk-1<>0, k++) do begin
3) Ck = apriori-gen(Fk-1); // generate new candidate sets
4) for all transactions t ∈ D do begin
5) Ct = subset(Ck, t); // find all candidate sets contained in t
6) for all candidates c ∈ Ct do
7) c.count++;
8) end
9) end
10) Fk = {c ∈ Ck | c.count ≥ minsup};
11) end
12) Answer = ∪ k Fk;

20

client side (2-tier architecture), or in the application server (3-tier architecture). When the

user sends the mining request to the mining kernel, the mining kernel reads data from

DBMS only once and copies the data in flat files on local disk for later use. After the

mining algorithm is executed, the results will be first stored in flat files on local disk, then

sent back to the database server and stored in DBMS. This architecture works very

efficiently because once the data are stored on local disk, the access to the data will be

very fast. One of the disadvantages is that it requires additional disk space to store the

data, especially when the data set is very large.

Figure 3.2 Cache-Mine Architecture

3.1.2.2 SQL-based Approach

The architecture of SQL-based approaches is illustrated in Figure 3.3. When the

user specifies the mining operation, a preprocessor will generate the appropriate SQL

statements for this operation. All the intermediate results are stored in the database. The

SQL statements can be executed on the SQL-92 relational engine, as well as on the newer

object-relational (SQL-OR) engine. SQL-OR provides some more features, such as

CLOB, user-defined function, table function, stored procedure, etc. For this architecture,

all the data and results are stored in the database and the data is never copied into a flat

 GUI
 or
Mining Language

Mining

Reques

Mining

Kernel

 File

DBMS

 Data/
 Result

DB

21

file on the local disk. This alternative has the following advantages: (1) Additional disk

space is not needed to store the data. (2) The database indexing and query processing

capabilities can be exploited as much as possible. (3) The DBMS check-pointing and

space management can be especially valuable for long-running mining algorithms on

huge volumes of data. (4) SQL-based mining algorithm is very portable if we use only

the standard SQL features. The disadvantage is that it is not as fast as Cache-Mine

alternative because accessing the database generally is slower than accessing a flat file on

the local disk.

Figure 3.3 SQL-based Architecture

3.1.2.3 Integrated Approach

In the integrated approach, mining operations are integrated into the DBMS and

become part of the database query engine. This approach is illustrated in Figure 3.4. In

this approach, DBMS encapsulates all the detailed SQL queries for each mining

operation, and gives it a new SQL command. The user can invoke the mining operation

by executing the corresponding SQL command with appropriate parameters. In this case,

there is no clear boundary between simple queries and mining operations to the users. All

they have to do is to issue a SQL command whether it is a simple query or a mining

operation. This approach is most convenient for the users.

Extended
 SQL Preprocessor

 +
 Optimizer

(Object)
Relational
DBMS

DB

GUI

SQL-92

SQL-OR

22

Figure 3.4 Architecture for the Integrated Approach

3.2 Support Counting

For the support counting phase, first we need to generate the candidate sets Ck for

each pass k. Below, we show SQL formulations for candidate set generation.

3.2.1 Candidate Set Generation

For each pass k, Ck is a superset of the set of all frequent k-itemsets and it can be

generated by Fk-1, which is the frequent set of the previous pass k-1. Fk-1 has k-1 columns:

Item1, Item2, …, Itemk-1. Because all the k-1 items in each tuple of Fk-1 are

lexicographically ordered, Ck can be obtained using the query shown in Figure 3.5.

Figure 3.5 SQL Query for Candidate Sets Ck

Extended SQL
 or
 GUI

(Object)
Relational
 DBMS

DB

SQL-92

SQL-OR
Enhanced
Optimizer

Insert into Ck

Select I1.item1, I1.item2, …, I2.itemk-1, count(*)
From Fk-1 I1, Fk-1 I2

Where I1.item1 = I2.item1 AND
I1.item2 = I2.item2 AND

…
…

I1.itemk-2 = I2.itemk-2 AND
I1.itemk-1 < I2.itemk-1

23

As an illustration, if F3 is {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}}, then

the candidate sets of the next pass C4 are {1, 2, 3, 4}, and {1, 3, 4, 5}.

Next, in the k-itemset of Ck, if there is any (k-1)-subset of Ck that is not in Fk-1, we

need to delete that k-itemset from Ck. We call it “prune step”. In the above example, one

of the 4-itemset in C4 is {1, 3, 4, 5}. This 4-itemset needs to be deleted because one of the

3-item subsets {3, 4, 5} is not in F3. Because there are k subsets of length (k-1)-subset in

Ck, we can do a k-way join to check if all the (k-1)-subsets are in Fk-1. As shown in

Figure 3.5, Ck has k columns: I1.item1, I1.item2, …, I1.itemk-1, I2.itemk-1. Since Ck is

generated using the joining of two Fk-1 tables, two (k-1)-subsets are guaranteed in Fk-1.

We only need to check if the remaining k-2 subsets are in Fk-1. This can be done using

additional joins by skipping one item at a time from the k-itemset. First we skip Item1 and

check if the subset (I1.item2, I1.item3, …, I1.itemk-1, I2.itemk-1) belongs to Fk-1, then we

skip Item2 to check if the subset (I1.item1, I1.item3, …, I1.itemk-1, I2.itemk-1) belongs to Fk-

1. This process is repeated until Itemk-2 is reached. Figure 3.6 illustrates the join

predicates. In Figure 3.6, I1, I2, I3, … and Ik refer to frequent set Fk-1.

Figure 3.6 Prune step for Candidate Sets Ck

I1.item2 = I3.item1

…
I1.itemk-1 = I3.itemk-2

I2.itemk-1 = I3.itemk-1

...

...
I1.item1 = Ik.item1

…
I1.itemk-1 = Ik.itemk-2

I2.itemk-1 = Ik.itemk-1

Skip Item1

Skip Itemk-2

24

Combing Figure 3.5 and Figure 3.6, we can put the candidate sets generation and

pruning step into the same query. Figure 3.7 illustrates the diagram of such a query.

Figure 3.7 The Query of Candidate Set Generation and Pruning

3.2.2 SQL 92

In this section, we present three approaches using SQL-92, which does not

include DBMS specific features, such as user defined function, stored procedure, etc.

3.2.2.1 K-Way Join

For the support counting phase, K-Way join is the most basic algorithm. In the kth

pass, the k input data tables are joined over the ‘tid’ column, and then the result is joined

with the Candidate Set table Ck with the ‘item’ column from k tables and ‘item1, item2,

…, itemk’ from Ck. Finally, the results are grouped by item1, item2, …, itemk and filtered

by the count(*). Only the tuples that have count(*) greater than or equal to the user

specified minimum support will be kept in the frequent set Fk. Figure 3.8 illustrates the

query diagram and SQL query to obtain frequent set Fk for the K-Way join approach.

Fk-1 I1 Fk-1 I2

Fk-1 I3

 … … Fk-1 Ik

I1.item1 = I2.item1

…

…

I1.itemk-2 = I2.itemk-2

I1.itemk-1 < I2.itemk-1

 (Skip item1)
I1.item2 = I3.item1

…

…

I1.itemk-1 = I3.itemk-2

I2.itemk-1 = I3.itemk-1

 (Skip itemk-2)
I1.item1 = Ik.item1

…

…

I1.itemk-1 = Ik.itemk-2

I2.itemk-1 = Ik.itemk-1

25

Figure 3.8 Query Diagram and SQL Query of K-Way Join

3.1.2.2 2-GroupBy

2-GroupBy is one of the algorithms to avoid multi-way joins. Figure 3.9 shows

the query of 2-GroupBy. At pass k, there are two phases. In the first phase, two tables Ck

and input data set T are joined based on whether the “item” of a (tid, item) pair of T is

equal to any of the k items of Ck. Then the results are grouped by (item1, item2, …, itemk,

tid), and only the tuples that have occurrence equal to k will be kept and stored in table

T t1 T t2

T tkt1.tid = t2.tid

tk-1.tid = tk.tid

 … …

Ck

t1.item = Ck.item1

...

…

…

tk.item = Ck.itemk

Group by item1, item2, …, itemk

Having count(*) > minsup

Insert into Fk

Select item1, item2, …, itemk, count(*)
From Ck, T t1, T t2, …, T tk

Where t1.item = C1.item1 AND
t2.item = C2.item2 AND

…
tk.item = Ck.itemk AND
t1.tid = t2.tid AND
t2.tid = t3.tid AND

…
tk-1.tid = tk.tid

Group by item1, item2, …, itemk

Having count(*) > minsup

26

“temp”. After this phase, we get all (itemset, tid) pairs that the tid supports the itemset in

table “temp”. In the second phase, we can simply group the item sets by (item1, item2, …,

itemk) and keep only the item sets that have occurrence greater than or equal to the user

specified minimum support.

Because Oracle does not support s query such as “Select * From <table name 1>

As <table name 2>”, we need to materialize table “temp” first in the query as shown in

Figure 3.9. However, in DB2, the query for table “temp” can be nested into the second

query without the need for the materialization of temp table.

Figure 3.9 Query of 2-GroupBy

3.1.2.3 Sub-Query

Sub-query approach uses the common prefixes between the itemsets in the

candidate sets Ck in the support counting phase. At pass k, we use a series of k sub-

queries to get the frequent item set Fk. For a certain value l (1 ≤ l ≥ k), table Dl consists of

the distinct itemsets formed by the first l columns of Ck. The sub-query Ql first finds all

Create Table temp AS
Select item1, item2, …, itemk, count(*)
From Ck, T
Where item = Ck.item1 OR

item = CK.item2 OR
...

item = Ck.itemk

Group by item1, item2, …, itemk, tid
Having count(*) = k

Insert into Fk

Select item1, item2, …, itemk, count(*)
From temp
Group by item1, item2, …, itemk

Having count(*) > minsup

27

tids that match the distinct itemsets of Dl. Then the result is joined with the input data

table T and table Dl+1 to get Ql+1. Finally, the frequent item set Fk can be get by grouping

Qk and only keep the tuples that have their occurrence greater than or equal to the user

specified minimum support. Figure 3.10 illustrates the SQL query and query diagram of

this approach.

Figure 3.10 Query Diagram and SQL Query of Sub-Query

Rl-1.iteml = Dl.iteml

 …

Rl-1.iteml-1 = Dl.iteml-1

 T tl

item1, item2, …., iteml, tid

 Subquery Ql

Subquery Ql-
Select distinct
item1, …, iteml from Ck

Rl-1
Dl

tl.item = Dl.iteml

Insert into Fk

Select item1, item2, …, itemk, count(*)
From (Subquery Qk) t
Group by item1, item2, …, itemk

Having count(*) > minsup

Subquery Ql (for any l between 1 and k)
Select item1, item2, …, iteml, tid
From T tl, (Subquery Ql-1) as Rl-1,

(Select distinct item1, item2, …, iteml From Ck) as Dl

Where Rl-1.item1 = Dl.item1 AND
 …

Rl-1.iteml-1 = Dl.iteml-1 AND
Rl-1.tid = tl.tid AND
tl.item = Dl.iteml

Subquery Q0: No subquery Q0

28

3.2.3 SQL-OR

Besides the standard SQL, each DBMS has some particular features that extend

the ability of standard SQL. For example, DB2 allows the user to create “User Defined

Function” (UDF) using a (host) programming language. The UDF is registered with the

server and executed either within or outside the server address space (unfenced and

fenced, respectively). The unfenced mode executes more efficiently than runs on the

client side in the Client/Server computing environment. In Oracle, the user can define

“Stored Procedure,” which uses PL/SQL (Oracle’s procedural extensions to SQL), as the

programming language. The advantages of using stored procedure in Oracle have been

listed in Chapter 2. In this section, we present three approaches using stored procedure.

For DB2, we use the UDF feature for the following three approaches. The algorithms that

use UDF in DB2 are presented in Mahesh’s thesis [DUD2000]. The major difference of

DB2 UDF and Oracle Stored procedure is that UDF uses a host programming language,

while Oracle Stored procedure uses PL/SQL.

In stored procedure, the table names that are used in the stored procedure should

exist when the stored procedure is compiled because Oracle checks the syntax during

compiling. So we can not pass the table name as a parameter to the stored procedure.

Because of this reason, we reserve “TIDITEM” as the input table name. Each time,

before applying the mining algorithm, we rename the input table to “TIDITEM”, then

table “TIDITEM” is renamed back to the original name after the mining algorithm is

finished.

3.2.3.1 Vertical

In the vertical approach, first we transfer the input data into a vertical form by

creating a table “TIDT” which has three columns: ITEM, CNT and TIDS. ITEM is the

29

distinct item from all transactions, TIDS contains all the tids that associated with this

particular item, and CNT is the number of tid for a particular item. For the sample data

set mentioned in Chapter 1, the “TIDT” table has the tuples shown in Table 3.1:

Table 3.1 Table TIDT Contains All Tids and Count for Each Item

ITEM CNT TIDS
1 2 100, 300
2 3 200, 300, 400
3 3 100, 200, 300
4 1 100
5 3 200, 300, 400

After the input data have been transformed into the vertical form like Table 3.1,

the support counting phase begins from pass 1. In each pass, the candidate sets Ck is

generated. The frequent sets Fk for each pass can then be produced using Ck and tidT

tables. The implementation of this approach using Oracle stored procedures is as follows.

Step 1: Transform the input data into the vertical form. The vertical form of

the input data set can be obtained using a stored procedure “SaveTid”, which is illustrated

in Figure 3.11. This stored procedure first declares a cursor “Select tid, item From

TIDITEM Order by item”, then scans the declared cursor one tuple by one tuple. As

shown in Figure 3.11, there are two loops. The first loop is used to count the number of

transactions for each distinct item. The distinct items and the corresponding CNT are

stored in the table TIDT. In the second loop, for each tuple in the cursor, it checks if the

“item” is the same as the previous “item”. If they are the same, the tid is adding into the

column “TIDS”. Otherwise, the value of “TIDS” is stored in the table TIDT for this

particular item, and then reset the column “TIDS” to the value of column “tid”. When

finished scanning the table, the input table will be transformed into the vertical form.

30

Figure 3.11 PL/SQL Stored Procedure SaveTid()

CREATE OR REPLACE PROCEDURE SaveTid(rowCount IN INTEGER) AS
 Vtid NUMBER; Vitem NUMBER; VtempItem NUMBER;
 Vcount NUMBER; Vbuffer VARCHAR2(32000); Vleng INTEGER; Vtids CLOB;
 CURSOR c1 IS
 SELECT tid, item FROM TIDITEM order by item;
 CURSOR c2 IS
 SELECT tid, item FROM TIDITEM order by item;
BEGIN

Vcount:=0;
FOR emp_rec IN c1 LOOP

if c1%ROWCOUNT=1 then
VtempItem:=emp_rec.item;

end if;
Vtid := emp_rec.tid;
Vitem := emp_rec.item;
if Vitem=VtempItem then

Vcount:=Vcount+1;
else

insert into tidT1 values(VtempItem, Vcount, empty_clob());
VtempItem:=Vitem;
Vcount:=1;

end if;
if c1%ROWCOUNT=rowCount then

insert into tidT1 values(VtempItem, Vcount, empty_clob());
end if;

END LOOP;
FOR emp_rec2 IN c2 LOOP

if c2%ROWCOUNT=1 then
VtempItem:=emp_rec2.item;

end if;
Vtid := emp_rec2.tid;
Vitem := emp_rec2.item;

 if Vitem=VtempItem then
Vbuffer:=CONCAT(RTRIM(Vbuffer), TO_CHAR(Vtid));
Vbuffer:=CONCAT(RTRIM(Vbuffer), ’,’);

else
Vleng:=LENGTH(Vbuffer);
select tids into Vtids from tidT1 where item=VtempItem;
dbms_lob.write(Vtids, Vleng-1, 1, Vbuffer);
update tidT1 set tids = Vtids where item=VtempItem;
VtempItem:=Vitem;
Vbuffer:=’’;
Vbuffer:=CONCAT(RTRIM(Vbuffer), TO_CHAR(Vtid));
Vbuffer:=CONCAT(RTRIM(Vbuffer), ’,’);

end if;
if c2%ROWCOUNT=rowCount then

Vleng:=LENGTH(Vbuffer);
select tids into Vtids from tidT1 where item=VtempItem;
dbms_lob.write(Vtids, Vleng-1, 1, Vbuffer);
update tidT1 set tids = Vtids where item=VtempItem;

end if;
END LOOP;

END;

31

Step 2: Get the frequent set F1 in pass 1. Because we already have the table

TIDT, which contains the columns ITEM, CNT, and TIDS, it is very easy to get the

frequent set F1. We can just keep the ITEM where CNT is greater than or equal to the

given minimum support. This can be done using a query “Insert into F1 select ITEM,

CNT from TIDT Where CNT>=:minsupport”.

Step 3: In pass k (k>=2), get the candidate set Ck. Table Ck has k columns

item1, item2, …, itemk. It can be obtained using the method described in Section 3.1

Step 4: In pass k (k>=2), get the frequent set Fk. For the support counting, we

need to get the occurrence of each tuple in Ck. After we have the table “TIDT”, we can

obtain the occurrence of “item1, item2, …, itemk” by counting the number of tids in the

intersection of these items. In this example (Table 3.1), for the item set “2, 3”, the

common tids of the items “2” and “3” are “200”, and “300”, so the number of common

tids is 2. Therefore, the support of item set “2, 3” is 2. We created a series of stored

procedures “CountAndk” for this task. The stored procedure “CountAndk” takes k

parameters (each parameter is a tid-list), and return the number of common tids among

these k tids. . Figure 3.12 illustrates the stored procedure “CountAnd2”. “CountAnd2”

first read the two tid-lists into two arrays, then the number of common tids among these

two tid-lists can be obtained by scanning these two arrays. We can apply the stored

procedure “CountAndk” for each tuple in Ck to get the number of common tid for each

item set. The item sets Ck can be expanded to the frequent sets Fk by adding the support

count for each tuple into the table Ck and then delete the tuples whose support count is

less than the user specified minimum support.

32

Figure 3.12 Stored Procedure CountAnd2()

CREATE OR REPLACE FUNCTION countAnd2(in1 CLOB, in2 CLOB) RETURN NUMBER IS returnCount
NUMBER;

 TYPE vType IS VARRAY(10000) OF VARCHAR2(50);
 v1 vType; v2 vType; pos1 INTEGER; pos2 INTEGER; item VARCHAR2(20);
 curChar CHAR(1); patt VARCHAR2(10); len INTEGER; clob1Len INTEGER;
 clob2Len INTEGER; loopCount INTEGER; lastItem INTEGER;
BEGIN
 returnCount:=0;
-- initialize the varrays
 v1:=vType(NULL);
 v2:=vType(NULL);
 patt:=’,’; -- pattern i s ’,’
 clob1Len := DBMS_LOB.GETLENGTH(in1); --get the clob1 length
 item:=’’;
 loopCount:=0;
-- dbms_output.put_line(’Varray 1’);
 FOR i IN 1..clob1Len LOOP
 curChar:=DBMS_LOB.SUBSTR(in1,1,i);
 IF curChar=patt THEN

loopCount:=loopCount+1;
v1(loopCount):=item;
v1.extend;
item:=’’;

-- dbms_output.put_line(’v1(’ ||loopCount|| ’) : ’ || v1(loopCount));
 ELSE

item:=item || curChar;
 END IF;
 END LOOP;
 loopCount:=loopCount+1;
 v1(loopCount):=item;
-- dbms_output.put_line(’v1(’ ||loopCount|| ’) : ’ || v1(loopCount));
-----------Till here for VARRAY v1
 clob2Len := DBMS_LOB.GETLENGTH(in2); --get the clob1 length
 item:=’’;
 loopCount:=0;
-- dbms_output.put_line(’Varray 2’);
 FOR i IN 1..clob2Len LOOP
 curChar:=DBMS_LOB.SUBSTR(in2,1,i);
 IF curChar=patt THEN

loopCount:=loopCount+1;
v2(loopCount):=item;
v2.extend;
item:=’’;

-- dbms_output.put_line(’v2(’ ||loopCount|| ’) : ’ || v2(loopCount));
 ELSE

item:=item || curChar;
 END IF;
 END LOOP;
 loopCount:=loopCount+1;
 v2(loopCount):=item;
-- dbms_output.put_line(’v2(’ ||loopCount|| ’) : ’ || v2(loopCount));
-----------Till here for VARRAY v2
-- now have to loop till the end of the arrays and meanwhile count the common items.
 clob1Len := v1.COUNT;
 clob2Len := v2.COUNT;
 FOR i IN 1..clob1Len LOOP

FOR j IN 1..clob2Len LOOP
IF v1(i)=v2(j) THEN

returnCount:=returnCount+1;
END IF;

END LOOP;
 END LOOP;
 return (returnCount);
END;

33

3.2.3.2 GatherJoin

The GathoerJoin approach first transer the input data into a vertical form by

creating a table “TITEM” which has three columns: TID, CNT and ITEMS. TID contains

the distinct tids in all transactions. ITEMS contain all the items that belong to a particular

tid. CNT is the number of items for the particular tid. The table TIETM created from the

example input data set is shown in Table 3.2.

Table 3.2 Table TITEM Contains All Items and Count for each Tid

TID CNT ITEMS
100 3 1, 3, 4
200 3 2, 3, 5
300 4 1, 2, 3, 5
400 2 2, 5

After the input data has been transformed into the vertical form like Table 3.2, the

support counting phase begins from pass 1. In each pass, the candidate sets Ck is not

needed because we already have the table TITEM. The frequent item sets Fk can be

produced based purely on table TITEM. The implementation of this approach using

Oracle stored procedures is as follows.

Step 1: Transform the input data into the vertical form. The vertical form of

the input data set can be obtained using a stored procedure “SaveItem”, which is shown

in Figure 3.13. This stored procedure first declares a cursor “Select tid, item From

TIDITEM Order by tid”, then scans the declared cursor one tuple by one tuple. As shown

in Figure 3.13, there are two loops. The first loop is used to count the number of items for

each distinct transaction. The distinct transactions and the corresponding CNT are stored

in the table TITEM.

34

Figure 3.13 Oracle Stored Procedure SaveItem()

CREATE OR REPLACE PROCEDURE SaveItem(rowCount IN INTEGER) AS
Vtid NUMBER; Vitem NUMBER; VtempTid NUMBER; Vcount NUMBER;
Vbuffer VARCHAR2(32000); Vleng INTEGER; Vitems CLOB;
CURSOR c1 IS
 SELECT tid, item FROM TIDITEM order by tid;
CURSOR c2 IS
 SELECT tid, item FROM TIDITEM order by tid;

BEGIN
 Vcount:=0;

FOR emp_rec IN c1 LOOP
if c1%ROWCOUNT=1 then

VtempTid:=emp_rec.tid;
end if;
Vtid := emp_rec.tid;
Vitem := emp_rec.item;

 if Vtid=VtempTid then
Vcount:=Vcount+1;

else
insert into titem1 values(VtempTid, Vcount, empty_clob());
VtempTid:=Vtid;
Vcount:=1;

end if;
if c1%ROWCOUNT=rowCount then

insert into titem1 values(VtempTid, Vcount, empty_clob());
end if;

END LOOP;
FOR emp_rec2 IN c2 LOOP

if c2%ROWCOUNT=1 then
VtempTid:=emp_rec2.tid;

end if;
Vtid := emp_rec2.tid;
Vitem := emp_rec2.item;

 if Vtid=VtempTid then
Vbuffer:=CONCAT(RTRIM(Vbuffer), TO_CHAR(Vitem));
Vbuffer:=CONCAT(RTRIM(Vbuffer), ’,’);

else
Vleng:=LENGTH(Vbuffer);
select items into Vitems from titem1 where tid=VtempTid;
dbms_lob.write(Vitems, Vleng-1, 1, Vbuffer);
update titem1 set items = Vitems where tid=VtempTid;
VtempTid:=Vtid;
Vbuffer:=’’;
Vbuffer:=CONCAT(RTRIM(Vbuffer), TO_CHAR(Vitem));
Vbuffer:=CONCAT(RTRIM(Vbuffer), ’,’);

end if;
if c2%ROWCOUNT=rowCount then

Vleng:=LENGTH(Vbuffer);
select items into Vitems from titem1 where tid=VtempTid;
dbms_lob.write(Vitems, Vleng-1, 1, Vbuffer);
update titem1 set items = Vitems where tid=VtempTid;

end if;
END LOOP;

END;

35

In the second loop, for each tuple in the cursor, it checks if the “tid” is the same as

the previous “tid”. If they are the same, the item is adding into the column “ITEMS”.

Otherwise, the value of “ITEMS” is stored in the table TITEM for this particular tid, and

then reset the column “ITEMS” to the value of column “item”. When finished scanning

the table, the input table will be transformed into the vertical form.

Step 2: Get the frequent set F1 in pass 1. The frequent set F1 can be obtained by

querying the input table TIDITEM. We just keep the items that the occurrence is greater

than or equal to the given minimum support. The query “Insert into F1 Select item,

count(*) from TIDITEM Group by item Having count(*)>=:minsupport” should do it.

Step 3: In pass k (k>=2), get the frequent set Fk. Once we got the TITEM table,

we have stored all the items which has the same tid into one column (ITEMS). For the

support counting in pass k, we have a series of stored procedures “Combk” to find all the

k-item combinations of items in the column ITEMS. For example, for the third row of

Table 3.2 (TID=300), at pass 3, the stored procedure “Comb3” generates the following

combinations: {1,2,3}, {1,2,5}, {1,3,5}, and {2,3,5}. Figure 3.14 shows stored procedure

“Comb2”, which takes one parameter (item-list) and generates all the 2-item

combinations of items in the column ITEMS. As shown in Figure 3.14, it first reads the

item-list into an array, and then the 2-item combinations of items can be obtained by

scanning the array. In pass k, each tuple of table TITEM is processed using the stored

procedure “Combk” and the generated k-item combinations are stored in a table TTk

which has k columns: T_item1, T_item2, …, T_itemk. Finally, the support of each k-item

combination can be obtained easily by using the “Group By” query and the frequent item

36

sets Fk can be obtained by deleting all the tuples that has support less than the user

specified minimum support. The SQL syntax for this task is listed in Figure 3.15.

Figure 3.14 Oracle Stored Procedure Comb2()

CREATE OR REPLACE PROCEDURE Comb2(in1 NUMBER, in2 CLOB) AS

 TYPE vType IS VARRAY(10000) OF VARCHAR2(50);
 v1 vType;
 pos1 INTEGER; pos2 INTEGER; item VARCHAR2(20); curChar CHAR(1);
 patt VARCHAR2(10); len INTEGER; clob1Len INTEGER; loopCount INTEGER;
BEGIN
-- initialize the varrays
 v1:=vType(NULL);

 patt:=’,’; -- pattern i s ’,’

 clob1Len := DBMS_LOB.GETLENGTH(in2); --get the clob1 length

 item:=’’;
 loopCount:=0;
-- dbms_output.put_line(’Varray 1’);
 FOR i IN 1..clob1Len LOOP
 curChar:=DBMS_LOB.SUBSTR(in2,1,i);
 IF curChar=patt THEN

loopCount:=loopCount+1;
v1(loopCount):=item;
v1.extend;
item:=’’;

-- dbms_output.put_line(’v1(’ ||loopCount|| ’) : ’ || v1(loopCount));
 ELSE

item:=item || curChar;
 END IF;
 END LOOP;
 loopCount:=loopCount+1;
 v1(loopCount):=item;
-- dbms_output.put_line(’v1(’ ||loopCount|| ’) : ’ || v1(loopCount));
-----------Till here for VARRAY v1

 clob1Len:=v1.COUNT;

 FOR i IN 1..clob1Len-1 LOOP
FOR j IN i+1..clob1Len LOOP
 INSERT INTO T_COMB2 VALUES(v1(i), v1(j));
END LOOP;

 END LOOP;
 END;

37

Figure 3.15 Support Counting of GathorJoin

3.2.3.3 GatherJoin Variant

In Gather Join Variant approach, similar to GatherJoin approach, we first

transform the input data into the vertical form. However, this approach uses the candidate

sets Ck in each pass k for support counting phase. The implementation of this approach

using Oracle stored procedures is as follows.

Step 1: Transform the input data into the vertical form. This step is to

transform the input data from the format of “TID, ITEM” into the format of “TID, CNT,

ITEMS”. The same stored procedure “SaveItem”, which is described in detail in

GatherJoin approach, is used to complete this task. After transforming, a table TITEMS

that has three columns “TID, CNT, ITEMS” is produced.

Step 2: Get the frequent set F1 in pass 1. This step is also the same as step 2 in

GatherJoin approach. The query “Insert into F1 Select item, count(*) from TIDITEM

Group by item Having count(*)>=:minsupport” will get all the frequent items in pass 1.

Step 3: In pass k (k>=2), get the candidate sets Ck. The candidate sets Ck is

slightly different than those used in the other approaches. In this approach, table Ck has a

unique identifier for each tuple. So Ck has k+1 columns: oid, item1, item2, …, itemk

where oid is the unique identifier for each tuple. To get Ck, first we use the same

algorithm described in Section 3.2.1 (Candidate Set Generation) to generate the candidate

Insert into Fk

Select T_item1, T_item2, ..., T_itemk, count(*)
From TTk

Group by T_item1, T_item2, …, T_itemk

Having count(*) >= minimun support

38

sets, then we use the stored procedure “CreateCk” to add one column “oid” into the

candidate sets. “oid” will be filled with the unique number begin with 1.

Step 4: In pass k (k>=2), get the frequent sets Fk. After we get Ck, we create an

index “Cind” on table Ck based on column “oid”. For each tuple in table TITEM, the k-

item combination subset of column ITEMS are generated and stored in table TTk using

the same stored procedures “Combk” described in the GatherJoin approach. Then one

table TEMPk is created and populated by joining two tables Ck and TTk. Finally the

frequent item sets Fk can be obtained by joining tables Ck and TEMPk based on column

“oid”. Figure 3.16 illustrates the SQL query of how to get table TEMPk and Fk.

Figure 3.16 Support Counting of GathorJoin Variant

Insert into TEMPk

Select oid, count(*)
From Ck, TTk

Where item1 = T_item1

 And item2 = T_item2

…
…

 And itemk = T_itemk

Group by oid
Having count(*) >= minimun support

Insert into Fk

Select item1, item2, ..., itemk, cnt
From Ck, TEMPk,
Where TEMPk.oid = Ck.oid

39

3.3 Rule Generation

3.3.1 Intermediate Rule Generation

After the support counting phase is finished, all the frequent item sets were stored

in the tables Fx (F1, F2, F3, etc), where ‘x’ denotes the pass number. To generate the

rules, first all the records in these tables are combined together to form a new table called

‘FISETS’ (Frequent ItemSets). So the table ‘FISETS’ has the format of (ITEM1, ITEM2,

ITEM3, …, ITEMk, NULLM, COUNT). Table 3.3 shows one example of ‘FISETS’.

Table 3.3 Frequent Item Sets Table ‘FISETS’

ITEM1 ITEM2 ITEM3 ITEM4 ITEM5 ITEM6 ITEM7 ITEM8 NULLM COUNT
1 0 0 0 0 0 0 0 2 2
2 0 0 0 0 0 0 0 2 3
3 0 0 0 0 0 0 0 2 3
5 0 0 0 0 0 0 0 2 3
1 3 0 0 0 0 0 0 3 2
2 3 0 0 0 0 0 0 3 2
2 5 0 0 0 0 0 0 3 3
3 5 0 0 0 0 0 0 3 2
2 3 5 0 0 0 0 0 4 2

In Table 3.3, ‘NULLM’ indicates ‘null mark’, and ‘COUNT’ indicates the

number of items. For example, the last row means that item 2, 3, and 5 appear together

for 2 times.

For each row in FISETS, we need to find all the non-empty subsets using the

format of ‘rule head => rule body’. One example is that for the items ‘2, 3, 5’, all the

non-empty subsets are: 2 => 3, 5; 3 => 2, 5; 5 => 2, 3; 2, 3 => 5; 2, 5 => 3 and 3, 5 => 2.

For the rows of Table 3.3, the GenSubSets function generates the table Primary-Rules,

which is shown in Table 3.4.

40

TNULLM has the same mean as ‘NULLM’ in table ‘FISETS’. TRULEM means

‘rule null mark,’ which is the position of beginning of rule body. For example, the first

row in Table 3.4 indicates the rule 1 => 3 with support 2 and the last row indicates the

rule 3, 5 => 2 with support 2.

Table 3.4 Table ‘Primary-Rules’

TITEM1 TITEM2 TITEM3 TITEM4 TITEM5 TITEM6 TITEM7 TITEM8 TNULLM TRULEM TCOUNT

1 3 0 0 0 0 0 0 3 2 2
3 1 0 0 0 0 0 0 3 2 2
2 3 0 0 0 0 0 0 3 2 2
3 2 0 0 0 0 0 0 3 2 2
2 5 0 0 0 0 0 0 3 2 3
5 2 0 0 0 0 0 0 3 2 3
3 5 0 0 0 0 0 0 3 2 2
5 3 0 0 0 0 0 0 3 2 2
2 3 5 0 0 0 0 0 4 2 2
3 2 5 0 0 0 0 0 4 2 2
5 2 3 0 0 0 0 0 4 2 2
2 3 5 0 0 0 0 0 4 3 2
2 5 3 0 0 0 0 0 4 3 2
3 5 2 0 0 0 0 0 4 3 2

Because table primary-rules already includes all the rules with the minimum

support, to get the rules with minimum confidence, we only need to join the table

‘FISETS’ and ‘Primary-Rules.’ According to the definition of confidence:

XContainsThatnTransactioOfNumberThe

YContainsThatnTransactioOfNumberThe
Confidence =

where X means rule head, and Y means rule body. For each row in table Primary-Rules,

we need to find the same rule head from table ‘FISETS,’ and then divide the support by

the corresponding support from table ‘FISETS.’ Again for the last row in table ‘Primary-

Rules,’ 3, 5 => 2 with support 2, we can find from the ‘FISETS’ that the support with

41

item ‘3, 5’ is 2, so the confidence of rule ‘3, 5 => 2’ is 2/2=100%. Figure 3.17 is the join

query to accomplish this task.

Figure 3.17 Association Rules Generation Query

Table 3.5 shows all the rules that has the confidence >=50%.

Table 3.5 Table ‘Rules’

ITEM1 ITEM2 ITEM3 ITEM4 ITEM5 ITEM6 ITEM7 ITEM8 NULLM RULEM CONF SUP

1 3 0 0 0 0 0 0 3 2 100 50
3 1 0 0 0 0 0 0 3 2 66.67 50
2 3 0 0 0 0 0 0 3 2 66.67 50
3 2 0 0 0 0 0 0 3 2 66.67 50
2 5 0 0 0 0 0 0 3 2 100 75
5 2 0 0 0 0 0 0 3 2 100 75
3 5 0 0 0 0 0 0 3 2 66.67 50
5 3 0 0 0 0 0 0 3 2 66.67 50
2 3 5 0 0 0 0 0 4 2 66.67 50
3 2 5 0 0 0 0 0 4 2 66.67 50
5 2 3 0 0 0 0 0 4 2 66.67 50
2 3 5 0 0 0 0 0 4 3 100 50
2 5 3 0 0 0 0 0 4 3 66.67 50
3 5 2 0 0 0 0 0 4 3 100 50

Insert into Rules
Select TITEM1, TITEM2, …, TITEMk, TNULLM, TRULEM,

TCOUNT, (TCOUNT/COUNT)*100
From Primary-Rules t1, FISETS t2
Where (t1.titem1 = t2.item2 or t1.TRULEM<=1) AND

(t1.titem2 = t2.item3 or t1.TRULEM<=2) AND
…

 (t1.titemk= t2.itemk or t1.TRULEM<=k) AND
 t1.TRULEM = t2.NULLM AND
(TCOUNT/COUNT)*100 >= min confidence

42

3.3.2 Mapping Back Process

In the real data set, each item usually is represented by an understandable name

(such as bike, helmet, etc). However, compared to integer representation, text

representation takes more space and computation. Also, most of the algorithms used,

assume lexicographic ordering of items which is also straightforward in integer

representation. Hence, we use integers for internal representation and computing and

when the rules are generated, these integers are mapping back to the original name. This

task can be done by creating a “description” table. When we get the input data set, the

distinct items are selected, and each of them is assigned an integer number begin with 1.

The integer number can be incremented by 1 for each distinct item. So the table named

“description” can be constructed like the format in Table 3.6.

Table 3.6 Example of “Description” Table

Description Item Number

Bike 1
Helmet 2
Battery 3
Milk 4
Eggs 5
… …
… …

After the intermediate rules are generated (shown in Table 3.5), the final rule

table can be produced by joining the intermediate rule table and the “description” table.

Finally the rules will be presented by the following rule format:

Rule Head => Rule Body Confidence Support

43

The items can be put in rule head or rule body by checking the value of

“NULLM” and “RULEM” columns of each rule.

3.4 Performance Testing

The performance testing of these six approaches use the synthetic generated data

sets with different size. The description of these data sets is detailed in Section 3.4.1. In

Section 3.4.2, we compare the performance of SQL-92 and SQL-OR approaches with

Intelligent Miner. Scale-Up experiments are conducted with various sized data sets in

Section 3.4.3. All the experiments are conducted on IBM DB2 Universal (Version 5)

installed on Window NT Server with 2 processors, 256 MB main memory, and 12 GB

disk. For all the experiments, the minimum confidence is kept as a constant 50%. We run

3 times for each dataset/approach/support combination and take the average time of the

last 2 run as the average run time for this combination.

3.4.1 Synthetic Data Generation

We use the synthetic data generator from IBM to generate various data sets. This

data generator provides some options to generate different size of data sets. Some of the

options that we used are:

• -ntrans <number_of_transactions> (in 1000's) (default: 1000)

• -tlen avg_items_per_transaction (default: 10)

• -nitems number_of_different_items (in '000s) (default: 100000)

• -fname <filename> (write to filename.data and filename.pat)

We vary these options to generate different kinds of data sets that are listed in

Table 3.7. For example, if we want to have a data set with the following parameters:

• 200K transactions

44

• The average number of items in one transaction is 5

• The number of different items is 1000

• The data set is stored in file T5D200K.data

We can use the following command:

 gen lit –ntrans 200 –tlen 5 –nitems 1 –fname T5D200K

Table 3.7 Synthetic Data Sets

 Data Sets Number of
Records

Number of
Transactions

Average Number of Items
Per Transaction

T5D1K 5,605 1,000 5
T5D10K 54,948 10,000 5
T5D100K 547,282 100,000 5
T10D10K 105,369 10,000 10

In Table 3.7, we name the data sets using the following format: TmDn where m

means “the average number of items per transaction,” and n means “the number of

transactions”. For example, data set “T10D10K” means this data set has 10,000

transactions and the average number of items is 10. The number of different items in all

of these data sets is k = 1000. Usually k >> m, otherwise most of the transactions will

have the similar items.

3.4.2 Performance of SQL-92 and SQL-OR Approaches and Intelligent Miner

Three data sets T5D10K, T5D100K, and T10D10K were used to test the run time

of these approaches and Intelligent Miner with respect to four different minimum support

values 0.2%, 0.15%, 0.10% and 0.05%. The experiment results of these three data sets

are shown in Figure 3.18, Figure 3.19 and Figure 3.20 respectively. From these three

figures, we can make the following observations.

45

• The performance of Kway Join and Subquery are close when the minimum support

value is relatively larger. When the minimum support decreases, Subquery is worse

than Kway Join.

• 2-Groupby is the worst among all the SQL approaches. Even for the data set T5D10K

with support of 0.2%, it can not finish in 5 hours.

• Based purely on performance, Intelligent Miner is better than SQL approaches. This

is because Intelligent Miner is based on “Cache-Mine” architecture and it copies all

the data from database into the local disk when the mining begins. Once the data are

in the local disk, all the computations are local.

0

50 0

1 00 0

1 50 0

2 00 0

2 50 0

3 00 0

Kway
 Jo

in

Sub
qu

er
y

2-
Gro

up
by

M
ine

r

Kway
 Jo

in

Sub
qu

er
y

2-
Gro

up
by

M
ine

r

Kway
 Jo

in

Sub
qu

er
y

2-
Gro

up
by

M
ine

r

Kway
 Jo

in

Sub
qu

er
y

2-
Gro

up
by

M
ine

r

S u p p o rt

T
im

e
(s

ec
o

n
d

s)

P a ss 1 P a ss 2 P as s 3 P as s 4 P ass 5 P a ss 6 P a ss 7

0 .2 0% 0 .10 %0 .15% 0 .05 %

Figure 3.18 Performance Comparison of SQL-92 Approaches and Intelligent Miner for
Data Set T5D10K

46

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

Kway
 Jo

in

Sub
qu

er
y

2-
Gro

up
by

M
ine

r

Kway
 Jo

in

Sub
qu

er
y

2-
Gro

up
by

M
ine

r

Kway
 Jo

in

Sub
qu

er
y

2-
Gro

up
by

M
ine

r

Kway
 Jo

in

Sub
qu

er
y

2-
Gro

up
by

M
ine

r

S u p p o r t

T
im

e
(s

ec
o

n
d

s)

P a s s 1 P a s s 2 P a s s 3 P a s s 4 P a s s 5 P a s s 6 P a s s 7

0 .2 0 % 0 .1 0 % 0 .0 5 %0 .1 5 %

Figure 3.19 Performance Comparison of SQL-92 Approaches and Intelligent Miner for
Data Set T5D100K

0

5 00

10 00

15 00

20 00

25 00

30 00

Kway
 Jo

in

Sub
qu

er
y

2-
Gro

up
by

M
ine

r

Kway
 Jo

in

Sub
qu

er
y

2-
Gro

up
by

M
ine

r

Kway
 Jo

in

Sub
qu

er
y

2-
Gro

up
by

M
ine

r

S u p p o rt

T
im

e
(s

ec
o

n
d

s)

P a ss 1 P as s 2 P a ss 3 P as s 4 P a ss 5 P as s 6 P a ss 7

0 .20% 0 .15% 0 .10%

Figure 3.20 Performance Comparison of SQL-92 Approaches and Intelligent Miner for
Data Set T10D10K

47

3.4.3 Scale-Up Experiments

We used different synthetic generated data sets to study the scale-up behavior

SQL approaches with respect to increasing number of records. We varied the number of

records using the different number of transactions and the average number of items per

transaction. Figure 3.21 shows how these SQL approaches scales up as the number of

records is increased from 5K to 500K. The minimum support and confidence values are

constant for all the four data sets, which are 0.2% and 50% respectively.

From Figure 3.21 we observed that run time scale quite linearly as the number of

records increased. It also shows that both Kway Join and Subquery approaches have the

similar scale-up behavior. The 2-Groupby approach has not been included in Figure 3.21

because it can not complete even the smallest data sets T5D1K in 2-3 hours.

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

0 5 0 K 5 0 0 K

N u m b e r o f R e c o r d s

T
im

e
(s

ec
o

n
d

s)

K w a y J o in S u b q u e ry

Figure 3.21 Scale-Up Experiments for SQL-92 Approaches

48

CHAPTER 4
VISUALIZATION OF ASSOCIATION RULES

Visualization is the process of transforming data, information, and knowledge into

visual form making use of human’s natural visual capabilities [GER1998]. There are

three kinds of visualization categories in data mining [GRI1995]. The first approach is to

use visualization techniques to present the information obtained from mining the data in

the database, and this approach is conventionally being used in many data mining tools.

The second approach is to visualize the data in database before applying the data mining

algorithms. By using this approach, the user can have a better understanding of the data.

The third approach is to use visualization techniques to complement the data mining

techniques. It is also known as visual data mining allowing user to understand the data

mining process and the data mining models being used. In this chapter, we will focus on

the first approach by reviewing the related work of visualization in data mining, then we

provide our design of rule table and 3-D rule visualization system for association rule.

4.1 Related Work

In this section, we first summarize the different categories of data visualization

techniques for data mining, then visualization techniques for association rule will be

reviewed.

49

4.1.1 Classification of Data Visualization Techniques

Data visualization techniques can be classified into five categories: (1) geometric

techniques, (2) icon-based techniques, (3) pixel-oriented techniques, (4) hierarchical

techniques, and (5) graph-based techniques [KEI1996].

Geometric technique is the visualization of geometric transformations and

projections of data. The examples of this technique include Scatter-plot matrices,

Landscapes, Projection Pursuit techniques, Prosection views, Hyperslice, and Parallel

Coordinates. Icon-based technique, also known as iconic display technique, is the

visualization of data values as features of icons by mapping each multidimensional data

item to an icon. Examples of this technique include Chernoff Faces, Stick Figures,

Shapping Coding, Color Icons, and TileBars. Pixel-oriented technique is used to

represent each attribute values of a data item as a colored pixel and display the attribute

values belonging to one data item in separate windows. There are two groups for this

technique: Query-independent and Query-dependent technique. Query-independent

technique usually is used to visualize large data sets that have natural ordering based on

some attributes (i.e., time series data), while Query-dependent technique is used to

visualize the relevance of the data items with respect to a query for interactive

exploration.

Hierarchical technique is typically used for the visualization of data using a

hierarchical partitioning of k-dimension space into 2D or 3D subspaces. Dimensional

Stacking, Worlds-within-Worlds (n-Vision), Tree-map, Cone Trees, and InfoCube are

some examples of this technique. Graph-based technique is to utilize large graphs to

convey the meaning and structure of the data sets clearly and effectively. The graphs used

50

can be 2D-graph or 3D-graph, depends on the needs of the application. Because of the

nature of association rule, graph-based technique is most suitable.

4.1.2 Rule Table

The most straightforward method for the association rule visualization is to use

the rule table. The following rule table format has been used [THO1998]:

Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 NullM RuleM Confidence Support

Here Item1, Item2, …, and Item8 mean the 8 items, NullM means the null mark

of the rule, if there are n items in one rule, the value of NullM should be n+1. RuleM

means the rule mark of the rule, if there are m items in the rule head, the value of RuleM

should be m+1. An example of this rule table format is illustrated in Table 4.1.

Table 4.1 Example of Association Rules in Rule Table Format

Bread Milk Null Null Null Null Null Null 2 1 90% 10%
Eggs Bread Milk Null Null Null Null Null 3 1 85% 7%
Bike Pumper Lock Null Null Null Null Null 3 2 80% 5%
Bike Pumper Lock Helmet Null Null Null Null 4 2 60% 3%

In Table 4.1, rule #3 (the third row), the column ‘NullM=3’ means the rule

consists of 3 items. ‘RuleM=2’ means there are 2 items in the rule head. ‘Null’ is used to

fill the rest of columns. So the third row means the association rule ‘Bike, Pumper =>

Lock’ with confidence of 80% and support of 5%.

4.1.3 2-D and 3-D Rule Visualization

Rule table is the most straightforward way to show the association rule to the

users. However, the rule table is only suitable to display the limited number of rules to

51

the users. If the user needs to have a global view of all the rules, the rule table is not a

suitable approach.

Several commercial data mining products provide a visualization module. Becker

[BEC1998] presented a technique to visualize the decision table classifiers. In this

visualization module, the interactive drill down, drill-up, drill-through, filtering, and

animation gave the user more flexibility.

As to association rule visualization, lots of work has been done using directed

graph, 2-D matrix, and 3-D visualization.

4.1.3.1 Directed Graph

Directed Graph is used as the association rule visualization technique in the

IBM’s data mining software “Intelligent Miner”. In directed graph, the nodes of a

directed graph represent the items, and the edges represent the associations. Figure 4.1

shows 3 association rules (Bread => Milk; Bread => Butter; Eggs => Bread + Milk).

 Milk

Bread

 Bread Eggs

Butter Milk

Figure 4.1 Association Rules Represented by Directed Graph

The confidence and support of the rules can be depicted using different colors and

width of arrow. For example, the wider the length of arrow, the more confidence the rule

has.

Directed Graph is a good visualization technique when the number of rules and

the items in each rule is very small. When the number of rules and the items in each rule

52

become larger, it is not easy to show the rules using a Directed Graph. For example, if

there are more than ten rules, an association rule graph representation is not very easy to

understand because there will be lots of connections (edges) between the nodes (items).

Hetzler et al. [HET1998] tried to solve this problem by animating the edges to show the

associations of certain items. But the animation technique requires significant human

interaction to turn on and off the item nodes.

4.1.3.2 2-D Matrix

2-D matrix is another technique to visualize the association rules. In this case, the

rules are displayed in a 2-D matrix. The rule head (also called left-hand side or

antecedent) items are on one axis, and the rule body (also called right-hand side or

consequent) items are on the other axis. In the SGI’s data mining software “MineSet”

[SGI2000], 2-D matrix was used to visualize the association rules. Figure 4.2 shows one

example of 2-D matrix (association rule ‘Milk => Eggs’). The confidence and the support

of the rule can be illustrated using the height and color of the bars.

E g g s
B re a d

M ilk

M ilk

B re a d

E g g s

R u le H e a d

R u le B o d y

Figure 4.2 Association Rules Represented by 2-D matrix

53

But Figure 4.2 only can show the ‘one-to-one’ relationship, that is, only one item

can be allowed in rule head and rule body, respectively. For example, in Figure 4.3, it is

almost impossible to tell whether there is only one rule (Bread + Milk => Eggs) or there

are two separate rules (Bread => Eggs; Milk => Eggs).

E g g s
B re a d

M ilk

M ilk

B re a d

E g g s

R u le H e ad

R u le B o d y

Figure 4.3 Association Rules Represented by 2-D Matrix

MineSet tried to allow multiple items in rule head and rule body by grouping the

each of the items combinations in rule head or rule body as one unit. Figure 4.4 shows

that rule “Bread + Milk => Eggs” can be plotted by adding one more unit “Bread + Milk”

in one axis. The other rule in Figure 4.4 is “Milk => Eggs”.

Although Figure 4.4 can show ‘many-to-many’ relationship, it works well only

when the items in the rule head and rule body is very few. When the number of items in

the rule head is large, the number of units is expected to be very large if there are lots of

combinations. This is because all combinations of items in the rule head and the rule

body will be added in X or Y axes as one unit.

54

B read
M ilk

E ggs
B re ad+ M ilk

B read

M ilk

E gg s

R u le H ead

R u le B o d y

Figure 4.4 Multiple Items in Rule Head

4.1.3.3 3-D Visualization

To overcome the above problems, Wong et al. [WON1999] presented a new

visualization technique using 3-D visualization.

Instead of using ‘item-to-item’ map in the 2-D matrix, this technique used ‘rule-

to-item’ map. Figure 4.5 illustrates the basic idea of this technique. In Figure 4.5, the

rows are items, and the columns are rules. The identities of the items are shown along the

right side of matrix. The rule head and rule body can be distinguished by using two

different kinds of colors. The confidence and support are displayed at the end of the

matrix using the bars. The height of the bar represents the confidence of the rule. For

example, Figure 4.5 shows 3 rules, they are:

• Rule 1: Bread => Milk, with confidence=90%

• Rule 2: Pumper, Bike => U-lock, with confidence=80%

• Rule 3: Bread, Butter => Milk, with confidence=85%

The are several advantages of this technique over directed graph and 2-D matrix:

55

1. The identity of individual items within the rule head is clearly shown.

2. The metadata such as confidence and support are shown at the end of the matrix, so

the whole view is clearer to the users.

3. In theory, there is no upper limit on the number of items in the rule head.

4. It is not needed any more to create the additional units in the matrix because of the

combination of the items in the rule head. The number of unites in axes is depend

only on the number of items and the number of rules.

Because 3-D visualization has the above advantages, it is a big improvement over

the directed graph and 2-D matrix visualization.

4.2 Rule Table

In Table 4.1, the user has to distinguish the rule head and rule body by the value

of ‘NULLM’ and ‘RULEM’. It’s very difficult for the user to understand the rules. To

address this problem, we can introduce the following rule table format.

Rule Head ‘Imply’ Symbol Rule Body Confidence Support

So all the rules in Table 4.1 can be represented by this format in Table 4.2.

Table 4.2 Example of Association Rules in Rule Table Format

Bread => Milk 90% 10%
Eggs => Bread, Milk 85% 7%
Bike, Pumper => Lock 80% 5%
Bike, Pumper => Lock, Helmet 60% 3%

There are several reasons for the new rule table format:

1. In Table 4.1, the maximum item numbers in the association rules is fixed. For

example, the maximum item number in Table 4.1 is 8. It can not show the rules that

56

have more than 8 items. If we need to display more than 8 items, the additional

columns need to be added. However, the new rule table format does not have this

problem.

1 2 3

Pumper

Bike

Bread

Butter
Car
Helmet
Insurance
Milk
Register
U-lock

0

10

20

30

40

50

60

70

80

90

Confidence (%)

Rule

Item

Figure 4.5 3-D Visualization of Association Rules

57

2. By dropping the ‘NULLM’ and ‘RULEM’ columns, the new rule table is more

compact, so it takes less storage space, especially when the number of rules is very

large.

3. The new rule table looks more obvious to the user since the ‘Imply Symbol’ separates

the rule head and rule body, however, in Table 4.1, the user needs to figure out what

the rule looks like by using ‘NULLM’ and ‘RULEM’ columns for each rule.

4. By separating the rule head and rule body, the operation of ‘Search specific rules’

will be much easier because it is not needed to use the information of column

‘NULLM’ and ‘RULEM’.

In reality, several hundreds of association rules will be generated, and it is not

efficient for the user to look through all the rules generated by the rule generator. Usually

the user is interested in certain rules. So the user interaction is very important. In the rule

table module, the following functions should be provided to the users:

The rules can be sorted by the value of ‘Confidence’ and/or ‘Support’ so the user

can find the strongest association rules.

The user can specify part or all the ‘rule head’ and/or ‘rule body’ to query specific

rules that interest the users. For example, if the users are only interested in the rules that

have ‘Bike’ in the rule head, the results of query should only display the rules with ‘Bike’

in the rule head, such as rules with ‘Bike’, ‘Bike, Pumper’ as rule head, etc. The rules that

do not have ‘Bike’ as part of the rule head should not be seen by the user.

4.3 3-D Visualization

The 3-D visualization of Wong et al. is a big improvement over directed graph

and 2-D matrix. But there still have the following problems:

58

1. It is best for the ‘many-to-one’ relationship. That is, the rule body has only one item.

When the rule body has more than 1 item, the matrix floor is covered with many

blocks.

2. The users have to distinguish the rule head and rule body by the different color of

blocks. Usually not all the items in the rule head will be displayed together, so the

users can not figure out what is the rule looks like at the first glance, especially when

the number of items in the rule body is more than 1. Figure 4.7 shows this problem. In

Figure 4.7, Rule 4 means rule ‘b, e, i, j => d, g’ with confidence=58%. But because

not all the items in the rule head display at the one end, and not all the items in the

rule body display at the other end, it is not clear to the user of how the rule looks like.

It is idea if all the items in the rule head can be put on the one end, and all the items in

the rule body can by put on the other end so the user can see the rules very clearly.

3. Although it can show lots of rules at the same time, the interaction between the

visualization system and the user is definitely needed because most of the time, the

users are only interested in some specific rules with some specific items in the rule

head and/or rule body. So the system should provide the user a very good interface to

interact with the system.

To address the above three problems, the new 3-D visualization system should try

to achieve the following goals:

1. It should have a very good interactive graphic user interface. The user can sort, filter

the rules according to the user’s interest.

2. The items in the rule head and the items in the rule body should be separated very

obviously. That means, it is the best if all the items in the rule head are at the one end,

59

and all the items in the rule body are at the other end. If this goal can be achieved, the

user can understand the rules at the first glance.

3. Since items of the rules are presented with blocks in the chart, the fewer blocks exist

in the chart, the clearer view the user can get.

1 2 3 4 5 6 7

a

b

c

d

e

f
g

h
i
j

0

10

20

30

40

50

60

70

80

90

Confidence (%)

Rules

Items

Figure 4.7 Association Rules that have more than 1 Item in Rule Body

60

Based on the above goals, we improved the 3-D visualization technique of Wong

et al. by adding the following new features:

1. There will be a graphic user interface provided to the user to do the sorting, filtering,

animation, etc. It will be very flexible for the user to use. Goal #1 is achieved. Details

of the user interface will be discussed in Chapter 6.

2. The items in the rule body are shown in axis X using the text. So the rule head and

rule body is visually separated and the user can see what the rules look like at the first

glance. Goal #2 is achieved.

3. Removes the blocks of items in rule body, as a result, on the chart only the items in

the rule head remains, and only one color is enough, and there are fewer blocks on the

chart. Goal #3 is achieved.

Figure 4.8 illustrates the basic idea of the above modification.

61

1 2 3 4 5 6 7

a

b

c

d

e

f

g

h

i

j

k

l

Rules

Head

Support

Confidence

h f d, h d, g
f, h f g

0

50%

100%

1.0

2.0

3.0

Figure 4.8 Association Rule Visualization

62

CHAPTER 5
SYSTEM IMPLEMENTATION

In the previous chapters, we presented the several different association rule

algorithms, and then provided our design of association rule visualization technique. The

input of the rule generation algorithm is a table with two columns “tid, item”, and the

output is a table with each rule occupies one row. However, in reality, the data are

usually not exactly in the form of “tid, item”, and some of them are in text format, instead

of integer format. For example, in the supermarket, each transaction consists of

transaction id, and items that each customer buys. In this case, the date and time may

work as the transaction id, and the items can be identified by their names. To fit this kind

of data set into the input format of our rule generation algorithm, we should have a very

good graphic user interface (GUI) for the user to manipulate their existing data set to feed

to our rule generation algorithm. We choose Java as the programming language for this

project based on the following reasons:

1. Java program is platform independent. Instead of generating the executable

machine instructions by the C++ compiler, Java compiler outputs Java byte

codes. Java byte codes are instructions written for some virtual Java machines

that do not really exist. These byte codes run through the Java Virtual

Machine (JVM), which works as an interpreter to execute the Java byte codes.

There is a different JVM emulator for each different type of machines, so Java

63

program can be compiled only once and the compiled class file can be run on

any machine that has JVM.

2. Because in reality, the user may have data stored in several different database

management systems, it is very useful for the mining algorithm to be able to

retrieve the data from different database management systems. Java provides

the Java Database Connectivity (JDBC) to have this ability. Especially for the

pure SQL92 approaches, the Java program for DB2 is almost the same as for

Oracle, except some features the each individual DBMS have.

For the output of generated rules, we also need a good GUI to let the user get the

information that interests the user very easily. There are two ways to implement the rule

visualization system. The first one is to use the existing graphics software tools to display

the association rules. There are some softwares such as SAS, ArcView that can be used to

display the designed 3-D graph. By using this choice, it takes less time to implement but

there is not much flexibility, especially for the graphic user interface part. You can not

get the GUI as you designed. The second way is to implement from scratch using Java.

There are some advantages to use Java compared to using existing software:

1. Because the system will be built from the scratch, we can have whole control

of how it works, and it will give us the flexibility to control the GUI and make

it exactly the same as what we designed.

2. The system can be integrated into the association rule generator and optimizer

that we have implemented, so it will become an integrated and complete

system.

64

3. By using Java, it will not only run as the application, also it can be put on the

web and run as the applet.

4. Java provides a set of Java 3D APIs that serve as the interface to a

sophisticated three-dimensional graphics rendering system. A Java 3D

program creates instances of Java 3D objects and places them into a scene

graph data structure. Despite all of the 3D functionality, the Java 3D API is

still straightforward to use.

Because of the above reasons, we choose Java 3D to implement the association

rule visualization module.

In this chapter, the system architecture of our software is presented in Section 5.1.

The interfaces of rule generator and rule visualization, as well as their implementations

are detailed in Section 5.2 and 5.3.

5.1 System Architecture

Our system is based on the two-tier model because no business logic is

incorporated in our system. The system architecture is shown in Figure 5.1.

In Figure 5.1, the database resides in the server machine. The stored procedures

(Oracle) and UDFs (DB2) also reside in the server side. Our Java application runs in the

client machine. It consists of several modules: LogIn, Rule Generator, and Visualization

module. LogIn module is used to connect to the database server. Rule Generator is used

to mining the association rules given the information provided by the user. Visualization

module consists of two sub-modules Rule table and 3-D visualization. These modules can

be accessed using the Main window. The interfaces and their implementation are

presented in the following sections.

65

Figure 5.1 System Architecture

5.2 Main Window

Figure 5.2 shows the main window of our association rule software. The main

window consists of the menu, toolbar, and a text area. The operations of rule generation

and rule visualization are mainly done through the menu. Under the “File” menu, there

are several submenus, such as “Connect”, “Disconnect”, “Save to File”, “Clear

Messages”, “Exit”. The submenu “Connect” is used to let the user connect to a specified

DBMS, such as Oracle, or DB2 since this software is designed to be able to retrieve the

data from different Database Management Systems. “Disconnect” submenu is to simply

let the user disconnect from the DBMS after he finished the mining operations. But if the

Java
Applications JDBC

request

 DBMS

Client Machine Database Server

result

LogIn Rule
Generator

Visualization

Rule Table3-D visualization

Stored Procedures

 Main Window

66

user forgot to disconnect from the DBMS, when the application is terminated, the

connection will be disconnected automatically. “Save to File” and “Clear Messages”

submenus are related to the log messages generated by the mining operations. For each

association rule generation algorithm and each input data set, there will be the some

messages output to let the user know what had happened. After each operation, the user

can choose to save these messages into a text file or clear these messages from the

window. For each major function, such as “Connect”, “Disconnect”, “Rule Generation”,

“Exit”, there is an icon on the toolbar corresponding to the operation for the user’s

convenience. So the user can just click the icon on the toolbar once instead of using the

menu.

Figure 5.2 Main Window of Association Rule Software

We use JBuilder 3 as the software development tool to implement our project.

JBuilder provides an Integrated Development Environment (IDE), which makes interface

design, program debugging very efficiently. The menu can be implemented using the

Menu Designer. All the objects in the main window can be designed visually.

5.3 LogIn Module

After the user chooses “Connect” menu item, a Login window will be brought up.

The appearance of login window is shown in Figure 5.3. In this login window, the user

67

needs to give the information of user id, password, the DBMS, and the database name

that related the specified DBMS. The password is masked using “*” for the security

reason, and the DBMS names have been predefined, so the user just selects from the

provided Database Management Systems. The database name has not been predefined

and the user has to fill the information himself because the software has no idea of what

databases have in a particular DBMS until the connection has been established, and in

order to establish a connection, a database name has to be provided. In the login window,

there also exists a checkbox called “Admin”. This checkbox is used to let the user decide

if he wants to choose a particular miming algorithm. If the “Admin” checkbox is not

checked, the “Approach” submenu will be disabled so that the user only needs to give the

input data set, and the software will decide to choose the best algorithm from the

available 6 approaches for the given data set. If the “Admin” is checked, the user has the

freedom to choose any available approaches to generate the association rules. If the user

has time, he can save the output rules from different approaches and compare to each

other for the correctness.

After the user provided all the needed information, the user can choose to

“Connect” to the DBMS, or in case he makes some mistakes, he can choose to clear the

information and fill it again.

The LogIn module is implemented with “LogIn.class”. Connection to the server is

made possible through JDBC. The main method of the LogIn class is

“btnConnect_actionPerformed”, which is associated with the button “Connect” in the

LogIn window. This method is shown in Figure 5.4.

68

Figure 5.3 Login Window of Association Rule Software

There is a file named “Mining.config” to store the different DBMS server’s

information, such as host IP address and port number. Each DBMS has one entry in this

configure file. For example, the entry of Oracle is “[ORACLE] 128.227.176.49:1521”,

which indicates Oracle resides in the host machine with IP address 128.227.176.49 and

the port number is 1521. In case Oracle is moved to another machine, the use only needs

to modify the host IP address in this file. So the program does not need to be changed.

Method “btnConnect_actionPerformed” first gets the DBMS information from the

LogIn window, then it is compared with the entries of file “Ming.config”. If there is a

match, the host IP address and port number is retrieved from that entry. The other

information needed to log in to the DBMS, such as user name, password, database name

69

can be obtained through the user’s input in the LogIn window. Once all the information is

ready, JDBC first loads the corresponding database driver using the method

“Class.forName”. After the driver is loaded, a connection can be made using the method

“DriverManager.getConnection (url, user, passwd)”. The highlighted lines of code in

Figure 5.4 illustrates how to load the database driver and how to make a connection to the

server.

Figure 5.4 btnConnect_actionPerformed Method

void btnConnect_actionPerformed(ActionEvent e)
 {
 fin = new FileInputStream("Mining.config");
 while((bytes_read = fin.read(buffer)) != -1);
 fileText = new String(buffer);
 Vector vc=new Vector();
 StringTokenizer st = new StringTokenizer(fileText);
 while (st.hasMoreTokens())

vc.addElement(st.nextToken());
 for(int i=0;i<vc.size();i++)
 {
 if(vc.elementAt(i).toString().equals("[ORACLE]"))
 server = vc.elementAt(i+1).toString();
 }
 if ((cmbDBMS.getSelectedItem().toString()).equals("DB2"))
 {
 Class.forName("COM.ibm.db2.jdbc.app.DB2Driver"); //for .app
 url = "jdbc:db2:";
 url = url.concat(db);
 }
 else if ((cmbDBMS.getSelectedItem().toString()).equals("Oracle"))
 {
 Class.forName("oracle.jdbc.driver.OracleDriver");
// url = "jdbc:oracle:thin:@tokyo.dbcenter.cise.ufl.edu:1521"
// server = "128.227.176.49";
 url = "jdbc:oracle:thin:@" + server + ":";
 url = url.concat(db);
 }
 con = DriverManager.getConnection (url, user, passwd);
} // end of btnConnect_actionPerformed

70

5.4 Rule Generator

For each input data set, some parameters have to be specified by the user for the

association rule generation. This kind of information can be input by the Parameter Input

window. Parameter Input window is shown in Figure 5.5. For the data source, because

the data is not always in the same table, and sometimes it is needed to obtain the data

from two or more different tables, the user should have the ability to select multiple

tables as the data source. For this reason, the available table names have been populated

in the list box. The user can choose multiple tables by using “Shift” or “Control” key. For

the multiple tables, the “Join” and “Union” operations are also provided to let the user

manipulate the data source from multiple tables and combine them into one table. The

user may also want to specify the lowest support and confidence value to get the

interested association rules. The value of stop level is used to let the user decide that after

how much passes that the user wants the rule generation needs to be canceled. The

“Statistics” button is used to show the user some basic statistics (such as number of

transactions, number of rows, number of different items, average number of items in each

transaction, etc) of the selected tables. After all of the information is completed, the user

can click the “Generate Rules” to begin to merge the data from different tables. Then the

association rule generation algorithm will be called to generate the rules.

71

Figure 5.5 Parameter Input Window of Association Rule Software

The class that related to Parameter Input window is “ParameterInput.class”. The

key method of this class is to retrieve all the available table names from the given

database and show them to the user. Figure 5.6 shows the implementation of this task.

We used two different mechanisms for DB2 and Oracle. In DB2, we utilized the metadata

of the database. The method “getTables” in the “DatabaseMetaData” class can be used to

return all the table names in the database. In Oracle, we used the data dictionary. All the

table names are stored in the system table “user_tables”. We can obtain all the table

names using a simple query.

72

Figure 5.6 Retrieve All the Table Names Available in the Database

5.5 Visualization Module

In the association rule software, we implemented two kinds of rule visualization

tools to view the mining results: rule table and 3-D graphic. Each tool allows the user to

work in the interactive environment. This section describes these tools in detail.

5.5.1 Rule Table

Figure 5.7 shows the rule table visualization window. In this window, all the rules

shows according to the rule format introduced in Chapter 4. Because usually hundreds of

Statement stmt = LogIn.con.createStatement();
DatabaseMetaData dbmd = LogIn.con.getMetaData();
 if(LogIn.cmbDBMS.getSelectedItem().toString().equals("DB2"))
{

String[] type={"TABLE"};
ResultSet rs =dbmd.getTables("",LogIn.user_id.toUpperCase(),"",type);
ResultSetMetaData rsmd = rs.getMetaData();

 boolean more = rs.next();
 while (more)
 {
 String rsts=rs.getString(3);
 tables.addElement(rsts);
 more = rs.next(); // move to next row
 }
 rs.close();
} // end of first ’if’
else if(LogIn.cmbDBMS.getSelectedItem().toString().equals("Oracle"))
{
 String qs="select table_name from user_tables";
 ResultSet rs=stmt.executeQuery(qs);
 boolean more = rs.next();
 while (more)
 {
 String rsts=rs.getString(1);
 tables.addElement(rsts);
 more = rs.next(); // move to next row
 }
 rs.close();
} // end of ’if’
stmt.close();

73

rules will be generated, it is not easy for the user to view all of the rules at one time. In

addition, the user may only interest in some certain rules. For example, in order to answer

the question “what are the items that related to item Lock?”, he may only need to view

the rules that have item “Lock” contained in the rule head and rule body. All the rules

that do not have “Lock” in the rule do not interest the user. Rule table visualization

window provides this function. In this window, the user can specify any kinds of query

criteria. For example, if the user wants view the rules with the item “Lock” in the rule

head, and he also wants the minimum confidence of the rules is 50%, he can construct

this query by clicking the corresponding list box and radio button in the window. The

filtered rules can be obtained by clicking the “Show Rules” button.

The related class of Rule Table is “Rule_Table.class”. The constructor of this

class reads all the records from the table RULES and all the tuples are presented to the

user. This is done using the simple query “Select * from RULES”. The key method of

this class is that associated with button “Show Rules”. The implementation of this

method is illustrated in Figure 5.8.

74

Figure 5.7 Rule Table Visualization Window with Filter Function

Figure 5.8 Show_Rule Method

void btShowRules_actionPerformed(ActionEvent e)
 {
 // construct the where clause of the sql query, such as “where head like ‘%Milk%’ and support>3%”
 String wherestring = " where " + txtWhere.getText();

 // because the user will input query like ’SUPPORT > 50%’, we need to
 // remove % in this case
 …
 …
 // end of remove extra '%' following 'CONFIDENCE' AND 'SUPPORT'

 // lanuch the filtered table of rules, pass the table name, and the where clause
 Rules_Table_Filter RulesFilterdlg = new Rules_Table_Filter(this, Rules_tableName, newWhereString);
 // launch the Rule_Table_Filter window
 …
 }

75

In Figure 5.8, the key point is to construct the where clause for the query. We

provide the user a set of standard SQL operators, such as ‘LIKE’, ‘NOT LIKE’, ‘IN’,

‘NOT IN’, ‘>’, ‘>=’, ‘AND’, ‘OR’, etc. For example, the query “Head Like ‘%Lock%’”

means that any rules that have “Lock” in the rule head satisfies the requirement. After the

user finished clicking the operators, the where clause is shown in a text box. The string in

the text box needs to be further processed (remove % from the support value, etc) for the

string becomes a where clause that any DBMS will accept it. At last, the final where

clause, together with the “RULE” table name, is passed to another class

Rule_Filter_Table to show the user filtered rules.

Figure 5.9 Rule Table Visualization Window with Sort Function

76

After filtering the rules, the user can also sort these rules by “confidence”, and

“support” columns with descending or ascending order. Figure 5.9 shows one example of

filtered rules with the query “HEAD LIKE ‘%Lock%’ AND CONFIDENCE >= 50%”

with the order of “confidence ascending, support descending”. This window also shows

the number of rules that satisfy the above query.

One issue about rule table is the feature of DBMS independence. The rule table

works on a table representation. Because all the operators provided to the user are

standard SQL operators, the corresponding SQL query can be executed in any DBMS. So

by using JDBC, the code for retrieving the rules from any DBMS is exactly the same and

no other extra codes are necessary for the different DBMSs.

5.5.2 3-D Visualization

Besides the rule table visualization tool, the other visualization tool is 3-D

graphic. First the rules are classified according to the number of items in the rule head.

Figure 5.10 shows the different categories of rules based on the number of the items in

the rule head. In Figure 5.10, it shows that there are three categories of rules, which have

1, 2, and 3 items in the rule head. In each category, the number of rules that falls into

each confidence or support interval (50%-60%, etc) is labeled. The labels for confidence

and support are in different colors. In Figure 5.10, it shows that for all the rules which

have 1 item in the rule head, 8 rules have the confidence between 60% to 70%, and 2

rules have the confidence between 90%-100%. As to the support, 9 rules have the value

of 40% to 50%, and only 1 rule has the value of 70%-80%. Double click the column bar

will invoke the 3-D visualization window that shows the rules with the particular number

of items in the rule head.

77

Figure 5.10 Different Categories of Rules Based on # of Items in the Rule Head

The implementation of the window “Number of Rules for Each Category” is class

“TwoD_NumberOfRules.class”. The constructor retrieves all the rules from table RULES

and classified them based on number of items in the rule head, support, and confidence.

The results are shown to the users with the format of column bar.

The user can customize the above window dynamically according to the number

of items in the rule head and the number of the rules. The default values of these two are

78

8 and 15, respectively. If the number of items in the rules is fewer than 8, the user can

lower this value so that each column can have more space. These changes can be made

by the options window, which is shown in Figure 5.11. In this figure, the number of items

in the rule is represented by “Max Scale of X-axis”, and the number of rules is

represented by “Max Scale of Y-axis”.

The implementation of the “Options” window is class “TwoD_Options.class”. It

modified the attributes of class “TwoD_NumberOfRules.class”. When that window

resizes, the “paint” method will be called again and the window will be refreshed with the

modified attributes.

Figure 5.11 Options Window in Association Rule Software

For each category of the rules, just like in rule table visualization tool, the user

can also specify the constraint to filter the rules. The operations in Figure 5.12 are almost

the same as those in rule table visualization tool. The only difference is that Figure 5.12

79

provides the filtering and sorting function in one window. The implementation of this

interface is class “Add_Constraints.class”. The implementation is similar to the class

“Rule_Table.class”, which constructs the where clause to retrieve the rules with certain

conditions.

Figure 5.12 Constraints Window in Association Rule Software

Figure 5.13 is invoked by double clicking one of the column bars in Figure 5.10.

For example, if the user double click the column bar that labeled wit the “Number of

items in rule head = 3”, it brings up Figure 5.13. In Figure 5.13, each row represents one

item, and each column represents one rule. The names of the items are labeled along the

right side of each row. Each item in the rule head has a small block covered on the floor.

80

The names of the items that are in the rule body are labeled along the X-axis. The

confidence and support for each rule are marked at the far end of the floor with different

colors. For example, Figure 5.13 shows 10 rules. The first rule is “Coat, Lock, Pump =>

Bike, Eggs with confidence of 80% and support of 50%.” From Figure 5.13, we can also

easily figure out which item appears in the rule head mostly. Here item “Bike” appears in

6 out of 10 rules as part of the rule head.

Figure 5.13 3-D Visualization Window in Association Rule Software

81

We used Java 3D, which is a standard extension to the JDK 2, to develop our

visualization tool. The Java 3D API is a hierarchy of Java classes which serve as the

interface to a sophisticated three-dimensional graphics rendering and sound rendering

system [SUN1999]. A Java 3D program creates instances of Java 3D objects and places

them into a scene graph data structure. Basically there are five steps to create a Java 3D

program, as illustrated in Figure 5.14 [SUN1999].

Figure 5.14 Simple Recipe for Writing Java 3D Programs using SimpleUniverse.

As shown in Figure 5.14, in order to develop a Java 3D program, we first need to

create a Canvas3D object to serve as the canvas of the 3D objects. The second step uses a

SimpleUniverse class to reduce the time and effort needed to create the view branch

graph. The SimpleUninverse class hides lots of the details of Java 3D programming. As a

result, the programmer has more time to concentrate on the content. The key point in Java

3D programming is step 3, where the programmer develop his own 3D objects and

contents. Once all the objects are ready, step 4 and 5 just compile the content branches

and add them to the SimpleUniverse class. Because this class is associated with the

Canvas3D object we created earlier, the content branches we developed will be displayed

on the screen.

1. Create a Canvas3D Object
2. Create a SimpleUniverse object which references the earlier Canvas3D object

a. Customize the SimpleUniverse object
3. Construct content branch
4. Compile content branch graph
5. Insert content branch graph into the Locale of the SimpleUniverse

82

The implementation of our 3-D visualization is in class “ThreeD_General.class”.

Figures 5.15 and 5.16 are from our implementation and they illustrate the above five

steps using SimpleUniverse class. Next we walk through the code in these figures.

Figure 5.15 Paint Method in ThreeD_General Class

As shown in Figure 5.15, a Canvas3D object canvas3D is created in the first step.

In the second step, a SimpleUniverser object simpleU is created which references the

earlier created Canvas3D object canvas3D. As to step 3, we classified all the objects into

several categories and designed one function for each of these categories. These

categories include:

• Items in rule head of all the rules
• X-axis
• X-axis label
• Y-axis
• Y-axis label
• Support
• Confidence

// main method to implement the 3D rule visualization
 public void paint(Graphics g)
 {
 Canvas3D canvas3D = new Canvas3D(null); --- Step 1
 this.getContentPane().add("Center", canvas3D);

 // SimpleUniverse is a Convenience Utility class
 SimpleUniverse simpleU = new SimpleUniverse(canvas3D); --- Step 2

 BranchGroup scene = createSceneGraph(); --- Step 3 & 4
…
…

 // This will move the ViewPlatform back a bit so the objects in the scene can be viewed.
 simpleU.getViewingPlatform().setNominalViewingTransform();

 // add all the sub branch groups into the map.
 simpleU.addBranchGraph(scene); --- Step 5
…
…
} // end of 'paint'

83

• Support label
• Confidence label
• Items name.

The purpose of classify these categories is for the convenience of update our

visualization system. For example, if we want to change the color of support, we only

need to modify one function that is related to this category. These functions are

developed to create the objects we needed.

Figure 5.16 illustrates one of these functions createSceneGraph. This function is

used to create all the items in rule head of each rule. Each item is represented with a

small cube and all the cubes are displayed on a three-dimensional graph. The default of

the cube shows only one face. To show more than one face of the cube, we need to rotate

the cube. Rotation can be made about X-axis, Y-axis or Z-axis. The method rotX, rotY

and rotZ in class Transform3D are used to for this task. In order to rotate about two axes,

two different transformations should be specified for a single visual object. Figure 5.16

shows how to combine the two transformations to make a complex rotation.

After we specified the rotation, we began to retrieve the data from RULE table.

All the items in rule head of each rule are retrieved and stored in a Vector. Then a cube is

created for each item retrieved using the class ColorCube. The position of each cube in

the three-dimensional graph is set by the setTranslation method in Transform3D class.

The parameter of method setTranslation is a Vector3f object, which stores the position of

each cube in three-dimensional graph.

After all the cubes have been created, we compile these objects in the content

branch in step 4. Compiling the content branch converts it to a more efficient form, thus

this step is used for the optimization.

84

Figure 5.16 Content Branch for Items in the Rule Head of All Rules

public BranchGroup createSceneGraph() // create the items
 {
 // Create the root of the branch graph
 BranchGroup objRoot = new BranchGroup();
 Appearance app = new Appearance();

 TransformGroup objRotate = null;
 Transform3D transform = new Transform3D();
 Transform3D transformZ = new Transform3D();
 transform.rotX(Math.PI/6.0d);
 transformZ.rotZ(Math.PI/2.0d); // rotate to adjust the viewer’s color
 transform.mul(transformZ);

 for(int i=0;i<rcount;i++)

 {
 Vector vCurHead = new Vector();
 String TotalHead = vHead.elementAt(i).toString().trim();
 StringTokenizer st = new StringTokenizer(TotalHead, ",");
 while (st.hasMoreTokens()) // add all items in the current rule head
 vCurHead.addElement(st.nextToken().trim()); // into the vCurHead

 for(int j=0;j<vCurHead.size();j++)
 {
 int jPos=0;
 String CurHead = vCurHead.elementAt(j).toString().trim();
 for(int w=0;w<vDisctHead.size();w++)
 {
 if(CurHead.equals(vDisctHead.elementAt(w).toString().trim()))
 {
 jPos = w;
 break;
 }
 } // end of ’for(w)’
 // create ColorCube objects
 transform.setTranslation(new Vector3f((float)(-1.0+i*0.1), (float)(-0.6+jPos*0.1), (float)(-1.2-
jPos*0.1)));
 objRotate = new TransformGroup(transform);
 objRotate.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
 objRotate.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
 objRoot.addChild(objRotate);
 objRotate.addChild(new ColorCube(0.03));
 } // end of inner ’for’
 } // end of outer ’for’
 // Let Java 3D perform optimizations on this scene graph.
 objRoot.compile(); --- Step 4

 return objRoot;
 } // end of CreateSceneGraph method

85

As in rule table module, in the 3-D visualization module, all the operators that we

used for database access, such as ‘LIKE’, ‘IN’, ‘NOT’, ‘AND’, ‘OR’, ‘>’, etc, are

standard operators. As a consequence, using JDBC, all the operations in our visualization

tool are identical for any DBMS. No extra code is necessary for different DBMSs. So our

visualization tool is purely independent of specific DBMS.

86

CHAPTER 6
CONCLUSION AND FUTURE WORK

6.1 Conclusion

We first discussed the architectures of JDBC application. Between 2-tier and 3-

tier architectures, 2-tier is chosen because no business logic is incorporated and hence

addition of a tier adds complexity without any gains for what we are trying to do. Next,

the advantages and disadvantages of two data mining architecture alternatives “Cache-

Mine” and “SQL-based” are analyzed.

We used association rule mining to compare these two architecture alternatives.

Intelligent Miner is chosen as the representative of “Cache-Mine” architecture. We

implemented three mining algorithms (K-Way Join, 2-Groupby, and Subquery) based

purely on SQL-92 and three ones (Vertical, GatherJoin, and GatherJoin Variant) based on

SQL-OR. We did some performance tests over DB2 for Intelligent Miner and our six

approaches using the different sized synthetic generated data sets. Based only on the

performance, Cache-Mine is better than SQL-based approach, but it needs additional

space to store the data in the local disk. In additional, SQL-based approach can utilize the

SQL capability provided by DBMS. But the Cache-Mine does not have this advantage.

Everything (including results) is stored in the local disk.

We implemented the mapping of intermediate rule table into the format that the

user can understand easily. A visualization module that includes rule table and 3-D

87

graphics was developed to help the user get the interested information easier through

sorting, and filtering functions.

Besides the performance, there are some more differences between Intelligent

Miner and our implementation:

• Intelligent Miner can use the data stored in flat file and DB2 database.

However, our software can access the data stored in multiple DBMS through

JDBC, such as DB2 and Oracle.

• Intelligent Miner can only use the data from one table. However, we can use

the data from multiple tables through join/union operation.

• In Intelligent Miner, “Transaction ID” and “Item” has to be a single field. But

we extend this ability to process multiple fields. The user can specify which

fields are used as “Transaction ID” and which fields are used as “Item”.

• Intelligent Miner uses Directed – Graph as the base of rule visualization

technique. As described in Chapter 4, it uses ‘item-item’ relationship so it

works well in the situation of few rules. However, our visualization module

uses ‘rule-item’ relationship so that it can display more rules at one time. In

additional, the rule sorting and filtering ability of our visualization module

gives the user more flexibility and efficiency in managing and understanding

the association rule.

• Intelligent Miner stores the results in the local disk as flat file. In our

implementation, we store the generated rules in the database. Once the rules

are stored in database, they can be easily handled because of the SQL

capabilities.

88

6.2 Contributions

In this thesis, we have addressed the following problems.

• Implement three SQL-92 approaches and three SQL-OR approaches using

Oracle stored procedures for association rule mining.

• Once the intermediate rule table is generated, map back to the final rule table

so that each item has a self-explain name

• Compare the performance of three SQL-92 approaches and three SQL-OR

approaches using different sized synthetically generated data sets.

• Conduct the scale-up experiments for our six approaches using different sized

synthetically generated data sets.

• Develop a visualization module using Java 3D to help the user manage and

understand the association rules.

• Compare our implementation with one of the commercial data mining tools

Intelligent Miner in various aspects, such as user interface, input/output, and

visualization.

6.3 Future Work

We have identified the following work for future research.

1. In our implementation, although we can access different DBMSs, the data

from only one DBMS (either DB2 or Oracle) are used for mining. We plan to

provide the user an interface to generate the input data set using the data from

all the databases the user specified and apply our mining algorithm to the

generated input data set.

89

2. We plan to extend the existing mining operations. In this thesis, we

implemented “association rule” using a series of SQL queries. The next step is

to explore the possibility of implement the other mining operations, such as

classification and clustering using SQL queries.

3. As to the visualization module, we plan to add more function such as zoom in,

zoom out so that the user can have more control over the rules.

4. We plan to explore the possibility of developing some of the operations for

association rule as the operators of the database. These operations include

SaveTid(), which is used to create the tid list for each item, and CountAndk(),

which is used to get the number of common elements from k CLOBs, etc. If

these operations can be part of the database operators, it will make mining for

an association rule easier. Further, we can explore the possibility of

developing the whole association rule mining as one operator of the database

so that the user only needs to give the DBMS the input table. If this happens,

there is no clear boundary of issuing a basic query command and a data

mining operation to the user.

90

APPENDIX
ASSOCIATION RULE MINING EXAMPLE USING KWAY JOIN

This appendix lists one example input data set, the intermediate candidate sets Cx,

the intermediate frequent item set Fx, and the final association rules using KWay Join

approach with minimum support of 50%, and minimum confidence of 50%.

Input Data Set

We use a small input data set that has 4 transactions (different TID denotes

different transactions). Each transaction has 2 or 3 items. The total number of records is

12. Table A-1 shows the items of all the transactions. For example, for the transaction

where TID=100, the items are “Milk, Eggs, Bread”.

Table A-1 Example of Input Data Set

TID ITEM
100 Milk
100 Eggs
100 Bread
200 Sugar
200 Eggs
200 Cake
300 Milk
300 Sugar
300 Eggs
300 Cake
400 Sugar
400 Cake

91

In order to convert the string format of item to integer format, we generate a

“description” table for each item. We can do this by scanning the input data set. For each

distinct item, we assign it a distinct number. Table A-2 shows the description table of the

example input data set. It has 5 distinct items.

Table A-2 Example of Description Table

ITEM NUMBER DESCRIPTION
1 Milk
2 Sugar
3 Eggs
4 Bread
5 Cake

The “Mapping” process is to convert all the TID and ITEM from string format to

integer format. Based on Table A-1 and Table A-2, the final input data set is generated

and stored in database as Table A-3.

Table A-3 TIDITEM Table

TID ITEM
100 1
100 3
100 4
200 2
200 3
200 5
300 1
300 2
300 3
300 5
400 2
400 5

92

The rest of this appendix shows all the intermediate results of association rule

mining using Kway Join approach for the given data set. We show the multiple passes of

support counting phase followed by the rule generation phase.

Support Counting:

There are four passes for the given data set.

First Pass

The candidate set C1 and frequent item sets F1 are shown in Table A-4 and

Table A-5 respectively.

Table A-4 Table “C1”

ITEM1
1
2
3
4
5

Table A-5 Table “F1”

ITEM1 COUNT
1 2
2 3
3 3
5 3

Second Pass

The candidate set C2 and frequent item sets F2 are shown in Table A-6 and

Table A-7 respectively.

93

Table A-6 Table “C2”

ITEM1 ITEM2
1 2
1 3
1 4
1 5
2 3
2 4
2 5
3 4
3 5
4 5

Table A-7 Table “F2”

ITEM1 ITEM2 COUNT
1 3 2
2 3 2
2 5 3
3 5 2

Third Pass

The candidate set C3 and frequent item sets F3 are shown in Table A-8 and

Table A-9 respectively.

Table A-8 Table “C3”

ITEM1 ITEM2 ITEM3
1 2 3
1 2 5
1 3 4
1 3 5
2 3 5

94

Table A-9 Table “F3”

ITEM1 ITEM2 ITEM3 COUNT
2 3 5 2

Rule Generation:

Combining the frequent sets of three passes F1, F2, F3, we can get the final

frequent sets table FISETS in Table A-10.

Table A-10 Frequent Item Sets “FISETS”

ITEM1 ITEM2 ITEM3 ITEM4 ITEM5 ITEM6 ITEM7 ITEM8 NULLM COUNT
1 0 0 0 0 0 0 0 2 2
2 0 0 0 0 0 0 0 2 3
3 0 0 0 0 0 0 0 2 3
5 0 0 0 0 0 0 0 2 3
1 3 0 0 0 0 0 0 3 2
2 3 0 0 0 0 0 0 3 2
2 5 0 0 0 0 0 0 3 3
3 5 0 0 0 0 0 0 3 2
2 3 5 0 0 0 0 0 4 2

All of the subsets of each record in table FISETS are generated and stored in table

“Primary-Rules”. The records of table “Primary-Rules” are shown in Table A-11. Using

table “FISETS” and table “Primary-Rules”, the association rules can be generated and

stored in the table “Rules”, which is illustrated in Table A-12. Lastly the final association

rules can be presented to the user as Table A-13 by joining “Description” and “Rules”

tables.

95

Table A-11 Table “Primary-Rules”

TITEM1 TITEM2 TITEM3 TITEM4 TITEM5 TITEM6 TITEM7 TITEM8 TNULLM TRULEM TCOUNT

1 3 0 0 0 0 0 0 3 2 2
3 1 0 0 0 0 0 0 3 2 2
2 3 0 0 0 0 0 0 3 2 2
3 2 0 0 0 0 0 0 3 2 2
2 5 0 0 0 0 0 0 3 2 3
5 2 0 0 0 0 0 0 3 2 3
3 5 0 0 0 0 0 0 3 2 2
5 3 0 0 0 0 0 0 3 2 2
2 3 5 0 0 0 0 0 4 2 2
3 2 5 0 0 0 0 0 4 2 2
5 2 3 0 0 0 0 0 4 2 2
2 3 5 0 0 0 0 0 4 3 2
2 5 3 0 0 0 0 0 4 3 2
3 5 2 0 0 0 0 0 4 3 2

Table A-12 Table “Rules”

ITEM1 ITEM2 ITEM3 ITEM4 ITEM5 ITEM6 ITEM7 ITEM8 NULLM RULEM CONF SUP

1 3 0 0 0 0 0 0 3 2 100 50
3 1 0 0 0 0 0 0 3 2 66.67 50
2 3 0 0 0 0 0 0 3 2 66.67 50
3 2 0 0 0 0 0 0 3 2 66.67 50
2 5 0 0 0 0 0 0 3 2 100 75
5 2 0 0 0 0 0 0 3 2 100 75
3 5 0 0 0 0 0 0 3 2 66.67 50
5 3 0 0 0 0 0 0 3 2 66.67 50
2 3 5 0 0 0 0 0 4 2 66.67 50
3 2 5 0 0 0 0 0 4 2 66.67 50
5 2 3 0 0 0 0 0 4 2 66.67 50
2 3 5 0 0 0 0 0 4 3 100 50
2 5 3 0 0 0 0 0 4 3 66.67 50
3 5 2 0 0 0 0 0 4 3 100 50

96

Table A-13 Final “Association Rules”

Rule Head Symbol Rule Body Confidence(%) Support(%)
Milk => Eggs 100 50
Eggs => Milk 67 50
Sugar => Eggs 67 50
Eggs => Sugar 67 50
Sugar => Cake 100 75
Cake => Sugar 100 75
Eggs => Cake 67 50
Cake => Eggs 67 50
Sugar => Eggs, Cake 67 50
Eggs => Sugar, Cake 67 50
Cake => Sugar, Eggs 67 50
Sugar, => Cake 100 50
Sugar, => Eggs 67 50
Eggs, Cake => Sugar 100 50

97

LIST OF REFERENCES

[AGR1993] Agrawal R., Imielinski T., and Swami S., Mining Association rules
between sets of items in large databases, Proc. of the ACM SIGMOD
Conference on Management of Data, Washington, DC, May 1993.

[AGR1994] Agrawal R., Srikant R., Fast Algorithms for Mining Association Rules,
Proc. of the 20th Int’l Conference on Very Large Database, Santiago,
Chile, September 1994.

[AGR1995a] Agrawal R., Psaila G., Active Data Mining, Proc. of the 1st Int'l
Conference on Knowledge Discovery and Data Mining, Montreal, August
1995.

[AGR1995b] Agrawal R., Psaila G., Wimmers E., and Zait M., Querying shapes of
histories, Proceedings of the 21st International Conference on Very Large
Databases, Zurich, Switzerland, September 1995.

[AGR1995c] Agrawal R., Srikant R., Mining Sequential Patterns, Proc. of the Int’l
Conference on Data Engineering, Taipei, Taiwan, 1995.

[AGR1998] Agrawal R., Gehrke J., Gunopulos D., Raghavan P., Automatic Subspace
Clustering of High Dimensional Data for Data Mining Applications, Proc.
of the ACM SIGMOD Int’l Conference on Management of Data, Seattle,
Washington, June 1998.

[BEC1998] Becker B. G., Visualizing Decision Table Classifiers, Proceedings of
Information Visualization, Research Triangle Park, North Carolina,
October 1998.

[CHA1995] Chakravarthy S., Krishnaprasad V., Tamizuddin Z., and Badani R. H.,
ECA Rule Integration into an OODBMS: Architecture and
Implementaion, 11th International Conference on Data Engineering,
Taipei, Taiwan, March 1995.

[CHA1998] Chamberlin D., A Complete Guide to DB2 Universal Database, Morgan
Kaufmann Publishers, Inc, San Mateo, California, 1998.

[DUD2000] Dudgikar M., A Layered Approach for Mining Association Rules over
Relational DBMS, Master’s thesis, University of Florida, Gainesville,
2000.

98

[GER1998] Gershon N., Eick S. G., and Card S., Information Visualization, ACM
Interactions, vol. 5, no. 2, pp. 9-15, March/April 1998.

[GRI1995] Grinstein G. and Thuraisingham D., Data Mining and Data Visualization,
Database Issues for Data Visualization, Proceedings of IEEE
Visualization’95 Workshop, Phoenix, Arizona, October 1995.

[HET1998] Hetzler B., Harris W. M., Havre S., and Whiteny P., Visualizing the Full
Spectrum of Document Relationships, Proceedings of the Fifth
International Society for Knowledge Organization Conference, San
Francisco, California, April 1998.

[IBM2000] IBM, http://www.software.ibm.com/data/iminer, January 2000.

[KEI1996] Keim D. A., and Kriegel H. P., Visualization Techniques for Mining
Large Databases: A Comparison, IEEE Transactions on Knowledge and
Data Engineering, vol. 8, no. 6, pp. 923-938, December 1996.

[LEN1997] Lent B., Agrawal R., and Srikant R., Discovering Trends in Text
Databases, Proc. of the 3rd Int’l Conference on Knowledge Discovery in
Databases and Data Mining, Newport Beach, California, August 1997.

[MEH1996] Metha M., Rissanen J., and Agrawal R., SLIQ: A Fast Scalable Classifier
for Data Mining, Proc. of the Fifth Int’l Conference on Extending
Database Technology, Avignon, France, March 1996.

[ORA1997] Oracle 8 Application Developer’s Guide, Chapter 10: Using Procedures
and Packages, Oracle, Belmont, California, 1997.

[SGI2000] SGI, http://www.sgi.com/software/mineset/index.html, February 2000.

[SHA1996] Shafer J. C., Agrawal R., and Mehta M., A Scalable Parallel Classifier for
Data Mining, Proc. of the 22th Int’l Conference on Very Large Databases,
Mumbai (Bombay), India, September 1996.

[SUN1999] Sun Microsystems, http://java.sun.com/products/java-media/3D/collateral,
July 1999.

[SUN2000] Sun Microsystems, http://java.sun.com/products/jdk/1.2/docs/guide/jdbc/,
January 2000.

[THO1998] Thomas S., Architectures and Optimizations for Integrating Data Mining
Algorithms with Database Systems, Ph.D. dissertation, University of
Florida, Gainesville, 1998.

99

[WON1999] Wong P. C., Whitney P., Thomas J., Visualizing Association Rules for
Text Mining, Proceedings of the 1999 IEEE Symposium on Information
Visualization, San Francisco, California, October 1999.

100

BIOGRAPHICAL SKETCH

Hongen Zhang was born on October 27, 1972, in Xinchang county, Zhejiang

province, P.R. China. He received his bachelor’s degree in forest genetics from Zhejiang

Forest College in June 1994. After his graduation, he was admitted to Bejing Forest

University in September 1994 and received his Master of Science degree in forest

genetics from Beijing Forest University in June 1997.

He joined the Department of Computer and Information Science and Engineering

at the University of Florida in spring 1999. He has worked as a graduate research

assistant in the Database Systems Research and Development Center of the department.

He worked with Dr. Sharma Chakravarthy to study the different SQL approaches of

association rules. He will receive his Master of Science degree in August 2000.

