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ABSTRACT 

ASSOCIATION RULE MINING OVER MULTIPLE DATABASES: 

PARTITIONED AND INCREMENTAL  

APPROACHES 

 

Publication No.____ 

Hima Valli Kona, M.S. 

The University of Texas at Arlington, 2003 

Supervising Professor: Sharma Chakravarthy 

Database mining is the process of extracting interesting and previously unknown 

patterns and correlations from data stored in Data Base Management Systems (DBMSs). 

Association rule mining is the process of discovering items, which tend to occur together in 

transactions. If the data to be mined were stored as relations in multiple databases, instead of 

moving data from one database to another, a partitioned approach would be appropriate.  

Also, incremental addition of data to the data set should not necessitate recomputation of 

rules for the entire data set.  

This thesis focuses on partitioned and incremental approaches to association rule 

mining for data stored in Relational DBMSs. This thesis proposes a partitioning approach 
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that is very effective for partitioned databases as compared to the main memory partitioned 

approach. Our approach uses SQL-based K-way join algorithm and its optimizations. A 

second alternative that trades accuracy for performance is also presented. Our results indicate 

that, beyond a certain size of data sets, the accuracy is preserved with this approach and 

results in better performance. The incremental association rule-mining algorithm reduces the 

task of recomputing the rules each time new data is added to the database. This thesis 

implements the incremental algorithm using the negative border concept with a number of 

optimizations. Extensive experiments are performed and results are presented for both 

partitioned and incremental approaches using IBM DB2/UDB and Oracle 8i.     
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CHAPTER 1  

INTRODUCTION 

 
Database Management Systems have continually evolved from primitive file systems 

to sophisticated and powerful relational and object oriented models. Present day systems 

implement various constructs in the form of query optimizing modules, event-condition-

action rules to trigger events of interest and other mechanisms that have made their use 

imperative in most applications. The implicit and unknown patterns in the underlying data 

can be effectively utilized in decision-making. The process of gleaning important information 

from data is known as Data Mining. Architectures and techniques for optimizing mining 

algorithms for relational as well as object oriented databases are being explored with a view 

to tightly integrate mining into data warehouses. A multi-database system [1, 2] is a 

federation of autonomous and heterogeneous database systems. Most of the organizations 

today have multiple data sources distributed at different locations, which need to be analyzed 

to generate interesting patterns and rules. An effective way to deal with multiple data sources 

(where data to be mined is distributed among several relations on different database 

management systems (DBMSs)) is to mine the association rules at different sources and 

forward the rules to a centralized system rather than sending the data to be mined which is 

likely to be very large. This would provide a great boost to the database and information 



 

 2

industry, and make available  large data repositories for transaction management, information 

retrieval, and data analysis 

A data warehouse is an information repository that is a complete and consistent store 

of data obtained from various sources. Data mining [1, 3, 8, 9, 10, 18, 20, 25] has attracted a 

great deal of attention due to the wide availability of huge amounts of data and the imminent 

need for turning such data into useful information. The knowledge gained can be used for 

applications ranging from business management, production control, and market analysis, to 

engineering design and science exploration. Interactive mining has been proposed as a way to 

bring decision makers into the loop to enhance the utility of mining and to support goal 

oriented mining.  

Data mining is also known as knowledge discovery in databases [3]. It is the 

automated extraction of implicit, understandable, previously unknown and potentially useful 

information from large databases. In other words, data mining is the act of drilling through 

huge volumes of data to discover relationships, or answer queries too generalized for 

traditional query tools. In general, data mining tasks can be classified into two categories: 

Descriptive mining:  It is the process of drawing the essential characteristics or 

general properties of the data in the database. Clustering, Association and Sequential mining 

are some of the descriptive mining techniques.  

Predictive mining: This is the process of inferring patterns form data to make 

predictions. Classification, Regression and Deviation detection are predictive mining 

techniques. 
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1.1 Data Mining Techniques 

1.1.1 Association Rule 

Association rule mining [3-6] is a data mining technique used to find interesting 

associations among a large set of data items. A typical application of association rule mining 

is market-basket analysis. In market-basket analysis, buying habits of customers are analyzed 

to find associations between the different items that customers place in their “shopping 

baskets”. The discovery of such associations can help retailers develop marketing and 

placement strategies as well as plan on logistics for inventory management.  Items that are 

frequently purchased together by customers can be identified. An attempt is made to 

associate a product “A” with another product “B” so as to infer “whenever A is bought, B is 

also bought”, with high confidence (i.e., the number of times B occurs when A occurs). 

1.1.2 Classification 

Classification [3, 4] is the process of partitioning a given dataset into disjoint classes 

using a class attribute. For example, in determining a store location, the success of a store is 

determined by its neighborhood. The company is interested in identifying neighborhoods that 

would constitute its primary candidates. A model is built based on the values of all attributes 

to classify each item into a particular class. The goal of classification is to analyze the 

training set and to develop an accurate description or model for each class using the attributes 

presented in the data. Many classifications models have been developed such as neural 

networks, genetic models, and decision trees etc. 
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1.1.3 Clustering 

Clustering [3] is the process of grouping the data into clusters with high intra-cluster 

similarity and low inter-cluster similarity. A similarity measure needs to be defined and the 

quality of the cluster, to a large extent, depends on the appropriateness of the similarity 

measure for the data set or the domain of application. The technique of clustering, for 

example, can be used to divide the market into distinct groups, so that each group can be 

targeted with a different strategy. There are several clustering techniques: partitioning 

methods, hierarchical methods, density-based methods, grid-based methods, and model-

based methods.  

The basic difference between classification and clustering is that classification is a 

supervised learning method, which assumes predefined class labels, while clustering is an 

unsupervised learning method that does not assume any knowledge of classes. 

1.1.4 Prediction  

Prediction techniques are based on some continuous valued attributes. Previous 

history of the attributes is used to build the model. This technique is commonly used for 

predicting product sales. 

1.1.5 Deviation analysis 

This technique compares current data with previously defined normal values to detect 

anomalies. Deviation analysis tools are useful in security systems, where authorities can be 

warned about deviation in resource utilization.  
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1.2 Partitioned Approach 

The partition algorithm is a fast and efficient algorithm for mining association rules 

in large databases. The algorithm differs from the other mining algorithms in terms of the 

number of passes it makes over the database. The algorithm makes just 2 passes over the 

input database to generate the rules. The partition algorithm executes in two phases: In the 

first phase of the algorithm the database is divided into non-overlapping partitions and each 

of the partitions are mined individually to generate the local frequent itemsets. At the end of 

the first phase the local frequent itemsets are merged to generate the global candidate 

itemsets. In the second phase of the algorithm the support is calculated for all the itemsets in 

the global candidate itemset and the global frequent itemsets are generated as the set of 

itemsets, which satisfy the support. The database is scanned completely once in each of the 

phases of the algorithm. The algorithm can be executed in parallel to utilize the capacity of 

many processors with each processor generating the rules for a particular set of transactions 

and merging the frequent itemsets obtained from all the processors.  

1.3 Incremental Mining 

Association rules represent an important class of knowledge that can be discovered 

from data warehouses [7-9]. As new data is added, previously discovered rules have to be 

verified and new rules may have to be added to the knowledge base. Changes to the data can 

also invalidate existing patterns. The task of deriving new rules for data sets that grow 

incrementally can be done in several ways. Re-executing the algorithms from scratch each 

time a database is updated can result in excessive computation and I/O. Re-execution is not 
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an efficient process, since it ignores previously discovered rules and repeats the work that has 

already been done. Incremental mining is a useful technique for discovering new rules as the 

data distribution patterns change, obviating the need for recomputation of old rules.  

Incremental mining is done by maintaining the negative border [10] along with the 

frequent itemsets. The negative border is used to decide when to scan the whole database. 

The frequent itemsets for the increment database is computed. A full scan of the whole 

database is required when the negative border of the frequent itemsets expands, that is an 

itemset outside the negative border gets added to the frequent itemsets or its negative border.  

1.4 Architecture Alternatives 
 

Various architecture schemes have been proposed for integrating the mining process 

with relational database systems. These alternatives are depicted in Figure 1.1 [11] and are 

described below.  

  

 
Figure 1.1 Architectural Alternatives 
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Loose coupling or Cache-based Mining: This is an example of integrating mining 

applications into the client in a client/server architecture or into the application server in a 

multi- tier architecture. The mining kernel can be considered as the application server. The 

data is first fetched from the database and fed to the mining-kernel, which mines and pushes 

the results back to the database. 

 In loose coupling, the DBMS runs in a different address space from the mining 

process. Cache-based mining is a special case of the loose coupling approach, wherein data 

from the DBMS is read only once and the relevant data is cached into flat files on local disk. 

Stored procedures and user-defined functions: This architecture is a representative of 

the case where the mining logic is embedded as an application on the database server. The 

applications are executed in the same address space as the DBMS. The flexibility in 

programming the stored procedure outweighs their development cost. 

SQL-based approach: In this approach the mining algorithm is formulated as SQL 

queries, which are executed by the DBMS query processor. A mining-aware optimizer may 

be used to optimize these complex, long running queries based on the mining semantics. The  

DBMS support for check pointing and space management is especially valuable for long 

running mining algorithms on huge volumes of data.  

Integrated Approach: This is the tightest form of integration that has no boundary 

between simple querying, OLAP, or mining. Mining operators or SQL, extended for mining 

is optimized by the underlying system without any hints from the user.  The long-term goal is 

to extend the current query optimizers to cover OLAP and mining along with SQL queries.  
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1.5 Background 

 
The work on association rule mining began with the development of the AIS 

algorithm [6], and was further modified and extended in [5]. Since then, several attempts 

have been made to improve the performance of these algorithms. The partition algorithm [12] 

partitions the data into disjoint groups, processes each individually, and merges the 

intermediate results. It improves the overall performance by reducing the number of passes 

needed over the complete database to at most two. The turbo-charging algorithm [13] 

incorporates the concept of data compression to boost the performance of the mining 

algorithm. The FP-Tree algorithm [14] builds a special tree structure in main memory to 

avoid multiple passes over database. However, most of these algorithms are applicable to 

data stored in flat files. The main characteristic of these algorithms is that they are main 

memory algorithms. In these algorithms, the data is either read directly from flat files or is 

first extracted from the DBMS and then processed in main memory. The algorithms 

implement their own buffer management schemes and the performance varies depending on 

the specialized data-structures used for buffer management.  

A few attempts have been made to build database-based mining approaches. Work in 

the field of database mining has focused on integrating the mining functions with the 

database. Various extensions to the SQL have been proposed which overload the SQL with 

certain mining operators. SETM [15] showed how the data stored in RDBMS can be mined 

using SQL and the corresponding performance gain achieved by optimizing these queries. 

The Data Mining Query Language DMQL [16] proposed a collection of such operators for 
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classification rules, characteristics rule, association rules, discriminant rules, etc. [17] 

proposed the MineRule operator for generating general/clustered/ordered association rules. 

[18] presents a methodology for tightly coupled integration of data mining applications with 

a relational database system. [19] has tried to highlight the implications of various 

architectural alternatives for coupling data mining with relational database systems. They 

have also compared the performance of the SQL-based approaches with SQL-OR-based 

approaches and the case when mining is done outside the database address space. The 

Incremental Mining algorithm [7-9] is another useful technique for speeding up the mining 

process when new data is added. [20] has developed an association rule visualization system, 

which includes a tabular form and a three-dimensional graphics to display the rules. [21] has 

formulated SQL queries to implement association rule mining algorithms and also compared 

and contrasted the performance of SQL-92 and SQL-OR approaches based on their 

performance over synthetically generated datasets. Some of the earlier research has focused 

on the development of SQL-based formulations for association rule mining. Most of these 

algorithms use the apriori algorithm directly or indirectly with certain modifications of the 

same. [19] and [8] deal with the SQL implementation of the apriori algorithm and have 

compared some of the optimizations to the basic k-way join algorithm for association rule 

mining but the relative performances and possible combinations for optimizations were not 

explored. [22] deals with the mapping of the arbitrary relations into the (tid,item) format and 

remapping them back to the original values. [21, 23, 24] deals with the performance 

evaluation of the SQL-92 and SQL-OR approaches. [1] Deals with a multi-database mining 

strategy to develop local pattern analysis for identifying novel and useful patterns. [2] 
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presents a weighting model for synthesizing high-frequency association rules from different 

data sources.  

To make the implementation operating system independent, we have used Java and 

JDBC API’s [25, 26]. For the purpose of evaluation, the experiments have been performed 

on Oracle 8i and IBM DB2/UDB.  

1.6 Focus Of This Thesis 

 
With increase in the use of RDBMS to store and manipulate data, mining directly on 

RDBMSs would be an advantage. Main memory imposes a limitation on the size of dataset 

that can be processed. In addition, data stored in a database has to be siphoned out into a flat 

file for processing. However, if mining is done directly over an RDBMS, the user/application 

can be freed from data size considerations, as this would be taken care of by the underlying 

buffer management system. In database mining, we assume that the data is already stored in 

tables in an underlying DBMS and use the SQL provided by the RDBMS for mining to 

produce association rules. Building mining algorithms to work on RDBMSs also provides the 

advantage of mining over very large datasets as RDBMSs have been built to manage such 

large volumes of data. File based mining algorithms are those that work on data outside the 

database. They generally have an upper limit on the number of transaction that can be mined. 

For example, the DBMiner has an upper limit of 64K on the number of unique transactions 

that it can process for mining.  With the users having a choice of RDBMS to use for their 

applications, the mining algorithms should be developed using such accepted standards so 

that the underlying system is not a limitation and should be portable to other RDBMSs. 
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Keeping this in mind, focus has been placed on the use of SQL. The arbitrary relations are 

mapped  [22] to the (Tid, item) format and reconversion is done at the end of the rule 

generation. Data may be stored in multiple databases and the data in each of the databases 

may get updated frequently and independently. In this case either the intermediate results or 

the input data has to be transferred to a single database to perform mining. 

The goal of this thesis is to study approaches for mining association rules over 

multiple databases. In an organization, data is generally distributed over multiple databases 

(typically 2 or 3). One of the solutions to mining data in multiple databases is to move the 

relations to a single database and do mining. The other solution would be to apply a 

partitioned or an incremental approach to perform mining. In this case, some intermediate 

data has to be transferred to one database (most likely one o the databases) to combine the 

results obtained independently at different sources. This thesis mainly focuses on two 

approaches for association rule mining over data stored in multiple relations in one or more 

databases. First is the partition approach [12], which mines the data in partitions and merges 

the results finally. The second is the incremental mining approach [8] that helps to update 

and manage the rules each time new data is added or existing data is deleted from the 

warehouse. These approaches may be extended to suit a multi-database environment that has 

autonomous and heterogeneous data sources. Due to the lack of availability of real datasets, 

synthetic datasets (generated by the program developed at IBM Almaden) have been used for 

performance evaluation. Nevertheless, the results are useful (as they are only based on 

cardinality, support and underlying RDBMS, not on the semantics of the data set) in 

understanding the approaches. 
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The rest of this thesis is organized as follows. CHAPTER 2 introduces the 

association rule mining algorithms and their SQL formulations. CHAPTER 3 discusses the 

partition-based approach for association rule mining. It covers in detail the implementation of 

the algorithm using the k-way join approach for support counting. The optimizations 

proposed and their performance analyses are presented. CHAPTER 4 presents incremental 

mining of association rules. CHAPTER 5 includes extensions done in building this mining 

tool. CHAPTER 6 concludes the thesis with emphasis on the future work. 
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CHAPTER 2  

RELATED WORK 

 
The outline of this chapter is as follows: We revisit association rule mining briefly in 

2.1 and discuss some of the main-memory based mining algorithms such as Apriori 

algorithm, the partition algorithm and the incremental mining algorithm. 2.2 enumerates the 

SQL-OR and SQL-92 based approaches for generating the frequent itemsets. 2.3 discusses 

multi-database mining for analyzing data from different sources.  

2.1 Association Rule Mining Algorithms  

 
Association rule mining makes correlation among items that are grouped into 

transactions, deducing rules that define relationships between item sets. The rules have a 

user-stipulated support, confidence, and length. Association rule mining has attracted 

tremendous attention from data mining researchers and as a result several algorithms have 

been proposed for it [8, 9, 14, 20, 21]. Let I = {i1, i2, …., im} be the collection of  all the items 

and D be the set of database transactions where each transaction T is a set of items such that 

T ⊆ I. Let A be a set of items. A transaction T is said to contain A if and only if A ⊆ T. An 
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association rule is an implication of the form A ⇒ B, where A ⊂ I, B ⊂ I, and A ∩ B = φ.  

They are two terms associated with association rules. These are: Support and Confidence.  

If the support of itemset {AB} is 30%, it means “30% of all the transactions contain 

both the itemsets – itemset A and itemset B”.  

Support of itemset {AB} = Count Of the transactions containing the itemsets A and B 
                                                            Total Number of Transactions 
 
 

If the confidence of the rule A ⇒ B is 70%, it means “70% of all the transactions that 

contain itemset A also contain itemset B”.  

Confidence of the rule A ⇒ B = 
})({
})({

ASupport
ABSupport

  

An association rule-mining problem is broken down into two steps: 1) Generate all 

the item combinations (itemsets) whose support is greater than the user specified minimum 

support. Such sets are called the frequent itemsets and 2) use the identified frequent itemsets 

to generate the rules that satisfy a user specified confidence. The frequent itemsets generation 

requires more effort and the rule generation is straightforward. 

2.1.1 Apriori Algorithm 

The apriori algorithm [6] is based on the above-mentioned steps of frequent itemsets 

and rule generation phases. Frequent itemsets are generated in two steps. In the first step all 

possible combination of items, called the candidate itemset (Ck) is generated. In the second 

step, support of each candidate itemset is counted and those itemsets that have support values 

greater than the user-specified minimum support form the frequent itemset (Fk). In this 
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algorithm the database is scanned multiple times and the number of scans cannot be 

determined in advance. The apriori algorithm is depicted below. 

 
F1 = {frequent 1-itemsets} 
for (k = 2; Fk-1 ≠ 0; k++) do 

Ck = generate(Fk-1) 
for all transactions t ∈ D do 
 Ct = subset(Ck, t) 
 for all candidates, c ∈ Ct do  
  c.count++ 
 end for 
end for 
Fk = { c ∈ Ck | c.count ≥ minsup} 

end for 
Answer = ∪k{Fk} 
 

 

The AprioriTid algorithm [5] uses the above algorithm to determine the candidate 

itemsets before each pass begins. The interesting feature of this algorithm is that it does not 

use the database for support counting after the first pass. It uses a set Ck of the form {TID, 

Xk} where Xk is the potentially large k- itemsets present in the transaction with the identifier 

TID. For k=1, C1 will be the database. If a transaction does not contain a k- itemset then Ck 

will not have an entry for that transaction. Set Oriented Mining, SETM [15] uses the SQL 

join operation for candidate generation. The candidate itemset with the TID of the generating 

transaction is stored as a sequential structure, which is used for support counting. The 

problem with the above two algorithms is that they generate too many candidates that turn 

out to be small (or not frequent) resulting in wasted effort. AprioriTid is better for the later 

passes where the size of Ck is small when compared to the size of the database.  
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Based on the above observations the Apriori Hybrid [5] algorithm was proposed. It 

uses Apriori for the earlier passes and switches to the AprioriTid when the size of Ck 

becomes small enough to fit in memory. 

2.1.2 Partition Algorithm 

The Partition algorithm [12] differs from the Apriori algorithm in terms of the 

number of database scans. The partition algorithm scans the database at most twice. The 

algorithm is inherently parallel in nature and can be parallelized with minimal 

communication and synchronization between the processing nodes The algorithm is divided 

into 2 phases: i) during the first phase, the database is divided into n non-overlapping 

partitions and the frequent itemsets for each partition are generated. ii) In the second phase, 

all the local large itemsets are merged to form the global candidate itemsets and a second 

scan of the database is made to generate the final counts. The algorithm is depicted below: 

 
P = partition_database(D) 
n = Number of partitions 
// Phase I 
for i = 1 to n do begin 
 read-in_partition(pi ε P) 
 Li - gen_large_itemsets(pi) 
end 
// Merge Phase 
for(i = 2; Lj

i ≠ φ, j = 1,2....,n; i++) do begin 
 CiG = ∪j = 1,2,...nLij 
end 
// Phase II 
for i = 1 to n do begin 
 read-in_partition(pi ε P) 
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 for all candidates c ε CG gen_count(c, pi) 
end 
LG = {c ε CG| c.count > minsup} 
Answer = LG  
 
 The partition algorithm is designed to generate rules in parallel and utilize the power 

of a number of processors. It is used to aggregate the power and memory of many processors. 

The data in the form of a single file is distributed among different processors with each 

processor generating   itemsets for that part of the data in parallel. This would require the 

passing of intermediate information among processors to generate the global rules. The 

parallelized partition algorithm, although developed for multiple processors, can be adapted 

for multiple database scenario where data is distributed over multiple databases. 

2.1.3 Parallel Mining of Association Rules 

[27] discusses the problem of mining association rules in a shared-nothing 

multiprocessor. Three algorithms were proposed to explore the spectrum of trade-offs 

between computation, communication and memory usage as follows: 

Count Distribution Algorithm: The count distribution algorithm minimizes the 

communication at the expense of carrying out redundant duplicate computations in parallel. 

These communications are carried out on the idle processors. This algorithm does not use the 

memory of the system effectively. 

Data Distribution Algorithm: The data distribution algorithm attempts to utilize the 

aggregate main memory of the system effectively depending on the number of processors. 

The downside of this algorithm is that every processor must broadcast its local data to all 
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other processors in every pass. This algorithm would be viable only on a machine with very 

fast communication. 

Candidate Distribution Algorithm: This algorithm exploits the semantics of the 

particular problem at hand to reduce the synchronization between the processors and to 

segment the database based on the patterns the different transactions support.  

The count distribution algorithm performed the best among the three algorithms. It 

exhibited linear scale-up and excellent speed-up and sizeup behavior.  

2.1.4 Incremental Mining 

The Incremental mining algorithm [7, 8] is used to find new frequent itemsets with 

minimal recomputation when new transactions are added to or deleted from the transaction 

database. The algorithm uses the negative border concept for this. The negative border 

[Toivonen, 1996 #28] consists of all itemsets that were candidates, which did not have the 

minimum support.  During each pass of the apriori algorithm, the set of candidate itemsets Ck 

is computed from the frequent itemsets Fk-1 in the join and prune steps of the algorithm. The 

negative border is the set of all those itemsets that were candidates in the kth pass but did not 

satisfy the user specified support, that is (NBd(Fk)) = Ck – Fk. The algorithm uses a full scan 

of the whole database only if the negative border of the frequent itemsets expands.  The 

algorithm for updating the frequent itemsets is as follows: 
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function Update-Frequent-Itemset(FDB, NBd(FDB),db)  
 
//DB and db denote the number of transactions in the original 
database and the increment database respectively.  
 
Compute Fdb  
for each itemset s ∈ FDB ∪ NBd(FDB) do  

tdb(s) = number of transactions in db containing s  
FDB+ = φ  

for each itemset s ∈ FDB do  
if (tDB(s) + tdb(s)) > minsup * (DB + db)      

then FDB+ = FDB+ ∪ s  
for each itemset s ∈ Fdb do  

if s ∉ FDB and s ∈ NBd(FDB) and (tDB(s) + tdb (s)) >  
minsup * (DB + db)  
then FDB+ = FDB+ ∪ s  

 
if FDB ≠ FDB+ then  

NBd(FDB+) = negativeborder-gen(FDB+)  
else NBd(FDB+) = NBd(FDB)  
if FDB ∪ NBd(FDB) ≠ FDB+ ∪ NBd(FDB+) then  

S = FDB+  
repeat  

compute S = S ∪ NBd(S)  
until S does not grow  
FDB+ = {x ∈ S | support(x) > minsup}  
//support(x) is the support count of x in DB ∪ db  
NBd(FDB+) = negativeborder-gen(FDB+)  

2.2 SQL-OR And SQL-92 Based Approaches 

 

The k-way join approach [8, 21-23] is the SQL-92 approach for support counting. 

Here in any pass k, k copies of the input table are joined with the candidate itemsets Ck 

followed by a group by on the itemsets.  The k copies of the input table are needed to 

compare the k items in the candidate itemset Ck with one item from each of the k-copies of 

the input table. The group by clause on the k items is done to identify all itemsets whose 
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count is greater than the user specified support value, as frequent items, which are then used 

for the rule generation phase. The SQL statement used for support counting in the k-way join 

approach is shown below. 

 

Insert  into Fk 
Select  item1, … , itemk, count(*) 
From  Ck, T t1, … , T tk 
Where  t1.item = Ck.item1 and 

   : 
tk.item = Ck.itemk and 
t1.tid = t2.tid and 

   : 
tk-1.tid = tk.tid 

Group by item1,  item2, … ,itemk 
Having  count(*) > minsup 

 
The following are the optimizations that turned out to be the best [21, 23] for the k-

way join approach: 

2.2.1 Second Pass Optimization 

 
In general, because of the immense size of C2, the cost of support counting for C2 is 

very high. In addition, for candidate sets of length 2, as all the subsets of length 1 are known 

to be frequent, there is no gain from pruning during candidate generation. Also there are no 

rules associated with F1. Hence the process of generating F1 and then C2 followed by the 

support counting phase can be replaced by directly generating F2. F2 is generated by joining 

two copies of the input table such that, the item from first copy of the input table is less than 
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the item from the second copy of the input table and both items belong to same transaction. 

The SQL for the same is as follows: 

 
Insert into F2 select t1.item, t2.item, count(*)  
From  InputTable T1, InputTable T2  
Where T1.tid = T2.tid and T1.item < T2.item  
Group by T1.item, T2.item.  
Having count(*) > minsup  
 

2.2.2 Reuse of Item Combinations 

 
This optimization aims to reduce the cost of support counting, in any pass k, by 

avoiding the join of k copies of input table with the set of candidate itemsets Ck. Joining k 

copies of the input table is avoided by materializing the frequent itemsets obtained from a 

particular transaction in pass k-1, and using it for support counting in the kth pass. This 

approach proves to be very effective for cases where the length of the frequent itemset is 

large since the sequence of joins done in the earlier passes are avoided. So in kth pass for 

support counting, a relation Combk, having the following attributes (tid, item1, item2, …, 

itemk) is created. The tuples in Combk is the result of the join between Combk-1, T and Ck to 

select all those transactions in T which contains 1-extensions to the frequent itemsets of 

length k-1. The SQL for this is given below: 

 

Insert  into Combk  
Select T1.tid, T1.item1, T1.item2,…, T1.itemk-1,T2.item  
From  Ck, Combk-1 T1, T T2  
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Where  T1.item1 = Ck.item1 and  
    :  

:  
 T1.itemk-1 = Ck.itemk-1 and  
     T2.item = Ck.itemk and  
     T1.tid = T2.tid  

 
Fk is then generated from Combk by grouping on k items (item1, item2, …, itemk) and 

selecting those that satisfy the minimum support criteria. The SQL for this given below: 

 
Insert into Fk 
Select item1, item2, …, itemk  
From  Combk  
Group by  item1, item2, …, itemk  
Having  count(*) > minsup  

2.2.3 Vertical-Tid Approach 

 
The Vertical-Tid approach [24] uses SQL-OR constructs (such as CLOBs) for better 

representation of input data. For Oracle, all stored procedures have been implemented as a 

Java stored procedures and for IBM DB2/UDB, the same has been implemented as user 

defined functions (or UDFs) using Java.  

Here, the representation of input data is changed and the transactions are inserted in a 

different relation (TidListTable) having the following attributes: (Item, TidList). For every 

unique item id in the input dataset, the TidListTable has only one tuple. This tuple represents 

the item id and the list of all the transactions in which that item was bought. Each list of 

transactions is represented as a CLOB and stored in the TidList column of the TidListTable.  
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For the purpose of support counting, procedures are used to read these CLOBs and 

for each item combination (itemset), the numbers of same transaction ids that are present in 

the TidList of each item id in that itemset are counted. The SQL for generation of frequent 

itemsets is given below. 

 
Insert into Fk 
Select item1, item2, …, itemk 
From (Select item1, item2,…, itemk, 

CountAndK(I1.TidList,I2.TidList, … ,  
Ik.TidList) as cnt 

From Ck, TidListTable I1, TidListTable I2,…, 
TidListTable Ik, 

  Where Ck.item1 = I1.item And 
Ck.item2 = I2.item And 
     :  
         : 
Ck.itemk = Ik.item) as temp 

Where cnt > minsup. 
 

Here CountAndK is a procedure that in pass k, accepts k TidLists and returns the 

count of transactions that are common to each of them. 

2.3 Multi-Database Mining 

 
Many organizations end up using multiple databases due to acquisitions and merger. 

These are used in a federated manner and are independently, maintained. If one were to mine 

on data present in multiple databases, there are two options. The first one is to transfer data to 

a single database and mine it on that database. The second option is to mine them 

independently and still generate association rules for the combination of the data in multiple 
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databases.[1]. A large majority of organizations have computerized all or a part of their daily 

activities. Let us consider a company, which has several branches in different locations with 

each branch having its own database. The main branch or top level within the organizational 

hierarchy is responsible for development and decision making within the entire company. Let 

us consider the following multi-database environment shown in Figure 2.1. 

 

 
 

Figure 2.1 A Multi-Database Environment 

 
The development of multi-database association rule mining is a challenging and 

critical task since it requires knowledge of all the data stored at different locations and the 

ability to combine partial results from individual RDBMS's into a single result. The 

individual databases have to be analyzed to generate rules to make local decisions. It would 

be easier for the organization to make decisions based on the rules generated by the 

individual branches, rather than using the raw data. If the raw data from each of the 
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individual databases were sent to a  single database to generate the rules, certain useful rules, 

which would aid in making decisions about local branches, would be lost. For example a rule 

such as “50% of the branches in the north saw a 10% increase in the purchase of printers 

when Digital cameras and memory cards were purchased together” would not be generated if 

the raw data was transferred. If the raw data from all the databases were transferred to a 

single database then each of the individual branches would not be generating the rules with 

respect to its data. In such a case the organization may miss out certain rules that were 

prominent in certain branches and were not found in the other branches similar to the above 

example. Generating such rules would aid in making decisions about specific branches.   

[2] presents a weighting model for synthesizing high-frequency association rules 

from different sources. A high-frequency rule is the one that is supported by most of the data 

sources. High-frequency rules are preferred for two reasons. First, a company headquarter is 

interested in the rules supported by most of its branches for corporate profitability. Second, 

high frequency rules have larger chances to become valid rules in the union of all data 

sources than the low-frequency rules do. The proposed model assigns a high-weight to a data 

source that supports/votes more high-frequency rules and a lower weight to a data source that 

supports/votes less high-frequency rules. A relative synthesizing model using clustering is 

used when the data source is unknown (e.g., collected from the web, journals and books). 

This model is different form parallel and distributed mining and metalearning because they 

do not produce a global learning model from classifiers from different data sources. 

Although a multi-relational database can be transformed into a single universal 

relation, practically this can lead to many issues such as universal relations of unmanageable 
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sizes, infiltration of uninteresting attributes, loss of useful relation names, unnecessary join 

operations, and inconvenience for distributed processing. [1] Discusses a new multi-database 

mining process. The patterns in multi-databases are divided into the following classes: 

Local patterns: Local branches need to consider the original raw data in their datasets 

so they can identify local patterns for local decisions.  

High-vote patterns: These are the patterns that are supported by most of the branches 

and are used for making global decisions. 

Exceptional patterns: These patterns are strongly supported by only a few branches 

and are used to create policies for specific branches. 

The mining strategy used in [1] identifies two types of patterns, high-vote patterns 

and exceptional patterns. The discovery of these patterns can capture certain distributions of 

local patterns and assist global decision-making within a large company.  



27 

CHAPTER 3  

PARTITIONED APPROACH TO ASSOCIATION RULE MINING 

 

Different approaches have been proposed to generate association rules effectively. 

These proposed approaches have their own advantages and disadvantages. In this chapter we 

will revisit the partition algorithm in finer detail. The outline of this chapter is as follows: 

Section 3.1 adapted and evaluated the performance of the partition algorithm to suit RDBMS. 

Section 3.2 discusses the two variants of the partition algorithm proposed in this thesis 

3.1 Database Approach To Partition Algorithm 

 
Most of the algorithms for discovering association rules [5, 6, 15] require multiple 

passes over the database. The database was read completely for each pass resulting in a large 

number of disk reads in the case of disk resident databases placing a huge burden on the I/O 

subsystem. Network congestion problems and poor resource utilization was common in cases 

where data was to be retrieved from a central database server over a network. The partition 

algorithm [12] is an efficient algorithm for mining association rules in large databases. In this 

section we present the performance of the partition algorithm for multiple databases.  

SQL operations over Relational databases were used. There was no change in Phase I 

of the algorithm. Each database was considered an individual partition and the frequent 
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itemsets were generated for each of the databases. In Phase II of the algorithm the frequent 

itemsets from each of the partitions were merged to form two sets of itemsets. The first set is 

the global frequent itemsets, which correspond to itemsets that are large in all the partitions 

(databases). The second set is the set of global candidate itemsets, which is the union of all 

the frequent itemsets from each of the partitions (and does not include the global frequent 

itemsets). 

A TIDLIST is created for the entire database. This would incur the shipping cost of 

the partitions to one database.  As the data is assumed to be distributed over different 

databases, they need to be shipped to a single database to combine and create the TIDLIST. 

The TIDLIST was used for counting the support of the itemsets in the global candidate 

itemsets and the itemsets satisfying the user specified support were added to the set of global 

frequent itemsets.  

3.1.1 Methodology for Experiments 

The performance results presented in this thesis are based on datasets generated 

synthetically using IBM’s data-generator. The nomenclature of these datasets is of the form 

“TxxIyyDzzzK”, where “xx” denotes the average number of items present per transaction, 

"yy" denotes the average support of each item in the dataset and "zzzK" denotes the total 

number of transactions in “K”(1000s). The experiments have been performed on Oracle 8i 

and IBM DB2 / UDB V7.2 (installed on a machine running Microsoft Windows 2000 Server 

with 512MB of RAM). Each experiment has been performed 4 times. The values from the 

first run are ignored so as to avoid the effect of the previous experiments and other database 
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setups. The average of the next 3 runs is taken and used for analysis. This is done so as to 

avoid any false reporting of time due to system overload or any other factors. For most of the 

experiments, we have found that the percentage difference of each run with respect to the 

average is less than one percent. Before the input is fed to the mining algorithm the input is 

checked for  (tid, item) format. On completion of mining, the results are remapped to their 

original values. Since the time taken for mapping, rule generation and re-mapping the results 

to their original descriptions is relatively insignificant, they are not reported. For the purpose 

of reporting experimental results in this thesis, we have shown the results only for three 

datasets – T5I2D500K, T5I2D1000K and T10I4D100K for most of the optimizations. 
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Figure 3.1 Performance Of TIDLIST Approach On T5I2D1000K Dataset 
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Figure 3.1 shows the performance of the TIDLIST approach for a T5I2D1000K 

dataset. The dataset is divided into two equal partitions each of size 500K. The analysis of 

the time taken for the different phases shows that the Phase II is the most time consuming. In 

Phase II, the TIDLIST is created for the whole dataset. 
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Figure 3.2 Time Taken For TIDLIST Creation For Different Datasets 

 

Figure 3.2 shows the time taken for the TIDLIST creation for datasets of different 

size. The TIDLIST creation time increases exponentially as the size of the dataset increases. 

The partitioned approach although seems to work well for main memory databases, its 

performance for partitioned databases is not acceptable. The creation of the TIDLIST and the 

shipping of the partitions to a single database need to be avoided.  In the next section, two 



 

 31

approaches have been proposed to overcome the above inefficiency of the partition algorithm 

for multiple databases. 

3.2 Proposed Extensions To Partition Algorithm 

This section discusses two approaches Approach I and Approach II that have been 

proposed for the partition algorithm useful for multiple databases. The following notation is 

used in the remainder of the thesis. 

 

Table 3.1 Notations Used For Partitioned Approach 

Notation Meaning 

CP
K Local Candidate Itemsets: 

           Set of local candidate k- itemsets in partition P. 

FP
K Local Frequent Itemsets: 

          Set of local frequent k- itemsets in partition P. 

CG
K Global Candidate Itemsets: 

          Set of global candidate k- itemsets. 

FG
K Global Frequent Itemsets: 

          Set of global frequent k- itemsets. 

NBd(FP
K) Negative Border: 

         Set of local non-frequent k-itemsets in partition P. 

 

The negative border of frequent k-itemsets corresponds to those itemsets that did not 

satisfy the support in pass k. That is NBd(FP
K) =  CP

K  - FP
K. Given a collection F ⊆ P(R) of 
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sets, closed with respect to set inclusion relation, the NBd(F) of F consists of the minimal 

itemsets X ⊆ R not in F. 

3.2.1 Approach I 

In the TIDLIST approach, the TIDLIST was created as a CLOB. In Approach I 

TIDLIST is not at all created and the k-way join approach is used instead.   Some of the k-

way join optimizations reported in [21] have been used. The two k-way join optimizations 

used are: Second-pass Optimization (SPO) and Reuse of Item Combinations (RIC). In a 

multiple database scenario, each of the individual databases is considered as a partition and 

the merging is done by choosing one of the databases. The changes made to the partition 

algorithm are described below. 

3.2.1.1 Phase I 

In this phase the frequent itemsets FP
K are generated for each of the partitions. Along 

with the frequent itemsets in each of the partitions, the negative border of the frequent 2-

itemsets NBd(FP
2) is also retained. These itemsets are used for counting the support in the 

Phase II of the algorithm. Only the negative border of the 2-itemsets is retained because 

when the second pass optimization is used, the generation of the 2-itemsets is the first step in 

each partition. Since the 2-itmeset generation is the first pass, there is no loss of information 

and the negative border of the 2- itemsets will have all possible 2- itemsets, which did not 

satisfy the support.  

The other optimization for the k-way join -- Prune the Input table (PI) -- was not used 

during the implementation even though the combination of all the optimizations yielded 

better performance. This was because in the pruned input optimization, the input table would 
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be pruned by elimination all the records of those single itemsets whose support was less than 

the user specified support value. If this were done then the negative border of the 2-itemsets 

would not contain all the possible non-frequent 2- itemsets. After the frequent itemsets from 

all the partitions (databases) are generated, the frequent itemsets and the negative border of 

the frequent 2- itemsets from all the partitions are shipped to one database to do the remaining 

computation. This step is shown as an edge with label “1” in Figure 3.3. Merging the 

frequent itemsets from all the partitions generates the global candidate itemsets CG
1, CG

2, …,  

CG
K.  

 

 

Figure 3.3 Data Transfer Using Approach I 
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3.2.1.2 Phase II 

In this phase, the global frequent itemsets -- itemsets that are large in all the partitions 

– are generated. Merging the count obtained from the negative border and the frequent 2-

itemsets from all the partitions generates the count for the remaining 2- itemsets in CG
2. The 

itemsets satisfying the support are added to FG
2. FG

2 and ∪ k=3 to nCG
K are shipped to all the 

databases to generate the counts of the remaining candidate itemsets. This is shown as an 

edge with label “2” in Figure 3.3.  

Each of the databases generates a materialized table from the global frequent 2-

itemsets using the Reuse of item combination optimization. The materialized table is used in 

the successive passes to generate the counts of the itemsets in the global candidate itemsets. 

Once the counts are generated in all the partitions they are shipped back to one database to do 

the final counting. This is shown as an edge with label “3” in Figure 3.3.  

Figure 3.3 shows the data transferred in each of the steps. Database 1 and Database 2 

are considered the 2 partitions. Database 2 is chosen for merging the frequent itemsets from 

all the partitions to global candidate itemset and for generating the final cumulative count of 

all frequent itemsets obtained from all the partitions in step “3”.  

3.2.1.3 Performance Analysis 

Performance experiments were done on datasets of different sizes. Each data set was 

divided into 2 or 3 non-overlapping partitions. Figure 3.4 shows the performance of a 

T5I2D1000K dataset divided into 2 equal sized partitions each of size 500K. It is seen from 

the graph that the improvement in performance of Approach I compared to TIDLIST 

approach is 58% for a support values of 0.20% and the improvement increases to about 78% 
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for a support value of 0.10%. As the support value decreases the percentage improvement in 

the performance increases.  

 

DATASET T5I2D1000K (2 PARTITIONS OF SIZE 500K)
ON ORACLE

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

TIDLIST Approach I TIDLIST Approach I TIDLIST Approach I

0.20% 0.15% 0.10%

Support values

T
im

e 
in

 s
ec

o
n

d
s

Frequent

Partition 2

Partition 1

 

Figure 3.4 Performance Comparison Of TIDLIST And Approach I 

 

Figure 3.5 shows the performance on Oracle and DB2 for a T5I2D500K dataset 

divided into 2 partitions of size 250K each. DB2 experiments did not complete for support 

values of 0.15% or lower even after running for 10-12 hours. For Oracle the improvement in 

performance was 35% for 0.20% support and it increased to 61% as support decreased to 

0.10%. In DB2 the improvement in performance decreased from 82% to 44% as the support 

value decreased from 0.30% to 0.20%. 
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Figure 3.5 Performance Of TIDLIST And Approach I For T5I2D500K 

 
 

Figure 3.6 shows the data transfer when there are 3 partitions (databases). At the end 

of each phase the intermediate results are transferred to one of the partitions to do the 

remaining computations.  
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Figure 3.6 Data Transfer Using Approach I For 3 Partitions 

 

The performance for T5I2D500K is shown in Figure 3.7. The dataset is divided into 

3 partitions of size 200K, 200K and 100K. The performance is shown for Oracle and DB2. 

For DB2 the percentage improvement in performance decreases from 80% to 53% as the 

support value decreases from 0.30% to 0.20%. The performance in Oracle shows an increase 

from 18% to 75% as the support value decreases from 0.20% to 0.10%.  
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Figure 3.7 Performance Comparison Of T5I2D500K For TIDLIST And Approach I 

3.2.1.4 Data Transfer 

 
Table 3.2 shows the number of records transferred between the databases in each 

step. The input data denotes the transactional data. It is assumed that the dataset is divided 

into 2 equal sized partitions. The numbers in the Table 3.2 indicate the number of records 

transferred. For example, for the T5I2D10K dataset the input data has 27000 records and the 
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total records transferred using approach I between the two databases is 51845. It is observed 

that transferring the intermediate results is better for the datasets, which have more than 

100K transactions.   

Table 3.2 Data Transferred Using Approach I 

Dataset 
 

Input 
data 

records 
 

Step 1 
[F1

K + NBd (F1
2)] 

records 
 

Step 2 
[FG

2 + UK = 3 to N 

CG
K] 

records 
 

Step 3 
UK = 3 to N 

CG
K 

records 

Total 
records 

 

T5I2D10K 27000 50360 1393 92 51845 

T5I2D100K 273000 199455 678 101 200234 

T5I2D500K 1368500 319677 638 76 320391 

T5I2D1000K 2736000 356696 632 75 357403 

 

In Approach I only the negative border of the frequent 2- itemsets were retained in all 

the partitions. In the Phase II, a materialized table was created to do the support counting. 

The time taken to create a materialized table increases as the size of the dataset increases. In 

this approach the data is transferred 3 times between the partitions. Approach II was 

proposed to overcome the above drawbacks. 

3.2.2 Approach II 

 
In the Phase I of this approach the negative border of all the frequent itemsets in each 

of the partitions were retained as compared to the previous approach where only the negative 

border of the frequent 2- itemsets were retained. When the frequent itemsets are generated the 

data is transferred to one of the partitions to form the global candidate itemsets and the global 
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frequent itemsets. The global frequent k-itemsets are generated by merging the counts of the 

frequent k- itemsets and the negative border of the frequent k- itemsets. Figure 3.8 shows the 

data transfer in Approach II.   

Approach II is different from Approach I with regard to the number of times data is 

transferred between the databases and the itemsets that are retained. In Approach I only the 

negative border of the frequent 2- itemsets is retained. Since retaining the negative border 

does not require any additional computation, in Approach II, the negative border of all the 

frequent itemsets are retained for all the databases. In Phase II of Approach I, the global 

frequent 2- itemsets are generated using the local frequent 2- itemsets and their negative 

border from all the databases. The results have to transferred to the individual databases to 

generate the remaining (3-k) – itemsets, which requires the scanning the input data in each of 

the databases to generate the counts. But in Approach II, all the global frequent itemsets are 

generated using the local frequent itemsets and their negative border from all the databases. 

An additional scan of the database is not required and the intermediate results are transferred 

only once as compared to 3 times in Approach I.  
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Figure 3.8 Data Transfer In Approach II 
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Figure 3.9 Performance Comparison Of All The Approaches With 2 Partitions 

 



 

 42

The Figure 3.9 shows the performance comparison of the TIDLIST, Approach I and 

Approach II. A T5I2D1000K dataset was divided into 2 partitions of size 500K each. From 

the graph it is noted that the performance improved from 16% to 18% as the support value 

decreased from 0.20% to 0.10%. 

 

 

Figure 3.10 Performance Comparison Of All The Approaches With 3 Partitions 

 

Figure 3.10 shows the performance comparison for all the 3 approaches on a 

T5I2D500K dataset divided into 3 partitions. For Oracle the performance improves from 

14% to 16% as the support value decreases from 0.20% to 0.10%.  Table 3.3 shows the 

number of records transferred between the partitions. For the datasets T5I2D100K and above 

transferring the intermediate relations would be better.  
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Table 3.3 Data Transfer For Approach II 

Dataset 
 

Input data 
records 

 

Step 1 
[F1

K + NBd (F1
K)] 

records 
 

Approach II 
 

T5I2D10K 27000 50481 50481 

T5I2D100K 273000 199521 199521 

T5I2D500K 1368500 319740 319740 

T5I2D1000K 2736000 356761 356761 

 

Table 3.4 compares the number of records transferred in the case of Approach I and 

Approach II. It is noted that the data transfer in Approach II is slightly less for all the 

datasets. The data transferred in both the approaches showed a slight difference only because 

the frequent 2- itemsets and their negative border constitute a large number of records and 

they were transferred in both the approaches. In Approach I the global candidate (3-k)-

itemsets and the global frequent (3-k)- itemsets were transferred which did not comprise a 

large number of records when compared to Approach II where the frequent (3-k)–itemsets 

and their negative border were transferred. 

Table 3.4 Comparison Of Data Transfer For Approach I And Approach II 

Dataset 
 

Input data 
records 

 

Approach I 
 

Approach II 
 

T5I2D10K 27000 51845 50481 

T5I2D100K 273000 200234 199521 

T5I2D500K 1368500 320391 319740 

T5I2D1000K 2736000 357403 356761 
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It was noted that Approach II performed better than TIDLIST and Approach I for 

almost all the cases. This was because the creation of materialized table was eliminated and 

retaining the negative border does not require any additional computation. However there is a 

tradeoff associated with the Approach II. This approach may miss out the count of itemsets, 

which are globally large but locally small in a few partitions. The count of some k- itemsets 

whose subset did not appear either in the frequent itemsets or its negative border in the earlier 

passes may be misses. Figure 3.11 shows the error observed in the frequent itemsets 

generated. The frequent itemsets generated using the TIDLIST approach and Approach I was 

compared with the itemsets generated in Approach II. Approach II showed some error in the 

number of frequent itemsets generated in each pass. It was seen that there was some error for 

the smaller datasets with lower support values. No error was noted for datasets T5I2D100K 

and above. 
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Figure 3.11 Error Analysis 

  

Figure 3.12 shows the performance comparison between Approach I and Approach II 

on Oracle for different support values and datasets.  The performance improvement in 

generating the rules between Approach I and Approach II were compared. It is noted that 

Approach II performs 14% to 18% better compared to Approach I. The reason being in 

Approach II the negative border is maintained for all the frequent itemsets and the itemsets 

are transferred only once. But in Approach I, though the negative border is retained for only 

the frequent 2- itemsets, in the phase II a materialized table is created for each of the 

databases to count the support of the itemsets in the global candidate itemsets. The time it 

takes to create the materialized table increases as the size of the dataset increases as a result 

of which there is an improvement in the performance between both the approaches.  
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Figure 3.12 Comparing performance of Approach I and II on Oracle 

 

Based on the experiments performed using the partitioned approach we can 

summarize the effect of the optimizations as follows:  

The TIDLIST approach has its drawbacks when it is implemented in a database 

approach because of the use of CLOBs for TIDLIST creation, which is a very time 

consuming operation. The two approaches were proposed to optimize the TIDLIST approach 

to gain better performance that may useful for multiple databases.  
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CHAPTER 4  

INCREMENTAL ASSOCIATION RULE MINING 

 
In CHAPTER 3 we discussed how the partition algorithm could be used to mine data 

from multiple sources.  In this chapter we will discuss the incremental addition of data and 

the generation of association rules without performing recomputation. Section 4.1 discusses 

the incremental mining algorithm for updating frequent itemsets. In Section 4.2 various 

performance experiments performed on Oracle and DB2 and their results are presented. 

4.1 Incremental Updation Of Frequent Itemsets  

 
Data mining is used for pattern discovery and query resolution in large data 

repositories. The rules generated in this way reflect the current state of the database. 

Techniques have to be developed to handle large volumes of data and maintain rules over 

significantly long periods of time. Updates to the transaction database may invalidate the 

existing rules or introduce new rules. The rule generation is a straightforward process and 

computationally inexpensive. Hence, it is not critical to develop an incremental rule 

generation algorithm. A naïve solution to the update problem is the recomputation of the 

frequent itemsets for the updated database. This is an inefficient way because all the 
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computations done initially are wasted. The ideal way would be to develop an incremental 

algorithm so that the computation effort spent on the original data is effectively utilized.  

[8] has proposed an algorithm for incrementally updating the frequent itemsets. An 

existing database may be updated when new transactions are added or existing transactions 

are removed from the database. When new transactions are added to the database, an old 

frequent itemset could potentially become infrequent in the updated database or an old 

infrequent itemset could potentially become frequent in the new database. The proposed 

algorithm finds the new frequent itemsets with minimal re-computation when transactions 

are added to or deleted from the existing database. The following notation is used for 

describing the incremental approach. 

Table 4.1 Notations Used In Incremental Approach 

Notation Meaning 

DB Transactions in original database 

db Transactions that are newly added 

DB+ Transactions in the updated database (DB ∪ db) 

FDB, Fdb, FDB+ Frequent itemsets in the respective databases 

NBd(FDB), NBd(Fdb), NBd(FDB+) Negative borders for the respective frequent itemsets.  

 

The two important characteristics of the algorithm are:  It makes use of the negative 

border concept. Along with the frequent itemsets, the negative border is also maintained. The 

negative border consists of all itemsets that were candidates, but lacked the minimum 

support. For example in pass k, NBd(Fk) = Ck - Fk where Ck is the set of candidate k- itemsets, 
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Fk is the set of frequent k- itemsets and NBd(Fk) is the set of k- itemsets in the negative border. 

The frequent itemsets for the increment database are computed. A full scan of the database is 

required only if the negative border expands, that is, if an itemset outside the negative border 

gets added to the frequent itemsets or its negative border.  Figure 4.1 shows the incremental 

mining algorithm for updating the frequent itemsets. 

 
function Update-Frequent-Itemset(FDB, NBd(FDB),db)  
 
//DB and db denote the number of transactions in the original 
database and the increment database respectively.  
1 Compute Fdb  
2 for each itemset s ∈ FDB ∪ NBd(FDB) do  

tdb(s) = number of transactions in db containing s  
FDB+ = φ  

3 for each itemset s ∈ FDB do  
if (tDB(s) + tdb(s)) > minsup * (DB + db)      

then FDB+ = FDB+ ∪ s  
4 for each itemset s ∈ Fdb do  

if s ∉ FDB and s ∈ NBd(FDB) and (tDB(s) + tdb (s)) >  
minsup * (DB + db)  
then FDB+ = FDB+ ∪ s  

5 if FDB ≠ FDB+ then  
NBd(FDB+) = negativeborder-gen(FDB+)  

else NBd(FDB+) = NBd(FDB)  
6 if FDB ∪ NBd(FDB) ≠ FDB+ ∪ NBd(FDB+) then  

S = FDB+  
repeat  

compute S = S ∪ NBd(S)  
until S does not grow  
FDB+ = {x ∈ S | support(x) > minsup}  
//support(x) is the support count of x in DB ∪ db  
NBd(FDB+) = negativeborder-gen(FDB+)  

Figure 4.1 Incremental Mining Algorithm 
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Figure 4.2 shows a transaction table (DB+). The original database (DB) has 4 transactions 

and the new database (db) has 2 transactions.  

 

 
 

 
           

                         
                   
 
 

                      Original Database 

TID Items 
1 2, 4, 5, 6 
2 1, 2, 5, 6 
3 2, 3, 4, 5 
4 1, 4, 5, 6 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Transaction Table 

TID Items 
1 2, 4, 5, 6 
2 1, 2, 5, 6 
3 2, 3, 4, 5 
4 1, 4, 5, 6 
5 1, 2, 4, 6 
6 1, 2, 5, 6 TID Items 

5 1, 2, 4, 5 
6 1, 2, 5, 6 

                    
                          New Transactions  

Figure 4.2 Updated Database 

 

Initially the original transactions are mined to generate the frequent itemsets (FDB) for 

the user specified support. While the frequent itemsets are generated, their negative border 

NBd(FDB) is also generated and retained. The negative border is later used to avoid 

recomputation when new transactions are added to the database.  The frequent itemsets and 

their negative border for DB are shown in Figure 4.3.  
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Frequent Itemsets 
 

 
Itemset Count 
{ 1, 5 } 2 
{ 1, 6 } 2 
{ 2, 4 } 2 
{ 2, 5 } 3 
{ 2, 6 } 2 
{ 4, 5 } 3 
{ 4, 6 } 2 
{ 5, 6 } 3 

Negative Border  

Itemset Count 
{ 1, 2 } 1 
{ 1, 4 } 1 

 
 

Itemset Count 
{ 1, 5, 6 } 2 
{ 2, 4, 5 } 2 
{ 2, 5, 6 } 2 
{ 4, 5, 6 } 2 

 
 
 Itemset Count 

{ 2, 4, 6 } 1 

Figure 4.3 Frequent Itemsets And Negative Border In DB 
 

When new transactions are added to the database (db) the frequent itemsets for the 

new transactions Fdb are generated for the same user specified support value as shown by step 

1 in Figure 4.1. The count for each of the itemsets in FDB  ∪ NBd(FDB ) is obtained from the 

new transaction database (db) as shown by  step 2 in Figure 4.1. This is shown in Figure 4.4.  
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Frequent Itemsets 
 
 

 
Itemset Count 

{ 1, 2, 4 } 1 
{ 1, 2, 5 } 1 
{ 1, 2, 6 } 2 
{ 1, 4, 6 } 1 
{ 1, 5, 6 } 1 
{ 2, 4, 6 } 1 
{ 2, 5, 6 } 1 

Itemset Count 
{ 1, 2, 4, 6 } 1 
{ 1, 2, 5, 6 } 1 

Itemset Count 
{ 1, 2 } 2 
{ 1, 4 } 1 
{ 1, 5 } 1 
{ 1, 6 } 2 
{ 2, 4 } 1 
{ 2, 5 } 1 
{ 2, 6 } 2 
{ 4, 6 } 1 
{ 5, 6 } 1 

 
Figure 4.4 Frequent Itemsets In The New Transactions 

 

The following conditions to be checked to perform the update of the frequent 

itemsets.  

4.1.1.1 Case 1 

The support is generated for each itemset in FDB from Fdb and the itemset is added 

to FDB+ if support is satisfied. This is shown by step 3 in Figure 4.1. This would result in 2 

cases. First, some itemsets, which were large in FDB may remain large even after adding the 

count from Fdb as shown by itemset {1,5,6} in Figure 4.5. Second, some itemsets, which 

were large in FDB may turn out to be small when added with the count in Fdb and it may 

move from the frequent itemsets to the negative border as shown by itemset {4,5,6} in Figure 

4.5. 
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Figure 4.5 Case 1 For Incrementally Updating Frequent Itemsets 
 

4.1.1.2 Case 2 

 The support of all the itemset that is common to the itemsets in Fdb and NBd(FDB) are 

counted and added to FDB+ if the support is satisfied. This case is depicted by step 4 in Figure 

4.1. There are 2 situations that can arise here as shown in Figure 4.6. 

 

 

Figure 4.6 Case 2 For Incrementally Updating Frequent Itemsets 
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The first situation that arises is that some itemset which was in NBd(FDB) may not 

satisfy the support and it would remain in NBd(FDB) as shown by the itemset {2,4,6} in 

Figure 4.6. The second situation would be when an itemset that was in the NBd(FDB) would 

become frequent as shown by itemset {1,2} in Figure 4.6. 

4.1.1.3 Case 3 

The support of all the itemsets that are in Fdb and not present in FDB or NBd(FDB) are 

counted. There are two situations possible in this case. In the first case an itemset {1,2,6} in 

Fdb would satisfy the support and be added to FDB+. The steps 3 and 4 in Figure 4.1 would not 

take into account the count of such itemsets because all the subsets of {1,2,6} were not 

frequent as shown in Figure 4.7.  The second situation would be an itemset {11,12} in Fdb 

which did not have any of its subsets in FDB or NBd(FDB) as shown in Figure 4.7. 

 

Figure 4.7 Case 3 For Incrementally Updating Frequent Itemsets 

 

This was done by step 6 of the algorithm shown in Figure 4.1. The input relation 

would be scanned multiple times to generate the count of all such itemsets. This was done by 
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repeating the join and the prune step in the frequent itemset generation. Candidate itemsets 

were generated in each pass from which the frequent itemsets were generated. However those 

itemsets, which were totally new and did not have any of its subsets in FDB or NBd(FDB) were 

not counted in this step.  

In our approach we have added the following step to take care of Case 3 discussed 

above.  

for each itemset s ∈ Fdb do  
if s ∉ FDB and s ∉ NBd(FDB) and (tDB(s) + tdb (s)) >  
minsup * (DB + db) then FDB+ = FDB+ ∪ s  
 

Here the original database DB is used to generate the count of all the itemsets that are 

present in Fdb and not present in FDB and NBd(FDB). A materialized table [21] (RIC 

optimization of k-way join) was created in each pass to avoid redoing the same join 

operations in each pass. The steps 5 and 6 in Figure 4.1 denote the steps to expand the 

negative border. These steps require multiple passes over the transactional database; in our 

approach we are retaining the negative border for the itemsets in Fdb also. The frequent 

itemsets and the negative border of the frequent itemsets were merged to generate the 

negative border for the update database. The negative border expanded this way has the same 

itemsets that are generated using the step 6 in Figure 4.1 because the negative border is the 

minimal collection of the non-frequent itemsets, which in closed with respect to the set 

inclusion operation.  
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4.2 Performance Evaluation 

 
The performance results presented in this section are on datasets generated 

synthetically using the IBM’s data-generator. The datasets used are the same as the ones used 

in the partition based approach. The experiments have been performed on Oracle 8i and IBM 

DB2 / UDB V7.2 (installed on Windows 2000 server with 512MB of RAM).  

A percentage of the transactions of the database are considered as the original 

database and the remaining transactions are added incrementally in percentages. The 

experiments are performed for at least 3 increments to the original database as in most cases 

recomputing may turn out to be better than incremental mining during the initial iterations till 

the size of the dataset grows considerably. Two percentages of increments 5% and 10% were 

chosen. The graph in Figure 4.8 compares the time taken to generate rules by recomputing 

(RC) and by using the incremental mining algorithm (IM).  
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Figure 4.8 Performance For T5I2D1000K On Oracle 

From the Figure 4.8 it is noted that the improvement in performance for increment 

sizes of 50K was about 50% for support of 0.30% and it decreased to 44% for a support 

value of 0.20%. With 100K increments, the percentage improvement in performance was 

45% for support of 0.30% and it decreased to about 38% as the support value decreased to 

0.20%. 
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T5I2D100K DATA ADDED IN INCREMENTS OF 
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Figure 4.9 Performance Of T5I2D100K On Oracle 

 
Figure 4.9 shows the performance comparison of the incremental algorithm with 

recomputation. It can be noted that recomputation performs better than incremental mining. 

This is because when the size of the increment is very small, saving the negative border 

information takes more time because for the initial passes, the number of candidates 

generated is large and there are more itemsets in the negative border. The large number of 

itemsets generated may be due to fact that for the smaller datasets almost all the itemsets 

generated satisfy the support value.  The general trend observed is that for the smaller 

datasets with lower support values the number of passes and the itemsets generated in each 

pass is slightly higher when compared to the larger datasets. For example let us consider a 

T5I2D10K dataset with a support of 0.10%, with 7K transactions in the original database. 
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The support in terms of the number of transactions would be 7 in this case. When an 

increment with 1K transactions is added then the support in terms of the number of 

transactions would be 1. Almost all the candidate itemsets generated would satisfy a support 

of 1. Hence there is more computation involved for generating the frequent itemsets and the 

negative border of the frequent itemsets. 

Figure 4.10 shows the performance comparison of the incremental mining algorithm 

with the recomputation. In the first graph there were 350K transactions in the original 

database and three increments each of size 50K were added. The improvement in 

performance compared to recomputation was 31% for a support value of 0.20% and it 

increased to about 36% as the support value increased to 0.30%. In the second graph the 

original database had 425K transactions and three increments each of size 25K were added. 

The improvement in performance was 35% for a support value of 0.20% and it increased to 

about 48% as the support value increased to 0.30%  
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Figure 4.10 Performance Of T5I2D500K On Oracle 
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Based on the experiments performed using the incremental approach we can 

summarize the effect of the optimizations as follows:  

Incremental mining performs better when compared to recomputation for larger 

datasets. Retaining the negative border for the new transactions avoids the use of the updated 

database DB+ for generating the negative border when it expands. 
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CHAPTER 5  

OTHER CONTRIBUTIONS 

In the previous two chapters we discussed algorithms for generating the frequent 

itemsets, which is the first step in association rule mining. This chapter consists of other 

contributions that are required for the association rule generation and for performing large 

number of experiments. Section 5.1 explains the Configuration file that is used in running the 

mining tool in a batch mode. Section 5.2 discusses the Log files that are generated during the 

mining process and how these logs can be formatted to give us a better understanding of the 

results. 

5.1 Configuration File 

 
There are two ways for using this mining tool. The first is using the GUI and other is 

using the configuration file. Running this mining tool using GUI has been described in [20, 

22]. The GUI is useful for a non-expert (or a novice), but needs some human intervention to 

provide the configuration needed for mining. The configuration file is useful for automating 

the mining process. It consists of a number of parameters, which once specified correctly, 

can be used for mining in an unattended mode. It can also be used for mining several datasets 

with varying mining configurations without any user intervention. The variables defined in 

the configuration file are: 
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RDBMS Name: The RDBMS name (Oracle or DB2) where the input relation is 

present. 

Database Name: The database that contains your input relation.  

UserId: The user who has access over the input relation. 

Password: The password associated with the UserId – needed to connect to the 

database. 

Log File: The name of the Result Log file to generate. 

Approach Number: The approach number to be used for mining. It is an integer 

value. All the approaches and their optimizations are given a unique integer value to 

identify them. 

Table Name: The name of the input relation. 

Percentage:  The percentage is used to select specific number of transactions for the  

partitioned and incremental approach. 

Support: Minimum support value to be used for mining. This is in percentage. 

Confidence: The confidence value to be used for rule generation. It is an integer 

value (as percentage)  

Stop Level: The maximum number of passes to go before stopping. 

Debug: If true, then prints the debug statements. 

Skip Rules: If true, the program stops after the generation of frequent itemset. Rule 

generation is skipped. 
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Reverse Mapping: If true, the results (item ids) are mapped back to their original 

names. 

Log Results to file: If true, trace values will be written to the Log File. 

For each experiment, the values of all these variables are written in a single line in 

the order of the variables shown above and are demarcated by a “$” sign. Thus if the 

configuration file contains several such lines, the mining algorithms will be invoked that 

many times. To skip a line, the line should start with the word “REM”. Below is an example 

of some mining configurations. 

REM Experiment on DB2. Approach -Incremental 

DB2$Sample$ntmining$ntmining$D_A23_T5I2D500K.txt$23$T5I2D500K$10$0.2

999%$50$8$false$true$false$true 

Here the first line is ignored as it starts from the word “REM”. For second line values 

are used as follows: 

RDBMS to use: DB2 

Database Name: Sample 

UserID: ntminig 

Password: ntmining 

Log File: D_A23_T5I2D500K.txt 

Approach Name: 23 (for Incremental Mining) 

Input Table: T5I2D500K. 

Percentage: 10 (10% of transaction in input table constitute the increment) 

Support: 0.2999 % 
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Confidence: 50 (percent) 

Stop Level: 8 

Debug: False (don’t print debug statements) 

Skip Rules: True (skip rule generation) 

Reverse Mapping: False (don’t do reverse mapping) 

Log result to File: True (write the log file). 

5.2 Writing Log File 

 
Data mining is a time-consuming process and for certain mining configurations, 

mining a given dataset may take 10 to 15 hrs or even more. Since we have to compare the 

performances of these approaches with others, after a given time limit, if the approach does 

not complete, the mining process has to be killed. Also for the purpose of studying these 

algorithms, we need to know about their progress during mining a data set. Hence it is very 

important to note down the time at each step of the algorithm and produce a log file 

containing enough information. This log file can then be processed to generate useful 

information such as the number of passes completed, time taken for each pass, intermediate 

relations generated and cardinality of each of them, even if the mining process is killed 

before it completes. For this purpose, we generate two log files. One is the time log, which is 

written at the end of materialization of any relation generated during the mining process. This 

log (TimeLog) contains the time stamp of when a particular pass of the approach started and 

if any intermediate relations where generated, what is there cardinality. Below is a sample 

content of these logging files. 
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Contents of the TimeLog file: 

Start-Approach 22. Table = T5I2D100K Support =99 Sat Oct 11 17:01:36 CDT 2003 

// This indicates the start of Partitioned approach on input relation T5I2D100K. 

// The support value, in terms of row count is 99. 

C2 = 199384 Sat Oct 11 17:01:39 CDT 2003 

P1_F2  Sat Oct 11 17:03:49 CDT 2003 

C3=143  Sat Oct 11 17:03:49 CDT 2003 

P1_F3 Sat Oct 11 17:04:13 CDT 2003 

C4=5 Sat Oct 11 17:04:13 CDT 2003 

P1_F4 Sat Oct 11 17:04:38 CDT 2003 

C5=0 Sat Oct 11 17:04:39 CDT 2003 

P1_F5 Sat Oct 11 17:04:57 CDT 2003 

P1_F6 Sat Oct 11 17:04:57 CDT 2003 

P1_F7 Sat Oct 11 17:04:57 CDT 2003 

P1_F8 Sat Oct 11 17:04:57 CDT 2003 

Time for partition 1 = 199966 Sat Oct 11 17:04:57 CDT 2003 

C2 = 197612 Sat Oct 11 17:04:59 CDT 2003 

P2_F2   Sat Oct 11 17:07:12 CDT 2003 

C3=156 Sat Oct 11 17:07:12 CDT 2003 

P2_F3 Sat Oct 11 17:07:36 CDT 2003 

C4=10 Sat Oct 11 17:07:37 CDT 2003 
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P2_F4 Sat Oct 11 17:08:01 CDT 2003 

C5=0 Sat Oct 11 17:08:02 CDT 2003 

P2_F5 Sat Oct 11 17:08:20 CDT 2003 

P2_F6 Sat Oct 11 17:08:20 CDT 2003 

P2_F7 Sat Oct 11 17:08:20 CDT 2003 

P2_F8 Sat Oct 11 17:08:20 CDT 2003 

Time for partition 2 = 202888 Sat Oct 11 17:08:20 CDT 2003 

Time for global = 2359 Sat Oct 11 17:08:22 CDT 2003 

BP=752 Sat Oct 11 17:08:24 CDT 2003 

AP=278 Sat Oct 11 17:08:24 CDT 2003 

F2 Sat Oct 11 17:09:10 CDT 2003 

P3 Sat Oct 11 17:09:59 CDT 2003 

F3 Sat Oct 11 17:09:59 CDT 2003 

P4 Sat Oct 11 17:10:06 CDT 2003 

F4 Sat Oct 11 17:10:06 CDT 2003 

P5 Sat Oct 11 17:10:13 CDT 2003 

F5 Sat Oct 11 17:10:13 CDT 2003 

Time for frequent = 110998 Sat Oct 11 17:10:13 CDT 2003 

Complete Sat Oct 11 17:10:13 CDT 2003 

Subsets Sat Oct 11 17:10:13 CDT 2003 

Rules Sat Oct 11 17:10:14 CDT 2003 

Time for rules= 1625 Sat Oct 11 17:10:15 CDT 2003 
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The second column, in each row is the timestamp when all the tuples where inserted 

in that particular relation. The first column contains the relation name and their cardinality. 

For those relation names, which do not have “=” character in them, they are either the 

relations for Frequent itemsets (Fk) or were not generated but are there as the variable Stop 

Level, in the configuration file, specifies that the experiment should run until that pass 

number. (We do so just to maintain consistency in the output that is generated). The file also 

contains the time it takes during each phase of the execution. For example, for the partitioned 

approach it has the time it takes to generate the frequent itemsets for each partition, the time 

to merge and the time taken to generate the global frequent itemsets. The cardinalities of 

frequent itemsets relations are calculated at the end during writing the ResultLog.) The other 

log (ResultLog) is written only when a given approach completes successfully. It contains the 

number of Frequent itemsets (Fk) generated for each data set.  
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CHAPTER 6  

CONCLUSIONS AND FUTURE WORK 

 
In this thesis, we have focused on the partitioned and incremental approach to 

association rule mining useful for multiple databases. We have presented a partitioned 

approach to association rule mining, which is appropriate to mine data stored in multiple 

DBMSs. The incremental approach proposed in this thesis reduces the task of recomputing 

the rules when the data in the DBMS changes.  

The partition algorithm described provides an efficient way of discovering 

association rules in large database. It is convenient to use this algorithm when there are 

multiple databases because the amount that has to be transferred by using this approach is 

comparatively less than transferring all the raw data to a single DBMS for performing 

mining. The TIDLIST approach, which was used in the main-memory based partition 

algorithm, had drawbacks when used in the database approach. This thesis presented two 

extensions -- Approach I and Approach II using the negative border concept, which are 

suitable for multiple databases. 

The incremental association rule mining algorithm aids in the generations of the 

frequent itemsets when the data in the DBMS changes. The negative border concept used by 

the algorithm helps in determining the frequent itemsets when the support and confidence 
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changes. When the negative border expands a pass over the database has to be made to 

generate the support count. This turns out to be time consuming in the database approach. So 

we have proposed to update the negative border incrementally which can be used for support 

counting in the case where the negative border expands. Extensive experiments have been 

performed for the partitioned and incremental approached on Oracle 8i and IBM DB2. 
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