

ASSOCIATION RULE MINING OVER MULTIPLE DATABASES:

PARTITIONED AND INCREMENTAL

APPROACHES

The members of the Committee approve the master’s
thesis of Hima Valli Kona

Dr. Sharma Chakravarthy
Supervising Professor _______________________________________

Dr. Alp Aslandogan _______________________________________

Dr. JungHwan Oh _______________________________________

ASSOCIATION RULE MINING OVER MULTIPLE DATABASES:

PARTITIONED AND INCREMENTAL

APPROACHES

by

HIMA VALLI KONA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2003

To My Parents, Family and Friends

iv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Dr. Sharma Chakravarthy, for

giving me an opportunity to work on this challenging topic and providing me ample guidance

and support through the course of this research.

I would like to thank Dr. Alp Aslandogan and Dr. JungHwan Oh for serving on my

committee.

I would like to thank Anoop Sanka, Ramanathan Balachandran for maintaining a

well-administered research environment and being so helpful at times of need. I am grateful

to Pratyush Mishra, Sridhar Reddy, Manu Aery and Laali Elkhalifa for their invaluable help

and advice during the implementation of this work. I would like to thank all my friends in the

ITLAB. I would also like to thank my friends for their support and encouragement.

I would like to acknowledge the support by the Office of Naval Research, the

SPAWAR System Center-San Diego & by the Rome Laboratory grant (AF 26-0201-13), and

the NSF (grants IIS-0112914 and IIS-012370) for this research work.

I would also like to thank my parents and sister for their endless love and constant

support throughout my academic career without which I would not have reached this

position.

November 04, 2003

v

ABSTRACT

ASSOCIATION RULE MINING OVER MULTIPLE DATABASES:

PARTITIONED AND INCREMENTAL

APPROACHES

Publication No.____

Hima Valli Kona, M.S.

The University of Texas at Arlington, 2003

Supervising Professor: Sharma Chakravarthy

Database mining is the process of extracting interesting and previously unknown

patterns and correlations from data stored in Data Base Management Systems (DBMSs).

Association rule mining is the process of discovering items, which tend to occur together in

transactions. If the data to be mined were stored as relations in multiple databases, instead of

moving data from one database to another, a partitioned approach would be appropriate.

Also, incremental addition of data to the data set should not necessitate recomputation of

rules for the entire data set.

This thesis focuses on partitioned and incremental approaches to association rule

mining for data stored in Relational DBMSs. This thesis proposes a partitioning approach

vi

that is very effective for partitioned databases as compared to the main memory partitioned

approach. Our approach uses SQL-based K-way join algorithm and its optimizations. A

second alternative that trades accuracy for performance is also presented. Our results indicate

that, beyond a certain size of data sets, the accuracy is preserved with this approach and

results in better performance. The incremental association rule-mining algorithm reduces the

task of recomputing the rules each time new data is added to the database. This thesis

implements the incremental algorithm using the negative border concept with a number of

optimizations. Extensive experiments are performed and results are presented for both

partitioned and incremental approaches using IBM DB2/UDB and Oracle 8i.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ..…………………………………………………………..…iv

ABSTRACT………………………………………………………………………….…...v

LIST OF FIGURES....…………………………………………………………………….x

LIST OF TABLES…………………………………………………………………….…xii

Chapter

1. INTRODUCTION ………...…………………………………………………………...1

1.1 Data Mining Techniques..3

1.1.1 Association Rule ...3

1.1.2 Classification ..3

1.1.3 Clustering ...4

1.1.4 Prediction ...4

1.1.5 Deviation analysis ..4

1.2 Partitioned Approach...5

1.3 Incremental Mining ...5

1.4 Architecture Alternatives ...6

1.5 Background ..8

1.6 Focus Of This Thesis ...10

2. RELATED WORK...……………………………………………………………...…..13

viii

2.1 Association Rule Mining Algorithms ..13

2.1.1 Apriori Algorithm...14

2.1.2 Partition Algorithm...16

2.1.3 Parallel Mining of Association Rules ...18

2.1.4 Incremental Mining ..18

2.2 SQL-OR And SQL-92 Based Approaches ...19

2.2.1 Second Pass Optimization ..20

2.2.2 Reuse of Item Combinations ..21

2.2.3 Vertical-Tid Approach..22

2.3 Multi-Database Mining..23

3. PARTITIONED APPROACH TO ASSOCIATION RULE MINING..……………...27

3.1 Database Approach To Partition Algorithm..27

3.1.1 Methodology for Experiments ..28

3.2 Proposed Extensions To Partition Algorithm...31

3.2.1 Approach I ...32

3.2.2 Approach II ..39

4. INCREMENTAL ASSOCIATION RULE MINING……………………………..…..47

4.1 Incremental Updation Of Frequent Itemsets ...47

4.2 Performance Evaluation...56

5. OTHER CONTRIBUTIONS………………………………………………………….62

5.1 Configuration File..62

5.2 Writ ing Log File…………………………………………………………………65

ix

6. CONCLUSIONS AND FUTURE WORK…………………………………………....69

REFERENCES………………………………………………………………………..…71

BIOGRAPHICAL INFORMATION…………………………………………………… 74

x

LIST OF FIGURES

Figure Page

 1.1 Architectural Alternatives..…6

2.1 A Multi-Database Environment ...24

3.1 Performance Of TIDLIST Approach On T5I2D1000K Dataset................................29

3.2 Time Taken For TIDLIST Creation For Different Datasets30

3.3 Data Transfer Using Approach I ..33

3.4 Performance Comparison Of TIDLIST And Approach I ..35

3.5 Performance Of TIDLIST And Approach I For T5I2D500K....................................36

3.6 Data Transfer Using Approach I For 3 Partitions ..37

3.7 Performance Comparison Of T5I2D500K For TIDLIST And Approach I38

3.8 Data Transfer In Approach II...41

3.9 Performance Comparison Of All The Approaches With 2 Partitions41

3.10 Performance Comparison Of All The Approaches With 3 Partitions42

3.11 Error Analysis ..45

3.12 Comparing performance of Approach I and II...46

4.1 Incremental Mining Algorithm..49

4.2 Updated Database ..50

4.3 Frequent Itemsets And Negative Border In DB...51

xi

4.4 Frequent Itemsets In The New Transactions ..52

4.5 Case 1 For Incrementally Updating Frequent Itemsets..53

4.6 Case 2 For Incrementally Updating Frequent Itemsets..53

4.7 Case 3 For Incrementally Updating Frequent Itemsets..54

4.8 Performance For T5I2D1000K On Oracle ...57

4.9 Performance Of T5I2D100K On Oracle ..58

4.10 Performance Of T5I2D500K On Oracle ..60

xii

LIST OF TABLES

Table Page

3.1 Notations Used For Partitioned Approach...31

3.2 Data Transferred Using Approach I...39

3.3 Data Transfer For Approach II...43

3.4 Comparison Of Data Transfer For Approach I And Approach II..............................43

4.1 Notations Used In Incremental Approach..48

1

CHAPTER 1

INTRODUCTION

Database Management Systems have continually evolved from primitive file systems

to sophisticated and powerful relational and object oriented models. Present day systems

implement various constructs in the form of query optimizing modules, event-condition-

action rules to trigger events of interest and other mechanisms that have made their use

imperative in most applications. The implicit and unknown patterns in the underlying data

can be effectively utilized in decision-making. The process of gleaning important information

from data is known as Data Mining. Architectures and techniques for optimizing mining

algorithms for relational as well as object oriented databases are being explored with a view

to tightly integrate mining into data warehouses. A multi-database system [1, 2] is a

federation of autonomous and heterogeneous database systems. Most of the organizations

today have multiple data sources distributed at different locations, which need to be analyzed

to generate interesting patterns and rules. An effective way to deal with multiple data sources

(where data to be mined is distributed among several relations on different database

management systems (DBMSs)) is to mine the association rules at different sources and

forward the rules to a centralized system rather than sending the data to be mined which is

likely to be very large. This would provide a great boost to the database and information

 2

industry, and make available large data repositories for transaction management, information

retrieval, and data analysis

A data warehouse is an information repository that is a complete and consistent store

of data obtained from various sources. Data mining [1, 3, 8, 9, 10, 18, 20, 25] has attracted a

great deal of attention due to the wide availability of huge amounts of data and the imminent

need for turning such data into useful information. The knowledge gained can be used for

applications ranging from business management, production control, and market analysis, to

engineering design and science exploration. Interactive mining has been proposed as a way to

bring decision makers into the loop to enhance the utility of mining and to support goal

oriented mining.

Data mining is also known as knowledge discovery in databases [3]. It is the

automated extraction of implicit, understandable, previously unknown and potentially useful

information from large databases. In other words, data mining is the act of drilling through

huge volumes of data to discover relationships, or answer queries too generalized for

traditional query tools. In general, data mining tasks can be classified into two categories:

Descriptive mining: It is the process of drawing the essential characteristics or

general properties of the data in the database. Clustering, Association and Sequential mining

are some of the descriptive mining techniques.

Predictive mining: This is the process of inferring patterns form data to make

predictions. Classification, Regression and Deviation detection are predictive mining

techniques.

 3

1.1 Data Mining Techniques

1.1.1 Association Rule

Association rule mining [3-6] is a data mining technique used to find interesting

associations among a large set of data items. A typical application of association rule mining

is market-basket analysis. In market-basket analysis, buying habits of customers are analyzed

to find associations between the different items that customers place in their “shopping

baskets”. The discovery of such associations can help retailers develop marketing and

placement strategies as well as plan on logistics for inventory management. Items that are

frequently purchased together by customers can be identified. An attempt is made to

associate a product “A” with another product “B” so as to infer “whenever A is bought, B is

also bought”, with high confidence (i.e., the number of times B occurs when A occurs).

1.1.2 Classification

Classification [3, 4] is the process of partitioning a given dataset into disjoint classes

using a class attribute. For example, in determining a store location, the success of a store is

determined by its neighborhood. The company is interested in identifying neighborhoods that

would constitute its primary candidates. A model is built based on the values of all attributes

to classify each item into a particular class. The goal of classification is to analyze the

training set and to develop an accurate description or model for each class using the attributes

presented in the data. Many classifications models have been developed such as neural

networks, genetic models, and decision trees etc.

 4

1.1.3 Clustering

Clustering [3] is the process of grouping the data into clusters with high intra-cluster

similarity and low inter-cluster similarity. A similarity measure needs to be defined and the

quality of the cluster, to a large extent, depends on the appropriateness of the similarity

measure for the data set or the domain of application. The technique of clustering, for

example, can be used to divide the market into distinct groups, so that each group can be

targeted with a different strategy. There are several clustering techniques: partitioning

methods, hierarchical methods, density-based methods, grid-based methods, and model-

based methods.

The basic difference between classification and clustering is that classification is a

supervised learning method, which assumes predefined class labels, while clustering is an

unsupervised learning method that does not assume any knowledge of classes.

1.1.4 Prediction

Prediction techniques are based on some continuous valued attributes. Previous

history of the attributes is used to build the model. This technique is commonly used for

predicting product sales.

1.1.5 Deviation analysis

This technique compares current data with previously defined normal values to detect

anomalies. Deviation analysis tools are useful in security systems, where authorities can be

warned about deviation in resource utilization.

 5

1.2 Partitioned Approach

The partition algorithm is a fast and efficient algorithm for mining association rules

in large databases. The algorithm differs from the other mining algorithms in terms of the

number of passes it makes over the database. The algorithm makes just 2 passes over the

input database to generate the rules. The partition algorithm executes in two phases: In the

first phase of the algorithm the database is divided into non-overlapping partitions and each

of the partitions are mined individually to generate the local frequent itemsets. At the end of

the first phase the local frequent itemsets are merged to generate the global candidate

itemsets. In the second phase of the algorithm the support is calculated for all the itemsets in

the global candidate itemset and the global frequent itemsets are generated as the set of

itemsets, which satisfy the support. The database is scanned completely once in each of the

phases of the algorithm. The algorithm can be executed in parallel to utilize the capacity of

many processors with each processor generating the rules for a particular set of transactions

and merging the frequent itemsets obtained from all the processors.

1.3 Incremental Mining

Association rules represent an important class of knowledge that can be discovered

from data warehouses [7-9]. As new data is added, previously discovered rules have to be

verified and new rules may have to be added to the knowledge base. Changes to the data can

also invalidate existing patterns. The task of deriving new rules for data sets that grow

incrementally can be done in several ways. Re-executing the algorithms from scratch each

time a database is updated can result in excessive computation and I/O. Re-execution is not

 6

an efficient process, since it ignores previously discovered rules and repeats the work that has

already been done. Incremental mining is a useful technique for discovering new rules as the

data distribution patterns change, obviating the need for recomputation of old rules.

Incremental mining is done by maintaining the negative border [10] along with the

frequent itemsets. The negative border is used to decide when to scan the whole database.

The frequent itemsets for the increment database is computed. A full scan of the whole

database is required when the negative border of the frequent itemsets expands, that is an

itemset outside the negative border gets added to the frequent itemsets or its negative border.

1.4 Architecture Alternatives

Various architecture schemes have been proposed for integrating the mining process

with relational database systems. These alternatives are depicted in Figure 1.1 [11] and are

described below.

Figure 1.1 Architectural Alternatives

 7

Loose coupling or Cache-based Mining: This is an example of integrating mining

applications into the client in a client/server architecture or into the application server in a

multi- tier architecture. The mining kernel can be considered as the application server. The

data is first fetched from the database and fed to the mining-kernel, which mines and pushes

the results back to the database.

 In loose coupling, the DBMS runs in a different address space from the mining

process. Cache-based mining is a special case of the loose coupling approach, wherein data

from the DBMS is read only once and the relevant data is cached into flat files on local disk.

Stored procedures and user-defined functions: This architecture is a representative of

the case where the mining logic is embedded as an application on the database server. The

applications are executed in the same address space as the DBMS. The flexibility in

programming the stored procedure outweighs their development cost.

SQL-based approach: In this approach the mining algorithm is formulated as SQL

queries, which are executed by the DBMS query processor. A mining-aware optimizer may

be used to optimize these complex, long running queries based on the mining semantics. The

DBMS support for check pointing and space management is especially valuable for long

running mining algorithms on huge volumes of data.

Integrated Approach: This is the tightest form of integration that has no boundary

between simple querying, OLAP, or mining. Mining operators or SQL, extended for mining

is optimized by the underlying system without any hints from the user. The long-term goal is

to extend the current query optimizers to cover OLAP and mining along with SQL queries.

 8

1.5 Background

The work on association rule mining began with the development of the AIS

algorithm [6], and was further modified and extended in [5]. Since then, several attempts

have been made to improve the performance of these algorithms. The partition algorithm [12]

partitions the data into disjoint groups, processes each individually, and merges the

intermediate results. It improves the overall performance by reducing the number of passes

needed over the complete database to at most two. The turbo-charging algorithm [13]

incorporates the concept of data compression to boost the performance of the mining

algorithm. The FP-Tree algorithm [14] builds a special tree structure in main memory to

avoid multiple passes over database. However, most of these algorithms are applicable to

data stored in flat files. The main characteristic of these algorithms is that they are main

memory algorithms. In these algorithms, the data is either read directly from flat files or is

first extracted from the DBMS and then processed in main memory. The algorithms

implement their own buffer management schemes and the performance varies depending on

the specialized data-structures used for buffer management.

A few attempts have been made to build database-based mining approaches. Work in

the field of database mining has focused on integrating the mining functions with the

database. Various extensions to the SQL have been proposed which overload the SQL with

certain mining operators. SETM [15] showed how the data stored in RDBMS can be mined

using SQL and the corresponding performance gain achieved by optimizing these queries.

The Data Mining Query Language DMQL [16] proposed a collection of such operators for

 9

classification rules, characteristics rule, association rules, discriminant rules, etc. [17]

proposed the MineRule operator for generating general/clustered/ordered association rules.

[18] presents a methodology for tightly coupled integration of data mining applications with

a relational database system. [19] has tried to highlight the implications of various

architectural alternatives for coupling data mining with relational database systems. They

have also compared the performance of the SQL-based approaches with SQL-OR-based

approaches and the case when mining is done outside the database address space. The

Incremental Mining algorithm [7-9] is another useful technique for speeding up the mining

process when new data is added. [20] has developed an association rule visualization system,

which includes a tabular form and a three-dimensional graphics to display the rules. [21] has

formulated SQL queries to implement association rule mining algorithms and also compared

and contrasted the performance of SQL-92 and SQL-OR approaches based on their

performance over synthetically generated datasets. Some of the earlier research has focused

on the development of SQL-based formulations for association rule mining. Most of these

algorithms use the apriori algorithm directly or indirectly with certain modifications of the

same. [19] and [8] deal with the SQL implementation of the apriori algorithm and have

compared some of the optimizations to the basic k-way join algorithm for association rule

mining but the relative performances and possible combinations for optimizations were not

explored. [22] deals with the mapping of the arbitrary relations into the (tid,item) format and

remapping them back to the original values. [21, 23, 24] deals with the performance

evaluation of the SQL-92 and SQL-OR approaches. [1] Deals with a multi-database mining

strategy to develop local pattern analysis for identifying novel and useful patterns. [2]

 10

presents a weighting model for synthesizing high-frequency association rules from different

data sources.

To make the implementation operating system independent, we have used Java and

JDBC API’s [25, 26]. For the purpose of evaluation, the experiments have been performed

on Oracle 8i and IBM DB2/UDB.

1.6 Focus Of This Thesis

With increase in the use of RDBMS to store and manipulate data, mining directly on

RDBMSs would be an advantage. Main memory imposes a limitation on the size of dataset

that can be processed. In addition, data stored in a database has to be siphoned out into a flat

file for processing. However, if mining is done directly over an RDBMS, the user/application

can be freed from data size considerations, as this would be taken care of by the underlying

buffer management system. In database mining, we assume that the data is already stored in

tables in an underlying DBMS and use the SQL provided by the RDBMS for mining to

produce association rules. Building mining algorithms to work on RDBMSs also provides the

advantage of mining over very large datasets as RDBMSs have been built to manage such

large volumes of data. File based mining algorithms are those that work on data outside the

database. They generally have an upper limit on the number of transaction that can be mined.

For example, the DBMiner has an upper limit of 64K on the number of unique transactions

that it can process for mining. With the users having a choice of RDBMS to use for their

applications, the mining algorithms should be developed using such accepted standards so

that the underlying system is not a limitation and should be portable to other RDBMSs.

 11

Keeping this in mind, focus has been placed on the use of SQL. The arbitrary relations are

mapped [22] to the (Tid, item) format and reconversion is done at the end of the rule

generation. Data may be stored in multiple databases and the data in each of the databases

may get updated frequently and independently. In this case either the intermediate results or

the input data has to be transferred to a single database to perform mining.

The goal of this thesis is to study approaches for mining association rules over

multiple databases. In an organization, data is generally distributed over multiple databases

(typically 2 or 3). One of the solutions to mining data in multiple databases is to move the

relations to a single database and do mining. The other solution would be to apply a

partitioned or an incremental approach to perform mining. In this case, some intermediate

data has to be transferred to one database (most likely one o the databases) to combine the

results obtained independently at different sources. This thesis mainly focuses on two

approaches for association rule mining over data stored in multiple relations in one or more

databases. First is the partition approach [12], which mines the data in partitions and merges

the results finally. The second is the incremental mining approach [8] that helps to update

and manage the rules each time new data is added or existing data is deleted from the

warehouse. These approaches may be extended to suit a multi-database environment that has

autonomous and heterogeneous data sources. Due to the lack of availability of real datasets,

synthetic datasets (generated by the program developed at IBM Almaden) have been used for

performance evaluation. Nevertheless, the results are useful (as they are only based on

cardinality, support and underlying RDBMS, not on the semantics of the data set) in

understanding the approaches.

 12

The rest of this thesis is organized as follows. CHAPTER 2 introduces the

association rule mining algorithms and their SQL formulations. CHAPTER 3 discusses the

partition-based approach for association rule mining. It covers in detail the implementation of

the algorithm using the k-way join approach for support counting. The optimizations

proposed and their performance analyses are presented. CHAPTER 4 presents incremental

mining of association rules. CHAPTER 5 includes extensions done in building this mining

tool. CHAPTER 6 concludes the thesis with emphasis on the future work.

13

CHAPTER 2

RELATED WORK

The outline of this chapter is as follows: We revisit association rule mining briefly in

2.1 and discuss some of the main-memory based mining algorithms such as Apriori

algorithm, the partition algorithm and the incremental mining algorithm. 2.2 enumerates the

SQL-OR and SQL-92 based approaches for generating the frequent itemsets. 2.3 discusses

multi-database mining for analyzing data from different sources.

2.1 Association Rule Mining Algorithms

Association rule mining makes correlation among items that are grouped into

transactions, deducing rules that define relationships between item sets. The rules have a

user-stipulated support, confidence, and length. Association rule mining has attracted

tremendous attention from data mining researchers and as a result several algorithms have

been proposed for it [8, 9, 14, 20, 21]. Let I = {i1, i2, …., im} be the collection of all the items

and D be the set of database transactions where each transaction T is a set of items such that

T ⊆ I. Let A be a set of items. A transaction T is said to contain A if and only if A ⊆ T. An

 14

association rule is an implication of the form A ⇒ B, where A ⊂ I, B ⊂ I, and A ∩ B = φ.

They are two terms associated with association rules. These are: Support and Confidence.

If the support of itemset {AB} is 30%, it means “30% of all the transactions contain

both the itemsets – itemset A and itemset B”.

Support of itemset {AB} = Count Of the transactions containing the itemsets A and B
 Total Number of Transactions

If the confidence of the rule A ⇒ B is 70%, it means “70% of all the transactions that

contain itemset A also contain itemset B”.

Confidence of the rule A ⇒ B =
})({
})({

ASupport
ABSupport

An association rule-mining problem is broken down into two steps: 1) Generate all

the item combinations (itemsets) whose support is greater than the user specified minimum

support. Such sets are called the frequent itemsets and 2) use the identified frequent itemsets

to generate the rules that satisfy a user specified confidence. The frequent itemsets generation

requires more effort and the rule generation is straightforward.

2.1.1 Apriori Algorithm

The apriori algorithm [6] is based on the above-mentioned steps of frequent itemsets

and rule generation phases. Frequent itemsets are generated in two steps. In the first step all

possible combination of items, called the candidate itemset (Ck) is generated. In the second

step, support of each candidate itemset is counted and those itemsets that have support values

greater than the user-specified minimum support form the frequent itemset (Fk). In this

 15

algorithm the database is scanned multiple times and the number of scans cannot be

determined in advance. The apriori algorithm is depicted below.

F1 = {frequent 1-itemsets}
for (k = 2; Fk-1 ≠ 0; k++) do

Ck = generate(Fk-1)
for all transactions t ∈ D do
 Ct = subset(Ck, t)
 for all candidates, c ∈ Ct do
 c.count++
 end for
end for
Fk = { c ∈ Ck | c.count ≥ minsup}

end for
Answer = ∪k{Fk}

The AprioriTid algorithm [5] uses the above algorithm to determine the candidate

itemsets before each pass begins. The interesting feature of this algorithm is that it does not

use the database for support counting after the first pass. It uses a set Ck of the form {TID,

Xk} where Xk is the potentially large k- itemsets present in the transaction with the identifier

TID. For k=1, C1 will be the database. If a transaction does not contain a k- itemset then Ck

will not have an entry for that transaction. Set Oriented Mining, SETM [15] uses the SQL

join operation for candidate generation. The candidate itemset with the TID of the generating

transaction is stored as a sequential structure, which is used for support counting. The

problem with the above two algorithms is that they generate too many candidates that turn

out to be small (or not frequent) resulting in wasted effort. AprioriTid is better for the later

passes where the size of Ck is small when compared to the size of the database.

 16

Based on the above observations the Apriori Hybrid [5] algorithm was proposed. It

uses Apriori for the earlier passes and switches to the AprioriTid when the size of Ck

becomes small enough to fit in memory.

2.1.2 Partition Algorithm

The Partition algorithm [12] differs from the Apriori algorithm in terms of the

number of database scans. The partition algorithm scans the database at most twice. The

algorithm is inherently parallel in nature and can be parallelized with minimal

communication and synchronization between the processing nodes The algorithm is divided

into 2 phases: i) during the first phase, the database is divided into n non-overlapping

partitions and the frequent itemsets for each partition are generated. ii) In the second phase,

all the local large itemsets are merged to form the global candidate itemsets and a second

scan of the database is made to generate the final counts. The algorithm is depicted below:

P = partition_database(D)
n = Number of partitions
// Phase I
for i = 1 to n do begin
 read-in_partition(pi ε P)
 Li - gen_large_itemsets(pi)
end
// Merge Phase
for(i = 2; Lj

i ≠ φ, j = 1,2....,n; i++) do begin
 CiG = ∪j = 1,2,...nLij
end
// Phase II
for i = 1 to n do begin
 read-in_partition(pi ε P)

 17

 for all candidates c ε CG gen_count(c, pi)
end
LG = {c ε CG| c.count > minsup}
Answer = LG

 The partition algorithm is designed to generate rules in parallel and utilize the power

of a number of processors. It is used to aggregate the power and memory of many processors.

The data in the form of a single file is distributed among different processors with each

processor generating itemsets for that part of the data in parallel. This would require the

passing of intermediate information among processors to generate the global rules. The

parallelized partition algorithm, although developed for multiple processors, can be adapted

for multiple database scenario where data is distributed over multiple databases.

2.1.3 Parallel Mining of Association Rules

[27] discusses the problem of mining association rules in a shared-nothing

multiprocessor. Three algorithms were proposed to explore the spectrum of trade-offs

between computation, communication and memory usage as follows:

Count Distribution Algorithm: The count distribution algorithm minimizes the

communication at the expense of carrying out redundant duplicate computations in parallel.

These communications are carried out on the idle processors. This algorithm does not use the

memory of the system effectively.

Data Distribution Algorithm: The data distribution algorithm attempts to utilize the

aggregate main memory of the system effectively depending on the number of processors.

The downside of this algorithm is that every processor must broadcast its local data to all

 18

other processors in every pass. This algorithm would be viable only on a machine with very

fast communication.

Candidate Distribution Algorithm: This algorithm exploits the semantics of the

particular problem at hand to reduce the synchronization between the processors and to

segment the database based on the patterns the different transactions support.

The count distribution algorithm performed the best among the three algorithms. It

exhibited linear scale-up and excellent speed-up and sizeup behavior.

2.1.4 Incremental Mining

The Incremental mining algorithm [7, 8] is used to find new frequent itemsets with

minimal recomputation when new transactions are added to or deleted from the transaction

database. The algorithm uses the negative border concept for this. The negative border

[Toivonen, 1996 #28] consists of all itemsets that were candidates, which did not have the

minimum support. During each pass of the apriori algorithm, the set of candidate itemsets Ck

is computed from the frequent itemsets Fk-1 in the join and prune steps of the algorithm. The

negative border is the set of all those itemsets that were candidates in the kth pass but did not

satisfy the user specified support, that is (NBd(Fk)) = Ck – Fk. The algorithm uses a full scan

of the whole database only if the negative border of the frequent itemsets expands. The

algorithm for updating the frequent itemsets is as follows:

 19

function Update-Frequent-Itemset(FDB, NBd(FDB),db)

//DB and db denote the number of transactions in the original
database and the increment database respectively.

Compute Fdb
for each itemset s ∈ FDB ∪ NBd(FDB) do

tdb(s) = number of transactions in db containing s
FDB+ = φ

for each itemset s ∈ FDB do
if (tDB(s) + tdb(s)) > minsup * (DB + db)

then FDB+ = FDB+ ∪ s
for each itemset s ∈ Fdb do

if s ∉ FDB and s ∈ NBd(FDB) and (tDB(s) + tdb (s)) >
minsup * (DB + db)
then FDB+ = FDB+ ∪ s

if FDB ≠ FDB+ then

NBd(FDB+) = negativeborder-gen(FDB+)
else NBd(FDB+) = NBd(FDB)
if FDB ∪ NBd(FDB) ≠ FDB+ ∪ NBd(FDB+) then

S = FDB+
repeat

compute S = S ∪ NBd(S)
until S does not grow
FDB+ = {x ∈ S | support(x) > minsup}
//support(x) is the support count of x in DB ∪ db
NBd(FDB+) = negativeborder-gen(FDB+)

2.2 SQL-OR And SQL-92 Based Approaches

The k-way join approach [8, 21-23] is the SQL-92 approach for support counting.

Here in any pass k, k copies of the input table are joined with the candidate itemsets Ck

followed by a group by on the itemsets. The k copies of the input table are needed to

compare the k items in the candidate itemset Ck with one item from each of the k-copies of

the input table. The group by clause on the k items is done to identify all itemsets whose

 20

count is greater than the user specified support value, as frequent items, which are then used

for the rule generation phase. The SQL statement used for support counting in the k-way join

approach is shown below.

Insert into Fk
Select item1, … , itemk, count(*)
From Ck, T t1, … , T tk
Where t1.item = Ck.item1 and

 :
tk.item = Ck.itemk and
t1.tid = t2.tid and

 :
tk-1.tid = tk.tid

Group by item1, item2, … ,itemk
Having count(*) > minsup

The following are the optimizations that turned out to be the best [21, 23] for the k-

way join approach:

2.2.1 Second Pass Optimization

In general, because of the immense size of C2, the cost of support counting for C2 is

very high. In addition, for candidate sets of length 2, as all the subsets of length 1 are known

to be frequent, there is no gain from pruning during candidate generation. Also there are no

rules associated with F1. Hence the process of generating F1 and then C2 followed by the

support counting phase can be replaced by directly generating F2. F2 is generated by joining

two copies of the input table such that, the item from first copy of the input table is less than

 21

the item from the second copy of the input table and both items belong to same transaction.

The SQL for the same is as follows:

Insert into F2 select t1.item, t2.item, count(*)
From InputTable T1, InputTable T2
Where T1.tid = T2.tid and T1.item < T2.item
Group by T1.item, T2.item.
Having count(*) > minsup

2.2.2 Reuse of Item Combinations

This optimization aims to reduce the cost of support counting, in any pass k, by

avoiding the join of k copies of input table with the set of candidate itemsets Ck. Joining k

copies of the input table is avoided by materializing the frequent itemsets obtained from a

particular transaction in pass k-1, and using it for support counting in the kth pass. This

approach proves to be very effective for cases where the length of the frequent itemset is

large since the sequence of joins done in the earlier passes are avoided. So in kth pass for

support counting, a relation Combk, having the following attributes (tid, item1, item2, …,

itemk) is created. The tuples in Combk is the result of the join between Combk-1, T and Ck to

select all those transactions in T which contains 1-extensions to the frequent itemsets of

length k-1. The SQL for this is given below:

Insert into Combk
Select T1.tid, T1.item1, T1.item2,…, T1.itemk-1,T2.item
From Ck, Combk-1 T1, T T2

 22

Where T1.item1 = Ck.item1 and
 :

:
 T1.itemk-1 = Ck.itemk-1 and
 T2.item = Ck.itemk and
 T1.tid = T2.tid

Fk is then generated from Combk by grouping on k items (item1, item2, …, itemk) and

selecting those that satisfy the minimum support criteria. The SQL for this given below:

Insert into Fk
Select item1, item2, …, itemk
From Combk
Group by item1, item2, …, itemk
Having count(*) > minsup

2.2.3 Vertical-Tid Approach

The Vertical-Tid approach [24] uses SQL-OR constructs (such as CLOBs) for better

representation of input data. For Oracle, all stored procedures have been implemented as a

Java stored procedures and for IBM DB2/UDB, the same has been implemented as user

defined functions (or UDFs) using Java.

Here, the representation of input data is changed and the transactions are inserted in a

different relation (TidListTable) having the following attributes: (Item, TidList). For every

unique item id in the input dataset, the TidListTable has only one tuple. This tuple represents

the item id and the list of all the transactions in which that item was bought. Each list of

transactions is represented as a CLOB and stored in the TidList column of the TidListTable.

 23

For the purpose of support counting, procedures are used to read these CLOBs and

for each item combination (itemset), the numbers of same transaction ids that are present in

the TidList of each item id in that itemset are counted. The SQL for generation of frequent

itemsets is given below.

Insert into Fk
Select item1, item2, …, itemk
From (Select item1, item2,…, itemk,

CountAndK(I1.TidList,I2.TidList, … ,
Ik.TidList) as cnt

From Ck, TidListTable I1, TidListTable I2,…,
TidListTable Ik,

 Where Ck.item1 = I1.item And
Ck.item2 = I2.item And
 :
 :
Ck.itemk = Ik.item) as temp

Where cnt > minsup.

Here CountAndK is a procedure that in pass k, accepts k TidLists and returns the

count of transactions that are common to each of them.

2.3 Multi-Database Mining

Many organizations end up using multiple databases due to acquisitions and merger.

These are used in a federated manner and are independently, maintained. If one were to mine

on data present in multiple databases, there are two options. The first one is to transfer data to

a single database and mine it on that database. The second option is to mine them

independently and still generate association rules for the combination of the data in multiple

 24

databases.[1]. A large majority of organizations have computerized all or a part of their daily

activities. Let us consider a company, which has several branches in different locations with

each branch having its own database. The main branch or top level within the organizational

hierarchy is responsible for development and decision making within the entire company. Let

us consider the following multi-database environment shown in Figure 2.1.

Figure 2.1 A Multi-Database Environment

The development of multi-database association rule mining is a challenging and

critical task since it requires knowledge of all the data stored at different locations and the

ability to combine partial results from individual RDBMS's into a single result. The

individual databases have to be analyzed to generate rules to make local decisions. It would

be easier for the organization to make decisions based on the rules generated by the

individual branches, rather than using the raw data. If the raw data from each of the

 25

individual databases were sent to a single database to generate the rules, certain useful rules,

which would aid in making decisions about local branches, would be lost. For example a rule

such as “50% of the branches in the north saw a 10% increase in the purchase of printers

when Digital cameras and memory cards were purchased together” would not be generated if

the raw data was transferred. If the raw data from all the databases were transferred to a

single database then each of the individual branches would not be generating the rules with

respect to its data. In such a case the organization may miss out certain rules that were

prominent in certain branches and were not found in the other branches similar to the above

example. Generating such rules would aid in making decisions about specific branches.

[2] presents a weighting model for synthesizing high-frequency association rules

from different sources. A high-frequency rule is the one that is supported by most of the data

sources. High-frequency rules are preferred for two reasons. First, a company headquarter is

interested in the rules supported by most of its branches for corporate profitability. Second,

high frequency rules have larger chances to become valid rules in the union of all data

sources than the low-frequency rules do. The proposed model assigns a high-weight to a data

source that supports/votes more high-frequency rules and a lower weight to a data source that

supports/votes less high-frequency rules. A relative synthesizing model using clustering is

used when the data source is unknown (e.g., collected from the web, journals and books).

This model is different form parallel and distributed mining and metalearning because they

do not produce a global learning model from classifiers from different data sources.

Although a multi-relational database can be transformed into a single universal

relation, practically this can lead to many issues such as universal relations of unmanageable

 26

sizes, infiltration of uninteresting attributes, loss of useful relation names, unnecessary join

operations, and inconvenience for distributed processing. [1] Discusses a new multi-database

mining process. The patterns in multi-databases are divided into the following classes:

Local patterns: Local branches need to consider the original raw data in their datasets

so they can identify local patterns for local decisions.

High-vote patterns: These are the patterns that are supported by most of the branches

and are used for making global decisions.

Exceptional patterns: These patterns are strongly supported by only a few branches

and are used to create policies for specific branches.

The mining strategy used in [1] identifies two types of patterns, high-vote patterns

and exceptional patterns. The discovery of these patterns can capture certain distributions of

local patterns and assist global decision-making within a large company.

27

CHAPTER 3

PARTITIONED APPROACH TO ASSOCIATION RULE MINING

Different approaches have been proposed to generate association rules effectively.

These proposed approaches have their own advantages and disadvantages. In this chapter we

will revisit the partition algorithm in finer detail. The outline of this chapter is as follows:

Section 3.1 adapted and evaluated the performance of the partition algorithm to suit RDBMS.

Section 3.2 discusses the two variants of the partition algorithm proposed in this thesis

3.1 Database Approach To Partition Algorithm

Most of the algorithms for discovering association rules [5, 6, 15] require multiple

passes over the database. The database was read completely for each pass resulting in a large

number of disk reads in the case of disk resident databases placing a huge burden on the I/O

subsystem. Network congestion problems and poor resource utilization was common in cases

where data was to be retrieved from a central database server over a network. The partition

algorithm [12] is an efficient algorithm for mining association rules in large databases. In this

section we present the performance of the partition algorithm for multiple databases.

SQL operations over Relational databases were used. There was no change in Phase I

of the algorithm. Each database was considered an individual partition and the frequent

 28

itemsets were generated for each of the databases. In Phase II of the algorithm the frequent

itemsets from each of the partitions were merged to form two sets of itemsets. The first set is

the global frequent itemsets, which correspond to itemsets that are large in all the partitions

(databases). The second set is the set of global candidate itemsets, which is the union of all

the frequent itemsets from each of the partitions (and does not include the global frequent

itemsets).

A TIDLIST is created for the entire database. This would incur the shipping cost of

the partitions to one database. As the data is assumed to be distributed over different

databases, they need to be shipped to a single database to combine and create the TIDLIST.

The TIDLIST was used for counting the support of the itemsets in the global candidate

itemsets and the itemsets satisfying the user specified support were added to the set of global

frequent itemsets.

3.1.1 Methodology for Experiments

The performance results presented in this thesis are based on datasets generated

synthetically using IBM’s data-generator. The nomenclature of these datasets is of the form

“TxxIyyDzzzK”, where “xx” denotes the average number of items present per transaction,

"yy" denotes the average support of each item in the dataset and "zzzK" denotes the total

number of transactions in “K”(1000s). The experiments have been performed on Oracle 8i

and IBM DB2 / UDB V7.2 (installed on a machine running Microsoft Windows 2000 Server

with 512MB of RAM). Each experiment has been performed 4 times. The values from the

first run are ignored so as to avoid the effect of the previous experiments and other database

 29

setups. The average of the next 3 runs is taken and used for analysis. This is done so as to

avoid any false reporting of time due to system overload or any other factors. For most of the

experiments, we have found that the percentage difference of each run with respect to the

average is less than one percent. Before the input is fed to the mining algorithm the input is

checked for (tid, item) format. On completion of mining, the results are remapped to their

original values. Since the time taken for mapping, rule generation and re-mapping the results

to their original descriptions is relatively insignificant, they are not reported. For the purpose

of reporting experimental results in this thesis, we have shown the results only for three

datasets – T5I2D500K, T5I2D1000K and T10I4D100K for most of the optimizations.

DATASET T5I2D1000K (2 PARTITIONS OF SIZE 500K)
ON ORACLE

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

0.20% 0.15% 0.10%

Support values

T
im

e
in

 s
ec

o
n

d
s

Frequent

Partition 2

Partition 1

Figure 3.1 Performance Of TIDLIST Approach On T5I2D1000K Dataset

 30

Figure 3.1 shows the performance of the TIDLIST approach for a T5I2D1000K

dataset. The dataset is divided into two equal partitions each of size 500K. The analysis of

the time taken for the different phases shows that the Phase II is the most time consuming. In

Phase II, the TIDLIST is created for the whole dataset.

TIDLIST CREATION

0

2000

4000

6000

8000

10000

12000

14000

16000

T5I2D10K T5I2D100K T5I2D500K T5I2D1000K

DATASETS

T
IM

E
 IN

 S
E

C
O

N
D

S

Time in seconds

Figure 3.2 Time Taken For TIDLIST Creation For Different Datasets

Figure 3.2 shows the time taken for the TIDLIST creation for datasets of different

size. The TIDLIST creation time increases exponentially as the size of the dataset increases.

The partitioned approach although seems to work well for main memory databases, its

performance for partitioned databases is not acceptable. The creation of the TIDLIST and the

shipping of the partitions to a single database need to be avoided. In the next section, two

 31

approaches have been proposed to overcome the above inefficiency of the partition algorithm

for multiple databases.

3.2 Proposed Extensions To Partition Algorithm

This section discusses two approaches Approach I and Approach II that have been

proposed for the partition algorithm useful for multiple databases. The following notation is

used in the remainder of the thesis.

Table 3.1 Notations Used For Partitioned Approach

Notation Meaning

CP
K Local Candidate Itemsets:

 Set of local candidate k- itemsets in partition P.

FP
K Local Frequent Itemsets:

 Set of local frequent k- itemsets in partition P.

CG
K Global Candidate Itemsets:

 Set of global candidate k- itemsets.

FG
K Global Frequent Itemsets:

 Set of global frequent k- itemsets.

NBd(FP
K) Negative Border:

 Set of local non-frequent k-itemsets in partition P.

The negative border of frequent k-itemsets corresponds to those itemsets that did not

satisfy the support in pass k. That is NBd(FP
K) = CP

K - FP
K. Given a collection F ⊆ P(R) of

 32

sets, closed with respect to set inclusion relation, the NBd(F) of F consists of the minimal

itemsets X ⊆ R not in F.

3.2.1 Approach I

In the TIDLIST approach, the TIDLIST was created as a CLOB. In Approach I

TIDLIST is not at all created and the k-way join approach is used instead. Some of the k-

way join optimizations reported in [21] have been used. The two k-way join optimizations

used are: Second-pass Optimization (SPO) and Reuse of Item Combinations (RIC). In a

multiple database scenario, each of the individual databases is considered as a partition and

the merging is done by choosing one of the databases. The changes made to the partition

algorithm are described below.

3.2.1.1 Phase I

In this phase the frequent itemsets FP
K are generated for each of the partitions. Along

with the frequent itemsets in each of the partitions, the negative border of the frequent 2-

itemsets NBd(FP
2) is also retained. These itemsets are used for counting the support in the

Phase II of the algorithm. Only the negative border of the 2-itemsets is retained because

when the second pass optimization is used, the generation of the 2-itemsets is the first step in

each partition. Since the 2-itmeset generation is the first pass, there is no loss of information

and the negative border of the 2- itemsets will have all possible 2- itemsets, which did not

satisfy the support.

The other optimization for the k-way join -- Prune the Input table (PI) -- was not used

during the implementation even though the combination of all the optimizations yielded

better performance. This was because in the pruned input optimization, the input table would

 33

be pruned by elimination all the records of those single itemsets whose support was less than

the user specified support value. If this were done then the negative border of the 2-itemsets

would not contain all the possible non-frequent 2- itemsets. After the frequent itemsets from

all the partitions (databases) are generated, the frequent itemsets and the negative border of

the frequent 2- itemsets from all the partitions are shipped to one database to do the remaining

computation. This step is shown as an edge with label “1” in Figure 3.3. Merging the

frequent itemsets from all the partitions generates the global candidate itemsets CG
1, CG

2, …,

CG
K.

Figure 3.3 Data Transfer Using Approach I

 34

3.2.1.2 Phase II

In this phase, the global frequent itemsets -- itemsets that are large in all the partitions

– are generated. Merging the count obtained from the negative border and the frequent 2-

itemsets from all the partitions generates the count for the remaining 2- itemsets in CG
2. The

itemsets satisfying the support are added to FG
2. FG

2 and ∪ k=3 to nCG
K are shipped to all the

databases to generate the counts of the remaining candidate itemsets. This is shown as an

edge with label “2” in Figure 3.3.

Each of the databases generates a materialized table from the global frequent 2-

itemsets using the Reuse of item combination optimization. The materialized table is used in

the successive passes to generate the counts of the itemsets in the global candidate itemsets.

Once the counts are generated in all the partitions they are shipped back to one database to do

the final counting. This is shown as an edge with label “3” in Figure 3.3.

Figure 3.3 shows the data transferred in each of the steps. Database 1 and Database 2

are considered the 2 partitions. Database 2 is chosen for merging the frequent itemsets from

all the partitions to global candidate itemset and for generating the final cumulative count of

all frequent itemsets obtained from all the partitions in step “3”.

3.2.1.3 Performance Analysis

Performance experiments were done on datasets of different sizes. Each data set was

divided into 2 or 3 non-overlapping partitions. Figure 3.4 shows the performance of a

T5I2D1000K dataset divided into 2 equal sized partitions each of size 500K. It is seen from

the graph that the improvement in performance of Approach I compared to TIDLIST

approach is 58% for a support values of 0.20% and the improvement increases to about 78%

 35

for a support value of 0.10%. As the support value decreases the percentage improvement in

the performance increases.

DATASET T5I2D1000K (2 PARTITIONS OF SIZE 500K)
ON ORACLE

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

TIDLIST Approach I TIDLIST Approach I TIDLIST Approach I

0.20% 0.15% 0.10%

Support values

T
im

e
in

 s
ec

o
n

d
s

Frequent

Partition 2

Partition 1

Figure 3.4 Performance Comparison Of TIDLIST And Approach I

Figure 3.5 shows the performance on Oracle and DB2 for a T5I2D500K dataset

divided into 2 partitions of size 250K each. DB2 experiments did not complete for support

values of 0.15% or lower even after running for 10-12 hours. For Oracle the improvement in

performance was 35% for 0.20% support and it increased to 61% as support decreased to

0.10%. In DB2 the improvement in performance decreased from 82% to 44% as the support

value decreased from 0.30% to 0.20%.

 36

Figure 3.5 Performance Of TIDLIST And Approach I For T5I2D500K

Figure 3.6 shows the data transfer when there are 3 partitions (databases). At the end

of each phase the intermediate results are transferred to one of the partitions to do the

remaining computations.

 37

Figure 3.6 Data Transfer Using Approach I For 3 Partitions

The performance for T5I2D500K is shown in Figure 3.7. The dataset is divided into

3 partitions of size 200K, 200K and 100K. The performance is shown for Oracle and DB2.

For DB2 the percentage improvement in performance decreases from 80% to 53% as the

support value decreases from 0.30% to 0.20%. The performance in Oracle shows an increase

from 18% to 75% as the support value decreases from 0.20% to 0.10%.

 38

Figure 3.7 Performance Comparison Of T5I2D500K For TIDLIST And Approach I

3.2.1.4 Data Transfer

Table 3.2 shows the number of records transferred between the databases in each

step. The input data denotes the transactional data. It is assumed that the dataset is divided

into 2 equal sized partitions. The numbers in the Table 3.2 indicate the number of records

transferred. For example, for the T5I2D10K dataset the input data has 27000 records and the

 39

total records transferred using approach I between the two databases is 51845. It is observed

that transferring the intermediate results is better for the datasets, which have more than

100K transactions.

Table 3.2 Data Transferred Using Approach I

Dataset

Input
data

records

Step 1
[F1

K + NBd (F1
2)]

records

Step 2
[FG

2 + UK = 3 to N

CG
K]

records

Step 3
UK = 3 to N

CG
K

records

Total
records

T5I2D10K 27000 50360 1393 92 51845

T5I2D100K 273000 199455 678 101 200234

T5I2D500K 1368500 319677 638 76 320391

T5I2D1000K 2736000 356696 632 75 357403

In Approach I only the negative border of the frequent 2- itemsets were retained in all

the partitions. In the Phase II, a materialized table was created to do the support counting.

The time taken to create a materialized table increases as the size of the dataset increases. In

this approach the data is transferred 3 times between the partitions. Approach II was

proposed to overcome the above drawbacks.

3.2.2 Approach II

In the Phase I of this approach the negative border of all the frequent itemsets in each

of the partitions were retained as compared to the previous approach where only the negative

border of the frequent 2- itemsets were retained. When the frequent itemsets are generated the

data is transferred to one of the partitions to form the global candidate itemsets and the global

 40

frequent itemsets. The global frequent k-itemsets are generated by merging the counts of the

frequent k- itemsets and the negative border of the frequent k- itemsets. Figure 3.8 shows the

data transfer in Approach II.

Approach II is different from Approach I with regard to the number of times data is

transferred between the databases and the itemsets that are retained. In Approach I only the

negative border of the frequent 2- itemsets is retained. Since retaining the negative border

does not require any additional computation, in Approach II, the negative border of all the

frequent itemsets are retained for all the databases. In Phase II of Approach I, the global

frequent 2- itemsets are generated using the local frequent 2- itemsets and their negative

border from all the databases. The results have to transferred to the individual databases to

generate the remaining (3-k) – itemsets, which requires the scanning the input data in each of

the databases to generate the counts. But in Approach II, all the global frequent itemsets are

generated using the local frequent itemsets and their negative border from all the databases.

An additional scan of the database is not required and the intermediate results are transferred

only once as compared to 3 times in Approach I.

 41

Figure 3.8 Data Transfer In Approach II

DATASET T5I2D1000K (2 PARTITIONS OF SIZE 500K)
ON ORACLE

0
2000
4000
6000
8000

10000

12000
14000
16000
18000
20000

T
ID

A
p

p
ro

ac
h

I

A
p

p
ro

ac
h

II

T
ID

A
p

p
ro

ac
h

I

A
p

p
ro

ac
h

II

T
ID

A
p

p
ro

ac
h

I

A
p

p
ro

ac
h

II

0.20% 0.15% 0.10%

Support values

T
im

e
in

 s
ec

o
n

d
s

Frequent

Partition 2

Partition 1

Figure 3.9 Performance Comparison Of All The Approaches With 2 Partitions

 42

The Figure 3.9 shows the performance comparison of the TIDLIST, Approach I and

Approach II. A T5I2D1000K dataset was divided into 2 partitions of size 500K each. From

the graph it is noted that the performance improved from 16% to 18% as the support value

decreased from 0.20% to 0.10%.

Figure 3.10 Performance Comparison Of All The Approaches With 3 Partitions

Figure 3.10 shows the performance comparison for all the 3 approaches on a

T5I2D500K dataset divided into 3 partitions. For Oracle the performance improves from

14% to 16% as the support value decreases from 0.20% to 0.10%. Table 3.3 shows the

number of records transferred between the partitions. For the datasets T5I2D100K and above

transferring the intermediate relations would be better.

 43

Table 3.3 Data Transfer For Approach II

Dataset

Input data
records

Step 1
[F1

K + NBd (F1
K)]

records

Approach II

T5I2D10K 27000 50481 50481

T5I2D100K 273000 199521 199521

T5I2D500K 1368500 319740 319740

T5I2D1000K 2736000 356761 356761

Table 3.4 compares the number of records transferred in the case of Approach I and

Approach II. It is noted that the data transfer in Approach II is slightly less for all the

datasets. The data transferred in both the approaches showed a slight difference only because

the frequent 2- itemsets and their negative border constitute a large number of records and

they were transferred in both the approaches. In Approach I the global candidate (3-k)-

itemsets and the global frequent (3-k)- itemsets were transferred which did not comprise a

large number of records when compared to Approach II where the frequent (3-k)–itemsets

and their negative border were transferred.

Table 3.4 Comparison Of Data Transfer For Approach I And Approach II

Dataset

Input data
records

Approach I

Approach II

T5I2D10K 27000 51845 50481

T5I2D100K 273000 200234 199521

T5I2D500K 1368500 320391 319740

T5I2D1000K 2736000 357403 356761

 44

It was noted that Approach II performed better than TIDLIST and Approach I for

almost all the cases. This was because the creation of materialized table was eliminated and

retaining the negative border does not require any additional computation. However there is a

tradeoff associated with the Approach II. This approach may miss out the count of itemsets,

which are globally large but locally small in a few partitions. The count of some k- itemsets

whose subset did not appear either in the frequent itemsets or its negative border in the earlier

passes may be misses. Figure 3.11 shows the error observed in the frequent itemsets

generated. The frequent itemsets generated using the TIDLIST approach and Approach I was

compared with the itemsets generated in Approach II. Approach II showed some error in the

number of frequent itemsets generated in each pass. It was seen that there was some error for

the smaller datasets with lower support values. No error was noted for datasets T5I2D100K

and above.

 45

Percentage Error in Frequent Itemsets
generated

0

5

10

15

20

25

30

35

40

45

T5I2D10K T5I2D100K T5I2D500K T5I2D1000K

Datasets

P
er

ce
n

ta
g

e
er

ro
r

Support = 0.2 Support = 0.15 Support = 0.10

Figure 3.11 Error Analysis

Figure 3.12 shows the performance comparison between Approach I and Approach II

on Oracle for different support values and datasets. The performance improvement in

generating the rules between Approach I and Approach II were compared. It is noted that

Approach II performs 14% to 18% better compared to Approach I. The reason being in

Approach II the negative border is maintained for all the frequent itemsets and the itemsets

are transferred only once. But in Approach I, though the negative border is retained for only

the frequent 2- itemsets, in the phase II a materialized table is created for each of the

databases to count the support of the itemsets in the global candidate itemsets. The time it

takes to create the materialized table increases as the size of the dataset increases as a result

of which there is an improvement in the performance between both the approaches.

 46

Improvement in performance

0.00
2.00

4.00
6.00
8.00

10.00

12.00
14.00
16.00

18.00
20.00

T5I2D10K T5I2D100K T5I2D500K T5I2D1000K

Datasets

P
er

ce
n

ta
g

e
in

m
p

o
ve

m
en

t

Support = 0.2 Support = 0.15 Support = 0.10

Figure 3.12 Comparing performance of Approach I and II on Oracle

Based on the experiments performed using the partitioned approach we can

summarize the effect of the optimizations as follows:

The TIDLIST approach has its drawbacks when it is implemented in a database

approach because of the use of CLOBs for TIDLIST creation, which is a very time

consuming operation. The two approaches were proposed to optimize the TIDLIST approach

to gain better performance that may useful for multiple databases.

47

CHAPTER 4

INCREMENTAL ASSOCIATION RULE MINING

In CHAPTER 3 we discussed how the partition algorithm could be used to mine data

from multiple sources. In this chapter we will discuss the incremental addition of data and

the generation of association rules without performing recomputation. Section 4.1 discusses

the incremental mining algorithm for updating frequent itemsets. In Section 4.2 various

performance experiments performed on Oracle and DB2 and their results are presented.

4.1 Incremental Updation Of Frequent Itemsets

Data mining is used for pattern discovery and query resolution in large data

repositories. The rules generated in this way reflect the current state of the database.

Techniques have to be developed to handle large volumes of data and maintain rules over

significantly long periods of time. Updates to the transaction database may invalidate the

existing rules or introduce new rules. The rule generation is a straightforward process and

computationally inexpensive. Hence, it is not critical to develop an incremental rule

generation algorithm. A naïve solution to the update problem is the recomputation of the

frequent itemsets for the updated database. This is an inefficient way because all the

 48

computations done initially are wasted. The ideal way would be to develop an incremental

algorithm so that the computation effort spent on the original data is effectively utilized.

[8] has proposed an algorithm for incrementally updating the frequent itemsets. An

existing database may be updated when new transactions are added or existing transactions

are removed from the database. When new transactions are added to the database, an old

frequent itemset could potentially become infrequent in the updated database or an old

infrequent itemset could potentially become frequent in the new database. The proposed

algorithm finds the new frequent itemsets with minimal re-computation when transactions

are added to or deleted from the existing database. The following notation is used for

describing the incremental approach.

Table 4.1 Notations Used In Incremental Approach

Notation Meaning

DB Transactions in original database

db Transactions that are newly added

DB+ Transactions in the updated database (DB ∪ db)

FDB, Fdb, FDB+ Frequent itemsets in the respective databases

NBd(FDB), NBd(Fdb), NBd(FDB+) Negative borders for the respective frequent itemsets.

The two important characteristics of the algorithm are: It makes use of the negative

border concept. Along with the frequent itemsets, the negative border is also maintained. The

negative border consists of all itemsets that were candidates, but lacked the minimum

support. For example in pass k, NBd(Fk) = Ck - Fk where Ck is the set of candidate k- itemsets,

 49

Fk is the set of frequent k- itemsets and NBd(Fk) is the set of k- itemsets in the negative border.

The frequent itemsets for the increment database are computed. A full scan of the database is

required only if the negative border expands, that is, if an itemset outside the negative border

gets added to the frequent itemsets or its negative border. Figure 4.1 shows the incremental

mining algorithm for updating the frequent itemsets.

function Update-Frequent-Itemset(FDB, NBd(FDB),db)

//DB and db denote the number of transactions in the original
database and the increment database respectively.
1 Compute Fdb
2 for each itemset s ∈ FDB ∪ NBd(FDB) do

tdb(s) = number of transactions in db containing s
FDB+ = φ

3 for each itemset s ∈ FDB do
if (tDB(s) + tdb(s)) > minsup * (DB + db)

then FDB+ = FDB+ ∪ s
4 for each itemset s ∈ Fdb do

if s ∉ FDB and s ∈ NBd(FDB) and (tDB(s) + tdb (s)) >
minsup * (DB + db)
then FDB+ = FDB+ ∪ s

5 if FDB ≠ FDB+ then
NBd(FDB+) = negativeborder-gen(FDB+)

else NBd(FDB+) = NBd(FDB)
6 if FDB ∪ NBd(FDB) ≠ FDB+ ∪ NBd(FDB+) then

S = FDB+
repeat

compute S = S ∪ NBd(S)
until S does not grow
FDB+ = {x ∈ S | support(x) > minsup}
//support(x) is the support count of x in DB ∪ db
NBd(FDB+) = negativeborder-gen(FDB+)

Figure 4.1 Incremental Mining Algorithm

 50

Figure 4.2 shows a transaction table (DB+). The original database (DB) has 4 transactions

and the new database (db) has 2 transactions.

 Original Database

TID Items
1 2, 4, 5, 6
2 1, 2, 5, 6
3 2, 3, 4, 5
4 1, 4, 5, 6

Transaction Table

TID Items
1 2, 4, 5, 6
2 1, 2, 5, 6
3 2, 3, 4, 5
4 1, 4, 5, 6
5 1, 2, 4, 6
6 1, 2, 5, 6 TID Items

5 1, 2, 4, 5
6 1, 2, 5, 6

 New Transactions

Figure 4.2 Updated Database

Initially the original transactions are mined to generate the frequent itemsets (FDB) for

the user specified support. While the frequent itemsets are generated, their negative border

NBd(FDB) is also generated and retained. The negative border is later used to avoid

recomputation when new transactions are added to the database. The frequent itemsets and

their negative border for DB are shown in Figure 4.3.

 51

Frequent Itemsets

Itemset Count
{ 1, 5 } 2
{ 1, 6 } 2
{ 2, 4 } 2
{ 2, 5 } 3
{ 2, 6 } 2
{ 4, 5 } 3
{ 4, 6 } 2
{ 5, 6 } 3

Negative Border

Itemset Count
{ 1, 2 } 1
{ 1, 4 } 1

Itemset Count
{ 1, 5, 6 } 2
{ 2, 4, 5 } 2
{ 2, 5, 6 } 2
{ 4, 5, 6 } 2

 Itemset Count

{ 2, 4, 6 } 1

Figure 4.3 Frequent Itemsets And Negative Border In DB

When new transactions are added to the database (db) the frequent itemsets for the

new transactions Fdb are generated for the same user specified support value as shown by step

1 in Figure 4.1. The count for each of the itemsets in FDB ∪ NBd(FDB) is obtained from the

new transaction database (db) as shown by step 2 in Figure 4.1. This is shown in Figure 4.4.

 52

Frequent Itemsets

Itemset Count

{ 1, 2, 4 } 1
{ 1, 2, 5 } 1
{ 1, 2, 6 } 2
{ 1, 4, 6 } 1
{ 1, 5, 6 } 1
{ 2, 4, 6 } 1
{ 2, 5, 6 } 1

Itemset Count
{ 1, 2, 4, 6 } 1
{ 1, 2, 5, 6 } 1

Itemset Count
{ 1, 2 } 2
{ 1, 4 } 1
{ 1, 5 } 1
{ 1, 6 } 2
{ 2, 4 } 1
{ 2, 5 } 1
{ 2, 6 } 2
{ 4, 6 } 1
{ 5, 6 } 1

Figure 4.4 Frequent Itemsets In The New Transactions

The following conditions to be checked to perform the update of the frequent

itemsets.

4.1.1.1 Case 1

The support is generated for each itemset in FDB from Fdb and the itemset is added

to FDB+ if support is satisfied. This is shown by step 3 in Figure 4.1. This would result in 2

cases. First, some itemsets, which were large in FDB may remain large even after adding the

count from Fdb as shown by itemset {1,5,6} in Figure 4.5. Second, some itemsets, which

were large in FDB may turn out to be small when added with the count in Fdb and it may

move from the frequent itemsets to the negative border as shown by itemset {4,5,6} in Figure

4.5.

 53

Figure 4.5 Case 1 For Incrementally Updating Frequent Itemsets

4.1.1.2 Case 2

 The support of all the itemset that is common to the itemsets in Fdb and NBd(FDB) are

counted and added to FDB+ if the support is satisfied. This case is depicted by step 4 in Figure

4.1. There are 2 situations that can arise here as shown in Figure 4.6.

Figure 4.6 Case 2 For Incrementally Updating Frequent Itemsets

 54

The first situation that arises is that some itemset which was in NBd(FDB) may not

satisfy the support and it would remain in NBd(FDB) as shown by the itemset {2,4,6} in

Figure 4.6. The second situation would be when an itemset that was in the NBd(FDB) would

become frequent as shown by itemset {1,2} in Figure 4.6.

4.1.1.3 Case 3

The support of all the itemsets that are in Fdb and not present in FDB or NBd(FDB) are

counted. There are two situations possible in this case. In the first case an itemset {1,2,6} in

Fdb would satisfy the support and be added to FDB+. The steps 3 and 4 in Figure 4.1 would not

take into account the count of such itemsets because all the subsets of {1,2,6} were not

frequent as shown in Figure 4.7. The second situation would be an itemset {11,12} in Fdb

which did not have any of its subsets in FDB or NBd(FDB) as shown in Figure 4.7.

Figure 4.7 Case 3 For Incrementally Updating Frequent Itemsets

This was done by step 6 of the algorithm shown in Figure 4.1. The input relation

would be scanned multiple times to generate the count of all such itemsets. This was done by

 55

repeating the join and the prune step in the frequent itemset generation. Candidate itemsets

were generated in each pass from which the frequent itemsets were generated. However those

itemsets, which were totally new and did not have any of its subsets in FDB or NBd(FDB) were

not counted in this step.

In our approach we have added the following step to take care of Case 3 discussed

above.

for each itemset s ∈ Fdb do
if s ∉ FDB and s ∉ NBd(FDB) and (tDB(s) + tdb (s)) >
minsup * (DB + db) then FDB+ = FDB+ ∪ s

Here the original database DB is used to generate the count of all the itemsets that are

present in Fdb and not present in FDB and NBd(FDB). A materialized table [21] (RIC

optimization of k-way join) was created in each pass to avoid redoing the same join

operations in each pass. The steps 5 and 6 in Figure 4.1 denote the steps to expand the

negative border. These steps require multiple passes over the transactional database; in our

approach we are retaining the negative border for the itemsets in Fdb also. The frequent

itemsets and the negative border of the frequent itemsets were merged to generate the

negative border for the update database. The negative border expanded this way has the same

itemsets that are generated using the step 6 in Figure 4.1 because the negative border is the

minimal collection of the non-frequent itemsets, which in closed with respect to the set

inclusion operation.

 56

4.2 Performance Evaluation

The performance results presented in this section are on datasets generated

synthetically using the IBM’s data-generator. The datasets used are the same as the ones used

in the partition based approach. The experiments have been performed on Oracle 8i and IBM

DB2 / UDB V7.2 (installed on Windows 2000 server with 512MB of RAM).

A percentage of the transactions of the database are considered as the original

database and the remaining transactions are added incrementally in percentages. The

experiments are performed for at least 3 increments to the original database as in most cases

recomputing may turn out to be better than incremental mining during the initial iterations till

the size of the dataset grows considerably. Two percentages of increments 5% and 10% were

chosen. The graph in Figure 4.8 compares the time taken to generate rules by recomputing

(RC) and by using the incremental mining algorithm (IM).

 57

Figure 4.8 Performance For T5I2D1000K On Oracle

From the Figure 4.8 it is noted that the improvement in performance for increment

sizes of 50K was about 50% for support of 0.30% and it decreased to 44% for a support

value of 0.20%. With 100K increments, the percentage improvement in performance was

45% for support of 0.30% and it decreased to about 38% as the support value decreased to

0.20%.

 58

T5I2D100K DATA ADDED IN INCREMENTS OF
10K FROM 70K, ON ORACLE

0

200

400

600

800

1000

1200

1400

1600

RC IM RC IM RC IM

0.20% 0.15% 0.10%

Support value

T
im

e
in

 s
ec

o
n

d
s

100%

90%

80%

70%

Figure 4.9 Performance Of T5I2D100K On Oracle

Figure 4.9 shows the performance comparison of the incremental algorithm with

recomputation. It can be noted that recomputation performs better than incremental mining.

This is because when the size of the increment is very small, saving the negative border

information takes more time because for the initial passes, the number of candidates

generated is large and there are more itemsets in the negative border. The large number of

itemsets generated may be due to fact that for the smaller datasets almost all the itemsets

generated satisfy the support value. The general trend observed is that for the smaller

datasets with lower support values the number of passes and the itemsets generated in each

pass is slightly higher when compared to the larger datasets. For example let us consider a

T5I2D10K dataset with a support of 0.10%, with 7K transactions in the original database.

 59

The support in terms of the number of transactions would be 7 in this case. When an

increment with 1K transactions is added then the support in terms of the number of

transactions would be 1. Almost all the candidate itemsets generated would satisfy a support

of 1. Hence there is more computation involved for generating the frequent itemsets and the

negative border of the frequent itemsets.

Figure 4.10 shows the performance comparison of the incremental mining algorithm

with the recomputation. In the first graph there were 350K transactions in the original

database and three increments each of size 50K were added. The improvement in

performance compared to recomputation was 31% for a support value of 0.20% and it

increased to about 36% as the support value increased to 0.30%. In the second graph the

original database had 425K transactions and three increments each of size 25K were added.

The improvement in performance was 35% for a support value of 0.20% and it increased to

about 48% as the support value increased to 0.30%

 60

Figure 4.10 Performance Of T5I2D500K On Oracle

 61

Based on the experiments performed using the incremental approach we can

summarize the effect of the optimizations as follows:

Incremental mining performs better when compared to recomputation for larger

datasets. Retaining the negative border for the new transactions avoids the use of the updated

database DB+ for generating the negative border when it expands.

62

CHAPTER 5

OTHER CONTRIBUTIONS

In the previous two chapters we discussed algorithms for generating the frequent

itemsets, which is the first step in association rule mining. This chapter consists of other

contributions that are required for the association rule generation and for performing large

number of experiments. Section 5.1 explains the Configuration file that is used in running the

mining tool in a batch mode. Section 5.2 discusses the Log files that are generated during the

mining process and how these logs can be formatted to give us a better understanding of the

results.

5.1 Configuration File

There are two ways for using this mining tool. The first is using the GUI and other is

using the configuration file. Running this mining tool using GUI has been described in [20,

22]. The GUI is useful for a non-expert (or a novice), but needs some human intervention to

provide the configuration needed for mining. The configuration file is useful for automating

the mining process. It consists of a number of parameters, which once specified correctly,

can be used for mining in an unattended mode. It can also be used for mining several datasets

with varying mining configurations without any user intervention. The variables defined in

the configuration file are:

 63

RDBMS Name: The RDBMS name (Oracle or DB2) where the input relation is

present.

Database Name: The database that contains your input relation.

UserId: The user who has access over the input relation.

Password: The password associated with the UserId – needed to connect to the

database.

Log File: The name of the Result Log file to generate.

Approach Number: The approach number to be used for mining. It is an integer

value. All the approaches and their optimizations are given a unique integer value to

identify them.

Table Name: The name of the input relation.

Percentage: The percentage is used to select specific number of transactions for the

partitioned and incremental approach.

Support: Minimum support value to be used for mining. This is in percentage.

Confidence: The confidence value to be used for rule generation. It is an integer

value (as percentage)

Stop Level: The maximum number of passes to go before stopping.

Debug: If true, then prints the debug statements.

Skip Rules: If true, the program stops after the generation of frequent itemset. Rule

generation is skipped.

 64

Reverse Mapping: If true, the results (item ids) are mapped back to their original

names.

Log Results to file: If true, trace values will be written to the Log File.

For each experiment, the values of all these variables are written in a single line in

the order of the variables shown above and are demarcated by a “$” sign. Thus if the

configuration file contains several such lines, the mining algorithms will be invoked that

many times. To skip a line, the line should start with the word “REM”. Below is an example

of some mining configurations.

REM Experiment on DB2. Approach -Incremental

DB2$Sample$ntmining$ntmining$D_A23_T5I2D500K.txt23T5I2D500K$10$0.2

999%$50$8$false$true$false$true

Here the first line is ignored as it starts from the word “REM”. For second line values

are used as follows:

RDBMS to use: DB2

Database Name: Sample

UserID: ntminig

Password: ntmining

Log File: D_A23_T5I2D500K.txt

Approach Name: 23 (for Incremental Mining)

Input Table: T5I2D500K.

Percentage: 10 (10% of transaction in input table constitute the increment)

Support: 0.2999 %

 65

Confidence: 50 (percent)

Stop Level: 8

Debug: False (don’t print debug statements)

Skip Rules: True (skip rule generation)

Reverse Mapping: False (don’t do reverse mapping)

Log result to File: True (write the log file).

5.2 Writing Log File

Data mining is a time-consuming process and for certain mining configurations,

mining a given dataset may take 10 to 15 hrs or even more. Since we have to compare the

performances of these approaches with others, after a given time limit, if the approach does

not complete, the mining process has to be killed. Also for the purpose of studying these

algorithms, we need to know about their progress during mining a data set. Hence it is very

important to note down the time at each step of the algorithm and produce a log file

containing enough information. This log file can then be processed to generate useful

information such as the number of passes completed, time taken for each pass, intermediate

relations generated and cardinality of each of them, even if the mining process is killed

before it completes. For this purpose, we generate two log files. One is the time log, which is

written at the end of materialization of any relation generated during the mining process. This

log (TimeLog) contains the time stamp of when a particular pass of the approach started and

if any intermediate relations where generated, what is there cardinality. Below is a sample

content of these logging files.

 66

Contents of the TimeLog file:

Start-Approach 22. Table = T5I2D100K Support =99 Sat Oct 11 17:01:36 CDT 2003

// This indicates the start of Partitioned approach on input relation T5I2D100K.

// The support value, in terms of row count is 99.

C2 = 199384 Sat Oct 11 17:01:39 CDT 2003

P1_F2 Sat Oct 11 17:03:49 CDT 2003

C3=143 Sat Oct 11 17:03:49 CDT 2003

P1_F3 Sat Oct 11 17:04:13 CDT 2003

C4=5 Sat Oct 11 17:04:13 CDT 2003

P1_F4 Sat Oct 11 17:04:38 CDT 2003

C5=0 Sat Oct 11 17:04:39 CDT 2003

P1_F5 Sat Oct 11 17:04:57 CDT 2003

P1_F6 Sat Oct 11 17:04:57 CDT 2003

P1_F7 Sat Oct 11 17:04:57 CDT 2003

P1_F8 Sat Oct 11 17:04:57 CDT 2003

Time for partition 1 = 199966 Sat Oct 11 17:04:57 CDT 2003

C2 = 197612 Sat Oct 11 17:04:59 CDT 2003

P2_F2 Sat Oct 11 17:07:12 CDT 2003

C3=156 Sat Oct 11 17:07:12 CDT 2003

P2_F3 Sat Oct 11 17:07:36 CDT 2003

C4=10 Sat Oct 11 17:07:37 CDT 2003

 67

P2_F4 Sat Oct 11 17:08:01 CDT 2003

C5=0 Sat Oct 11 17:08:02 CDT 2003

P2_F5 Sat Oct 11 17:08:20 CDT 2003

P2_F6 Sat Oct 11 17:08:20 CDT 2003

P2_F7 Sat Oct 11 17:08:20 CDT 2003

P2_F8 Sat Oct 11 17:08:20 CDT 2003

Time for partition 2 = 202888 Sat Oct 11 17:08:20 CDT 2003

Time for global = 2359 Sat Oct 11 17:08:22 CDT 2003

BP=752 Sat Oct 11 17:08:24 CDT 2003

AP=278 Sat Oct 11 17:08:24 CDT 2003

F2 Sat Oct 11 17:09:10 CDT 2003

P3 Sat Oct 11 17:09:59 CDT 2003

F3 Sat Oct 11 17:09:59 CDT 2003

P4 Sat Oct 11 17:10:06 CDT 2003

F4 Sat Oct 11 17:10:06 CDT 2003

P5 Sat Oct 11 17:10:13 CDT 2003

F5 Sat Oct 11 17:10:13 CDT 2003

Time for frequent = 110998 Sat Oct 11 17:10:13 CDT 2003

Complete Sat Oct 11 17:10:13 CDT 2003

Subsets Sat Oct 11 17:10:13 CDT 2003

Rules Sat Oct 11 17:10:14 CDT 2003

Time for rules= 1625 Sat Oct 11 17:10:15 CDT 2003

 68

The second column, in each row is the timestamp when all the tuples where inserted

in that particular relation. The first column contains the relation name and their cardinality.

For those relation names, which do not have “=” character in them, they are either the

relations for Frequent itemsets (Fk) or were not generated but are there as the variable Stop

Level, in the configuration file, specifies that the experiment should run until that pass

number. (We do so just to maintain consistency in the output that is generated). The file also

contains the time it takes during each phase of the execution. For example, for the partitioned

approach it has the time it takes to generate the frequent itemsets for each partition, the time

to merge and the time taken to generate the global frequent itemsets. The cardinalities of

frequent itemsets relations are calculated at the end during writing the ResultLog.) The other

log (ResultLog) is written only when a given approach completes successfully. It contains the

number of Frequent itemsets (Fk) generated for each data set.

69

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this thesis, we have focused on the partitioned and incremental approach to

association rule mining useful for multiple databases. We have presented a partitioned

approach to association rule mining, which is appropriate to mine data stored in multiple

DBMSs. The incremental approach proposed in this thesis reduces the task of recomputing

the rules when the data in the DBMS changes.

The partition algorithm described provides an efficient way of discovering

association rules in large database. It is convenient to use this algorithm when there are

multiple databases because the amount that has to be transferred by using this approach is

comparatively less than transferring all the raw data to a single DBMS for performing

mining. The TIDLIST approach, which was used in the main-memory based partition

algorithm, had drawbacks when used in the database approach. This thesis presented two

extensions -- Approach I and Approach II using the negative border concept, which are

suitable for multiple databases.

The incremental association rule mining algorithm aids in the generations of the

frequent itemsets when the data in the DBMS changes. The negative border concept used by

the algorithm helps in determining the frequent itemsets when the support and confidence

 70

changes. When the negative border expands a pass over the database has to be made to

generate the support count. This turns out to be time consuming in the database approach. So

we have proposed to update the negative border incrementally which can be used for support

counting in the case where the negative border expands. Extensive experiments have been

performed for the partitioned and incremental approached on Oracle 8i and IBM DB2.

 71

REFERENCES

1. Zhang, S., X. Wu, and C. Zhang, Multi-Database Mining. IEEE Computational

Intelligence Bulletin, Vol. 2, No. 1, June 2003: p. 5-13.

2. Wu, X. and S. Zhang. Synthesizing High-Frequency Rules from Different Data

Sources. in IEEE Transactions on Knowledge and Data Engineering. 2003.

3. Han, J. and M. Kamber, Data Mining : Concepts and Techniques. 2001: Morgan

Kaufmann Publishers.

4. Thomas, S., et al. An Efficient Algorithm for the Incremental Updation of Association

Rules in Large Databases. in Knowledge Discovery and Data Mining. 1997.

5. Thomas, S., Architectures and optimizations for integrating Data Mining algorithms

with Database Systems, in CSE. 1998, University of Florida: Gainesville.

6. Thomas, S. and S. Chakravarthy. Incremental Mining of Constrained Associations. in

In Proc. of the 7th Intl. Conf. of High Performance Computing (HiPC). 2000.

7. Thuraisingham, B., A Primer for Understanding and Applying Data Mining. IEEE,

2000. Vol. 2, No.1: p. 28-31.

8. Agrawal, R., T. Imielinski, and A. Swami. Mining Association Rules between sets of

items in large databases. in ACM SIGMOD International Conference on the

Management of Data. 1993. Washington, D.C.

9. Agrawal, R. and R. Srikant. Fast Algorithms for mining association rules. in 20th Int'l

Conference on Very Large Databases (VLDB). 1994.

10. Savasere, A., E. Omiecinsky, and S. Navathe. An efficient algorithm for mining

association rules in large databases. in 21st Int'l Cong. on Very Large Databases

(VLDB). 1995. Zurich, Switzerland.

 72

11. Chen, Y., An Efficient Parallel Algorithm for Mining Association Rules in Large

Databases. 1998, Georgia Institute of Technology: Atlanta.

12. Shenoy, P., et al. Turbo-charging Vertical Mining of Large Databases. in ACM

SIGMOD Int'l Conference on Management of Data. 2000. Dallas.

13. Han, J., J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation.

in ACM SIGMOD Int'l Conference on Management of Data. 2000. Dallas.

14. Houtsma, M. and A. Swami. Set-Oriented Mining for Association Rules in Relational

Databases. in 11th International Conference on Data Engineering (ICDE). 1995.

15. Han, J., et al. DMQL: A data mining query language for relational database. in ACM

SIGMOD workshop on research issues on data mining and knowledge discovery.

1996. Montreal.

16. Meo, R., G. Psaila, and S. Ceri. A New SQL-like Operator for Mining Association

Rules. in Proceedings of the 22nd VLDB Conference. 1996. Mumbai, India.

17. Agrawal, R. and K. Shim, Developing tightly-coupled Data Mining Applications on a

Relational Database System. 1995, IBM Almaden Research Center: San Jose,

California.

18. Sarawagi, S., S. Thomas, and R. Agrawal. Integrating Association Rule Mining with

Relational Database System: Alternatives and Implications. in ACM SIGMOD Int'l

Conference on Management of Data. 1998. Seattle, Washington.

19. Hongen, Z., Mining and Visualization of Association Rules over Relational DBMSs,

in CSE. 2000, UFL: Gainesville.

20. Dudgikar, M., A Layered Optimizer or Mining Association Rules over RDBMS, in

CSE Department. 2000, University of Florida: Gainesville.

21. Mishra, P. and S. Chakravarthy. Performance Evaluation and Analysis of

SQL-92 Approaches for Association Rule Mining. in BNCOD Proc. 2003.

 73

22. Oracle, Java Stored Procedures Developers Guide.,

 http://otn.oracle.com/doc/oracle8i_816/java.816/a81353/toc.htm.

23. Oracle, JDBC Developers Guide.,

 http://otn.oracle.com/docs/products/ias/doc_library/1022doc_otn/apps.102/a83724.pdf.

24. Toivonen, H. Sampling Large Databases for Association Rules. in In Proc. 1996 Int.

Conf. Very Large Data Bases. 1996: Morgan Kaufman.

25. Mishra, P. and S. Chakravarthy, Evaluation of K-way Join and its variants for

Association Rule Mining. 2002, Information and Technology Lab at The University

of Texas at Arlington, TX.

 74

BIOGRAPHICAL INFORMATION

Hima Valli Kona was born on December 16, 1978 in Vijayawada, India. She

received her Bachelor of Engineering degree in Computer Science and Engineering from

Madurai Kamaraj University, Tamil Nadu, India in May 2001. In the Fall of 2001, she started

her graduate studies in Computer Science and Engineering at The University of Texas,

Arlington. She received her Master of Science in Computer Science and Engineering from

The University of Texas at Arlington, in December 2003. Her research interests include Data

Mining and Web technologies.

