MAKING CANDIDE: A MULTIUSER DBMS IN A LAN ENVIRONMENT

By
HEMA KANNAN

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA
1994

Dedicated to my
Parents

ACKNOWLEDGMENTS

[would like to place on record my profound gratitude to Dr. Sharma Chakravarthy
and Dr. Howard Beck, my thesis advisors, for their support, guidance and inspiration
throughout the course of this project. I am grateful to Dr. Herman Lam for agreeing
to serve in my committee.

I am indebted to Ms. Ling i for her friendship and technical assistance in this
project. I would like to extend my sincere appreciation to my colleagues at FAIRS
and Ms.Sharon Grant at the Database Center for their support and encouragement.

I would like to thank all my friends in Gainesville for their help in making my
stay here a memorable one. Finally, special thanks are due to my friend Anandhi for

her immense help during my graduate studies.

i1

TABLE OF CONTENTS

ACKNOWLEDGMENTS oo o e iii
LIST OF FIGURES o e vi
ABSTRACT . . o e vii
CHAPTERS e e 1
1 INTRODUCTION e 1

2 LITERATURE SURVEY o o o .. 8

2.1 Client/Server Architecture L. 8

2.1.1 Advantages of Client/Server Databases 11

2.1.2 Disadvantages of Client/Server Databases 11

2.2 Developing a Client-Server DBMS for PC Platforms 12

2.2.1 Requirements and Issues 12

2.3 LANtastic 15

2.3.1 Network Operating System 15

232 NetBIOS. oo 16

24 NetWare o e 18

2.4.1 Network Operating System 18

2.4.2 Transaction Tracking System 21

2.5 Concurrency Control Mechanisms 22

25.1 Locking L 23

2.5.2 Timestamp Ordering L. 25

2.5.3 Optimistic Nonlocking Mechanism 26

3 CANDIDE SINGLE USER SECONDARY STORAGE MANAGER 28
3.1 CANDIDE Single User Secondary Storage manager (CSUSSM) Ver. I 28

3.1.1 Object Representation 28

3.1.2 Object Storage Management 29

3.1.3 Overview of the Files and Data Structures 29

3.2 CSUSSM Ver. IT o oo 33

3.2.1 Object-Oriented Virtual Memory Management 34

3.2.2 Physical Clustering Algorithm 36

v

4 DESIGN OF MULTIUSER CANDIDE

e
Lo DO —

Multiuser Architecture for CANDIDE Secondary Storage Manager . .
Client and Server Operations
Concurrency Control for Object-Oriented Databases

4.3.1 Concurrency Control in O2
4.3.2 Concurrency Control in ORION
4.3.3 Concurrency Control Protocol for CANDIDE
4.4 Preliminary Thoughts on the Design for CANDIDE Version IT
4.5 Deadlock Handling L o

5 IMPLEMENTATION OF MULTIUSER CANDIDE DBMS

= QO DN —

5.4.1 Server: .
Client .

Dt
e
U= W Do

Lantastic VS NetWare L.
Datagrams Vs Sessions oL
Extending CANDIDE to other platforms

Implementation of the Multiuser System

Lock Table
Effect Of The Lock Table Structure On The Protocols
Use of Buffering Techinque for Commit/Abort:

5.5 Lock Table Operations for Lock-Aquisition and Lock-Release

6 CONCLUSION . ..

6.1 Summary . ..

6.2 TFuture Work . .
APPENDICES

A THE CLIENT PROGRAM o ...

B THE SERVER PROGRAM

C THE BNF GRAMMAR OF CANDIDE

REFERENCES
BIOGRAPHICAL SKETCH

2.1
2.2
2.3

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
3.3
5.4
3.5

LIST OF FIGURES

Commands are redirected from a workstation to a server 16
Interaction of DOS, Application Software and NETx 19
Communication Process in Netware 21
Structure of Buckets in Hash Table 30
Data Structure of the Tables 32
Client/Server Configuration 39
CANDIDE Multiuser Architecture. 40
Hierarchy of Lock Granules in ORION. 43
Compatibility Matrix o 45
Example 1 00 oo 46
Class Lattice Example o .o 0. A7
Compatibility Matrix For Locks On Class Definitions 50
Hierarchy of Lock Granules in CANDIDE. 51
Lock Conversion Matrix for Class Operation Locks 55
Lock Conversion Matrix for Instance Operation Locks 56
Conventional Lock Table Structure 68
Lock Table Structure oo 69
Node Structure in Lock Table 70
Class and Instance Lock Table 72
Lock Table Structure after T1 and T2 Acquired Locks 81

vi

Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

MAKING CANDIDE: A MULTIUSER DBMS IN A LAN ENVIRONMENT
By
Hema Kannan
December 1994
Chairman: Dr. Sharma Chakravarthy
Cochairman: Dr. Howard W. Beck
Major Department: Computer and Information Sciences

It is often necessary for more than one user to share stored data in a database.
With shared database comes the problem of concurrency control for preserving data
consistency; that is, ensuring that database operations from different users do not
interfere with each other. Database operations include both reading and updating
stored data. Update involves reading an object from the secondary storage, chang-
ing values in the object in main memory, and then writing the object back to the
secondary storage. Subsequent access is to the updated object.

Concurrency control has been studied extensively for traditional databases. But
research on concurrency control mechanisms for object-oriented databases is still at
its infancy.

CANDIDE is an experimental information retrieval system which stores a wide
variety of data, such as text, graphics, digitized images, sound, application pro-
grams, and computer simulation from different disciplines. Object-oriented database
concepts are used to organize these data. Currently, CANDIDE is a single-user sys-
tem. This thesis involves the design of multiuser CANDIDE DBMS, design of an

efficient concurrency control mechanism, and showing the feasibility of implementing
the system in a PC environment.

A client/server architecture is used for this multiuser DBMS. For concurrency
control, the hierarchical locking scheme is extended to suit the object-oriented data
model requirements. This method exploits the semantics of the data model and pro-
vides maximum concurrency control. This scheme is chosen to minimize the number
of locks that need to be acquired while accessing a set of objects.

NetBIOS software is recommended for communication between a client and its
server, as this is available for implementing the prototype and is compatible with

most of the existing LAN including TCP /IP.

CHAPTER 1
INTRODUCTION

Information Retrieval Systems organize a wide variety of data such as text, graph-
ics, digitized images, sound, motion video, application programs, expert systems, and
computer simulation from different disciplines. For organizing this information and
knowledge new data models, such as object-oriented data model and the closely re-
lated semantic data models, offer some advantages over the more widely established
relational data model. These include the ability to describe a diversity of different
data types, ability to integrate diverse information, and the potential for more pow-
erful searching based on concept recognition and other advanced operations such as

machine learning. Some of the salient features of object-oriented databases are

e They support unique identification of objects by system-assigned object iden-
tifiers, where an object can represent anything from a simple number to a

complex entity.

e Support abstract data types and allow complex objects to be defined in terms
of class hierarchies, which captures the IS-A relationship between a class and

its subclass (equivalently, a class and its superclass)

e Support inheritance of structural and behavioral properties among object classes
in these hierarchies. All subclasses of a class inherit all properties defined for

the class and can have additional properties local to them.

The FAIRS (Florida Agricultural Information Retrieval System) project involves

developing an experimental information retrieval system called CANDIDE, based on

1

semantic and object-oriented data modeling concepts. The Extended BNF [Appendix
C] of CANDIDE’s data definition and manipulation language explicitly supports the
abstractions of aggregation, generalization, identification, and classification [Zdo90b].

It differs form its object-oriented counterparts in that
e methods are not part of the objects
e there are no composite objects and

e manipulation of objects are done using classification and subsumption functions

[Beck89).

There are two main functions in CANDIDE: i) subsumption and ii) classification
[Beck89]. Subsumption relationships determine if one object is a special case of
another. Classification is a search technique which correctly places new objects into
an existing taxonomy by repeatedly applying the subsumption function. The correct
location of the object is immediately below the most specific classes which subsume
the new class and immediately above the most general classes subsumed by this
new class. Classification involves a combination of depth-first/breadth-first search of
the class lattice, beginning at known superclasses of the object to be classified and
applying the subsumption function, continuing as long as it succeeds.

Classification as a query processing language: Querying by classification is
the process of specifying a query object in the same notation as data objects, and
then searching for objects which are structurally related to this query object. Query
processing is based on deductive inferencing about object structures rather than a
procedural specification of operations.

CANDIDE Single User Secondary Storage Manager: This storage man-
ager stores CANDIDE objects and is implemented in C++. The capabilities of C++

such as inheritance are exploited to represent the objects and operations performed

on them. CANDIDE uses two representations: relocatable objects [Bec93], designed
for rapid relocation between various storage devices (especially between disk and
main-memory) and instantiated objects [Bec93], which are instances of C++ classes
which provide programmers with convenient access to objects in memory. The object
storage manager is required to optimize two frequently performed operations. One,
sequential access, is retrieving all the objects within a particular class. The other,
taxonomic subsumption, is determining whether class A is above class B in the tax-
onomy. Other operations performed are single-object retrieval and class-induction
[Bec94].

CANDIDE secondary storage manager is based on a physical clustering algorithm
which attempts to locate objects which are logically clustered as part of the same class
structure near the same physical location on disk. The secondary storage manager
is based on the concept of virtual memory management used in operating system.
Objects are cached into main memory, and when a request is made for an object which
is not in main memory, an object fault occurs and the disk is accessed to retrieve that
object.

The object file contains the data objects. These objects are identified by a unique
number called the OID. The object file consists of a set of fixed-sized buckets identified
by a bucket number and containing a number of relocatable objects. According to
the physical clustering algorithm used, all the objects in a bucket are members of the
same class. CANDIDE supports multiple inheritance, that is, an object may belong
to more than one class. Multiple identical copies of an object are stored for each class
it belongs to. This is done to speed up sequential access, but it slows the updating

process to a great extent.

There are two versions of CANDIDE single user system. Version I is a simple
version which does not support physical clustering, multiple copies and buffer man-
agement, whereas Version II supports all these optimization techniques.

The current storage manager does not have miltiuser capabilities that prevents
two users from moditying the database concurrently. The aim of this thesis is to
design a multiuser CANDIDE. To achieve this, a concurrency control mechanism
is needed. To meet FAIRS user requirements, the multiuser system needs to be
implemented in the PC environment.

Concurrency control has been studied extensively for traditional database appli-
cations [Bar91]. DBMSs implement concurrency control mechanisms for supporting
the concepts of transaction and serializability [Gra93a]. A transaction is an atomic
unit that encloses database operations that logically belong together. Users interact
with a DBMS by executing transactions. Serializability is a correctness criteria that
guarantees non interference among concurrent transactions. A schedule of concurrent
transactions is said to be serializable if it is equivalent to a serial schedule; that is,
one in which each transaction ends before the next one begins.

Most of the Object-Oriented systems use some form of locking to provide con-
currency control. 02’s [Ban91] object level locking is handled by Wisconsin Storage
Manager, which uses two-phase locking algorithm on pages and files. Open OODB
depends on Exodus for concurrency control, which is based on granularity hierar-
chical locking on pages and objects. ObServer [Zdo90a] uses locks too, but the non
serialiazable behavior is controlled through notify locks. A notify lock held by a
session can make it be aware of other sessions accessing the locked data. All these
locking schemes are based on read-write semantics. Here the semantic information
of the schema is not considered. An optimistic concurrency control scheme is used in

Gemstone [Mai85].

Object-Oriented databases present an opportunity to provide better concurrency
control based on the semantics of an object. Here the database system knows more
about the operations that are being performed. They are not simply reads or writes.
The amount of information used by the storage manager also plays an important role
in the implementation of concurrency control mechanisms. For example, ObServer
[Zdo90a] and Exodus store very little semantics in the storage manager. The ad-
vantages of this approach include simplicity, the ability to support multiple external
models and the semantic functions are handled by an interpreter at a higher level. On
the other hand, systems, such as Gemstone [Mai85] store additional semantics in the
storage manager. This is used when accessing a class and its subclasses. Thus storage
management for object-oriented database systems (OODBS) is in its infancy. There
is still an enormous design space to explore in terms of clustering, object assembly
in main memory, replication and distribution.

ORION [Gar88] and O2 [Car90] have built concurrency control mechanisms based
on the semantics of the data model. Both the systems adapt the locking technique
to provide concurrency control. ORION extends the granularity hierarchical locking
to suit object-oriented system. This minimizes the number of locks requested by a
transaction by implicit locking. O2 exploits the parallelism provided by methods of
objects. Compatibility of methods are used to lock objects.

The concurrency control mechanism proposed in this thesis for CANDIDE is based
on the approach taken in ORION. This approach is modified and extended to exploit
the semantics of the CANDIDE data model and provide maximum concurrency. The
hierarchical and implicit locking proposed in this thesis minimizes the number of
locks used while accessing a set of objects. This method is discussed in Chapter 4

in detail.

The biggest challenge was to demonstrate the feasibility of implementing this
system in a PC environment. There are two LAN architectures i) peer-to-peer and
ii) client/server. In the peer-to-peer architecture, different users access the server
through a logical drive. Physical locking is provided by the SHARE [Art94] com-
mand in DOS. There is no concurrency control mechanism provided by the server to
maintain the consistency of the database. This architecture is useful while transfer-
ring file and for read only operation, for CD-ROM like devices.

In the client/server architecture, the client requests the necessary data and the
server after checking the necessary constraints, sends the requested data. Thus by
controlling the flow of data, concurrency control can be provided at the server.

LANtastic [Mon91] being a peer-to-peer LAN could not be used for providing the
concurrency control mechanisms required in CANDIDE. However the communication
software provided by LANtastic is used for transferring data between two PCs. A
client/server DBMS is built with NetBIOS [Nan90, Sch85, Sco88] as the communica-
tion software. The server maintains all the low-level operations like locking, buffering,
and so forth. Thus when the server receives a request from a client it checks the lock
table for compatibility, and if compatible, services the request. Otherwise it queues
the request. The reason for choosing NetBIOS is that it is compatible with most of
the existing LAN protocols and a prototype would be built on LLANtastic.

This thesis involves the complete design of multiuser CANDIDE DBMS and con-
ceptual implementation for the Version I (which does not involve buckets and physical
clustering). Also it shows the feasibility of implementing this system in a PC envi-
ronment.

This thesis is structured as follows: Chapter 2 surveys literature useful for mul-
tiuser DBMS and its implementation in a PC Environment. Chapter 3 discusses the

current CANDIDE single user secondary storage manager, both Version I and Version

II. Chapter 4 gives the design for multiuser CANDIDE for Version I and Version II.
Chapter 5 discusses the implementation of Version I of CANDIDE multiuser system.

Finally, the summary and future work are discussed under conclusion.

CHAPTER 2
LITERATURE SURVEY

It is often required that more than one user be allowed to access the data in
a database. With shared database comes the problem of concurrency control, that
requires ensuring that database operations from different users do not interfere with
each other. Database operations include both reading and updating stored data.
Update involves reading an object from the secondary storage, changing values in the
object in main memory, and then writing the object back to the secondary storege.
Subsequent access is to the updated object.

Interference can occur, for example, if a second user reads the object for update
after the first user has read it, but before the first user has written it back to secondary
storage after completing his work. Whichever of the users writes first, that update
will be lost (it will be overwritten by the other update).

This chapter discusses the requirements and issues involved in developing a multi-
user database. The first section describes the client/server architecture and its suit-
ability for multiuser DBMS. Then the issue of communication protocols’ suitable
for multiuser system in a PC LAN environment is discussed. Finally, the various

concurrency control mechanisms are described.

2.1 Client/Server Architecture

Client-Server computing is the latest trend in the development of multiuser database
systems and the local area network (LAN) technology. In the client-server computing
paradigm, one or more clients and one or more servers, along with the underlying

operating system and interprocess communication systems, form a composite system

allowing distributed computation, analysis, and presentation. Typically, the client
is a process which interacts with the user and a server is a process, or a set of pro-
cesses all of which must exist on one machine which provides a service to one or
more clients. Thus the processing is split between the client and server, which is the
primary advantage of client/server architecture.

The following are the basic database capabilities needed today.

1. data staging: The volume of operational databases keeps growing, and sev-
eral applications have already passed well beyond the effective range of query
optimization and processing. Therefore, data caching mechanisms are neces-
sary for extracting chunks from these massive databases and using them in a

user-tailored operational region.

2. database interoperability: Multiple already deployed databases must be made
accessible through a cooperative environment for exchanging data, bindings,
and control on a continuous basis. This will allow invaluable data correlation

and smooth update propagation.

3. multi-user access: More than one user should be able to simultaneously access
the database. The consistency of data and serializability of transactions should

still be maintained.

All the above requirements can be met by the client-server architecture. Thus,
the client /server architecture is being adapted for multiuser databases.

General Client Characteristics

e It presents the User Interface [UI]. This interface is the sole means of garnering
user queries for data retrieval, analysis, as well as presentation. Different Ul’s

can exist on each client.

10

e [t converts one or more queries or commands in a pre-defined language for

presentation to the server.

o [t communicates with the server via a given interprocess communication method-

ology.

o It performs analysis on the query or command results from the server before

presenting it to the user.
General Server Characteristics
e It provides service to the client.

e A server merely responds to the queries or commands from the clients. (Does

not initiate a conversation with any client.)

o Ideally a server should hide the entire composite client-server system from the

client and the user. (Hardware, platform, and network transparency.)

Roussopoulos and Delis [Rou91] present three client-server DBMS architectures,
viz, Standard Client/Server Architecture(CS), the RAD-Unify Type of DBMS Ar-
chitecture (RU), and Enhanced Workstation-Server Architecture(EWS). In the CS
architecture, the applications are run on the clients and the database operations are
performed in the server. Though, this architecture distributes the applications, it
still retains most of the main resource bottlenecks of a centralized DBMS. In the RU
architecture, the server performs the low-level operations such as locking and page
read /writes and the client performs query processing. Though, this architecture splits
the processing between the client and the server, it is still dependent on the server’s
[/O bandwidth and the load on the data manager. In the third architecture, EWS,
each client maintains a full-fledged DBMS by downloading and caching query results.

This increases the autonomy of the workstations and reduces the network traffic. The

11

performance characteristics of these three architectures are discussed in [Rou91] in

detail.

2.1.1 Advantages of Client/Server Databases

The primary advantages of a Client/Server system arise from the splitting of
processing between the client system and the database server. Since most of the
database processing is done at the back-end, the speed of the server is not tied to the
speed of the workstation.

This division of work also reduces the load on the network. Instead of sending the
entire database file over the network, only the required data is sent, thus reducing
the network traffic.

Another benefit of separating the client from the server is application indepen-
dence; users aren’t limited to one type of system. Users can access the database from
different front-ends and from different systems.

Another major advantage of a client/server database is the preservation of data
integrity. The DBMS provides transaction processing, which tracks changes to the
database and helps correct errors in the database in case the server crashes. Transac-
tion processing system keeps a running log of all modifications made to the database
over a period of time. These capabilities make Client/Server systems ideal for large

multiuser databases, which allow simultaneous modifications to the data. Locking

and deadlock avoidance are handled by the DBMS.

2.1.2 Disadvantages of Client/Server Databases

The major disadvantage of Client/Server systems is the increased cost of admin-
istrative and support personnel who maintain the database server. There is also
increase in hardware costs as compared to single-user systems.

The complexity of the Client/Server system is high. Having multiple front-ends

to the database increases the amount of programming support needed, because more

12

and varied program code must be developed and maintained. When there is any
change made to the structure of the database, it becomes a longer and more complex

process to make necessary changes to different front-end applications.

2.2 Developing a Client-Server DBMS for PC Platforms

The implementation of client-server systems depend on the platforms on which the
front and back ends run on, and the degree to which the processing is split between
the two. PCs are the most widely used platform today, and lot of research is being
done on making PCs suitable for client-server architecture . This section deals with
the requirements and issues for PC environment and later getting the DBMS onto

the Internet.

2.2.1 Requirements and Issues

Only in recent years have IBM-compatible PCs become an acceptable platform
for Client/Server databases. The advent of high-powered 32-bit 80486 and pentium
systems, hard disks in gigabyte range, and stable network operating systems make
these PCs able alternatives to the RISC workstations and minicomputers that have
been the traditional platforms for resource-intensive DBMSs. This section discusses
the hardware and software requirements for developing a PC based Client/Server

database.
Hardware

A PC based on a 80386 CPU can perform adequately as a database server, but for
sheer power and future growth potential, the best system to start with is one based
on a 66Mhz 80486. Newer PCs come with the CPU on a replaceable card, which

makes it easier to upgrade the power of the system.

13

A RAM (random access memory) of 12Mb gives adequate performance, but de-
pending on the number of simultaneous users and the DBMS, more RAM (upto
32MB) will be required.

The most critical component for database performance is the hard disk subsystem,
since the bulk of the DBMS’s activities involve reading data from or writing data to
it. Benchmark tests have shown that the best choice for speed and expandibility is
a hard disk based on the small computer system interface (SCSI) standard. A single
SCSI board can support up to seven attached drivers, each as large as 3G, giving
tremendous room for expansion.

Finally, the type of internal bus (data connection system for add-on cards) on
the server should be decided. A 32-bit bus will speed up both disk processing and
network access when 32-bit interface cards are used, eliminating the most serious
bottlenecks a server faces.

Multiprocessor (MPU) systems, an emerging technology in the PC world, may
have a significant impact on the performance and capabilities of Client /Server databases
in the future. However, at this time few MPU systems are available, and little or no

support for them exists among the various C/S products.

Operating System Software

0S/2 is a preemptive multitasking, multithreaded OS designed expressly for PCs.
It provides superior capabilities over DOS for the resource-intensive database server
software; its multitasking lets multiple services run on the same system, including
both LAN software and the DBMS. It has native support for up to 512Mb of virtual
memory (VM), but this OS is not widely used.

Novell’s Net Ware network operating system [Chr90] provides nonpreemptive mul-
titasking capabilities. It has the ability to run applications on the File Server as
NetWare Loadable Modules (NLM).

14

Some versions of UNIX run on 80486 systems, and can be used as the OS for PC-
based Client/Server databases. However, running UNIX on PCs is not that common,
and it is generally better to go with a hardware platform specifically designed for it

if you must run C/S software that only comes in UNIX versions.

Communications

A Client/Server Database System depends on splitting the processing between an
intelligent front-end system and the database server. Networks allow communication
between these two parts of the overall system.

The client systems communicate with the server through a network that consists
of a combination of hardware and software. The hardware which connects the PC to
the network’s wiring consists of a network interface card (NIC) that is added to the
PC workstation, and server. A network of PCs, workstations and servers is referred
to as a local area network (LAN) if all the systems fall within a small area. When a
LAN extends across a wide area of distance, then entire network is referred as Wide
Area Network (WAN). Three LAN topologies (cabling schemes) are in common use
today: Ethernet, ARCnet, and Token Ring.

LAN uses network protocol for communication between two machines. Many
proprietary network protocols exist today, but only a few are relevant to designing a
Client/Server Database System.

NetWare LANs use the Novell IPX/SPX protocol [Chr90]to provide communi-
cations between workstation(s) and server(s). Microsoft’s LAN Manager and IBM’s
LAN Server use variations of the NetBIOS protocol [Sch85, Sco88], and DEC-based
LANs use the DECNet protocol. IBM mainframes primarily use System Network
Architecture (SNA) to communicate with terminals and LAN Gateways, and IBM’s
LAN also support the Data Link Control (DLC) protocol for direct communication

between the LAN PCs and the mainframe front-end processors.

15

The most common cross-platform protocol is the Transmission Control Protot-
col/Internet Protocol (TCP/IP). Originally developed as the UNIX networking pro-
tocol. TCP/IP is now available for almost every platform and operating system.

Two Network Operating Systems (NOS) and their protocols are discussed below.
LANtastic [Mon91] is discussed because, it is used at ourdevelopment site, and the
prototype of CANDIDE multi-user system will implemented on this LAN. Novell’s
Netware [Chr90] is discussed because, it is the most widely used LAN and this multi-
user system might have to be ported to Novell’s NetWare. The discussion includes

the protocols and their compatibility with other LANS.

2.3 L ANtastic

2.3.1 Network Operating System

LANtastic NOS [Mon91] is a peer-to-peer LAN. LANtastic is designed as a bus
type network. Standard CSMA/CD scheme is used for sending and receiving data
and 1s implemented by LANtastic’s NetBIOS. All programs of LANtastic fall into
the following five categories: low-level drivers, NetBIOS, the redirector program, the
server program, and network utilities.

The purpose of the low-level driver is to establish an interface between the software
and the adapter installed in the computer. NetBIOS [Sco88] performs all basic net-
work functions. The low-level driver provides the low-level communications function,
and the NetBIOS provides the high level functions. The redirector is the software
that intercepts commands and printer output that normally would be handled by
DOS and routes them to the appropriate location on the network. Figure 2.1 shows
how commands are redirected from a workstation to a server. The server program
allows the computer to share its disk drives and printers with other computers and

to manage other services like print spooling. LANtastic comes with several network

16

utilities that provide optional functions like disk caching and adapter diagnostics,

used for special situations and to improve the network performance.

-

WORKSTATION

"DIR "

REDIRECTOR

~

-

SERVER

DOS

DISK

A

J

Figure 2.1. Commands are redirected from a workstation to a server

A

SERVER

DOS

"DIR F:"

DISK

J

Features of NetBIOS are discussed because the prototype CANDIDE multi-user

system uses this protocol for client server communication.

2.3.2 NetBIOS

NetBIOS is the software that allows the network operating system to work with

the network adapter boards, and Artisoft’s LANtastic is based on the NetBIOS pro-

tocol. It also allows network utilities and networked application programs to function

with the network hardware.

NetBIOS performs four main functions: creating and managing sessions, creating

and transmitting datagrams, keeping track of network names, and providing point-

to-point communications.

17

Session

Before two network nodes can communicate in both directions, NetBIOS must
establish a session between them. This is the dialogue between the two nodes (at the
session layer of the OSI model) that establishes some ground rules for the communi-
cation about to take place. Among other things, it determines if the two computers

will exchange data simultaneously or if they will take turns sending data.

Datagrams

In addition to the data packets that are sent between nodes on the network,
NetBIOS is able to assemble and send datagrams. A datagram is the simplest type
of network communication. It is a small block of data that can be transmitted to
any single username, any group of usernames, or to all users (called a broadcast
datagram). Unlike a session, a datagram is a one-way communication and is less

reliable because there is no verification that the data was received.

Network Names

NetBIOS creates and manages network names so that a node does not have to
be created with a specific user. Network names are created and deleted as needed,
allowing a node to be used by different people at different times. The names are also

used for sending messages and datagrams.

Communication

NetBIOS also provides for point-to-point communication on the network. All of
the nodes on a network are linked through a wvirtual circuit. This virtual circuit is
the way that drives and printers are shared on the network. In addition to these
four types of functions, NetBIOS is able to monitor the status of all adapters on the

network.

18

2.4 NetWare

NetWare is a client/server Network Operating System [Chr90] offered by Novell.
It provides the core functions needed to maintain the most basic network operations
like network file system, memory management and the scheduling of processing tasks.
Among the important functions performed by the client /server operating system are
coordinating the use of all resourses and services available from the server, ensuring

the reliability of data stored on the server and managing server security.

2.4.1 Network Operating System

The Network Operating System resides on the file server and controls all the
networking functions. DOS resides at the workstation and controls the workstation
devices. Since the Netware and DOS are two separate operating systems, a small
program called SHELL enables the workstation to talk to the file server. Anytime
the workstation makes a request, the shell directs it to Netware or the DOS depending
on the type of request. It also controls the security of the network. It must also be
able to locate the addresses on the network. It must also have a variety of network
management tools for the network administrator. Finally it must also provide support
for the peripherals such as printers, bridges, gateways and other network devices.

Whenever the workstation is booted up, the Netware Shell is loaded into a work-

station’s RAM as a RAM resident program. The shell includes the following files.
o NETX.COM
o [PX.COM
e SPX.COM

The IPX.COM file is the communication protocol which creates, maintains and
ends connection between network devices (workstations, file servers, etc). IPX ad-

dresses and routes outgoing data packets across a network. For returning data, IPX

19

reads the address and directs the data to the proper area in a workstation’s or server’s
operating system. [PX is closely linked with other programs and routines that help
in the data transmission process.

IPX can be adapted to different network boards by running WSGEN or DCON-
FIG, so IPX can route and accept data packets through physically different networks.
Once the IPX.COM is run, a workstation can communicate with network. Without
the IPX.COM in the workstation, there is no way workstation can communicate with
the file server.

SPX.COM is also a Novell NetWare’s communication protocol that ensures suc-
cessful delivery. SPX enhances IPX by supervising data sent across the network.
SPX tracks data transmissions consisting of separate packets. It also requests and
returns acknowledgments from a communication partner, ensuring successful data

delivery.

NETX

; ; ;

APPLICATION SOFTWARE

® ® ®

DOS

Figure 2.2. Interaction of DOS, Application Software and NETx

It an acknowledge request does not bring any response within a specified time,
SPX retransmits it. After a number of retransmissions are not acknowledged, SPX
assumes the connection has failed and warns the operator of the failure.

NETx.COM Netware shell program works with IPX, SPX, and a LAN driver
to convert a stand alone computer into a network station. It is loaded into the RAM

each time a workstation boots and begins network transmission. The NETx program

20

lies on top of workstation operating system between the application layer and DOS.
It monitors all the data transmission moving in and out of DOS or the application
layer.

If an application request, such as a call for files, needs to be handled by the file
server, NETx intercepts the request and begins protocol conversion and transmission
to the file server.

NETx intercepts requests by taking over software interrupts 21h (used to call
standard DOS functions), 24h (DOS critical error handler vector) and 17h (used to
send data to local printer ports). The shell intercepts and inspects all Int 21h DOS
requests. Then the shell either passes the request on to the regular DOS interrupt
routine or handles the request itself. If the shell keeps the request, it converts it into
the Netware Core Protocol and hands it to IPX for transmission to the file server. For
data returning from the file server, the conversion of requests is handled in reverse
order. Whether the request is handled by local DOS of the file server is transparent
to the application and to the user.

NCP Service protocol The process of requesting service from a file server
begins in the workstations RAM where the NETx.COM forms requests according to
the definitions of the file server’s Netware Core Protocol. The shell then hands the
requests to the IPX. IPX then transmits the requests to the file server after attaching
a header. Upon receiving the request, the file server removes the IPX header and
reads the request. NCP service protocol exists for every service a workstation might
request from a file server. These are the procedures that a file server’s operating
system follows to accept and respond to workstations requests. The common requests

include are:

o creating and destroying a service connection.

e manipulating the directories and files.

21

]
| i
! 1
! |
! |
' |
s SPX e
]
i !
' |
| $!
|
]
! !
' | Work Station
! N -
| | |
]
]
]
e p E < >
' |
' | Work Station
! X T :
I - <—ﬂ|
File Server ' |
! X |
1 :<—>
1
]
1
]
| X Work Station
e ﬁ
]
]
1
1
]
]

Figure 2.3. Communication Process in Netware

e opening semaphores.
e altering the bindery (drive mappings and security)
e printing.

2.4.2 Transaction Tracking Svstem

NetWare offers System Fault Tolerance (SFT) tools for protecting the system

against faults. Netware provides the following protective measures for your data:
e file allocation table [FAT] corruption protection
o hot fix
o disk mirroring

o disk duplexing

22

e UPS monitoring system

e transaction tracking system (TTS)

We will discuss only T'TS in detail, because this is what we are trying to incorpo-
rate in CANDIDE. TTS prevents database corruption if the system fails while data
is being written to database files. T'TS is designed to work with sequential databases.

TTS views the entire sequence of database changes as a single transaction that
must be fully completed or fully backed out, (as if no changes made at all). Only after
all files have been correctly updated will the transaction be completed and released.
This is the atomicity property, one of the ACID properties of a transaction.

It the system fails during a transaction, TTS performs an automatic roll back.
That is, TTS will undo all database changes made during the transaction and returns
the database to its original state. The database files and underlying system informa-
tion are left as they were before the transaction began. The lost transaction will have
to be re-entered, but all files and system information will be intact and consistent.

TTS accomplishes all of this through physical and logical record locks and the
TTS attribute. TTS attribute is a flag which tell the system to track the transaction.

TTS ensures that each transaction will be tracked to ensure that

e cither all of the write request will be written to the datafile on a drive, or

e none of the data will be written to the datafile

Without TTS it would be almost impossible to determine the status of a datafile
after an interruption such as a power failure, a hung workstation, a file server failure,

and so on.

2.5 Concurrency Control Mechanisms

Concurrency control has been studied extensively for traditional database appli-

cations. Database management systems implement concurrency control mechanisms

23

based on the concepts of transaction and serializability. A transaction is an atomic
unit that encloses database operations that logically belong together. Users’ inter-
act with a DBMS by executing transactions. In traditional DBMS trancations serve
three distinct purposes: (1) They are logical units that group together operations
comprising a complete task; (2) they are atomicity units whose execution preserves
the consistency of the database; and (3) they are recovery units that ensure that
either all the steps enclosed within them are executed or none are. Thus, by defini-
tion, if the database is in a consistent state before a transaction starts executing, it
will be in a consistent state when the transaction terminates. In a multiuser system,
users execute their transactions concurrently. The DBMS must provide a concur-
rency control mechanism to guarantee that consistency of data is maintained in spite
of concurrent accesses by different users.

Serializability is a correctness criteria that guarantees noninterference among con-
current transactions. A schedule of concurrent transactions is said to be serializable
if it is equivalent to a serial schedule, that is, one in which each transaction ends
before the next one begins.

There are several techniques for serializing transaction schedules, and they are
locking, time stamp ordering and optimistic approach. All these are discussed briefly

below.

2.5.1 Locking

One way to ensure serializability is to require that access to a data item by a
transaction is allowed only if it is currently holding a lock on that item. There
are two modes in which a data item may be locked: Shared mode (read lock) and

Exclusive mode (read/write lock).

24

Two-Phase Locking

The two-phase locking mechanism (2PL) [Esw76] is commonly used concurrency
control mechanism in conventional DBMSs. This protocol requires that each trans-

action issue lock and unlock requests in two phases:
o Growing Phase: A transaction may obtain locks but may not release any lock

e Shrinking Phase: A transaction may release locks but may not obtain any new

locks.

It a transaction tries during its growing phase to acquire a lock that has al-
ready been acquired by another transaction, it is forced to wait, which could lead to
deadlocks. This protocol is adopted when working on individual items. There are
situations where, release of locks earlier than the shrinking phase will not affect seri-
alizability. In such cases, 2PL does not provide maximum concurrency. In order for
this protocol to do better, we need additional information about the order in which

the data items are accessed.
Tree Protocol

In the absence of information about how and when the data items are accessed,
however, 2PL is both necessary and sufficient to ensure serializability by locking. In
some applications, it is often the case that the DBMS has prior knowledge about
the order of access of data items. The DBMS can use this information to ensure
serializability by using locking portocols that are not 2PL. One such protocol is the
tree protocol [Hen91], which uses the information on the order of access to form con-
flict serializable schedules. The advantage here is unlocking may occur earlier, which
might lead to less waiting time on locks and increase concurrency. Also, deadlocks
can be avoided. The disadvantage of this method is that a transaction may end up

locking items which it will not use.

25

Multiple Granularity Locking

The concurrency control mechanisms discussed so far operate on individual data
items to synchronize transactions. There are circumstances, however, where it would
be advantageous to group several data items (e.g., all instances of a class) and treat
them as one individual synchronization unit.

Multiple granularity concurrency control protocol introduced by Gray et al. in
[Gra88] aims at minimizing the number of locks used while accessing a set of objects
in a database. This model [Gra88] organizes data items in a tree where small items
are nested within larger ones and each nonleaf item represents the data associated
with its decendents. Orion [Gar88] adapted this method for concurrency control
mechanism for object oriented databases. The root of the tree represents the whole
database. Transactions can lock nodes explicitily which in turn locks descendants
implicitly. Apart from Shared (S) and exclusive (X) mode locks, there exists an
intention lock mode. Intention mode lock on a node implies that explicit locking is
being done at a lower level of the tree. A nonleaf node is locked in intention-shared
(IS) mode to specify that descendant nodes will be explicitly locked in Shared (S)
mode. A shared and intention-exclusive (SIX) lock on a nonleaf node implies that
the whole subtree rooted at the node is being locked in shared mode and that explicit

locking will be done at a lower level with exclusive mode locks.

2.5.2 Timestamp Ordering

One of the problems of locking mechanisms is the potential for deadlock. This
problem can be solved by assigning each transaction a unique number called a times-
tamp, chosen from a monotonically increasing sequence (usually a function of the time
of the day). Using timestamps, a concurrency control mechanism can totally order
requests from transactions according to the transactions’ timestamp. This method

avoids deadlock situations.

26

2.5.3 Optimistic Nonlocking Mechanism

The locking approach has the following disadvantages [Hae82, Kun81]:

e Lock maintanence and deadlock detection represent substantial overhead
o There are no locking mechanisms that provide high concurrency in all cases

o Not permitting locks to be released except at the end of transaction, which
although not required is always done in practice to avoid cascading aborts,

decreases concurrency.

o Most of the time it is not necessary to use locking to guarantee consistency
since most transactions do not overlap; locking may be necessary only in worst

cases.

To avoid these disadvantages, optimistic concurrency control mechanism was in-
troduced. Here, each transaction goes through three phases: a read phase, a valida-
tion phase, and possibily a write phase. During the read phase all reads take place on
local copies. During the validation phase, the local changes are made global if these
changes do not affect the serializability with respect to all committed transactions.
Else the transaction is either rolled back or aborted. This a serious disadvantage,
because work done by a transaction will go waste. Thus this method would work
well when there are few read-write conflicts. And only during the write phase the
changes become accessible by other transactions.

Locking schemes guarantee one consistent image of the database at every commit
point. Also they provide the facility of selecting an appropriate level of control.
Optimistic concurrency control schemes create several private data copies during the
transactions execution for the sake of enhanced concurrency, but face difficulties at

the COMMIT stage, when these copies do not match. This approach is chosen in

27

applications where conflicts are unlikely. Since locking also behaves quite well in
such an environment (no wait or deadlock conflicts) there seems to be little reason

to introduce a specialized control mechanism. Chapter 4 discusses the concurrency

control mechanism for CANDIDE in detail.

CHAPTER 3
CANDIDE SINGLE USER SECONDARY STORAGE MANAGER

This chapter describes the working of and major data structures used in the imple-
mentation of the Version I of the CANDIDE single user secondary storage manager.
The reasons for transition from Version I to the improved Version I, is explained

next. Finally the concepts and ideas used in Version Il are discussed.

3.1 CANDIDE Single User Secondary Storage manager (CSUSSM) Ver. 1

3.1.1 Object Representation

CANDIDE uses two different representations for its objects:

Relocatable Objects: Relocatable objects are designed to provide maximum
compaction and speed. They can be rapidly swapped between storage devices (espe-
cially between main memory and disk). These objects can be located physically at
any memory address. Relocatable objects are variable length blocks of characters.
Within the object there are pointers to information stored in that object, and these
pointers are all relative offsets from the first character in the block. Since these are
compacted binary data structures, they are difficult to manipulate.

Instantiated Objects: This representation uses C++ classes and structures
to represent all the components of the object, and is much easier for application
programs to create and modify these objects. Relocatable objects can be transformed
to instantiated objects by picking apart the object internals and instantiating each
component into a C++ instance. These objects take up a lot of space, they are not

relocatable, and the process of instantiating them is very slow.

28

29

3.1.2 Object Storage Management

The object storage manager is designed to retrieve, save, modify and remove
objects from the secondary storage. The secondary storage manager mainly uses
relocatable objects, since it is not concerned with object internals. Instantiated

objects are not handled by the secondary storage manager.

3.1.3 Overview of the Files and Data Structures

Each object is identified by a unique number called the OID. The OID of an object
exists in two forms, the string OID and integer OID. Most database functions utilize
the integer OID, but the string OID is maintained for ease of readability. Functions
are available for convertion between string and integer oids.

The basic operations are retrieving and storing an object, given the object’s OID.
The major data structures and files include the classes Database, Object_Buffer,
String_Buffer, EMS_Buffer and files Strhash.dat, OID.dat, OBJ.dat and fileindx.dat.
The Database class provides the general programming interface to the storage man-
ager. The interface functions are described at the end of this section.

There are three tables which hold all the necessary details for locating objects.
The files which hold these tables are

o String Buffer
e Object Buffer
o Fileindex

e IEMS Buffer

String Buffer is a buffer which is divided into buckets of size 512 bytes each.
FEach bucket is identified by a bucket number. The bucket contains the type (class or

instance), interger OID, and the string OID.of each object hashing into that bucket.

30

T OID S
ype --
Bucket 1 oIb
____________ X
Bucket 2
X
%) 1
) |
S |
2 1
m I
B |
= |
ol |
x 1
I
I
I
I
I
I
I
|
X
Bucket 150
(2]
o]
¥4
[}
=}
m
c
i=l
B8
>
=
IS
Q
o ,_

Figure 3.1. Structure of Buckets in Hash Table

The string OID hashes to its bucket number in which its details are stored. When
more entries are to be stored in the hash table bucket than that would fit, a chain of
buckets are used. The arrangement of the buckets in the string buffer is as follows.
There is a fixed number (max-bucket-number) into which the string OIDs can hash
into. While loading the buffer into the memory, extra buckets are created to be used
as chain buckets. The first bucket of any chain must be one of the max-bucket-number
buckets and the rest of the buckets of a chain are buckets with numbers greater than
max-bucket-number. The bucket number of next bucket in a chain is maintained in
the last byte of each bucket. The whole arrangement is is depicted in the Figure 3.1.

Object Buffer manipilates the OID table. The OID table is used to locate

objects in the object file and in the string hash buffer. This table is keyed on integer

31

oid. The entry corresponding to each OID contains a file ID of the OBJ.dat in which
the object is located, the offset into the object file and the exact location of the string
OID in the String buffer hash table. The purpose of maintaining the location of the
OID in the hash table is to speed up the lookup process for that string OID. This
would avoid sequential search in the bucket in the hash table. The structure of the
OID table is shown in Figure 3.2.

Fileindex translates file IDs to physical filenames. The database on disk is
contained in one or more object files (OBJ.dat). A particular object can exist in one
and only one object file, which is identified by the file ID. Multiple object files are
supported to allow for multiple projects. This enables a particular project to store
all of its objects in one file. Object_Buffer class performs all of the operations on
objects, such as retrieving, storing and deleting them from the database.

EMS buffer: EMS (Expanded Memory Service) is used as a buffer to cache
objects from disk. OID table and hash table are also maintained in the EMS buffer.
The class EMS_Buffer performs all operations on the EMS buffer. When an object
is requested, the EMS buffer is searched first, if the object is not found in the buffer,
then the disk is accessed. Each time the disk is accessed, BUFFER-SIZE (currently
8K) bytes are brought into EMS buffer. Thus, the number of I/O done is reduced.

The Database interface functions are explained below.

unsigned long oid(char *stroid): This function takes a string OID and returns
the corresponding integer OID. The bucket number of the string oid is identified
using the hash_value(str) function. Once the bucket number is obtained, the bucket
is searched sequentially. All buckets in this chain are also searched. If the string
entry in the bucket matches the given string, then the corresponding integer OID is

returned.

32

OID TABLE

OP | FilelD | Obj_Offset Bucket# 1 Bucket Off

Figure 3.2. Data Structure of the Tables

char *stroid (unsigned long oid): This function is the inverse of the above
operation. It takes in the integer OID and returns the pointer to the string version
of integer OID. This function gets the location (offset) of the OID in the hash table
from the OID_table. Using this offset, the bucket number and the exact location of
the OID in the bucket is obtained. The corresponding string oid is returned.

unsigned long newoid(char *stroid): This function creates a new oid for the
string pointed by stroid and stores the string oid, integer oid and the type of the
object in the string hash table and makes an entry in the OID_table. The location
of the new oid in the string hash table is stored in the OID_table. The function
sting_buffer— >new_oid(stroid, type, oid) returns this location. This function identi-
fies the bucket number of the OID and stores the type, oid and stroid. If the bucket
is full, it is extended using the bucket chain concept.

char *retrieve(unsigned long *p): When an object of OID is requested, the
location of the object in the object file is obtained from the OID_table. The EMS
buffer is searched first, if the object is not found then the object file is accessed to

retrieve the object.

33

int exists(unsigned long *p): This function takes in an integer OID and checks
to see if that object exists in the database. If there exists a pointer corresponding to
the OID in the OID _table the object exists and this function returns 1, else it returns
0.

void store(char *obj): This function stores the object “obj” in the secondary
storage. From the obj structure, the OID and the length of the object are obtained.
This object is stored at the end of the object file and the corresponding entry in the
OID table is changed to the new location. Also, update of this object in the EMS
buffer is done, if it is part of the buffer.

void delete(unsigned long oid): This function removes the pointer for the
given oid from the OID_table and removes that object from the RAM. Note the
object is not removed from the object file. 1t is currently left as dead space and the

OID still exists.

3.2 CSUSSM Ver. 11

The most frequently performed operations are sequential access and taxonomic
subsumption. Version I of CSUSSM does not have techniques to speed up these
operations. The improved CSUSSM - Version II has incorporated the following to

optimize the above mentioned frequently performed operations.

e buckets — the object file consists of a set of fixed-sized buckets identified sequen-
tially by bucket number. Each bucket contains a number of relocatible objects.
The bucket becomes the unit of transfer instead of an relocatable object. So,
in a single [/O operation, a number of objects are brought into the memory,

thus reducing the number of 1/0O operations performed.

e memory cache — buckets are cached into main memory to speed up sequential

access (one of the frequently used operations). Thus, when a request is made

34

for an object, the storage manager first checks for the object in main memory,

and only when it is not found, it is accessed from the disk to retrieve it.

e multiple copies - an object may belong to more than one class. To speed up
sequential access, multiple identical copies of an object are stored. Though it

slows down update process, it speeds up sequential access.

e physical clustering - this is the most important optimization technique used
for speedup in the system. It attempts to locate objects which are logically

clustered in the same class near the same physical location on the disk.

This improved version of CSUSSM is designed to optimize two frequently per-
formed operations. Sequential access, for retrieving all the objects within a particu-
lar class. Tazonomic subsumption, for determining whether object B is below object
A in the class taxonomy. Sequential access is used for classification during query
processing and taxonomic subsumption is used in determining object type. Other

operations include single-object retrieval used in browsing and object induction.

3.2.1 Object-Oriented Virtual Memory Management

The secondary storage manager is based on a physical clustering algorithm which
attempts to locate objects which are logically in the same class near the same physical
location on disk. The secondary storage manager is an object-oriented virtual mem-
ory manager (OOVMM). Objects are cached in main memory, and when a request is
made for an object that is not in main memory, an object-fault occurs and the disk
is accessed to retrieve that object.

Three levels of memory are identified; main memory, memory cache, and disk.
The main memory contains the application program and is the source and destina-

tion of objects generated or stored. Memory cache is main memory set aside for

35

buffering objects in random access memory (RAM). Under DOS, this is implemented
in expanded memory. The disk is the secondary storage manager.

The data on disk are contained in one or more object files. A file ID identifies
the object file which contains the desired object. A file index translates file ids to
physical file names. Each object file has a root which is the name of a database class.
All objects at or below that class in the taxonomy are stored in that object file.

The object file is composed of fixed-size buckets. Bucket numbers are used to
identify each bucket. A bucket is the unit of transfer between disk and main mem-
ory. A bucket can contain a number of relocatable objects and according to the
physical clustering algorithm, all these objects are members of the same class. When
the bucket containing the desired object is loaded into main memory, many of its
neighboring objects are also loaded, thus speeding sequential access. Here the prob-
ability that the next object required is already in the main memory is very high. A
bucket buffer is used to cache buckets into main memory. This bucket buffer consists
of recently used buckets. When this buffer is full and a new bucket is to be brought
into memory, LRU (Least Recently Used) policy is used to accommodate the new
bucket.

Another concept incorporated into the improved version of CSUSSM 1is the mul-
tiple identical copies. CANDIDE supports multiple inheritance, in which an object
can belong to more than one class. To speed up sequential access multiple identical
copies of an object are stored. One copy of the object is stored for each of its parent
classes. Though this speeds up sequential access it has the disadvantage of slowing
updating, since all copies of the object must be updated. This trade off is made to

speed up query processing and assuming that there will be only few updates.

36

3.2.2 Physical Clustering Algorithm

Database accesses in an OODBS include relation-like scans of sets or collection of
objects, and navigation-like access among related objects. Such inter object references
would lead to random disk 1/0O if the objects are in different buckets. Physical
clustering algorithm attempts to reduce the 1/O overhead by storing the related
objects in the same unit of storage, a bucket.

Physical clustering should also be based on the most frequently performed opera-
tions. In CANDIDE the most frequently performed operations are sequential access
and taxonomical subsumption [Beck89]. Thus according to the physical clustering
algorithm, objects of the same class are located near the same physical location on

disk. Physical clustering is done on two occasions.
1. when the database has not yet been physically clustered and
2. when updating an already physically clustered database

A resursive function pcluster(oid) is used. This function physically clusters the
subtree rooted at class oid. Intially pcluster is called with the root of the taxonomy.

There are two values involved in the clustering process:

1. 3 - maximum size that can fit in a bucket

2. « - minimum size required to create a bucket

37

The algorithm is given below
pcluster(oid)

{

Get size of subtree rooted at oid.
while(size > /)
{

Create a list containing the subtree rooted at each subclass of oid.

If the size of one of these subtrees is > /3, call pcluster(soid) where soid
is the subclass of oid which is the root of this subtree.

Else keep removing the smallest subtrees until the combined size of the
remaining subtrees is between a and 3. Then store the remaining
subtrees in a bucket.

}
If oid is the root of the taxonomy, then store the remainingsubtree rooted
at oid in a bucket and return.

Else return without storing (remaining subtree passes to next higher class).

It is desired that the stratergies for updating an existing database which has
already been physically clustered should be optimum. Reclustering may be needed
when an object is created, deleted or modified. In that case the following strtergies

are adapted

o Recluster a subtree containing the updated object plus all of its ancestors

o Recluster the taxonomy only in the immediate neighborhood of the updated

object

CHAPTER 4
DESIGN OF MULTIUSER CANDIDE

Chapter 2 discusses the general requirements, issues and concepts involved in
developing a multiuser database system. This chapter describes the design of CAN-
DIDE multiuser secondary storage for the Version 1. The concepts discussed in Chap-
ter 2 are used. First, the architecture of CANDIDE multiuser secondary storage man-
ager is described. Next transaction processing along with client and server operations
are described. Then the design of concurrency control mechanism for CANDIDE is

described in detail. Finally a multiuser design for Version II is discussed.

4.1 Multiuser Architecture for CANDIDE Secondarv Storage Manager

Multiuser CANDIDE secondary storage manager will have a client/server archi-
tecture, the configuration of which is shown in Figure 4.1. This architecture can
be broadly categorized under RU [Rou91] architecture in the sense that the object
manipulation and query processing are done in the client and low level operations
like locking are done in the server.

The client makes a request to the server by sending it a message that contains the
information necessary to satisfy the request. The server, a dedicated server, responds
to the request by adding information to the message and returning the message to
the client. The server provides a variety of services to multiple clients, which include
[/0O, transaction management and concurrency control.

Here the application program which resides on the client machine links with the
client module library. The interface client library provides routines for accessing the

Database interface functions. Initialization and transaction support routines are also

38

39

CLIENT

SERVER

CLIENT

Figure 4.1. Client/Server Configuration

included. Thus the application program does not access the server directly, but it
calls the interface routines of the client module. The client module communicates
with the server as necessary.

The client-server connection is established at the start of a client application.
Since an application can have more than one transaction it is advantageous to estab-
lish the connection at the start of the client application rather than at the beginning
of each transaction. Thus we would incur the connection establishment cost only

once for an application.

4.2 Client and Server Operations

A client begins by performing some initialization and then starts a transaction.
During the scope of the transaction, various files and objects can be accessed and
modified. The client declares the start of transaction with a Begin_-Work() and end
with a Commit_Work() or Abort_Work(). All operations performed by the program

between Begin_Work() and Commit_Work()/Abort_Work() will be part of this trans-

action. Thus a flat transaction model is chosen which supports these functions.

40

Nested transactions and multi-level transaction models which provide more concur-
rency are expected to be supported by later versions of the CANDIDE multiuser
secondary storage manager.

Begin_Work(): The client requests a transaction ID (TID) from the server. All
future data and lock requests sent to the server in the scope of the transaction will
contain this TID. After a client has started a transaction, it can begin accessing
objects and files. An application requests an object along with the desired lock mode
for the object. The server will either send the desired object to the client if there is
no lock conflict, or make the client wait on that lock for that object. Every object
modified during a transaction’s life span is flagged, to be able to locate it at the
termination of a transaction.

Commit_Work(): At ‘normal’ termination of a transaction or an explicit ‘com-
mit transaction’ request by an application, a transaction is committed. At the commit
of a transaction all dirty objects are sent back to the server and a commit is requested.
Also, all the locks held by the transaction are released and a check is done to find
out if other transactions are waiting for the locks on objects held by the transaction,

and if so they are released depending on the lock compatibility.

CLIENT SERVER

APPLICATION

_________ =] NETBIOS

INTERFACE LAYER

TRANSACTION MANAGER
&

SUPPORT

BUFFER MANAGER

BUFFER MANAGER /B
NETBIOS T ' o)

Figure 4.2. CANDIDE Multiuser Architecture

1
1
1
1
1
1
1
1
|
1
TRANSACTION | LOCK MANAGER
1
1
1
1
1
1
1
1
1
1
1

41

Abort_Work(): An ‘abnormal’ termination of a transaction or an explicit ‘abort
transaction’ request by a user application results in the transaction being aborted.
All modifications of an object done by that transaction are not sent back to the server
for storage, instead they are discarded. All locks held by the aborting transaction
are released. The transactions waiting on the locks held by the aborting transaction
are processed to see if they can be freed. The waiting transactions are freed based on
the compatibility of locks held by the previously freed transactions. The database is
brought back to the state in which it was at the start of this aborting transaction.

To achieve multiuser capability, an efficient concurrency control mechanism has
to be provided. A concurrency control mechanism suitable for CANDIDE data model

is designed and described in the next section in detail.

4.3 Concurrency Control for Object-Oriented Databases

To the best of our knowledge, there are only two systems, ORION and O2, which
have adapted locking schemes and exploited the semantics of the data model to
provide concurrency control. So, we discuss briefly the approaches adapted in these
two systems and then explain our approach for CANDIDE. This section comprises

of the following subsections:
1. Concurrency Control in O2
2. Concurrency Control in ORION

3. Concurrency Control in CANDIDE

In the first subsection the locking scheme in O2 is discussed briefly. In the second
subsection, the concurrency control in ORION 1is explained. The final subsection
is organized as follows: first various operations performed on the CANDIDE are

highlighted; why the approach proposed in ORION and O2 is not suitable for our

42

DBMS is discussed next; and finally the modifications and extensions to the ORION

approach to make it suitable for CANDIDE are discussed.

4.3.1 Concurrency Control in O2

02 has two concurrency control mechanisms: one at the object level based on the
read-write semantics and one at the schema level based on the schema information.
An O2 transaction maps directly to a WiSS (Wisconsin Storage System) transaction.
And, concurrency on O2 objects is handled by WiSS on the server by a two-phase
locking algorithm on pages and files.

Concurrency on the schema is handled differently from concurrency on objects.
Semantic information such as compatibility of methods, independence of objects are
taken into consideration to allow increased parallelism. This approach identifies a
hierarchy of abstraction levels and provides parallelism at each level. The bottom
level is the page level (physical level) and the intermediate level is the representation
level and the top level is the O2 object level. O2 objects are usable through methods
(O2 object level) and these in turn invoke operations (representation level), which
requires pages from the bottom level.

The approach proposed for O2 provides concurrency control at each of the above
mentioned abstraction levels. Compatibility of methods is identified based on the
real access (access to object representation) and virtual access (other objects related
to the real access object which do not require access to their representation). Access
to the classes and instances are controlled by locks. Granularity locking is adapted
for this. [Car90] do not discuss lock conversion.

Finally [Car90] discuss the impact of one-level transaction model and multi-level
transaction model and concludes that the multi-level transaction model is best suited

to their system.

43

4.3.2 Concurrency Control in ORION

ORION applications require locking on three types of hierarchy: i) granularity
hierarchy for logical entities, devised to minimize the number of locks to be set, ii)
the class-lattice, and iii) composite object hierarchy. ORION extends the theory of
locking for the granularity hierarchy to satisfy its locking requirements. The lock

modes and the DAG protocol are summarized below.

DATABASE

INDEX CLASS

INSTANCE

Figure 4.3. Hierarchy of Lock Granules in ORION.

Figure 4.3 shows the unit of locking. Instances are locked only in 5 or X mode,
indicating whether they are to be read or updated respectively. Class objects may
be locked in any of the five modes.

IS : on Class means that instances of the class are to be explicitly locked in S
mode as necessary.

IX : on Class means that instances of the class will be explicitly locked in S or X
mode as necessary.

SIX : on Class means that class definition is locked in S mode, and all instances
are implicitly locked in S mode and instances to be updated (by transaction holding
the SIX lock) will be explicitly locked in X mode.

S:on

44

o (lass means that class definition is locked in S mode, and all instances of the

class are implicitly locked in S mode - no update is allowed.

e Instances means read lock on that instance

X :on

o (lass means that class definition and all instances of the class may be read or

updated.

e Instances means write lock on that instance.

Standard DAG lock protocol:

o To set an explicit S lock on a lockable granule, first set an IS lock on all direct

ancestors, along ANY ONE ancestor chain, of the lockable granule on the DAG.

e to set an explicit X lock on a lockable granule, first set an IX or SIX lock on
all direct ancestors, along each ancestor chain, of the lockable granule on the

DAG.
e set all locks in root-to-leaf order.

o release all logical locks in any order at the end of the transaction, or in leaf-to-

root order before the end of a transaction.

Figure 4.4, gives the compatibility matrix for the granularity locking modes. Two
lock requests for the same node by two different transactions are compatible if they
can be granted concurrently.

[Gar88] describes two locking protocols for locking a class lattice. The first proto-
col simply requires the system to set explicit locks on all subclasses on a class lattice
rooted at the class to be accessed. For example, if the definition of a class is to be

modified, the system sets update locks on the class and all its subclasses. Further

45

REQUESTED MODE

IS IX S SIX X
IS yes yes yes| yes no
L
Q
g IX yes | yes | no no | no
|_
pzd
',3':J S yes no | yes no no
o4
)
© g x | Yes no no no no
X no no no no no
yes - compatible no - not compatible

Figure 4.4. Compatibility Matrix

more, if a class lattice rooted at a particular class is to be accessed for query pro-
cessing, the system sets a read lock on every class in the class lattice rooted at the
class. This protocol works well if the class to be accessed is near the leaf of a class
lattice, since it requires explicit locks on the class and all its subclasses, but incurs a
high lock overhead if the class is near the root level of a deep class lattice.

The second protocol which is efficient for accessing a class near the root of a class
lattice, introduces two lock modes, R lock (read-lattice lock) and W lock (write-lattice
lock).

R: on a class means an explicit S lock on that class and implicit S lock on the
subclasses of that class.

W: on a class means an explicit X lock on that class and implicit X lock on all

the subclasses of that class.

46

The definition of the X lock is modified to

X: on class allows updates to instances of the class and it allows the definition of
the class to be read but not updated.

Since R and W cause implicit locking of subclasses, its superclasses are locked in
intention modes IR and IW respectively. Further, all lock modes discussed earlier (IS,
IX, SIX, X, S), require the IR and IW mode for their superclasses of the class being
locked. This is illustrated with an example. The notations used in the examples
are as follows: C_A represents Class A, C_B represents Class B and so on. I_1A
represents Instance 1 of class A, I.2B represents Instance 2 of class B, and so on.
T1 represents transaction 1, T2 represents transaction 2, etc. In Figure 4.5, to read
instance 1_1D, IR lock is set on C_C and C_A and IS lock on C_D and an S lock on

the instance 1_1D.

\
% \C_B ® CccC
B | 2B | 3B

[
CD C_E
11 I{ ®

| iD | 2D 13D

Figure 4.5. Example 1

This protocol fails on a class-lattice, in which a class may have more than one
superclass. For example, in Figure 4.6, if T1 reading C_B sets an IR lock on C_A
and an R lock on C_B, implicitly locking C_C, C_D and C_E in the R mode. Now,
if T2 updating C_G, sets an IW lock on C_F and W lock on C_G, implicitly locking

47

C_D, C_E and C_H in W mode, giving rise to a read-write conflict on C_D - implicit

conflict, which is not detected using this protocol.

CA
CF
/ C/ ® CH
cc

CE

Figure 4.6. Class Lattice Example

The solution [Gar88] proposes is, to set explicit R or W lock on all subclasses
with more than one superclass of a class acquiring R or W lock. Thus the second
protocol is - to acquire a R or W lock on a class, lock the superclasses along any one
chain in the intentional mode and all subclasses with more than one superclass in the
R or W mode explicitly. In addition to these lock modes for classes and instances,
ORION introduces new lock modes (ISO, IXO, SIXO) for locking composite objects.

The protocol treats composite object as a lockable granule.

4.3.3 Concurrency Control Protocol for CANDIDE

CANDIDE implements an object-oriented data model, since the application can
be represented in a taxonomy. The taxonomy has a lattice structure for the class

taxonomy. Various operations performed on CANDIDE are
e read an instance of a class
o access all/few instances of a class

e add/delete/modify instances of a class(es)

48

o add/delete/modify class(es)

e taxonomic surgery - moving the position of a class in the taxonomy
e sequential class traversal

e modify the schema - updating the attributes of a class

o classification - finding the position of an object in the class taxonomy using

taxonomic subsumption

All these operations can be explicitly done by the user or can occur as a result
of classification. Most frequently performed operations are sequential class traversal
and taxonomic subsumption.

The O2 approach cannot be adapted for CANDIDE because, CANDIDE is not
based on methods. Orion’s approach can be adapted, but with modifications to in-
crease concurrency. The approach used in ORION does not exploit the independence
of operations on instances and class definitions. The following example illustrates
this using Figure 4.5:

T1: reads class C_B.
T2: updates instance 1_1B.

According to the protocol proposed in ORION, T1 acquires R lock on C_B and
IR lock on C_A. T2 needs IX lock on C_B and IW lock on C_A. Here, R and IX
are incompatible. Updates on instances of a class and reading the class definition of
that class are two independent operations and should be allowed to occur in parallel.
Moreover, classification function needs to read class definitions often. So, another
transaction updating instances of a class should not stop the classification process.

To allow this, the definition of R and W locks are modified. This is done to

seperate the class and instance operations. The modified definitions are:

49

R : on a class means that an explicit S5 lock on the definition of that class and
implicit S lock on the definition of all the subclasses of that class.

W : on a class means that an explicit X lock on the definition of that class and
implicit X lock on the definition of all the subclasses of that class.

IR : on a class means that, one of its subclasses’ definition is locked in the R
mode.

IW : on a class means that, one of its subclasses’ definition is locked in the W
mode.

The Intention modes of R and W locks are required to ensure that when a class
and its instances are being accessed, the definition of the class’s superclass (and
their superclasses) are not modified. Thus when you are trying to get R/W on the
definition of a class, you need to get IR/IW locks on its superclasses.

The definition of IS, 5, IX, X and SIX lock modes are carried over for the instance
operations. The definition of these modes are stated again:

IS : on Class means that instances of the class are to be explicitly locked in S
mode as necessary.

IX : on Class means that instances of the class are to be explicitly locked in S or
X mode as necessary.

SIX : on Class means that class is locked in S mode, and all instances are implicitly
locked in S mode and instances to be updated (by transaction holding the SIX lock)
will be explicitly locked in X mode.

S : on Class means that that all instances of that class are implicitly locked in S
mode - no update is allowed.

on Instances means read lock on that instance

X : on Class means that all instances of the class are implicitly locked in the X

mode.

30

on Instances means write lock on that instance.

Note, that the IS, IX, S, X and SIX locks on the classes must not be confused
with the IR, IW, R and W locks on the classes, since they have a different meaning.
IR, IW, R and W locks control the access to the representation (definition) of class,
while IS, IX, S, X and SIX control access to the instances of the class. Figure 4.7
gives the lock compatibility matrix for the class definition locks. The W mode is not
compatible with any of the IS, IX, S, X and SIX modes. Thus the operations on

instances and operations on classes are separated.

REQUESTED MODE

IR R W W
L
5 IR yes | yes | yes no
=
l—
£ R yes | yes no | no
o
e
3 W yes| no | yes| no
W no no no no

Figure 4.7. Compatibility Matrix For Locks On Class Definitions

It is seen from the lock compatibility matrix that the concurrency has been in-
creased by the introduction of IR, IW, R and W locks and redefining them. The
granular hierarchy for CANDIDE is shown in Figure 4.8.

The protocol is as follows:

e To set an explicit S/R lock on an instance/class, first set an IS/IR lock on all

direct ancestors along each ancestor chain.

51

DATABASE

CLASS

INSTANCE BUCKET

Figure 4.8. Hierarchy of Lock Granules in CANDIDE.

e to set an explicit X/W lock on an instance/class, first set an (IX or SIX)/IW

lock on all direct ancestors, along each ancestor chain.

e locks can be set in any order, since there will be only one task which will be

accessing the lock table at any given point of time.
o release all logical locks in any order at the end of the transaction.

The following illustrates the use of all these locks. Referring to Figure 4.5,

Suppose:

1. If, T1 wants to update I_.1B, and T2 wants to read 2B, then T1 gets IX locks
on C_A and C_B and X lock on [_1B, and updates [_1B, while T2 gets IS lock
on C_A and C_B (IS is compatible with IX) and S lock of [_2B, and reads 1_2B.

2. If, T1 wants to read all instances of class C_D, then T1 gets IS locks on C_A,
C_C, and S lock on C_D. This S lock on C_D implicitly locks all instances of

C_D in S mode, thus reducing the number of locks.

Concurrency control using these lock modes for CANDIDE class lattice can be

achieved by the following protocols.

1. Explicit Locking Protocol

52

2. Subclass Locking Protocol

3. Run Through Protocol

Explicit Locking Protocol

This is the the simple protocol of ORION, where all the subclasses are explicitly

locked. As discussed earlier the locking overhead is very high.

Subclass Locking Protocol

The original protocol is modified such that explicit R or W lock is set on all
subclasses of a class acquiring R or W lock which have more than one superclass
(multiple parent subclass). This is the class-lattice protocol discussed in Garza and
Kim [Gar88].

The following illustrates these protocol

1. To change the definition of C_B

(a) lock C_B in W mode and all C_B’s superclasses in IW mode

(b) lock each subclass of C_B which has more than one superclass in W mode

(class C_D)
2. To read the class C_G

(a) lock C_G in R mode and its superclass C_F in IR mode

(b) lock each subclass of C_G which has more than one superclass in R mode

(class C_D)

Advantages: This protocol supports partial implicit locking. Thus the number

of locks required to access a set of objects is reduced considerably.

33

Disadvantages: The existing system maintains the ancestor list and if we need to
maintain a list of multiple parent subclass, then the bookkeeping needed to maintain
this information for each class would prove very expensive.

Problems faced by this protocol while building the lock table are discussed in
Chapter 5.

Runthrough Protocol

We propose a third way of handling the class lattice structure. This protocol
postpones the implicit conflict detection till the multiple parent subclass is actually
accessed. The first transaction actually accessing the multiple parent subclass is
granted the desired lock mode, while all other transactions involved in the implicit
conflict will detect the conflict when they try to actually access the multiple parent
subclass. While acquiring the lock on an object when it is actually accessed, the
whole ancestor list need not be checked. The waiting transactions are blocked or
aborted depending on the situation. The following highlights this situation:
Referring to Figure 4.6, suppose T1 reads class C_B and T2 writes class C_G. T1:
gets IR lock on C_A and R lock on C_B. R lock on C_B implies implicit R lock on
C_C, C_D and C_E,and T2: gets IW lock on C_F and W lock on C_G. W lock on
C_G implies implicit W lock on C_D, C_E and C_H.

The R/W conflict at C_D is not detected since there is no lock on multiple parent
subclasses. Both the transactions are granted their desired lock modes. The conflict
is detected while actually accessing class C_D. There are two cases:

Case 1: T1 accesses C_D first.

R lock on C_D is granted to T1. Now if T2 tries to actually access C_D there is

a conflict and T2 waits on C_D. Here it is not necessary to abort T2 because T1 is

only reading and this does not change the taxonomy.

Case 2: T2 accesses C_D first.

o4

W lock on C_D is granted to T2. Now if T1 tries to actually access C_D there
is a conflict and T1 waits on C_D. Most of the times T1 can be allowed to continue
after T2 commits. But when there is a taxonomic surgery and if C_D has to move ,
then it is no longer a subclass of C_B. So, T2 has to delete C_D from C_B’s subclass
list. To do this T2 needs to acquire a W lock on C_B. At this point, T2 waits for an
object held by T1 and vice versa. Thus a deadlock situation is reached and one of
the transactions is aborted.

The disadvantage of this protocol is that there is a possibility for a transaction
to proceed down the taxonomy and still be aborted. The complications of building
a lock table for this is discussed in Chapter 5. Here, the intention locks need to be
acquired along each ancestor chain.

Thus CANDIDE’s concurrency control mechanism is aimed at providing maxi-
mum concurrency, by exploiting the semantics of the data model. Implicit locking
supported by this mechanism reduces the number of locks required while accessing a

set of objects.

Lock Conversion

In the previous section we described the various lock modes and locking protocols
that satisfy the locking requirements for CANDIDE applications. But the issue of
lock conversion was not addressed. In this section we discuss lock conversion for locks
for both class (IR, R, IW,W) operations and instance operations (IS, IX, R, SIX, X).

A transaction sometimes needs to convert a lock it currently holds to a more
exclusive mode. This is done to increase concurrency and reduce the amount of
bookkeeping in the lock table. For example, suppose a transaction classifies an object
into the taxonomy, it first reads the class definitions to find the exact location of the
object and then inserts it. It is reasonable for the transaction to set R locks while

reading the classes and then request W lock when it actually inserts the object

)

into the taxonomy. Instead, if the transaction sets a W lock at the beginning of
the classification operation, it will lock objects for a long time, thus blocking many
transactions.

Figure 4.9 and Figure 4.10 provides lock conversion matrix for the class operation
locks and instance operation locks respectively. Since the operations on classes and
instances require seperate locks, a transaction can hold two locks on a class, one for
class operation and one for instance operation. Thus, if a transaction holding a W

lock requests a S lock on one of its instances, it is granted.

REQUESTED MODE

R | R | 1wl w

u R 1T R | R| w| w

o

=

= R| R| R | W [W

L

@

x w | 1w

3 W o[Iw | W
Wi w | wl| wl| w

Figure 4.9. Lock Conversion Matrix for Class Operation Locks

4.4 Preliminary Thoughts on the Design for CANDIDE Version 11

The previous discussion dealt with the design of locks for multiuser secondary
storage manager for the Version I of CANDIDE. This section deals with the prelim-

inary thoughts on the design for multiuser secondary storage manager for Version

I1.

56

REQUESTED MODE

IS IX S SIX| x

IS IS 1x | s sIX| X

IX IX IX SIX [SIX X

S |s ax | s |sx | X

CURRENT MODE

SIX | SIX SIX| SIX [SIX | X

Figure 4.10. Lock Conversion Matrix for Instance Operation Locks

Architecture

Version 1 is based on object-server architecture [Ban91], where objects are sent
to a client on demand basis, i.e., one object at a time. So each time a client requests
an object, the lock table is checked for compatibility and then the object is sent to
the client. This architecture simplifies the implementation of concurrency control
mechanisms as it is completely centralized in the server. Furthermore, the imple-
mentation of object-level [OID] locking is straight forward, as locks are got on the
OID and there is no need for bucket level locking. This design suffers from several
disadvantages. First, in the worst case there may be one server access per object
reference, thus increasing the communication cost. Second, the architecture of the
server becomes complicated and as a result of which the load can become high.

In an environment where many objects must be frequently accessed, efficiency
becomes a principle design criterion. One approach to improving performance is
clustering related objects in a bucket. Thus a bucket has logically related set of ob-

jects which the client is expected to access during a transaction. Now the bucket is

57

chosen as the unit of transfer for objects between client and server and from secondary
storage to main memory. This is similar to page-server architecture [Ban91]. Greater
system performance results from preloading required objects, but complicates concur-
rency control mechanisms. Object-level locking may be difficult to implement, and
problems occur when two clients update two different objects on the same bucket.
The bottom line is that the performance of this design would depend on the effec-

tiveness of the clustering mechanism.

Lock and Bucket Interaction

When a client requests an object in a particular mode from the server, the server
checks the lock table for its compatibility, and if it is compatible then the bucket
containing that object is locked in the requested mode and the whole bucket is sent
to the client. The bucket can be locked either in the S or X mode. Before acquiring
a lock on a particular bucket, it should be made sure that no other transaction holds
a lock in a conflicting mode on that bucket. If the bucket is locked in the conflicting
mode then the transaction waits on the object.

In Version II the client can also maintain the lock mode details of the object it
is accessing. This information is useful while accessing other objects in a bucket the
client already has. This would reduce the number of times the client has to consult
the server to access an object.

Situations where this method is advantageous: Suppose a transaction is
reading a class A, it holds an R lock on this class A. Acquiring R lock on a class
implicitly locks all its subclasses in the R mode according to the semantics of R mode.
Now if the transaction wants to access the subclasses which are in the bucket already
in the client, then the client need not go to the server. The probability that this

situation would arise often is high due to the following reasons:

38

e class traversal access is one of the most frequently performed operations in

CANDIDE

e physical clustering algorithm [Bec93] places a class and its subclasses physically

together

The locks on buckets are released at the end of the transaction. This might make
objects not used by this transaction unavailable to others untill it commits.

Situations where this method is disadvantageous: Suppose a transaction
needs to access a single object (single object retrieval), still the whole bucket contain-
ing that object is sent to the client. Other objects in that bucket are unnecessarily
locked. Some improvement can be achieved by reducing the size of buckets. An
alternative is to release the locks on the buckets as soon as an object is read or
written. This would lead to complication in physical clustering and maintaining the

consistency of data.

Phvsical Clustering and Locks

Physical clustering is done at commit stage of a transaction. The strategy for up-
dating an existing database which has already been physically clustered is optimized
so as to affect minimum number of buckets.

Reclustering is needed when an object is created, deleted or modified. First, the
system tries to insert the object into the same bucket. If it fits then no other bucket
is affected. The transaction is committed and the client is informed of the commit. If
the object does not fit into that bucket, then the clustering proceeds to the next step.
The next step is to combine neighboring buckets and then try to fit in all the objects.
Now if the bucket required for physical clustering is used by another transaction,
then the clustering algorithm doesn’t proceed, it creates a temporary bucket and

stores the modification of that transaction. Thus the clustering is deferred till there

39

is no traffic on that project file. Since the database is divided into projects, each
project can be clustered independently. Thus an optimistic method is chosen while
reclustering. The main disadvantage is that if it is found that a bucket required for
clustering is in use after moving high up in the taxonomy then lot of work done goes

to waste.

4.5 Deadlock Handling

Locking schemes are prone to deadlocks. And, the locking scheme proposed for
CANDIDE is no exception. This section briefly discusses the suitability of various
deadlock handling schemes for CANDIDE.

There are two principle methods for handling deadlocks. One is deadlock pre-
vention and the other is deadlock detection and recovery. As the name indicates,
deadlock prevention scheme ensures that the system will never enter the deadlock
state. This is commonly used if the probability of the system getting into a deadlock
state is high. Otherwise the deadlock detection and recovery approach is used, which
detects the deadlock state and then resolves it.

The prevention approach either causes many objects to be locked for a long time
or causes some unnecessary rollback of transactions [Hen91]. This approach would
decrease the concurrency in CANDIDE. The alternative is to adapt the deadlock
detection and resolution scheme. There are two ways to detect deadlocks, one is
by using timeouts and the other using the wait-for-graph [Hen91]. In the timeout
approach, each lock request is given a time limit for lock wait, and, if the request
times out, that transaction is aborted. This is a very simple and inefficient way of
handling deadlocks.

A more sophisticated way, is to use wait-for-graph. Once the deadlock state
and the transactions involved in deadlock are detected using the wait-for-graph, the

transaction(s) to be aborted (victim) can be chosen based on the semantics and cost

60

of the transactions involved in deadlock. Some of the factors which determine the
cost of an abort are, how many objects the transaction has used and how many more
it need to complete, how long the transaction has computed and how much longer
the transaction will compute and how many transactions will be involed in the abort.
Apart form these factors, the semantics of the read and write operations on the class
objects can be used to choose the victim. A write operation on a class can result in
change in class definition or in taxonomic surgery. If such an operation is involed in
the deadlock then, it would be better to allow the write operation to proceed and
restart the transaction with read operations. This is suggested because, it would be
expensive to abort and restart these operations. The disadvantage of this scheme
is that, a read transaction could always be picked as the victim and as a result,
this transaction never gets to complete its designated task. This situation is called
starvation. This can be avoided by including the number of times a transaction has

been restarted as a factor for selecting the victim. Future work can be done to design

an efficient protocol for handling deadlocks in CANDIDE.

CHAPTER 5
IMPLEMENTATION OF MULTIUSER CANDIDE DBMS

This chapter discusses the implementation of concurrency control mechanism us-
ing the design presented in the previous chapter. The first section discusses the
choice of a Network Operating System and the network protocol for implementing
this client/server system. The second section discusses the issues relating to provid-
ing connectionless or connection oriented communication. The third section discusses
extending CANDIDE to other platforms. Finally in the fourth section the data struc-
tures and algorithms required for implementing the multiuser system is discussed in

detail.

5.1 Lantastic VS NetWare

Chapter 4 discusses both LANtastic and NetWare Network Operating Systems.
This section discusses the pros and cons of these NOS and the reasons for choosing
LANtastic to implement this multiuser DBMS.

Novell’s NetWare has a client/server architecture, and the security system pro-
vided by it is much better than LANtastic. Since LANtastic is a peer-to-peer local
area network, all its resources (hard drive, printers, etc) can be shared over the net-
work. Security provided by LANtastic is with respect to the machine from which a
user logs in to the server. So, if a user is denied access to certain files on the server
from his machine, he still can gain access to those files by directly working on the
server, rather than trying to access it across the network. Since CANDIDE multi-user
system has a client/server model and requires maximum possible security, Net Ware

would be preferred.

61

62

One important feature in NetWare is its TTS (Transaction Tracking System). The
features of TTS are what we are trying to implement in the CANDIDE multi-user
system. If we use Novell we can use this feature to keep track of all the transactions,
thus saving development time. However, it is better to avoid writing code that uses
facilities specific to a particular LAN vendor for portability reasons. Even though
TTS functtionality meets the design rrequirements of our system, to run our system
on non-Novell LANs, we have to provide our own substitute for TTS. In that case
we should implement the system at a lower layer.

NetBIOS is compatible with most of the LANs. LANtastic is designed around
the NetBIOS standard used by many networks. Also, it is able to work with a wide
variety of network hardware and software. By using this standard for network com-
munication, LANtastic allows use of other manufacturer’s adapter boards. LANtastic
allows third party network utilities and programs to be used on it. This will be an
added advantage of implementing on LANtastic, as our stand-alone system already
has its own buffer management policies.

As for NetBIOS on NetWare LANSs, it is possible to run an application written
using NetBIOS on Netware. NetBIOS services can be provided on NetWare, either in
the form of Novell emulator or a device driver. This would take up extra memory on
a Novell NetWare workstation, and IPX and SPX communications can still be used.

Both networks provide reasonable performance, though Novell has an edge. Thus
it would be much easier to port if we use NetBIOS. Also it would be much easier to
tune our system to meet to our requirements and have full control (coding) of our

system.

63

5.2 Datagrams Vs Sessions

Irrespective of which NOS is chosen, a decision has to be made as to which mode
of communication is suitable — connectionless or connection oriented. This section
discusses the pros and cons of these two modes.

Connection-oriented communication protocol (session service) is used to establish
connection with the server. An initial setup phase is used to setup a fixed route for
all packets exchanged during a session between users. Packets use relatively short
headers, as compared to datagram service. Enhancements, such as error control
guaranteed delivery, and sequencing of packets are provided by the session services.
In datagram services, enhancements of basic service must be provided. Datagram
service does not guarantee delivery of packets.

In a client-server DBMS, delivery of data should be guaranteed, thus session
service is chosen to implement the system, though it has an initial setup time. Also,
if the session is going to last for a long time, which is usually the case, it is more
advantageous to use session service.

Another reason for choosing the session service is that, up to 65,535 bytes long
message record can be sent and received during a session, whereas datagrams can
carry only 512 bytes long message records. Since the size of a bucket (unit of trans-
fer) is more than 512 bytes, session service will be more suitable and efficient than

datagram service.

5.3 Extending CANDIDE to other platforms

As discussed earlier TCP/IP is the standard cross-platform protocol. Using this
protocol our database can be accessed over the Internet. In this case, we can have a
SUN Unix machine as our server. Unix OS provides multi-programming and multi-

threading capabilities and the IPCs are much powerful and efficient than NetBIOS

64

and IPX/SPX. More disk space and memory are available. The cross-platform ca-
pability of TCP/IP allows any machine to be the client and in our case, we can
have PCs as clients. The Server does all the low-level DBMS functions like main-
taining lock table, 1/0, etc, so it would be efficient to use a powerful machine as the
server. One disadvantage of using Unix is its complexity and the cost of maintaining
the whole system. Recently a standard protocol to support NetBIOS services in a
TCP/IP environment [RFC] has been proposed. This protocol can be used to access
CANDIDE database on the Internet.

5.4 Implementation of the Multiuser Svstem

In this section, implementation of the following components are discussed in detail
® Server

o Client

e Lock Table

e Buffer Management

The session service provided by the NetBIOS software is used for communication

between the client and server.
5.4.1 Server:

The server is first initialized by checking if the following conditions are true:

e The DOS Version is 3.0 or above
e The machine name has been set

o NetBIOS is active

65

Then NetBIOS is asked to add its name (SERVER) to the local name table. If
the SERVER does not encounter any problem, it issues a NetBIOS listen command

[Appendix B]. This command specifies

e Listen for a call to SERVER
e The call can be from any client
e The Post routine [Appendix B] background_listen is called

e A time-out value for the send and receive [Appendix B] commands issued in

the upcoming session

The server maintains a queue of requests (called JOB_.QUEUE) from various
clients and processes it in the FIFO order. After a session is established between
the client and the server, the job request from the client is queued and the server
starts to execute the jobs from the head of the queue. Now if a call from another
client is received, the background (asynchronous) process is triggered. A session
is established and the SERVER receives the job from the client. If the request is a
Commit_Work() or Abort_Work() then they are put at the head of the JOB_QUEUE.
These two functions are given priority because their execution results in the release
of locks on many objects. All other requests are added to the end of the queue. We
have proposed FIFO order for processing of requests from the client for the sake of
simplicity. But to improve the performance, the semantics of CANDIDE operations

can be used to prioritize the processing of the transaction requests.
5.4.2 Client

When the application program links to the client module library, it intialiazes
by checking the DOS version and making sure that NetBIOS is active, and adds

its name to the local name table. Then the client establishes a session by issuing

66

the call [Appendix A] command. If the call command is successful, the client can
begin to send its requests. When the transaction, is completed, the client requests
to Commit_Work(). Once this command is successful, the client can start a new

transaction or if it is the end of the application program, the session is closed.

5.4.3 Lock Table

When a request from the client is received, the server first checks the lock table
for lock compatibility and if the lock modes are compatible it returns the desired
object, else it is queued on the LOCK_WAIT_QUEUE.

LOCK_WAIT_QUEUE is a queue of transactions waiting to acquire a lock on an
OID. The server scans the LOCK_WAIT_QUEUE to check if a transaction is waiting
for a lock on an object, which was released during the Commit_Work or Abort_Work
operations. If so, the lock is granted to the transaction and the transaction is inserted
into the JOB_QUEUE after the Commit_Work/Abort_Work requests.

We could have used the JOB_QUEUE to queue up transactions waiting for locks
on objects. Thus there would have been only one big queue. The transactions
waiting for a lock could be added to the head of the queue. Thus, before processing
any request, the server first checks to see it any lock could be granted to waiting
transactions. This is called busy wait. This method of implementation is not efficient
because it is required that a check be made for release of locks continuously. But it
is sufficient that this check is made when there is an commit or abort. This could
be done efficiently by using the LOCK_WAIT_QUEUE. The LOCK_WAIT_QUEUE

is also used for deadlock detection.

Building of Lock Table for CANDIDE

This section discusses the step wise building of an efficient lock table for CAN-
DIDE. First, a conventional lock table is described and the inefficiency of this table

for CANDIDE is discussed. Then lock table for CANDIDE is described.

67

Conventional Lock Table: The lock table is a dynamic data structure (shown
in Figure 5.1) which maintains lock information. of all objects accessed by active
transactions in a system. Typically, it is a hash table. Each table entry has a pointer
to a chain of locks, each with a name that maps to that hash bucket. Also all locks
held by a transaction are linked for speedy release of locks during the commit of a
transaction [Gra93b].

The lock table for CANDIDE is a hash table keyed on the OID of an object.
The OID hashes to a bucket. The entry in the table is a pointer to a linked list.
Typically, every object that hashes to that bucket will have a node in the linked list.
The structure is shown in Figure 5.1. Thus, if two transactions are holding locks
on an object(in compatible modes), then there would be two node in the linked list,
one for each tranasction. As in a typical lock table structure, all objects held by a
transaction are linked to speed up the lock release process at commit or abort stage.

Problems in Adapting this Structure for CANDIDE: The locking protocol
of CANDIDE acquires locks not only on the object required, but also on its ancestors
and in some cases on its subclasses as well. Since we have intentional lock modes on
class objects, the number of locks (compatible modes on a class object is considerably
high. Hence, if we use the conventional structure (Figure 5.1), there will be a node
in the linked list for each lock held by a transaction on objects that hash to that
bucket. This increases the search time on each bucket.

Anchored Hash Table (AHT): We propose ‘Anchored Hash Table’ (AHT)
[Bad93], keyed on OID and type for CANDIDE. The pair (OID,type) hashses to a
bucket. The entry in the bucket is a pointer to a linked list of anchor nodes. Each
anchor node represents an object that hashes to that bucket. Each anchor has a
linked list structure (transaction list) for transactions holding locks on that object.

Figure 5.2 shows the data structure of the anchored lock table, and Figure 5.3 the

63

Buckets

o1 0: 2 o:1
T1 T2 T2

0:10 0:10
T4 T1

0:99
T1

Figure 5.1. Conventional Lock Table Structure

structure of the nodes. Thus the maximum number of anchor nodes for a bucket will
be the number of objects that hash into that bucket. Our aim is to build an efficient
locktable.

The first time an object is accessed, we establish the ancestor class hierarchy in
the lock table. This is done by having parent pointers in the anchor node which
points to its parents. Thus, if another transaction needs to access an OID already in
the lock table it need not build the ancestor hierarchy again. Since we have a lattice
structure, we need more than one parent pointer. A linked list of parent pointers is
maintained in the anchor node.

The ancestor hierarchy is built in the lock table for the following reasons:

Bucket #
1 OID 5 I
u| /
A I
: I
: I
H 1
]
2 I
1

OID 5

ID 10
= i

T2

oD 20 /O'Dlo

@ o0ID30

Partial Hierarchy

OID 20

Figure 5.2. Lock Table Structure

1. Our locking protocol requires that for each lock acquired on an object, all its

ancestors are locked in the intention lock mode.

2. it reduces the number of times the same hierarchy is built.

3. it reduces the number of 1/0Os.

4. it reduces the search time while acquiring locks.

It is guaranteed that for each OID present in the OID table, there exists its

ancestor hierarchy in the lock table.

ancestor hierarchy in the lock table is illustrated below:

Let n = number of instances accessed by a transaction.

The amount of time saved by building the

70

OID TYPE
TID Class| Inst
lock | lock
Ptr. to the next OID f’tr rt10 hext trlanssc-
in the bucket chain. lon having alock on
the anchor object
Ptr., to the parent OID Ptr., to next node
list. belonging to the
same transaction.
Ptr., to the transaction
list having alock on this
object
Anchor Node Structure Transaction List Node Structure

Figure 5.3. Node Structure in Lock Table

t1 = time taken (including I/O) to build the ancestor hierarchy and acquire locks
on them.

t2 = time taken to search the established ancestor hierarchy for each instance and
acquire locks on them. t1 >> t2

Total time taken to access all n instances:

(a) When ancestor hierarchy is not built = n*t1

(b) When the ancestor hierarchy is built and retained = t1 + (n-1)*t2

Thus the total time saved = (n-1) (t1-t2) = (n-1)*t1 as t2 is small compared to
t1.

Thus building the ancestor hierarchy seems to be more efficient as t1 includes
several I/Os and n can be in hundreds.
Seperating Class and Instance OID tables:

We have two OID tables, one for class objects and one for instance objects. This

distinction is made for the following reasons:

e The number of instances is much more than the number of classes in the

database. If the two tables are merged then the average search time for both

71

instances and classes will increase. Whereas, if they are seperate, the size of
the class lock table will be considerably small and the average search time for

both instances and classes is reduced.

e Since it is required to acquire intention locks on all ancestors for both the class
and instance operations, the number of lock modes on classes are more than
on instances. Thus for the class objects AHT structure is preferred, whereas a

conventional hash table would suffice for the instance objects.

The difference between the class lock table (CLT) and instance lock table (ILT)

are:

e CLT has an AHT structure, whereas instance lock table has an conventional

hash table structure.

e The parent pointer in CLT points to its superclass(es) in the CLT, whereas in

the ILT, it points to its parent class in the CLT. This is depicted in Figure 5.4.

5.4.4 FEffect Of The Lock Table Structure On The Protocols

The effect of the above lock table structure on the protocols discussed in the

previous chapter is discussed in this section.

Subclass Locking Protocol

This protocol requires to put explicit R/W lock on all subclasses of a class with
multiple parents in addition to putting implicit locks on ancestors. Now, the locking
protocol requires locks on some of the subcalsses too. We need to keep the sub-
class lattice information in addition to the ancestor lattice. There are two ways of

incorporating this into the lock table.

Bucket #

72

Class Lock Table Instance Lock Table

Figure 5.4. Class and Instance Lock Table

1. we can insert only the subclasses with multiple parents into the Class OID table.
But then our claim that, there exists in the lock table a consistent lattice for

all OIDs having an entry in the lock table, does not hold.

2. the alternativeis to put explicit locks on all subclasses of the class and thus build
the whole superclass/subclass structure for that class. The locking overhead
can become heavy, and moreover, the notion of implicit locking is lost for class

level operations.

Runthrough Protocol

The lock table structure need not be modified for this protocol. Whenever the

transaction holding a R/W lock on a class actually accesses its subclass, a check

! . Bucket #
oID5 , 7 -QID 10 3
O ! 5 1 § 0OID 100 0ID 50
! g
""""" | 2

73

for conflict for that class alone is made and if there is no conflict an entry for that
subclass is made in the lock table and the ancestor connection is established and the

lock is granted. It need not check the conflict along the ancestor chain.

5.4.5 Use of Buffering Techinque for Commit/Abort:

Each time the disk is accessed BUFFER-SIZE (currently 8K) bytes consisting of
objects are loaded into the EMS. Whenever an object has to be accessed, the EMS
buffer is checked first and the disk is accessed only when the object is not found in
the buffer. Only the desired object and not BUFFER-SIZE bytes is then sent to the
client. This is done as there is no guarantee (without physical clustering) that the
next required object will be in the BUFFER-SIZE buffer. Moreover, this buffer might
contain an already deleted object, as the current system does not reuse the space of
deleted objects. The client maintains a linked list called Objectlist. Each node in the
Objectlist is an object requested by the client for this transaction. Objects modified
by this transaction are flagged. At commit stage, this list is scanned and only those
objects which are flagged are sent to the server for storage. Objects are also written
back on the secondary storage before commit stage, but only on overflow.

In Version I the object file is an append file. All objects whether old or new are
appended to the file. In case of new objects an entry is created in the OID table
and the location of the object is stored in the table. In case of existing objects the
new location is stored in the OID table. The old object is not deleted and remains
as garbage. For the purpose of restoring the database to the original state, both the
current location and the location of the object before the start of the a transaction
is maintained. If the transaction commits, the current location is made permanent,
and if the transaction aborts, the location before the start of the transaction is made

permanent.

74

The original location of the object (location at the start of a transaction) is
already available in the OID table. The OID table can be extended to hold the
current location (location of the most recent write) of the object. The final location
of the object is stored in the original entry in the OID table, depending on the commit

or abort of a transaction.

5.5 Lock Table Operations for Lock-Aquisition and Lock-Release

As described earlier, there is a JOB-QUEUE where all the requests are queued and

a LOCK-WAIT-QUEUE where the blocked transactions are queued. The operations
that are mapped to operations on the lock table are read-class(c-oid), write-class(c-
oid), read-all-instances-of-class(c-oid), write-all-instances-of-class(c-0id), read-instance(i-
oid), write-instance(i-oid). Where c-oid and i-oid are class integer oid, and instance
integer oid respectively. If a string oid is given then the system fetches the corre-
sponding integer oid using the function OID(char *stroid) and then calls the above
function.
The Protocols for these operations are summarized below:
Read/Write Class(c-o0id):

e get IR/IW lock on all ancestors of c-oid

e get R/W lock on c-oid

Read/Write instance(i-oid):
o get [S/IX locks on c-oid and all ancestors of c-oid, where c-oid is the class, i-oid

belongs to.

e get 5/X lock on i-oid.

Read/Write all instances of class(c-o0id):

e get IS/IX lock on all ancestors of c-oid

e get 5/X lock on c-oid.

process-JOB-Q()
{

while (end of JOB-Q)

{
process-request(operation) /* operation is the node in JOB-Q */
operation = operation->next

b

process-request (operation)

Switch(operation)

case(read-class(c-o0id)):
{acquire-class-lock(tid, c-oid, class, R, IR) }
break;

case(write-class(c-o0id)):
{acquire-class-lock(tid, c-oid, class, W, IW)}
break;

case(read-all-instances-of-class(c-o0id)):
{acquire-class-lock(tid, c-oid, class, S, IS)}
break;

case(write-all-instances-of-class(c-0id)):
{acquire-class-lock(tid, c-oid, class, X, IX)}
break;

case(read-instance(i-o0id)):
{acquire-instance-lock(tid, i-oid, instance, S, IS)}
break;

case(write-instance(i-o0id)):

{acquire-instance-lock(tid, i-oid, instance, X, IX)}
break;

return;

acquire-class-lock(tid, c-oid, type, lock-mode, intention-lock-mode)

{

Hash into CLT keyed on (c-oid,type);
Search the anchor node list of that bucket for c-o0id;

76

if (present)

found = 1;

c-oid-node = the node in the anchor node list with c-o0id;

if (check-class-compatibility(tid, c-oid, type, found,
lock-mode, intention-lock-mode))

{
Read the object from the disk;
Send it to the client;
}
}
else
{
found = 0;

object = read the object from the disk;
ancestor-list = the list of ancestor oids in the object.
if (check-class-compatibility(tid, c-oid, type, found,
lock-mode, intention-lock-mode))
Send object to the client;

check-class-compatibility(tid, c-oid, type, found, lock-mode,
intention-lock-mode)

{
if (found)
{
Scan the transaction list in the anchor-node for c-oid and
then check;
if(tid holds a lock ’existing mode’ on c-o0id)
{

if the ‘existing node’ is held for class operation, then
using the conversion matrix find the ’new-mode‘ and the
corresponding intention mode
if (check-conflict(tid, c-oid, type, found, new-mode,
intention-lock-mode))

Update the existing tid node to the new-mode and

corresponding ancestors in the intentional mode,

by traversing the parent pointers;

return 1;
else if(check-conflict(tid, c-oid, type, found, lock-mode,
intention-lock-mode))

Make an entry in tid node for lock-mode and in
its ancestors in intentional modes, by traversing
the parent pointers;
return 1;

}

else if(check-conflict(tid, c-oid, type, found, lock-mode,

intention-lock-mode))

Create tid node with lock-mode for c-oid and for
all their ancestors with intention-lock-mode in their
respective transaction list and include them in the
’same tid’ list. This can be done by traversing the
parent pointer list;
return 1;

}

else

if (check-conflict(tid, c-oid, type, found, lock-mode,

intention-lock-mode))
{

/* Build the ancestor hierarchy */

Create the anchor node for c-oid and create the tid node
with its lock modes in the transaction list, and include
tid in the ’same tid’ list;

Create the ancestor nodes and the tid nodes with intention-
lock-mode in the respective anchor node transaction list;
include tid in the ’same tid’ list using PATH;

return 1;

b

return O;

b

acquire-instance-lock(tid, i-oid, type, lock-mode,

{

intention-lock-mode)
Hash into ILT keyed on (i-oid,type);
/*ILT does not a AHT */

Search the node list of that bucket for i-oid;
if (present)

{
found = 1;
i-oid-node = the node in the bucket linked node list
with i-o0id;
if (check-instance-compatibility(tid, i-oid, type, found,
lock-mode, intention-lock-mode))
{
Read the object from the disk;
Send it to the client;
b
b
else
{

found = 0;

77

78

object = read the instance object from the disk;
c-0id = the oid of the class the instance i-oid belongs to,
obtained from object structure;
/*ancestor-list = the list of ancestor oids in the object.*/
if (check-instance-compatibility(tid, i-oid, c-oid, type,
found, lock-mode, intention-lock-mode))
Send object to the client;

b

check-instance-compatibility(tid, i-oid, c-oid, type, found,
lock-mode, intention-lock-mode)

{
if (found)
{
Scan the node linked list for i-oid and check
if(tid holds a lock ’existing mode’ on i-o0id)
{
Find the ’new-mode’ from the conversion matrix based on the
lock-mode and ’existing-mode’;
if (check-conflict(tid, i-oid, type, found, new-mode,
intention-lock-mode))
{
Update the existing i-oid node to the new-mode
in the ILT;
Update the corresponding ancestors’s tid nodes
in the intentional mode in CLT, by traversing the
parent pointers;
return 1;
}
}
else if(check-conflict(tid, i-oid, type, found, lock-mode,
intention-lock-mode))
Create tid node with intention-lock-mode for c-oid
and for all ancestors in their respective transaction list
and include them in the ’same tid’ list in CLT. This is be
done by traversing the parent pointer list;
Create and insert a node for i-oid in its bucket linked
list in ILT and make the parent class connection in CLT
and include this node in the ‘same tid’ list in ILT;
return 1;
}
else

if (check-conflict(tid, i-oid, type, found, lock-mode,
intention-lock-mode))
{

Build the ancestor hierarchy - create the anchor nodes
for c-oid and its ancestors; and create the tid node with

79

the intention-lock-mode in their respective transaction list in
CLT. Also establish the ’same tid’ connection;

Create and insert a node for i-oid in its bucket linked list in
ILT and make the parent class connection in CLT and include this
node in the ‘same tid’ list in ILT;

return 1;

b

return O;

b

check-conflict(tid, c-oid, type, found, lock-mode,
intention-lock-mode))

{
if (found)
{
Trace the parent pointers and check for conflits for
intention-lock-mode in the tranasction list for each of
the ancestors nodes.
if(any one of them are in conflicting mode)
put that request in the LOCK-WAIT-Q;
return O;
b
else
{
check for conflict with lock-mode on c-o0id for class
operations and on i-oid for instance operations;
if(no conflict)
return 1;
b
b
else
{

Hash on each of the ancestor to check for conflicts for
intention-lock-mode;

1f any of the ancestors is already in the CLT then
traverse the parent pointer to check for implicit locking
and conflict;

/* PATH is a data structure which keeps the 0IDs and hash
value for the ancestor path. It also keeps information about
the 0IDs in the ancestor list already in CLT. This information
is used to traverse the parent pointer */

80

Include the hash value and the 0ID in the PATH data structure.
If the O0ID is already present then flag it in PATH to indicate
that it already exists in CLT and its parent pointer can be
traversed.

Check for conflict with lock-mode on c-oid

if(any one of them are in conflicting mode)
{
put that request in the LOCK-WAIT-Q;
Discard PATH;
return O;
b
else
return 1;

lock-release(tid)

{
Traverse the linked list connecting all ’tid’ nodes and
remove it from the lock table (both CLT and ILT);
Scan the LOCK-WAIT-QUEUE and put all nodes with locks
on all oids on which the locks were released by ’tid’ in
front of the JOB-Q;
+

An exampleis taken to illustrate the working of the lock-table-structure. Referring

to Figure 4.5, suppose
1. Tl:update 12D
2. T2:read class definition of C_D
3. T3:read class definition of C_E

T1 gets IS locks on C_D, C_C, and C_A and an S lock on 1.2D. Since the class
hierarchy does not exist for C_D in the lock table at the beginning of T1, the ancestor
hierarchy for C_D, C_C and C_A is built in the lock table.

81

T2 gets IR lock on C_C and C_A and R lock on C_D. Since the ancestor hierarchy
already exists for C_D, the parent pointer list is traversed to create the T2 nodes.

The lock table structure at this point is shown in figure 5.5.

T T2
IS IR
CA N N
- " T1 T2
'=. | S 5
H \ \ L
: cC \ \
D‘/_l) \ \ T
\ \
\ \ | 2D
o s
L L. T D/
’_) IS R
cCD
_l P<hg

Figure 5.5. Lock Table Structure after T1 and T2 Acquired Locks

Now if T3 wants to read the definition of class C_E, it needs to only establish
only the C_E - C_C connection. The rest of the ancestor hierarchy already exists, so
it traverses through the parent pointer and sets locks.

If, T2 commits, the link connecting nodes of the T2 transaction is traversed in
both CLT and ILT and all T2 nodes are removed. Thus, the various stages of lock
table construction is illustrated through this simple example.

In summary, this chapter describes in detail the implementation of various com-

ponents in the Version I of multi-user CANDIDE. First, the implementation of client

82

and server is explained, the building of the lock table for CANDIDE is explained next,
and the use of the existing buffering techinique to provide recovery is described. Fi-

nally the working of the lock table was illustrated with an example.

CHAPTER 6
CONCLUSION

6.1 Summary

We have made three major contributions through this thesis towards making

CANDIDE a multiuser system.

1. We have designed the multiuser CANDIDE for Version I and discussed the
complete implementation of Version I. We chose the client/server architecture
for its suitability for our system. Also, we discussed the preliminary thoughts

for the design for Version 11

2. We have designed an efficient concurrency control (CC) mechanism based on the
theory of granularity locking and designed an efficient lock table to suit our CC

mechanism. This CC mechanism is aimed at providing maximum parallelism.

3. Finally, we have demonstrated the feasibility of implementing this system on
PCs. NetBIOS communication software was recommended to implement this

system on PCs, as it is compatible with most of the existing LANs.

6.2 Future Work

As this is the first step towards making CANDIDE a multiuser DBMS, there are
lot of extensions required to make the system efficient and complete. Some of them

are listed below.

e Recovery has not been addressed in this thesis. It can be easily implemented
for version I using the OID table. For Version II, the next step would be to

design an efficient recovery protocol for CANDIDE.
83

84

Extensions can be made to provide efficient buffer management. There exists
and buffer management policy in Version II, this thesis does not discuss the

effect of CC on this buffer management policy.

One important future work would involve the design of the deadlock manager

for CANDIDE.

Version II stores multiple copies of an object to speed up access. The effect of
this on CC mechanism has not been discussed in this thesis and this would be

another area of interest in future.

The effect of physical clustering on CC mechanism at the implementation level

has to be studied.

Finally, research can be done towards having multiple servers.

APPENDIX A
THE CLIENT PROGRAM

#tinclude <stdio.h>
#include <iostream.h>
#include <dos.h>
#include <io.h>
#include <string.h>
#include <mem.h>
#tinclude <fcntl.h>
#include <sys\stat.h>
#include <process.h>
#include <share.h>

#include <netbios.h>

NCB send_ncb;

NCB add_name_ncb;
NCB delete_name_nchb;
NCB call_ncb;

NCB cancel_ncb;

NCB hangup_ncb;

// NetBios machine must be of 16 chars. If the name is not of 16 chars
// the it is padded to the right with blank spaces.

void expand_to_16_chars(char *name)
{
char *p;
char tmp[16];
int 1;

memset (tmp, ’ ’, 15);
p = name;
i=0;
while (i < 15 && *p)
{
tmp[i] = *p;
1++;
ptt;
by
tmp[15] = ’\0’;
strcpy (name, tmp);

89

86

* Build the ’add_name’ NCB and send it out
* across the network.

*
*/
void net_add_name(char *name)
{
memset (&add_name_ncb, 0, sizeof (NCB));
add_name_ncb.NCB_COMMAND = ADD_NAME;
strcpy(add_name_ncb.NCB_NAME, name);
expand_to_16_chars(add_name_ncb.NCB_NAME) ;
NetBios(&add_name_nchb) ;
+
J¥ — = = = = = = - - - - - - - - - - - - - - - - */
/%
* Build the ’delete_name’ NCB
*
*/
void net_delete_name(char *name)
{
memset (&delete_name_ncb, 0, sizeof (NCB));
delete_name_ncb.NCB_COMMAND = DELETE_NAME;
strcpy(delete_name_ncb.NCB_NAME, name);
expand_to_16_chars(delete_name_ncb.NCB_NAME) ;
NetBios(&delete_name_ncb);
+
J¥ ——mm - */
/%
* "Call" another workstation.
*/
void net_call(char *who, char *us, unsigned char rto, unsigned char sto)
{
memset (&call_ncb, 0, sizeof(NCB));
call_ncb.NCB_COMMAND = CALL;
strcpy(call_ncb.NCB_NAME, us);
strcpy(call_ncb.NCB_CALLNAME, who);
expand_to_16_chars (call_ncb.NCB_NAME) ;
expand_to_16_chars (call_ncb.NCB_CALLNAME);
call_ncb.NCB_RTO = rto;
call_ncb.NCB_STO = sto;
NetBios(&call_ncb);
+
J¥ ——mm - */
/%

* Build the "Send" NCB and send it across the network.

87

void net_send(unsigned char 1lsn, void far *packet_ptr, int packet_len)
{
memset (&send_ncb, 0, sizeof(NCB));
send_ncb.NCB_COMMAND = SEND;
send_ncb.NCB_LSN = 1sn;
send_ncb .NCB_LENGTH = packet_len;
send_ncb .NCB_BUFFER_PTR = packet_ptr;
NetBios(&send_ncb);

+
J¥ — = = = = = = - - - - - - - - - - - - - - - - */
/%
* Build the ’cancel’ NCB and send it out
* across the network.
*
*/
void net_cancel(NCB *np)
{
memset (&cancel_ncb, 0, sizeof(NCB));
cancel_ncb.NCB_COMMAND = CANCEL;
cancel_ncb.NCB_BUFFER_PTR = np;
NetBios(&cancel_ncb);
+
J¥ — = = = = = = - - - - - - - - - - - - - - - - */
/%
* Build the ’hang up’ NCB and send it out
* across the network. Wait for completion.
*
*/
void net_hangup(unsigned char lsn)

memset (&hangup_ncb, 0, sizeof(NCB));
hangup_ncb.NCB_COMMAND = HANG_UP;
hangup_ncb .NCB_LSN = l1sn;
NetBios(&hangup_ncb) ;

+

int main(void)

{

char machine_name[16] = "xxx_big_kahuna";
char local_name[16];

char my_name[16] ;

unsigned char *netbios_name_number, local_session_number;

int i; // Initialising

88

char destination[16];
char mes_buffer[] = "Hello BIG_K";

// The first step would be to test if NetBIOS is loaded.
// If not exit.

Step_1:

// Testing if NetBios is loaded!!!!
if (is_netbios_loaded() == 0)
{
printf("Netbios is not loaded \n");
exit(1);
+
else
printf (" NETBIOS is loaded \n");

// The second step would be to "add_name_ncb"
// This is how you would be recognised to the others

Step_2:

get_machine_name(local_name, netbios_name_number) ;

printf (" This machine is %s stops here \n", local_name);
gets(my_name) ;

net_add_name(my_name) ;

while (add_name_ncb.NCB_CMD_CPLT == 0xFF)

if (add_name_ncb.NCB_CMD_CPLT '= 0)
{
printf ("ERROR. \"add_name_ncb\" NetBios says : %s. \n",
net_error_message[(int) add_name_ncb.NCB_CMD_CPLT]);
exit(1);
+
printf (" Added the Machine name to the local name table = %s \n",
my_name) ;
getchar();

// Step_3 would be to establish a session with the server using the CALL
// command.

Step_3:

strcpy(destination, machine_name);
expand_to_16_chars(destination);
net_call(destination, my_name, 20, 20);
while (call_ncb.NCB_CMD_CPLT == 0xFF)

b

89

if (call_ncb.NCB_CMD_CPLT == 0)
{

local_session_number = call_ncb.NCB_LSN;
printf ("LSN = %d \n", local_session_number);
t

else

{
printf("Error: \"call_ncb\" NetBios says : %s. \n",

net_error_message[(int) call_ncb.NCB_CMD_CPLT]);
exit(1);
}

printf("Connection Established with the server.\n");

getchar();
getchar();

// Once you establish a connection then send messages to the server
// using the send messge

Step_4:

strcpy(destination, machine_name);
expand_to_16_chars(destination);
net_send(local_session_number, mes_buffer, strlen(mes_buffer));

while (send_ncb.NCB_CMD_CPLT == O0xFF)

b

if (send_ncb.NCB_CMD_CPLT != 0)
{

printf("Error: \"send_ncb \'" NetBios says : %s. \n",
net_error_message[(int) send_ncb.NCB_CMD_CPLT]);

exit(1);

+

printf("Sent the message to the server.\n");
getchar();
getchar();

// After sending the message cancel all pending operations using
// the Cancel command.

Step_b:

net_cancel(&call_ncb);
while (cancel_ncb.NCB_CMD_CPLT == O0xFF)

if (cancel_ncb.NCB_CMD_CPLT !'= 0)
{

printf("Error: \" cancel-ncb\" NetBios says : %s. \n",
net_error_message[(int) cancel_ncb.NCB_CMD_CPLT]) ;
exit(1);

by
printf (" Canceled all pending operations. \n");
getchar();
getchar();

// After cancelling all pending operations the program should
// hangup the session it created

Step_6:

net_hangup(local_session_number) ;
while (hangup_ncb.NCB_CMD_CPLT == OxFF)

if (hangup_ncb.NCB_CMD_CPLT != 0)
{

printf("Error: \"cancel_ncb\" NetBios says : ¥%s. \n",
net_error_message[(int) cancel_ncb.NCB_CMD_CPLT]) ;
exit(1);
+
printf (" Hung Up. \n");
getchar();
getchar();

// Once you have sent a message to the other machine,
// delete your name from the local table

Step_T7:

net_delete_name(my_name) ;
while (delete_name_ncb.NCB_CMD_CPLT == 0xFF)

if (delete_name_ncb.NCB_CMD_CPLT !'= 0)
{
printf ("ERROR. \"delete_name_ncd\" NetBios says : %s. \n"
net_error_message[(int) delete_name_ncb.NCB_CMD_CPLT]) ;
exit(1);
+

printf (" Deleted the name from the local name table. \n");
getchar();
getchar();

return O;

b

90

3

APPENDIX B
THE SERVER PROGRAM

#tinclude <stdio.h>
#include <iostream.h>
#include <dos.h>
#include <io.h>
#include <string.h>
#include <mem.h>
#tinclude <fcntl.h>
#include <sys\stat.h>
#include <process.h>
#include <share.h>

#include <netbios.h>

NCB receive_nchb;

NCB add_name_ncb;
NCB delete_name_nchb;
NCB listen_ncb;

NCB cancel_ncb;

char buffer[15];

unsigned char local_session_number;

// NetBios machine must be of 16 chars. If the name is not of 16 chars
// the it is padded to the right with blank spaces.

void expand_to_16_chars(char *name)

char *p;
char tmp[17];
int 1;

memset (tmp, ’ ’, 15);
p = name;
i=0;
while (i < 15 && *p)
{
tmp[i] = *p;
1++;
ptt;
by
tmp[15] = ’\0’;
strcpy (name, tmp);

91

* Build the ’add_name’ NCB and send it out
* across the network.

*
*/
void net_add_name(char *name)
{
memset (&add_name_ncb, 0, sizeof (NCB));
add_name_ncb.NCB_COMMAND = ADD_NAME;
strcpy(add_name_ncb.NCB_NAME, name);
expand_to_16_chars(add_name_ncb.NCB_NAME) ;
NetBios(&add_name_nchb) ;
+
J¥ — = = = = = = - - - - - - - - - - - - - - - - */
/%
* Build the ’delete_name’ NCB
*
*/
void net_delete_name(char *name)
{
memset (&delete_name_ncb, 0, sizeof (NCB));
delete_name_ncb.NCB_COMMAND = DELETE_NAME;
strcpy(delete_name_ncb.NCB_NAME, name);
expand_to_16_chars(delete_name_ncb.NCB_NAME) ;
NetBios(&delete_name_ncb);
+
J¥ — = = = = = = - - - - - - - - - - - - - - - - */
/%
* Build the ’listen’ NCB and send it out
* across the network. */
void net_listen(char *caller, char *us,
unsigned char rto, unsigned char sto)
{

memset (&listen_ncb, 0, sizeof(NCB));
listen_ncb.NCB_COMMAND = LISTEN;
strcpy(listen_ncb.NCB_NAME, us) ;
strcpy(listen_ncb.NCB_CALLNAME, caller);
expand_to_16_chars(listen_ncb.NCB_NAME);
expand_to_16_chars(listen_ncb.NCB_CALLNAME) ;
listen_ncb.POST_FUNC = NULL;
listen_ncb.NCB_RTO = rto;
listen_ncb.NCB_STO = sto;
NetBios(&listen_ncb);

+

92

93

J¥ — = = = = = = - - - - - - - - - - - - - - - - */
/%

* Build the ’cancel’ NCB and send it out

* across the network.

*

*/
void net_cancel(NCB *np)

{

memset (&cancel_ncb, 0, sizeof(NCB));
cancel_ncb.NCB_COMMAND = CANCEL;
cancel_ncb.NCB_BUFFER_PTR = np;
NetBios(&cancel_ncb);

t
J¥ — = = = = = = - - - - - - - - - - - - - - - - */
/%
* Build the ’receive’ NCB and send it out
* across the network. When the operation completes,
* let NetBIOS call the POST routine to handle it.
*/
void net_receive(unsigned char lsn,
void *packet_ptr, int packet_len)
{

memset (&receive_ncb, 0, sizeof (NCB));
receive_ncb.NCB_COMMAND = RECEIVE;
receive_ncb.NCB_LSN = lsn;

receive_ncb .NCB_LENGTH = packet_len;
receive_ncb .NCB_BUFFER_PTR = packet_ptr;
receive_ncb.POST_FUNC = NULL;
NetBios(&receive_nchb);

b

int main(void)

{

char local_name[16];

unsigned char *netbios_name_number;

int i; // Initialising
char source[16] = "Dot_machine";

// The first step would be to test if NetBios is loaded
Step_1:

if (is_netbios_loaded() == 0)
{
printf("Netbios is not loaded \n");
getchar();

94

exit(1);
+

else
printf (" NETBIOS is loaded \n");

// Step_2 would be to add the name to the local name table

Step_2:

//get_machine_name(local_name, netbios_name_number) ;
printf ("Enter the local table name: ");

gets(local_name) ;
printf (" \n This machine is %s stops here \n", local_name);

net_add_name(local_name);
while (add_name_ncb.NCB_CMD_CPLT == 0xFF)

if (add_name_ncb.NCB_CMD_CPLT != 0)
{

printf ("Error. NetBios said %s.\n", net_error_message[(int)
add_name_ncb.NCB_CMD_CPLT]) ;
exit(1);

}
printf (" Added the name to the local name table %s. \n", local_name);

Step_3:

// The third step would be to LISTEN for calls
net_listen(*, local_name, 20, 20);
printf("Listening for the workstation\n");
while (listen_ncb.NCB_CMD_CPLT == O0xFF)

b

if (listen_ncb.NCB_CMD_CPLT == 0)
{

local_session_number = listen_ncb.NCB_LSN;
printf ("LSN = %d \n", local_session_number);
+

else

{

printf("Error: \"listen_ncb\" NetBios says : ¥%s. \n",
net_error_message[(int) listen_ncb.NCB_CMD_CPLT]) ;

exit(1);

+

printf("Connection Established with the server.\n");

getchar();
getchar();

Step_4:

95

// Once the listen command is over the server is ready to receive.
// This is done using the RECEIVE command.

net_receive (local_session_number, (void far *) buffer, sizeof(buffer));
while (receive_ncb.NCB_CMD_CPLT == 0xFF)

b

if (receive_ncb.NCB_CMD_CPLT !'= 0)
{
printf ("Error: \"receive_ncb\" NetBios says : %s. \n",
net_error_message[(int) receive_ncb.NCB_CMD_CPLT]);
exit(1);
+
printf ("The message is \" %s \" \n ", buffer);
getchar();
getchar();
Step_b:

// The final step would be to delete the name from the local name table

net_delete_name(local_name);
while (delete_name_ncb.NCB_CMD_CPLT

b

0xFF)

if (delete_name_ncb.NCB_CMD_CPLT !'= 0)
{
printf ("ERROR. NetBios said: %s.\n", net_error_message
[(int)delete_name_ncb.NCB_CMD_CPLT]) ;
exit(1);
+
// printf("Received the message from the source\n");
getchar();

return 0;

b

APPENDIX C
THE BNF GRAMMAR OF CANDIDE

<class> ::= <classname> CLASS <primative-flag>
[SUPERCLASSES <superclass>+]
[SUBCLASSES <subclass>+]
[INSTANCE-LIST <inst>+]
[ATTR-CONSTRAINTS <attr-constraint>+]

<instance> ::= <inst-name> INSTANCE[<iparent>+]
[ATTR <attr-value>+]

<attr> ::= <attr-name> ATTR [<attr-parent>] <ve>

<disjoint-class> <disjoint-name> DISJOINT

<classname> <disj>+

<primative-flag> PRIMITIVE|DEFINED

<attr-constraint> ::= <attr-name> <constraint>+

<attr-value> ::= <attr-name> <type-i>+

<constraint> ::= <max> | <some> | <exactly> | <all>

<max> ::= ATMOST <integer>

<some> ::= ATLEAST <integer> <ve>

<exactly> ::= EXACTLY <integer> <ve>

<all> ::= ALL <ve>

<ve> ::= (DOMAIN <type-c>) | (VALUE<type-i>) |NIL

<type-c> ::= (CLASS <classname>) |STRING|INTEGERI|

IREAL | (RANGE <range>) | (SET <type-c>+) |

(SETDIF <classname> ’,’ <classname>) |

(COMPOSITE <attr-constraint>+)

<type-i> ::= (CLASS <classname>) |
(INSTANCE <inst-name>) |
STRING <string>) |
(INTEGER <integer>) |REAL <real>) |
(RANGE <range>) | (SET <type-i>+) |
(SETDIF <classname> ’,’ <classname>) |

96

(COMPOSITE <attr-value>+)

<range>

<num>
<superclass>
<subclass>
<inst>
<iparent>
<attr-parent>
<disj>
<classname>
<inst-name>
<attr-name>

<disjoint-name>

(C>C | ’[’) <num> INIL)’,’
(NIL | <num> (?)° | °17))

<real> | <integer>
<classname>
<classname>
<inst-name>
<classname>
<attr-name>
<classname>
<string>

<string>

<string>

<string>

97

[Art94]

[Bad93]

[Ban91]

[Bar91]

[Bec93]

[Bec94]

[Beck89]

[Car90]

[Chr90]

[EswT6]

[Gar88]

[Gra88]

REFERENCES

Artisoft’s Bulletin Borad Service. The DOS SHARE Command Ex-
plained. Share. TXT, 1994.

R. Badani. Nested transactions for concurrent execution of rules: Design
and implementation. Master’s thesis, Computer Information Sciences De-
partment, University of Florida, Gainesville, FL, October 1993.

Francois Bancilhon, Claude Delobel, and Paris Kanellakis. Building an
Object-Oriented Database System — The Story of O2. San Mateo, CA:
M. Kaufmann Publishers, 1992.

Naser S. Barghouti and Gail E. Kaiser. Concurrency Control in Advanced
Database Applications. ACM Computing Surveys, 23(3):269-317, Sep.
1991.

Howard W. Beck. FAIRS Database Design Manual. Technical report,
University of Florida, Gainesville, F1. Aug 1993.

Howard W. Beck, Tarek Anwar, and Shamkant B. Navathe. A Conceptual
Clustering Algorithm for Database Schema Design. IEEE Transactions
on Knowledge and Data Engineering, 6:396-411, June 1994.

Howard W. Beck, Sunit Gala, and Shamkant B. Navathe. Classification
as a Query Processing Technique in the CANDIDE Semantic Data Model.

Proceedings International Conference on Data Engineering, Los Angeles,

CA., Feb 1989.

Michele Cart and Jean Ferrie. Integrating Concurrency Control into an
Object-Oriented Database System. Proceedings, International Conference
on Management of Data, 3:363-377, June 1990.

Paul Christiansen. Networking With Novell NetWare: A LAN Manager’s
Handbook. Blue Ridge Summit, PA: Windcrest. 1990.

K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The Notions of
Consistency and Predicate Locks in Database Systems. Communications

of the ACM 19, 10(11):624-633, Nov. 1976.

Garza J.F. and Won Kim. Transaction Managemanet in Object-Oriented
Database System. Proceedings, International Conference on Management

of Data, Chicago, Ill., pages 37-45, June 1988.

J. Gray, R. Lorie, G. Putzolu, and 1. Traiger. Granularity of Locks and
Degree of Consistency in a Shared Data Base. Readings in Database
Systems, ed. M. Stonebraker. San Mateo, CA: Morgan Kaufmann, 1988.

98

[Gra93a]
[Gra93b]

[Hae82]

[Hen91]

[Kun81]

[Mai85]

[Mon91]

[Nan90]
[Rou91]

[Sch85]
[Sco88]

[Zdo90a]

[Zdo90b]

J. Gray and A. Reuter. Transaction processing: Concepts and Techniques.

San Mateo, CA: Morgan Kaufmann, 1993.

J. Gray and A. Reuter. Transaction Processing: Concepts and Tech-
niques. San Mateo, CA: Morgan Kaufmann, 1993.

Theo Haerder and N. Pippengar. Observations on Optimistic Concur-
rency Control Schemes. Technical Report RJ 3645, IBM Thomas J. Wat-
son Research Center, Yorktown Heights, NY., Oct 1982.

Henry F. Korth and Abraham Silberschatz. Database System Concepts.
1991. (Chapters 11 and 12 on Concurrency Control and Transaction Pro-
cessing).

H. T. Kung and John T. Robinson. On Optimistic Methods for Concur-
rency Control. ACM Transactions on Database Systems, 6(2):213-226,
June 1981.

David Maier, A. Otis, and A. Purdy. Development of an Object-Oriented
DBMS. Proceedings 1st International Conference on Object-Oriented Pro-

gramming Systems, Languages, and Applications. 472-486, Portland, Ore-
gon, Oct. 1986.

Michael Montgomery. Networking with LANtastic. Blue Ridge Summit,
PA: Windcrest, 1991.

Barry Nance. Network Programming in C. IN: QUE Corporation, 1990.
Nick Roussopoulos and Alexis Delis. Modern Client-Server DBMS Archi-

tectures. Proceedings, International Conference on Management of Data,

20(2):52-61, Sep. 1991.

W. David Schwaderer. C Programmer’s Guide to NetBIOS. IN: H.W.
Sams, 1985.

Currie W. Scott. LANS Explained: A Guide to Local Area Networks.
New York: Halsted Press,1988.

Stanley B. Zdonik and David Maier. A Shared, Segmented Memory Sys-
tem for an Object-Oriented Database. In Object-Oriented Database Sys-
tems, pages 273-285. San Mateo, CA: Morgan Kautmann, 1990.

Stanley B. Zdonik and David Maier. Fundamentals of Object-Oriented
Databases. In Object-Oriented Database Systems, pages 1-33. San Mateo,
CA: Morgan Kaufmann, 1990.

99

BIOGRAPHICAL SKETCH

Hema Kannan was born on August 15, 1970, at Shoranur, Kerela, India. She re-
ceived her undergraduate degree in electrical and electronics engineering from Madu-
rai Kamaraj University, India, in May 1992. She will receive her Master of Science de-
gree in computer and information sciences from the University of Florida, Gainesville,
in December 1994. Her research interests include object-oriented databases and im-

plementation of client/server systems.

100

