
iii

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my advisor, Dr.

Sharma Chakravarthy, for giving me an opportunity to work on this interesting topic and

for providing me great guidance and support through the course of this research work.  I

am also thankful to Dr. Eric Hanson and Dr. Herman Lam for serving on my committee.

I would like to express my special thanks to Sharon Grant and Hyoungjin Kim for

maintaining a well administered research environment and being so helpful in times of

need.  I am grateful to Shiby Thomas and Jennifer Sung for their invaluable help and

fruitful discussions during the design and implementation of this work.  Also I would like

to thank all my friends for their constant support and encouragement.

I would like to thank the Office of Naval Research, the Navy Command, Control

Ocean Surveillance Center RDT&E Division, and National Science Foundation for

supporting this work.

Last, but not the least, I thank my family for their endless love.  Without their

support, this work would not have been possible.



iv

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS… … … … … … … … … … … … … … … … … … … … … … … … ..iii
LIST OF FIGURES … … … … … … … … … … … … … … … … … … … … … … … … … … ... vi
ABSTRACT … … … … … … … … … … … … … … … ...… … … … … … … … … … … … … ..viii

CHAPTERS

1 INTRODUCTION.....................................................................................................1

2 OVERVIEW OF SENTINEL RULE SUPPORT .......................................................5

2.1   Event Modifiers .................................................................................................5
2.2   Event Classification ...........................................................................................5
2.3   Event Operators .................................................................................................7
2.4   Parameter Contexts ............................................................................................9
2.5   Support for Rules .............................................................................................10
2.6   Internal Rule Processing ..................................................................................11
2.7   External Rules .................................................................................................13

3 DESIGN ISSUES....................................................................................................16

3.1   Architecture.....................................................................................................16
3.1.1 Client-Server Paradigm .......................................................................16
3.1.2 Commonly Used Client-Server Architecture........................................17
3.1.3 Tiered Client-Server Architecture........................................................18

3.2   The Use of Java ...............................................................................................19
3.3   Exodus Storage Manager .................................................................................20
3.4   The Architecture of the Rule Editor .................................................................21

4 DESIGN AND IMPLEMENTATION DETAILS ....................................................23

4.1   Java Interface...................................................................................................23
4.1.1   Abstract Window Toolkit and Peers .....................................................23
4.1.2   Java Applet ..........................................................................................25
4.1.3   Java Application...................................................................................26
4.1.4   Self-guided Interactive GUI .................................................................29
4.1.5   Interface Logic .....................................................................................31

4.2   Information Wrapper .......................................................................................37
4.2.1   C++ Name Mangling and Condition/Action Functions .........................38
4.2.2   The String Representation of a Composite Event..................................40

4.3   Rule Editor Server ...........................................................................................41
4.3.1   Message-driven Services ......................................................................42



v

4.4   Rule Database..................................................................................................44
4.4.1   The Structure of the Rule Database.......................................................45
4.4.2   Rule Database Schema .........................................................................45
4.4.3   The Reconstruction of an Event Tree....................................................48
4.4.4   Persisting Information Using OQL .......................................................48

4.5   Dynamic Rule Loader ......................................................................................50

5 CONCLUSION AND FUTURE WORK .................................................................54

5.1   Conclusion.......................................................................................................54
5.2   Limitation and Future Work.............................................................................54

APPENDIX...................................................................................................................55

A OVERVIEW OF OQL FOR SENTINEL.................................................................55

A.1   Introduction to OQL[C++] ..............................................................................55
A.1.1   The Format of OQL[C++] ...................................................................55
A.1.2   The Features of OQL[C++] .................................................................57
A.1.3   OQL[C++] Preprocessor .....................................................................59

A.2   Introduction to OQL for Sentinel.....................................................................60
A.3  An OQL Application and Its Preprocessing......................................................60

A.3.1   Hospital Database................................................................................60
A.3.2   Preprocessing ......................................................................................63

A.4   More OQL Examples.......................................................................................65
A.5   Limitations......................................................................................................67
A.6   Demo Programs of OQL .................................................................................68

B WINDOW SAMPLES OF RULE EDIOR INTERFACE .........................................71

REFERENCES .............................................................................................................76

BIOGRAPHICAL SKETCH .........................................................................................78



vi

LIST OF FIGURES

Figure page

2.1  Event Classification..................................................................................................6

2.2  Event Operators........................................................................................................8

2.3  The Creation of the Internal and the External Rules ................................................15

3.1  Commonly Used Client-Server Architecture...........................................................17

3.2  Tiered Client-Server Architecture ...........................................................................18

3.4  The Architecture of the Flexible Dynamic ECA Rule Editor...................................21

3.5  The Functional Modules of the Flexible Dynamic ECA Rule Editor .......................22

4.1  AWT Component Class Diagram............................................................................24

4.2  Java AWT Components ..........................................................................................25

4.3  The Rule Editor Runs As a Stand Alone Application ..............................................28

4.4  The Rule Editor Runs Through WWW As an Applet ..............................................29

4.5  The Flow Chart of the Rule Editor Interface ...........................................................30

4.6  Possible Window Chains Supported by the Rule Editor ..........................................38

4.7  The Structure of the Rule Database.........................................................................45

4.8  An Example of the Event Tree Reconstruction........................................................49

A.1  Hospital Database Schema.....................................................................................61

A.2  OQL Demo Platform - Main ..................................................................................70



vii

A.3  Choosing A Schema ..............................................................................................70

A.4  OQL Demo Platform - Query Editor ......................................................................70

A.5  OQL Demo Platform - C++ Code ..........................................................................70

B.1  Rule Editor - Logo ................................................................................................71

B.2  Rule Editor -- Applications ....................................................................................71

B.3  Rule Editor - Operations… … … .............................................................................71

B.4  Rule Editor - Event Operators ................................................................................71

B.5  Rule Editor - Existing Events… .............................................................................72

B.6  Rule Editor - Methods… … .… … ...........................................................................72

B.7  Rule Editor - Temporal Events… ...........................................................................72

B.8  Rule Editor - Plus Editor… … .… ...........................................................................72

B.9  Rule Editor - Periodic Editor… ..............................................................................73

B.10 Rule Editor - Or Editor… … .… .............................................................................73

B.11 Rule Editor - Not Editor… . ...................................................................................73

B.12 Rule Editor - Help… .… … .. ..................................................................................73

B.13 Rule Editor – Warnings.........................................................................................74

B.14 Rule Editor - Function Editor 1… .........................................................................74

B.15 Rule Editor - Function Editor 2… .........................................................................74

B.16 Rule Editor - Rule Attribute Editor .......................................................................75



viii

Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Engineering

A FLEXIBLE DYNAMIC ECA RULE EDITOR FOR SENTINEL:
DESIGN AND IMPLEMENTATION

By

Hung-Ju Chu

May 1998

Chairman: Dr. Sharma Chakravarthy

Major Department: Computer and Information Science and Engineering

A wide range of emerging applications that tend to be large and need timely

response have prompted the development of active object-oriented database management

systems (OODBMS). An active OODBMS uses event-condition-action (ECA)

production rules that specify events to be monitored and their reaction to those events

under certain conditions. The active OODBMS can be implemented under compilation-

based or interpreter-based environment.  One of the disadvantages of a compilation-based

system is that we need to reedit, recompile, and link an application's source code to make

any change visible.  This implies that users have to painstakingly go through the

procedure mentioned above to add, delete, or modify rules in a compilation-based active

OODBMS.  This becomes very unpractical especially if the users need to manipulate the



ix

rules frequently.  Hence, managing the rules in an easy and efficient manner plays an

important role in the success of an active OODBMS.

This thesis proposes a flexible design and implementation of Dynamic ECA Rule

Editor for external rule support in Sentinel.  The editor provides users with a friendly

environment to manipulate the rules without changing, recompiling, or relinking any

source code of their applications.  Java language is used to implement the interface

module that allows the editor to be used either from within a web browser or as a stand-

alone application.  To facilitate expansion and porting, OQL and a tiered client-server

architecture are adopted to decouple the dependency among the three basic database

application elements: presentation (interface logic), functionality (application logic), and

data (database logic).

The OQL preprocessor has been modified to complete its functionality before it is

applied to the implementation of the Rule Editor.  Several bugs resulting from wrong

C++ code translation have been fixed.  The fixed clauses include UPDATE, DELETE,

IN, WHERE, JOIN, and Subquery.  INSERT clause and the capability of querying on

transient objects have been extended.  To facilitate the understanding of the OQL and to

allow ad hoc queries, several interface programs has been implemented.



1

CHAPTER 1
INTRODUCTION

A wide range of emerging applications that need timely response entails developing

active database management systems (DBMS).  These applications, such as computer

aided manufacturing, power distribution network, automated office workflow control,

and air traffic control, need to continually monitor their database state and quickly

respond with proper actions to certain events.  Traditionally, to meet this requirement,

either polling was used to determine whether the situation being monitored has occurred

or each program that updates the database was augmented to check the situation being

monitored.  The former approach is not efficient because of the overhead of the polling.

The latter approach compromises modularity and reuse of code.  Active DBMSs have

been proposed to solve these problems.

An active DBMS typically adopts event-condition-action (ECA) production rules

that specify events to be monitored and their reaction to those events under certain

conditions.  This self-monitoring and self-reactive features seamlessly integrate with

traditional DBMSs and elegantly provide the means to meet the various needs of today's

applications.  Most of the earlier research and commercial implementations of active

databases focused on extending the active capability in the relational database systems.

Recently, the focus has been moved to object-oriented database management systems

(OODBMSs) to meet the needs of more complex applications, like image and graphic

databases, scientific databases, and multimedia databases.  The object-oriented paradigm

provides more powerful capabilities to model complex objects.



2

An active OODBMS can be implemented under compilation-based or interpreter-

based environment.  The two systems have tradeoffs in terms of efficiency and

productivity.  One of the advantages of using the interpreter-based system is that it makes

source-level debugging operations easier because all run-time errors refer to source-level.

This environment readily accommodates incremental changes to code and dynamic

specification of code.  On the other hand, applications developed in the compilation-

based environment can be run very efficiently because they are already in the binary-

level.  However, their source codes need to be compiled and linked before they can be

run.

Sentinel is a compilation-based active OODBMS.  As mentioned earlier, one of the

disadvantages of the compilation-based system is that we need to reedit, compile, and

link applications' source codes to make changes visible.  This implies that the users have

to painstakingly go through the procedure mentioned above to make any change on rules

in a compilation-based active OODBM.  This becomes impractical, especially if the users

need to manipulate the rules frequently.  Hence, managing rules in an easy and efficient

manner plays an important role in the utility of an active OODBMS.

There is a need for a tool to manipulate the rules of existing applications without

going through the steps involved in the compilation-based system.  To meet the need, a

Dynamic Rule Editor for Sentinel (DRES) [1] with Tcl/Tk interface was developed.

However, the DRES has several limitations resulting from its underlying architecture and

the design itself.  They are summarized as follows:

• Interface logic and application logic are mixed together on account of the Tcl/Tk

usage.  It compromises the modularity and makes porting, maintenance, and



3

expansion difficult.  Besides, it limits that the interface must be run on the same

machine in which the application logic is running.  When multiple users access

the editor simultaneously, multiple application logic modules need to be invoked

during the whole sessions, which wastes system resources.

• A function-pointer data structure is maintained.  The data structure is used to

associate a rule with condition/action functions at run time.  Whenever the user

makes any change on rules, the structure needs to be compiled and made as

library for later references, which is time-consuming and unnecessary.

• Applications still need to be relinked to make any change on rules visible.

• Rule database of DRES is represented by structures instead of classes.  It does not

take advantage of the OQL capabilities of an OODBMS.

• The editor only supports rules with primitive events (only method events).  Rules

with temporal, composite, or external events also need to be supported.

This thesis is primarily motivated by these limitations.  It proposes a flexible design

and implementation of Dynamic ECA Rule Editor for external rule support to Sentinel.

The editor provides the users with a friendly environment to manipulate the rules without

changing, recompiling, or relinking any source code of their applications.  Java language

is used to implement the interface module that allows  the editor running either within a

WWW browser or as a stand-alone application.  To facilitate expansion and porting,

Object Query Language (OQL) and a tiered client-server architecture are adopted to

decouple the dependency among the three basic database application elements:

presentation (interface logic), functionality (application logic), and data (database logic).



4

The remainder of this thesis is organized as follows: Chapter 2 presents an overview

of current rule support in Sentinel.  The rules supported by Sentinel can be classified into

two types, namely internal (static) rules and external (dynamic) rules.  How the external

rules work through the Rule Editor is discussed in the last section of this chapter.

Chapter 3 discusses some design issues, analyzes their advantages and disadvantages, and

describes how they are applied in the design of the Rule Editor.  In chapter 4, we discuss

more details about the back-end design and implementation.  Chapter 5 has a conclusion

along with its discussion of the limitation and future direction of the Rule Editor.  As

OQL is used in the implementation of the editor and it is also one of the contributions of

this thesis, it is discussed in the appendix as a separate chapter.



5

CHAPTER 2
OVERVIEW OF SENTINEL RULE SUPPORT

Sentinel is an integrated active OODBMS that incorporates ECA rules using Open

OODB Toolkit [2] under C++ environment.  ECA rules are seamlessly incorporated into

C++ language through Snoop [3] language.  Snoop defines event and rule specification,

classifies events into a class hierarchy, and supports several event operators for

constructing composite events.

2.1   Event Modifiers

Conceptually, an event is an atomic occurrence.  It happens completely or not at all.

From the point of view of implementation, it is necessary to choose a point (or several

points) as an event along a sequential computation during a closed interval.  Event

modifiers [4] are used to create one or more events that correspond to points of interest in

a closed interval.  Snoop supports two modifiers, begin-of and end-of, to map an arbitrary

interval on the time line into two events.

2.2   Event Classification

Events can be organized into a hierarchy of event classes based on their structure

and behavior.  Each event class represents a unique event type.  For example, in an

object-oriented database system, there may be a method, named Insert, defined in a

class, named Stock.  Every instance of the Stock class may potentially invoke its Insert

method and produce an event, such as begin-of Insert.  We can classify the events

originating from the Insert method into an event class.



6

In a distributed environment, events can be broadly classified into local and global

events.  Local events are further classified into local primitive events and local composite

events.  Similarly, global events are further classified into global primitive and global

composite events.  This classification is illustrated in Figure 2.1.

Figure 2.1: Event Classification

Local primitive events are predefined in an application and detected by a

mechanism embedded in the system [5], while Global primitive events are defined and

detected outside of the application and are referenced by an application in a distributed

system [6].  Primitive events can be further classified into method events and temporal

events.  In the object-oriented paradigm, objects can be encapsulated by data (attributes)

and methods (behavior).  In Sentinel, every method of a class in the application

potentially can be specified as an event by the event modifiers.  They are referred to as

method events.  A temporal event is an instance of temporal event class [7].  It is defined

by specifying a point on the time line.  Essentially, there are two ways of specifying a

Events

Local Events Global Events

Primitive Composite

Method Temporal

RelativeAbsolute

Primitive Composite



7

point on the time line: using an absolute value and using an offset from a well-defined

point on the time line.  An absolute temporal event is specified with an absolute value of

time.  For example, <11:35:55/10/6/97> is an absolute temporal event.  A relative

temporal event is explicitly specified by a reference point and an offset time value.  The

reference point may be any event that can be specified in Snoop including an absolute

temporal event.  For example,  <an-event-name + 5 sec> is a relative temporal event.

Both the method event and the temporal event can be local or global depending on

whether their definitions, detection, and references are within an application or not.  A

composite event is defined as an event obtained by the application of an event modifier to

a composite event expression [8].  A composite event expression is defined as an event

expression formed by using a set of primitive event expression, event operators and

composite event expression constructed so far.  Again, a composite event can be local or

global.  If at least one of the constituent events of the composite event is a global event,

which is either composite or primitive, the composite event is regarded as a global

composite event.  Otherwise, it is a local composite event.  Figure 2.2 shows the event

operators supported in Snoop.  The following section describes each of these operators

and their semantics.

2.3   Event Operators

Snoop supports ten event operators so far.  The following is the summary of the

operators with brief explanations:

1. AND : Conjunction of two events, namely  E1 and E2, denoted by E1 ^ E2,

occurs when both events occur.  The order of occurrence of E1 and E2 is

irrelevant.



8

Figure 2.2  Event Operators

2. OR: Disjunction of two events, namely E1 and E2, denoted by E1 ∇  E2, occurs

when either E1 or E2 occurs.

3. SEQUENCE: Sequence of two events, namely E1 and E2, denoted by E1>>E2,

occurs when E2 occurs after the occurrence of E1.

4. NOT: NOT operator detects non-occurrence of an event, namely E2, in the closed

interval formed by two events, namely E1 and E3, denoted by ¬ E2[E1,E3].

5. ANY: The event , denoted by ANY(m,E1,E2,… ..,En) where m <= n, occurs when

m events out of n distinct events specified occur, ignoring the relative order of

their occurrences.

6. A (Aperiodic): A aperiodic event, denoted by A(E1,E2,E3), is detected for every

occurrence of E2 during the half-open interval formed by E1 and E3.

7. A*: It is a cumulative variant of A operator.  A aperiodic-star event, denoted by

A*(E1,E2,E3), is detected when E3 occurs provided E1 has already occurred.

The occurrences of E2 are accumulated during the half-open interval formed by

E1 and E3.

Event Operators

AND OR NOTSEQUENCE ANYPLUS PERIODIC APERIODIC

AA*PP*



9

8. P (Periodic): A periodic event, denoted by P(E1,E2,E3) where E2 is a relative

temporal event, is detected for every time period specified by E2 during the

half-open interval (E1,E3].

9. P*: It is a cumulative variant of P operator.  A periodic-star event, denoted by

P*(E1,E2,E3) where E2 is a relative temporal event, is detected only once when

E3 occurs provided the E1 has already occurred. The time specified in E2 is

accumulated whenever E2 occurs.

10. PLUS:  It is a variant of SEQUENCE operator.  A PLUS event, denoted by E1 +

[T] where [T] is a relative temporal event, is detected once a time interval [T]

elapsed after the occurrence of E2.

2.4   Parameter Contexts

Snoop introduces the notion of parameter contexts [8] to capture application

semantics for computing parameter or consuming event occurrences (of composite

events) when they are not unique.  These contexts are precisely defined using the notion

of initiator and terminator events.  An initiator of a composite event is a constituent event

that can start the detection of the composite event whereas a terminator is a constituent

event that can detect the occurrence of the composite event.  A composite event may be

comprised of several primitive events that can be initiators and terminators of another

composite events.  When the occurrences of several primitive events constitute a

composite event, different possibilities for detecting composite events exist.  By carefully

analyzing several classes of applications, four parameter contexts are proposed in Snoop:

1. Recent : In this context, only the most recent occurrence of an initiator for any

event is used.  All other occurrences of a constituent event will not be used in



10

detecting another composite events and they will be deleted when the event

started by the initiator occurs. The initiator of the event will continue to initiate

another event until another initiator occurs.

2. Continuous: Each occurrence of the initiator of an event continuously initiates the

event.  In this context, a terminator may terminate one or more occurrences of the

same event.

3. Chronicle:  The initiator and terminator pair of a composite event is unique and

deleted after the event occurred.  They are paired based on chronological basis.

4. Cumulative: In this context, for each constituent event, all occurrences of the

event are accumulated until the composite event is detected.  In other words, the

parameters of a composite event include the parameters of all the occurrences of

each constituent event.  All the occurrences of each constituent event are flushed

whenever its associated composite event is detected.

2.5   Support for Rules

In the context of Sentinel, a rule consists of an event, a condition function of

boolean type, an action function of void type, and a few attributes.  Once an event is

detected by the system, the associated condition function will be evaluated and the

associated action function will be executed based on the result of the evaluation.  Sentinel

supports nested rules.  When a rule’s action raises an event that triggers other rules there

is a nested execution of rules.  As part of the rule semantics, it is necessary to know

whether to execute condition and action functions immediately after the associated event

has been raised.  This is an issue about the coupling between the event and the condition-

action pair [5].  Currently, there are three coupling modes supported by Sentinel, namely,



11

1. Immediate mode

2. Deferred mode

3. Detached mode

Sentinel supports multiple rules.  An event can trigger several rules.  Therefore, it is

necessary to support rule execution mode that supports concurrent and prioritized serial

execution of rules.  Sentinel uses Priority classes for specifying rule priority.  An

arbitrary number of priority classes can be defined and totally ordered.  A rule is assigned

to a priority class by indicating its number or the name of the class.  Sentinel provides a

global conflict resolution mechanism among the priority classes and concurrent execution

of rules that belong to the same priority class.

Sentinel also introduces two types of rule trigger modes for specifying the time

from which event occurrences are to be considered for the rule.  The two options are:

1. Now: Start detecting all constituent events starting from this time instant.

2. Previous: All previous constituent events are acceptable

The rules supported by Sentinel are specified in the classes (class-level) and the

code (instance-level) of an application.  They are referred to as internal (static) rules.  The

following section introduces the preprocessing of the internal rules.

2.6   Internal Rule Processing

The processing of the internal rules goes through the following steps:

•Designing and Editing Phase

The user designs and edits his application by specifying the events and the rules

for the application using Snoop, along with the class definitions.  For example, the



12

following code is the interface of a reactive class that specifies a class-level PLUS

composite event and a class-level rule.

class STOCK: public REACTIVE
{
… …
event end(e4) int get_price();
event e_plus = e4 + [0 months + 0 days + 0 hrs + 0 mins + 5 secs];
rule R1[e_plus, cond1, test_action3, RECENT];
… … .
}

•Sentinel Processing Phase

The source code edited in the first phase is then processed by the Sentinel

preprocessor (Spp).  For example, the specification for the PLUS event and the

associated rule is transformed into corresponding class constructors in the main

function of the application by Spp as follows:

main{
{
… ..
PRIMITIVE *STOCK_e4 = new PRIMITIVE( "STOCK_e4", "STOCK",
"end","int get_price()");
PRIMITIVE *STOCK_rel1 = new PRIMITIVE( "STOCK_rel1",
 "TEMPORAL", "","0 months + 0 days + 0 hrs + 0 mins + 5 secs");
PLUS *STOCK_e_plus = new
PLUS("STOCK_e_plus",STOCK_e4,STOCK_rel1);
RULE *R1 = new RULE("R1", STOCK_e_plus, cond1, test_action3, RECENT);
…
}

Note: PRIMITIVE and PLUS are two of the eleven event classes currently

supported by Sentinel.  The rest of them are REMOTE, AND, OR, SEQ, A, P,

A_star, P_star, and NOT.  They are all inherited from EVENT class.

These EVENT and RULE class constructors build an event-rule graph that is used

for the event detection and the rule execution.  The event detection logic and the



13

rule execution logic are implemented in the body of these classes, which are

beyond the scope of this thesis.  They are discussed in other Sentinel papers

[6][7][8][9].

•OpenOODB and C++ Compiler Processing Phase

The code is then processed by OpenOODB preprocessor and finally compiled by

a C++ compiler into an executable.  The details are discussed in [7].

2.7   External Rules

As we have seen, the internal rules are part of the application source code.  We need

to go through the steps mentioned above to make any change to the rules visible.  The

idea of the external (dynamic) rules is mainly motivated by this limitation.  Conceptually,

the external rules are persisted in a database and inserted into an application when it is

invoked.  How we implement the external rules can be briefly described as follows: A

function, namely load_dyn_rules, is inserted, by Spp, into the beginning of the

application's main function.  It will be executed whenever the application is invoked.

Based on some persisted information outside of the application, the function creates

events and rules by calling the RULE and EVENT class constructors.  The Rule Editor

proposed in this thesis is about the design and implementation of the ways to collect,

persist, and use the information for creating the events and the external rules.  One of the

primary difficulties with the external rules is how the Rule Editor associates a rule with

its condition/action functions at run time.  This is solved by using a dynamic linking

mechanism supported by Solaris operating system on which the external rule loader is

running.  We persist the function names and make the functions as DLL through the Rule

Editor.  The load_dyn_rules function uses the names to retrieve the function pointers by



14

using the utilities, dlopen and dlsym, at run time.  The details of the Dynamic Rule

Loader and the way to avoid C++ name mangling will be discussed in section 4.5.  Figure

2.3 illustrates the ways to create the internal and the external rules.

The Rule Editor mainly consists of three parts: (i) a way to collect the information

(the GUI), (ii) a way to persist the information(the application logic and the rule

database), and (iii) a way to use the information for creating the events and the rules (the

Dynamic Rule Loader).  Three design issues come to mind: the architecture to build the

three parts, the choice of the language used to implement the GUI, and the database

management system used to implement the rule database.  The following chapter

discusses these design issues and describes how they are applied to the design of the Rule

Editor.



15

Figure 2.3 The Creation of the Internal and the External Rules

External RulesInternal Rules

Editing Events
and Rules in
Snoop syntax

Sentinel, Open
OODB
Preprocessing, and
C++ Compilation

Dynamic Linking

Source code

Editing Events and
Rules through the
Rule Editor

Condition/Action
Functions and Rule/Event
Information

Rule Database

Condition/Action
Function Dynamic
Linking Library

Static Linking

      Executable

Dynamic Rule Loader

Sentinel Library

Exodus Server

Results ..



16

CHAPTER 3
DESIGN ISSUES

The Dynamic ECA Rule Editor for Sentinel aims at the following design goals:

easy to maintain and expand, easy to use, efficient, concurrent access, portability, and

usage from web.  Based on these goals, this chapter discusses some design issues

including the tiered client-server architecture, the use of Java language, and the Exodus

Storage Manager.  The last section describes how they are applied to the design of the

Rule Editor.

3.1   Architecture

Modularity is the key feature to make programs easy to maintain and expand.  To

make an application highly modular, one solution is partition the application logic.

3.1.1    Client-Server Paradigm

The client-server paradigm is used by almost all network applications in the

distributed computing world.  The paradigm is basically motivated by the problem of

rendezvous.  To understand the problem, we can imagine how difficult it is to have two

processes communicate to each other without one side waiting for the other side to

contact.  In the client-server paradigm, network applications are broadly divided into two

categories, namely, a client and a server.  A program that initiates a peer-to-peer

communication is called a client, while a program that infinitely waits for a client's

contact is called a server.



17

It is not necessary that a program is always a client or a server.  It may play both the

roles.  It is not unusual to find a server for an application acting as a client for another.

Hence, there exists the concept of tiers of the client-server relation.

3.1.2    Commonly Used Client-Server Architecture

Early GUI database applications usually adopt single-layered client-server

architecture.  The architecture is illustrated in Figure 3.1.

Figure 3.1  Commonly Used Client-Server Architecture

In the architecture, interface logic and application logic are deeply coupled to each other

which results in the following limitations:

• Network traffic and CPU costs are expected to increase when multiple users

access concurrently.  Both interface logic and application logic are needed to be

invoked during the whole session for every user when multiple users are

accessing simultaneously, which increases the CPU and other resource costs.  In

addition, the remote database transport protocols used to carry the transaction

usually results in large network traffic for every query.  To mediate interaction

Single-Layered

Query Transactions

Interface + Application Logic

Database Server



18

between clients and the server among multiple query transactions, the effective

bandwidth of network, and thus the query transaction processing speed, is reduced

• The coupling of interface logic and application logic compromises modularity and

thus makes maintenance, expansion, and porting difficult.

As merging applications tend to be large and distributed, maintenance, cost, and

efficiency become important issues.  A double-layered architecture has been widely used

as a solution to the above limitations.

3.1.3    Tiered Client-Server Architecture

By separating interface logic and application logic in the single-layered

architecture, we get a tiered architecture, which consists of three tiers: interface logic

(presentation), application logic (functionality), and database logic (data).  It is illustrated

in figure 3.2.

Figure 3.2  Tiered Client-Server Architecture

Well-defined boundaries in this architecture give more flexibility and modularity and

improve system cost and performance.  It is possible in the architecture to significantly

improve the network performance by reducing the traffic caused by query transactions.

Double-Layered

Query Transactions

Interface

Database Server
 Application
 Logic



19

For example, in this architecture, the interface interacts with the application logic via

standard protocol like socket (TCP/IP) or RPC.  The application logic interacts with

database server via standard database protocols.  The application logic includes mediating

requests from multiple clients, translating requests into database queries, passing queries

to database server, and translating data from database server into clients' data in return.

Significant traffic reduction between functionality module and database server can be

expected.  In addition, system cost reduction is possible.  For instance, given the

application logic (server) is running, only interface needs to be invoked per user when

multiple users access simultaneously.  From the modularity point of view, the separated

modules are more manageable in nature. Software maintenance can be applied to each

module individually which makes expanding and porting easier.  As a result, long term

development cost is reduced [10].

3.2   The Use of Java

To meet the requirements of multi-platform and usage portability, we adopted Java

as the implementation language for the interface module of the editor.  The reasons are

described as follows: First, Java is an object-oriented programming language.  Its syntax

is similar to C and C++ that are "main-line", industry-proven languages.  Second, Java

has security, network, and machine independent features.  It was initially developed to

solve the problems of sharing software components in networked environment.  It was

designed to support multiple heterogeneous host machines.  Without any modification,

the compiled codes, known as the byte-code, of Java applications can be delivered to and

safely run on multiple heterogeneous platforms.  Java Virtual Machine, part of Java

specification, is responsible for Java's cross-platform delivery, the small size of its



20

compiled code, and Java's ability to protect users from malicious behavior.  Third, Java

has been integrated with the Word Wide Web (WWW).  WWW showed how media-rich

content could be accessed by clients on multiple platforms in uniform and simple ways.

However, the content supported by the Web's HTML document format was too limited to

satisfy the needs of current emerging complicated applications.  HTML extensions, such

as forms-based Common Gateway Interface (CGI) script, only highlighted those

limitations.  Embedding Java programs inside HTML pages, known as applets, has been

implemented to overcome those limitations.  With Java as the extension language, a Web

browser is no longer limited to a fixed set of capabilities.

3.3   Exodus Storage Manager

Sentinel applications use Exodus Storage Manager [11] to manage their stored

objects.  As the Rule Editor and the Sentinel applications must share the same stored rule

information for creating the external rules, Exodus is currently used as the storage

manager of the rule database.  Here we briefly introduce Exodus Storage Manager.

Exodus Storage Manager is a multiple-user object storage system supporting versions,

indexes, single-site transaction, distributed transactions, concurrency control and

recovery.  It has a client-server architecture.  An application program that uses the storage

manager may reside on a machine different from the machine or machines on which the

storage server or servers run.  The storage manager server is a multi-threaded process

providing asynchronous I/O, file, transaction, concurrency control, and recovery services

to multiple clients.  It stores all data on volumes which are either Unix files or raw disk

partitions.  It provides objects for storing data, versions of objects for grouping related

objects, and indexes for supporting efficient object access.



21

3.4   The Architecture of the Rule Editor

As we have seen in the earlier discussion, the tiered architecture is better than the

commonly used client-server architecture in many ways.  In order to apply the

architecture to the design of the Rule Editor, the editor is decomposed into several

manageable modules.  The architecture and the functional modules of the Rule Editor are

illustrated in figures 3.4 and 3.5 respectively.

Figure 3.4  The Architecture of the Flexible Dynamic ECA Rule Editor

The functionality of each module is described as follows.  The Java interface

provides the users with GUI to collect, validate, wrap, and display information. As a

client, it interacts with Rule Editor Server via TCP protocol.  The Rule Editor Server has

most of the application logic.  Based on requests from multiple clients, the Rule Editor

Server does corresponding jobs such as retrieving information from the rule catalog,

generating the DLL, and persisting the rule information by acting as a client to the

database server (Exodus server).  At run time, based on the rule database and the DLL,

Query Transactions

Java Interface

Exodus Server
 Rule Editor
 Server



22

Figure 3.5  The Functional Modules of the Flexible Dynamic ECA Rule Editor

the Dynamic Rule Loader invoked by Sentinel applications creates events and rules

by calling the EVENT and RULE class constructors.  The event detection logic and the

rule execution logic are implemented in these classes, which are discussed in other

Sentinel papers [6][7][8][9].

The following chapter discusses the details of these modules.

Sentinel
Applications

execution

Event Detection
Rule Execution

Dynamic Rule
Loader

Dynamic
Linking
Library

Rule
Database

Java
Interface

Rule Editor
Server

Rule
Catalog

Information
wrapper

Dynamic Rule Editor Domain



23

CHAPTER 4
DESIGN AND IMPLEMENTATION DETAILS

In this chapter, we discuss details of the modules used in the Flexible Dynamic

ECA Rule Editor.

4.1   Java Interface

Anyone writing Java applets and Java graphic applications is going to work with the

Abstract Window Toolkit, commonly referred to as the AWT, part of the freely

distributed Java Developer's Kit (JDK).  In the following subsection, we introduce the

AWT and its underlying windowing system.

4.1.1 Abstract Window Toolkit and Peers

As the programming interface for applet and graphic development, the AWT

provides a generalized set of classes.  They are mainly composed of the following four

classes: the Component class, Container class, Graphics class, and LayoutManager

interface.  Component class is an abstract class for GUI components such as menus,

buttons, labels, lists, and so on.  Container is an abstract class that extends Component.

Classes derived from Container, most notably Panel, Applet, Window, Dialog, and

Frame, can contain multiple components.  LayoutManager is an interface that defines

methods for positioning and sizing objects within a container.  Graphic class is an

abstract class that defines methods for performing graphic operations in a component.

Every component has an associated Graphic object.



24

The AWT is a platform-independent windowing toolkit.  This feature is made

possible by a set of AWT classes known as peers.  Peers are native platform-dependent

GUI components that are manipulated by AWT classes.  The AWT delegates the actual

rendering and behavior of frames, menus, panels, labels, buttons and so on, to the native

platform-dependent windowing system.

Figure 4.1 shows a class diagram of the relationship between components, containers,

layout managers, and peers. Figure 4.2 illustrates a window sample from the Rule Editor

GUI to demonstrate some Java AWT Components.

B has n As. A is inherited form B

Figure 4.1  AWT Component Class Diagram

Components
Container

LayoutManagerComponent
peers

TextComponent

TextField
TextArea

List

Label

LabelButton

Checkbox

1

n

n

11

n

1
n A

B
B



25

Figure 4.2  Java AWT Components

4.1.2   Java Applet

Applets are Java programs that execute within a Java-enabled WWW browser.  The

Java applets are launched by embedding the APPLET HTML tag in a web page and then

viewing that page with the browser.  For example, to execute the Rule Editor through a

browser, we have to embed the following code in the web page:

<APPLET CODEBASE ="http://www-pub.cise.ufl.edu/~hungju/RuleEditor/Class"
  CODE=RuleEditorApplet.class WIDTH=350 HEIGHT=60>
</APPELT>

Checkbox

Menu

LabelTextFiled

TextArea

Button

Scrollbar

Frame



26

The HTML tag CODEBASE ensure that the applet (the Rule Editor's interface) is

downloaded form that codebase machine.  When applets are executed in a Java-enabled

browser, the browser provides a great deal of the infrastructure necessary for the applets'

execution.  For example, when the Rule Editor web page is visited, the browser calls

init() and start() methods to initialize and start the display of the editor's interface.  When

the editor is no longer displayed, the browser calls stop() and destroy() to remove the

display and release system resources.

There is one notable security restriction with an applet.  It is that all communication

must be with the host that delivered the applet to its current host.  This implies that the

Rule Editor Server must be run on the Web server machine.

4.1.3   Java Application

The Rule Editor is a system tool for Sentinel.  It will be unsuitable that it must

always be used through a browser (unless we develop our own Java-enabled browser).  A

standalone Java application is also a desired way to implement the Rule Editor.  From the

developer's point of view, there are primarily two differences between a Java applet and a

Java application:

•An application must include a main() method.

•If the application requires a window, it must extend the AWT Frame class.

The other notable distinction between the two kinds of Java programs is that an

application dose not have the same security restrictions that an applet dose.  For example,

whereas an applet cannot write or modify files, an application can perform file I/O.

Applications are not constrained by the security restrictions that the Java-enabled browser

enforces on applets.



27

It is desirable to have the editor run in the both modes.  There are a number of ways

to write a Java program so that it can execute either form within a browser or as a

standalone application.  One way to do this is to center an Applet within a Frame, as in

the following example.

… … … …
1 public class RuleEditorApplet extends Applet {

… … … … … .
2     public static void main (String args[]) {

        RuleEditor  app = new RuleEditor ( … .. );
        … … … … … … … … .
    }
    public void init()   {  … … … … …   }
    public void start () {   … … … … .    }
    public void stop ()      {   … … … … .   }
    public void destroy () {   … … … …    }

3   class RuleEditor extends Frame {
    public RuleEditor (… .)

4     RuleEditorApplet applet = new RuleEditorApplet();
    Applet.start();
    … … … … … …
    }

5     public boolean handleEvent(Event event) {
    if (event.id == Event.WINDOW_DESCTROY)
       System.exit(0);
    Retrun false;
  }
}

Putting the main() method (line 2) in the RuleEditorApplet class (line 1) enables the

program to be executed with the same argument, whether it is going to run as an applet or

as an application.  To run it as an applet, we need to embed the code presented in

previous subsection in the web page.  In this case, the main() method is completely

ignored; instead, the browser invokes the init() and start() method to start the applet.

Line 3 begins the definition for the RuleEditor class-- the application class.  This class

provides the Frame for the application to run in.  The work starts in line 4, where a new



28

applet is created and centered in the Frame.  Line 5 simply sets up a simple event handler

for existing the application.  It demonstrates the way that a Java program handles the

events.  The events may result from a mouse click on a graphic component.  Figure 4.3

depicts the Rule Editor invoked as a standalone application and figure 4.4 illustrates the

use of the Rule Editor through WWW as an applet.

Figure 4.3  The Rule Editor Runs As a Stand Alone Application

Rule Editor

Server

Database

Server

Rule

Catalog

Rule
DatabaseJava

Interface

Machine A

Machine B

Machine C

Machine D

Java
Interface



29

Figure 4.4  The Rule Editor Runs Through WWW As an Applet

4.1.4  Self-guided Interactive GUI

To facilitate the use of the Rule Editor, we adopt the self-guided style to design

the interface module.  The GUI of the Rule Editor presents the users with a sequence of

windows in proper format to guide them through the necessary steps involved in

manipulating a rule.  The flow chart of the Rule Editor Interface is illustrated in Figure

4.5.  The interface details and its back-end are discussed in the following subsection.

Server

Machine C

WWW
browser

Machine D

WWW
browser

WWW Rule Editor

Database

Server

Rule
Catalog

Rule
Database

Machine A

Machine B



30

Figure 4.5  The Flow Chart of the Rule Editor Interface

Application ?

Operation ?

insert
delete modify

method remote

Event type ?

temporal Existingcomposite

Method event
editor

Temporal
event
editor

Composite
 event editor

Remote
event editor

Existing
event editor

New or existing condition/action function ?

Wrong format

Incomplete information

Previous

Previous

Previous

Previous

Previous

Previous
Choose from existing
function pool

New condition/action
function editor Compilation errors

Rule Attribute Editor

Commit or
Abort



31

4.1.5   Interface Logic

To make the interface more manageable and expandable, instead of using a

complicate window, we assemble a chain of widows from a set of widows for each type

of operations.  Another reason to do so is to ensure that every window will show up

properly on various platforms having different resolutions.  Each window is implemented

by a Java class inherited from Frame class in AWT and is responsible for certain type of

necessary information needed to manipulate a rule.  Each window and its components

will show up, hide, or get disposed based on the users' choices.  The interactive process

will not go further and a warning window will show up if the collected information is not

complete or its format is incorrect.  The warning windows are shown in figure B.13 in the

appendix.  There is a base window, named logo, implemented by RuleEditor class that

accommodates all global variables where all necessary information for a rule are stored.

The logo window is illustrated in Figure B.1 in the appendix.  All other windows update

the variables based on the collected information.  We can consider every operation on a

rule as a transaction.  It should be done in all or nothing semantics.  To ensure the

atomicity of an operation, there are three basic buttons, "Previous", "Cancel", and "OK"

on every window to control the flow of the interface.  Updates on the variables would be

undone if "Previous" or "Cancel" is clicked.  The content of those variables are sent to

Rule Editor Server only when users click "commit" button on the last window of the

window chain.

The following are the possible windows that form the window chains (The windows

are represented by capital letters in parentheses.).



32

(A) Choosing applications: The window displays the names of all existing

applications.  This information is received from Rule Editor Server based on

the system file named applications.txt in the system rule catalog directory.  The

user is asked to select an application for which he wants to work on by double

clicking one of the given applications in the list.  The window is shown in

Figure B.2 in the appendix.

(B) Choosing operations: A user is asked to select one of the three operations,

insert, delete, or modify a rule, by checking one of the three radio buttons.  The

window is illustrated in Figure B.3 in the appendix.

(C) Choosing event types: This window displays all types of events supported by

Sentinel.  They are classified into four groups, primitive, composite, remote,

and existing events.  The window is shown in Figure B.4 in the appendix.  The

primitive events are divided further into method and temporal events.  When an

event of any type is selected, a corresponding window will pop up to allow the

user to edit the selected event.  A composite event is constructed from the ten

operators and represented by a tree (The semantics of the ten operators were

discussed in chapter 2).  Internal nodes in the tree represent operators and leaf

nodes represent primitive events.  To construct a composite event, a user needs

to check one of the ten radio buttons that represent the corresponding

operators.  An operator editor window, say W1, will pop up for editing the

corresponding type of composite event, say C1.  After editing C1, the user may

click "Continue" button in W1 to continue to extend the composite event.  In

this case, C1 is a subtree of the composite event to edit.  System will give C1



33

an alias name for later reference.  The procedure will be repeated until the

whole tree that represents the desired composite event is formed.  It is finished

by clicking "OK" button in the last operator editor window.

(D) Choosing an existing event: This window displays three lists of existing events,

which are method, temporal, and composite event lists.  The information is

received from the Rule Editor Server based on the rule database.  A user is

asked to select one of them as the event for the rule to work on.  The window is

illustrated in Figure B.5 in the appendix.

(E) Method event editor: This window displays a list of all methods defined in the

active classes of the selected application.  The information is received from

Rule Editor Server based on the method signature file in the system directory.

The file is generated by the Sentinel preprocessor.  Every given method is a

potential event.  A user is asked to select one of them by double clicking on it.

He is also asked to check one of the two radio buttons to specify whether the

event should be detected at the beginning or at the end of the execution of the

method.  The window is illustrated in Figure B.6 in the appendix.

(F) Absolute temporal event editor: This window provides an entry to user for

editing the time string.  A fixed format of the time string is presented to guide

users to input a correct one.  A warning window will pop up if the given time

string is invalid.  The window is depicted in Figure B.7 in the appendix.

(G) Remote event editor: This window provides two entries to the user for editing

the machine-application-name string and class-event-name string.  Fixed

formats of the strings are presented to guide users to input the correct formats.



34

(H) Operator editor windows: This category contains a set of windows using which

composite events are edited.  Each window corresponds to an operator that has

two or three operands (events) depending on its semantics.  Each window

shows all possible operand (event) lists received from Rule Editor Server and

previously edited information.  The possible types of the operands for an

operator are method events, relative temporal events, and composite events

represented by alias names.  A user may double click one item in the list to

select the corresponding event as an operand to the operator being edited.  If

the selected events need more information, some irrelevant entries will get

hidden and others will show up to facilitate the user to input only the required

information.  Some of these windows are depicted in Figure B.8 -- B.12 in the

appendix.

(I) Using existing condition and action functions: By checking two checkboxes,

"Use old condition" and "Use old action", this window displays two lists of

functions previously defined in the selected application.  One is for condition

functions and the other is for action functions.  The information is based the

system rule catalog managed by the Rule Editor Server.  A user is asked to

select one condition function and one action function by double clicking on it.

(J) Editing new condition and new action functions: This window provides two

editing areas and three entries to the user for editing condition/action functions,

entering condition/action names and specifying the location of the header file

associated with the functions.  The condition function is of type boolean and

the action function is of type void.  A user may edit C++ code and OQL in the



35

editing area whenever they make sense.  The window is illustrated in Figure

B.15 in the appendix.

(K) Using an existing condition function and editing a new action function.  The

window is shown in Figure B.14 in the appendix.

(L) Editing a new condition function and using an existing action function.

(M) Editing the attributes of a rule: This window provides one entry and four lists

to the user for entering a rule name and specifying the attributes of the rule.

These attributes include CONTEXT, PRIORITY, TRIGGER modes, and

COUPLING modes. The options available are the following:

• CONTEXT: It can be one of these options: RECENT, CHRONICLE,

CONTINUOUS, and CUMULATIVE.

• PRIORITY: It can be any integer value from 1 to 50.

• TRIGGER: It can be either NOW or PREVIOUS.

• COUPLING: It can be one of these options: IMMEDIATE, DETACHED,

or DEFERRED.

(The semantics of these options were discussed in Chapter 2.)

This window is the last window of any window chain.  It provides Cancel and

Save buttons for the user to quit or finish the operation (transaction).  The

window is illustrated in Figure B.16 in the appendix.

(N) Selecting an existing rule: This window displays a list of rule names associated

with the event selected in the previous window.  The information is based on

the rule database via the Rule Editor Server.  The user is asked to select one of

them by double clicking on it.  Up to this point, the user either deletes or



36

modifies a rule.  In case of deleting a rule, the window (O) will show up and

the user will be asked to save or cancel.  In case of modifying a rule, the

content of condition/action functions associated with the rule will show up in

the window (J).

(O) Showing all information associated with the selected rule.  The information

includes all components of the event and the contents of the condition/action

functions.

A window chain is established by the following three information: the type of the

operation (insert, delete, or modify), the event type, and the category of the

condition/action functions (existing or new).  The following are possible combinations of

the first two information and their corresponding window chain (The window chains are

represented by integer numbers in parentheses.):

(1) Inserting a rule with a new method event:

(B) à  (C) à  (E)

(2) Inserting a rule with a new temporal event:

(B) à  (C) à  (F)

(3) Inserting a rule with a new remote event:

(B) à  (C) à  (G)

(4) Inserting a rule with a new composite event:

(B) à  (C) ßà  (H)

(5) Inserting a rule with an existing event:

(B) à  (C) à  (D)

(6) Modifying an existing rule:



37

(B) à  (D) à  (N)

(7) Deleting an existing rule:

(B) à  (D) à (N) à  (O)

The following are the possible options for the third information and their

corresponding window chain:

(8) With an existing condition and an existing action function:

(I) à  (M)

(9) With an existing condition function and a new action function:

(K) à  (M)

(10) With a new condition function and an existing action function:

(L) à  (M)

(11) With a new condition function and a new action function:

(J) à  (M)

The window chains associated with all operations supported by the Rule Editor are

illustrated in Figure 4.6.

4.2   Information Wrapper

Information wrapper is a component of the Editor Interface that translates the

information collected from the user to a format that is used by the RE Server.  The

purpose of this translation is to ensure three things: (i) the information is correctly

transported to the server, (ii) the server easily persists the received information in terms

of the database classes, and (iii) the information stored in the database is successfully

used in creating rules by the Dynamic Rule Loader at run time.



38

Figure 4.6  Possible Window Chains Supported by the Rule Editor

To avoid incompatible problems between the client and the server, which are

written in different languages, all information sent to the Rule Editor Server is

represented as strings.  The following two sections introduce the two main portions of the

information to be processed.  One is about the string representation of the

condition/action functions.  The functions are wrapped so that they can be successfully

compiled to generate a dynamic linking library at the server side without the C++

compiler mangling their names which is necessary for creating a rule with its condition

and action functions.  The other one is about the string representation of a composite

event.

4.2.1   C++ Name Mangling and Condition/Action Functions

As we know, C++ supports name overloading.  Most C++ compilers generate a

unique internal name for each distinct function.  They usually encode the function

(7)

(9)
(10)

(11)

(8)

{(1),(2),(3),(4),(5),(6)}(A)



39

argument types in a suffix appended to the source name of the function.  Condition and

action functions are implemented in C++, OQL, and Snoop.  They will be sent to Rule

Editor Server and processed by Sentinel preprocessor and C++ compiler. For dynamic

linking, the Rule Editor needs the internal function names to get the function pointers

from dynamic linking library for constructing a rule.  There are two ways to get the

internal names.  One is to know how the C++ compiler "mangles" the source function

names.  This approach has the following disadvantages: (1) The mangled name is

difficult to understand and not portable.  (2) Programmers need to know more about the

compiler internals, which may not be practical.  One way to solve this problem is to

prevent the C++ compiler from mangling the function names by tagging the functions

with directives that belong to a "foreign" language.  For example, we can tell the C++

compiler the functions are C functions by preceding the key word " extern "C" ".

The Rule Editor Interface prepares two template functions for condition and action

functions to ensure that they are in right format for compilation.  The skeleton entries are

as follows:

•Condition function:

#include <Sentinel.h>
#include <?>
extern "C" {
int ?(L_OF_L_LIST* dummy) {
? }
}

•Action function:

#include <Sentinel.h>
#include <?>
extern "C" {
void ?(L_OF_L_LIST* dummy) {
? }



40

}

The question marks (?) will be replaced with the information given by the users.  The

first question mark will be replaced by the location of the header file where the schema of

OQL in the function body is defined.  The second question mark will be replaced by the

function name given by the user.  The question marks in the bodies of the functions will

be filled by the actual code given by the user.  The completed information will be sent to

the Rule Editor Server as a string preceded by some message identifier and ended by ‘̂ ’

for compilation.  The result of the compilation will be sent back in the following format:

•Success: "Object file already exists" (if using an existing function) or

" Object file has been created successfully." (if editing a new function)

•failure: "Errors in compilation".

(Actual error messages form compilers… … … .)

By comparing the first word of the result with "Object" and "Errors", the client (interface)

takes the appropriate actions, like displaying error messages, asking users to reedit, or

continue to the next step.

4.2.2   The String Representation of a Composite Event

A composite event can be represented by a tree in terms of the classes defined in

the rule database schema.  A leaf node in the tree stores all the necessary information for

creating the corresponding primitive event and an internal node keeps its corresponding

event operator type and the pointers to its child nodes.  To avoid the incompatibility

between the client and the server processes, the event tree is represented by a sequence of

strings at the client side.  To facilitate the reconstruction of the event tree on the server

side, the client (the Rule Editor Interface) assigns every string, which represents a node in



41

the tree, an integer as an identifier.  These integer identifiers are sequential and unique.

They represent the node pointers in the tree.   In a string, information components are

separated by a ";".  The root node of the event tree is represented by the last one of the

sequential strings.  For example, the following is the string representation of a composite

event, rooted at a periodic-star event, denoted by P*(E1,E2,E3):

• E1: "##PRIMITIVE-METHOD-EVENT##;1;STOCK;begin;int buy_stock(int qty)\n"
• E2: "##TEMPORAL-EVENT##;2;11 months + 11 days + 11 hrs + 11 mins + 11

secs\n"
• E3:  "##TEMPORAL-EVENT##;3;11:11:11/11/11/11\n"
• P*:  "##PERIODIC*-EVENT##;4;1;2;3\n"

Section 4.4.3 discusses how the Rule Editor Server uses above format to reconstruct the

composite event tree.

4.3   Rule Editor Server

The Rule Editor Server is a C++ process running on Solaris operating system.  The

jobs performed by the Rule Editor Server are summarized as follows:

•Initializing the rule database

•Providing clients with the rule catalog and the rule database information

•Compiling the condition/action functions, reporting results of the compilation

•Making the object files of the condition/action functions into a dynamic linking

library

•Reconstructing the event trees and persisting the event and rule information

•Moving the source code files of the condition/action functions to the system

directory for later reference

•Cleaning up the temporary directory



42

When Rule Editor Server is invoked, the first thing it will perform is to initialize the

rule database.  If the rule database does not exist, the Rule Editor Server creates one and

initializes it based on the system file named "applications.txt" in the rule catalog

directory.  The file records all applications' alias names and their corresponding Exodus

storage group numbers.  On the other hand, if the rule database already exists, the Rule

Editor Server updates it based on the system file, deleting out-of-date applications and

adding new applications.  After initializing the database, it listens to clients in a loop.

Whenever a client initiates a connection to it, it forks a child process to serve the client.

The following section discusses the message-driven services provided by the server.

4.3.1   Message-driven Services

Rule editor server recognizes the given Exodus storage group number and message

identifier and performs the corresponding actions.  The possible messages are

summarized as follows:

•Messages à  Actions

•"give_me_app_inf\n” à  Send all applications' alias names and Exodus sorage

group numbers to the requesting client.  The information is based on the system

file "applications.txt".

•"give_me_event_list\n” à  Send the name list of the given application's existing

events to the requesting client.  The information is based on the rule database.



43

•“@xsg\n”1 à  Send the given application's method signatures, which are potential

method events, to the requesting client.  The information is based on the

application signature file in the rule catalog system directory.

•“$xsg\n” à  Send the name list of the given application's existing condition

functions to the requesting client.  The information is based on the application's

rule catalog.

•“~xsg\n” à  Send the name list of the given application's existing action functions

to the requesting client.  The information is based on the application's rule

catalog.

•“compile_functions\n” à  Compile the given functions in the temporary directory

of the given application and send the results of the compilations to the requesting

client.

•“commit\n” à  Add the given condition/action functions to dynamic linking

library (if they are new), move the source files of the functions to function pools

belonging to the application (if they are new), and persist the given rule

information in the rule database.  To facilitate porting, all database dependent

code of the Rule Editor Server go through OQL.  They are implemented as

functions with names preceded by the key word "DRE_".  Section 4.4.4 will

discuss some OQL statements that manipulate the rule database.  The following

are the commit type identifiers recognized by the Rule Editor Server.

Type 1 :   "##INSERT##NEW_METHOD_EVENT##\n"
Type 2 :   "##INSERT##NEW_TEMPORAL_EVENT##\n"

                                                       
1 The "xsg" means the Exodus storage group number of the application that the requesting client is working
on.  For example, 8604.



44

Type 3 :   "##INSERT##NEW_COMPOSITE_EVENT##\n"
Type 4 :   "##INSERT##NEW_REMOTE_EVENT##\n"
Type 5 :   "##INSERT##EXISTING_METHOD_EVENT##\n"
Type 6 :   "##INSERT##EXISTING_TEMPORAL_EVENT##\n"
Type 7 :   "##INSERT##EXISTING_COMPOSITE_EVENT##\n"
Type 8 :   "##INSERT##EXISTING_REMOTE_EVENT##\n"
Type 9 :   "##MODIFY##TEMPORAL##\n"
Type 10 : "##MODIFY##COMPOSITE##\n"
Type 11 : "##MODIFY##METHOD##\n"

•“commit_delete\n” àRemove the given condition/action functions from the

dynamic linking library space (if they are not shared), remove the source files of

the functions to function pools belonging to the application (if they are not

shared), and remove the given rule information from the rule database based on

the given type identifier. The commit type identifiers recognized by the Rule

Editor Server are summarized as follows

Type 1 :  "##DELETE##METHOD_EVENT##\n"
Type 2 :  "##DELETE##TEMPORAL_EVENT##\n"
Type 3 :  "##DELETE##COMPOSITE_EVENT##\n"
Type 4 :  "##DELETE##REMOTE_EVENT##\n"

•“abort\n” à  clean up the given functions (both source files and object files) in the

temporary directory of the given application.

4.4   Rule Database

The rule database is stored in and managed by Exodus Storage System [11].  The

schema of the database consists of several classes that contain all information for creating

the events and the rules for all applications.  This section introduces the structure of the

database, some OQL statements that manipulate the database, and how the Rule Editor

Server transforms the strings received from the client into the event tree in terms of the

classes defined in the schema.



45

4.4.1   The Structure of the Rule Database

The database contains a set of applications.  Each application has four sets of

events.  They are composite events, denoted by C_events, method events, denoted by

M_events, temporal events, denoted by T_events and remote events, denoted by

R_events.  Every event in the four sets has a set of rules associated with it.  Figure 4.4

illustrates the structure of the database.

Figure 4.7  The Structure of the Rule Database

The following subsection discusses the outline of the classes by which the

structure is implemented.

4.4.2   Rule Database Schema

The following are the interface of the classes defined in the database schema:

App1 App2 App3 … ...

Operators: plus, or, not, sequence, periodic, periodic*, and, aperiodic, aperiodic*,any

Primitive event: M_event, T_event

C_event1 C_event2 C_event3 … ...
M_event1 M_event2 M_event3 … ...
T_event1 T_event2 T_event3 … ...
R_event1 R_event2 R_event3 … ...

Rule 1 Rule 2 Rule 3 … ...



46

class AppNode {
private:
  Set_EventNode comp_events;
  Set_EventNode method_events;
  Set_EventNode temporal_events;
..Set_EventNode remote_events;
  char* app_name;
  int xsg;
public:
… … … … …
  int insert_rule(char* , char*, RuleNode*, EventNode*);
  int delete_rule(char* , char*,char *);
  int modify_rule(char* , char*, char*, RuleNode*);
  void create_events_rules(void*);
… … … … …
};

DECLARE Set<AppNode>

class EventNode {
private:
  char*  event_name;
  char*  method_signature;
  char*  begin_end;
  char*  class_name;
  char*  event_type;
  char*  machine_app; //for remote event
  char*  className_eventName; //for remote event
  char* comp_event_info;
  EventNode *child_event1, *child_event2, *child_event3;
  Set_RuleNode rules;
public:
… … … … … … .
  int insert_rule(RuleNode*);
  int modify_rule(char*,RuleNode*);
  int delete_rule(char*);
..EVENT* create_event(void*);
… … … … … … .
};

DECLARE Set<EventNode>

class RuleNode {
private:
  char*  rule_name;
  CONTEXT  context;



47

  Char*  coupling_mode;
  Char*  trigger_mode;
  Char*  priority;
  Char*  condition_name;
  Char*  action_name;
public:
… … … .… … .
..void  create_rule(EVENT*,void*);
… … … … … .
};

DECLARE Set<RuleNode>

Note: The DECLARE is a macro facility supported by OpenOODB from Texas

Instruments.  The macro will be expanded by its preprocessor named CoolCpp to a

parameterized collection class [12].  For example: DECLARE Set<AppNode> will be

expanded to a class named Set_AppNode.  Appendix A.3 will discuss more details about

the parameterized collections.

The classes AppNode, EventNode, and RuleNode are used to internally store and

represent the relevant information of an application, an event, and a rule respectively.

The information will be used by the Dynamic Rule Loader for creating the events and the

external rules at run time.  The rule database is an instance of Set_AppNode class.  Every

member of the set is an instance of the AppNode class.  The AppNode class has four

data members of type Set_EventNode.  Every member among the four sets of events

belonging to the application is an instance of EventNode class.  The EventNode class

has three pointers to its child event nodes, all necessary information needed to create an

event, and a data member of type Set_RuleNode.  If an instance of EventNode is

M_event, T_event, or R_event, its child event pointers point to NULL.  If an instance of

EventNode is C_event, its child event pointers point to other event subtrees that

represent another C_events or other type of events.  Every set of rules belonging to an



48

event is an instance of Set_RuleNode class.  Every member in the set is an instance of

RuleNode class that stores all necessary information needed to create a rule.

4.4.3   The Reconstruction of an Event Tree

When the Rule Editor Server receives the sequence of the stings that represent a

composite event, it uses the strings to construct an event tree in terms of the classes

defined in the schema.  The tree internally stores all information needed for creating the

composite event at run time.  The way that the server reconstructs the tree is described as

follows: It creates an object of EventNode for every string based on the information

carried in the string.  It declares an array of EventNode and assigns those objects to the

array using the integer ID of each string as the index. The last element of the array is the

root of the tree.  Figure 4.5 illustrates the reconstruction of the event tree using the

example in section 4.3.  The following section introduces how the event tree and all rule

information are persisted by using OQL.

4.4.4   Persisting Information Using OQL

The database dependent code in the Rule Editor Server is implemented by OQL.

The following are two examples of OQL for manipulating the rule database:

Query{

UPDATE (app.insert_rule(event_group,event_name,rule_ptr,event_ptr))

FROM AppNode app IN applications

WHERE app.get_xsg()==xsg  ;}



49

Figure 4.8 An Example of the Event Tree Reconstruction

This query inserts a rule into an application whose Exodus storage group is "xsg".

The "applications" is the alias name of the application set in the database.  Rule editor

server fetches the set from Exodus server based on the name.  The "app" is an instance of

the AppNode and a range variable over the application set.  "insert_rule" is a member

function of AppNode.  It takes four parameters: "rule_ptr" of type pointer to RuleNode,

"event_ptr" of type pointer to EventNode, "event_group" of type string, and

"event_name" of type string.  If "event_ptr" is not NULL , the event is a new event.

"event_ptr" is the root of the event tree, which has been discussed in the previous section.

Here is a piece of code from the implementation body of AppNode's "insert_rule"

function:

E1 E2 E3 E4

An array of EventNode

•  "##PRIMITIVE-METHOD-EVENT##;1;STOCK;begin;int buy_stock(int qty)\n"
•  "##TEMPORAL-EVENT##;2;11 months + 11 days + 11 hrs + 11mins + 11 secs\n"
•  "##TEMPORAL-EVENT##;3;11:11:11/11/11/11\n"
•  "##PERIODIC*-EVENT##;4;1;2;3\n"

Create an instance of EventNode
for each string and assign the

pointer to the array based on the
integer ID

This element is the root of
the tree.  Its child event
pointers are the first three
elements of the array.



50

//Insert the new rule to the rule set of the new event.
event_ptr->insert_rule(rule_ptr);
//The event is a C_evnet.
if (!strcmp(event_type,"COMPOSITE")){
… .
//Insert the event to the composite event set of the given application.
if(!comp_events.Insert_Member(*event_ptr)) {
… ..}
}

The first line inserts the new rule pointed by the rule_ptr to the rule set belonging to the

new event pointed by the event_ptr.  The rest of the code inserts the event pointed by the

event_ptr to one of the four sets belonging to the given application based on the

"event_type".  The comp_events is a data member of AppNode.  On the other hand, If

the event_ptr is NULL, the rule to be inserted uses an existing event.  The following

query is to find the event node among  comp_events based on the "event_name"

Query{
        result = select *  from EventNode* event in :comp_events
        where !strcmp(event->get_event_name() , event_name)
;}

Note: The ':' in ":comp_events" means the set of objects are already in application

address space.

4.5   Dynamic Rule Loader

At run time, when a Sentinel application is invoked, it executes "load_dyn_rules"

function.  In the function, it performs the following two steps:

•It retrieves the rule database information of the given application (Exodus group

number) from Exodus server.  The following is a piece of code used in this step:

Set_AppNode* applications_ptr;
Query{
Applications_ptr =
select *  from AppNode* app in applications
where app->get_xsg() == xsg;}



51

•It traverses all data structure and creates events and their associated rules, based

on the information stored in the structure, by calling the EVENT and RULE class

constructors.  A handle to the DLL is needed by the Dynamic Rule Loader for

retrieving the condition/action function pointers which are two of the parameters

of the RULE class constructor.  The following is the code that gets the handle.

void*  dyn_lib_handle= dlopen(dyn_lib_location , RTLD_LAZY);

The following is the code that calls " create_events_rules(dyn_lib_handle)" method

for every instance of AppNode among the application set retrieved in step 1.  Actually,

the application set contains only one member whose Exodus group number is equal to

"xsg".

for(applications_ptr->First_Member(i); !applications_ptr->Is_End_Of_Set(i);
      applications_ptr->Next_Member(i)){
      (applications_ptr->Get_Member(i)).create_events_rules(dyn_lib_handle);}

In the implementation body of " create_events_rules(dyn_lib_handle)", it traverses the

four event sets belonging to the application.  The following is the code that traverses the

composite event set and calls "create_event" method for every member in the set.

for(comp_events.First_Member(i);!comp_events.Is_End_Of_Set(i);comp_events.N
ext_Member(i)){
        (comp_events.Get_Member(i)).create_event(dyn_lib_handle ); }

The implementation body of " create_events(dyn_lib_handle)" creates a certain type of

event and all the rules based on the event by calling the corresponding event constructor

and the rule constructor.  For example, the following is the code that creates a primitive

event and its associated rules.

if(!strcmp(event_type,"PRIMITIVE")){
PRIMITIVE *primitive_event= new
PRIMITIVE(event_name,class_name, begin_end,method_signature);
for(rules.First_Member(i);!rules.Is_End_Of_Set(i);rules.Next_Member(i)){



52

       (rules.Get_Member(i)).create_rule(primitive_event,dyn_lib_handle);
}
return primitive_event;

The following is another example that creates an AND composite event and all

rules based on the event.

if(!strcmp(event_type,"AND")){
AND *and_event=NULL;
… ...
 and_event = new AND(event_name,child_event1->create_event(dyn_lib_handle),
child_event3->create_event(dyn_lib_handle ));
… .
 for(rules.First_Member(i);!rules.Is_End_Of_Set(i);rules.Next_Member(i)){
        (rules.Get_Member(i)).create_rule(and_event,dyn_lib_handle );          }
return and_event;

The following is the code from in the implementation body of "create_rule" method

present in the RuleNode class.

int (*fptr_cond)(L_OF_L_LIST*)=NULL;
void (*fptr_act)(L_OF_L_LIST*)=NULL;
fptr_cond=(int(*)(L_OF_L_LIST*))dlsym(dyn_lib_handle,condition_name);
fptr_act=(void(*)(L_OF_L_LIST*))dlsym(dyn_lib_handle,action_name);
… ..
RULE *rule_ptr = new RULE(rule_name, event_ptr, fptr_cond,fptr_act , context);
… .

It creates a rule by calling RULE constructor with some parameters.  The "rule_name"

and "context" are the data members of the RuleNode.  The "event_ptr" comes form the

caller.  It is the return value of the event constructor in the caller's code.  The condition

and action function pointers, "fptr_cond" and "fptr_act", are got by calling dlsym utility

with two parameters.  The dynamic linking library handle is passed as an argument by the

caller.  The "condition_name" and "action_name" are the data members of the RuleNode

class.  The functions pointed by "fptr_cond" and "fptr_act" will be executed once the

event pointed by "event_ptr" is detected.  The event detection logic and rule execution



53

logic are beyond the scope of this thesis.  They are discussed in other Sentinel papers

[6][7][8][9].



54

CHAPTER 5
CONCLUSION AND FUTURE WORK

5.1   Conclusion

This thesis proposes a flexible design and implementation of a Rule Editor to

extend Sentinel system to support external rules.  We have seen how the three-tiered

architecture being better than the traditional two-tiered approach in many ways.  To apply

the architecture to our design, the editor is basically decomposed into four modules: the

interface, the Rule Editor Server, the rule database, and the Dynamic Rule Loader.  This

well-defined boundaries give more flexibility and modularity to the system that provides

more room for improving performance and maintenance.  We use Java to implement the

interface module, which allows the editor to run either from within a WWW browser or

as a standalone application.  To facilitate porting, we decoupled database logic from the

Rule Editor Server by using OQL and separating all the database dependent code as

individual functions.  In the Dynamic Rule Loader module, we used dynamic linking

library to invoke condition and action functions, which avoids the relinking of

applications.

5.2   Limitation and Future Work

The editor proposed in this thesis only supports the Sentinel system based on

OpenOODB.  The design of the editor is only to make porting easier rather than to

support other database management systems.  In the future, we plan to incorporate

CORBA to extend the editor to support external rules under multiple heterogeneous

database management systems.



55

APPENDIX A
OVERVIEW OF OQL FOR SENTINEL

OQL for Sentinel is an extended version of OQL[C++] implementation that

accompanied the OpenOODB toolkit from Texas Instruments.  They are introduced in

section A.2 and section A.1 respectively.  In section A.3, we present an OQL application,

hospital database, to demonstrate the usage of OQL and its preprocessing.  Section A.4

introduces more OQL examples based on the application.  The limitations of OQL are

discussed in section A.5.  To facilitate the understanding of OQL, some OQL demo

programs have been designed and implemented. They are discussed in the last section.

A.1   Introduction to OQL[C++]

OQL[C++] is an object query language that applies to OpenOODB.  It is an

example of the binding of a query language with C++.  It extends C++ with query

capability using well known SELECT-FROM-WHERE structure of SQL block.  The

following section introduces the format of OQL[C++].

A.1.1   The Format of OQL[C++]

A OQL[C++] query statement block [12] is represented as follows:

SELECT <objects>
FROM <range variable> IN <set>
WHERE <predicate>

The SELECT clause identifies the type of the objects in a set to be returned by the query.

The FROM clause declares range variables as well as the target set to be queried.  The



56

WHERE clause specifies the predicate that defines the properties to be satisfied by the

objects to be retrieved.  The following is a simple example:

•Retrieve the patients whose family doctor is Mary.

SELECT p
FROM Patient p IN patients
WHERE p.family_dr( ).name( ) == "Mary";

Patient is a class name defined in a C++ program.  The SELECT clause states that the

objects returned by the query belong to the class Patient.  In other words, the objects in

the result set of the query are Patient objects that behave exactly as Patient objects

defined in a C++ program.  p is a range variable over the instances of the patients set.

"patients" is an alias name associated with a user-defined set object of type Set_Patient

which contains persistent objects of type Patient.  The family_dr() is the class Patient's

public member function of type Physician class.  The name() is the public member

function of Person class inherited by class Patient and class Physician.  The expression

p.get->physician ( ).name( ) is called a path expression.1  The dot "." notation means the

invoking of a member function, which follows the C++ convention.

The path expression allows navigation through the object composition which

enables the formulation of predicates on values deeply nested in the structure of an

object.  It provides a uniform mechanism for the formulation of a query that involves

object composition and inherited member function. The predicates in the WHERE clause

can be defined using comparison operators Θ , which belongs to one of

{==,<,<=,>,>=,!=}, and logical operators &&(AND), || (OR), and ! (NOT).  Let

p.M1(A1).M2(A2). ..... .Mn(An) be a path expression.  Every Mi(Ai), where 1 <= i <= n,

                                                       
1 The paragraph describing the definition of path expression is quoted from [13].



57

must be single-valued.  If a function Mk(Ak) is a set-valued, then the programmer must

break the path expression by defining a subquery on the set p.M1(A1).M2(A2). ...

.Mk(Ak) [13].  For example,

        Query{
            Result = SELECT p
                  FROM Patient p IN Patients
                  WHERE p.get_name() == "Bob" &&
                  EXISTS ( SELECT r
                                  FROM  Medical_record r IN :p.get_medical_records()
                                  WHERE r.get_date() < "10/10/89" && r.get_diagnosis() == "flu" );
            }

In " Medical_record r IN :p.get_medical_records( )"2 the path expression

p.get_medical_records( ) is set-valued (i.e., it returns a set of medical records), therefore,

it is necessary to define a variable r to range over the member of this set.  Note that no

direct comparison of private values of an object is allowed.  The syntax of  comparison

and logical operators is the same as C++.  Atomic term are t1 Θ  t2, t1 IN s1, s1

CONTAINS s2, t1 Θ  ALL s1, t1 Θ  ANY s1, and EXIST s1.3 The t1 and t2 are single-

valued path expressions or constants, s1 and s2 are sets or set-valued path expressions. Θ

is the comparison operator.  A predicate is a Boolean combination of atomic terms.

A.1.2   The Features of OQL[C++]

Because of the special binding of OQL[C++] with C++, OQL has the following

features:

1. It uses C++ type system as an object data model instead of inventing a new one.

This feature eliminates unnecessary data structure mappings between C++ and the

database, facilitates type checking.  In traditional DBMSs, database applications



58

are written using embedded query statements in a general purpose language (PL).

The embedding usually has limitations in matching between database data model

and PL type system.  For example, PL dose not support a set type, so additional

mechanism like cursor is needed to retrieve a set of data.  Moreover, the lack of

type checking span both PL codes and query codes and hence increases the

opportunity for inconsistencies to be introduced in database [13].

2. It adopts the combination of static and dynamic type checking.  Type checking is

necessary in database application to ensure that the object transferred between the

application space and the database space are consistent.  There are two kinds of

type checking: static (at compile-time), dynamic (at run-time).  OQL adopts a

combination of static and dynamic type checking: Its applications statically type

checked by a C++ compiler.   Run-time type checking is also used in OQL to

ensure that data transferred between persistent object base and the application's

address space are type-correct [13].

3. It adds a set type to C++ using C++ template.  OQL[C++] supports explicit

collection type that are defined using C++'s parameterized classes.

4. It allows C++ code in the formulation of queries.  For example, it allows user-

defined set_valued functions as targets for queries.  It allows user-defined

boolean_valued functions as query predicates.  It allows constructor function calls

to create objects of a new type

5. The binding of OQL and C++ allows computational completeness.

                                                                                                                                                                    
2 The ":" in ":p.get_medical_records( )" is added by Sentinel to differentiate persistent objects and transient
objects.
3 Only t1 Θ  t2, t1 IN s1, and EXISTS s1 are implemented so far.



59

6. It inherits all good features of object-oriented data model like complex objects,

object identity, inheritance, aggregation, data abstraction, and polymorphism.

•Complex objects, Object identity, Inheritance, and Aggregation: Like other

object-oriented language, C++ supports inheritance and composition

(aggregation) relation among classes to represent complex objects.  The feature

of object identity allows complex objects to be supported and allows subobjects

to be shared.  OQL inherits those benefits.

•Data abstraction: All predicates in OQL[C++] queries are formulated in terms

of the objects' public interface.  Data abstraction allows OQL[C++] queries on

composite objects using a uniform mechanism (i.e., path expressions) without

regard to the way composition is implemented.

•Polymorphism of queries: OQL should be able to operate on semantically

different collection types (e.g., set, bag, array).  Furthermore, queries should be

allowed on any type of collections, including heterogeneous, transient, and

persistent collections.1

A.1.3   OQL[C++] Preprocessor

The OQL[C++] preprocessor architecture mainly consists of two modules: parser

and code generator.  An OQL statement is recognized by the preprocessor that parses and

translates them into C ++ code with appropriate storage manager function calls, such as

"fetch" and "persist" [11].  The resulting code is then compiled by a standard C++

compiler.  The implementation details of the preprocessor is discussed in [14].

                                                       
1 Only the set type of homogeneous objects is implemented so far.



60

A.2   Introduction to OQL for Sentinel

OQL for Sentinel is an extended version of OQL[C++].  As the original version of

OQL[C++] was not complete, its preprocessor had been modified before it was integrated

into the Sentinel preprocessor.  We found and fixed several bugs spanning over JOIN,

SUBQUERY, UPDATE, DELTET, IN, and WHERE clauses.  Most of them were due to

wrong C++ code translation.  Besides, we also extended two of its limitations.  One was

INSERT clause, which allowed new objects to be inserted or existing objects to be

transferred from an old set to a new set.  The other one was the capability to query on

transient objects by using the symbol “:” to determine whether the target objects are

transient or persistent.

A.3  An OQL Application and Its Preprocessing

A.3.1   Hospital Database

The hospital database is the first OQL application for Sentinel.  It was implemented,

based on the clinic schema proposed in [13], to test the functionality and the limitations

of OQL[C++].  This application is presented in this section to demonstrate the usage of

the OQL and its preprocessing.  Figure A.1 illustrates the relationship amongst the

classes in the schema.



61

Figure A.1 Hospital Database Schema

Both Patient and Physician classes are inherited from Person class.  A patient

object has a set of objects of MedicalRecord and a set of objects of Physician.  The

following is the interface of these classes.

#include "OpenOODB.h"
#include <defmacro.h>1

#include "Set.h"
#include "List.h"

… … … … … … .

class MedicalRecord {
… … … … …

};

… … … … .
                                                       
1 All application files using parameterized classes and queries should consistently include the defmacro.h
file in all source files.  The defmacro.h file should be included before the first template file is included.
Applications planning to use persistence should include the defmacro.h file after the OpenOODB.h file is
included.

Person

Physician
Patient

Address

Set_Physician Set_Patient

MedicalRecord

Set_MedicalRecord

Composition

Collection

Inheritance



62

DECLARE Set<MedicalRecord>

class Patient : public Person {
… … … … … … … … ..
public:
… … … … …
Set_MedicalRecord records();
Physician&  family_dr();
… … … … …
};

… … … …

DECLARE Set<Patient>
… .… … .

The following is a piece of code from the implementation body of the schema:

//MedicalRecord class implementation
MedicalRecord::MedicalRecord() {… … … ..}

..........

IMPLEMENT Set<MedicalRecord>
IMPLEMENT List<MedicalRecord>

… … … … … … … ..

// Patient class implememtation
Set_MedicalRecord Patient:: records(){… … … }

.… … … … … … … ...

IMPLEMENT Set<Patient>

… … … … … … … … …

Note: The DECLARE and IMPLEMENT are macro facilities supported by

OpenOODB from Texas Instruments.  The macro will be expanded by CoolCpp

preprocessor to parameterized collection classes [12].  Open OODB currently supports



63

two parameterized collection classes: List<Type> and Set<Tyep> [13].  They are defined

and implemented in "Set.h" and "List.h" that come with Open OODB toolkit.

The following is a simple OQL statement that retrieves a set of patients whose

patient id is equal to the variable "id".

… … … … … … …
Set_Patient *r = NULL;
Query {
r = SELECT *
FROM Patient* patient1 IN set_patient
WHERE  patient1->pat_id()==id;
}
… … … … … …

Note: The key word Query will be recognized by OQL preprocessor (CoolCpp)

and the statement demarcated by "{" and "}" will be translated to the corresponding C++

code.

A.3.2   Preprocessing

All programs using the parameterized collections or OQL need to be preprocessed

by the CoolCpp preprocessor before they are compiled by a C++ compiler.  The

following lines are extracted from the Makefile of the hospital application.

        $(CCC) $(CCCFLAGS) -E $(INCLUDES) $*.C > /tmp/$*1.C
        $(COOLCPP) -C $(INCLUDES) /tmp/$*1.C /tmp/$*.C
        $(PPCC) $(CCCFLAGS)  $(INCLUDES) -w -c  /tmp/$*.C -o $@

First, the standard C preprocessor is invoked to include all system include files.

The standard C preprocessor ignores all DECLARE, IMPLEMENT, or Query key

words.  Second, the CoolCpp preprocessor is invoked to expand all DECLARE,

IMPLEMENT macros and OQL statements delimited by "Query {" and "}".  At the end



64

of this stage, the resulting files contain no #include, DECLARE, IMPLEMENT, or

OQL statements.  Finally, the C++ compiler is invoked.

The following is the code expanded by " DECLARE Set<Patient>"

class List_Patient { … … … … … …  }

class Set_Patient {
… … … … … ..
void First_Member ( Iterator & ) ;
int Insert_Member ( Patient & ) ;
Patient & Get_Member ( Iterator & ) ;
void Next_Member ( Iterator & ) ;
int Is_End_Of_Set ( Iterator & ) ;
… … … … … … … .
protected :
List_Patient & Get_List_Node ( Iterator & ) ;
List_Patient * header ;
… … … … … … … … ..
};

The following is the code translated from the OQL example in A.3.1.

Set_Patient * r = 0 ;
Patient *patient1;
Set_Patient *result_12400 = new Set_Patient ();
Set_Patient *set_12400;
set_12400 = (Set_Patient*) OpenOODB->fetch( "set_patient" );
if(set_12400 != 0) {
  Iterator  iter_12400;
  for(set_12400->First_Member(iter_12400);
        !set_12400->Is_End_Of_Set(iter_12400);
        set_12400->Next_Member(iter_12400) ) {
       patient1 = (&set_12400->Get_Member(iter_12400)) ;
       if( patient1->pat_id()==id ) {
         result_12400->Insert_Member( set_12400-> >Get_Member( iter_12400 ) );
            }
       }
r = result_12400;
}
else {
         fprintf(&__iob[2],"set_patient is not a named set\n");
         r = result_12400;
}



65

A.4   More OQL Examples

The following are some OQL statements that demonstrate the functionality of OQL.

•Retrieve the patient whose id is 125.
This query example illustrates that a range variable can be declared as a pointer
just like in C or C++.

SELECT *
FROM Patient* patient1 IN patients
WHERE  patient1->pat_id()== 125

•Retrieve John's patients whose names are Bob.
This query example illustrates nested query using IN clause.

SELECT *
FROM Patient patient1 IN patients
WHERE patient1.family_dr().Name() == "John" &&
patient1
IN (select * from Patient patient2 IN patients
      where patient2.Name() == "Bob" )

•Retrieve the physicians of the patients in "patients" whoever
has "lung CA".
This query example illustrates nested query using EXISTS clause.

SELECT *
FROM  Physician physician1 IN physicians
WHERE
EXISTS(
SELECT *
FROM Patient patient1 IN patients
WHERE
patient1.family_dr().doc_id() == physician1.doc_id()
AND  EXISTS(
SELECT *
FROM MedicalRecord record1 IN :patient1.records()
WHERE record1.diagnosis()=="lung CA"))

Note: The ':' in ":patient1.records()" means the set of objects are transient.

•Retrieve John's patients whose names are not Bob.
This query example illustrates nested query using NOT XXXX IN clause.

SELECT *
FROM Patient patient1 IN patients



66

WHERE patient1.family_dr().Name() == "John" &&
NOT patient1
IN (select * from Patient patient2 IN patients
where patient2.Name() == "Bob" )

•Retrieve the physicians of the patients in "patients" who never had "lung CA".
This query example illustrates nested query using NOT EXISTS clause.

SELECT *
FROM  Physician physician1 IN physicians
WHERE
NOT EXISTS(
SELECT *
FROM Patient patient1 IN patients
WHERE  patient1.family_dr().doc_id() == physician1.doc_id()
AND  EXISTS(
SELECT *
FROM MedicalRecord record1 IN :patient1.records()
WHERE record1.diagnosis()=="lung CA"))

•Query all patients who live in the same city as doctor "John".
This query example shows the join in OQL.

SELECT patient1
FROM Patient patient1 IN patients,
Physician physician1 IN physicians
WHERE patient1.family_dr().Name() == "John" &&
physician1.Name() == "John"  AND
!strcmp( patient1.home_address().city(), physician1.home_address().city())

•Retrieve only the name and age information of patients whose age are between 10
and 40.
This query example shows projection.

SELECT test (p.Name(), p.age())
FROM  Patient p IN patients
WHERE p.age() > 10 AND p.age() < 40

•Query doctor John's patients who have "flu".
This query example shows that user defined functions are allowed to

appear in the WHERE clause in SELECT-FROM-WHERE structure.

SELECT *
FROM Patient patient1 IN patients
WHERE compare_equal(patient1.family_dr().Name() ,"John")
AND have_record( patient1 ,"flu")



67

Where the “compare_equal” and “have_record” are user-defined boolean
functions.

•Modify doctor John's patients' ID.
This query demonstrates update clause.

UPDATE (patient1.pat_id(999))
FROM Patient patient1 IN patients
WHERE patient1.pat_id()==127

•Insert a new patient to "patients".
This query demonstrates insert clause.

INSERT Patient(
PTR Physician(Address("16th Ave.","Gainseville","FL"),"OBE",001,
Person(Address("16th Ave.","Gainseville","FL"),"John",40)),
007,
Set_MedicalRecord(MedicalRecord(9998,"Liver CA","10/25/95"),
MedicalRecord(9999,"TB","05/10/95")),
Person(Address("16th Ave.#140","Gainseville","FL"),"Test",60))
INTO patients

•Transfer all patients of Dr. John in "set_patient" to another set named
"John_patients".
This query demonstrates another usage of insert clause.

INSERT INTO John_patients
FROM Patient patient1 IN set_patient
WHERE compare_equal(patient1.family_dr().name() , "John");

•Delete John's patient whose id is 125.
This query demonstrates delete clause.

DELETE FROM Patient p IN patients
WHERE p.family_dr().Name()== "John"
AND p.pat_id()== 123

A.5   Limitations

Current OQL is still not complete.  The following is the summary of its limitations:

•Query Processing

The code is not optimized.



68

No dynamic queries are supported.

•Coverage of the language

SELECT <objects>
FROM <range variable> IN <set>
WHERE <predicate>

        <objects>
                the same type of the range variable (e.g. * ) ------(YES)
                new object type  (e.g. project and join1)  -----------(YES)
        <set>
                set object name stored in database  -----------------(YES)
                transient objects       -----------------------------------(YES)
                user defined set-valued function     ------------------(NO)
                collection types other than Set     --------------------(NO)
                heterogeneous collection          -----------------------(NO)

        <predicate>
                path expression (chain of member functions)    -----(YES)
                user-defined Boolean-valued function    -------------(YES)
                nested query statements       ----------------------------(limited)

The nested query statements should include the clauses IN, CONTAINS, ALL, ANY, and
EXISTS.  Currently, only IN and EXISTS clauses are supported.

A.6   Demo Programs of OQL

There are three demo programs designed and implemented to facilitate the

understanding of OQL.  The first one is written for OQL beginners.  It is a menu-driven

OQL application in which OQL statements with different functionality are hard coded in

the program.  Users who follow the menu will get a whole idea of OQL.  The top most

level of the menu includes the following:

                 ***  1. CREATE DATABASE            ***
                 ***  2. QUERY DATA                        ***
                 ***  3. MODIFY DATA                      ***
                 ***  4. DROP DATABASE                 ***
                 ***  5. LIMITATIONS                        ***
                 ***  6. THINGS TO DO                      ***

                                                       
1 Only two-set joins are supported.



69

                 ***  7. OQL REPORT                         ***
                 ***  8. INTRODUCTION                    ***

The second demo program is a schema independent platform with TCL interface

using which users can give ad hoc OQL statements.  The back-end mechanism is

described as follows: The system has two template files with some question marks.  One

is for the query statement that retrieves something, such as SELECT statements.  The

other is for the statement that does not retrieve anything, such as INSERT or DELETE

statement.  Those question marks will be replaced with the information got from the users

through the interface.  The completed files are then complied and executed.  The

compilation errors/warnings, run-time error, and results are redirected to and displayed in

different windows.  If the input statement is a projection, depending on the types

(attributes) of the return objects, a program named "MakeProjectClass" is invoked to

produce a template class definition and its implementation.  The template class is then

replaced with one question mark in the template file.  The C++ code generated from the

given statement will call the constructor of the template class to create resulting objects.

This demo program also provides an option to users to see the C++ code that will be

generated from the given statements before they are compiled.  The transformation from

OQL to C++ is done by a program named "oql".  This program is the main portion of the

OQL preprocessor.

The third demo program is an extension of the second one.  The only difference is

that it supports active schemas by calling the Sentinel preprocessor and provides an entry

to invoke events by executing the method functions of the resulting objects.

The following windows are the GUI for the third demo program.



70

A.2 A.3

A.4 A.5

Figure A.2  OQL Demo Platform - Main

Figure A.3 Choosing A Schema

Figure A.4  OQL Demo Platform - Query Editor

Figure A.5 OQL Demo Platform - C++ Code



71

APPENDIX B
WINDOW SAMPLES OF RULE EDIOR INTERFACE

Figure B.1  Rule Editor - Logo Figure B.2  Rule Editor -- Applications

Figure B.3  Rule Editor - Operations Figure B.4  Rule Editor - Event Operators



72

Figure B.5  Rule Editor - Existing Events Figure B.6  Rule Editor - Methods

Figure B.7  Rule Editor - Temporal Events Figure B.8  Rule Editor - Plus Editor



73

Figure B.9  Rule Editor - Periodic Editor Figure B.10 Rule Editor - Or Editor

Figure B.11 Rule Editor - Not Editor Figure B.12  Rule Editor - Help



74

Figure B.13  Rule Editor – Warnings

Figure B.14  Rule Editor - Function Editor 1 Figure B.15 Rule Editor - Function Editor 2



75

Figure B.16  Rule Editor - Rule Attribute Editor



76

REFERENCES

[1] M. Prahlad. A Dynamic Rule Editor for Sentinel: Design and Implementation.
Master's thesis, University of Florida, Gainesville, 1997.

[2] OODB.  OpenOODB Toolkit, Release 0.2 (Alpha) Document.  Texas Instruments,
Dallas, September 1993.

[3] D.  Mishra.    SNOOP:  An Event Specification Language for Active Databases.
Master's thesis, University of Florida, Gainesville, August 1991.

[4] S. Chakravarthy and D. Mishra. Towards an Expressive Event Specification
Language for Active Databases. In Proc. of the 5th International Hong Kong
Computer Society Database Workshop on Next Generation Database Systems,
Kowloon Shangri-La,  Hong Kong, February 1994.  (Invited Paper).

[5] E. Anwar, L. Maugis, and S. Chakravarthy. A New Perspective on Rule Support for
Object-Oriented Databases.  In Proceedings, International Conference on
Management of Data, pages 99-108, Washington, D.C., May 1993.

[6] H. Liao.  Global Events In Sentinel:  Design and Implementaion of A Global Event
Detector, University of Florida, Gainesville, 1997

[7] H. Lee.  Support for Temporal Events in Sentinel:  Design, Implementation, and
Preprocessing.  Master's thesis, University of Florida, Gainesville, 1996

[8] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim.  Composite Events
for Active Databases: Semantics, Contexts, and Detection.  In Proceedings,
International Conference on Very Large Data Bases, pages 606-617, August 1994.

[9] V. Krishnaprasad.  Event Detection for Supporting Active Capability in an
OODBMS: Semantics, Architecture, and Implementation.  Mater's thesis,
University of Florida, Gainesville, 1994.

[10] S. Han.  Three-Tire Architecture for Sentinel Applications and Tools: Separating
Presentation from Functionality, University of Florida, Gainesville, 1997

[11] OpenOODB 1.0 C++ API User Manual.  Texas Instruments,
Dallas, September 1995.



77

[12] OpenOODB 1.0 Query Language User Manual.  Texas Instruments,
Dallas, September 1995.

[13] Jose A. Blakeley.  ZQL[C++]: Extending the C++ Language with an Object Query
Capability, Texas Instruments, Dallas, May 1993.

[14] Jose A. Blakeley and Kiran SreeWastav.  Implementation of the Object Query
Language Module for Zeitgeist: Version 0.1.0.  Database System Branch Technical
Report, Information Technology Laboratory, Texas Instruments, Dallas, May 1991.



78

BIOGRAPHICAL SKETCH

Hung-ju Chu was born on June 9, 1966, at Taichung, Taiwan, R.O.C.  He received

the Bachelor of Science degree in Electrical Engineering from the National Cheng-Kung

University, Tainan, Taiwan, in June 1994. In the fall of 1995, he started his graduate

studies with a major in computer and information science and engineering at the

University of Florida. He will receive his Master of Engineering degree in computer and

information science and engineering from the University of Florida, Gainesville, in May

1998.  His research interests include network programming, user interface and active

object-oriented databases.


