

MAKING SYBASE FULLY ACTIVE: SUPPORTING COMPOSITE

EVENTS AND PRIORITIZED RULES

by

GANESH AMBALAVANAN GOPALAKRISHNAN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2002

To My Parents

ACKNOWLEDGMENTS

First and foremost, I would like to thank my supervising professor, Dr. Sharma

Chakravarthy, for giving me an opportunity to work on naval research project and providing

me great guidance and support throughout this research work.

I would like to thank Dr. Alp Aslandogan and Dr. Mohan Kumar for serving on my

committee.

I am grateful to Nellainayagam, Arvind and Raman for their invaluable help and

advice during the implementation of this work. I also would like to thank Pratyush Mishra

for administering the research network. I would like to thank all my friends in the ITLAB

for their support and encouragement during this work.

This work was supported, in part, by the Office of Naval Research, the SPAWAR

System Center-San Diego & by the Rome Laboratory (grant F30602-01-2-05430) and by

NSF (grant IIS-0123730).

I would also like to thank my parents and my sister for their endless love and

constant support throughout my academic career.

 July 11, 2002

ABSTRACT

MAKING SYBASE FULLY ACTIVE: SUPPORTING COMPOSITE

EVENTS AND PRIORITIZED RULES

Publication No.__________

Ganesh Ambalavanan Gopalakrishnan

The University of Texas at Arlington, 2002

Supervising Professor: Sharma Chakravarthy

A database management system (DBMS) is a software system for reliably and

efficiently creating, maintaining, and operating large information repositories that can be

accessed concurrently by a large number of users. Commercial RDBMSs used to be passive

earlier, but currently support limited active capability. Active database management system

is one that extends the passive DBMS with the ability to react to set of pre-defined situations

or conditions (induced by the changes applied to the database). Event Condition and Action

(ECA) rules are typically used to enhance the native active capability present in the

RDBMS.

The goal of this thesis is to generalize the mediated approach to support active

capability. Introducing a generalized ECA agent between the Database Server and the client

permits us to enhance the native active capability of RDBMSs. The architecture, design, and

implementation of this approach are explained in this thesis. The system developed supports

primitive and composite events in different contexts. The mediated approach used in this

thesis is in contrast to the integrated approach for supporting active capability. This

approach is useful when it is not possible to change or add code to the underlying system.

This approach provides an alternative way to support complete ECA paradigm using a

mediated approach by using the �trigger� capability available in the underlying DBMS.

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. iv

ABSTRACT ... v

LIST OF FIGURES ��������������������������... x

LIST OF TABLES ��������������������������.� xi

Chapter

1. INTRODUCTION �������������������������� 1

1.1. ECA Paradigm .. 1

1.2. Issues ... 1

1.3. Triggers ... 2

1.4. ADBMS .. 2

2. RELATED WORK �������������������������... 5

2.1. Ariel .. 5

2.2. Sentinel .. 6

2.3. Ode .. 7

2.4. Info Bus ... 8

2.5. An Agent Based Approach ... 9

2.6. A Generalized Approach ... 9

3. OVERVIEW ����������������������������. 11

3.1. Primitive Event ���������.�������������� 11

3.2. Composite Event ��������.�.�����������.�� 12

3.3. Snoop Event Operators ��������.�.����������� 12

3.4. Parameter Context ... 14

3.5. Coupling Modes .. 15

3.6. Rule Priority .. 16

3.7. Java LED ... 17

3.8. Java SPP .. 17

3.9. Sybase Triggers ... 18

3.10. Java Sockets .. 21

3.11. JDBC ... 23

3.12. Terminology Used ... 25

4. DESIGN ISSUES �������������������������� 26

4.1. General Architecture ... 26

4.2. Issues .. 27

4.3. Architecture of the ECA Server ... 30

4.4. ECA Agent Client .. 46

4.5. Extended Trigger Syntax ... 47

4.6. Need for Notification .. 50

4.7. Getting Parameters .. 51

5. IMPLEMENTATION .. 54

5.1. ECA Agent System ... 54

5.2. ECA Agent Client ... 56

5.3. Multi User/Multi Database .. 56

5.4. Persistence of events across sessions .. 59

6. PRIMITIVE EVENTS ... 60

6.1. Primitive Triggers ... 60

6.2. Repeat Triggers ... 68

6.3. Drop Trigger ... 71

6.4. If Update Clause ... 72

7. COMPOSITE EVENTS ... 75

7.1. Creation Phase ... 75

7.2. Execution Phase .. 78

7.3. Java File .. 80

7.4. Stored Procedures ... 81

7.5. Drop Composite Event .. 82

7.6. Composite Events in Java LED .. 83

8. CONCLUSIONS ... 84

8.1. Conclusions ... 84

8.2. Contributions of this thesis ... 84

8.3. Future Work .. 85

REFERENCES .. 86

BIOGRAPHICAL INFORMATION .. 89

LIST OF FIGURES

Figure Page

3.1. Connection .. 22

3.2. Server Listening .. 23

4.1. General Architecture ... 26

4.2. Multiple ECA Agents .. 28

4.3. Detailed Architecture .. 31

4.4. Language Filter ... 32

4.5. Primitive Event Parser .. 34

4.6. Repeat Primitive Event Parser .. 36

4.7. Composite Event ... 38

4.8. Drop Primitive Event .. 43

4.9. Drop Composite Event .. 45

5.1. Server Client Connection .. 54

5.2. Multi User/Multi Database .. 57

7.1. Code for Java LED ... 80

7.2. Condition Method .. 81

7.3. Event Graph ... 83

LIST OF TABLES

Table Page

4.1. SYSECATRIGGER .. 39

4.2. SYSPRIMTIVEEVENT ... 40

4.3. SYSCOMPOSITEVENT .. 30

4.4. VERSION ... 41

4.5. SYSDROP ... 41

4.6. NOTIFY .. 51

4.7. SYSCONTEXT ... 52

6.1. WEATHER ... 61

6.2. INFO ... 61

6.3. WEATHER_INSERTED .. 62

6.4. SYSECATRIGGER .. 65

6.5. SYSPRIMITIVEEVENT .. 65

6.6. SYSPRIMTIVEEVENT ... 66

6.7. VERSION ... 66

6.8. NOTIFY .. 67

6.9. INFO ... 68

6.10. SYSECATRIGGER ... 71

7.1. SYSDROP .. 77

7.2. SYSECATRIGGER .. 78

7.3. SYSCOMPOSITEVENT .. 78

7.4. INFO ... 79

7.5. SYSCONTEXT ... 79

7.6. NOTIFYCOM .. 80

1. INTRODUCTION

Active Database Management Systems (ADBMSs) are those that are capable of

monitoring and reacting to specific situations of relevance to an application. In commercial

RDBMSs queries are executed as and when the user or the client application requests them.

That is, it uses a query driven mechanism. Commercial RDBMSs also support triggers that

provide a limited form of situation monitoring. This research addresses the mechanisms for

providing complete active capability for RDBMSs and uses Sybase for implementing our

approach.

1.1 ECA paradigm

An example in banking scenario can be taken to emphasize the need for ADBMS.

Consider a situation in which a customer has a savings account and the minimum balance in

savings account is five hundred dollars. For every transaction of this customer the minimum

balance has to be checked, and if it goes below five hundred dollars, the banker and the

customer has to be notified to take appropriate action. In this example, every transaction is

an event, checking of the balance is the condition and the notification is the action. This is

collectively called as ECA paradigm. This whole information is typically stored in a

database. The above said action can be done through triggers in commercial RDBMSs but

with restrictions. In this work we address the limitations of Sybase triggers and provide a

generalized way to enhance the active capability for RDBMSs.

1.2 Issues

 The development of an active database needs to consider the following issues [14]:

• An active database system must provide all the usual functionality of a

conventional passive database system. Meanwhile, it is desirable that the

performance of conventional database tasks is not penalized by the fact that the

database system is active.

• An active database system must provide some mechanism for users and

applications to specify the desired active behavior, and these specifications must

become a persistent part of the database.

• An active database system must efficiently implement any active behavior that

can be specified; it must monitor the database state and, when appropriate,

automatically initiate additional behavior.

• An active database system must provide database design and debugging tools

similar to those provided by conventional database systems, extended to

incorporate active behavior.

1.3 Triggers

Database triggers, sometimes referred to as alerts or monitors, specify that certain

actions should be invoked whenever certain conditions are detected. For example, an

inventory control trigger might detect when stock is low and automatically reorder items.

Active database systems support triggers and in fact are based on the trigger concept [14].

In the context of Sybase, trigger is a stored procedure that goes into effect when you

insert or delete or update data in a table. The main advantage of triggers is that they are

automatically executed when the associated event (insert, delete or update) happens. The

limitation in Sybase is that it allows only one trigger per operation on a table. It does not

support before and after triggers as well.

1.4 ADBMS

There are lots of Active Database Management Systems (ADBMS) that come under

different categories. They are, (Extended) Relational Active Databases such as, Ariel [8],

Postgres [4], Starbust [14]; Object Oriented active databases such as, HiPac [5], Sentinel

[10], EXACT [7].

Active database systems enhance traditional database functionality with powerful

rule processing (or �trigger�) capabilities. Active database systems are significantly more

powerful than their passive counterparts in the following aspects [14]:

• Active database systems can efficiently perform functions that in passive

database systems must be encoded in application. . It is not the efficiency as

much but the ability to do it outside of the application that is important.

• Active database systems can support applications that are beyond the scope of

passive database systems (e.g., situation monitoring)

• Active database systems can perform tasks that require special-purpose

subsystems in passive database systems.

Most of the work on ADBMS is based on the integrated approach that requires

access to the underlying source code of the DBMS. Integrated approach cannot be used for

commercial RDBMSs, as access to the underlying source code cannot be obtained. A

mediator based ECA Agent was implemented by Lijuan Li [15] in order to enhance the

active capability provided by Sybase. This work used the Gateway Open Server present in

Sybase to provide ECA functionality. Hence this implementation was not portable to other

commercial RDBMSs and it was platform dependent. The next step was a Generalized ECA

Agent that was implemented by Zecong Song [19]. In the Generalized ECA Agent, the user

can specify the desired active behavior by defining events and rules. The events can be

primitive or composite. A primitive event is a database operation (insert/delete/update). A

composite event is a set of primitive events or composite events connected by event

operators. The notions of events, event operators and rules have been discussed in detail in

the event specification language Snoop [9].

With this as the background, in this research work we use the Generalized ECA

Agent to overcome the above deficiencies in the previous work and use Sybase as the

example RDBMS. Like the Generalized ECA Agent, this implementation also uses a

Mediator that is external to the underlying DBMS. This provides transparency to the clients.

Also the Mediator is portable and extensible. Triggers can be created on both primitive and

composite events. The Mediator supports all of the events defined in Snoop including

parameter contexts, coupling modes and priority. Both primitive and composite events can

be dropped. The events and rules are persisted using the underlying DBMS. Multiple clients

can use the same Mediator to create events and rules on multiple databases; the multi-

user/multi-database capability of the underlying DBMS is preserved.

This chapter gave an introduction about the active technology, active database

systems and triggers. It also discussed about the ECA paradigm and the issues involved in

the active database systems.

2. RELATED WORK

The work on active capability has been ongoing for about two decades. There have

been a number of research projects that have addresses various aspects of active database

research and prototype development. In this chapter, we present a summary of a few of

these research prototypes.

 Ariel

The Ariel system implements active capability in a RDBMS by having a built-in rule

system. The rule system of Ariel is based on the production system model. The approach

taken in Ariel has been to adopt as much as possible from previous work on main memory

production systems such as OPS5, but make changes where necessary to tailor the

performance of a production based system to a DBMS environment. The changes that have

been made include a rule language extension to POSTQUEL [5] with a query language like

syntax, a discrimination network for rule condition testing tailored to database environment

and measures to integrate rule processing with set oriented database update commands.

Since Ariel is based on the relational data model, it provides a subset of the

POSTQUEL query language of POSTGRES for specifying data definition commands,

queries and updates. The rule language of Ariel is a production rule language with

enhancements for defining rules with conditions that can contain relational selections and

joins as well as specification of events and transitions. The syntax of a rule is similar to that

of a query language. The general form is shown below.

Define rule rule-name [in rule set-name][priority priority-val]

[on event]

[if condition] then action

A unique rule name is required for each rule so that the user can refer to the rule

later.

The on clause allows the specification of an event that will trigger the rule.

Following types of events can be specified after an on clause:

append [to] relation-name

delete [from] relation name

replace [to] relation name [(attribute list)]

To summarize, following are the features of the Ariel system:

1. It is based on the production system model.

2. It is set oriented.

3. It is tightly integrated with the DBMS.

4. Provides condition-action binding based on shared tuple variables.

5. Supports event, transition, and ordinary conditions in a uniform way.

6. Uses a modified version of TREAT algorithm called A-TREAT algorithm for

rule testing, which speeds up the entire process.

2.2 Sentinel

 The Sentinel system [9,10,11] is a follow-on system to HIPAC [5]. This system uses

an integrated approach to incorporate active capability in an Object Oriented Database

System. The platform used for this system is the Open OODB Toolkit from Texas

Instruments [10]. The Sentinel system extends the passive Open OODB system by

incorporating extensions to the Open OODB kernel. These extensions include:

1. Implementation of a Sentinel pre-processor and a Sentinel post-processor to

convert the high-level user specification of ECA rules into appropriate code for event

detection, parameter computation, and rule execution. The ECA rules are specified using the

event specification language Snoop.

2. Implementation of local event detector for detecting events (primitive and

composite). There is also provision for parameter computation in various contexts when

composite events are detected.

3. Extension of the transaction manager for supporting nested transactions used for

concurrent execution of rules.

4. Implementation of a rule debugger for visualizing the interaction among rules,

among events and rules, and among rules and database objects.

 This system uses an integrated approach, which cannot be used for commercial

RDBMSs. This is because in the integrated approach, the system will be developed as a part

of the existing system. Hence needs access to source code. We cannot get the source of the

commercial RDBMSs.

2.3 Ode

Ode is an object-oriented database based on the C++ object paradigm. The primary

interface for the Ode database is the database programming language O++, which is an

upward-compatible extension of the C++. O++ extends C++ by providing facilities suitable

for database applications, including the association of constraints and triggers with objects.

Ode provides two kinds of active facilities: �constraints� for maintaining database

integrity and �triggers� for automatically performing actions depending upon the database

state [6].

Ode supports two kinds of triggers: once-only (default) and timed triggers. A once-

only trigger is automatically deactivated after the trigger has �fired,� and it must then be

explicitly activated again, if desired. A timed trigger must fire within the specified period.

Ode trigger model is an event-action (E-A) model. When an event occurs, the associated

action is executed. Ode supports primitive events and composite events. Primitive events are

defined and composite events are constructed by applying operators to primitive events. The

basic events that are supported are object state events. The event operators supported are

prior, sequence, first, first after, happened, every, prefix and so on.

2.4 InfoBus

InfoBus [3] provides transparent data exchange between different components of a

system. The components are built using Java Beans discussed above. The components that

are interested to exchange information subscribe to an InfoBus channel as data producers

and/or data consumers. As the names indicate, data is transferred from a data producer to a

data consumer. The connecting components have to follow certain rules mandated by

InfoBus in order to exchange data. Semantics of data flow are based on interpreting contents

of the data that flows across the InfoBus interface. They are the components that establish

the data flow between each other. A data consumer subscribes to the InfoBus interface by

naming the data item that it is interested to receive.

Events are sent by the InfoBus to listeners for each component on the bus. Three

types of events are defined:

1. InfoBusItemAvailableEvent�an event which is broadcast on behalf of a producer

to let potential consumers know about the availability of a new data item through the

InfoBus.

2. InfoBusItemRevokedEvent�an event that is broadcast on behalf of a producer to

let consumers know that a previously available data item is no longer available.

3. InfoBusItemRequestedEvent�an event which is broadcast on behalf of a

consumer to let producers know about the need for a particular data item that they may be

able to supply.

Thus, it provides only data exchange between various components of a system based

on subscription mechanism. It does not have the notion of composite events or rules. Its

main purpose is to provide transparent and easy exchange of data between the Java Bean

components of a system.

2.5 An Agent Based Approach

Lijuan Li implemented an Agent-Based approach to extending the native active

capability of relational database systems [15] specifically for Sybase in C++. The

implementation has an ECA Agent, which is a mediator between clients and Sybase SQL

Server. Sybase Gateway Open Server was used in that approach to extend the active

capability of Sybase. In this approach, events and rules are defined by extending the native

trigger syntax of Sybase database system. Both primitive and composite events can be

defined in this approach. The Sybase ECA Agent provides full transparency to the client and

also provides persistence to user created events using the native DBMS capability. The

Sybase ECA Agent was developed in C++. The Sybase ECA Agent used the C++ Local

Event Detector (LED) to support composite events. The Sybase ECA Agent is dependent on

the Gateway Open Server (specific to Sybase) to provide ECA functionality. Also since it

uses the C++ LED there are portability constraints to be considered�it can be used only for

that version of Sybase on Unix Platform. Hence this approach is not a generalized approach

that can be ported to other commercial RDBMSs such as DB2, Oracle.

 Though this approach has many disadvantages and lack many issues, this formed the

basis for this thesis to support multiple triggers and composite events in a generalized way

that may help us to port the entire system to different platform and also to other RDBMSs.

2.6 A Generalized approach

A Generalized ECA Agent was implemented by Zecong Song [19] using IBM DB2

as test database and another developed by Kim [18] using Oracle as test database. These

systems were follow-on systems to the Sybase ECA Agent. These systems were also based

on the mediated approach. The functionality of the Generalized ECA Agent is similar to the

Sybase ECA Agent. The system has been developed in Java. This interfaces with the Java

Local Event Detector (Java LED) to detect primitive and composite events. The system uses

Java Database Connectivity (JDBC) to connect to the underlying database system. Since

JDBC is independent of any specific RDBMS, the Generalized ECA Agent approach can be

used for other database systems such as Oracle, Sybase.

The Generalized ECA Agent allowed users to create primitive and composite events

by specifying event triggers. The Generalized ECA Agent supported only a limited set of

composite events. Also some of the ECA features such as parameter contexts, coupling

modes and priority were not completely implemented in this prototype. Furthermore,

dropping of events and rules were not supported.

This chapter discussed some of the earlier research on active databases. The

discussion was on integrated approach such as Ariel and Sentinel. Also systems that use the

mediator-based approach such as Sybase ECA Agent, Generalized ECA Agent were also

discussed.

3. OVERVIEW

This chapter gives an overview of the concepts and systems used in this research

work.

3.1 Primitive Event

An event is an occurrence of interest at a specific point in time. Primitive events are

the elementary occurrences and are classified into database, temporal, and explicit events.

Database events are associated with the manipulation of data such as the update, deletion, or

insertion (on tables) and are executed over a period of time. Event modifiers (begin and end)

were introduced to transform operations that take an interval into an event. In other words,

the event modifiers (begin and end) are used to map the logical events at the conceptual

level to physical events. The begin event modifier denotes the starting point of a database

event and the end event modifier denotes the ending point. Temporal events correspond to

absolute and relative events that are associated with time. The absolute temporal event is an

event associated with an absolute value of time. For example, 4 P.M. on August 15, 1947 is

an absolute event. The relative temporal event is an event corresponding to a specific point

on the time line, which is an offset from another time point (specified either as absolute or as

an event). Explicit (also termed abstract) events are explicitly defined in the application, but

their occurrences are either detected outside of the application and conveyed to the

application or the application explicitly raises those events.

3.2 Composite Events

A composite event is an event that is composed of primitive events and/or other

composite events by applying Snoop [9] event operators such as OR, AND, SEQUENCE,

NOT. In order words, the constituent events of the composite event can be primitive events

and/or composite events.

3.3 Snoop Event Operators

The event operators are used to construct composite events. Each of these event

operators and its semantics are described briefly in the following section. The upper case

letter E, which represents an event type, is a function from the time domain on the Boolean

values. The function [9] is given by

E (t) = True if an event type E occurs at time point t

False otherwise

Disjunction: OR (∇∇∇∇)

Disjunction of two events E1 and E2 denoted by E1 ∇ E 2 is applied when either E1

occurs or E 2 occurs. Formally,

(E1 ∇ E2) (t) = E1 (t) ∇ E2 (t)

Conjunction: AND (∆)

Conjunction of two events E1 and E2, denoted by E1 ∆ E 2 is applied when E1 occurs and

E 2 occurs in any arbitrary order. Formally,

(E1 ∆ E2) (t) = (E1 (t1) ∆ E2 (t)) ∇ ((E1 (t) ∆ E2 (t1))

and t1 ≤ t

Sequence (;)

The sequence of two events E1 and E2, denoted by E1 ; E 2 occurs when E1 happens before

E2. The timestamp of occurrence of E1 is less the timestamp of occurrence E2. Formally,

(E1; E1) (t) = E1 (t1) ∆ E2 (t) and t1 < t

Negation: NOT (¬)

The not operator, denoted by ¬(E2) [E1, E3] is applied when there is no occurrence of E2

in the closed interval formed by E1 and E3. Formally,

¬(E2) [E1, E3] (t) = (E1 (t1) ∆ ~E2(t2) ∆ E3(t))

and t1 ≤ t2 ≤ t

Aperiodic Operators (A)

The non-cumulative aperiodic operator, denoted by A (E1, E2, E3) is used to express the

occurrence of an aperiodic event in the half-open interval formed by two arbitrary events.

The A event occurs each time when E2 occurs during the half-open interval defined E1and

E3. The number of occurrence of A event is proportional to the occurrence of E2 during the

interval. Formally,

A (E1, E2, E3) (t) = E1 (t1) ∆ ~ E3 (t2) ∆ E2 (t))

and (t1 < t2 ≤ t or t1 ≤ t2 < t)

Aperiodic Star Operators (A*)

The cumulative aperiodic operator, denoted by A* (E1, E2, E3) is similar to the non-

cumulative aperiodic operator. It A* event is signaled only once when E3 occurs rather than

detected the event every time the event E2 occurs. However, the occurrences of E2 are

accumulated each time when E2 occurs during the half �open interval formed by E1 and E3.

Formally,

A*(E1, E2, E3) (t) = (E1 (t1) ∆ E3 (t)) and t1 < t

Periodic Operator (P)

The periodic operator, denoted by P (E1, [t], E3) is used to express a periodic event that

repeats itself within a constant and finite amount of time. The event P is signaled for every

amount of time t in the half-open interval (E1, E3]. Formally,

P (E1, [TI], E3) (t) = (E1(t1) ∆ ~ E3(t2))

and t1 < t2 and t1 + x * TI = t for some 0 < x < t and t2 ≤ t

where TI is a time specification.

Periodic Star Operator (P*)

The periodic star operator denoted by P* (E1, [t], E3) is a cumulative variant of P. The

occurrence Similar to aperiodic star context, the P* event is signaled only once when E3

occur. Formally,

P*(E1, [TI], E3) (t) = (E1(t1) ∆ E3(t))

and t1 ≤ t

Plus (+)

The plus operator denoted by E1+ [T] is applied when T time units are elapsed after E1

occurs.

3.4 Parameter Context

Four parameter contexts�recent, chronicle, continuous, and cumulative�were

introduced to provide a mechanism for capturing meaningful application semantics and

reduce the space and computation overhead for the detection of composite events using the

semantics described above [9]. The contexts are defined by using the notions of initiator and

terminator for events. An event that initiates the occurrence of a composite event is termed

the initiator of the composite event. An event that completes the detection of a composite

event is denoted as the terminator of the composite event. For example, a composite event

(E1 ∆ E2 ∆ E3) has E1 as initiator and E3 as terminator.

Recent: In the recent context, only the most recent occurrence of the initiator (when there

are multiple instances of the same event) for any event that has started the detection of that

event is used. When the event occurs, all the occurrences of events, that are used in the

parameter relation and cannot be initiators of that event in the future, are deleted. In this

context, not all occurrences of a constituent event will be used in detecting a composite

event. Furthermore, an initiator of an event will continue to initiate new event occurrences

until a new initiator occurs. This recent context is suitable for events that happen at a fast

rate and the multiple occurrences of the same event only refine the previous value.

Chronicle: In the chronicle context, the initiator-terminator pair is unique for an event

occurrence. The oldest initiator is paired with the oldest terminator for each event. When

event occurs, the occurrences of the events are deleted. The event occurrence can be used at

most once for computing the parameters of the composite event. This context is useful when

the different types of events have an established relationship between their occurrences.

Continuous: In the continuous context, each initiator of an event starts a separate detection

of that event. A terminator event occurrence may detect one or more occurrences of the

same event. The initiator and terminator are discarded after an event is detected. This

context is fit for tracking trends of interest along a moving time window.

Cumulative: In the cumulative context, all occurrences of an event type are accumulated as

instances of that event until the event is detected. When the event occurs, all the occurrences

that are used for detecting are discarded.

3.5 Coupling Modes

In early systems such as POSTGRES [4], condition evaluation and action execution

were done immediately after the event was detected. However, in some situations this is too

restrictive. For integrity checks, condition evaluation and action execution need to be done

at the end of a transaction before it commits. Coupling modes were introduced to specify a

relative point in time where condition evaluation and action execution should take place

after the event is detected, with the constraint that the action will be performed only when

the condition is satisfied.

There are three coupling modes:

Immediate:

When an event is detected, the transaction is suspended, and the condition associated

with the event is evaluated immediately. If the condition evaluates to true, the action is

executed. The execution of the triggering transaction is continued when the condition

evaluation and action execution are completed.

Deferred:

The triggering transaction is continued after an event is detected. Condition

evaluation and action execution are done at the end of the triggering transaction before it

commits.

Detached (or decoupled):

Condition evaluation and action execution are done in a separate transaction (or

triggered transaction) from the triggering transaction. The detached mode can be classified

into two types (totally independent and causally dependent). When two transactions are

totally independent, the triggered transaction is executed regardless of whether the triggering

transaction commits or aborts. On the other hands, the triggered transaction can commit only

after the triggering transaction commits for the causally dependent mode.

3.6 Rule Priority

In addition to the parameter context and coupling mode associated with a rule, there

is also a priority assigned to each rule. The default priority of a rule is a priority of 1. The

priorities increase with the increase in numerical values. That is, 2 is a higher priority than 1,

3 is a higher priority than 2 and so on. Rules of the same priority are executed concurrently

and rules of a higher priority are always executed before rules of a lower priority. It is

possible that a rule raises events that in turn could fire more rules and so on. This results in a

cascaded rule execution. Furthermore, rules can be specified either in the immediate

coupling mode or the deferred coupling mode. Both the priority and coupling mode of a rule

have to be taken into account for scheduling the rule for execution.

3.7 Java LED

We use the Java LED�Local Event Detector in our research work towards making

Sybase fully active. It is used to detect the database events mapped to primitive events and

composite events. LED is a system designed to provide support for events and rules in Java

applications (whether it is a DBMS developed in Java or a general Java application) in a

seamless manner. It is actually an event detector that was implemented to detect events in

Java applications and executes rules defined on them. Primitive event detection as well as

composite event detection in various parameter contexts and coupling modes has been

implemented in LED. Also, the application developer has to explicitly put the

raiseBeginEvent and raiseEndEvent calls inside the methods that have been defined as

primitive events [17].

3.8 Java SPP

We use Java Snoop Pre Processor (Java SPP), often referred to as SPP in this thesis,

to parse the SNOOP expression that has event operators connecting primitive or composite

events. It takes a file with sjava as file extension as input and generates a java file and text

file as outputs. The sjava file input contains the SNOOP expression. The output java file will

contain the API for creating the composite event node and also the rule API. This

conversion is done by SPP. The text file contains the names of the constituent events of the

composite event defined. It is easier to specify events and rules at a higher level of

abstraction. Hence to make definition easier and to avoid writing APIs we use SPP that

translates event and rule definitions into appropriate APIs.
Snoop is an Event Definition Language (EDL). The Snoop Preprocessor:

1. Parses user defined events and rule specification expressions in Snoop.

2. Inserts appropriate Java code in application program.
Defining Events:

For Example,

An event is specified using the following format:

event begin (sellStockBeginTest2 : VkTest : test2) void sellStock (int dollar);

This event definition, after preprocessing, is translated to

EventHandle sellStockBeginTest2 =

myAgent.createPrimitiveEvent("sellStockBeginTest2","VkTest",EventModifier.BEGIN,

 "void sellStock(int dollar)",test2,DetectionMode.SYNCHRONOUS);

Defining Rules:

For Example the rule definition given as:

rule R5 [sellStockBegin , VkTest.True , VkTest.displayPrice , 2 , DEFAULT , RECENT];

is translated to:

myAgent.createRule("R5",sellStockBegin,"VkTest.True�,"VkTest.displayPrice",2,

 CouplingMode.DEFAULT ,ParamContext.RECENT];

3.9 Sybase Triggers

A trigger is a stored procedure that goes into effect when you insert, delete, or

update data in a table. You can use triggers to perform a number of automatic actions, such

as cascading changes through related tables, enforcing column restrictions, comparing the

results of data modifications, and maintaining the referential integrity of data across a

database [16].

Triggers can help maintain the referential integrity of your data by maintaining

consistency among logically related data in different tables. You have referential integrity

when the primary key values match the corresponding foreign key values.

The main advantage of triggers is that they are automatic. They work no matter what

caused the data modification�a clerk�s data entry or an application action. A trigger is

specific to one or more of the data modification operations, update, insert, and delete. A

trigger is executed once for each SQL statement [16].

Here is the complete create trigger syntax:

create trigger [owner.] trigger_name

on [owner.] table_name

for {insert , update , delete}

as SQL_statements

Or, using the if update clause:

create trigger [owner.] trigger_name

on [owner.] table_name

for {insert , update}

as

[if update (column_name)

[{and | or} update (column_name)]...]

SQL_statements

[if update (column_name)

[{and | or} update (column_name)]...

SQL_statements]...

The create clause creates the trigger and names it. A trigger�s name must conform to

the rules for identifiers. The on clause gives the name of the table that activates the trigger.

This table is sometimes called the trigger table.

A trigger is created in the current database, although it can reference objects in other

databases. The owner name that qualifies the trigger name must be the same as the one in

the table. No one except the table owner can create a trigger on a table. If the table owner is

given with the table name in the create trigger clause or the on clause, it must also be

specified in the other clause.

SQL Statements That Are Not Allowed in Triggers

Since triggers execute as part of a transaction, the following statements are not

allowed in a trigger [16]:

� All create commands, including create database, create table, create index,

create procedure, create default, create rule, create trigger, and create view

� All drop commands

� Alter table and alter database

� Truncate table

� Grant and revoke

� Update statistics

� Reconfigure

� Load database and load transaction

� Disk init, disk mirror, disk refit, disk reinit, disk remirror, disk unmirror

� Select into

Trigger Restrictions:

Adaptive Server imposes the following limitations on triggers [16]:

� A table can have a maximum of three triggers: one update trigger, one insert

trigger, and one delete trigger.

� Each trigger can apply to only one table. However, a single trigger can apply to all

three user actions: update, insert, and delete.

� You cannot create a trigger on a view or on a temporary table, though triggers can

reference views or temporary tables.

� The writetext statement will not activate insert or update triggers.

� Although a truncate table statement is, in effect, like a delete without a where

clause, because it removes all rows, it cannot fire a trigger, because individual row deletions

are not logged.

� You cannot create a trigger or build an index or a view on a temporary object

(@object)

� You cannot create triggers on system tables. If you try to create a trigger on a

system table, Adaptive Server returns an error message and cancels the trigger.

� You cannot use triggers that select from a text column or an image column of the

inserted or deleted table.

� If Component Integration Services is enabled, triggers have limited usefulness on

proxy tables because you cannot examine the rows being inserted, updated, or deleted (via

the inserted and deleted tables). You can create a trigger on a proxy table, and it can be

invoked. However, deleted or inserted data is not written to the transaction log for proxy

tables because the insert is passed to the remote server. Hence, the inserted and deleted

tables, which are actually views to the transaction log, contain no data for proxy tables.

We can see from the first restriction that there can be maximum of three triggers for

a table. This poses a serious hurdle for the active capability in Sybase. So we start from here

to support composite events and prioritized rules in Sybase.

3.10 Java Sockets

We use java as our programming language to implement the ECA agent to enhance

the active capability in Sybase. For connecting to server from client we use java sockets.

Hence we give an overview of Java sockets here [2].

In client-server applications, the server provides some service, such as processing

database queries or sending out current stock prices. The client uses the service provided by

the server, either displaying database query results to the user or making stock purchase

recommendations to an investor. The communication that occurs between the client and the

server must be reliable. That is, no data can be dropped and it must arrive on the client side

in the same order in which the server sent it.

TCP provides a reliable, point-to-point communication channel that client-server

application on the Internet use to communicate with each other. To communicate over TCP,

a client program and a server program establish a connection with each another. Each

program binds a socket to its end of the connection. To communicate, the client and the

server each reads from and writes to the socket bound to the connection.

A socket is one end-point of a two-way communication link between two programs

running on the network. Socket classes are used to represent the connection between a client

program and a server program. The java.net package provides two classes Socket and

ServerSocket that implement the client side of the connection and the server side of the

connection, respectively. Normally, a server runs on a specific computer and has a socket

that is bound to a specific port number. The server just waits, listening to the socket for a

client to make a connection request.

On the client-side, the client knows the hostname of the machine on which the server

is running and the port number to which the server is connected. To make a connection

request, the client tries to rendezvous with the server on the server's machine and port.

Figure 3.1. Connection.

If everything goes well, the server accepts the connection. Upon acceptance, the

server gets a new socket bound to a different port. It needs a new socket (and consequently a

different port number) so that it can continue to listen to the original socket for connection

requests while tending to the needs of the connected client.

Figure 3.2. Server Listening.

On the client side, if the connection is accepted, a socket is successfully created and

the client can use the socket to communicate with the server. Note that the socket on the

client side is not bound to the port number used to rendezvous with the server. Rather, the

client is assigned a port number local to the machine on which the client is running. The

client and server can now communicate.

3.11 JDBC

We use the industry standard JDBC to connect to Sybase ASE server from the ECA

Agent. JDBC technology is an API that lets you access virtually any tabular data source

from the Java programming language. It provides cross-DBMS connectivity to a wide range

of SQL databases, and now, with the new JDBC API, it also provides access to other tabular

data sources, such as spreadsheets or flat files [1].

The JDBC API allows developers to take advantage of the Java platform's "Write

Once, Run Anywhere" capabilities for industrial strength, cross-platform applications that

require access to enterprise data. With a JDBC technology-enabled driver, a developer can

easily connect all corporate data even in a heterogeneous environment.

Advantages of JDBC Technology

1. Leverage Existing Enterprise Data: With JDBC technology, businesses are not

locked in any proprietary architecture, and can continue to use their installed databases and

access information easily�even if it is stored on different database management systems.

2. Simplified Enterprise Development: The combination of the Java API and the

JDBC API makes application development easy and economical. JDBC hides the

complexity of many data access tasks, doing most of the "heavy lifting� for the programmer

behind the scenes. The JDBC API is simple to learn, easy to deploy, and inexpensive to

maintain.

3. Zero Configurations for Network Computers: With the JDBC API, no

configuration is required on the client side. With a driver written in the Java programming

language, all the information needed to make a connection is completely defined by the

JDBC URL or by a DataSource object registered with a Java Naming and Directory

InterfaceTM (JNDI) naming service. Zero configurations for clients support the network-

computing paradigm and centralize software maintenance.

Sybase provides a way to connect to its ASE Server from any java application

through jConnect�The Sybase JDBC driver. jConnect is Sybase's high-performance JDBC

driver. jConnect is both a:

Net-protocol/all�Java driver within a three-tier environment, and a

Native-protocol/all�Java driver within a two-tier environment.

3.12 Terminology used

The whole system designed is referred to as ECA Agent System�Event Condition

and Action�as the whole process of enhancing active technology is based on ECA

paradigm. The server is referred to as ECA Server and the client that serves as an interface

for the user is referred to as ECA client.

The insert, delete and update operations are treated as primitive events. The trigger

defined is referred to as Primitive Trigger or Primitive Event Trigger. If more triggers are

defined on the same table for same operation then it is referred to as Repeat Trigger and the

event is referred to as Repeat Primitive event. The trigger defined on composite event with

SNOOP expression is referred as Composite Trigger or Composite Event Trigger.

This chapter gave an overview of all the components used on this thesis like java

sockets, JDBC. It also gave background information about JavaLED, SPP, SNOOP, Sybase

triggers and event operators.

Client 1

Client 2

Client n

ECA Agent SQL server DB

Figure 4.1. General Architecture.

4. DESIGN ISSUES
This chapter discusses the design issues of the ECA Agent System.

4.1 General Architecture

In Sybase, a table can have a maximum of three triggers: one update trigger, one

insert trigger and one delete trigger. Our aim is to make Sybase fully active. First step

towards doing this is to support multiple triggers for a table. Then we have to support

composite events. To achieve these goals, we have to have control over the input commands

given by the user. Also, Event�Condition�Action based approach is best suited for

achieving our goal.

As shown in figure 4.3, the user gives the input command in the ECA Client. This is

routed to the ECA Server. The ECA server sends it to the corresponding database server�

Sybase server, in our case. This is a generalized approach in the sense it can connect to any

SQL server (Oracle and DB2 have been used in other projects). The reason for providing the

ECA Agent System is to gain control over the inputs thus facilitating us to achieve our goal.

4.2 Issues:

Now the ECA server being introduced between the client and the Sybase server

should take the role of the server and do many functions that the Sybase server does. These

are the issues that need to be addressed:

1. Multi user/Multi Database connectivity

2. Full Active capability

a. Multiple rules on the same primitive event

b. Composite events

c. Parameter contexts

3. Persistence of events

a. Persistence of triggers across sessions

b. Persistence of meta data

4.2.1 Multi user/ Multi Database connectivity:

The underlying RDBMS�the Sybase server allows a single user to connect to

different databases and at the same time allows many users to connect to the same database.

In our case, ECA Server has to provide this functionality.

We use JavaLED to detect events. The JavaLED maintains event graphs to register

and notify events. There is a facility in JavaLED to create multiple instances of the event

detector and create event graphs in each one of them. In our case, for a specific user�

database combination we create an instance of the named event detector instance as shown

in figure 4.2. Each instance of the event detector will have the event graph corresponding to

the events created by that user for that database. The following features from JavaLED are

used for this purpose: [17]:

1. Multiple event graphs .

2. The API methods invoked on a specific instance of the ECA Agent class.

3. Multiple event graphs created by creating the events and rules on different ECA

Agent instances.

4. An event created in more than one event graph by invoking the same API on

different instances.

5. Logical grouping of events and rules within the same application.

Rule Scheduler

Event Detector

Rule Scheduler

Event Detector

Client 1

Client 2

Client n

JDBC

 DB

Figure 4.2. Muliple ECA Agents.

We create a file with .java as extension that contain APIs to create the events in the

JavaLED. These files have to be created and kept in separate directory for each user�DB

combination. Also the event information is stored in the underlying RDBMS by creating

different relational tables. These tables should have the username and the database name to

identify the events and triggers created by different users.

4.2.2 Full Active Capability:

Most commercial RDBMSs support only triggers on insert/delete/update operations

on a table. They do not support the notion of triggers on composite events. In this research

work, each event is associated with a unique name so that the names can be used for

composition of events. A user can specify a named event by specifying triggers�here the

event is called primitive event. We allow users to define additional action on the same event

by reusing the event name and giving a different trigger name thus supporting multiple

triggers, which the underlying RDBMS (Sybase) does not support. The users can create

triggers on composite events including parameter contexts, coupling modes and priority. In

order to provide transparency, there is a need for a composite event trigger syntax that

reflects the trigger syntax of the underlying RDBMS. So the syntax is more similar to the

trigger syntax in Sybase. The ECA Server should also handle the special case of �if update�

clause triggers in Sybase. This is explained in detail in section 6.2.

4.2.3 Persistence of Events:

The event graph created by JavaLED is stored in main memory. Hence, when a

session ends the event graph is not persisted. But in a typical database scenario every event

and the corresponding transaction has to be persisted over sessions. In this case, the ECA

Agent server should take steps to persist these events. For this we have two choices:

1. Using Files.

2. Using RDBMS.

If we decide on using files, separate care has to be taken by ECA server for all file

operations such as inserting event information, retrieving the event information when

necessary, deleting the event information, naming the files and handling them. But if we use

the underlying RDBMS, this information is taken care by itself when we create relational

tables. We can use the SQL query mechanism to insert, delete or retrieve the event

information, which is relatively easy than the file handling. Hence we use Sybase to store

the event information and use it to draw the event graph again when a session ends and new

session starts.

2 4.3 Architecture of the ECA Server

The ECA server has many modules as shown in figure 4.2. In general, the client

input goes to the ServeOneClient module of the ECA Server. It routes it to Language filter,

which checks if it is an extended trigger command. If so it is sent to ECA Parser, else to the

JDBC Call module. The ECA Parser parses the command and sends it to the Persistence

Manager. The Persistence Manager persists the trigger and event details. The drop trigger

module handles the dropping of events. Each module is explained in detail in this chapter.

Java LED

Java SPP

Client

Persistence
Manager

ECA Parser

Language Filter ServeOneClient

Drop Trigger

File Handling

JDBC Call

Sybase SQL
Server

JDBC
 DB ECA Server

Action Handling

Figure 4.3. Detailed Architecture.

4.3.1 ServeOneClient

This module is responsible for making the client connection, getting the input,

connecting to the respective database. When a client tries to connect to the ECA server, the

ServeOneClient module makes connection. The input given to the ECA server comes to this

module, which routes it to Language Filter.

Language Filter

Primitive Event Parser

Repeat Primitive Event Parser

Repeat Composite Event Parser

Drop Prim Event

Drop Comp Event

Others

JDBC Call

ECA Parser

Drop Trigger

Composite Event Parser

Figure 4.4. Language Filter.

4.3.2 Language Filter

This module checks the command sent to it from ServeOneClient. If it is an ECA

command, it sends it to ECA Parser, else it is sent to the JDBC Call module. It also sends

the command to specific sub module under ECA Parser module as it has many sub modules.

Also the drop trigger command has to be sent to the proper sub module in Drop Trigger

module.

4.3.3 ECA Parser

It has the following sub modules to which the Language Filter sends the create trigger

ECA Command

1. Primitive Event Parser

2. Repeat Primitive Event Parser

3. Composite Event Parser

4. Repeat Composite Event Parser

4.3.3.1 Primitive Event Parser

This is a sub module under the ECA Parser. This sub module is exclusively used for

handling the primitive events. When the primitive event creation command comes from the

Language Filter, this module checks for correctness of syntax. If the syntax is correct, it

checks for duplicate trigger name and event name. If these are correct, then the code for

registering the event with Java LED is sent to File Handling module. Also, the trigger

command is sent to the persistence manager for creating the trigger. After the successful

completion of registration arrives from the File Handling module, the information is sent to

the Persistence Manager for persisting the event information in the RDBMS. If there is an

error at any stage, it is sent back to ServeOneClient, which forwards it to client.

No

No

Yes

Yes

Language Filter

ServeOneClient

Send code to file handling
to register event

Sent create trigger to
Persistence Manager

Is Syntax
Correct?

Is event
name
already
present?

Is trigger
name
duplicate?

No

Yes

Figure 4.5. Primitive Event Parser.

4.3.3.2 Repeat Primitive Event Parser

This is also a sub module under the ECA Parser module. This parser module takes

care of parsing the repeat primitive event creation command.

Yes

No

No

Yes

Language Filter

ServeOneClient

Sent create trigger to
Persistence Manager

Is Syntax
Correct?

Is primitive
event already
present?

Is trigger
name
duplicate?

No

Yes

Figure 4.6. Repeat Primitive Event Parser.

This is similar to primitive event parser except for some steps. After checking for the

syntax and trigger name duplication, the parser has to check if the primitive event is defined.

If it is present then the create command and the information for persisting the information

about the event and trigger is sent to the Persistence Manager. Here there is no need to

generate the file as the event is already registered with the LED and the java file is already

present.

4.3.3.3 Composite Event Parser

This module is also a sub module under ECA Parser. This module is responsible for

handling create composite command. As part of parsing, syntax, trigger and event names are

checked for correctness. Then, the code is sent to the Java Snoop Pre Processor (JavaSPP),

which generates (as a side effect of parsing and API generation) the constituent event list of

the composite event to be registered. Using that, this module checks for the presence of

constituent events. If the constituent events are not present then an error is sent to

ServeOneClient. If constituent events are present, the code is sent to the File Handling

module for registering the composite event. Upon successful registration, the information is

sent to the Persistence Manager for making the event information persistent in the RDBMS.

Yes

No

No

No

Yes

Yes

Language Filter

ServeOneClient

Send code to file handling
to register event

Sent info to
Persistence Manager

Is Syntax
Correct?

Are constituent
events present?

Is trigger
name
duplicate?

No

Yes

Is event
name
present?

Figure 4.7. Composite Event. Parser.

4.3.4 Persistence Manager

The create trigger command comes from ECA Parser to this module. In order to

support multiple triggers, we have to keep track of the triggers already created by the user.

The best way to do this is to persist the information about them in the RDBMS by creating

system tables. Also action portion can be converted into a stored procedure and can be

stored in the database itself. The execute call for this can be given in the trigger. This makes

the handling and dropping of multiple triggers easier.

The table SYSECATRIGGER keeps track of the trigger information. In all the

system tables created, DBNAME refers to the database name; USERNAME refers to the

user connected to that database. EVENTNAME refers to the event name associated with the

trigger.

Table 4.1. SYSECATRIGGER

DBNAME USERNAME TRIGGERNAME TRIGGERPROC TIMESTAMP EVENTNAME TRTYPE

TRIGGERNAME � name of the user defined trigger

TRIGGERPROC � name of the stored procedure created for that trigger

TIMESTAMP � timestamp at which the trigger is created

TRTYPE � trigger type {normal | if}

The LED we are using does not persist the information about the triggers and the

events. So it is the responsibility of the ECA Agent to persist the event information. For this

we use two system tables: SYSPRIMITIVEEVENT used to persist the primitive events and

SYSCOMPOSITEVENT used to persist the composite events.

Table 4.2. SYSPRIMITIVEEVENT

DBNAME USERNAME EVENTNAME TABLENAME OPERATION BEAFOPERATION TIMESTAMP VNO

Table 4.3. SYSCOMPOSITEVENT

DBNAME USERNAME EVENTNAME EVENTDESCRIBE TIMESTAMP COUPLING CONTEXT PRIORITY

TABLENAME � the table on which primitive event is defined

OPERATION � {insert | delete | update}

BEAFOPERATION � {before | after}

TIMESTAMP � the timestamp at which the event is created

VNO � version number to denote the occurrence

EVENTDESCRIBE � description of the composite event

COUPLING �{immediate | deferred | detached}

CONTEXT � {recent | chronicle | continuous | cumulative}

PRIORITY � a positive integer

The version number in the SYSPRIMITIVEEVENT table is obtained from the

VERSION table shown below.

Table 4.4. VERSION

VNO

4.3.5 Drop Trigger

This module is responsible for dropping an event and the associated trigger. It has

two sub modules�DropPrimTrigger and DropCompTrigger. It is important that the

primitive event should not be dropped if a composite event is subscribed to it. In order to

keep track of this information we use the SYSDROP table.

Table 4.5. SYSDROP

CONSEVENTNAME CONTEXT COMPEVENTNAME

CONSEVENTNAME � constituent event name

CONTEXT � the context associated with the composite event

COMPEVENTNAME�composite event name

4.3.5.1 Drop Primitive Event Trigger

DropPrimTrigger is a sub module under drop trigger module that is used for

dropping the primitive event and its associated trigger.

Language Filter

Is other
triggers with
this event ?

Is constituent
event ?

ServeOneClient
Recreate trigger

Delete info from
RDBMS

Drop procedure

Drop trigger

Delete info from
RDBMS

Drop procedure

Delete event

No

yes

No

yes

Figure 4.8. Drop Primitive Event.

The first step is to check if there are any other triggers associated with this event. If

so the event should not be deleted but only the trigger and the stored procedure associated

with it has to be dropped. The corresponding trigger information in the SYSECATRIGGER

has to be deleted. Then the trigger has to be recreated with the action of the other triggers

associated with the event.

On the other hand if the event associated with the user given trigger has only one

trigger defined on it, then this module checks if it is a constituent event of any other

composite event. If so an error is sent to the ServeOneClient module. If not, the event has to

be deleted from event graph in Java LED. The event and trigger information has to be

deleted from the system tables. Finally, the trigger and the stored procedure have to be

dropped.

4.3.5.2 Drop Composite event trigger

DropCompTrigger is a sub module under the drop trigger module that is used for

dropping triggers associated with composite event.

Language Filter

Is procedure
with this
trigger ?

Is constituent
event ?

ServeOneClient

Drop procedure

Delete event from
JAVA LED.

Delete info from
RDBMS

Delete event files

yes

No

yes

Figure 4.9. Drop Composite Event.

No

The Language Filter sends the drop trigger command associated with the composite

event to this module. The first step is to check if it is a constituent event of any other

composite event. If so an error is sent back to ServeOneClient. Then the association of

stored procedure with this event is checked. If it is present, then it is dropped. The trigger

information in the system tables is deleted and the node is deleted from the Java LED by

calling the corresponding API.

4.3.6 Other Modules

File Handling module is responsible for all the file handlings in the ECA server. The

functions performed by this module are: creating sjava file for processing by the JavaSPP.

The files are compiled, and executed invoking the corresponding method and registering

events and rules with LED. The Action Handling module takes care of the action portion to

be performed after raising the events. This module also handles the user given action

portion. JDBC call module is responsible for all JDBC calls. Every call to the JDBC from

every module in the ECA Server goes through this module. This has methods to get the

result set for the queries sent such as select.

4.4 ECA Agent Client

The design of the ECA agent client is done as a thin client. That is, it performs as

minimum functions as possible and does not have the logic to process the input. It provides

the GUI for getting the information such as IP address of ECA server, RDBMS, the

username, password and the database to be connected and another GUI for displaying the

results.

4.5 Extended Trigger Syntax

The trigger syntax provided by Sybase has to be extended to support multiple

triggers, primitive events and composite events. Keeping the following facts in mind, the

design of the extension of the trigger syntax is done:

1. The user works in the SQL Environment.

2. The user works on Sybase SQL Server.

3. Minimal extension should be made to the existing trigger syntax.

4.5.1 Sybase Trigger Syntax

Here is the complete create trigger syntax:

Create trigger [owner.] trigger_name

On [owner.] table_name

For {insert , update , delete}

as SQL_statements

Or, using the if update clause:

create trigger [owner.] trigger_name

on [owner.] table_name

for {insert , update}

as

[if update (column_name)

[{and | or} update (column_name)]...]

SQL_statements

[if update (column_name)

[{and | or} update (column_name)]...

SQL_statements]...

The create clause creates the trigger and names it. A trigger�s name must conform to

the rules for identifiers. The on clause gives the name of the table that activates the trigger.

This table is sometimes called the trigger table [16].

4.5.2 Primitive Event Trigger

The syntax for defining primitive event trigger is given below.

Create trigger trigger_name

On [owner.] table_name

For {insert , update , delete}

event event_name

as SQL_statements

Or, using the if update clause:

create trigger [owner.] trigger_name

on [owner.] table_name

for {insert , update}

event event_name

as

[if update (column_name){and | or} update (column_name)]...]

Begin

SQL_statements

End

[if update (column_name){and | or} update (column_name)]�.]

Begin

SQL_statements

End�..

The only extension made is that the user has to specify a unique event name along

with the keyword �event�. This is done to support multiple triggers by naming a primitive

event.

4.5.3 Repeat Primitive event trigger

The syntax for defining repeat primitive event trigger is given below.

Create trigger trigger_name event event_name

as SQL_statements

Or, using the if update clause:

create trigger trigger_name event event_name

as

[if update (column_name)

[{and | or} update (column_name)]...]

Begin

SQL_statements

End

[if update (column_name)

[{and | or} update (column_name)]...]

Begin

SQL_statements

End�..

Here the user need not give the table name and operation as in a regular trigger, as

the ECA Parser takes care of that. The table and operation associated with the event name

(already defined) is used for this purpose.

4.5.4 Composite event Trigger

The syntax for defining composite event trigger is given below.

Create trigger trigger_name event event_name= snoop expression:

[coupling mode] [parameter context] [priority]

Begin [sp]

 SQL_statements

End

Snoop expression�the event expression using the syntax of the event definition language

SNOOP.

Coupling mode�Immediate, deferred, detached.

Parameter context�Recent, continuous, cumulative, chronicle.

Priority�any positive integer.

Sp�stored procedure if the user wants the SQL statements to be performed as a transaction.

4.6 Need for Notification

We use JavaLED to detect the composite events and execute the rules according to

the priority given. The events insert/delete/update operations are executed by the server on

the database side and hence the trigger is also executed by the server. But as we are using

LED to raise the primitive event and thus raise the subscribed composite event we need a

mechanism to notify LED of the occurrence of primitive events. In the Sybase ECA Agent

discussed in chapter 2, there is a built-in function, �sybase-SendMessage(port, IP address,

method)� which can be used to make a RPC call from the body of the trigger to raise the

primitive event in the specified IP address. In our implementation JDBC is used for

database connectivity. You cannot make an RPC call to the ECA server through JDBC. For

this reason, we insert the event information in a table and return; in the ECA server a check

is made on this table to raise the event. There is a decoupling between the trigger execution

and raising of the event in two address spaces which are connected by the JDBC. This table

is NOTIFY [21].

Table 4.6. NOTIFY

EVENTNAME TABLENAME VNO

4.7 Getting Parameters

Primitive events are mapped to database operations�insert, delete or update. We use

LED to detect composite events. If the primitive event occurs on the Sybase SQL server, it

is not possible to get the parameters of the primitive event in the composite event action,

which occurs on LED. When a primitive event occurs, the trigger associated with the event

is fired. In Sybase, at the time of trigger execution, if the table on which the trigger is

defined is modified, then the tuples that are inserted on that table are inserted into the

�Inserted� table and the tuples that are deleted from that table are inserted into the �Deleted�

table. These tables are accessible only during the execution of the body of the trigger and

that too only from inside the trigger. The tuples need to be accessed outside the scope of the

trigger so that the parameter context can be supported. Hence, we create tables R_inserted,

R_deleted to store the tuples inserted, deleted on a relation R when a primitive event occurs.

These tables are first created when the user defines a primitive event. Here �R� is the name

of the table on which the primitive event is defined. These tables contain an additional

attribute �VNO�. This attribute is used to distinguish the tuples for different occurrences of

the event. This attribute version number is obtained by doing a join between the

R_inserted/R_deleted table and the VERSION table. This VERSION table has been

introduced to keep a global count of the occurrence of a primitive event and is stored in

VNO attribute of it.

Now when the composite event is detected, the user should be able to access the

parameters of the primitive event occurrences that resulted in the detection of the composite

event. When the user specifies a composite event trigger, the user can access the parameters

for a particular context by specifying the table name �R_inserted_tmp� or �R_deleted_tmp�.

Here �R� represents the name of the relation on which the constituent events are defined.

While the tables, �R_inserted/R_deleted� contain parameters for every occurrence of the

primitive event; the tables �R_inserted_tmp/R_deleted_tmp� need to contain only the

parameters of the constituent events for that particular context of the composite event

detection. This is analogous to the Inserted and Deleted tables that can be accessed from

inside the Sybase triggers.

Java LED provides API to insert parameters before raising the primitive event. We

pass minimum number of parameters for each occurrence of an event, so that these

parameters can be used in the action portion of the composite event to access the actual

tuples that were inserted/deleted/updated. We create a table SYSCONTEXT for this

purpose.

Table 4.7. SYSCONTEXT

TABLENAME CONTEXT VNO

TABLENAME�The name of the table on which the constituent event is defined.

CONTEXT�The context on which the composite event is defined.

VNO�The version number of the constituent event.

By joining the tables SYSCONTEXT and R_inserted/R_deleted with version number

as the join attribute, the correct parameter context can be accessed and are inserted into

tables R_inserted_tmp/R_deleted_tmp. The implementation details of composite events are

discussed in chapter 6.

This chapter gave the overall design issues of the ECA Agent system. It also

discussed in detailed about the functions of each and every module in the ECA Agent

system. Also the chapter gave the syntax proposed for triggers to support primitive and

composite events. And the final discussion was on notification to LED and getting the

parameters for composite events.

Client 1

Client 2

Client n

Sybase Server

DB2 Server

Oracle Server

Informix Server

ECA Server

Port Port Port

p
o

Figure 5.1. Server Client connection.

5. IMPLEMENTATION

This chapter explains in detail the problems involved and solutions proposed for

implementing ECA Agent system.

5.1 ECA Agent System

It is implemented in Java so that it is portable to other platforms. The connection to

the Sybase database server is through the industry standard�JDBC. The subsections explain

this in clear.

5.1.1 Connection

When the ECA Agent server is up, it waits on the specified port on the server socket

for the client connection. Whenever a client connection is accepted, a dedicated socket is

assigned to it by java. We spawn a new thread to serve each client.

5.1.2 System Tables

The dedicated thread loads the JDBC driver and connects to the Sybase database

server. The next step is to check if the user is new. If the user is new, the system tables are

created using transact SQL facility in Sybase. If the user is not new, the events defined by

that user are restored and the information is sent to java LED to build the event graph. The

system table notify is cleared and the version number in the version table is reset to zero.

5.1.3 Restoration of events

The SYSPRIMITIVEEVENT table is used to retrieve the event names. With the

event names, the class name is found as c_eventname. Now the class loader class in java is

used to load the class, and the method in it containing the API to register the primitive event

is invoked. In the same way, using the SYSCOMPOSITEVENT table composite events and

rules are restored.

5.1.4 Registering events with Java LED

The issue of registering the event with Java LED is not straightforward because the

users create the events at runtime. In the database scenario we associate every database

event with a primitive event in java LED�so to register them with LED we have to create

the API and execute it. So we create a java file for this purpose. We use Runtime Class in

java to compile the java file. Then the class file is loaded and the method inside the class file

is invoked to register the event.

5.2 ECA Agent Client

This is a thin client with minimal functionality in it. When the client is brought up,

the user has to provide some information�SQL Server to connect to: as one of Sybase or

Oracle or DB2, the database name to connect to, the IP address/name of the machine in

which SQL server is running, the IP address/name of the machine in which ECA server is

running, the user name and password to connect to the SQL server. This information is sent

through the socket to the server, which is listening on a server socket. Once this information

is authenticated, the client provides an interactive interface to talk to the server. This

interface has options to send SQL queries, select an arbitrary SQL file with commands and

some sample trigger and SQL commands.

5.3 MULTI USER/MULTI DATABASE

The design and implementation done so for is for a single user connecting to a single

database at a time. Since a database supports multiple users connecting to one or more

databases at the same time, we need to support the same. Also, databases preserve the data

and triggers created by a user from one session to another. This entails that the ECA agent

server do the same for primitive and composite events.

5.3.1 Problem Statement

Let us consider a scenario in which there are two users: user-1 and user-2. Suppose

user-1 creates a primitive event addw. If the user-2 also creates an event with the same name

addw, then the java file, which we associate for every event will have the same name.

Hence, the event representation of user-1 will be replaced by user-2. Let us consider another

scenario, in which user-1 tries to delete the event created by him, this will delete the java file

associated with it. If the other user also uses this event then he will lose this event. Hence we

have to address this problem.

5.3.2 Solution

In order to overcome the problem described above, we have to separate the files

created by each user. But the same user can create the event with the same name in two

different databases and can use them at different times. Hence, we create a metadata

directory, as this is more similar to the metadata stored in databases, and place files created

by each user�database combination in separate directory. It is a unique combination in all

cases.

Figure 5.2. Multi user / Multi database.

5.3.3 Implementation Issues

The directory name is going to change every time a user logs into the system. This is

because there may be many numbers of users connecting to the same database. First thing

we do is to check if the directory is already present for the same user � database

combination, if not we create a new directory. Creating the java files in a specific directory

is not a problem as java provides a �d option while compilation. But compiling and loading

is a serious problem.

The compilation of the java file needs to be changed to include the class path. If it

moves to another directory, it cannot access the files in the ECA server. The need for

accessing the ECA server files is in places where we use the JDBC calls. Hence, we have

made all the files in the ECA server into a package. Now the java files associated with the

events can access the files in the package by just importing that package.

Loading the class from a specific directory other than the current working directory

is not possible. Hence a simple solution is to have a batch file, pass the directory name and

file name as parameters to the batch file and copy the class file to the current working

directory. Then load the file using Class Loader class in java and invoke the method to

register with java LED. After creating the node, delete the copy in the current working

directory. The File Handling module of ECA server does all these stuff.

The next problem is that when we use Java SPP, the output files comes to the current

working directory. Hence we have to move the input sjava file, the outputs java file and text

file from the SPP to the user�database specific directory. The File Handling module does

this. It uses another batch file, which takes file name and destination directory as inputs and

moves the file to that directory.

We execute the batch files by using Runtime class in java which has a execute

method that does the execution as if it is done at command prompt. The problem addressed

above is very serious because everything happens during runtime. We do not know the file

name, the directory name, and the database name until the user connects to it. Hence we use

Runtime class, batch files and execute methods.

5.3.4 System Tables

We create system tables to store information about the primitive and composite

events. We also create a separate table to store the trigger information apart from what

Sybase does to support multiple triggers. Each table created has a separate user name,

database name attribute to make handling easy. Also, the list of tables created by ECA

Agent is created once for every user�database combination. Thus the information of the

event and trigger creation will be specific for that user connected to the specific database

and will be stored in the corresponding table.

5.4 Persistence of Events across sessions

 We use JavaLED to detect composite events. Whenever the user creates an event it is

registered as a node in JavaLED. These nodes form an event graph in LED. This is in main

memory. So whenever a session ends the event information is also lost. But in a typical

database scenario, the user has to keep this information across the session. Hence we enter

the information about the trigger and events in separate table created by us. Then whenever

the user starts his new session, the java files associated with the nodes are invoked to rebuild

the event graph.

This chapter gives an outline on the implementation about the ECA server and ECA

client. It also gave a note on the compiling and loading the java files associated with each

composite event. This chapter also gave the problem of multi user/multi database

connectivity and then gave the solution provided. The next two chapters give a detailed

explanation about the issues while creating, raising and handling of primitive and composite

events.

6. PRIMITIVE EVENTS

This chapter deals with creation and dropping of primitive and repeat primitive events.

6.1 Primitive Triggers

As has been indicated earlier, we associate each database event�insert or delete or update

(along with the table name) with a primitive event in LED.

The Syntax of the primitive event trigger is:

Create trigger trigger_name

On [owner.] table_name

For {insert , update , delete}

event event_name

as SQL_statements

For Example,

Create Trigger T_ADDW on WEATHER for insert

event addw

as

begin

 insert into info values (�sharma�,�professor�)

end

In the above example, the insert operation of the WEATHER table is associated with a LED

event�addw.

Table 6.6. WEATHER

City Time Tem Wspeed

Table 6.7. INFO

NAME DESIGNATION

The WEATHER table has city and time as its primary key. On an insert operation in this

table, the trigger is executed and the values are inserted in the INFO table. The above

example is used through out this chapter.

The explanation of the primitive events is split into two phases:

1. Creation Phase

2. Execution Phase

6.1.1 Creation Phase

When the trigger in the example is given as input on the client side, it goes to

ServeOneClient module of the ECA-Server, which sends it to Language Filter.

The language filter parses the input command into tokens and recognizes it as a primitive

event command and sends it to the Primitive Event parser of the ECA parser. The

recognition is done by the presence of event keyword followed by event name.

The Primitive Event parser, sub-module of the ECA parser parses the trigger command and

gets the event name and trigger name. The presence of the same name is checked in the

system tables. If there is duplication, an error message is sent to client via ServeOneClient

module.

The next step is to check the presence of R_Inserted and R_Deleted tables. In our example,

the presence of WEATHER_INSERTED and WEATHER_DELETED are checked. If they

are not present, they are created.

Table 6.8. WEATHER_INSERTED

City Time Tem Wspeed VNO

The version number (VNO) is added to weather table attributes and this table is created by

using the select � into facility of Sybase.

These tables are created with a prospective view of handling composite event triggers. This

will act as inserted and deleted tables in Sybase that can be accessed from with in the

triggers. Then the trigger command is send to create trigger module of the persistent

manager. It waits for any error, if there is any error it is sent back to the client. If there is no

error, the parser generates code to create java file and gives it to the file-handling module.

The code has API to create primitive event node in LED.

This info is sent again to GeneratePersistCode module of Persistent Manager to persist the

code. The ECA parser sends the code as a string to create the java file to file handling

module. This module creates the java file with the name c_eventname. Then it is compiled

as descried in chapter 5. The class file is loaded and the method containing the API is

invoked and the event is registered with Java LED.

The first time the control comes to persistent manager module from the ECA parser is for

creating triggers. Once the trigger is created successfully, persistent java code is created and

stored by this module. CreateTrigger module is a sub module under persistent manager.

This module is responsible for creating the trigger that is acceptable by the Sybase SQL

server and also in a way that it supports multiple triggers. When the input comes to this

module, it takes off the user given portion of event and event name. Then the action portion

is converted into a stored procedure�with the convention of triggername_proc. Also to

maintain the order and occurrence of events we add other DML statements with the user

given portion.

We use stored procedures to make it easy to handle the multiple triggers. But the problem is

that the user cannot access the inserted and deleted tables from the stored procedure. So we

have to change �inserted� and �deleted� to �R_inserted_temp� and �R_deleted_temp��

where R is the relation name� here WEATHER. These tables are created to provide user

transparency.

For our example, the stored procedure will be:

Create procedure T_ADDW_PROC as

Begin

 Insert into info (�sharma�,�professor�)

End

The trigger given to the Sybase will be of the form:

Create trigger T_ADDW on WEATHER for Insert as

Begin

update SYSPRIMITIVEEVENT set VNO=VNO+1 where EVENTNAME='addw' update

VERSION set VNO=VNO+1

insert into WEATHER_inserted select inserted.city, inserted.time, inserted.tem,

inserted.wspeed, VERSION.VNO from inserted, VERSION

insert into NOTIFY select EVENTNAME, TABLENAME, VERSION.VNO from

SYSPRIMITIVEEVENT, VERSION where EVENTNAME='addw'

delete from WEATHER_inserted_temp

insert into WEATHER_inserted_temp select inserted.city, inserted.time, inserted.tem,

inserted.wspeed from inserted

delete from WEATHER_deleted_temp

insert into WEATHER_deleted_temp select deleted.city, deleted.time, deleted.tem,

deleted.wspeed from deleted

exec T_ADDW_PROC

End

In order to execute the user given action, we have to execute the stored procedure with an

exec call. The explanation for the DML statements is given in section 6.1.2. The result of the

creation of trigger and stored procedure is sent to Persistent Manager.

After the ECA parser gets a signal from Persistent Manager about the creation of trigger, the

control is transferred to Generate Persist Code Module. This module is responsible for

persisting the event information. This is done so that the events can be restored when system

is restarted. For this purpose, the event and trigger information is inserted into the tables

created in database. For our example the tables will have the following information after the

trigger processing is completed.

Table 6.9. SYSECATRIGGER

Dbname Username Trname Trigproc Timestamp Event Trtype

Ecadb Logineca T_addw T_addw_proc Current Addw Normal

Table 6.10. SYSPRIMITIVEEVENT

Dbname Username Event Table Op Beaf op Timestamp vno

Ecadb Logineca Addw weather Insert None Current 0

6.1.2 Execution phase

This section explains the changes that happen when the user gives a DML statement and the

trigger that is associated with the event is executed. For example, consider

Insert into WEATHER values (�arlington�,�getdate()�,72,10)

If the user gives the above insert statement, it goes to the ECA server, which routes it to

Sybase server via the JDBC call module. This insert statement will raise the already

registered trigger T_ADDW.

Trigger Execution

When trigger T_ADDW is triggered it executes the DML statements inside it. Now we

explain every statement in the trigger with our example.

1. To keep track of the number of occurrences of the primitive event (addw) �

we update the version number in the SYSPRIMITIVEEVENT table.

Update SYSPRIMITIVEEVENT set VNO=VNO+1 where EVENTNAME='addw'

Table 6.11. SYSPRIMITIVEEVENT

Dbname Username Event Table Op Beaf op Timestamp vno

Ecadb Logineca Addw weather Insert None Current 1

2. We have a global version number in the VERSION table for dealing with the

composite events. Hence we update that by:

Update VERSION set VNO=VNO+1

Table 6.12. VERSION

VNO

1

3. We insert tuples into R_inserted and R_deleted tables. For the current

example it is inserted from WEATHER and VERSION to weather_inserted. This is

done so that the user can access the parameters of the primitive events while

interested in composite events.

 Insert into WEATHER_inserted select inserted.city, inserted.time, inserted.tem,

inserted.wspeed, VERSION.VNO from inserted, VERSION

 4. The occurrence of the event in Sybase has to be notified to the JavaLED. This is done

by thread running in the ECA Server. The thread checks for the presence of any tuple in the

NOTIFY table. For this we insert the corresponding values in the NOTIFY table as part of

the trigger.

Insert into NOTIFY select EVENTNAME, TABLENAME, VERSION.VNO from

SYSPRIMITIVEEVENT, VERSION where EVENTNAME='addw'

Table 6.13. NOTIFY

Event name Tablename VNO

Addw WEATHER 1

5. As discussed earlier in chapter 4, to give access to the user to inserted and

deleted table from stored procedure, we use R_inserted_temp / R_deleted_temp

tables.

Delete from WEATHER_inserted_temp

Insert into WEATHER_inserted_temp select inserted.city, inserted.time,

inserted.tem, inserted.wspeed from inserted

Delete from WEATHER_deleted_temp

Insert into WEATHER_deleted_temp select deleted.city, deleted.time, deleted.tem,

deleted.wspeed from deleted

6. The stored procedure is executed by the exec call. This causes the insertion of

the user action portion into the INFO table.

exec T_ADDW_PROC

Table 6.14. INFO

Name Designation

Sharma Professor

JavaLED

This section explains the use of JavaLED. When the tuple is inserted into NOTIFY, the

thread in the ECA server gets this information. Then it gets the event handle for the event

and inserts the information as parameters for the event node. Then it calls the

raiseBeginEvent method for that event through the API provided by the JavaLED. Now the

LED will raise the event �addw in our example.

After raising this event the result of this insert and the raise event notification is send to the

client via ServeOneClient module of the ECA server.

6.2 Repeat Triggers

When we define a trigger on an already existing event, we call the trigger as repeat trigger

and the event as repeat primitive event. For example,

Create trigger t1_addw event addw as

Begin

Insert into INFO values (�Aravind�,�GTA�)

End

 The explanation is similar to the primitive triggers except for a few changes.

6.2.1 Creation phase

When this create trigger command comes to Language Filter it recognizes it as the repeat

trigger as there is no table name following the event name and hence sends it to Repeat

Primitive Event Parser module of the ECA parser.

The Repeat Primitive Event Parser checks if the primitive event is already present by

checking the event names in the SYSPRIMITIVEEVENT. If present, it also gets the

operation and table name for that event. This info along with the trigger is send to Create

Trigger Repeat of the Persistent Manager. It waits for the result. If there is no error, it sends

the command to Generate Persist Code Repeat of the Persistent Manager.

Create Trigger Command Repeat module is a sub-module under the Persistent manager that

gets the create trigger command, information about the table name and operation from the

ECA parser. Now this module gets the names of the stored procedure associated with the

event (addw in our example). After this, as in the Primitive trigger case, the user action

portion is wrapped as a stored procedure.

For our example the trigger will look like this,

Create trigger T_ADDW on WEATHER for Insert as

Begin

update SYSPRIMITIVEEVENT set VNO=VNO+1 where EVENTNAME='addw' update

VERSION set VNO=VNO+1

insert into WEATHER_inserted select inserted.city, inserted.time, inserted.tem,

inserted.wspeed, VERSION.VNO from inserted, VERSION

insert into NOTIFY select EVENTNAME, TABLENAME, VERSION.VNO from

SYSPRIMITIVEEVENT, VERSION where EVENTNAME='addw'

delete from WEATHER_inserted_temp

insert into WEATHER_inserted_temp select inserted.city, inserted.time, inserted.tem,

inserted.wspeed from inserted

delete from WEATHER_deleted_temp

insert into WEATHER_deleted_temp select deleted.city, deleted.time, deleted.tem,

deleted.wspeed from deleted

exec T_ADDW_PROC

exec T1_ADDW_PROC

End

This trigger is sent to Sybase and the result is send to ECA parser.

As the event name is already present in the SYSPRIMITIVEEVENT table, this module

inserts trigger information into the SYSECATRIGGER table.

For our example the table will look like,

Table 6.15. SYSECATRIGGER

Dbname Username Trname Trigproc Timestamp Event Trtype

Ecadb Logineca T_addw T_addw_proc Current Addw Normal

Ecadb Logineca T1_addw T1_addw_proc Current Addw Normal

The result of the successful creation of the trigger is send to the client. In this case, there is

no need to create a java file as the event is already registered with the event.

6.3 Drop Trigger

This module in the ECA server is responsible for dropping triggers and the events associated

with it. When the drop trigger command comes to the ServeOneClient module, it sends the

command to the Language Filter. The Language filter sends the input command to Drop

Primitive Trigger module of the Drop Trigger module after checking the presence of the

event in the SYSPRIMITIVEEVENT table.

6.3.1 Dropping Primitive Trigger

The first check is made in the SYSDROP table to see if it is a constituent event of any

composite event. If so, an error message is to the client. If not, the number of rows having

the same event name is checked. If it is greater than one it is a repeat trigger or else it is a

primitive trigger. The next step is to drop the stored procedure associated with the user given

drop trigger. Then the drop trigger command as given by the user is given to the Sybase

SQL server through the JDBC. The tuples storing the information about this trigger is

deleted from the SYSECATRIGGER and SYSPRIMITIVEEVENT tables. Then the files

associated with this event are also deleted. To delete the node permanently from the Java

LED, the Delete Event API of the LED is used.

6.3.2 Drop Repeat Trigger

If the SYSECATRIGGER has more tuples corresponding to the event name associated with

the trigger, then, it is considered as dropping the repeat trigger. As discussed in chapter 4,

the trigger has to be re-created now. Re-creation of the trigger is a complicated process, as

we do not have the contents of the trigger stored. In order to get the trigger information we

get the id of the trigger from the sysobjects�system table of Sybase, with this id we get the

text (the actual contents of trigger) from the syscomments�system table of the Sybase. We

parse the text into tokens, we remove the exec call corresponding to the drop trigger issued

and then we re create the trigger with a different name.

The next step is to drop the stored procedure associated with it and then, remove the

corresponding information in the SYSECATRIGGER table. The event still persists with

other triggers associated with it; hence we do not delete the tuple containing the information

in the SYSPRIMITIVEEVENT table.

6.4 If update clause

This is a special case of trigger support provided by Sybase. Even this trigger can be

associated with a primitive event. But the handling has to be done in a different way. This is

because we convert the action portion into a stored procedure and hence it cannot include if

update statements.

The Syntax using the if update clause

Create trigger [owner.] trigger_name event event_name

on [owner.] table_name

for {insert , update}

as

[if update (column_name)]

[{and | or} update (column_name)]...]

Begin

SQL_statements

End

[if update (column_name)]

[{and | or} update (column_name)]

Begin

SQL_statements

End ��

We convert the user given action portion after the keyword �as� in the trigger portion into a

stored procedure to support multiple triggers. If we do the same in this case, the �if update

clause� also goes into the stored procedure. But the �if update clause� is supported only

through the trigger and not inside stored procedure. Hence the problem becomes serious for

ECA Agent system.

The important fact to be noted here is that the primitive event is going to be mapped to the

insert or update database event. The �if update clause� and the following SQL statements are

just transact SQL statements that are specified be along with the trigger. So the solution to

this problem is similar to normal primitive event triggers. We ask the users to give all the

SQL statements inside Begin and End. When we get the create trigger command with �if

update clause�, we associate it with insert or update operation as given in the input and then

parse the input completely. We take each SQL statements with the Begin and End keywords

and make it into a stored procedure. The rest is same as that of the normal primitive trigger.

Similarly while dropping we check the SYSECATRIGGER if it is if update clause trigger. If

so, we get the corresponding stored procedures and drop them separately.

This chapter gave a detailed explanation of the primitive event implementation. It also

described about the repeat triggers and the special case �if update clause� and finally a

detailed explanation about the dropping of the events, primitive and repeat triggers.

7. COMPOSITE EVENTS

The composite events are supported by the ECA Agent system. It is supported

transparently in that the body associated with the trigger is executed at the server as if it

were a trigger body and the trigger statement extensions to specify composite events are

minimal. This chapter deals with the creation and dropping of the composite events.

The syntax of a trigger on a composite event is as follows:

Create trigger trigger_name event event_name= snoop expression:

[coupling mode] [parameter context] [priority]

Begin [sp]

 SQL_statements

End

 We introduce an example and explain the composite events in two phases as we did for

primitive events. Example:

Create trigger event orw = addw | delw: Immediate 1

Begin

 Insert into INFO values (�Nellai�,�GRA�);

End

7.1 Creation Phase

When this input trigger comes to the ECA�Server, it is to the Language Filter for further

processing. The Language Filter recognizes the input as create trigger command and scans

it. After finding the snoop expression it sends it to the Composite Event Parser of the ECA

Parser.

7.1.1 Composite Event Parser

This parser first checks for the duplicate event name and trigger name by checking in the

tables having that information. The next step is to check for the presence of coupling mode,

parameter context and priority. In this example, the context is not present hence the default

context�RECENT is taken. Similarly, �IMMEDIATE� is the default coupling mode and the

default priority is one.

The parser then creates a sjava file with the event expression and rule sample using the File

Handling module and gives it to Java SPP. The SPP takes the sjava file� �c_orw.sjava� in

this case�and returns a java file (c_orw.java) and a text file (c_orw.txt) as outputs. The SPP

actually converts the snoop expression into necessary JavaLED API calls and also creates

the rule API with the rule sample provided.

In our example,

Event orw = addw ^ delw;

is converted into:

EventHandle orw = myAgent.createCompositeEvent(EventType.OR, "orw" ,c_addw.addw

,c_delw.delw);

And,

rule Rule_andw [orw , c_orw.True , c_orw.orwdemoeca , 1 , IMMEDIATE , RECENT];

is converted into :

myAgent.createRule("Rule_orw",orw, "c_orw.True", "c_orw.orwdemoeca", 1,

CouplingMode.IMMEDIATE, ParamContext.RECENT);

The remaining commands in the sjava file are returned as it is in the java file. The text file

contains the names of the constituent events. In our example, it will have addw and delw.

Now the ECA parser reads the text file and checks for the existence of those events in the

SYSPRIMITIVEEVENT and SYSCOMPOSITEEVENT table. If they do not exist the error

is to the ECA client. If not, the tuples necessary for insertion into the SYSCONTEXT,

R_inserted_tmp and R_deleted_tmp are added to the java file. After this the user action

portion is also entered into the java file. The control is given to the File Handling module.

Also to handle the drop trigger on a composite event correctly, we need to keep track of

constituent events to check whether they are also used as constituent event by another

composite event. In order to check for this, we add a tuple to the SYSDROP table, once we

check the existence of the constituent events from the text file.

Table 7.16. SYSDROP

CONSEVENTNAME CONTEXT COMPEVENTNAME

Addw RECENT Orw

Delw RECENT Orw

7.1.2 File Handling Module

This module creates the complete java file with the user action portion and compiles

it to create class file using Runtime Class in java. It is similar to executing the javac

command in the command line. It loads the resultant class file using the Class Loader class

and then invokes the method that has the API to create the composite event node and the

rule in the Java LED.

7.1.3 Persistent Manager

After the class file is generated, information about the events has to be persisted in

the tables created. For our example, assuming the addw and delw events are already created,

the tables will look as follows:

Table 7.17. SYSECATRIGGER

Dbname Username Trname Trigproc Timestamp Event Trtype

Ecadb Logineca T_addw T_addw_proc Current Addw Normal

Ecadb Logineca T_delw T_delw_proc Current Delw Normal

Ecadb Logineca T_orw None Current Orw Normal

Table 7.18. SYSCOMPOSITEVENT

Dbname Username Event EventDesc Timestamp Context Coupling priority

Ecadb Logineca Orw Addw|delw Current Recent Immediate 1

7.2 Execution Phase

This is similar to the execution phase of the primitive trigger. Consider the example:

Insert into WEATHER values (�dallas�, getdate (), 86,8)

When this command is given to Sybase through our ECA Server, it executes the

primitive event trigger for event addw and does the steps explained in chapter 6. Then the

control goes to the LED, it raises the event addw, thus raising the orw composite event. This

will execute the action portion, which is a java method. This has a call to the user defined

action portion. Hence the action will insert the tuple in INFO table.

Table 7.19. INFO

Name Designation

Sharma Professor

Nellai GRA

The method also has other manipulations as follows.

1. First thing is to delete the contents of the SYSCONTEXT table and then insert the

new information.

Table 7.20. SYSCONTEXT

Context Tablename VNO

Recent WEATHER 1

2. It deletes the contents of R_inserted_tmp and R_deleted_tmp and then inserts the

new values with the SYSCONTEXT information.

3. It also inserts information in NOTIFYCOM table to print the result out to the

client

Table 7.21. NOTIFYCOM

Event name Info

Orw Orw recent 1

This result along with the notification of the raise of primitive and composite event is

to the client.

7.3 Java file

The java file contains the API to create the composite event node in the LED and the

rule associated with it.

ECAAgent myAgent = ECAAgent.initializeECAAgent ("sybaseeca_ecasybase") ;

EventHandle orw = myAgent.createCompositeEvent(EventType.OR, "orw"

,c_addw.addw ,c_delw.delw);

myAgent.createRule("Rule_orw",orw, "c_orw.True", "c_orw.orwsybaseeca", 1,

CouplingMode.IMMEDIATE, ParamContext.RECENT);

Figure 7.1. Code For Java LED.

1. We initialize the ECA Agent with username_databasename and get a named ECA

Agent instance.

2. We use that instance and create the rule and the node in the Java LED.

3. The Create node API has event type, event name, left event and right event names as

parameters

4. The rule is the one that is executed when the event is raised and the given condition

evaluates to be true�it has a rule name, event handle, condition name, action name, priority,

coupling mode and parameter context.

Here the condition method is also created inside the file. In this case there is no

condition, hence the method will always return true. The action method is what the user

gives along with our DML statements explained above.

public static boolean True (ListOfParameterLists parameterLists)

{

 System.out.println ("*****FromCondition*****") ;

 return true ;

}

Figure 7.2. Condition Method.

7.4 Stored Procedures

There is an option in the syntax of create composite event trigger to make all the

actions as a stored procedure. To do this the user has to specify the option sp after the begin

statement in the trigger syntax.

The priority in the composite event syntax can be any positive integer with 1 being

the lowest priority. This number is given for the rules associated with every node in the Java

LED. The LED executes the rules on the basis of the priority using a thread. So if they were

of different priorities they would be executed in a proper order (in the order of higher to

lower priority) one after the other. If several triggers have the same priority, LED will

execute them concurrently. They may give unexpected results, as we do not have any

control over the order of thread execution. Hence to get control over the execution and get

the expected results, we give the option of making all the SQL statements in the action of

the composite event into a single transaction. The easy way to do this is to specify the �sp�

option. If the user gives this option the ECA Agent will convert the action portion into a

stored procedure. Everything else remains the same. The dropping of the composite event is

taken care in the normal way as described in the next section. The Agent takes care of the

stored procedure created and handles its drop. .

7.5 Drop Composite Event

When the user gives the drop command, it comes to the ECA server. The server

routes it to the Language Filter module. The Language Filter sends it to the Drop Composite

Trigger of the Drop Trigger module.

First it checks the SYSDROP table if it is a constituent event of some other

composite event. If so it sends an error message, else deletes that information from the table.

Then it checks if there is some procedure associated with it. If so, it gets the name of the

procedure and drops it. Then it deletes the composite event information from the

SYSCOMPOSITEVENT table and the trigger information from the SYSECATRIGGER

table. The next step is to delete the files associated with it�java file, sjava file, class file and

the text file. After this the node has to be deleted from the Java Led for this, the named ECA

agent instance is obtained and the APIs provided are used to delete the rule and then the

node.

The successful drop message is to the client from the ECA server via

ServeOneClient module.

addw delw

orw

Rule list

Figure 7.3. Event Graph.

7.6 Composite events in JavaLED

Every time an event is defined and the API for registering the event is called, the JavaLED

creates a node for that event with the specified unique name. This node can hold parameters

when the insert parameter API is called. With each composite event, rules (or trigger body in

this case) are associated along with other information such as parameter context, coupling

mode and priority. The nodes associated with primitive and composite events form an event

graph.

This chapter explained in detail about the implementation of the composite event and

gave a detailed explanation in two phases�while the input is given for creation and while

the trigger is executed. The description also covered the stored procedure option in

composite events and the dropping of the composite trigger and the corresponding event.

8. CONCLUSIONS

8.1 Conclusions

This thesis discusses a generalized approach to make Sybase fully active using ECA

rules. The approach uses JDBC, the industry standard�for connecting to the Sybase SQL

Server. Hence the same system can be used for supporting active capability by connecting to

other RDBMSs such as Oracle, DB2 or Informix with minor modifications to the system.

The ECA Agent system has made Sybase more powerful by adding active capability to it. It

also provides user transparency. The important fact is that the enhancement has been

achieved with out changing the native behavior of the underlying system. The syntax and

semantics described are also similar to the native SQL syntax. The user continues to interact

in SQL with an extended syntax only when additional capability not supported by Sybase is

required. Otherwise, all applications are backward compatible and do not require any

changes.

8.2 Contributions of this thesis

1. An agent based approach for enhancing the native active capability of Sybase.

2. Architecture, design and implementation of ECA agent system for Sybase.

3. Support for primitive, repeat primitive events and composite events.

4. Support for multiple triggers in Sybase.

5. Dropping multiple triggers and events.

6. Multi user�multi database connectivity for the ECA Agent system.

7. Persistence and retrieval of the events using the underlying RDBMS.

8.3 Future Work

The system can be extended in several ways:

1. Support for other coupling modes�Deferred and detached.

2. Global monitoring Environment�In the current scenario the events defined are

specific to a user-database combination. This can be converted into a monitoring

environment by allowing some clients to register as monitoring clients for specific

situations that interests it. These clients can notify other normal clients if some

changes occur on the interested events.

3. Making Sybase participate in a distributed application environment so that it can

subscribe to or send events to other applications.

4. Sybase triggers are not SQL3 complaint. It lacks many features defined in SQL3

standard such as before or after triggers, statement or row level triggers. Hence the

future work can be to extend it to make it support all those features.

REFERENCES

1. http://java.sun.com/docs/books/tutorial/jdbc/index.html, JDBC Tutorial.

2. http://java.sun.com/docs/books/tutorial/networking/sockets/, Java Sockets.

3. http://java.sun.com/products/javabeans/infobus/, Infobus.

4. Stonebraker, M., Hanson, E., and Hong, C. H. The Design of the Postgres Rule System. in

3rd International IEEE Conference on Data Science. 1987.

5. Dayal, U., Blaustein, B., A. Buchmann, S. Chakravarthy, The HiPAC project: Combining

active databases and timing constraints, in ACM SIGMOD. 1988. p. 51-70.

6. Gehani, N. and H.V. Jagadish, Ode as an Active Database: Constraints and Triggers, in

Proc. 17th Int'l Conf. on Very Large Data Bases. 1991: Barcelona. p. 327-336.

7. O.Diaz, N.P.a.P.G. Rule Management in object oriented databases: A uniform approach.

in Seventeenth International Conference on Very Large Data Bases. 1991. Barcelona, Spain.

8. Hanson, E.N. Rule Condition Testing and Action Execution in Ariel in ACM SIGMOD

1992 International Conference on Management of Data. 1992. San Diego, California.

 9. Chakravarthy, S.a.M., D, Snoop: An Expressive Event Specification Language for Active

Databases. 1993, University of Florida: Gainesville.

10. Chakravarthy, S., et al., Design of Sentinel: An Object-Oriented DBMS with Event-

Based Rules. Information and Software Technology, 1994. 36(9): p. 559-568.

11. Krishnaprasad, V., Event Detection for supporting active capability in an OODBMS:

semantics, architecture and implementation. 1994, University of Florida.

12. S.Chakravarthy, V.K., E. Anwar and S.K.Kim,. Composite Events for Active Databases:

Semantics, Contexts and Detection. in Proceedings International Conference on Very Large

Databases. 1994.

13. Lee, H., Support for Temporal Events in Sentinel: Design, Implementation, and

Preprocessing. 1996, University of Florida.

14. Widom, J. and S. Ceri, Active Database Systems: triggers and rules for advanced

database processing. 1996: Morgan Kaufmann Publishers Inc.

15. Li, L., An agent-based approach to extending the native active capability of relational

database systems. 1998, University of Florida.

16. Sybase® Adaptive Server™ Enterprise Transact-SQL® User’s Guide. 1999.

17. Dasari, R., Events and rules for java: Design and implementation of a seamless

approach. 1999, University of Florida.

18. Kim, Y., A generalized active agent system for extending the active capabilities of a

RDBMS. 2000, University of Florida.

19. Song, Z., A generalized method to extending the active capability of relational database

systems. 2000, University of Florida.

20. Mysore Ganesha Rao, Y., An Agent based approach for extending the Trigger

capability of Oracle, in ITLAB, CSE department. 2002, The University of Texas at

Arlington: Arlington.

21. Subramaniam, N., A Mediator-based approach to support ECA rules in DB2. 2002, The

University of Texas at Arlington: Arlington.

BIOGRAPHICAL INFORMATION

Ganesh A Gopalakrishnan was born January 3, 1979 in Tirunelveli, India. He

received his Bachelor of Science degree in Computer Science and Engineering from

University of Madras, India in August 2000. In the Fall of 2000, he started his graduate

studies in Computer Science and Engineering at The University of Texas, Arlington. He

received his Master of Science in Computer Science and Engineering from The University

of Texas at Arlington, in August 2002. His research interests include active databases, data

mining and data warehousing.

	TABLE OF CONTENTS
	ACKNOWLEDGMENTS 	 iv
	ABSTRACT 	 v
	LIST OF FIGURES ……………………………………………………………………... x
	LIST OF TABLES …………………………………………………………………….… xi
	Chapter
	1. INTRODUCTION …………………………………………………………………… 1
	1.1. ECA Paradigm 	 1
	1.2. Issues 	 1
	1.3. Triggers 	 2
	1.4. ADBMS 	 2

	2. RELATED WORK …………………………………………………………………... 5
	2.1. Ariel 	 5
	2.2. Sentinel 	 6
	2.3. Ode 	 7
	2.4. Info Bus 	 8
	2.5. An Agent Based Approach 	 9
	2.6. A Generalized Approach 	 9

	3. OVERVIEW …………………………………………………………………………. 11
	3.1. Primitive Event ……………………….…………………………………… 	 11 3.2. Composite Event …………………….….…………………………….…… 12 3.3. Snoop Event Operators …………………….….…………………………… 12
	3.4. Parameter Context 	 14
	3.5. Coupling Modes 	 15
	3.6. Rule Priority 	 16
	3.7. Java LED 	 17
	3.8. Java SPP 	 17
	3.9. Sybase Triggers 	 18
	3.10. Java Sockets 	 21
	3.11. JDBC 	 23
	3.12. Terminology Used 	 25

	4. DESIGN ISSUES …………………………………………………………………… 26
	4.1. General Architecture 	 26
	4.2. Issues 	 27
	4.3. Architecture of the ECA Server 	 30
	4.4. ECA Agent Client 	 46
	4.5. Extended Trigger Syntax 	 47
	4.6. Need for Notification 	 50
	4.7. Getting Parameters 	 51

	5. IMPLEMENTATION 	 54
	5.1. ECA Agent System 	 54
	5.2. ECA Agent Client 	 56
	5.3. Multi User/Multi Database 	 56
	5.4. Persistence of events across sessions 	 59

	6. PRIMITIVE EVENTS 	 60
	6.1. Primitive Triggers 	 60
	6.2. Repeat Triggers 	 68
	6.3. Drop Trigger 	 71
	6.4. If Update Clause 	 72

	7. COMPOSITE EVENTS 	 75
	7.1. Creation Phase 	 75
	7.2. Execution Phase 	 78
	7.3. Java File 	 80
	7.4. Stored Procedures 	 81
	7.5. Drop Composite Event 	 82
	7.6. Composite Events in Java LED 	 83

	8. CONCLUSIONS 	 84
	8.1. Conclusions 	 84
	8.2. Contributions of this thesis 	 84
	8.3. Future Work 	 85

	REFERENCES 	 86
	BIOGRAPHICAL INFORMATION 	 89
	3.1. Connection 	 22
	3.2. Server Listening 	 23
	4.1. General Architecture 	 26
	4.2. Multiple ECA Agents 	 28
	4.3. Detailed Architecture 	 31
	4.4. Language Filter 	 32
	4.5. Primitive Event Parser 	 34
	4.6. Repeat Primitive Event Parser 	 36
	4.7. Composite Event 	 38
	4.8. Drop Primitive Event 	 43
	4.9. Drop Composite Event 	 45
	5.1. Server Client Connection 	 54
	5.2. Multi User/Multi Database 	 57
	7.1. Code for Java LED 	 80
	7.2. Condition Method 	 81
	7.3. Event Graph 	 83
	LIST OF TABLES
	Table Page
	4.1. SYSECATRIGGER 	 39
	4.2. SYSPRIMTIVEEVENT 	 40
	4.3. SYSCOMPOSITEVENT 	 30
	4.4. VERSION 	 41
	4.5. SYSDROP 	 41
	4.6. NOTIFY 	 51
	4.7. SYSCONTEXT 	 52
	6.1. WEATHER 	 61
	6.2. INFO 	 61
	6.3. WEATHER_INSERTED 	 62
	6.4. SYSECATRIGGER 	 65
	6.5. SYSPRIMITIVEEVENT 	 65
	6.6. SYSPRIMTIVEEVENT 	 66
	6.7. VERSION 	 66
	6.8. NOTIFY 	 67
	6.9. INFO 	 68
	6.10. SYSECATRIGGER 	 71
	7.1. SYSDROP 	 77
	7.2. SYSECATRIGGER 	 78
	7.3. SYSCOMPOSITEVENT 	 78
	7.4. INFO 	 79
	7.5. SYSCONTEXT 	 79
	7.6. NOTIFYCOM 	 80
	INTRODUCTION
	1.1 ECA paradigm
	1.2 Issues
	1.3 Triggers
	1.4 ADBMS

	2. RELATED WORK
	Ariel
	2.2 Sentinel
	Ode
	2.4 InfoBus
	2.5 An Agent Based Approach
	2.6 A Generalized approach

	3. OVERVIEW
	3.1 Primitive Event
	3.2 Composite Events
	3.3 Snoop Event Operators
	3.4 Parameter Context
	3.5 Coupling Modes
	3.6 Rule Priority
	3.7 Java LED
	3.8 Java SPP
	3.9 Sybase Triggers
	3.10 Java Sockets
	3.12 Terminology used
	4.1 General Architecture
	4.2 Issues:
	4.2.1 Multi user/ Multi Database connectivity:
	4.2.2 Full Active Capability:
	4.2.3 Persistence of Events:

	4.3.1 ServeOneClient
	4.3.2 Language Filter
	4.3.3 ECA Parser
	4.3.3.1 Primitive Event Parser
	4.3.3.2 Repeat Primitive Event Parser
	4.3.3.3 Composite Event Parser

	4.3.4 Persistence Manager
	4.3.5 Drop Trigger
	4.3.5.1 Drop Primitive Event Trigger
	4.3.5.2 Drop Composite event trigger

	4.3.6 Other Modules
	4.5.1 Sybase Trigger Syntax
	4.5.2 Primitive Event Trigger
	4.5.3 Repeat Primitive event trigger
	4.5.4 Composite event Trigger

	4.6 Need for Notification

	5. IMPLEMENTATION
	5.1 ECA Agent System
	5.1.1 Connection
	5.1.2 System Tables
	5.1.3 Restoration of events
	5.1.4 Registering events with Java LED

	5.2 ECA Agent Client
	5.3 MULTI USER/MULTI DATABASE
	5.3.1 Problem Statement

	5.3.2 Solution
	5.3.3 Implementation Issues
	5.3.4 System Tables
	5.4 Persistence of Events across sessions

	6. PRIMITIVE EVENTS
	6.1 Primitive Triggers
	6.1.1 Creation Phase
	6.1.2 Execution phase
	Trigger Execution

	6.2 Repeat Triggers
	6.2.1 Creation phase

	6.3 Drop Trigger
	6.3.1 Dropping Primitive Trigger
	6.3.2 Drop Repeat Trigger

	6.4 If update clause

	7. COMPOSITE EVENTS
	7.1 Creation Phase
	7.1.1 Composite Event Parser

	7.2 Execution Phase
	7.3 Java file
	7.4 Stored Procedures
	7.5 Drop Composite Event
	7.6 Composite events in JavaLED

	8. CONCLUSIONS
	8.1 Conclusions
	8.2 Contributions of this thesis
	8.3 Future Work

	REFERENCES
	BIOGRAPHICAL INFORMATION

