
FRAGMENTATION TECHNIQUES FOR DISTRIBUTED OBJECT-ORIENTED
DATABASES

By

ELZBIETA MALINOWSKI

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

1996

Dedicated to My Unique Husband,
Children, and Parents

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Dr. Sharma Chakravarthy,

for giving me the opportunity to work in such a new area - distributed object-oriented

databases - and for his continual support and encouragement. I would like to express

my gratitude to my supervisory committee, Dr. Stanley Su and Dr. Herman Lam,

for their useful suggestions and discussions.

Also, I would like to thank my family, especially my husband and children, for

the unlimited amounts of patience, support, and extraordinary encouragement that

they gave me in di�cult moments.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS : iii

ABSTRACT : vi

CHAPTERS : 1

1 INTRODUCTION : 1

1.1 Proposed Problem : 2
1.2 Contributions : 3
1.3 Thesis Organization : 4

2 VERTICAL PARTITIONING IN RELATIONAL DATABASES : : : : : : 5

2.1 Vertical Partitioning : 5
2.2 Related Work : 6

3 OBJECT-ORIENTED APPROACH : 9

3.1 Object-Oriented Databases: General Concepts : : : : : : : : : : : : : 9
3.2 Fragmentation in Distributed Object-Oriented Databases : : : : : : : 11
3.3 Related Work : 12

4 MODELING OBJECT HIERARCHY FOR PARTITIONING : : : : : : : 15

4.1 Motivation for Developing a New Tool for Vertical Partitioning in
DOODB : 15

4.2 Assumptions : 16
4.3 Transaction, Method and Attribute Usage Matrices for DOODB : : : 16
4.4 Description of Modeling Object Hierarchy : : : : : : : : : : : : : : : 20

4.4.1 Simple attribute and simple methods : : : : : : : : : : : : : : 20
4.4.2 Simple attributes and complex methods : : : : : : : : : : : : 25
4.4.3 Complex attributes and simple methods : : : : : : : : : : : : 25
4.4.4 Complex attributes and complex methods : : : : : : : : : : : 29

5 DEVELOPMENT OF AN OBJECTIVE FUNCTION : : : : : : : : : : : : 30

5.1 Need for an Objective Function : 30
5.2 Assumptions and Notations : 32
5.3 Local Access Cost : 34
5.4 Remote Access Cost : 38

iv

6 IMPLEMENTATION AND RESULTS OF THE EXPERIMENTS : : : : : 40

6.1 Implementation : 40
6.2 Experiment Data and Results : 43

6.2.1 Simple attributes and simple methods : : : : : : : : : : : : : 43
6.2.2 Complex attributes and complex methods : : : : : : : : : : : 53
6.2.3 Complex attributes and simple methods : : : : : : : : : : : : 58
6.2.4 Di�erent levels of granularity : : : : : : : : : : : : : : : : : : 60

6.3 Interpretation of the Results : 65

7 CONCLUSION AND POSSIBLE EXTENSION : : : : : : : : : : : : : : : 69

7.1 Summary : 69
7.2 Future Work : 70

REFERENCES : 74

BIOGRAPHICAL SKETCH : 77

v

Abstract of Thesis
Presented to the Graduate School of the University of Florida

in Partial Ful�llment of the Requirements for the
Degree of Master of Science

FRAGMENTATION TECHNIQUES FOR DISTRIBUTED OBJECT-ORIENTED

DATABASES

By

Elzbieta Malinowski

August, 1996

Chairman: Dr. Sharma Chakravarthy
Major Department: Computer and Information Sciences and Engineering

Design of distributed object-oriented databases inherits the design problems from

the relational distributed databases and presents additional di�culties related to

schema represented by classes and their possible complicated hierarchy structure.

Unlike the relational case, access to data by user-de�ned methods further complicates

the problem.

This thesis addresses issues related to design of distributed object-oriented databases:

fragmentation. Speci�cally, this thesis investigates vertical fragmentation of objects

by extension and generalization of previous work on relational databases. Even

though there are several works related to distributed object-oriented databases, few

of them analyze the issues related to fragmentation.

First, we describe new matrices for capturing the semantics used for object-

oriented databases. Then, we develop techniques for fragmentation of object-oriented

vi

databases and include the descriptions of algorithms for objects with: simple at-

tributes and simple methods, complex attributes and simple methods, simple at-

tributes and complex methods, and �nally complex attributes and complex methods.

A new objective function (termed PEOO for Partition Evaluator for object-

oriented databases) is derived. It is shown that this PEOO is a generalization of

the PE derived for relational databases. Also, a exhaustive algorithm is used to

evaluate this objective function and obtain optimal partitioning.

This PEOO can be used not only to obtain fragmentation scheme, but also to

evaluate other partitioning techniques proposed in the literature.

Finally, we present several experiments to show the correctness of our approach.

At the end, we indicate how our PEOO can be adopted to a system where addi-

tional information is available (e.g. allocation information, transmission cost, and so

forth).

vii

CHAPTER 1
INTRODUCTION

The wide acceptance of the relational approach in data-processing applications

and the continuous improvement of commercially existing relational databases has

increased the interest for using database in non-conventional applications, such as

computer-aided design (CAD), geographic information systems, image, and graphic

database systems. However, these systems manage complex structures using non-

traditional data types that cannot be easily represented using the relational model

[32]. Consequently, the object-oriented approach has become popular, not only in the

areas of programming and system design, but also in database community. The pos-

sibility of using user-de�ned classes and representing to the user the complex objects

in the same way as simple, motivates one to intensify the research activity to develop

object-oriented databases. Moreover, the wide acceptance of computer networks

and advances in communication technology have changed the direction of relational

database development. The distributed database (DDB) systems have become more

important. They reect more naturally the structures of many organizations and

enables the possibility to e�ciently share data [3].

The relational distributed databases have been investigated for many years. Ac-

cording to Karlapalem et al. [18] two factors, I/O operations and data transfer,

are the most important for the performance of the applications in the distributed

database systems. The performance of a DBMS can be improved if adequate distri-

bution design including fragmentation, replication and allocation are applied. The

relational approach distinguishes two kinds of fragmentation: horizontal and vertical.

Also the hybrid fragmentation is considered another way to partition the data. There

1

2

are many algorithms developed for horizontal and vertical fragmentation. Each of

them has its own criteria to determine the best fragmentation scheme for the rela-

tional system being considered [5, 6, 7, 25, 28, 29].

Although much research has been dedicated to the issues of object-oriented databases,

little has been related to the distribution of the objects and speci�cally to their frag-

mentation. Ezeife and Barker [10] specify bene�ts of fragmentation in relational

databases and mention that they should be recognized in distributed object-oriented

database (DOODB), too. However, there is an important aspect that makes the

development of the algorithms more complicated: for a relational approach the

granularity of partition was easy to identify (attributes for vertical partitioning, in-

stances/tuples for horizontal). In contrast, in object-oriented databases, di�erent

criteria could be considered for fragmentation: hierarchical structure, \a�nity" of

classes, \a�nity" of objects, frequency of usage of complex objects, and so forth.

1.1 Proposed Problem

Even though signi�cant di�erence exist between relational and object-oriented

databases, it should be clear that a relational approach can be seen (ignoring for

simplicity the existence of the methods) as a special case of an object-oriented system

without a class hierarchy and complex attributes (attributes that include the reference

to other attributes). If this is the case, many of the algorithms developed for relational

databases can be generalized and applied to object-oriented databases as one of them

presented in this thesis: the problem of vertical fragmentation in distributed object-

oriented databases.

The vertical fragmentation can improve transaction processing cost by decreasing

the communication cost for accessing remote attributes in a distributed environment.

This thesis presents a new partition evaluator for an object-oriented database

that can be applied either to obtain vertical fragmentation schemes or to evaluate

3

\goodness" of other fragmentations. This partition evaluator is based on the one

developed for relational databases and presented by Chakravarthy et al. [4].

1.2 Contributions

This thesis makes several contributions to the vertical fragmentation in DOODB:

1. A new Partition Evaluator for Distributed Object-Oriented Database (termed

PEOO) is developed. It is a generalization of Partition Evaluator (PE) for

vertical partitioning used in a relational approach described by Chakravarthy

et al. [4]. This PEOO can be used as a tool for future fragmentation algorithms

to compare the "goodness" of the fragmentation schemes in object-oriented

databases in the same way as PE can be used in relational databases.

2. New matrices that represent method and attribute usage are speci�ed. Also,

the rules for calculating the values of Attribute Usage Matrix for DOODB are

presented.

3. The distinction between update and retrieve operations are provided through

the method-attribute usage matrix.

4. Not only is the static information about the hierarchical structure of the object-

oriented database system considered, but also the frequencies of used methods

and attributes are used for establishing the fragmentation scheme. This allows

the designer to distribute the attributes according to their usage and not only

to static structural information.

5. The experiments are developed showing the generalization of PEOO over PE.

They con�rm the assumption that some techniques presented for a relational

approach can be generalized and used for the object-oriented approach.

4

6. A hypothesis of the elimination of complex attributes from the fragmentation

algorithm without a�ecting the optimality of solution is provided. The validity

of this hypothesis is demonstrated using several examples.

7. Di�erent levels of granularity of vertical fragmentation are proposed.

1.3 Thesis Organization

Chapters 2 and 3 discuss the issues related to the vertical partitioning in relational

and object-oriented databases. Also, an overview of related work is provided in these

chapters.

Chapter 4 describes the information requirements and their representation for

partitioning in object-oriented database systems. Also, this chapter presents descrip-

tions of modeling of object hierarchy for vertical partitioning.

In chapter 5 the process of development of the objective function for vertical

partitioning is shown.

Several examples of small object-oriented schemes, their partitioning, minimum

cost, and behavior of partition evaluator are presented in chapter 6.

Chapter 7 contains the conclusions and a list of possible extensions of this work.

CHAPTER 2
VERTICAL PARTITIONING IN RELATIONAL DATABASES

2.1 Vertical Partitioning

In a centralized database the data is stored together with all attributes that de�ne

the tuple. When this data is retrieved by some query, all attributes are loaded into

main memory, even though only part of them is needed. If the number of retrieved

pages is high, the rate of nonrequested attributes over the requested can also be high.

If we can have in the tuple only the attributes requested by this query, the number

of retrieved pages will be smaller. Therefore, if the �le is partitioned in the way that

the attributes which are most requested together are placed together, the number

of accessed pages will be reduced. This fragmentation of attributes, called vertical

fragmentation, can improve the performance of a centralized database. Moreover,

the bigger e�ect of this partitioning can be seen in the case of distributed databases.

According to �Ozsu and Valduriez, "distributed databases is a collection of multi-

ple, logically interrelated databases distributed over a computer network" ([30], p.4).

It is important to observe two aspects from this de�nition: distributed database sys-

tems must have the possibility of communication between users (network), and data

saved in di�erent nodes of the network must be related. If the query in one node

retrieves the tuples from another node, the cost of having nonrequested attributes in

the tuple is higher than in the case of a centralized database because of the necessity

to send these tuples over the network. This communication cost can be decreased if

adequate vertical fragmentation of the data is applied.

5

6

Vertical partitioning allows the designer to group attributes of each relation into

smaller records for the improvement of the e�ciency of database transactions. How-

ever, the number of possible partitions of m attributes is equal to the mth Bell

number; for a large m this number is mm [28]. To deal with this number of solu-

tions is almost impossible. To make this number smaller, much of the research uses

the heuristic approach. One of the most used assumptions is that the partitioning

has to be made considering that each fragment must be "closely matched" to the

requirements of the transaction [28]. This means, in an ideal case, the fragment may

contain only attributes, which are accessed by the transaction performing on this

node and this transaction does not need attributes from other remote nodes. How-

ever, in distributed databases it is almost impossible to achieve this ideal case. The

best partitioning of the attributes for one transaction is not necessarily the best for

the other. The feasible goal is to maximize the performance of all transactions tak-

ing them as a group. Therefore, the designer must make a "trade-o�," ensuring the

minimum possible accesses of attributes located in remote sites for all transactions

executed in this site.

2.2 Related Work

Currently, there are a considerable numbers of algorithms for vertical partitioning

in relational databases.

Ho�er and Severance [14], based on the bond energy algorithm (BEA) presented

by McCormick et al. [27], cluster together the attributes according to their pairwise

a�nity. The clusters obtained after applying BEA to the a�nity attribute matrix

have the characteristic that every pair of objects within clusters carries a large number

of "a�nity" and between the clusters this number is small. They provide the ordering

of the attributes, leaving the creation of the partitions to the designer.

7

Hammer and Niamir [13] consider the partitioning problem as heuristic in its

nature and provide grouping and regrouping of the attributes. They use the �le

cost estimator to check the "goodness" of obtained solution. The grouping starts

assigning each of the attributes to the di�erent fragments. In each iteration all

possible grouping of these fragments is considered and the one with the maximum

improvement is chosen. Regrouping is used to achieve some additional improvement

moving the attributes between fragments.

Navathe et al. [28] propose the top-down approach for vertical fragmentation.

They present the two-step partitioning algorithm. In the �rst step they use attribute

usage matrix, which is recalculated to attribute a�nity matrix. Then, they perform

the transformation of this matrix according to BEA. Using an empirical objective

function, they perform the iterative binary partitioning. In the second step, they

consider the cost related to physical storage and use this cost for re�nement of the

solution obtained in the �rst step.

Cornell and Yu [7] extend the approach proposed by Navathe et al. [28] and

in addition consider the access cost. They indicate that besides the transaction

frequency, other aspects such as the kind of join method applied, average number

of read pages, and number of used bu�ers are also important to consider in the

algorithms for vertical fragmentation. Their algorithm uses speci�c physical features

and allows the designer to obtain fragmentation that also decreases the number of

disk accesses.

Navathe and Ra [29] describe a new algorithm for attribute clustering that uses

a graph representation of an attribute a�nity matrix. This graph, called a�nity

graph, serves as a base to form a spanning tree and to �nd cycles. These cycles

will be considered the future fragments. They claim that this algorithm reduces

8

complexity, allowing the designer to generate all fragments in one iteration without

the necessity of using an empirical objective function.

Chu [5], and Chu and Ieong [6] use the transaction semantic instead of frequencies

of attributes for vertical fragmentation. Moreover, in contrast to algorithm presented

by Cornell and Yu [7], both algorithms select the best access method.

Chakravarthy et al. [4] establish function that can measure "goodness" of ob-

tained fragments. This function can be either used for the partitioning process (ex-

haustive search) or applied after using some other partitioning algorithms. They

argue that the AUM instead of AAM should be used in the process of fragmentation,

because in AAM only the "a�nity" between pairs of attributes can be reected.

CHAPTER 3
OBJECT-ORIENTED APPROACH

3.1 Object-Oriented Databases: General Concepts

It is very di�cult to establish general characteristic of object oriented databases.

One of the reasons is that even though Atkinson et al. [1] proposed some rules to

unify OODB concepts, there is still not agreement among researchers even in the

terminology used. In summarizing the approaches from di�erent sources, the general

characteristic of object-oriented database are as follows:

� The object represents "everything" ([8], p.635). The more precise de�nition

given by �Ozsu and Valduriez [30] is that the object is the pair of values (id, v),

where id is a system created identi�er and v is the value that object can have.

Other authors [9, 26] de�ne an object as a triple (identi�er, type, value), where

the type represents one of the system de�ned structures (atomic, set, tuple,

etc). Some authors [20, 19] use the term state instead of term value.

� Each object has a system de�ned identi�er.

� Each object has a private memory and a set of operations (methods). The

private memory has a value of the attributes [26]. Khosho�an names these

attributes as instance variables [19].

There are two approaches regarding the existence of the objects and values in

an object-oriented database system:

9

10

{ In the approach used by Smalltalk [11], each value is represented by an

object, which has its own identi�er and can be accessed only by invoking

the corresponding method.

{ The other approach allows the object-oriented databases to have values

and objects [9, 24, 19, 16].

� The encapsulation and data hiding gives the possibility of de�ning the opera-

tions or functions for the speci�c object to manipulate it or return part of its

state.

� The use of type constructor allows one to create objects of arbitrary complexity.

The basic type constructors are atom, tuple and set. Also, list, array and bag

are other commonly used types [9]. According to �Ozsu and Valduriez [30], the

object can be named depending on the kind of value that it has: atomic object,

tuple object, set object, and so forth. Also, they de�ne a complex object as an

object which value is represented by the identi�er of another object.

� The value of the object depends on its type:

{ if the object is an atom its value is an element (without subparts) of the

domain de�ned by the user or system.

{ if the object is a set, then its value is a set of the di�erent object's identi-

�ers.

{ if the object is a tuple, then its value is of the form (at1:id1, at2:id2, : : : ,

atn:idn), where ati means attribute name, and idi means distinct object

identi�er.

� The class hierarchies and inheritance can be used.

11

The designer can also group classes into superclasses (bottom-up object-oriented

approach) or divide classes in subclasses (top-down object-oriented approach). Using

the terminology of a relational approach we can say that superclass is the generaliza-

tion of classes or the subclass are specialization of classes [20]. If the designer de�nes

the subclass, it is necessary that "every object of subclass must also be a member

of a superclass" ([9], p.667). This means the objects of subclass inherit attributes

and methods from its superclasses [20]. This allows one to draw the inheritance as a

directed acyclic graph (DAG). Also, it is possible that some classes inherit methods

or attributes from several di�erent classes (multiple inheritance).

3.2 Fragmentation in Distributed Object-Oriented Databases

In the relational approach the fragmentation deals with algorithms that apply

to attribute distribution. Depending on the kind of fragmentation, the information

about transaction frequency, attribute usage, or predicate type is needed. According

to �Ozsu and Valduriez [30], we need four categories of information to achieve the

optimal design:

1. Database information that includes the global conceptual schema.

2. Application information: used predicates (for horizontal fragmentation). or

attribute usage matrix and transaction frequencies (for vertical fragmentation).

3. Communication network information.

4. Computer system information.

The last two items are mostly used in allocation models.

However, in the object-oriented approach the conceptual schema can be more

complex and apart from the features presented in a relational approach, aditional as-

pects have to be considered for fragmentation such as methods, hierarchical structure,

and complex attributes.

12

These new features increase the number of possible approaches for fragmentation.

For example, partitioning of classes may involve

� Finding some kind of "a�nity" between classes (all de�ned objects of the class

represent an entity here; we do not fragment the attributes and methods).

"A�nity" between classes can be found in a similar way as is done for attributes

in relational approach.

� "Flattening" classes and objects and �nding the "a�nity" between attributes.

� Distributing of the methods using the frequencies of accessing them by speci�c

transactions followed by the fragmentation of corresponding attributes that

these methods access.

� Using the frequencies of th attribute accesses for partitioning of objects of the

class followed by appropriate distribution of methods.

� Following the hierarchical structure of the classes.

3.3 Related Work

In developing algorithms for horizontal partitioning, Ezeife and Barker [10] ana-

lyzed four separate cases: simple attributes and simple methods, simple attributes

and complex methods, complex attributes and simple methods and complex at-

tributes and complex methods.

They establish several new concepts such as "object pointer join" "instance object

join" (p.6), "object a�nity", "a�nity between derived fragments" (p.12), and so

forth. They also choose a class as an entity of fragmentation. In dealing with the

primary and derived fragmentation their algorithms have several steps including the

de�nition of the link graph for the classes, as well as the primary horizontal fragment

13

and the derived horizontal fragments. Finally, they combine the primary and derived

fragments, while also �nding the best placement for the objects.

Karlapalem and Li [17] try to establish some common schemes for the fragmen-

tation in object-oriented databases. They do not present speci�c algorithms for

fragmentation, but propose some initial steps for each fragmentation scheme. They

categorize three kind of classes: value-based, object-based and mixed. Addition-

ally, they analyze the vertical, horizontal, and path partitioning schemes. For the

horizontal partitioning in object-based classes, they distinguish the case of derived

horizontal partitioning (when classes are fragmented based on the value of object in

hierarchy) and associated horizontal partitioning (when the classes are fragmented

because of their natural division into subclasses). Even though each of these schemes

are described very clearly and could be used, the internal representation of the frag-

ments that they propose may be too complicated for large object-oriented databases

speci�cally with several levels of hierarchy.

Gruber and Amsaleg [12] propose special object grouping based on the relevance

of the link. Speci�cally, they analyze the hierarchy links and links between di�erent

objects (when the instance variable of one object is pointing to another object) and,

based on this information, they develop the object clustering that is used in the

system EOS. They consider only the necessity of putting parent and child objects

together. They do not analyze the possibility of the di�erent usage of the classes and

their subclasses.

Karlapalem et al. [18] describe some of the issues to be considered in an object-

oriented distributed environment such as used data model, the method invocation

important for allocation purposes, types of transparency, closeness of methods and

attributes, inheritance hierarchy, and so forth. They do not present any algorithms

for vertical partitioning, and a�rm that the algorithm proposed in Navathe et al.

14

[29] can be used for the simple method and value-based attributes. For the complex

methods and value-based attributes they propose to "atten" objects and apply to

obtained schema the concept developed in [31] for fragmentation of relation with

overlapping views.

CHAPTER 4
MODELING OBJECT HIERARCHY FOR PARTITIONING

4.1 Motivation for Developing a New Tool for Vertical Partitioning in DOODB

To the best of our knowledge, only fragmentation schemes presented by Ezeife

and Barker [10], and Gruber and Amsaleg [12] were implemented. Also, none of the

presented algorithms consider the relationship between relational and object-oriented

approaches and the possibility of extending existing algorithms from relational to

object-oriented databases. Even though Karlapalem et al. [18] propose the feasibility

of using the fragmentation schemes existing in relational approach in object-oriented

environment, they only describe this adoption in very general form.

Moreover, the attribute usage matrix used in vertical partitioning (in all the pre-

vious works) in relational databases only consider the case when the frequencies of

accessing the attributes by some speci�c transaction are the same for all attributes.

However, in the case of object-oriented databases, the attribute usage matrix can

have di�erent frequencies of the attributes for the same transaction. For example, in

the case of complex attributes, when the object to which this attribute is pointing

to is accessed "indirectly" through this complex attribute, it can be accessed "di-

rectly" from some other transaction. Therefore, the Partition Evaluator proposed by

Chakravarthy et al. [4] cannot be applied without modi�cations to the case of an

object-oriented database.

In addition, not only the frequencies of accessing attributes by transactions, but

also the existence and frequency of used methods should be considered in the new

15

16

fragmentation scheme. Therefore, matrices that represent this quantitative informa-

tion should be developed.

If we can show that it is possible to generalize algorithms and concepts developed

for a relational database and use them in an object-oriented databases, we can inherit

earlier research about the development of relational databases without the necessity

to construct new tools from the beginning.

4.2 Assumptions

In the following we consider:

1. Object-based and no values-based approach is applied.

2. The information of the classes including the methods and attributes used by

methods is given.

3. The access to the attributes is done only through the methods following the

principle of information hiding, encapsulation, and abstract data. This assump-

tion facilitates the path expression allowing one to have in it no more than two

elements.

4. The information of accessing the method by speci�c transaction is given.

5. The frequencies of accessing transactions is speci�ed.

6. The existence of the type tuple, set, and list are ignored.

4.3 Transaction, Method and Attribute Usage Matrices for DOODB

The information needed for partitioning can be represented in the form of the

Transaction-Method Usage Matrix (TMUM),Method-Method Usage Matrix (MMUM)

and Method-Attribute Usage Matrix (MAUM).

17

� Transaction-Method Usage Matrix (TMUM) is the matrix of frequencies that

indicates if the transaction calls speci�c methods. Used values are zero or one

that represent no call or call of the speci�c method respectively.

trans nmethods m1

i;j m2

i;j : : : mm
i;j

tr1 fm1;1 fm1;2 : : : fm1;m

tr2 fm2;1 fm2;2 : : : fm2;m

...
...

...
...

...
trT fmT;1 fmT;2 : : : fmT;m

(4.1)

where

m Total number of methods in the system that is being partitioned.

ml
i;j Method j of class i, for l=1 to m.

T Total number of transactions that are under consideration.

trp Transaction p, for p=1 to T.

fmp;r Frequency that transaction p accesses method r (equal to 0 or 1).

� Method-Method Usage Matrix (MMUM) is the matrix of frequencies that in-

dicates if the method calls other methods (in the case of simple methods this

matrix does not exist). Similar to the TMUM the values of zero or one repre-

sent the existence of nested calls. The value equal to two is presented only in

the case when the method is called through the complex attribute.

methods nmethods m1

i;j m2

i;j : : : mm
i;j

m1

i;j 1 fmm1;2 : : : fmm1;m

m2

i;j fmm2;1 1 : : : fmm2;m

...
...

...
...

...
mm

i;j fmmm;1 fmmm;2 : : : 1

(4.2)

where

18

m Total number of methods in the system that is being partitioned.

ml
i;j Method j of class i, for l=1 to m.

fmms;r Frequency that method s calls method r (equal to 0, 1, or 2) .

� Method-Attribute Usage Matrix (MAUM) is the matrix that represents the

number of invocations of speci�c attribute in one execution of a method. There

are possible three values:

{ Zero - indicates that a method does not access an attribute.

{ One - indicates that a method reads the value of an atributes (retrieve).

{ Two - indicates that a method reads and writes the value of an atrtibute

(update).

methods n attr at1i;j at2i;j : : : atni;j

m1

i;j fat1;1 fat1;2 : : : fat1;n
m2

i;j fat2;1 fat2;2 : : : fat2;n
...

...
...

...
...

mm
i;j fatm;1 fatm;2 : : : fatm;n

(4.3)

where

n Total number of attributes in the system that is being partitioned.

at
p
i;j Attribute j of class i, for p=1 to n.

fatk;l Frequency of accessing of attribute l by method k (equal to 0, 1, or 2).

The information speci�ed above can be given by the designer of the system.

Additionally, in the same way as was done for relational approach, the frequency

of using the speci�c transaction by applications is given:

Frequencies of used transaction by applications (ftr):

19

transaction tr1 tr2 tr3 : : : trT
frequency ftr1 ftr2 ftr3 : : : ftrT

(4.4)

With TMUM, that contains the information of methods used by a speci�c trans-

action, and MAUM, that contains the frequencies of used attributes by a speci�c

method, we can multiply them and obtain the matrix that represents the frequencies

of used attributes by a speci�c transaction. These frequencies serve as a base for the

fragmentation scheme and correspond to the Attribute Usage Matrix (AUM) in the

relational approach. Why not fragment methods and then assign the attributes to

the adequate fragments? The reason is obvious. The methods as a piece of software

can be easily copied, or duplicated without any problems (space, concurrency con-

trol, and so forth). The adequate distribution of the data, which optimizes the store

space (no unnecessary duplication) and gives good performance regarding the used

transaction, is the main goal of the design in distributed databases systems, either

relational or object-oriented.

Even though the obtained matrix correspond to the AUM, the method used for

fragmentation in relational approach cannot be used for this object-oriented approach

for the reasons explained before.

To consider our approach feasible, based on Chakravarthy et al. [4], we develop

the Partition Evaluator for Object-Oriented approach (PEOO) that evaluates the

partitioning scheme using the AUM, which can have di�erent values of frequencies of

attributes used by the same transaction. We apply this PEOO for exhaustive search

in the same way that mentioned authors applied for relational database [4].

Moreover, our algorithm allows the user to de�ne desired granularity of fragmen-

tation that can vary in each class or can be the same for the system to be fragmented.

These granularity levels are described as level 1 (root class), level 2 (root class and

one level of subclasses), and so forth.

20

4.4 Description of Modeling Object Hierarchy

In the process of developing the fragmentation model, we consider the same four

cases that were considered in [10].

4.4.1 Simple attribute and simple methods

In this category we have only the simple hierarchical structure, where the methods

can use attributes of their own class or their superclasses. We do not have nested

methods or objects as an attribute type.

In proposed algorithm we should:

1. Specify in Transaction-Method Usage Matrix (TMUM) and Method-Attribute

Usage Matrix (MAUM) all used methods and attributes from the root to the

established level of granularity i. If the classes of the levels greater than i exist,

then for each of the classes represent the frequencies of accessing the attributes

and methods as a sum of corresponding values. Note here, that if the class has

subclasses, the sum should include all frequencies of methods and attributes of

this class and all of its subclasses.

2. Multiply each row of the TMUM with the corresponding values of transaction

frequencies (matrix 4.4).

3. Multiply TMUM and MAUM.

4. Apply the exhaustive search and PEOO for selecting the best fragmentation

scheme. This search will consider the attributes of the subclasses of level greater

than i as indivisible.

5. Propagate the obtained fragmentation.

Consider the following example:

21

Class1 Class4
at1

1;1 at2
1;2

m1

1;1 m2

1;2

�
�

�=

Z
Z
Z~

at7
4;1 at8

4;2

m7

4;1 m8

4;2

�
�
�=

Z
Z
Z~

Class2
at3

2;1 at4
2;2

m3

2;1 m4

2;2

Class3
at5

3;1 at6
3;2

m5

3;1 m6

3;2

Class5
at9

5;1 at10
5;2

m9

5;1 m10

5;2

Class6
at11

6;1 at12
6;2

m11

6;1 m12

6;2

?
Class7

at13
7;1 at14

7;2

m13

7;1 m14

7;2

To make this graph easier to understand we avoid repetition of methods and

attributes to the subclasses, assuming that all methods and attributes of superclasses

can be accessed by their subclasses. Here, if the level of granularity is 1 for both root

classes (Class1 and Class4), we will have TMUM in the form:

trans nmeth m1

1;1 m2

1;2 m7

4;1 m8

4;2 M2 M3 M5 M6

tr1 fm1;1 fm1;2 fm1;3 fm1;4 fm1;5 fm1;6 fm1;7 fm1;8

tr2 fm2;1 fm2;2 fm2;3 fm2;4 fm2;5 fm2;6 fm2;7 fm2;8

...
...

...
...

...
...

...
...

...
trT fmT;1 fmT;2 fmT;3 fmT;4 fmT;5 fmT;6 fmT;7 fmT;8

The values in the columns Mi represent the sum of the frequencies of accessing

the methods by corresponding transaction. For example, the value fm1;5 is the sum

of frequencies of accessing the methods m3

2;1 and m4

2;2 of Class2 by transaction tr1.

For the Class5 the corresponding values include not only the frequencies of accessing

methods of this class, but also the frequencies of accessing the methods of its subclass:

Class7.

The MAUM is represented as follows:

22

meth n attr at1
1;1 at2

1;2 at7
4;1 at8

4;2 AT2 AT3 AT5 AT6

m1

1;1 fat1;1 fat1;2 fat1;3 fat1;4 fat1;5 fat1;6 fat1;7 fat1;8
m2

1;2 fat2;1 fat2;2 fat2;3 fat2;4 fat2;5 fat2;6 fat2;7 fat2;8
m7

4;1 fat3;1 fat3;2 fat3;3 fat3;4 fat3;5 fat3;6 fat3;7 fat3;8
m8

4;2 fat4;1 fat4;2 fat4;3 fat4;4 fat4;5 fat4;6 fat4;7 fat4;8
M2 fat5;1 fat5;2 fat5;3 fat5;4 fat5;5 fat5;6 fat5;7 fat5;8
M3 fat6;1 fat6;2 fat6;3 fat6;4 fat6;5 fat6;6 fat6;7 fat6;8
M5 fat7;1 fat7;2 fat7;3 fat7;4 fat7;5 fat7;6 fat7;7 fat7;8
M6 fat8;1 fat8;2 fat8;3 fat8;4 fat8;5 fat8;6 fat8;7 fat8;8

In this MAUM the columns represented as ATk are the sum of the frequencies of

accessing the attributes by corresponding method and are represented in a similar

way as in TMUM. Note that the intersections of the rows Mi and column ATk have

the values that represent the sum of the frequencies of all the attributes in ATk

accessed by methods in Mi.

For exhaustive search (step 4 of the previous algorithm), the attributes of the

subclasses Class2, Class3, Class5, Class6 and Class7 are considered indivisible. This

means we will not analyze the case when the attributes of one of these classes belong

to di�erent fragments. Moreover, this consideration implies that the attributes of all

subclasses presented in the same hierarchy path should form one indivisible entity

(for Class5 and Class7 attributes at95;1, at
10

5;2, at
13

7;1 and at14
7;2 should be considered as

indivisible).

If the level of granularity is two for root Class1 and one for root Class4 the

corresponding matrices will be:

trans nmeth m1

1;1 m2

1;2 : : : m8

4;2 M5 M6

tr1 fm1;1 fm1;2 : : : fm1;8 fm1;9 fm1;10

tr2 fm2;1 fm2;2 : : : fm2;8 fm2;9 fm2;10

...
...

...
...

...
...

...
trT fmT;1 fmT;2 : : : fmT;8 fmT;9 fmT;10

23

meth n attr at1
1;1 at2

1;2 : : : at8
4;2 AT5 AT6

m1

1;1 fat1;1 fat1;2 : : : fat1;8 fat1;9 fat1;10
m2

1;2 fat2;1 fat2;2 : : : fat2;8 fat2;9 fat2;10
...

...
...

...
...

...
...

m8

4;2 fat8;1 fat8;2 : : : fat8;8 fat8;9 fat8;10
M5 fat9;1 fat9;2 : : : fat9;8 fat9;9 fat9;10
M6 fat10;1 fat10;2 : : : fat10;8 fat10;9 fat10;10

The indivisible group of attributes are de�ned in a similar way as in the case of

the granularity level one.

The step of propagation can be shown for Class1. Suppose that after applying the

exhaustive search with granularity level one, we obtain two fragments: the �rst has

the attribute at1
1;1 and the second has at2

1;2. The propagation of this fragmentation

can be presented in the following manner:

Class1

�
�
�=

Z
Z
Z~

,

Class
0

1
Class

00

1

at1
1;1

m1

1;1 m2

1;2

�
�
�=

Z
Z
Z~

at2
1;2

m1

1;1 m2

1;2

�
�
�=

Z
Z
Z~

Class2
at3

2;1 at4
2;2

m3

2;1 m4

2;2

Class3
at5

3;1 at6
3;2

m5

3;1 m6

3;2

Class2
at3

2;1 at4
2;2

m3

2;1 m4

2;2

Class3
at5

3;1 at6
3;2

m5

3;1 m6

3;2

Notice that for implementation purposes the attributes and methods of Class2

and Class3 either can be replicated as shown above or can maintain only one copy

of each subclass. Moreover, as was mentioned before, because methods are easy to

duplicate, we propose their replications.

In the case of granularity level two we can represent the propagation of fragmen-

tation in a similar way. Suppose the exhaustive search is applied to the root Class4

24

and its subclasses Class5 and Class6. For the simplicity of representation we assume

that the best fragmentation has two fragments with the following attributes:

fragment 1: at7
4;1 , at

9

5;1 and at11
6;1.

fragment 2: at8
4;2 , at

10

5;2 and at12
6;2.

The graphical representation of the propagation will appear as follows:

Class4
�����)

PPPPPq

Class
00

4

at8
4;2

m7

4;1 m8

4;2

?

�������������9

Class
0

4

at7
4;1

m7

4;1 m8

4;2

?

XXXXXXXXXXXXXz
Class5
�
�

�=

Z
Z
Z~

Class6
�
�
�=

Z
Z
Z~

Class
0

5

at9
5;1

m9

5;1 m10

5;2

Class
00

5

at10
5;2

m9

5;1 m10

5;2

Class
0

6

at11
6;1

m11

6;1 m12

6;2

Class
00

6

at12
6;2

m11

;1 m12

;2

Z
Z
Z~

�
�

�=

Class7
at13

7;1 at14
7;2

m13

7;1 m14

7;2

Here, two fragments of Class5 are pointing to the same Class7 avoiding the

duplication of objects of Class7.

Even though this graphical representation of propagation seems very complicated

for this simple class, in reality it can be implemented using ideas presented in system

ORION [22], where each class has its own descriptor. Because each object has a

unique object identi�er (UID) that consists of a pair of values, which are class iden-

ti�er and object identi�er, the information in which fragment the desired attribute

is presented can be maintained in the class descriptor.

25

4.4.2 Simple attributes and complex methods

The di�erence here with the previous case of simple attributes and simple methods

is that we now have the possibility of nested calls either in the same class or between

the classes that belong to upper levels of the same path of the hierarchy tree.

Graphically, in a one level nested call, the situation can be presented as:

trk -m
p
i;j

-mr
i;j

?
ms

i;j

The edges from this graph will be presented in matrices TMUM and MMUM on

the corresponding positions with the value equal to 1.

More complicated two level nested call looks as follows:

trk -m
p
i;j

-mr
i;j

?
Mq

?
ms

i;j

Depending of the level of granularity, the transaction can access a method (m) or a

method that is part of an indivisible group of methods (M). These nested method calls

should be reected in MMUM. The di�erence in the approach that was presented

earlier will be that before multiplying the matrices TMUM and MAUM, we must

�rst multiply the TMUM and MMUM to take into account all nested calls. Having

modi�ed the matrix TMUM, we can multiply it with MAUM and follows the steps 4

and 5 from the �rst case.

4.4.3 Complex attributes and simple methods

Complex objects are objects which have attribute(s) pointing to other object(s).

In this case we have the situation that when a complex attribute is accessed in reality,

we access this attribute and some method(s) of the class that this attribute is point-

ing to. Because of the encapsulation principle, we will not have the situation in which

26

complex attributes access an attribute of another class directly. Now, we have not

only the relationship between method and attribute (the attributes that the speci�c

method uses presented in MAUM), but also a new relationship between the methods.

This new relationship needs to be captured in the MMUM, giving us the case of com-

plex attributes and complex methods. On the other hand, the relationship between

the method and the complex attribute can be ignored, after reecting in MMUM the

relationship between method and method. This is because the complex attributes

can be seen as a certain kind of \virtual" attribute. The assignment of this attribute

to some speci�c fragment after applying the fragmentation algorithm, does not give

to us the necessary information concerning how to fragment the attributes of the class

that this attribute is pointing to. In our approach we propose to eliminate this \vir-

tual" attribute from the partitioning scheme. It always can be placed and duplicated

in any fragment that it is needed. Deleting this attribute from the fragmentation

algorithm gives to us the case of simple attributes and nested method calls instead of

complex attributes and simple method calls. For example, suppose complex attribute

atki;j is used in a path with the following methods: ml
i;ji and ms

i;j. This means that in

some methods we can �nd the invocation such as: atki;j:m
l
i;j and atli;j:m

s
i;j (because of

the principle of encapsulation the invocation of complex attribute cannot be found

directly in the transaction). This is how it looks when represented graphically:

trk - m
p
i;j

- atki;j -ml
i;j

?
ms

i;j

If some transaction k calls the method that uses this complex attribute, we propose

to eliminate this attribute from the graph. This results in the situation that the

methods ml
i;j and ms

i;j are called in the method m
p
i;j. The relationship between

methods are already reected in MMUM in the positions (p,l) and (p,s) and no

modi�cations need be done.

27

In case when the access through a complex attribute is more complicated, because

some method that this complex attribute is pointing to accesses another complex

attribute, we make a modi�cation to the graph in the same way as shown in the

previous example.

For example, if we have the following situation:

trk -m
p
i;j

- atki;j -ml
i;j

?
atri;j -mw

i;j

?
mv

i;j

?
ms

i;j

the graph can be rewritten as:

trk -ml
i;j

?
mv

i;j

-mw
i;j

?
ms

i;j

Also, we can consider di�erent levels of granularity in a similar way as was done

for simple attributes and simple methods. Consider the following object hierarchy:

Class1 Class4
at1

1;1 at2
1;2

m1

1;1 m2

1;2

�
�

�=

Z
Z
Z~

at7
4;1 at8

4;2

m7

4;1 m8

4;2

�
�
�=

Z
Z
Z~

Class2

��
��
��
��
��
��
��
�1

at3
2;1 at4

2;2

m3

2;1 m4

2;2

Class3
at5

3;1 at6
3;2

m5

3;1 m6

3;2

Class5
at9

5;1 at10
5;2

m9

5;1 m10

5;2

Class6
at11

6;1 at12
6;2

m11

6;1 m12

6;2

?
Class7

at13
7;1 at14

7;2

m13

7;1 m14

7;2

Z
Z
Z
Z}

28

If the granularity level is one for both root classes the methodsm1

1;1,m
2

1;2,m
7

4;1 and

m8

4;2 will be represented in the corresponding matrices. For the classes Class2, Class3,

Class5 together with Class7 and Class6 the frequencies of accessing methods will be

presented as summations of the frequencies of the methods of the above mentioned

classes. In other words, based on the explanation given for simple attributes and

simplemethods, in addition to the speci�ed above methods, we will have the following

groups of methods:

� M2 contains methods of Class2.

� M3 contains methods of Class3.

� M5 contains methods of Class5 and Class7.

� M6 contains methods of Class6.

The same consideration will be applied to the attributes.

After preparing TMUM, MMUM (if needed) and MAUM, applying an exhaustive

search to the speci�ed granularity level(s), and obtaining fragmentation of attributes,

the question that is left is how to propagate the fragmentation. The way to do it is

exactly the same as in the �rst case of simple attributes and simple methods. Starting

from the root for each fragment we will analyze how the attributes of each class have

been fragmented. Then, we will propagate this fragmentation to the subclasses.

In each subclass we �rst reect the inherited fragmentation and then we analyze

the proper attributes of this subclass. Finally, we apply the fragmentation to these

proper attributes in the same way as was applied to the root (see second example of

the �rst case of simple methods and simple attributes, p.24). This process is repeated

recursively until granularity level i is reached. For classes of the levels greater than

i, we apply the concept of the indivisible group of attributes, which was explained

earlier.

29

4.4.4 Complex attributes and complex methods

We can see that the case of complex attributes and complex methods has been

included in the analysis of the previous case.

For all the cases, the applied fragmentation algorithm is the same as presented

for simple methods and simple attributes except for the following re�nement in the

case of nested calls:

If the nested calls exist, we should prepare MMUM and multiply it with the TMUM

before the second step.

CHAPTER 5
DEVELOPMENT OF AN OBJECTIVE FUNCTION

5.1 Need for an Objective Function

As mentioned previously, most algorithms for vertical partitioning in a relational

database use a�nity usage matrix as an input. This matrix cannot express the

"a�nity" betweenmore than two attributes. Hence, the tool that uses attribute usage

matrix can accurately reect the real behavior of the system. Moreover, some existing

algorithms declare themselves as the best and give di�erent "optimal" fragmentation

for the same input information. The result of one algorithm very often cannot be

compared to the results of others. Therefore, the necessity of having a tool that

can measure the "goodness" of presenting results is obvious. However, this tool

was developed for a relational database after many fragmentation algorithms were

presented. Having such a tool for an object-oriented database, at an early stages of

DOODB research, allows the designer to evaluate the new partitioning algorithms as

they are becoming available.

The goal of partitioning the attributes is to obtain the minimum processing cost

for a given set of transactions and their usage of attributes. It is unlikly to achive an

ideal fragmentation scheme, where any transaction locally accesses only the attributes

that are needed and does not need to perform any remote accesses. The objective

function proposed here tries to balance the cost of local and remote accesses for

a given transactions. According to Chakravarthy et al. [4] the overall transaction

processing cost in a distributed environment consists of two elements:

30

31

II
I

(II)

Access Cost
Remote Attribute
Relevant

n

0

1
Number of Partitions

(I)

Irrelevant
Local Attribute
Access Cost

Figure 5.1. Behavior of partition evaluator in relational approach

1. The �rst component, called irrelevant local attribute access cost, represents the

cost of accessing irrelevant attribute when accessing the object in the local site,

assuming that all data fragments required by a transaction are available locally

2. The second component, called relevant remote attribute cost, includes the cost

of accessing the relevant attributes required by the transaction from remote

sites.

Chakravarthy et al. [4] showed the expected behavior of the objective function

using the above components. It is shown in the graph presented in the �g. 5.1.

Individually, the irrelevant local attribute cost should have a maximum value for

one fragment and equal to zero for a partition size (i.e. number of fragments in the

partition) equal to the number of attributes. The relevant remote access cost should

be zero and maximumvalues for these two extremes respectively. Moreover, as stated

by the previously mentioned authors, the local cost should be more responsive to

smaller partition sizes in contrary to the remote cost that should be more responsive

to larger fragments in between these two extreme values.

As is evident, the partitioning evaluator for an object-oriented database should

have the same behavior as the partitioning evaluator presented above for a relational

32

database. However, the irrelevant local cost will have one additional component.

Because the frequencies of attributes for the same transaction can be di�erent, the

penalty for accessing some relevant attributes more than others will be considered as

a penalty for the local cost.

5.2 Assumptions and Notations

We mentioned before that the di�erence between the original AUMand the TAUM

developed for object oriented environment is the fact that the AUM in a relational

approach uses the frequencies of a transaction equal for all attributes, and the new

matrix can have di�erent values of frequency for each attribute used by the trans-

action. This means, the matrix (5.1), which is presented for a relational database,

should be replaced with the matrix (5.2), developed for an object oriented approach:

trans n attrs atj ati : : : ati

tr1 q1 q1 : : : q1
tr2 q2 q2 : : : q2
...

...
...

...
...

trT qT qT : : : qT

(5.1)

where qt represents the frequency of transaction t=1,2,: : : ,T.

trans nmethod at1i;j at2i;j : : : atni;j

tr1 f1;1 f1;2 : : : f1;n
tr2 f2;1 f2;2 : : : f2;n
...

...
...

...
...

trT fT;1 fT;2 : : : fT;n

(5.2)

Even though it is possible to replicate data, in this �rst step of developing PEOO

we assume no replication scheme. Also, we assume that the fragmentation phase is

followed by fragment allocations. In addition, non-overlapping attributes within the

fragments are considered. This means n attributes are partitioned into M fragments

(P1; P2; : : : ; PM), with ni attributes in each fragment. Thus
PM

i=1 ni = n. These

33

assumptions allow the reader and author of this thesis to simplify the steps of the

development of PEOO without losing its generality. In addition, for simplicity we

assume that single access to a data in a local fragment corresponds to a unit of cost.

Since we do not know how the data is allocated during partitioning, the cost of

relevant remote attributes is calculated assuming that the data fragments needed by

the transaction are allocated in di�erent sites. Due to lack of the speci�c information

about network, the real transmission cost is ignored taking a unit cost for each access

to the remote fragment. It is important to notify that the contribution to the remote

access cost due to irrelevant attributes is already included in the �rst term.

We do not make any assumptions about the input data.

Moreover, the following, are the parameters proposed in [4] and also used here

with the small modi�cations:

n Total number of attributes in a relation that is being partitioned.

T Total number of transactions that are under consideration.

qt Frequency of transaction t for t = 1; 2; : : : ; T .

M Total number of fragments of a partition.

ni Number of attributes in fragment i.

nrikt Total number of attributes that are in fragment k

accessed remotely with respect to fragment i by transaction t.

f itj Frequency of transaction t accessing attribute j in fragment i

note that f itj was either 0 or qt for relational approach

Aij Attribute Vector for attribute j in fragment i.

t-th component of this vector is f itj

Sit Set of relevant attributes in fragment i that the transaction t

accesses; it is empty if t does not need fragment i.

jSitj Number of relevant attributes in fragment i that the transaction t

34

accesses.

Iit Set of irrelevant attributes in fragment i that the transaction

t accesses; it is empty if t needs all attributes from fragment i.

jIitj Number of irrelevant attributes in fragment i that transaction t

accesses.

Ritk Set of relevant attributes in fragment k accessed remotely

with respect to fragment i by transaction t;

these are attributes not in fragment i but needed by t

jRitkj Number of relevant attributes in fragment k accessed remotely

with respect to fragment i by transaction t

5.3 Local Access Cost

For this component we will use the same square-error criterion as was used by

Chakravarthy et al. [4] based on algorithm developed by Jain and Dubes [15]. This

criterion gives the penalty factor each time an irrelevant attribute is accessed. The

best local processing cost is when this value is minimum.

The Attribute Vector introduced by Chakravarthy et al. [4] is as follows:

Aij =

2
666666666664

f i
1j

f i
2j

� � �
� � �
� � �
� � �
f itj

3
777777777775

where f itj is the frequency of the transaction t accessing attribute j in fragment i.

Note that Chakravarthy et al. [4] presented f itj as either 0 or qt.

The mean vector Vi for fragment i, according to previous assumptions for non-

overlapping fragments, can be de�ned as follows:

35

Vi =

2
666666666666666666666666664

jSi1jX
j=1

f i
1j

ni

jSi2jX
j=1

f i
2j

ni

� � �
� � �
� � �
� � �

jSitjX
j=1

f itj

ni

3
777777777777777777777777775

Here jSitj is the number of attributes in partition i that the transaction t accesses

and ni is the number of attributes in partition i. (The summation should have the

upper limit equal to ni. However the f
i
tj is equal to 0 for all irrelevant attributes and

we can use the value of jSitj instead of ni).

The square-error e2i for the fragment Pi and square-error for the entire partition

scheme E2

L are de�ned in the same way as for a relational approach:

e2i =
niX
j=1

(Aij � Vi)
T (Aij � Vi) (5.3)

E2

L =
MX
i=1

e2i (5.4)

The development of PE for a relational approach showed the penalty factor for

accessing irrelevant local attributes. However, the PEOO will have two components:

1. It shows the penalty for accessing the irrelevant attributes (similar to the rela-

tional approach).

2. It shows the penalty for accessing the relevant attributes. This component is

due the fact that the frequencies of accessing attributes by a speci�c transaction

36

are di�erent. Thus, we should pay a penalty for accessing attributes more times

than is necessary.

Rewriting the E2

L di�erently we will show the contribution of these two compo-

nents.

Substituting Vi and Aij in equation (5.4) for E2

L, we obtain

E2

L =
MX
i=1

niX
j=1

2
6666664
f i
1j �

jSi1jX
p=1

f i
1p

ni
; : : : ; f itj �

jSitjX
p=1

f itp

ni

3
7777775

2
666666666666666666666666664

f i
1j �

jSi1jX
p=1

f i
1p

ni

f i
2j �

jSi2jX
p=1

f i
2p

ni

� � �
� � �
� � �
� � �

f itj �

jSitjX
p=1

f itp

ni

3
777777777777777777777777775

(5.5)

This formula can be reduced to

=
MX
i=1

niX
j=1

TX
t=1

2
6666664

0
BBBBBB@
f itj �

jSitjX
p=1

f itp

ni

1
CCCCCCA

�

0
BBBBBB@
f itj �

jSitjX
p=1

f itp

ni

1
CCCCCCA

3
7777775

(5.6)

After expanding the inside terms, we come up with

=
MX
i=1

niX
j=1

TX
t=1

2
66666664
�
f itj

�
2

+

0
BBBBBB@

jSitjX
p=1

f itp

ni

1
CCCCCCA

2

� 2 �

0
BBBBBB@
f itj �

jSitjX
p=1

f itp

ni

1
CCCCCCA

3
77777775

(5.7)

Rewriting the above in a di�erent way, we obtain

37

E2

L =
MX
i=1

TX
t=1

2
66666664

niX
j=1

�
f itj

�
2

+
niX
j=1

0
BBBBBB@

jSitjX
p=1

f itp

ni

1
CCCCCCA

2

� 2 �
niX
j=1

0
BBBBBB@
f itj �

jSitjX
p=1

f itp

ni

1
CCCCCCA

3
77777775

(5.8)

Now, we can divide the
niX
j=1

into two parts:
jSitjX
j=1

and
jIitjX
j=1

, where Iit = ni � Sit.

E2

L =
MX
i=1

TX
t=1

2
66666664

jSitjX
j=1

�
f itj

�2
+

jIitjX
j=1

�
f itj

�2
+

jSitjX
j=1

0
BBBBBB@

jSitjX
p=1

f itp

ni

1
CCCCCCA

2

+
jIitjX
j=1

0
BBBBBB@

jSitjX
p=1

f itp

ni

1
CCCCCCA

2

� 2 �
jSitjX
j=1

0
BBBBBB@
f itj �

jSitjX
p=1

f itp

ni

1
CCCCCCA
� 2 �

jIitjX
j=1

0
BBBBBB@
f itj �

jSitjX
p=1

f itp

ni

1
CCCCCCA

3
7777775

(5.9)

Grouping corresponding terms for relevant and irrelevant attributes, we obtain

E2

L =
MX
i=1

TX
t=1

2
66666664

jSitjX
j=1

�
f itj

�
2

+
jSitjX
j=1

0
BBBBBB@

jSitjX
p=1

f itp

ni

1
CCCCCCA

2

� 2 �
jSitjX
j=1

0
BBBBBB@
f itj �

jSitjX
p=1

f itp

ni

1
CCCCCCA

+
jIitjX
j=1

�
f itj

�2
+

jIitjX
j=1

0
BBBBBB@

jSitjX
p=1

f itp

ni

1
CCCCCCA

2

� 2 �
jIitjX
j=1

0
BBBBBB@
f itj �

jSitjX
p=1

f itp

ni

1
CCCCCCA

3
77777775

(5.10)

That gives us

E2

L =
MX
i=1

TX
t=1

2
66666664

jSitjX
j=1

0
BBBBBB@
f itj �

jSitjX
p=1

f itp

ni

1
CCCCCCA

2

+
jIitjX
j=1

0
BBBBBB@
f itj �

jSitjX
p=1

f itp

ni

1
CCCCCCA

2
3
77777775

(5.11)

38

The �rst term represents the penalty cost for accessing relevant attributes that

have di�erent frequencies. The second term represents the penalty cost for accessing

irrelevant attributes.

We can easily transform this formula to the relational case. We will have f itj = qt

for relevant attributes and f itj = 0 for irrelevant attributes. Also
jSitjX
j=1

is equal to the

value of jSitj and
jIitjX
j=1

is equal to value of ni � jSitj. That gives us:

E2

L =
MX
i=1

TX
t=1

2
4jSitj � q

2

t

1�

jSitj

ni

!
2

+ (ni � jSitj)

qt �

jSitj

ni

!
2
3
5 (5.12)

which is the same inter-media formula as presented by Chakravarthy et al. [4]. that

can be transformed to its �nal form giving a penalty cost for accessing irrelevant

attributes in a relational approach:

E2

L =
MX
i=1

TX
t=1

"
q2t � jSitj

1 �

jSitj

ni

!#
(5.13)

Therefore, we can see that the formula for local access cost for relational approach

is a special case of the formula presented above for the object-oriented approach. In

fact, the new formula can be used for the relational model as well when the transaction

frequencies are not the same for all attributes.

5.4 Remote Access Cost

Based on the explanation given by Chakravarthy et al. [4] and the previous

part of this thesis the formula for the penalty cost of accessing remote attributes is

calculated as follows: given a set of partitions, for each transaction running on the

partition compute the ratio of the number of remote attributes to be accessed to the

total number of attributes in each of the remote partitions. Here, in contrast to the

formula presented for a relational approach, the individual frequencies for accessing

39

each attribute are used, because of the possibility of having di�erent frequencies of

accessing the attributes by the same transaction.

E2

R =
TX
t=1

�M
i=1

X
k 6=i

"X
pk

(fktpk)
2 �

jRitkj

nremitk

#
(5.14)

where pk indicates relevant attributes in the fragment k accessed remotely with re-

spect to the fragment i by the transaction t. Similar to the relational PE, � is an

operator for the minimum, maximum, or average over all i and represents optimistic,

pessimistic, and average estimates of remote access cost.

This formula is a generalization of the formula presented by Chakravarthy et

al. [4] for relational distributed databases. With the suppositions
P

pk
= jRitkj and

ftpk = qk concerning the relational approach, we obtain the same formula for Remote

Access Cost as presented in the previously mentioned paper.

Our Partition Evaluator function for an object-oriented approach (PEOO) is given

by

PEOO = E2

L + E2

R (5.15)

Based on the formulas (5.11) and (5.14) and on the analysis similar to presented

by Chakravarthy et al. [4], the expected behavior of this partition evaluator is equal

to the one shown in the �g 5.1.

CHAPTER 6
IMPLEMENTATION AND RESULTS OF THE EXPERIMENTS

6.1 Implementation

To analyze the behavior of PEOO several tests were developed. According to

the previous explanation the same behavior as presented by Chakravarthy et al. [4]

regarding to local and remote costs was expected.

The cases of simple attributes and simple methods, and complex attributes and

complex methods were tested. The case of simple attributes and complex methods

gives only the additional matrix multiplication (TMUM and MMUM). We belive that

experiments representing this case do not give additional information and are hard

to follow at the theoretical level. As stated before, the case of complex attributes

and simple methods can be presented as a case of simple attributes and complex

methods. Therefore, some examples are presented to con�rm this hypothesis.

In addition, the number of classes and subclasses used in the experiments were

limited to allow the readers to understand the process of fragmentation. Moreover,

because exhaustive enumeration of possible attribute fragmentation was used, the

limit of a total of eight attributes was established (except the examples with di�erent

granularity levels). With a more complicated hierarchical structure and a complex

schema of method calls, the theoretical analysis of expected results will be uncertain.

The basic idea was to show the behavior of PEOO and compare the best fragmenta-

tion obtained from a theoretical analysis and a program run. The program written

in C++ that calculates the values of local and remote costs for an object-oriented

40

41

approach was run for all the possible combinations (4140) of attributes with the num-

ber of fragments varying from one to eight. The PEOO was applied for each of these

combinations. During the program execution, each transaction is run on each frag-

ment. Depending on the selected option (average, minimum or maximum) the value

of PEOO is calculated. The optimal value with the partitioning scheme is presented

as a result of the program.

We assume, that if a transaction should be run on a fragment at least one attribute

that this transaction needs is presented in this fragment. If this is not the case, the

transaction is not run on this fragment.

For the case of simple attributes and simple methods the following hierarchical

class representation was used:

Class1
at1

1;1 at2
1;2 at3

1;3

m1

1;1 m2

1;2 m3

1;3

�
�
�=

Z
Z
Z~

Class2
at4

2;1 at5
2;2

m4

2;1 m5

2;2 m6

2;3

Class3
at6

3;1 at7
3;2 at8

3;3

m7

3;1 m8

3;2 m9

3;3 m10

3;4

Because the access to the attributes are done through the methods following the

principles of encapsulation and information hiding, the methods of each class can

only use the attributes of their own class or superclasses.

For the case of complex attributes and complex method calls the following hier-

archical representation of classes was used:

Class1 Class4
at1

1;1 at2
1;2

m1

1;1 m2

1;2 m3

1;3

�
�

�=

Z
Z
Z~

at7
4;1 at8

4;2

m9

4;1 m10

4;2 m11

4;3

Class2
at3

2;1

��
��
��
��
��
��
��
��
��1

at4
2;2

m4

2;1 m5

2;2 m6

2;3

Class3
at5

3;1 at6
3;2

m7

3;1 m8

3;2

42

We assume the attribute at3
2;1 to be the complex attribute that points to Class4.

Also, the method m4

2;1 of the Class2 calls the methods m9

4;1 and m11

4;3 of the Class3

through this complex attribute at3
2;1 and m5

2;2 calls the methodm10

4;2 through the same

attribute. This means, in some transactions method m4

2;1 can have the call such as:

at3
2;1:m

9

4;1.

Because of a limited number of attributes that can be managed using an exhaus-

tive partitioning algorithm, the presented classes have only two or three attributes

each. Moreover, in the �rst part of the experiments, we assume that the desired

granularity level covers all levels of classes presented in our examples. This allows us

to consider all attributes for fragmentation. To see the e�ect of using di�erent levels

of granularity more attributes need to be used. The last three examples presented

in this chapter were provided to show the feasibility of using our PEOO for di�er-

ent levels of granularity. In these three cases ten attributes and the following class

representation were used:
Class1 Class3

at1
1;1 at2

1;2

m1

1;1 m2

1;2

at5
3;1 at6

3;2

m5

3;1 m6

3;2

�
�
�=

Z
Z
Z~

Class2
at3

2;1 at4
2;2

m3

2;1 m4

2;2

?

Class4
at7

4;1 at8
4;2

m7

4;1 m8

4;2

Class5
at9

5;1 at10
5;2

m9

5;1 m10

5;2

�

��
��
��
��
��1

Here, two complex attributes are presented: at3
2;1 and at7

4;1. The following calls

are made using these complex attributes:

� Method m3

2;1 calls twice at
3

2;1:m
5

3;1

� Method m4

2;2 calls once at
3

2;1:m
6

3;2

� Method m7

4;1 calls once at
7

4;1:m
3

2;1

� Method m8

4;2 calls twice at
7

4;1:m
4

2;2

43

For each example the TMUM shows the values obtained after multiplication of

TMUM and frequencies of accessing of each transaction.

6.2 Experiment Data and Results

6.2.1 Simple attributes and simple methods

.

For this case several sub-cases were developed, which allow us to check the ob-

tained fragmentation with the theoretical analysis previous to program run.

� Example 1 - Clear distribution of frequencies of accessing the methods by trans-

action.

The following TMUM was used:

m1

1;1 m2

1;2 m3

1;3 m4

2;1 m5

2;2 m6

2;3 m7

3;1 m8

3;2 m9

3;3 m10

3;4

tr1 25 25 25 0 0 25 0 0 0 0
tr2 30 30 30 0 0 0 0 0 0 0
tr3 0 0 0 80 80 80 0 0 0 0
tr4 0 0 0 70 70 70 0 0 0 0
tr5 5 0 0 0 0 0 5 5 5 5
tr6 0 10 0 10 0 0 10 10 10 10

This matrix shows a clear clustering of higher frequencies and a separation of

lower frequencies. This facilitates the prediction of the fragmentation scheme.

The used MAUM reects the situation when the methods use the attributes

only from their own class:

44

at1
1;1 at2

1;2 at3
1;3 at4

2;1 at5
2;2 at6

3;1 at7
3;2 at8

3;3

m1

1;1 2 0 0 0 0 0 0 0
m2

1;2 0 2 0 0 0 0 0 0
m3

1;3 0 0 1 0 0 0 0 0
m4

2;1 0 0 0 1 0 0 0 0
m5

2;2 0 0 0 0 2 0 0 0
m6

2;3 0 0 0 2 1 0 0 0
m7

3;1 0 0 0 0 0 2 1 0
m8

3;2 0 0 0 0 0 1 2 0
m9

3;3 0 0 0 0 0 0 1 2
m10

3;4 0 0 0 0 0 0 1 2

The values in MAUM are zero, one, or two to reect no access, only read

(retrieve), or read and write (update) of the attributes. The values can be

changed in case it is necessary.

After multiplying the above matrices the resulted TAUM has the following

values:

at1
1;1 at2

1;2 at3
1;3 at4

2;1 at5
2;2 at6

3;1 at7
3;2 at8

3;3

tr1 50 50 25 50 25 0 0 0
tr2 60 60 30 0 0 0 0 0
tr3 0 0 0 240 240 10 0 0
tr4 0 8 0 210 210 0 0 0
tr5 10 0 0 0 0 15 25 20
tr6 0 20 0 10 0 30 50 40

In this TAUM matrix we can see that dominant values are presented in such a

way that they should give the following grouping of the attributes:

{ at1
1;1, at

2

1;2 and at3
1;3

{ at4
2;1 and at5

2;2.

{ at6
3;1, at

7

3;2 and at8
3;3.

45

(II)

Access Cost
Remote Attribute
Relevant

0

Local Attribute
Irrelevant

Access Cost

(I)

1

Number of Partitions

2 3 4 5 6 7 8

2000

4000

6000

8000

10000

12000

2000

4000

6000

8000

10000

12000

Figure 6.1. Behavior of the components of PEOO for an example

Indeed, the result of the program, using the criterion of minimum, gave this

fragmentation as the optimal one with the minimum cost equal to 5307.

The local, remote, and total costs for the optimistic approach with the minimum

values and the corresponding partitioning schemes are given below. The results

for minimum cost of each component and total cost are plotted in �g. 6.1 and

6.2.

NFrag LocCost RemCost PEOO Partition

1 165028 0 165028 (12345678)
2 10408 2862 13270 (123678)(45)
3 1966 3341 5307 (123)(45)(678)
4 863 4950 5813 (12)(3)(45)678)
5 676 6075 6751 (12)(3)(45)(6)(78)
6 613 8075 8688 (12)(3)(45)(6)(7)(8)
7 363 13800 14163 (1)(2)(3)(45)(6)(7)(8)
8 0 116175 116175 (1)(2)(3)(4)(5)(6)(7)(8)

The behavior of PEOO corresponds to the previous supposition: the minimum

value of local cost is equal to zero for one fragment and maximum for eight

46

(II)

Access Cost
Remote Attribute
Relevant

0

Local Attribute
Irrelevant

Access Cost

(I)

1

Number of Partitions

2 3 4 5 6 7 8

2000

4000

6000

8000

10000

12000

2000

4000

6000

8000

10000

12000

Figure 6.2. Behavior of PEOO for an example

fragments; the remote cost in these extremes has opposite values of maximum

and minimum (equal to zero) respectively.

The additional experiment was run when the methods access attributes of their

own class and their superclasses for the same TMUM. The values of MAUM

were as follows:

at1
1;1 at2

1;2 at3
1;3 at4

2;1 at5
2;2 at6

3;1 at7
3;2 at8

3;3

m1

1;1 2 0 0 0 0 0 0 0
m2

1;2 0 2 0 0 0 0 0 0
m3

1;3 0 0 1 0 0 0 0 0
m4

2;1 1 0 1 1 0 0 0 0
m5

2;2 0 2 0 0 2 0 0 0
m6

2;3 0 0 1 2 1 0 0 0
m7

3;1 1 1 0 0 0 2 1 0
m8

3;2 0 1 0 0 0 1 2 0
m9

3;3 0 0 2 0 0 0 1 2
m10

3;4 2 0 0 0 0 0 1 2

The obtained values for TAUM are presented as follows:

47

at1
1;1 at2

1;2 at3
1;3 at4

2;1 at5
2;2 at6

3;1 at7
3;2 at8

3;3

tr1 50 50 50 50 25 0 0 0
tr2 60 60 30 0 0 0 0 0
tr3 80 160 160 240 240 0 0 0
tr4 70 140 140 210 210 0 0 0
tr5 25 10 10 0 0 15 25 20
tr6 40 40 30 10 0 30 50 40

In this example the optimal con�guration was: (1678)(2345) with the minimum

total cost equal to 35068.

� Example 2 - Inuence of dominant value of transaction frequency.

The partitioning scheme is sensitive to the presence of the signi�cant values of

the frequency of accessing method or attribute. For example, if we modify in

the �rst example only one value for m6

2;3 and at4
2;1 in MMUM such as

at1
1;1 at2

1;2 at3
1;3 at4

2;1 at5
2;2 at6

3;1 at7
3;2 at8

3;3

m1

1;1 2 0 0 0 0 0 0 0
m2

1;2 0 2 0 0 0 0 0 0
m3

1;3 0 0 1 0 0 0 0 0
m4

2;1 0 0 0 1 0 0 0 0
m5

2;2 0 0 0 0 2 0 0 0
m6

2;3 0 0 0 0 1 0 0 0
m7

3;1 0 0 0 0 0 2 1 0
m8

3;2 0 0 0 0 0 1 2 0
m9

3;3 0 0 0 0 0 0 1 2
m10

3;4 0 0 0 0 0 0 1 2

leaving the matrix TMUM without changes, we will obtain TAUM with the

corresponding values:

48

at1
1;1 at2

1;2 at3
1;3 at4

2;1 at5
2;2 at6

3;1 at7
3;2 at8

3;3

tr1 50 50 25 0 25 0 0 0
tr2 60 60 30 0 0 0 0 0
tr3 0 0 0 80 240 0 0 0
tr4 0 0 0 0 210 0 0 0
tr5 10 0 0 0 0 5 25 20
tr6 0 20 0 10 0 30 50 40

This example gives the best fragmentation (123)(4)(5)(678), clearly putting

the attribute at5
2;2 in a di�erent fragment than attributes at4

2;1. This result

was expected because the high frequency of accessing the attribute at5
2;2 will

increase the local cost (the part that corresponds to the accessing of relevant

attributes with di�erent frequencies) if these three attributes were together.

This value changes from 1603 (with the total cost equal to 13794) for fragmen-

tation (12)(3)(45)(678) to 24566 (with the total cost equal to 25094) for the

fragmentation (123)(45)(678).

� Example 3 - Signi�cant values of accessing the methods by transaction dis-

tributed more uniformly along the TMUM matrix.

The other presented case uses values of frequencies of accessing methods by

transaction distributed along the TMUM matrix without a clear clustering of

signi�cant and non-signi�cant values as was done in the �rst example.

m1

1;1 m2

1;2 m3

1;3 m4

2;1 m5

2;2 m6

2;3 m7

3;1 m8

3;2 m9

3;3 m10

3;4

tr1 50 0 0 0 50 0 0 50 0 0
tr2 0 30 30 0 0 0 30 0 0 0
tr3 70 0 0 0 70 0 0 70 0 0
tr4 0 50 50 0 0 0 50 0 0 0
tr5 40 0 0 0 40 0 0 40 0 0
tr6 0 0 0 10 0 10 0 0 10 10

Moreover, the MAUM was changed making one of the methods accessing in a

dominant manner only one of the attributes. These changes were done to �rst

49

analyze theoretically the expected result and then prove it against the program

result.

The MAUM is the following:

at1
1;1 at2

1;2 at3
1;3 at4

2;1 at5
2;2 at6

3;1 at7
3;2 at8

3;3

m1

1;1 2 0 0 0 0 0 0 0
m2

1;2 0 2 0 0 0 0 0 0
m3

1;3 0 0 2 0 0 0 0 0
m4

2;1 0 0 0 2 0 0 0 0
m5

2;2 0 0 0 0 2 0 0 0
m6

2;3 0 0 0 0 1 0 0 0
m7

3;1 0 0 0 0 0 0 2 0
m8

3;2 0 0 0 0 0 0 0 2
m9

3;3 0 0 0 0 0 2 0 0
m10

3;4 0 0 0 0 0 0 0 1

Analyzing these values, we can assume that the following methods have domi-

nant access to the attributes:

method attribute

m1

1;1 at1
1;1

m2

1;2 at2
1;2

m3

1;3 at3
1;3

m4

2;1 at4
2;1

m5

2;2 at5
2;2

m7

3;1 at7
3;2

m8

3;2 at8
3;3

m9

3;3 at6
3;1

The methods m6

2;3 and m10

3;4 do not have signi�cant accesses to any of the at-

tributes.

Theoretically, based on the values presented in TMUM and MAUM we can

suppose:

{ Transactions tr1, tr3 and tr5 have dominant accesses to the methods m1

1;1,

m5

2;2 and m8

3;2. Considering the dominant accesses that these methods

have, one of the fragments should include attributes at1
1;1, at

5

2;2 and at8
3;3.

50

{ Transactions tr2 and tr4 access the methods m2

1;2, m
3

1;3 and m7

3;2 with

higher frequencies. Based on this information and information about the

attributes accessed by these methods we can expect that attributes at2
1;2,

at3
1;3 and at7

3;2 will be together in one fragment.

{ Transaction tr6 calls methods m4

2;1 and m9

3;3 putting the attributes at4
2;1

and at6
3;1 in one fragment. This transaction also accessed other methods.

However, these other methods do not access any of the attributes in a

dominant way.

After this analysis, the expected optimal partitioning is: (158)(237)(46)

Indeed, this result was obtained after running the program and the minimum

PEOO values is equal to 201. The calculated values of TAUM were as follows:

at1
1;1 at2

1;2 at3
1;3 at4

2;1 at5
2;2 at6

3;1 at7
3;2 at8

3;3

tr1 100 0 0 0 100 0 0 100
tr2 0 60 60 0 0 0 60 0
tr3 140 0 0 0 140 0 0 140
tr4 0 100 100 0 0 0 100 0
tr5 80 0 0 0 80 8 0 80
tr6 0 0 0 20 0 20 0 10

� Example 4 - Distribution of frequencies of accessing the methods by transactions

with predictable distribution of two attributes per fragment.

In this case the used TMUM and MMUM have the following values:

m1

1;1 m2

1;2 m3

1;3 m4

2;1 m5

2;2 m6

2;3 m7

3;1 m8

3;2 m9

3;3 m10

3;4

tr1 15 15 0 0 0 0 0 0 0 0
tr2 25 25 0 0 0 0 0 0 0 0
tr3 0 0 60 60 0 0 0 0 0 0
tr4 0 0 40 40 0 0 0 0 0 0
tr5 0 0 0 0 50 0 50 0 0 0
tr6 0 0 0 0 0 0 0 45 0 45

51

at1
1;1 at2

1;2 at3
1;3 at4

2;1 at5
2;2 at6

3;1 at7
3;2 at8

3;3

m1

1;1 2 1 0 0 0 0 0 0
m2

1;2 0 2 0 0 0 0 0 0
m3

1;3 0 0 2 0 0 0 0 0
m4

2;1 0 0 0 2 0 0 0 0
m5

2;2 0 0 0 0 2 0 0 0
m6

2;3 0 0 0 1 1 0 0 0
m7

3;1 0 0 0 0 0 2 1 0
m8

3;2 0 0 0 0 0 1 2 0
m9

3;3 0 0 0 0 0 0 1 1
m10

3;4 0 0 0 0 0 0 0 2

The calculated values of TAUM shows the clustering of dominant values in

groups of two. They are presented as follows:

at1
1;1 at2

1;2 at3
1;3 at4

2;1 at5
2;2 at6

3;1 at7
3;2 at8

3;3

tr1 30 45 0 0 0 0 0 0
tr2 50 75 0 0 0 0 0 0
tr3 0 0 120 120 0 0 0 0
tr4 0 0 80 80 0 0 0 0
tr5 0 0 0 0 100 100 50 0
tr6 0 0 0 0 0 45 90 90

The optimal con�guration is (12)(34)(56)(78) with the minimumvalue of PEOO

equal to 4951.

� Example 5 - Generic cases: We consider two generic cases when each fragment

contains one attribute and when all attributes belong to the same fragment.

For the �rst case, the calculated TAUM matrix that serves as a base for PEOO

should have one dominant value for each attribute. In the second case, these

values should be very similar for all transaction and all attributes. For both

generic cases the MAUM is the same as presented in the previous case.

1. The optimal fragmentation scheme giving one attribute per fragment

52

The values of TMUM, MMUM, and calculated TAUM are the following:

m1

1;1 m2

1;2 m3

1;3 m4

2;1 m5

2;2 m6

2;3 m7

3;1 m8

3;2 m9

3;3 m10

3;4

tr1 100 100 0 0 0 0 0 0 0 0
tr2 0 0 10 0 0 0 0 0 0 0
tr3 0 0 0 300 0 0 0 0 0 0
tr4 0 0 0 0 50 50 0 0 0 0
tr5 0 0 0 0 0 0 70 70 70 0
tr6 0 0 0 0 0 0 0 0 0 80

at1
1;1 at2

1;2 at3
1;3 at4

2;1 at5
2;2 at6

3;1 at7
3;2 at8

3;3

m1

1;1 2 0 0 0 0 0 0 0
m2

1;2 1 0 1 0 0 0 0 0
m3

1;3 0 2 0 0 0 0 0 0
m4

2;1 0 0 0 2 0 0 0 0
m5

2;2 0 0 0 0 1 0 0 0
m6

2;3 0 0 0 0 1 0 0 0
m7

3;1 0 0 0 0 0 1 0 1
m8

3;2 0 0 0 0 0 2 0 0
m9

3;3 0 0 0 0 0 0 1 0
m10

3;4 0 0 0 0 0 0 0 2

at1
1;1 at2

1;2 at3
1;3 at4

2;1 at5
2;2 at6

3;1 at7
3;2 at8

3;3

tr1 300 0 100 0 0 0 0 0
tr2 0 20 0 0 0 0 0 0
tr3 0 0 0 600 0 0 0 0
tr4 0 0 0 0 100 0 0 0
tr5 0 0 0 0 0 210 70 70
tr6 0 0 0 0 0 0 0 160

Here, the optimal fragmentation (1)(2)(3)(4)(5)(6)(7)(8) give the mini-

mum value of 19800 with the behavior of PEOO function described before.

2. The optimal fragmentation putting all attributes in one fragment

53

m1

1;1 m2

1;2 m3

1;3 m4

2;1 m5

2;2 m6

2;3 m7

3;1 m8

3;2 m9

3;3 m10

3;4

tr1 10 10 10 10 0 10 10 0 10 0
tr2 20 20 20 0 20 0 20 20 0 20
tr3 0 30 0 30 0 30 30 30 0 30
tr4 50 50 50 0 50 50 50 50 0 50
tr5 70 70 70 0 70 0 70 70 70 70
tr6 0 80 80 80 0 80 0 80 80 80

The values of MAUM are:

at1
1;1 at2

1;2 at3
1;3 at4

2;1 at5
2;2 at6

3;1 at7
3;2 at8

3;3

m1

1;1 2 0 0 0 0 0 0 0
m2

1;2 0 2 0 0 0 0 0 0
m3

1;3 0 0 1 0 0 0 0 0
m4

2;1 0 0 0 2 0 0 0 0
m5

2;2 0 0 0 0 1 0 0 0
m6

2;3 0 0 0 0 1 0 0 0
m7

3;1 0 0 0 0 0 0 2 0
m8

3;2 0 0 0 0 0 2 0 0
m9

3;3 0 0 0 0 0 0 1 0
m10

3;4 0 0 0 0 0 0 0 2

The calculated values of TAUM are:

at1
1;1 at2

1;2 at3
1;3 at4

2;1 at5
2;2 at6

3;1 at7
3;2 at8

3;3

tr1 20 20 10 20 10 0 30 0
tr2 40 40 20 0 20 40 40 40
tr3 0 60 0 60 30 60 60 60
tr4 100 100 50 0 100 100 100 100
tr5 140 140 70 0 70 140 210 140
tr6 0 160 80 160 80 160 80 160

The optimal con�guration in this case is (12345678) with the minimum

values of PEOO equal to 70960.

6.2.2 Complex attributes and complex methods

.

54

The examples presented in this part will show that our hypothesis about eliminat-

ing the complex attribute from the analysis can be used in a fragmentation scheme,

allowing us to decrease the number of attributes in the execution of the program,

thus decreasing the execution time, in our case, of exhaustive search. In the real case

when many complex attributes can be used, the improvement will be greater. More-

over, if some heuristics are developed in the future, this fact can also have inuence

on the execution time.

We present three cases:

1. The complex attribute at3
2;1 is treated as a usual attribute. The MAUM reects

the frequencies of accessing this attribute by methods of the Class2. Calls to

the methods of the class that this attribute is pointing to are also reected in

MMUM as a case of nested method calls.

2. The complex attribute is presented in MAUM, however, the frequencies of ac-

cessing this attribute by methods m4

2;1 and m5

2;2 are eliminated (putting values

of zero). This allows us to consider as feasible the possibility of ignoring this

attribute. The idea behind this is that because this attribute does not represent

any physical storage, the access to it can be ignored.

3. The complex attribute is eliminated from the analysis, which gives only seven

attributes to consider instead of eight. All the possible combinations with the

number of fragments varying from one to seven are analyzed.

In all the three cases the following TMUM and MMUM matrices are used:

m1

1;1 m2

1;2 m3

1;3 m4

2;1 m5

2;2 m6

2;3 m7

3;1 m8

3;2 m9

4;1 m10

4;2 m11

4;3

tr1 0 25 0 25 0 0 0 0 25 25 0
tr2 50 0 0 50 0 50 0 0 0 50 0
tr3 0 15 15 0 0 0 15 15 0 0 15
tr4 0 0 0 0 35 35 35 0 0 35 35
tr5 25 25 0 0 0 0 25 0 0 25 0

55

m1

1;1 m2

1;2 m3

1;3 m4

2;1 m5

2;2 m6

2;3 m7

3;1 m8

3;2 m9

4;1 m10

4;2 m11

4;3

m1

1;1 1 0 0 0 0 0 0 0 0 0 0
m2

1;2 1 1 0 0 0 0 0 0 0 0 0
m3

1;3 1 1 1 0 0 0 0 0 0 0 0
m4

2;1 0 0 0 1 0 0 0 0 1 0 1
m5

2;2 0 0 0 0 1 0 0 0 0 1 0
m6

2;3 0 0 0 1 0 1 0 0 0 0 0
m7

3;1 0 1 0 1 0 0 1 0 0 0 0
m8

3;2 0 0 0 0 0 0 0 1 0 0 0
m9

4;1 0 0 0 0 0 0 1 0 1 0 0
m10

4;2 0 0 0 0 0 0 0 0 0 1 0
m11

4;3 0 0 0 0 0 0 0 0 0 1 1

It is important to emphasize the existence of the values in MMUM in the positions

(4,9), (4,11) and (5,10) that reect the nested calls between the following methods:

1. m4

2:1 and m9

4;1

2. m4

2;1 and m11

4;3

3. m5

2;2 and m10

4;2

There are also presented other nested method calls, such as: m7

3;1 and m2

1;2, m
9

4;1

and m7

3;1, and so forth.

The MAUM is di�erent in all cases and in the �rst one is presented as:

at1
1;1 at2

1;2 at3
2;1 at4

2;2 at5
3;1 at6

3;2 at7
4;1 at8

4;2

m1

1;1 2 1 0 0 0 0 0 0
m2

1;2 0 2 0 0 0 0 0 0
m3

1;3 1 1 0 0 0 0 0 0
m4

2;1 0 0 2 1 0 0 0 0
m5

2;2 0 0 1 2 0 0 0 0
m6

2;3 0 0 0 1 0 0 0 0
m7

3;1 0 0 0 0 2 0 0 0
m8

3;2 0 0 0 0 1 1 0 0
m9

4;1 0 0 0 0 0 0 1 0
m10

4;2 0 0 0 0 0 0 0 2
m11

4;3 0 0 0 0 0 0 2 0

56

Notice the presence of the frequencies in the positions (4,3) and (5,1) that reect

the use of attribute at3
2;1 in methods m4

2;1 and m5

2;2.

In the second case this matrix has the following values:

at1
1;1 at2

1;2 at3
2;1 at4

2;2 at5
3;1 at6

3;2 at7
4;1 at8

4;2

m1

1;1 2 1 0 0 0 0 0 0
m2

1;2 0 2 0 0 0 0 0 0
m3

1;3 1 1 0 0 0 0 0 0
m4

2;1 0 0 0 1 0 0 0 0
m5

2;2 0 0 0 2 0 0 0 0
m6

2;3 0 0 0 1 0 0 0 0
m7

3;1 0 0 0 0 2 0 0 0
m8

3;2 0 0 0 0 1 1 0 0
m9

4;1 0 0 0 0 0 0 1 0
m10

4;2 0 0 0 0 0 0 0 2
m11

4;3 0 0 0 0 0 0 2 0

Here, two changes were done in the positions (4,3) and (5,3) resulting column

with attribute at3
2;1 with only values of zero.

For the third case, after the elimination of the attribute at3
2;1, the MAUM uses

the following values:

at1
1;1 at2

1;2 at4
2;2 at5

3;1 at6
3;2 at7

4;1 at8
4;2

m1

1;1 2 1 0 0 0 0 0
m2

1;2 0 2 0 0 0 0 0
m3

1;3 1 1 0 0 0 0 0
m4

2;1 0 0 1 0 0 0 0
m5

2;2 0 0 2 0 0 0 0
m6

2;3 0 0 1 0 0 0 0
m7

3;1 0 0 0 2 0 0 0
m8

3;2 0 0 0 1 1 0 0
m9

4;1 0 0 0 0 0 1 0
m10

4;2 0 0 0 0 0 0 2
m11

4;3 0 0 0 0 0 2 0

It is interesting to analyze the obtained TAUMvalues after multiplication (TMUM,

MMUM and MAUM) in these three cases:

For the �rst case this matrix has the following values:

57

at1
1;1 at2

1;2 at3
2;1 at4

2;2 at5
3;1 at6

3;2 at7
4;1 at8

4;2

tr1 50 75 50 25 50 0 100 50
tr2 100 50 200 150 0 0 150 100
tr3 75 135 30 15 45 15 30 30
tr4 0 70 175 175 70 0 70 210
tr5 100 150 50 25 50 0 0 50

In the second case with values of zero in the third column of MAUM, the TAUM

values are exactly the same as in the previous example, except for the third column

in which these values are also equal to zero:

at1
1;1 at2

1;2 at3
2;1 at4

2;2 at5
3;1 at6

3;2 at7
4;1 at8

4;2

tr1 50 75 0 25 50 0 100 50
tr2 100 50 0 150 0 0 150 100
tr3 75 135 0 15 45 15 30 30
tr4 0 70 0 175 70 0 70 210
tr5 100 150 0 25 50 0 0 50

In the third case, with the elimination of the complex attributes, the calculated

MAUM has the same values in all positions as in both matrices presented above,

except the third column from the previous cases. Here this column does not exist:

at1
1;1 at2

1;2 at4
2;2 at5

3;1 at6
3;2 at7

4;1 at8
4;2

tr1 50 75 25 50 0 100 50
tr2 100 50 150 0 0 150 100
tr3 75 135 15 45 15 30 30
tr4 0 70 175 70 0 70 210
tr5 100 150 25 50 0 0 50

The obtained optimal fragmentation schemes and PEOO values are as follows:

Case Fragmentation MinPEOO

1 (12) (3478) (5) (6) 70314
2 (12) (36) (478) (5) 62998

(12) (3) (478) (5) (6) 62998
3 (12) (478) (5) (6) 62998

58

6.2.3 Complex attributes and simple methods

To further con�rm our hypothesis of eliminating complex attributes, we prepare

one more experiment, where complex methods are not presented, except the ones that

reect calls through the complex attribute. For the exact same values of TMUM, pre-

sented in the previous case of complex attributes and complex methods, the following

MMUM was developed:

m1

1;1 m2

1;2 m3

1;3 m4

2;1 m5

2;2 m6

2;3 m7

3;1 m8

3;2 m9

4;1 m10

4;2 m11

4;3

m1

1;1 1 0 0 0 0 0 0 0 0 0 0
m2

1;2 0 1 0 0 0 0 0 0 0 0 0
m3

1;3 0 0 1 0 0 0 0 0 0 0 0
m4

2;1 0 0 0 1 0 0 0 0 1 0 1
m5

2;2 0 0 0 0 1 0 0 0 0 1 0
m6

2;3 0 0 0 0 0 1 0 0 0 0 0
m7

3;1 0 0 0 0 0 0 1 0 0 0 0
m8

3;2 0 0 0 0 0 0 0 1 0 0 0
m9

4;1 0 0 0 0 0 0 0 0 1 0 0
m10

4;2 0 0 0 0 0 0 0 0 0 1 0
m11

4;3 0 0 0 0 0 0 0 0 0 0 1

This matrix is presented only to reect the access to the attributes of the Class4

through the complex attribute of Class2. We can recall from chapter 4 that this case

of complex attributes and simple methods, after applying our hypothesis, converts

to the case of simple attributes and complex methods.

The TMUM presented in the example before along with the above values of

MMUM were used. The values of MAUM were di�erent for both cases and are

presented below:

1. All 8 attributes are presented and MAUM has the following values:

59

at1
1;1 at2

1;2 at3
2;1 at4

2;2 at5
3;1 at6

3;2 at7
4;1 at8

4;2

m1

1;1 2 1 0 0 0 0 0 0
m2

1;2 0 2 0 0 0 0 0 0
m3

1;3 1 1 0 0 0 0 0 0
m4

2;1 0 0 2 1 0 0 0 0
m5

2;2 0 0 1 2 0 0 0 0
m6

2;3 0 0 0 1 0 0 0 0
m7

3;1 0 0 0 0 2 0 0 0
m8

3;2 0 0 0 0 1 1 0 0
m9

4;1 0 0 0 0 0 0 1 0
m10

4;2 0 0 0 0 0 0 0 2
m11

4;3 0 0 0 0 0 0 2 0

2. Seven attributes are used (complex attribute is eliminated) with the following

values:

at1
1;1 at2

1;2 at4
2;2 at5

3;1 at6
3;2 at7

4;1 at8
4;2

m1

1;1 2 1 0 0 0 0 0
m2

1;2 0 2 0 0 0 0 0
m3

1;3 1 1 0 0 0 0 0
m4

2;1 0 0 1 0 0 0 0
m5

2;2 0 0 2 0 0 0 0
m6

2;3 0 0 1 0 0 0 0
m7

3;1 0 0 0 2 0 0 0
m8

3;2 0 0 0 1 1 0 0
m9

4;1 0 0 0 0 0 1 0
m10

4;2 0 0 0 0 0 0 2
m11

4;3 0 0 0 0 0 2 0

In both cases the calculated TAUMdi�ers only in the position of the third column,

where in the second case this column is eliminated.

These values for the �rst example are as follows:

at1
1;1 at2

1;2 at3
2;1 at4

2;2 at5
3;1 at6

3;2 at7
4;1 at8

4;2

tr1 0 50 50 25 0 0 100 50
tr2 100 50 100 100 0 0 150 100
tr3 15 45 0 0 45 15 30 0
tr4 0 0 35 105 70 0 70 140
tr5 50 75 0 0 50 0 0 50

60

(II)

Access Cost
Remote Attribute
Relevant

Local Attribute
Irrelevant

Access Cost

(I)

1

Number of Partitions

2 3 4 5 6 7 8

30000

40000

50000

60000

70000

80000

40000

30000

50000

60000

70000

80000

Case 1 Case 2

Figure 6.3. Behavior of PEOO for both examples

And, if we eliminate the third column, the remaining values represent the TAUM

for the second example.

The minimum total cost with corresponding fragmentation are presented below:

Case Fragmentation MinPEOO

1 (125) (3478) (6) 36349
2 (125) (478) (6) 32412

The behavior of PEOO for both examples are plotted in �g 6.3.

6.2.4 Di�erent levels of granularity

In this section we will present the fragmentation schemes obtained after applying

our PEOO to the di�erent levels of hierarchical structure of classes, which are pre-

sented at the beginning of this chapter. Three experiments were conducted for the

following granularity levels:

� Granularity level equal to two for the both root classes. In this case all ten

attributes were considered to be fragmented.

61

� Granularity level equal to one for both root classes. Here the attributes of

Class2, Class4 and Class5 should be seen as indivisible entities.

� Granularity level equal to two for the root Class1, and zero for the root Class3.

Here, all the attributes of the Class3, Class4 and Class5 were considered as

indivisible entities.

For the granularity level equal to two for both root classes the corresponding

TMUM, MMAUM and MAUM were used:

m1

1;1 m2

1;2 m3

2;1 m4

2;2 m5

3;1 m6

3;2 m7

4;1 m8

4;2 m9

5;1 m10

5;2

tr1 15 0 15 0 0 15 15 0 0 15
tr2 0 7 0 7 0 0 7 0 0 7
tr3 12 0 0 12 12 0 0 12 0 12
tr4 0 9 9 0 9 0 9 0 9 0
tr5 0 0 0 10 0 10 10 10 10 0

m1

1;1 m2

1;2 m3

2;1 m4

2;2 m5

3;1 m6

3;2 m7

4;1 m8

4;2 m9

5;1 m10

5;2

m1

1;1 1 0 0 0 0 0 0 0 0 0
m2

1;2 1 1 0 0 0 0 0 0 0 0
m3

2;1 0 1 1 0 2 0 0 0 0 0
m4

2;2 1 0 0 1 0 1 0 0 0 0
m5

3;1 0 0 0 0 1 0 0 0 0 0
m6

3;1 0 0 0 0 0 1 0 0 0 0
m7

4;1 0 0 1 0 1 1 1 0 0 0
m8

4;2 0 0 0 2 0 1 0 1 0 0
m9

5;1 0 0 0 0 1 0 0 0 1 1
m10

5;2 0 0 0 0 1 1 0 0 0 1

62

at1
1;1 at2

1;2 at3
2;1 at4

2;2 at5
3;1 at6

3;2 at7
4;1 at8

4;2 at9
5;1 at10

5;2

m1

1;1 1 0 0 0 0 0 0 0 0 0
m2

1;2 1 2 0 0 0 0 0 0 0 0
m3

2;1 0 0 0 2 0 0 0 0 0 0
m4

2;2 0 1 0 1 0 0 0 0 0 0
m5

3;1 0 0 0 0 2 1 0 0 0 0
m6

3;2 0 0 0 0 0 1 0 0 0 0
m7

4;1 0 0 0 0 1 0 0 1 0 0
m8

4;2 0 0 0 0 0 1 0 2 0 0
m9

5;1 0 0 0 0 1 1 0 0 1 2
m10

5;2 0 0 0 0 0 0 0 0 2 1

Notice that the frequencies of accessing complex attributes are equal to zero for

the reasons explained before (these attributes do not represent any access cost to

physical storage).

The calculated values of TAUM were as follows:

at1
1;1 at2

1;2 at3
2;1 at4

2;2 at5
3;1 at6

3;2 at7
4;1 at8

4;2 at9
5;1 at10

5;2

tr1 30 30 0 60 135 105 0 15 30 15
tr2 21 21 0 21 35 35 0 7 14 7
tr3 24 36 0 36 48 72 0 24 24 12
tr4 27 36 0 36 108 63 0 9 27 27
tr5 10 30 0 30 30 60 0 20 30 30

After checking the 115975 possible combinations of ten attributes, we obtain the

following optimal fragmentation schemes: (137)(2456)(8)(9)(10), (13)2456)(8)(9)(10),

(17)(2456)(3)(8)(9)(10), and (1)(2456)(3)(7)(8)(9)(10) all with the same total mini-

mum cost equal to 21152.

The same result ((1)(2456)(8)(9)(10)) was obtained after eliminating fromMAUM

both complex attributes and running the program with only eight attributes and 4140

cases.

For the second example when the granularity level was equal to one for both

root classes the TMUM, MUMUM and MAUM should be recalculated to reect the

indivisibility of some group of attributes. In our case we will have:

63

m1

1;1 m2

1;2 m5

3;1 m6

3;2 M2 M4 M5

tr1 15 0 0 15 15 15 15
tr2 0 7 0 0 7 7 7
tr3 12 0 12 0 12 12 12
tr4 0 9 9 0 9 9 9
tr5 0 0 0 10 10 20 10

Here, the values of the position corresponding to columnsMi represent the sum of

the frequencies of accessing methods that belong to the speci�ed group. For example,

the value equal to twenty in the position (5,6) is the sum of the values ten and ten

from the positions (5,7) and (5,8) respectively of the TMUM from the �rst example

(the methods m7

4;1 and m8

4;2 belong to the group M4).

In a similar way the values of MMUM were recalculated.

m1

1;1 m2

1;2 m5

3;1 m6

3;2 M2 M4 M5

m1

1;1 1 0 0 0 0 0 0
m2

1;2 1 1 0 0 0 0 0
m5

3;1 0 0 1 0 0 0 0
m6

3;2 0 0 0 1 0 0 0
M2 1 1 2 1 1 0 0
M4 0 0 1 2 3 1 0
M5 0 0 2 1 0 0 2

It is important to notice that if there are no calls between the methods that

belong to the same group, the value in the diagonal will be equal to one. In the

other case, if these calls exist, the value in the diagonal represents the sum of the

frequencies of the methods that belong to the same group and call each other. In

our example, in the last position (7,7) the value is equal to two, because from the

previous example we can see that the method m9

5;1 calls the method m10

5;2 and that

both of these methods belong to the same group M5. Other values are calculated

according to the explanation given in chapter 4 for the case of simple attributes and

simple methods. For example, the value of three in the position (6,5) represents the

64

sum of the frequencies of the calls of the methods m7

4;1 and m8

4;2 to the methods m3

2;1

and m4

2;2.

The recalculated values of MAUM according to the existing group are the follow-

ing:

at1
1;1 at2

1;2 at5
3;1 at6

3;2 AT2 AT4 AT5
m1

1;1 1 0 0 0 0 0 0
m2

1;2 1 2 0 0 0 0 0
m5

3;1 0 0 2 1 0 0 0
m6

3;2 0 0 0 1 0 0 0
M2 0 1 0 0 3 0 0
M4 0 0 1 1 0 3 0
M5 0 0 1 1 0 0 6

After matrix multiplication the values of TAUM are as follows:

at1
1;1 at2

1;2 at5
3;1 at6

3;2 AT2 AT4 AT5
tr1 35 90 195 195 180 45 180
tr2 28 56 91 84 84 21 84
tr3 36 72 180 156 144 36 144
tr4 36 72 135 117 108 27 108
tr5 20 90 160 170 210 60 120

The optimal fragmentation scheme is: (1)(23456910)(78) with the total minimum

cost of 38885.

For the last examples with the granularity level equal to two for the root Class1

and zero for the root Class3 the corresponding matrices are used:

TMUM:

m1

1;1 m2

1;2 m3

2;1 m4

2;2 M3

tr1 15 0 15 0 45
tr2 0 7 0 7 14
tr3 12 0 0 12 36
tr4 0 9 9 0 27
tr5 0 0 0 10 40

MMUM:

65

m1

1;1 m2

1;2 m3

2;1 m4

2;2 M3

m1

1;1 1 0 0 0 0
m2

1;2 1 1 0 0 0
m3

2;1 0 1 1 0 2
m4

2;2 1 0 0 1 1
M3 0 0 1 2 13

MAUM:

at1
1;1 at2

1;2 at3
2;1 at4

2;2 AT3
m1

1;1 1 0 0 0 0
m2

1;2 1 2 0 0 0
m3

2;1 0 0 0 2 0
m4

2;2 0 1 0 1 0
M3 0 0 0 0 17

The calculated values of TAUM are:

at1
1;1 at2

1;2 at3
2;1 at4

2;2 AT3
tr1 30 120 0 210 10455
tr2 21 49 0 63 3213
tr3 24 84 0 156 8160
tr4 27 90 0 126 6273
tr5 10 90 0 170 9010

The optimal fragmentation scheme is: (13)(2)(4)(5678910) or (1)(2)(3)(4)(5678910)

with the total minimum cost of 159984.

6.3 Interpretation of the Results

The experiments presented for simple attributes and simple methods allow the

reader to see the expected results after program execution. Considering several cases,

such as clustering of frequencies of accessing methods by transactions, more uniform

distribution of the values, dominant frequency for one speci�c attribute, and so forth

di�erent fragmentation schemes are obtained. In each case the behavior of PEOO

was analyzed and was found similar to the PE behavior presented by Chakravarthy

et al. [4] and expected for PEOO.

66

The case of simple attributes and complex methods was not presented because its

theoretical analysis should be done based on the calculated values of TAUM and not

from the analysis of input matrices, TMUM and MAUM. This limits our theoretical

analysis to the case of simple attributes and simple methods with varying values in

TAUM such as those presented in the previous case.

The complex attribute and simple method, and complex attributes and complex

methods can be analyzed as a case of simple attributes and complex methods, after

eliminating the complex attribute from our consideration.

In the case of complex attributes and complex methods we consider three di�erent

examples as was described in the previous section.

In the �rst example the value of PEOO is higher because of the incorporated

frequencies of accessing complex attribute by corresponding methods. However, this

complex attributes in reality does not represent physical disk storage and it will be

presented as a pointer in main memory when the database is open ([23, 2, 22]).

Because our PEOO does not distinguish main memory attributes and all accesses

are treated as accesses to the disk, even the access to the main memory attribute

will be consider in the same way as access to the attributes presented in the disk,

increasing the minimum value of PEOO. Therefore, the values for complex attributes

should be equal to zero if we want to conserve the number of attributes considered

in the fragmentation analysis, or it should be eliminated from this analysis. In the

other case, when this attribute is treated the same way as simple attribute, the

fragmentation scheme and its cost can be unnecessarily a�ected. According to our

PEOO, the local cost reects the access cost to disk storage in units; this cannot be

applied in the same way to the complex attributes that are accessed from the main

memory.

67

The second and third examples give the same values of PEOO. In addition, the

complex attribute presented in the second case (attribute 3) is allocated with the

attribute 6 because in the TAUM the values presented in the third and sixth columns

are closer than others and give less penalty for the local cost if this attribute were

allocated to another fragment.

For example, if this matrix has the following values:

at1
1;1 at2

1;2 at3
2;1 at4

2;2 at5
3;1 at6

3;2 at7
4;1 at8

4;2

tr1 50 75 0 25 0 50 100 50
tr2 100 50 0 150 0 25 150 100
tr3 75 105 0 0 5 15 30 30
tr4 0 0 0 140 5 50 70 210
tr5 100 100 0 0 0 50 0 50

when the �fth column has the smallest frequencies, the minimum cost will be 49723

and the corresponding fragmentation to this cost is (12)(35)(478)(6). The same cost

was given for the other fragmentation scheme, where the complex attribute is located

in a separate fragment: (12)(3)(478)(5)(6).

For the the last example of the case of complex attributes and complex methods,

when the attribute 3 is not presented for the fragmentation algorithm, after the par-

titioning scheme is given, we can put this complex attribute in the same fragment

where attribute 6 is presented, Therefore, we obtain the same fragmentation scheme

with or without the presence of the complex attribute in development of the frag-

mentation scheme. Moreover, the third example use less combinations for �nding the

optimal fragmentation, and, as was mentioned before, in the case of the presence of

the several complex attributes, the decreasing number of considered attributes can

improve the execution time.

Following logic, we can assume that the complex attribute in reality can be allo-

cated in any fragment that it is needed. This is because it can be replicated without

any additional consequences of its updating.

68

There is one more case of complex attributes and simple methods with two ex-

amples, which were developed to con�rm our hypothesis. Also, these examples gave

the expected result. The explanation of increasing total cost for the case of eight

attributes in comparison to seven attributes along with the presence of the complex

attribute in the second fragment is exactly the same as presented in other examples

for the case of complex attributes and complex methods.

Therefore, our hypothesis of considering the case of complex attributes and simple

methods, and complex attributes and complex methods as a case of simple attributes

and complex methods, after the elimination of the complex attributes from fragmen-

tation algorithms, was demonstrated to be true.

The last part of the presented examples shows the feasibility of using di�erent

levels of granularity. This allows the designer to not partition the \critical" classes

that should not be fragmented.

CHAPTER 7
CONCLUSION AND POSSIBLE EXTENSION

7.1 Summary

The development of the Object-Oriented Partition Evaluator allows us to show

the possibility of generalization and adoption of some concepts from the relational

approach to the object-oriented approach. The concept of vertical partitioning, when

extended to the object-oriented database systems as presented in this thesis, opens

the possibility to "atten" the complicated hierarchical structure and present it in

the form of matrices, which are easy to manage for computational purposes. These

matrices represent the relationship between transactions, methods and attributes.

Moreover, the method-attribute usage matrix and the concepts of encapsulation and

information hiding adopted from programming languages gives the designer the pos-

sibility to distinguish between retrieve and update operations without special modi-

�cations to the presented algorithms.

Additionally, the presented hypothesis of eliminating the complex attributes from

the vertical fragmentation scheme reduces the complexity of the system presented for

the partitioning. These attributes are eliminated only for calculation purposes and

are put back again into the fragments where they are needed, after the fragmentation

scheme is obtained. They can be allocated in any site because for them there is

no cost of retrieving data from the disk. They can be replicated the same way as

methods without any additional cost of future updating.

69

70

Moreover, di�erent levels of granularity applied to the system allow the user to

put some additional restrictions regarding the partitioning of the classes, limiting it

to the desired hierarchy level.

The algorithm for vertical partitioning for complex attributes and complex meth-

ods represents the generalization of three other cases of simple attributes and simple

methods, simple attributes and complex methods, complex attributes and simple

methods. This means, one general program can be used for vertical partitioning and

each of the corresponding options can be seen as a special case of complex attributes

and complex methods.

The presented experiments con�rm the expected behavior of PEOO and show

feasibility of its use.

7.2 Future Work

Our approach assumes the presence of the statistics according to the frequen-

cies of transactions, methods and attributes along with the information concerning

the hierarchical structure of the system. In the case, in which other information is

available, this PEOO can be adopted to the speci�c situations.

� Fixed Partitioning Size.

If the number of desired fragments is known a priori, the program can be easily

modi�ed for this special situation.

� Local and Remote Processing Cost

In our PEOO unit cost was assumed for calculating the local and remote cost.

The local cost can depend on the access methods, but more importantly, the

communication cost between sites can be di�erent and can also be expressed as

a ratio with respect to the local cost. In a real-life situation, working with the

71

speci�ed network con�guration and knowing local access methods, additional

analysis need to be done to calculate the value of PEOO to reect actual costs.

� Replication of objects.

Our PEOO does not consider the replication of objects. However, if the repli-

cation of data is recommended in some speci�c system, it can be applied and

the corresponding data can be retried from the local node. In this case, our

PEOO remains the same. However, the total cost will not include the addi-

tional cost of updating replicas and additional analysis should be done if this

cost is considered important for system designers.

� Allocation

To make our PEOO more universal, the extension should be done to analyze

the allocation of the fragments to the speci�c sites.

� Physical object allocation in hierarchy level

The partitioning presented in this thesis can be done whatever physical storage

is chosen. According to Kim [20], there exists two ways of storing objects in

class hierarchy:

1. The object of subclasses are replicated in each of the levels of their super-

classes (�gure 7.1).

2. The object physically exist only on the level of the class that they belong

to (�gure 7.2).

Both of these approaches are used in di�erent object-oriented systems, such

as GALILEO, ADAPLEX (�rst approach) and ORION, GemStone (second

approach).

72

Name City Salary

ENGINEER

 Jimmy New York $2,899.00

 Kim Ocala $1,987.00

Name City Comission

SALESMAN

 Karen Dallas 15%

 Betty Pitsburg 14%

Jimmy New York

Kim Ocala

Karen Dallas

Betty Pitsburg

PERSON

Name City

Judy Gainesville

Figure 7.1. Replication of objects to their super-classes

Name City Salary

ENGINEER

 Jimmy New York $2,899.00

 Kim Ocala $1,987.00

Name City Comission

SALESMAN

 Karen Dallas 15%

 Betty Pitsburg 14%

PERSON

Name City

Judy Gainesville

Figure 7.2. Objects appear only once

It is obvious that the �rst approach allows fast access to the data from higher

classes. The price for this is the replication of data and the problems related to

it. In the second case, the problem of replication does not exist, but for accessing

the data we should follow the path from the root to the corresponding class.

The proposed fragmentation scheme does not depend on physical storage that

the system has implemented. However, because after fragmentation the op-

tion of replication of the objects presented on the level greater that granularity

level can be chosen, the �rst option of the physical storage could have highly

replicated objects and involves the known di�culties in managing replicas e�-

ciently.

73

� Object identity

The other problem related to the physical storage is the managing of the object

identity.

According to Kim [21] the logical, not physical OID should be used for the

fragmentation of the objects.

To manage OID, the OODB usually uses a global table of OIDs to ensure their

uniqueness [30]. This global table can be used to show the fragments of the

same object, having for each fragmented object a list of its new fragmented

OID.

� Presence of tuple, list and set

The use of these structures in OODB should not give any problem in expressing

their frequencies of accessing in the form of TMUM, MMUM and MAUM. If

this is the case, our PEOO can be applied without any changes to the system

where these structures are presented.

These aspects were not analyzed in a detailed fashion and should be proposed as

an extension to the presented work.

REFERENCES

[1] Atkinson, M., DeWitt, D., Maier, D., Bancilhon, F., Ditrich, K., and Zdonik,
S. The Object-Oriented Database System Manifesto in F.Bancilhon, C.Delobel,
and P.Kanellakis (eds.)Building an Object-Oriented Database System: The Story
of O2. Morgan Kaufman Publishers. San Mateo, CA, 1992.

[2] Carey, M.J., DeWitt, D.J., Franklin, M.J., Hall, N.E., McAuli�e, M.L.,
Naughton, J.F., Shuh, D.T., Solomon, C.K., Tan, C.K., Tsatalos, O. G., White,
S.J., and Zwilling, M.J. Sharing Up Persistent Application. Proceedings of the
ACM SIGMOD, International Conference on Management of Data, Vol.23,
No.2, New York, June 1994.

[3] Ceri, S., and Pelagatti, G. Distributed Databases: Principles and Systems.
McGraw-Hill, New York, 1984.

[4] Chakravarthy, S., Muthuraj, J., Varadarajan, R., and Navathe, S.B. An Objec-
tive Function for Vertically Partitioning Relations in Distributed Databases and
its Analysis. Distributed and Parallel Databases, Vol.2, No.2, New York, April
1993.

[5] Chu Pai-Cheng. A Transaction Oriented Approach to Attribute Partitioning.
Information System, Vol. 17, No.4, London, 1992.

[6] Chu, W., and Ieong, I.T. A Transaction-Based Approach to Vertical Partitioning
for Relational Database Systems. IEEE Transactions on Software Engineering,
Vol. 19, No. 8, New York, August 1993.

[7] Cornell, D., and Yu, P. A Vertical Partitioning Algorithm for Relational
Databases. Proceedings of the Third International Conference on Data Engi-
neering, Los Angeles, CA, February 1987.

[8] Date, C.J. An Introducation to Database Systems. Sixth edition, Addison-Wesley
Publishing Company, New York, 1995.

[9] Elmasri, R., and Navathe, S.B. Fundamentals of Database Systems. The Ben-
jamin/Cummings Publishing Company, New York, 1994.

[10] Ezeife, C.I., and Barker, K. A Comprehensive Approach to Horizontal Class
Fragmentation in a Distributed Object Based System. Technical report. Ad-
vanced Database Systems Laboratory, Department of Computer Science, Uni-
versity of Manitoba, Canada, October 1994.

[11] Golberg, A., and Robson,, D. Smalltalk-80: The Language and its Implementa-
tion. Addison-Wesley, Readings, MA, 1983.

74

75

[12] Gruber, O., and Amsaleg, L. Object Grouping in EOS in M.T.Ozsu, U.Dayal and
P.Valduriez (eds.)Distributed Object Management. Morgan Kaufman Publishers,
San Mateo, CA 1994.

[13] Hammer, M., and Niammir, B. A Heuristic Approach to Attributes Partitioning.
Proceedings ACM SIGMOD International Conference on Management of Data,
Boston, MA, 1979.

[14] Ho�er, J. A., and Severance, D. G. The Use of Cluster Analysis in Physi-
cal Database Design. Proc. First International Conference on Very Large Data
Bases, Framingham, MA, September 1975.

[15] Jain, A., and Dubes, R. Algorithms for Clustering Data. Prentice Hall Advanced
Reference Series, Englewood Cli�s, NJ, 1988.

[16] Kanellakis, P., Lecluse, Ch., and Richard, Ph. Introduction to Data Model in
F. Bancilhon, C. Delobel and P.Kanellakis (eds.) Building an object-oriented
database system. The story of O2. Morgan Kaufman Publishers, San Mateo,
CA, 1992.

[17] Karlapalem, K. and Li, O. Partitioning Schemes for Object Oriented Databases.
Technical report. University of Science and Technology, Department of Computer
Science Clear Water Bay, Kowloon, Hong Kong. August, 1994a.

[18] Karlapalem, K., Navathe, A.B., and Morsi, M. Issues in Distribution Design
in M.T.Ozsu, U.Dayal, and P.Valduriez (eds.) Distributed Object Management.
Morgan Kaufman Publishers, San Mateo, 1994b.

[19] Khosha�an, S. Object-Oriented Databases. John Wiley & Sons, Inc. New York,
1993.

[20] Kim, H. Algorithmic and Computational Aspects of OODB Schema Design in
R. Gupta, and E. Horowitz (eds.) Object-Oriented Database with Applications
to Case, Networks and VLSI CAD. Prentice Hall Series in Data and Knowledge
Base Systems, Englewood, NJ, 1991.

[21] Kim, W. Introduction to Object-Oriented Databases. MIT Press, Cambridge,
MA, 1990.

[22] Kim, W., Garza, J.F., Ballou, N., and Woelk, D. Architecture of the ORION
Next-Gereration Database Management System in M.Stonebraker (ed.) Readings
in Databse Systems. Morgan Kaufman Publishers, San Francisco, CA, 1994.

[23] Lamg, C., Landis, G., Orenstein, J., and Weireb, D. The ObjectStore Database
System in in M.Stonebraker (ed.) Readings in Databse Systems. Morgan Kauf-
man Publishers, San Francisco, CA, 1994.

[24] Lecuse, C., Richard, P., and Velez, M. An Object-Oriented Data Model in
F. Bancilhon, C. Delobel, and P.Kanellakis (eds.) Building an Object-Oriented
Database System. The story of O2. Morgan Kaufman Publishers, San Mateo,
CA, 1992.

[25] Lin, X., Orlowska, M., and Zhang, Y. A Graph Based Cluster Approach for
Vertical Partitioning in Database System. Data & Knowledge Engineering, Vol.
11, No.3, New York, October 1993.

76

[26] Masunaga, Y. Object Identity, Equality and Relational Concepts in W. Kim,
J.M. Nicolas and S. Nishio (eds.) Deductive and Object Oriented Databases.
North-Holland, Amsterdam, 1991.

[27] McCormick, W., Schweitzer, P., and White, T. Problem Decomposition and
Data Organization by a Clustering Technique. Operations Research, Vol. 20,
No.1, Whippany, NJ, September 1972.

[28] Navathe, S., Ceri, G., Wiederhold, G., and Dou, J. Vertical Partitioning Algo-
rithm for Database Design. ACM Transaction on Database System, Vol.9, No.4,
New York, December 1984.

[29] Navathe, S. and Ra, M. Vertical Partitioning for Database Design: A Graphical
Algorithm. ACM SIGMOD, Portland, OR, June 1989.

[30] �Ozsu, M.T., and Valduriez, P. Principles of Distributed Database System. Pren-
tice Hall, Englewood Cli�s, NJ, 1991.

[31] Pernul, G., Karlapalem, K., and Navathe, S.B. Relational Database Organiza-
tion Based on Views and Fragments. Proceedings of the Second International
Conference on Data and Expert Systems Applications, Los Angeles, CA, 1991.

[32] Stonebraker, M. Inclusion of New Types in Relational Data Base Systems in
M.Stonebraker (ed.) Readings in Databse Systems. Morgan Kaufman Publishers,
San Francisco, CA, 1994.

BIOGRAPHICAL SKETCH

Elzbieta Malinowski was born in Glogow, Poland. She received her Master of Sci-

ence in Engineering degree, with distinction, in 1982 from the Leningrad V.I.Ulyanov

(Lenin) Electrical Engineering Institute in the former Soviet Union.

Since 1985 she has been employed as a professor of computer science in the De-

partment of Computer and Information Science at the University of Costa Rica.

The fall of 1994 she joined the Department of Computer and Information Sciences

at the University of Florida in pursuit of her graduate studies. She will receive her

Master of Science degree in computer and information sciences from the University

of Florida, Gainesville, in August 1996. Her post-graduate plans are to continue

working at the University of Costa Rica.

Her research interests include distributed relational and object-oriented databases.

77

