

APROACHES FOR VALIDATING FREQUENT EPISODES BASED ON
PERIODICITY IN TIME-SERIES DATA

by

DHAWAL Y BHATIA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2005

ii

ACKNOWLEDGEMENTS

Firstly, I would like to express my deepest sincere gratitude to my advisor,

Sharma Chakravarthy, for his magnanimous patience, guidance and support through the

course of this research work. I would also like to thank Mohan Kumar and David

Levine for serving on my thesis committee and would like to acknowledge the support,

in part, by NSF grants (ITR 0121297, IIS-0326505, and EIA-0216500) for this research.

A special thanks to Raman, who spared his valuable time in discussing this

research and for maintaining a well-administered research environment. This research

would have been incomplete without the support extended by my fellow ITLABians:

Akshaya, Sunit, Ajay, Vamshi, Shravan, Vihang, Srihari, Nikhil, Vishesh, Hari, Laali

and Manu for maintaining high standards of professionalism and for making ITLAB the

perfect place to work in, filled with fun. A special thanks to Akshaya for being by my

side and helping me relieve stress levels during the entire tenure of graduation.

I would also like to thank Shilpa and Ankita, who were my colleagues at the

Indian Institute of Management, Ahmedabad (IIM-A), for a thorough review of this

thesis to improve its overall quality and readability.

My sincere thanks to my Uncle and Aunt, Ugersain and Usha Chopra, who

motivated and guided me in building the best strategy to achieve my key goals and

heartfelt aspirations.

iii

Last, but certainly not the least, thanks to my family: my parents, Yogendra and

Vimla, my elder brother Jayesh, my sister-in-law Komal and my nieces Simran and

Pooja; your love and confidence has made this possible and added more meaning to this

research and the degree.

November 4, 2005

iv

ABSTRACT

APPROACHES FOR VALIDATING FREQUENT EPISODES BASED ON
PERIODICITY IN TIME-SERIES DATA

Publication No. ______

Dhawal Y Bhatia, M.S.

The University of Texas at Arlington, 2005

Supervising Professor: Sharma Chakravarthy

There is ongoing research on sequence mining of time-series data. We study

Hybrid Apriori, an interval-based approach to episode discovery that deals with

different periodicities in time-series data. Our study identifies the anomaly in the

Hybrid Apriori by confirming the false positives in the frequent episodes discovered.

The anomaly is due to the folding phase of the algorithm, which combines periods in

order to compress data.

We propose a main memory based solution to distinguish the false positives

from the true frequent episodes. Our algorithm to validate the frequent episodes has

several alternatives such as the naïve approach, the partitioned approach and the parallel

approach in order to minimize the overhead of validation in the entire episode discovery

process and is also generalized for different periodicities. We discuss the

v

 advantages and disadvantages of each approach and do extensive experiments to

demonstrate the performance and scalability of each approach.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. ii

ABSTRACT .. iv

LIST OF TABLES...xiii

Chapter

1. INTRODUCTION .. 1

1.1 Sequential pattern mining ... 2

1.1.1 Sequential mining for transactional data .. 3

1.1.2 Sequential mining for time-series data ... 3

1.1.3 Sequential mining for interval based time-series data.............................. 4

1.2 Problem Domain... 5

1.3 Hybrid-Apriori .. 6

1.4 Proposed Solution... 7

1.5 Other Contribution.. 8

2. RELATED WORK... 9

2.1 Introduction... 9

2.2 GSP... 9

2.3 WINEPI and MINEPI... 10

2.4 ED... 13

2.5 Hybrid-Apriori .. 14

vii

2.5.1 Hybrid-Apriori and Traditional mining algorithm 15

2.5.2 Benefits and issues in Hybrid Apriori .. 18

3. APPROACHES TO VALIDATE FREQUENT EPISODES 20

3.1 False Positives and Periodicity of Frequent Episodes 20

3.2 False Positives and the
Process of Discovery of Episodes – An Illustration 20

3.3 Algorithm Overview... 24

3.3.1 Building Phase .. 25

3.3.2 Support Counting Phase ... 26

3.3.3 Pruning Phase ... 26

3.4 Basic Issues in Identifying False Positives... 26

3.4.1 Periodicity... 27

3.4.2 Wrapping Episodes... 29

3.4.3 Size of the episode discovered.. 33

3.4.4 Computing the support of events
in an episode in a single pass.. 33

3.5 Analysis of Time Complexity... 33

3.6 Naïve Approach to Identify False Positives ... 35

3.6.1 Pseudo code for Building Phase ... 35

3.6.2 Pseudo code for Support Counting Phase... 36

3.6.3 Pseudo code for Validate Phase.. 37

3.7 Design for Algorithm to Validate Frequent Episodes 40

viii

3.7.1 Design for Building Phase .. 40

3.7.2 Design for Support Counting Phase ... 41

3.7.3 Design for Pruning Phase ... 42

3.8 Characteristics of the Naïve approach .. 42

3.9 Partitioned Approach to Identify False Positives ... 43

3.10 Issues in Partitioned Approach ... 46

3.10.1 Size of a partition.. 46

3.10.2 Distribution of episodes.. 46

3.10.3 How to partition an episode.. 49

3.11 Phases in Partition Approach.. 50

3.11.1 Partitioning Phase ... 50

3.11.2 Fetching Phase .. 51

3.11.3 Building Phase .. 52

3.11.4 Support Counting Phase ... 52

3.11.5 Pruning Phase ... 52

3.11.6 Carry forward Phase ... 52

3.12 Advantages and Limitations of Partitioned Approach.................................... 53

3.13 Parallel Approach to Identify False Positives... 53

3.14 Issues in Parallel Approach .. 54

3.14.1 Episode spanning multiple partitions.. 54

ix

3.14.2 Merge the partial support count of spanning episodes 56

3.15 Phases in Parallel approach .. 57

3.16 Advantages and Disadvantages .. 59

4. IMPLEMENTATION OF VALIDATION ALGORITHM.. 61

4.1 Implementation of the Partitioned Approach ... 68

4.2 Implementation of the Parallel Approach... 73

4.3 Selecting Episodes spanning multiple partitions .. 74

4.4 RMI Architecture for parallel approach ... 77

4.5 Merge Phase at the central node ... 78

4.6 How Java RMI works for the parallel approach ... 80

4.7 Summary... 83

5. EXPERIMENTAL RESULTS ... 84

5.1 Performance of Naive approach for daily periodicity 85

5.2 Comparison of response time
of partitioned approach for daily periodicity.. 86

5.3 Performance of Parallel Approach for daily periodicity................................. 88

5.4 Performance comparison of each approach for daily periodicity................... 90

5.5 Performance of Naïve Approach for Weekly Periodicity............................... 92

5.6 Configuration File... 93

5.7 Log files .. 94

5.7.1 Log file for Episode Status ... 94

x

5.7.2 Log file for device support ... 94

6. CONCLUSIONS AND FUTURE WORK... 96

6.1 Conclusions... 96

6.2 Future work... 98

REFERENCES ... 99

BIOGRAPHICAL INFORMATION.. 101

xi

LIST OF ILLUSTRATIONS
Figure Page

1 Sequential Mining: An overview... 2

2 Distribution of events in raw data set .. 21

3 Raw data set after folding ... 22

4 Significant intervals discovered by SID .. 22

5 Episodes discovered by Hybrid Apriori .. 23

6 Wrapping Episode - An Episode spanning multiple periods/days 31

7 Output of Building Phase... 36

8 Output of Support Counting Phase .. 37

9 Distribution of Episodes in Partitioned Approach.. 45

10 Distribution of Episodes in a partition (a) Uniform (b) Skewed. 48

11 Distribution of Episodes after Partition .. 55

12 Episode Object... 62

13 Event Object .. 63

14 Vector of Events with their Support .. 64

15 Hash Table of Episode and Episode-Id ... 66

16 Architecture for the Parallel Approach.. 77

17 Performance of Naïve Approach with different synthetic data sets 85

18 Performance of Parallel Approach for synthetic data set .. 86

xii

19 Performance of Partitioned Approach for daily periodicity 87

20 Performance of Parallel approach for synthetic data set ... 88

21 Performance of all three validation approaches... 90

22 Performance Comparison of all phases in Episode Discovery process 91

23 Performance of Naïve Approach for Weekly Periodicity.. 92

xiii

LIST OF TABLES
Table Page

Table 1 Support of Events in an Episode.. 24

Table 2 Example of an Episode .. 28

Table 3 Support of Events in an Episode... 28

Table 4 Example of a Wrapping Episode ... 30

Table 5 Support Count of each Event for Daily Periodicity... 32

Table 6 Episode with daily periodicity... 37

Table 7 Analysis of Validation Output... 40

Table 8 Parallel Approach – Implementation overview .. 80

Table 9 Sequence of steps in the parallel approach... 82

Table 10 Experimental set up ... 84

Table 11 Synthetic data set ... 85

Table 12 Evaluation of Partitioned Approach .. 87

Table 13 Partitioned approach - percentage improvement in response time................. 88

Table 14 Parallel Approach - percentage improvement in response time 89

Table 15 MavHome data set .. 89

Table 16 Configuration Parameters .. 93

Table 17 Comparison of Validation approaches .. 97

1

CHAPTER 1

INTRODUCTION

The proliferation of computers in our daily activities has created abundant

generated data. Collection and analysis of this data is critical for decision-making in our

lives. Thus, information systems that support decision making in order to automate

several aspects of life have become a necessity. Database management systems

developed for such information systems store, manipulate and enable retrieval of data.

A multitude of database applications are designed and have resulted in the emergence of

the field known as Data mining. This field has attracted academicians and the industry

due to the abundance of data and the imminent need for turning it into useful

information and knowledge. Data mining involves an integration of techniques from

multiple disciplines such as database technology, statistics, machine learning, high-

performance computing, pattern recognition, neural networks, data visualizations,

information retrieval, image and signal processing, and spatial data analysis. Data

mining systems are categorized based on the underlying techniques employed such as

classification, clustering, prediction, deviation analysis, association analysis and

sequential mining.

2

Sequential
Mining

Time
Points

Time
Interval

Data Store

Smart
Home

Stocks

Super
Market

Periodic
Pattern

Trend
Analysis

Types
of

Sequential
Mining

Telecommunications

Transactional

SimilaritySearchSequentialPattern

Time-Series

Applications

Figure 1 Sequential Mining: An overview

1.1 Sequential pattern mining

Sequential pattern mining entails the identification of frequently occurring

patterns related to time or other sequences. An example of sequential pattern is “A

customer, who bought Fellowship of the Rings DVD six months ago, is likely to buy the

Two Towers DVD within a month”. Since many business transactions,

telecommunication records, weather data and production processes fall into the category

of time sequence data, sequential mining is useful for target marketing, customer

retention and so on. The emphasis in our research is on accurate and scalable data

mining techniques for sequential mining in large database.

3

1.1.1 Sequential mining for transactional data

Sequential pattern mining was introduced in [2] and it can be conducted on

transactional data or time-series data. Transactional data stored in a database consists of

transactions; each transaction is treated as a unique record. If we consider the example

of a supermarket, the information stored in a record would be the customer-id,

transaction time and the items purchased. The objective here is to identify sets of items

that are frequently sold or purchased together. A market basket data analysis of this

kind enables the vendor to bundle groups of items to maximize sales. For time-series

data, a database record will consists of sequences of values or events changing with

time. [3]. These values are typically measured at equal time intervals. Mining

transactional data sets will typically look for association between data items and will

discover a rule of type {Beer} implies {Chips}. In contrast, mining a time-series data

set will provide more insight in to the same rule by discovering that the rule {Beer}

implies {Chips} has a larger support during 8 pm to 10 pm every Friday. Research in

time-series data mining covers issues related to trend analysis, similarity search in time

series data, prediction of natural disasters and mining sequential patterns and periodic

patterns in time-related data. Time-series analysis can also be used for studying daily

fluctuations of a stock market, scientific experiments, and medical treatments.

1.1.2 Sequential mining for time-series data

This type of data can be represented as follows: when A occurs, B also occurs

within time ti from the time of occurrence of A. In general three attributes characterize

sequence data: object, timestamp, and event. Hence, the corresponding input records

4

consist of occurrences of events on an object at a particular time. The major task

associated with this kind of data is to identify existing sequential relationships or

patterns in the data. Appropriate techniques are applied to discover the trends or the

patterns in the data with respect to multiple granularities of time (i.e., different levels of

abstraction). These trends or patterns may be further used for prediction or decision

making. The patterns discovered are based on measures of interestingness such as

support and confidence. Support of an event is defined as the number of occurrences of

the event. Confidence of a pattern is the probability of its events occurring together. The

threshold values for these measures are domain specific and are controlled by the user.

Two algorithms have been proposed in [4] to discover frequent episodes from a given

set of sequences. The algorithms define a frequent episode as a collection of events that

occur within the given time interval (window) in a given partial order.

1.1.3 Sequential mining for interval based time-series data

Sequential mining algorithms for time-series data can run on point-based data or

on interval-based data that represents intervals of high activity. Intervals represent

groups of time or activity that best represents the data with certain characteristics. The

characteristics of an interval can be its density, length or strength. Every interval has a

start time and an end time. The difference between the two timings is the length of the

interval (l). Strength of the interval is the sum of the strength of the points that form the

interval (s) while density (d) of an interval relates its total strength(s) with its length (l).

Several approaches to represent time points as intervals are discussed in [5] where the

focus is on mining of sequential patterns for interval based time-series data. Multiple

5

sequential mining algorithms [2, 4, 6-9] for time-series data exist in the literature.

However, these algorithms operate on point data for mining frequent episodes/patterns.

The advantage of interval-based sequential mining algorithm over traditional sequence

mining approaches is that interval-based sequential mining algorithm operates on

compressed data for sequence discovery.

1.2 Problem Domain

One of the applications of a sequential mining is a smart home and the problem

domain for this thesis is MavHome [10]. This smart home project is a multi-disciplinary

research project at the University of Texas at Arlington (UTA) that focuses on the

creation of an intelligent and versatile home environment. The goal here is to create a

home that acts as a rational agent, perceiving the state of the home through sensors and

acting upon the environment through effectors. The agent acts in a way to maximize its

goal; that is, it maximizes comfort and productivity of its inhabitants, minimizes cost,

and ensures security.

 To accomplish the goals of a smart home, the time intervals during which the

inhabitant interacts with specific set of devices needs to be identified. Once this is done,

the operations of the devices can be automated to eliminate the need for manual

interaction between the inhabitant and the devices. Examples of patterns of interest in

MavHome are:

“Every morning Bill turns on the exercise bike and the fan between 7 am and

7:15 am”

6

“Every evening between 8 pm and 8:30 pm, Cindy turns on the drawing room

light and the television to watch CNN news”

“Every Tuesdays and Saturdays, between 2 p.m. and 3 p.m., Judy turns on the

laundry machine and the lights in the laundry room.”

From these examples, we can see that the frequent episodes of interest relate to

a group of devices with which a smart home inhabitant interacts, which occur during the

same time interval with sufficient periodicity.

1.3 Hybrid-Apriori

This is an interval based episode discovery algorithm, proposed in [11], which

discovers such episodes. Instead of performing computations on large raw data, Hybrid-

Apriori algorithm works on compressed data that has intervals instead of points. This

reduces the amount of time spent per pass significantly; the number of passes, however,

remains the same. Generation of frequent episodes is done in three phases:

1. Folding Phase

2. Significant Interval Discovery Phase (SID)

3. Frequent Episodes Discovery Phase (Hybrid Apriori)

The first phase compresses the time points by folding the data over the

periodicity provided by the user (e.g., daily, weekly). The second phase represents the

folded data as intervals and discovers the intervals [5], termed as significant intervals,

that have the user specified support and interval length. In the third phase, Hybrid-

Apriori algorithm takes these significant intervals as input and identifies the frequent

episodes that satisfy user specified confidence.

7

1.3.1.1 Anomalies in Hybrid-Apriori

In the folding phase of hybrid-apriori approach, the periodicity information is

lost. Consequently, we may find some false positives in the output of this algorithm.

The elimination of false positives is critical to our problem domain where the episodes

represent behavior of the inhabitant and assist the agents focused on providing

automation in these environments. For instance, consider the scenario of the laundry

room mentioned earlier. Here, Judy uses the laundry only on Tuesdays and Saturdays

between 2 p.m. to 3 p.m. Due to the folding of data, information related to the time

granularity at the next level, i.e., weekday information for daily periodicity, is lost. A

frequent episode {LRMachOn, LRLightsOn, 2 p.m., 3p.m, 0.8} representing the

laundry scenario is identified as a daily episode where ‘LRMachOn’ and ‘LRLightsOn’

represent the laundry machine and the lights respectively. The episode starts at 2 p.m.

and ends at 3 p.m. and 0.8 is the confidence of the episode. But in reality, the episode

occurs only on Tuesdays and Saturdays. If this episode is automated as a daily episode,

the ultimate objective of a Smart Home, which is to maximize comfort of its inhabitants

by reducing the manual interaction with the devices, is defeated. This calls for an

algorithm that can distinguish the actual daily episodes from the false positives in the

set of frequent episodes identified by Hybrid Apriori.

1.4 Proposed Solution

We propose a main memory algorithm that makes a single pass over the raw

dataset and the frequent episodes generated by the Hybrid-Apriori algorithm to

eliminate the false positives present in the frequent episodes. Multiple approaches to

8

validate the frequent episodes have been developed in this thesis. These approaches

address the issues of performance and scalability and ensure that the overhead of

validating the episodes for an interval based episode discovery algorithm is minimal.

Thus, the entire Hybrid-Apriori algorithm to discover the true frequent episodes now

consists of four phases:

1. Folding Phase

2. Significant Interval Discovery Phase (SID)

3. Frequent Episodes Discovery Phase (Hybrid Apriori)

4. Pruning of false positives (Validation)

Our algorithm to validate the frequent episodes has alternatives such as the

Naïve approach, the Partitioned approach and the Parallel approach. We discuss the

advantages of each approach. Through extensive experiments and analysis, we attempt

to demonstrate the performance and scalability of these alternatives.

1.5 Other Contribution

We have also compared the interval-based Hybrid-Apriori algorithm with a

point based main memory algorithm termed ED for episode discovery [1]. This

comparison has been done with the objective of demonstrating that Hybrid Apriori, in

spite of the need for validation, would be a better alternative as compared with

traditional episode discovery algorithms with respect to performance and scalability.

Additionally, in the process of finding frequent episodes, Hybrid-Apriori generates

significant intervals and clusters the ones that are useful in their own right for inferring

individual activities in a smart home environment.

9

CHAPTER 2

RELATED WORK

2.1 Introduction

Traditional algorithms [1, 2, 4, 7, 8] to discover frequent episodes operate on

time stamped data. To the best of our knowledge, Hybrid-Apriori [11] has been the only

interval-based sequential mining algorithm that discovers frequent episodes from time-

series data. This algorithm takes significant time-intervals as an input to discover

episodes of different periodicity. We provide a survey of approaches found in the

literature in the following sections. We also highlight significant differences between

the traditional approach to episode discovery and the Hybrid-Apriori approach for

discovering episodes from significant intervals. We then discuss the anomaly in the

interval-based episode discovery and provide a brief overview of our proposed solution.

2.2 GSP

The GSP (Generalized Sequential Patterns) [2] is designed for transactional data

where each sequence is a list of transactions ordered by transaction time and each

transaction is a set of items. Timing constraints such as Maximum Span, Event-set

Window size, Maximum Gap, and Minimum Gap are applied in this approach. The

algorithm finds all sequences that satisfy these constraints and whose support is greater

than user-specified minimum. The support counting method used is COBJ (One

occurrence per object). The algorithm defines the notion of anti-monotonicity in which

10

a sub sequence of a contiguous sequence may or may not be valid. The sequence c is a

subsequence of s if any of the following holds:

! c is derived from s by dropping an event from its first or last event-set.

! c is derived from s by dropping an event from any of its event-sets that have

at least two elements.

! c is a contiguous subsequence of c’, that is a contiguous subsequence of s.

 This algorithm consists of two phases: the first phase scans the database to

identify all the frequent items of size one. The second phase is an iterative phase that

scans the database to discover frequent sequences of the possible sizes. The second

phase consists of the candidate generations and pruning steps wherein sequences of

greater length are identified; sequences that are not frequent are pruned out from further

iterations. The iterative phase is computationally intensive. Therefore, optimizations

such as hash tree data structures and transformation of the data into a vertical format are

proposed in this paper. The algorithm terminates when no more sequences are found.

2.3 WINEPI and MINEPI

The authors in this paper [4] concentrate on sequences of events with an

associated time of occurrence that can describe the behavior and action of users or

systems in several domains such as Smart Home environments, telecommunications

systems, web usage and text mining. WINEPI is an algorithm, designed for discovering

serial, parallel or composite sequences that represent a frequent episode. A frequent

episode is defined as a collection of events that occur within the given time interval

(window) in a given partial order. Based on the ordering of events in an episode, it is

11

classified as a serial episode or a parallel episode. Unlike parallel episodes, serial

episode require a temporal order of events. Composite sequences are generated from the

combination of parallel and serial sequences.

The authors propose two approaches, WINEPI and MINEPI to discover the

frequent episodes in a given input sequence. In WINEPI, events of the sequences must

be close to each other. The closeness is determined by the window parameter. A time

window is slid over the input data and the sequences within the window are considered.

Thus, the window is defined as a slice of an event sequence and an event sequence is

then considered as sequences of overlapping windows. The number of windows is

determined by the width of the window. The number of windows in which an episode

occurs is the support of the episode. If this support is greater than the minimum support

threshold specified, the episode is detected as a frequent episode. The algorithm finds

all sequences that satisfy the time constraints ms and whose support exceeds a user-

defined minimum support (min_sup), counted with the CWIN method - one occurrence

per span window. The ms time constraint specifies the maximum allowed time

difference between latest and earliest occurrences of events in the entire sequence. This

algorithm makes multiple passes over the data. The first pass determines the support for

all individual events. In other words, for each event the number of windows containing

the event is counted. Each subsequent pass k starts with generating the k-event long

candidate sequences Ck from the set of frequent sequences of length k-1 found in the

previous pass. This approach is based on the subset property of the apriori principle that

states that a sequence cannot be frequent unless its subsequences are also frequent. The

12

algorithm terminates when no frequent sequences are generated at the end of the pass.

For parallel episodes, WINEPI uses set of counters and sequence length for support

counting; a finite state automaton is used for discovering the serial episodes.

MINEPI, an alternate approach to discovering frequent sequences is a method

based on minimal occurrences of the frequent sequences. In this approach the exact

occurrences of the sequences are considered. A minimal occurrence of a sequence is

determined as having an occurrence in a window w= [ts, te], but not in any of its sub-

windows. For each frequent sequence s, the locations of their minimal occurrences are

stored, resulting in a set of minimal occurrences denoted by mo(s)={[ts, te] | [ts, te] is a

minimal window in which s occurs}. The support for a sequence is determined by the

number of its minimal occurrences |mo(s)|. The approach defines rules of the form:

s’[w1]-> s[w2], where s’ is a subsequence of s and w1 and w2 are windows. The

interpretation of the rule is that if s’ has a minimal occurrence at interval [ts, te] which

is shorter than w1, then s occurs within interval [ts, te’] which is shorter than w2. The

approach is similar to the universal formulation with w2 corresponding to ms and an

additional constraint w1 for subsequence length, with CWINMIN as the support

counting technique. The confidence and frequency of the discovered rules with a large

number of window widths are obtained in a single run. MINEPI uses the same

algorithm for candidate generation as WINEPI with a different support counting

technique. In the first round of the main algorithm mo(s) is computed for all sequences

of length one. In the subsequent rounds the minimal occurrences of s are located by first

selecting its two suitable subsequences s1 and s2 and then performing a temporal join

13

on their minimal occurrences. Frequent rules and patterns can be enumerated by looking

at all the frequent sequences and then its subsequences. For the above algorithm,

window is an extremely essential parameter since only a window’s worth of sequences

is discovered. Moreover, the data structures used for this algorithm can exceed the size

of the database in the initial passes. But the strength of MINEPI lies in detection of

episode rules without looking at the data again. The episode rule determines the

connection between tow sets of events as it consists of two different time bounds. This

is possible since MINEPI maintains intermediate data structure for each frequent

episode discovered. Making a single pass over this data structures can help in

determining the sub episodes and the confidence of the episode rule. A sub graph of a

frequent episode is considered as a sub episode of the frequent episode. Confidence of

an episode rule is a ratio of frequency of an episode to its sub episode.

2.4 ED

The algorithm Episode Discovery (ED) proposed in [1] is a data mining

algorithm that discovers behavioral patterns in time-ordered input sequence. The

problem domain in this approach is a smart home where patterns related to inhabitant

device interactions and the ordering information is discovered. The patterns discovered

are then used by intelligent agents to automate device interactions. This approach is

based on the Minimum Description Length (MDL) Principle and discovers multiple

characteristics of the patterns such as its frequency, periodicity, order and the length of

a pattern. It uses compression ratio as the evaluation measure since greater compression

ratio results in a shorter description length. The algorithm has five different phases.

14

First, it partitions the input sequence based on the input parameters such as the window

time span and other capacity parameters. Second it generates candidates using the set

intersection and difference operations. Third, pruning is done based on the MDL-based

evaluation measure - compression ratio achieved. The apriori property to prune is not

sufficient in this approach as episodes with several characteristics needs to be

discovered. Fourth, the candidate evaluation phase where the generated candidates are

evaluated using the compression ratio and the periodicity and regularity of the patterns

is discovered using the autocorrelation techniques. Finally, the episodes with greatest

compression ratio are selected as interesting episodes and candidates that overlap with

the interesting episodes are pruned.

2.5 Hybrid-Apriori

Hybrid-Apriori [11] is an SQL-based sequential mining algorithm that takes the

significant intervals as input from Significant Interval Discovery (SID) algorithm and

discovers frequent sequences to automate the devices in a smart home. It uses

CDIST_O (distinct occurrences with possibility of event timestamp overlap) as

sequence counting method. This method considers the maximum number of all possible

distinct occurrences of a sequence over all objects; that is, the number of all distinct

timestamps present in the data for each object. The novelty of the approach lies in using

interval-based data as input. The interval-based data is a reduced data set consisting of

significant intervals of events in the raw data discovered by the SID suit of algorithms

[5].

15

2.5.1 Hybrid-Apriori and Traditional mining algorithm

1. The primary difference is the use of time-intervals instead of time points. As

an ordering criterion, during a tie between sequences having the same

interval boundaries, the interval with the maximum interval-confidence is

chosen above the others. Similarly, among sequences with the same start

point and interval-confidence, the sequence with the earliest end point is

chosen. Thus, greater importance is placed on sequences with higher

interval-confidence and smaller lengths, thereby extracting the tightest

sequential pattern.

2. Hybrid-Apriori algorithm eliminates some of the steps used by the

traditional apriori approach. Application of SID algorithm results in

partitioning and extraction of intervals with sufficient interval-confidence

from the dataset. Therefore most of the points, which would have been

eliminated in the support counting phase of the traditional approach, have

been eliminated before the start of sequential mining.

3. Pattern-confidence (PC) replaces support counting in the hybrid-apriori

algorithm that represents the minimum number of occurrence of the

sequence within the interval. The pattern-confidence of a sequence within an

interval is the minimum of the interval-confidence (IC) of its events. With

frequently occurring patterns, pattern-confidence underestimates the actual

probability of the events occurring together but retains its significance or

order relative to the other patterns discovered. Instead of using m-copies of

16

frequent items of size one (F1) for support counting, the pattern-confidence

is found by a two-way join of Fm-1 and F1.

When m=2 and F1.item1< F1.item1

F2.pattern-confidence = minimum (F1.item1.IC, F1.item1.IC),

When m>2 and F1.item1 < last item of Fm-1 and F1.item1.start-time and

end-time is between start and end time of Fm-1.

Fm = minimum (Fm-1.PC, F1.item1.IC)

Fm represents the set of m-length frequent patterns.

4. The sequential window constraint of Hybrid-Apriori automatically satisfies

the subset property because of which the pruning based on the subset

property is not explicitly performed. As an example: Let A (1,10), B (2,5), C

(7,15), D (17,25) form the significant intervals generated from the SID [n-1]

algorithm. The figures in the parenthesis indicate the intervals discovered for

the events. Assuming a window of 10 units, the first pass forms AB (1,10),

AC (1,15), BC (2,15), CD (7,25). The second pass discovers ABC (1,15).

First, if all subsets are above threshold pattern-confidence, ABC is

automatically generated in the third pass. A is combined with B because B

started within 10 units of start of A. A is also combined with C because C

started within 10 units of start of A. This automatically implies that B

combines with C since B started after A. Secondly if we assume that the

pattern-confidence of sequence BC or any of its subsets is below threshold,

17

the pattern-confidence of the subset ABC automatically falls below the

threshold from the above equation and is pruned out automatically.

5. Another difference with respect to traditional sequential mining lies in the

effective use of sequential window parameter. For a given window

parameter, two types of interval semantics are defined, which can be used to

generate mth item set from the (m-1) th set. Semantics-s generates all possible

combinations of events, which occur within window units of the first event.

Semantics-e, on the other hand, generates combinations of events that start

and complete within the window units of the first event. Most of the

traditional sequential mining techniques deal with events that occur at a

point and form all possible combination of events within an instance of a

sliding window. Since points are replaced by intervals, the above two

semantics need to be considered to form maximal sequences.

Use of semantics-s results in more sequences as compared with

semantics-e since events that occur with an interval greater than the window,

will not participate in the generation of maximal sequences in semantics-e.

Since the output generated between the two semantics greatly differs in

quantity, semantics-s can be used to run with representative data sets so as to

gather more information on the average pattern-length, size and so on. The

process can then be run with semantics-e on the actual dataset, by setting

parameters such as stop-level and window-length appropriately.

18

2.5.2 Benefits and issues in Hybrid Apriori

Being a SQL-based algorithm, Hybrid Apriori has a greater support for large

datasets and is able to discover sequences of greater length without facing the space

constraints typically encountered by main memory algorithms. Hybrid Apriori takes

reduced dataset of significant intervals is input. The size of these intervals is

significantly less compared to the raw dataset. Hence, the time taken per pass is less as

compared to the traditional algorithms operating on time stamped data. But the

significant intervals discovered by SID are, however, not lossless. The periodicity

information is lost due to the folding of data during the interval formation phase. Due to

folding, the episodes discovered by Hybrid-Apriori may have false positives in it. There

may be episodes that are discovered as occurring on all days of the week but these

actually occur only on a particular day. Detection of false positives and their elimination

is critical to domains such as Smart home, telecommunications alarm management, and

crime detection. In our thesis, we consider the problem domain to be a smart home -

MavHome. The MavHome (Managing An Intelligent and Versatile Home) project is a

multi-disciplinary research project at the University of Texas at Arlington (UTA)

focused on the creation of an intelligent and versatile home environment [19]. Finding

frequent patterns enables us to automate device usage and reduce human interaction.

The MavHome project focuses on the creation of a home that acts as a rational agent.

We propose several approaches to identify the false positives in the frequent episodes

discovered and discuss the issues faced in each approach with their proposed solutions.

19

By distinguishing the false positives from the frequent episodes discovered, the

objectives of MavHome will be served with greater accuracy.

20

CHAPTER 3

APPROACHES TO VALIDATE FREQUENT EPISODES

In chapter 1 (Introduction), we briefly explained why it is important to identify

the false positives in the frequent episode discovered for interval based time-series data.

In this section, we explain why false positives are generated and propose approaches to

identify and prune them from a set of given frequent episodes.

3.1 False Positives and Periodicity of Frequent Episodes

Hybrid-Apriori discovers episodes for two types for periodicities; daily and

weekly. It can also be further generalized to monthly and yearly periodicities. In the

daily periodicity, the entire dataset is folded over 24-hour period. Weekly periodicity, in

contrast, takes into consideration the time component as well as the weekday of the

event occurrence. Hence, episodes discovered for daily periodicity may have false

positives as all the events in an episode may occur at the same time interval but on

different weekdays. Similarly, for weekly periodicity, false positives would have events

which occur on same weekday and time interval but the week days may be of different

month.

3.2 False Positives and the Process of Discovery of Episodes – An Illustration

The following example illustrates the process of discovery of episodes for daily

periodicity and how false positives may be possible in it.

21

Consider a small two weeks dataset. This data set has two events, “Fan On” and

“Lamp On”, representing a sample scenario where the inhabitant uses the study room.

The following graph displays the spread of the sample data before folding. The Y-axis

corresponds to the weekdays and the X-axis to the time of occurrence of an event.

Figure 2 Distribution of events in raw data set

After the raw data is folded the information about the weekday, month and year

is lost. Here the occurrences of the event are grouped by their time e.g., “Lamp On”

event which occurred at time t=9 units on weekdays 1, 3 and 7 now has a support of

three at time t=9 units.

Distribution of events in raw data

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11

Time

W
ee

kd
ay

FanOn LampOn

22

Figure 3 Raw data set after folding

The Significant Interval Discovery (SID) algorithm works on the folded dataset

and discovers significant intervals based on user specified parameters such as interval

length and interval confidence. Significant intervals discovered for each device are

shown in the following graph.

Figure 4 Significant intervals discovered by SID

Support after Folding

0

1

2

3

4

5

6

7

1 2 7 8 9 10

Time

Su
pp

or
t

FanOn

LampOn

Output of SID

0
2
4
6
8

FanOn LampOn FanOn LampOn

[1,2] [1,2] [7,10] [7,10]

Significant intervals

Su
pp

or
t

23

The episode discovery algorithm takes the SIDs discovered in the previous step

as input and finds the frequent episodes based on user specified parameters such as

sequential window, episode confidence, and maximum episode size. The number of

events in an episode determines the size of the episode. Two episodes of size two are

displayed in the figure.

Figure 5 Episodes discovered by Hybrid Apriori

With the small dataset above we can observe that the information for the

weekday is lost. But if we can ungroup this information for each episode discovered and

compute the support for each weekday from the raw dataset available, then we can

compute the following statistics. This can help us decide whether an episode is a false

positive or a valid episode.

The statistics in the table below show an example of a false positive. The

example conveys that all the events participating in the episode of size 2 did occur in

the specified time interval but they did not occur together on the same weekday.

Frequent Episodes

0
1
2
3
4
5
6
7

[1,2] [7,10]

FanOnLampOn FanOnLampOn

Episode

Su
pp

or
t

24

Table 1 Support of Events in an Episode

Episode Start
Time 7
Episode Start
Time 10
Event in episode FanOn Weekday Support
 Monday 2
 Wednesday 2
 Friday 1
Event in episode LampOn Weekday Support
 Sunday 2
 Tuesday 2
 Thursday 1
 Saturday 1

As seen from the above table, the event “Fan On” occurred on Monday,

Wednesday and Saturday whereas “Lamp On” event occurred on Sunday, Tuesday,

Thursday and Saturday. Thus, all the items did not occur together on the same weekday

but still were detected as an episode. This happens because the intervals discovered by

SID operate on folded data that does not have the information pertaining to the

periodicity of the event (i.e., the weekday when it occurs).

3.3 Algorithm Overview

We propose a main memory algorithm that makes a single pass over the raw

dataset and the frequent episodes generated by the Hybrid-Apriori algorithm This main

memory algorithm will select the correct episodes and eliminate the false positives

present in the set of frequent episodes discovered by the Hybrid-Apriori algorithm.

Multiple approaches to validate the episodes have been developed to address the issues

of response time, performance, and scalability.

25

The algorithm to validate episodes takes frequent episodes produced by the

Hybrid-Apriori algorithm as input. It eliminates the false positives in the input to give a

set of valid episodes as the final output. It scans all the events in the raw data set once

and computes the support of each event/item in the episode based on the granularity

specified during the discovery of episodes. The granularity may be daily or weekly.

Unless specified explicitly, we discuss the case of daily periodicity in this chapter. If

the support of the any item/event in the episode is less than the minimum support

required for an episode then the episode is identified as a false positive.

The algorithm to validate episodes can be partitioned into three phases:

1. Building phase

2. Support counting phase

3. Pruning phase

3.3.1 Building Phase

This phase retrieves the episodes discovered by Hybrid-Apriori algorithm that are in a

database and stores them in a main memory data structure. Representing them in main

memory allows us to fetch and update the support count of each event in the episode in

the computation phase without incurring additional I/Os. It also allows us to group the

episodes by the events in the episode. Grouping the episodes by their events creates an

episode list that helps us in fetching the episodes by their events. This grouping is done

for each event in the entire set of episodes to be validated. The episode list created by

grouping of episodes is unique to each event and helps in identifying the episodes in

which a particular event occurs.

26

3.3.2 Support Counting Phase

The computing phase makes a single pass over the raw data set and computes the

support for each event in an episode for a specified granularity. For each event in the

raw dataset, its episode list is fetched. This episode list gives the list of episodes where

this event occurs. For each episode in this list, we check if the transaction time of the

event falls in the range of the episode interval. If the time is in the range, we ungroup

the transaction time and extract the day when the event occurred and accordingly update

the statistics for the event in the episode. This requires ungrouping of the transaction

time into time granularity – a transaction time such as “11-23-2005 22:10” for an Event

D1 is ungrouped into “22:10 Wednesday November 2005” and update the support for

the event D1 for Wednesday. Thus at the end we have the support statistics for each

event in the episode ungrouped based on the periodicity of the episode.

3.3.3 Pruning Phase

The pruning phase checks the support count for each event in an episode for

each weekday. If the support count of each event in the episode meets the minimum

support threshold values for at least one common weekday then the episode is a valid

episode otherwise it is a false positive.

3.4 Basic Issues in Identifying False Positives

This section explains the issues addressed in order to identify the false positives

in the frequent episodes discovered by Hybrid apriori. The issues discussed are:

periodicity of the episode, wrapping episodes, size of the episode discovered and

computing the support of events in an episode in a single pass

27

3.4.1 Periodicity

Due to the folding and interval representation of raw data, information regarding

the next-level granularity is lost. Thus, this lost information is not taken into account at

the time of generating frequent episodes. This may lead to the generation of false

positives. In order to identify the false positives, we need to go from a low granularity

of time to a higher one. For this, we need to identify whether all the events in the

frequent episode discovered in a given time interval occurs together on the same day or

on different days.

28

For a given episode with daily periodicity shown below,

Table 2 Example of an Episode

Episode Event1 Event2 StartTime EndTime Confidence
73 LampOn RadioOn 14:29:00 14:37:00 0.8

We need to compute support count for each event for all the weekdays such as:

Table 3 Support of Events in an Episode

Episode StartTime 14:29:00
Episode EndTime 14:37:00
Episode Confidence 0.8
Event LampOn Weekday Support
 Sunday 2
 Monday 3
 Tuesday 27
 Wednesday 22
 Thursday 70
 Friday 59
 Saturday 6
Event RadioOn Weekday Support
 Sunday 10
 Monday 29
 Tuesday 34
 Wednesday 23
 Thursday 41
 Friday 14
 Saturday 12

Based on the support counts computed for each weekday, we infer whether all

the events in an episode meet the minimum support threshold for at least one common

week day. An episode with all its events satisfying this condition is considered as a

valid episode. Else, it is a case of false positive and is eliminated from the set of

frequent episodes. Let us consider the scenario of a smart home inhabitant using the

29

laundry room on weekends. In order to automate and thereby reduce the inhabitant’s

interaction with the devices, we need to identify the day on which the frequent episode

representing the laundry scenario occurs. The episode discovered by Hybrid-Apriori

does not give this information. However, after our algorithm that validates the frequent

episodes makes a pass over the raw data set, we are able to unfurl the higher granularity

information lost during the folding phase and detect with certainty the day/days on

which an episode occurs.

3.4.2 Wrapping Episodes

The validation of episodes based on periodicity is complicated by the type of

episodes discovered by the Hybrid Apriori. The episodes discovered by Hybrid-Apriori

are of two types. They could be normal episodes or they could be episodes generated

due to folding. The normal episodes start and end on the same day but due to the

inherent time-wrap property of time-series data, episodes spanning two periods/days are

discovered. Such episodes are defined as wrapping episodes. Computation of support

and validation of such episodes is different from the normal episodes. We illustrate this

with the help of following example:

Raw dataset:

1. Fan On 16 Jul 2005 23:51:00

2. Fan On 16 Jul 2005 23:52:10

3. Fan On 17 Jul 2005 00:07:00

4. TV On 16 Jul 2005 23:55:10

5. TV On 17 Jul 2005 00:05:45

30

6. TV On 17 Jul 2005 00:10:10

Folding of raw data:

1. Fan On 23:51:00

2. Fan On 23:52:10

3. Fan On 00:07:10

4. TV On 23:55:10

5. TV On 00:56:10

6. TV On 00:10:00

Significant Interval discovered by SID

1. Fan On 23:51:10 00:07:00 IC1

2. TV On 23:55:10 00:10:00 IC2

Episode discovered by HA

1. Fan On TV On 23:51:10 00:10:00 PC1

This episode spans two days. It starts on Saturday night and ends on Sunday

morning.

We divide this episode into two sub episodes and compute support for the first

one for the interval [Start time of the episode, midnight] and for the second one for the

interval [Midnight, End time of the episode] and add the support of the two to get the

total support of the folding episode. We illustrate this with the following example:

Table 4 Example of a Wrapping Episode

Episode Event1 Event2 StartTime EndTime Confidence
79 FanOn TVOn 23:51:00 0:10:00 0.8

31

For a wrapping episode, we compute support for two sub-intervals: [23:51:00,

0:00:00] and [0:00:00, 0:01:00] as shown below:

Figure 6 Wrapping Episode - An Episode spanning multiple periods/days

The following table shows how we compute the final support for a wrapping

episode. Here the support for a device FanOn in interval [23:51, 00:00] on Monday is

added to the support of FanOn in interval [00:00, 00:10] on Tuesday and not [00:00,

00:10] on Monday to get the correct final support for a folding episode.

23:51:00 17
16 18

00:00:00

00:10:00

16 17 17 18
23:51:00

00:00:00

00:00:00

00:10:00

Table 5 Support Count of each Event for Daily Periodicity

Episode
StartTime 23:51:00

 Episode
StartTime 0:00:00

Episode
EndTime 0:00:00

 Episode
EndTime 0:10:00

Episode
Confidence 0.8

 Episode
Confidence 0.8

Event FanOn Weekday PartialSupport1 Event FanOn Weekday PartialSupport2 TotalSupport
 Wednesday 34 Thursday 2 36
 Thursday 61 Friday 6 67

 Friday 38 Saturday 2 40
 Saturday 21 Sunday 1 22

 Sunday 24 Monday 4 28
 Monday 34 Tuesday 5 39
 Tuesday 27 Wednesday 5 32

Event TVOn Weekday PartialSupport1 Event TVOn Weekday PartialSupport2 TotalSupport
 Wednesday 27 Thursday 1 28
 Thursday 56 Friday 5 61
 Friday 27 Saturday 2 29
 Saturday 22 Sunday 1 23

 Sunday 17 Monday 3 20
 Monday 9 Tuesday 2 11

 Tuesday 23 Wednesday 1 24

32

33

3.4.3 Size of the episode discovered

The number of items/events in an episode determines the size of an episode.

Hence the number of events in an episode is not known before hand and has to be

determined at runtime to represent it correctly in main memory.

3.4.4 Computing the support of events in an episode in a single pass

In order to compute the support of an event in an episode for each weekday in a

given time interval, we can make several passes over the raw dataset and update support

counts for each event in an episode. For large datasets, this would be inefficient. We

propose multiple approaches that can identify the false positives in a single pass over

the raw dataset. In addition, these approaches also address the issues of performance

and scalability. The proposed approaches are:

Approach#1: Naïve Approach

Approach#2: Partition Approach

Approach#3: Parallel Approach

We describe each of them in terms of their design issues, significant differences,

advantages and limitations. In the next chapter, we explain the implementation issues of

each approach with the proposed solutions.

3.5 Analysis of Time Complexity

Let us assume the following:

p denotes the size of the raw data set

t represents the total number of unique devices in the raw dataset of size p

q represents the total number of episodes to validate

34

r is the average size of the episode / average number of devices in the

episode<=t

s is the average number of episodes where a single device occurs<=q

The time complexity of the entire algorithm is O(p)*O(s)*O(r)

An event in an episode has three characteristics: event name, event status and

event time. In our validation approach, we create two hash tables: hash table of episodes

and a hash table of events. The hash table of episodes contains episodes hashed on the

episode-id while the hash table of events contains a list of episode-id grouped by the

events in the episode. For every event in the raw dataset, we hash the episode-id hash

table on the event name and its status. This operation is O(1) and it returns us the

episode-id list which contains the id of episodes where the event occurs. The size of this

episode list is assumed to be s. For each episode-id in the list we hash the episode hash

table and get a corresponding episode. This operation is O(1). The number of events in

an episode determines its size and we assume it to be r. In order to update the support of

an event, we need to locate this event in the episode. The events in an episode are stored

in a vector and the operation to fetch the correct event and its support array takes O(r)

where r is the average number of events in any episode. Once the appropriate event is

located, we update the support of the event stored in an array which is O(1). For each

event instance in the raw data set, we fetch all the episodes where this event occurs and

update the corresponding support. Hence the response time of the algorithm heavily

depends on the number of episodes where an event occurs and this number increases

with the increase in number of episodes (q) to be validated.

35

3.6 Naïve Approach to Identify False Positives

This main memory algorithm validates the episodes discovered by the Hybrid-

Apriori algorithm by identifying the false positives. Each frequent episode is stored in

main memory and the support count for all the events in the episode are computed by

making a single pass over the raw data. At the end of the pass, we have the support

count of each event in an episode ungrouped on the periodicity specified. This

ungrouped support count is then compared to the minimum support threshold to identify

and prune the false positives in the set of episodes validated.

3.6.1 Pseudo code for Building Phase

The pseudo code for the building phase in the naïve approach to validate the

frequent episodes based on periodicity consists of the following steps:

For each episode detected by Hybrid-Apriori algorithm

 Fetch the episode and determine the type of episode

 Store the frequent episode in main memory

 For each event in the episode,

 If the episode list exists for this event,

 Add the episode Id of this episode to the list

 Else

 Create an episode list for this event

 Add the episode Id of this episode to the list

36

At the end of build phase, we have the following two data structures populated

with the episodes and the episode list – set of episodes grouped by the events in the

episode

StringObject HybridPatternObject

1ComputerOnFanOnLampOn HybridPatternObject1

2FanOnLampOnRadioOn HybridPatternObject2

3FanOnLampOnTVOn HybridPatternObject3

EpisodeHashTable

Episode-List
HashTable

StringObject VectorObject

VectorObjectItemName

VectorObject1ComputerOn

VectorObject1

1ComputerOnFanOnLampOn

VectorObject2FanOn

VectorObject2

1ComputerOnFanOnLampOn

2FanOnLampOnRadioOn

3FanOnLampOnTVOn

VectorObject3LampOn

VectorObject4RadioOn

TVOn VectorObject5
VectorObject5

3FanOnLampOnTVOn

Figure 7 Output of Building Phase

3.6.2 Pseudo code for Support Counting Phase

The pseudo code for the support counting phase in the naïve approach consists of the

following steps:

Fetch an event transaction from the raw dataset

Retrieve the corresponding episode list

For each episode in the episode list

37

 Update the support statistics for this event if the transaction time falls in the episode

time interval

At the end of the support computation phase, support count for a given granularity

is available for each event in the episode. The data structure representing the

episode and the state of the episode after the computation phase now looks as

follows:

Table 6 Episode with daily periodicity

Figure 8 Output of Support Counting Phase

3.6.3 Pseudo code for Validate Phase

1. For each episode in the memory

2. Determine the type of episode

Event E1 LampOn

Event E1 Support

Episode Confidence
(0.8)

End Time
(14:37:00)

Start Time
(14:29:00)

Event Set

Event E2 RadioOn

Event E2 Support

Support Monday (3)

Support Tuesday (27)

Support Sunday(2)

Support Saturday(6)

Support Friday(59)

Support Thursday(70)

Support Wednesday(22)

Support Monday (29)

Support Tuesday (34)

Support Sunday(10)

Support Saturday(12)

Support Friday(14)

Support Thursday(41)

Support Wednesday(23)

Episode Event1 Event2 StartTime EndTime Confidence
73 LampOn RadioOn 14:29:00 14:37:00 0.8

38

3. If the episode is a normal episode

4. Determine the number of events in the episode

5. For each weekday

6. For each event,

7. Fetch the support count for the weekday

8. Compare this support count with the support threshold value

9. If the support count is greater than the support threshold

10. Set the EventValid flag to true

11. Else

12. Set the EventValid flag to false

13. Break //no need to check the other events in the episode for

this weekday

14. If EventValid is true

15. Set episodeValid flag to True

16. Else

17. Set episodeValid flag to false

18. Else If the episode is a spanning episode

19. Determine the number of events in the episode (Same as line#4)

20. For each weekday (Same as line#5)

21. For each event, (Same as line#6)

22. Fetch the support count for two weekdays: current and the

immediate next

39

23. Compare the sum of the support count of two days with the support

threshold value

24. If the support count is greater than the support threshold (Same as

line#9)

25. Set the EventValid flag to true (Same as line#10)

26. If EventValid is true (Same as line#14)

27. Set episodeValid flag to True (same as line#15)

28. If episodeValid flag is True for at least one weekday

29. Episode is a valid episode

30. Else

31. Episode is a false positive

40

The validation phase analyses the support computed to determine the validity of the

episode. This can be depicted as follows:

Table 7 Analysis of Validation Output

3.7 Design for Algorithm to Validate Frequent Episodes

3.7.1 Design for Building Phase

The building phase for the naïve approach accomplishes two things: One, it

represents all the episodes using main memory data structures. Two, it groups all

episodes by the events in it; by creating an episode-id list. The creation of episode-id list

is done simultaneously with episode caching. For each event in the episode, we either

create a new episode-id list or update the episode list if one exists. An episode list exists

for events occurring in multiple episodes. This episode-id list is used in the next phase,

Support Monday
> MinimumSupport No Yes

Support of
Event E1
LampOn

Support of
Event E2
RadioOn

Episode Status
Support of
all events >

MinSupp

InValid

Support Tuesday
> MinimumSupport Yes Yes Valid

Support Wednesday
> MinimumSupport Yes Yes Valid

Support Thursday
> MinimumSupport Yes Yes Valid

Support Friday
> MinimumSupport Yes No InValid

Support Saturday
> MinimumSupport No No InValid

Support Sunday
> MinimumSupport No No InValid

No of weeks = 26
Min Confidence=0.7

Min Support = 18.2

No of days = 180

41

the computation phase, to retrieve all the episodes corresponding to an event while

scanning the raw data.

As shown in figure 7, the building phase constructs two hash tables in main

memory. The first hash table consists of the episodes. Each episode is hashed into one

bucket. Simultaneously we construct the second hash table that contains the list of

episodes grouped by the devices in the episode. Each bucket in this hash table is a list of

episode grouped by the events in the episode. As observed from the figure, the event

“FanOn” occurs in three episodes. Hence the episode id hash table contains a list of

three episode-ids in them. Based on this episode id we can retrieve the episode from the

hash table of episodes.

3.7.2 Design for Support Counting Phase

Once all the episodes discovered by the Hybrid-Apriori are stored in main

memory and episode lists are created for each unique event, we scan the raw data set.

For each device/event transaction fetched, a corresponding episode list is retrieved. We

then traverse through this episode list sequentially to fetch an episode_id one at a time.

We then retrieve the episode corresponding to this episode_id from the main memory

data structure that has all the episodes. Once the episode is retrieved, we have the start

time (Ts) and the end time (Te) of the episode. We check whether the transaction time

of the device/event in the raw data set is within the interval [Ts, Te]. If it falls in the

interval range, we further drill down into the transaction time and fetch the day –

Sunday, Monday, …, Saturday – on which the event occurred and update the support

count of the event in the episode for that particular day of the week. This is an iterative

42

process which is repeated for each episode whose episode-id exists in the episode lists

for the event in the transaction fetched from the raw dataset.

To summarize, we make a single pass over the raw dataset, and for each event

Em in the raw dataset we retrieve the corresponding episode list from the main memory

data structure. Now, for each episode id in this list we retrieve the corresponding

episode from the episodes data structure and update the support statistics of that event

Em for specified granularity.

3.7.3 Design for Pruning Phase

The computation phase computes the support count of all the events in an

episode for a given periodicity. In the pruning phase, we retrieve each episode and

compare the support of each event in the episode against the minimum support

threshold. If all the events in an episode satisfy the minimum support threshold for a

given periodicity then the episode is considered to be a true episode else it is considered

a false positive. The periodicity could by daily or weekly. For daily periodicity, we need

to make sure that all the events in an episode satisfy the minimum support threshold for

the same weekday. For weekly periodicity, we make sure that the weekday on which the

episode occurs is in the same month of the year.

3.8 Characteristics of the Naïve approach

This approach represents each episode as a main memory object and validates it.

Hence the number of episodes that can be validated would be directly proportional to

the main memory available. Moreover, the time taken to validate all the episodes will be

linear to the number of episodes discovered.

43

This approach makes one pass over the episodes generated by the HA algorithm

to create in-memory data structures. It makes one pass over the raw data set to populate

the in-memory data structures created during the build phase with support values.

Finally, the data structures are examined to differentiate between false positives and

invalid episodes.

Note that the Hybrid-Apriori algorithm does not generate false negatives. In

order to generate a false negative, it has to output an episode that does not have enough

support and confidence. On account of folding the support can only increase and cannot

decrease. In addition, the Hybrid-Apriori algorithm produces and output in which all

episodes satisfy the confidence and interval constraints. Hence false negatives are not

generated.

The main memory requirement of this algorithm is proportional to the number of

episodes, number of events in each episode and the granularity size that is being

validated (e.g., 7 days if folded on daily, 12 months if folded on weekly etc.). For large

number of episodes the memory requirement may become high and hence this approach

may not be scalable for data sets that generate large number of episodes.

3.9 Partitioned Approach to Identify False Positives

In order to overcome the amount of main memory needed, we apply the divide

and conquer rule in the partitioned approach. We implement a validation algorithm

which partitions the input data and the episodes to be validated. The partition can be

done either on the basis of time or the number of episodes. The partitions are processed

sequentially and hence the memory requirement is proportional to the number of

44

episodes in a partition and not the total number of episodes to be validated. Each

partition contains the normal episodes, the wrapping episodes and the spanning

episodes. The normal episodes are the one that start and end in the same partition while

the spanning episodes are those that span across multiple partitions. The wrapping

episodes are the one which span across multiple periods and are formed due to the

inherent time wrap property of time-series data. For each partition, the false positives

among the normal episodes are identified at the end of the validation process while the

spanning episodes that do not have the minimum support are carried forward to the next

partition for further validation. The wrapping episodes are different from the spanning

episodes in the sense that they are always validated in the last partition. The reason that

wrapping episodes may start or end in any partition or they may span across multiple

partitions but since we start the validation process from the first partition we cannot

compute the final cumulative support until we have scanned the entire set of raw data

events i.e. reached the last partition. The following figure shows the distribution of

episodes in a partitioned approach.

45

Figure 9 Distribution of Episodes in Partitioned Approach

The above figure shows the partitioned approach for four partitions. As seen,

there are three types of episodes we need to handle here. They are the normal episodes,

wrapping episodes and the spanning episodes. In the figure above, the normal episodes

are episode number 1, 2, 3 and 4. These episode start and end in the same partition. We

build them into the main memory, compute their support and validate them in the same

partition. The second type is the wrapping episodes. Episode number 41 is an example

of wrapping episode. This episode is discovered by Hybrid-Apriori due to the inherent

time-wrapping property of time-series data. This episode spans at least the last and the

first partition and depending on the episode length it may span across multiple

partitions. The third and final type of episodes is the spanning episodes. The spanning

2 3 4

12

4123

3

23 34

1234

2

1

41

End Start
Start End

Start End

41

P1

P2

P3

P4

P1

12
2

indicates partition number

indicates spanning episodes
indicates normal episodes

indicates wrapping episodes

Distrbution of episodes
in partitioned approach

41

46

episodes in the above figure are episodes number 12, 123, 1234, 23 and 34. This

episodes span across at least two partitions and may span across multiple partitions. In

order to validate the wrapping and the spanning episodes, we need to compute their

partial support in each partition where they span. The partial support of each episode

has to be carried forward to the consecutive partitions to get their cumulative support.

The end time of the episode determines where an episode ends and need to be validated

and pruned to avoid any more computation.

3.10 Issues in Partitioned Approach

3.10.1 Size of a partition

In order to overcome the limitations of main memory, we partition the number

of episodes based on the main memory available. The number of partitions is a user-

defined parameter or can be inferred based on the main memory available.

Pragmatically, the number of partitions should be such that all the episodes in a single

partition can fit into the available main memory.

3.10.2 Distribution of episodes

Distribution of episodes is extremely important in the partitioned approach to

achieve the desired performance. The following scenarios explain why the distribution

of episodes needs to be considered before we partition the given set of episodes.

Case#1a: All the inhabitants of MavHome works from home

Case#2a: All the inhabitants of MavHome works from office and the office timings are

10 am to 5 pm

Case#1b: Customers going to Wal-Mart between 5pm and midnight

47

Case#2b: Customers going to Wal-Mart between 10am and 5 pm

Case#1c: People going to watch movie between noon and 6pm

Case#2c: People going to watch movie between 6pm and midnight

In the above scenarios, cases 1a, 1b and 1c represent uniform distribution or

regions of high activity while cases 2a, 2b and 2c represent non-uniform distribution or

regions of low activity where the number of event instances is few.

The sample distribution of episodes discovered for cases 1a, 1b or 1c would be

similar to the following figure while the figure [x] represents the distribution of

episodes for cases 2a, 2b or 2c. Hence a single approach to partition the episodes would

not give partitions with an approximately equal number of episodes in it.

(a)

2 3 4

12

4123

3

23 34

1234

2

1

41

End Start
Start End

Start End

41

P1

P2

P3

P4

Distrbution of episodes
in partitioned approach

for Case#1

48

(b)

Figure 10 Distribution of Episodes in a partition (a) Uniform (b) Skewed.

In the above figure, partitioning the non-uniform distribution of episodes using

the fixed partition scheme creates partition numbers P2 and P3 that are the regions of

inactivity – the time period when all the inhabitants are not at home. These partitions

either have very few episodes or no episodes to validate. These two cases demonstrate

the fact that a single divide and conquer approach would not give the desired

performance benefits if partitioning the set of frequent episodes does not create

partitions with an approximately equal number of episodes to validate. In order to

ensure the best performance, we propose two approaches for partitioning the episodes.

The first approach is the case where the distribution of episodes in a data set is uniform.

Here, the episodes are assumed to be uniformly distributed over the periodicity (daily or

2 3 4

12

4

3

34

2 41

End Start

41

P1
P2 P3

P4

2

indicates partition number

indicates spanning episodes
indicates normal episodes

indicates wrapping episodes41

1

Start End

2
2

10 am 5 pm

Distrbution of episodes
in partitioned approach

for Case#2

49

weekly). Hence partitioning on fixed time values would generate approximately equal

number of episodes in each partition. For example, if the number of partitions is set to

four then we divide the entire day into four equal parts: 0-6, 6-12, 12-18, and 18-24. All

the episodes that start before 6 am belong to the first partition while episodes starting

between 6 am and noon are assigned the second partition and so on. The second

approach is for non-uniform distribution as demonstrated by case#2 in the figure above.

Applying the fixed scheme creates partitions that either have lot of episodes or have

very few episodes in it that leads to imbalance in the computational load. This defeats

the purpose of partitioning a large set of episodes into partitions manageable with the

available memory. Our second approach ensures that balance in computational load is

achieved by assigning approximately equal number of episodes and keeping the number

of episodes close to each other across all partitions. This approach takes into

consideration the total number of episodes rather than their start or end time. This

makes the partitioning process independent of the distribution of episodes discovered.

More details on this approach are discussed in the implementation chapter.

3.10.3 How to partition an episode

Partitioning of episodes can be done either on the start time or the end time of

the episode. Partitioning on start time leads to a natural partitioning process since first

and last partition is adjacent logically and you only need to carry forward the support.

Natural Partitioning means the first half of the spanning episode will be validated in the

current partition and the second half will be validated in the next partition. We can also

partition on the end time of an episode. But this will only take care of the episodes

50

whose end time is less than the partition time. It will not consider the episodes whose

start time is less than the partition time and which partially belong to this partition.

3.11 Phases in Partition Approach

1. Partitioning Phase

2. Fetching Phase

3. Building Phase

4. Support Counting Phase

5. Pruning Phase

6. Carry forward Phase

3.11.1 Partitioning Phase

The number of partition to be done is a user specified parameter. The algorithm

supports two types of partitioning approaches:

3.11.1.1 Uniform Distribution

This approach is a static approach. For n partitions, it divides the periodicity

(e.g., 24-hour period) into n equal partitions. For example, for daily periodicity and n=4,

the partition points would be 6, 12, 18, and 24. Based on these values, all the episodes

and raw data are partitioned. All episodes with their start time less than 6 a.m. and all

transactions in raw data with their transaction time less than 6 a.m. are processed into

partition#1. While, all episodes with their start time between 6 a.m. and noon and all

events in raw data with their transaction time between 6 a.m. and noon are processed

into partition#2. Similarly, we partition the rest of the episodes and the raw data

available.

51

This approach works well for episodes with uniform distribution. But for

skewed episodes, this either creates partitions with very few episodes or too many

episodes leading to an imbalance in the number of episodes in each partition.

3.11.1.2 Non-Uniform Distribution

This approach is used for episodes with a skewed distribution. It aims to balance

the number of episodes in each partition. Instead of partitioning on fixed time units, this

approach partitions the episodes based on the number of episodes. Suppose that in the

set of frequent episodes discovered, we have 100 episodes of size two, 150 episodes of

size three and 60 episodes of size four. Thus the total number of episodes is 310 and if

there are four partitions, than each partition should receive approximately 77 episodes

each. We cannot balance the partitions equally but are able to balance the load nearly

equally since the size of the episode, the number of episodes of each size and their

corresponding start and end times are not fixed.

Once the partition points are computed for both the approaches, we choose an

approach that creates partitions of approximately equal sizes and proceed to next phase.

3.11.2 Fetching Phase

In this phase, the episodes that span in this partition are fetched from the other

partitions so that their partial support could be computed. For the first partition, the

folding episodes are fetched and included in the building phase. For the rest of the

partitions, the fetch phase comes after the building phase since the spanning episodes

already exist in the main memory with their partial support computed in the previous

phases.

52

3.11.3 Building Phase

Due to partitioning, now normal episodes can span across two partitions. These

are now classified as spanning episodes along with the folding episodes which by

default span two partitions. Hence, while building the episodes in main memory we

identify and tag the episode type for later use. The episode is tagged as a normal

episode, a folding episode or a spanning episode. Based on the type of episode, the

pruning phase decides whether to validate an episode or carry forward to the next

partition. The rest of the process is similar to the respective phase in the Naïve

approach.

3.11.4 Support Counting Phase

This phase is similar to respective phase in the Naïve approach. For a given

partition of episodes, the raw data corresponding to this partition is scanned to compute

the support for each event in an episode.

3.11.5 Pruning Phase

The only difference in this phase with respect to the Naïve approach is that not

all the episodes whose support is computed are validated. Only the normal episodes and

the spanning episodes which end in the current partition are validated. The remaining

spanning episodes are carried forward to the next partition for further processing.

3.11.6 Carry forward Phase

In this phase, the spanning episodes that do not end in the current partition are

carried forward with their partial support count to the next partition.

53

3.12 Advantages and Limitations of Partitioned Approach

This approach allows us to validate each partition in isolation thereby reducing

the main memory requirements and allowing a larger set of episodes to be validated.

Instead of representing all the episodes in the main memory at the same time, we do it

in chunks. We partition the set of episodes and consider each partition in isolation. This

allows us to deal with larger set of episodes, for a given amount of main memory.

Partitioning also reduces the response time significantly. As discussed in section 3.5,

the complexity of the algorithm is O(p)*O(s)*O(r) where p is the size of the raw data

set , s is the average number of episodes where a single device occurs and r is the

average size of the episode / average number of devices in the episode. The value of s

decreases with the decrease in number of episodes in a partition and would thus lead to

reduced response time. This approach thus takes care of the scalability issues but

validates each partition sequentially and hence the total time required can be further

reduced if all the partitions are validated in parallel.

3.13 Parallel Approach to Identify False Positives

This approach is somewhat similar to the partitioning approach. The major

difference between the two is that this approach processes all the partitions in parallel

while the partition approach does it sequentially.

 In this approach, we assume the availability of number of processors, all with

the same architecture. We assign one partition to each processing node. The

computation phase for all the episodes and the pruning phase for the normal episodes

are executed in parallel at each node. Here we introduce an additional phase, the merge

54

phase, which takes care of the spanning episodes in the set of episodes discovered. This

merge phase starts after all the nodes finish their respective pruning phase and return the

spanning episodes with their partial support counts.

3.14 Issues in Parallel Approach

3.14.1 Episode spanning multiple partitions

Each partition is validated on a different processor. Hence we need to ensure

that an episode that spans multiple partitions is included in each partition before we start

validating an episode. We need to identify the spanning episodes and duplicate the

spanning episode in all the partitions to compute their partial support. The partition

approach was a sequential approach and hence dealing with the spanning episodes was

quite straightforward. But here since all the partitions are to be processed in parallel we

need to identify the span of an episode before we start the entire process of identifying

the false positives. This is needed to ensure that the partial support of spanning episodes

is computed at all partitions where it spans. To explain how we compute the

overlapping episodes, we revisit the figure explained in the partitioned approach.

55

Figure 11 Distribution of Episodes after Partition

In the above figure, we have four partitions; one partition is allocated to one

machine on the cluster of machines available for the parallel approach. Each partition

has a start time and an end time. The start time of the partition is the end time of the

previous partition and the end time of the partition is the start time of the consecutive

partition. Similarly an episode has a start time and the end time. We use these four

characteristics to compute the set of episodes to be validated by a machine. For each

machine in the cluster, we select all the episodes satisfying any of the following

conditions:

2 3 4

12

4123

3

23 34

1234

2

1

41

End Start
Start End

Start End

41

P1

P2

P3

P4

Node 1 Node 4Node 3Node 2

Central Node responsible for merging and pruning

sends
Ep#12,123,1234

and 41

sends
Ep#12,123,1234

and 23

sends
Ep#12,123,1234

, 23 and 34
sends Ep#1234,

34 and 41

P1 P2

56

1. The start time of the episode is greater than the start time of the partition AND

less than the end time of the partition.

2. The end time of the episode is greater than the start time of the partition AND

less than the end time of the partition.

3. The start time of the episode is less than the start time of the partition AND the

end time is greater than the end time of the partition.

The first condition takes care of episodes starting in a partition; the second

condition takes care of episodes ending the current partition and the third condition

takes care of episodes spanning across the partition. Hence if we consider partition#2,

the set of episodes selected by our SQL would consist of episode number 12, 2, 23, 123

and 1234.

Similarly, we select the raw data set corresponding to the set of episodes to be

validated in a partition. The partitioning of raw data set is based on the event occurrence

time.

The implementation details of the SQL based approach to solve the above

problem can be found in the next section.

3.14.2 Merge the partial support count of spanning episodes

The normal episodes are validated by each processor while the validation for

spanning episodes is delayed and is done later by a single processor after the merge

phase is complete. Each processor sends the partial support count of the spanning

episodes to a central node that is responsible for merging the support count of these

episodes.

57

3.15 Phases in Parallel approach

1. Partitioning Phase (One Time)

2. Fetching Phase (Iterative)

3. Building Phase (Iterative)

4. Computing Support Phase (Iterative)

5. Pruning Phase (Iterative)

6. Merge Phase (One Time)

Partitioning Phase

This phase is the same as described in the partition approach. Based on the

number of nodes/machines available for parallel computation, we partition and assign a

partition to each node.

Fetching Phase

This phase is similar to the fetching phase in sequential approach. The major

difference here is that the validation of all partitions is done in parallel and hence we

need to duplicate the spanning episodes at each node beforehand. This is done to ensure

that the partial support counts of spanning episodes are computed at each node where it

spans. We illustrate fetching phase with the following example:

HTNi – table of all episodes at node ‘i’

THTNi – temporary table of spanning episodes at node ‘i’ to be duplicated at all

other nodes in the cluster

Em = Episode in partition m

Emnp = Episode spanning three partitions: partition number m, n and p.

58

e.g., E234 implies that episode starts in second partition and ends in fourth partition

N= Number of nodes in the cluster=4

E = Set of Episodes to validate={E1,E12,E123,E1234,E2,E23,E234,E3,E34,E4,E41,E412}

Episodes to validate at node#1

HTN1 = {E1, E12, E123, E1234}

THTN1 = {E12, E123, E1234}

Episodes to validate at node#2

HTN2= {E2, E23, E234}

THTN2= {E23, E234}

Episodes to validate at node#3

HTN3= {E3, E34}

THTN3= {E34}

Episodes to validate at node#4

HTN4= {E4, E41, E412}

THTN4= {E41, E412}

Episode to validate at each node after duplicating the spanning episodes

HTN1 = {E1, E12, E123, E1234, E41, E412}

HTN2= {E2, E23, E234, E12, E123, E1234, E412}

HTN3= {E3, E34, E123, E23, E234, E1234}

HTN4= {E4, E41, E412, E1234, E234, E34}

Building Phase

59

The building phase is similar to the building phase in the partitioned approach

where each node builds the episode and the episode-id lists in main memory.

Support Counting Phase

This phase is also similar to computing support phase in the partitioned

approach where each node computes the support count of events in an episode through a

single scan of the raw dataset.

Pruning Phase

This phase validates only the normal episodes. The spanning episodes with their

partial support are sent to a central node responsible for validating the spanning episode.

Each node sends the spanning episode with their partial support count to this node.

Merge Phase

The merge phase starts after all the nodes in the cluster send the spanning

episodes to a central node responsible for merging the partial support of these episodes

and validating them. First, the partial support count of each episode from all the nodes

is added to get their cumulative support count. Once the cumulative support count for

each episode is obtained, the pruning phase starts. This phase, as described in the Naïve

approach, is executed to identify whether the episode is a valid episode or a false

positive.

3.16 Advantages and Disadvantages

We assume that the number of spanning episodes is less and hence duplicate

them at all nodes. If the number of spanning episodes is significant, the number of

episodes to be validated by each node would increase. This would make the computing

60

support phase more expensive leading to an increase in the total time to validate.

Moreover, each node in the cluster will have to send the partial support count of the

spanning episodes to a central node for merging the partial support count and validating

them. This is an additional phase compared to the partitioned approach where we carry

forward the partial support of spanning episodes and discard once they satisfy the

minimum support. The time to merge depends on the number of spanning episodes and

is this overhead is meager when compared to the benefits achieved in the total time to

validate all episodes in parallel. On the other hand, the merge phase cannot start until it

receives spanning episodes from all the nodes taking part in the validation. This might

prove to be a bottleneck if load balancing is not achieved while distributing the load to

each node in the cluster. For very large data sets where the number of episodes to be

validated is really high, we can observe significant reduction in the response time as the

number of nodes available to validate increases.

61

CHAPTER 4

IMPLEMENTATION OF VALIDATION ALGORITHM

We choose a main memory approach to validate the frequent episodes. Here, we

need to maintain two types of information for each episode. First, the output of Hybrid-

Apriori algorithm needs to be stores, which consists of the events in the episode, the

start time and the end time of the episode and the episode confidence needs. Second, we

need to compute the support count of each event in the episode for the specified

granularity and store it while making a single scan over the raw data set. We compute

the support count for each event in an episode by scanning the raw data. To distinguish

the false positives from the correct frequent episodes, the validation of events starts

after the computation phase. Having all the information at a single place simplifies the

analysis and increases the efficiency of the validation phase. In addition, the episode

discovered by Hybrid-Apriori could be of different granularity and different sizes.

Considering all the possible variations of an episode, we chose to represent an episode

as an object. An object gives us the flexibility to encapsulate all the attributes at a single

place. We can store multiple objects inside a single object, and decide the size of the

object at runtime thereby allowing us to deal with any type of variations in the set of

episodes to be validated.

62

Figure 12 Episode Object

The figure above represents an object that encapsulates the attributes of an

episode and also contains the data structures to store the computed support of each

event in the episode. The patternId uniquely identifies each episode to be validated. The

start time and the end time denote when an episode starts and ends and are used to

compute the support of events participating in the episode. The patternConfidence

attribute holds the confidence of the episode discovered. The patternType attribute is a

derived attribute of an episode. It is used in the partition and the parallel approaches. Its

value depends on the partition time-points, the start time and the end time of the

episode. It can take one of the three values: {0, 1, 2}. The mapping for these values is:

Normal Episode = 0, Spanning Episode = 1 and Folding Episode = 2. The itemSet

object is a vector that consists of all the events forming a frequent episode. The vector

data structure in Java is a dynamic array that can grow at run time as needed. The size

of this vector depends on the number of events in an episode. The number of events in

an episode is not known in advance and hence a data structure such as an array cannot

+HybridPattern() : Object

-patternId : int
-itemSet : Object
-startTime : Date
-endTime : Date
-patternConfidence : double
-patternType : int

«implementation class»
HybridPattern

63

be used making the vector an ideal choice. Each event in the vector has two attributes:

item name and item support. Each event in the itemSet vector has an instance of the

item object. The class diagram for the item object is shown in the following figure:

Figure 13 Event Object

Thus, an itemSet will contain multiple items and each item would contain the

item name and its support array. For daily periodicity, we need to compute the support

for all weekdays and hence the array size is seven. For weekly periodicity, we need to

compute the support for all months in a year and hence the array size is twelve. We

choose an array to store the support of an event on a given day for two reasons. First,

the size of the support array depends on the periodicity and the periodicity of the

discovered episodes is known to us in advance. Secondly, the array index can be easily

used to represent a unique weekday and updating the support would be easy. The Java

API for date returns the weekday or the month as an integer and we map this to the

array index of the support array. The following figure displays an itemSet for an episode

of size three with daily periodicity. This vector of events contains the event names and

their corresponding support stored in an array.

+Item()
+initSupport() : Object

-itemName : String
-itemSupport : Object

«implementation class»
Item

64

Figure 14 Vector of Events with their Support

The validation process starts with the building phase. Here, we read all the

episodes from the database and represent them as objects in main memory with the help

of the data structures explained above. We use the hash table data structure in Java to

store all the information related to an episode. The building phase creates two hash

tables: The first is the hash table of episodes while the second is the hash table of

episode-ids grouped by the events in an episode. We maintain two hash tables because

updating the support of an event in a given episode is a computationally intensive

operation and the number of events in the raw data set is very large. For each event we

need to retrieve all the episodes and check whether the event occurrence time in the raw

data set is within the range of the start and the end time of the episode. We can do this

with a single hash table too. But that would be an exhaustive approach whereby for each

event in the raw data set we need to examine the start time and the end time of all the

ItemObject1

ItemName

Support
Array
Object

ItemObject1

ComputerOn

Support[0]

Support[1]

Support[3]

Support[2]

Support[4]

Support[5]

Support[6]

ItemObject1

ItemSetVector

ItemObject2

ItemObject3

65

episodes irrespective of the fact that an event may or may not be present in an episode.

Even after going through the entire table it is not necessary that an event has at least one

corresponding episode where it occurs since the raw dataset has many events that do not

occur in any episode. In addition, the number of times the hash table of episodes will be

accessed will increase with increase in the size of the raw data set. In order to deal with

such situations we create a second hash table. This hash table contains all the episodes

grouped by their episode-ids. Thus for a given event in the raw data set we fetch the list

of episode-id where it occurs. Now for each episode-id in this list we fetch a

corresponding episode from the hash table of episodes and check the time interval to

update the support. Thus by grouping the episodes on their events in a separate hash

table significant reduction is achieved in the number of episodes we access for each

event. In addition, the cost of creating the second hash table is not significant since it is

done simultaneously with the creation of hash table of episodes. This hash table

contains the episode list that is a vector object which grows dynamically based on the

number of episodes where an event occurs. The event is the key and the list of episodes

where the event occurs is the value in this episode list hash table. As explained above,

this vector of episode-ids in hash table helps us to efficiently retrieve the relevant

episodes in the computing phase of the validation.

The following figure displays the hash table of episodes for three episodes and

the corresponding hash table of events containing the list of episode-ids where an event

occurs.

66

Figure 15 Hash Table of Episode and Episode-Id

We now explain the different phases in the validation algorithm with respect to

the implementation details. The validation phase starts with the building phase that

reads all the episodes from the database and creates a hash table of episodes and a hash

table of episode list. It reads an episode at a time from the database and stores in the

main memory data structure discussed above. The episode-object is then stored in a

hash table with the unique episode-id as its key. Simultaneously, we create a new

episode-id list for each of the events in the episode or append the episode-id if one

exists. The computing phase starts once all the episodes have been stored in the hash

table and the corresponding episode-id list is built. In the computing phase, we make a

StringObject HybridPatternObject

1ComputerOnFanOnLampOn HybridPatternObject1

2FanOnLampOnRadioOn HybridPatternObject2

3FanOnLampOnTVOn HybridPatternObject3

EpisodeHashTable

Episode-Id List
HashTable

StringObject VectorObject

VectorObjectItemName

VectorObject1ComputerOn

VectorObject1

1ComputerOnFanOnLampOn

VectorObject2FanOn

VectorObject2

1ComputerOnFanOnLampOn

2FanOnLampOnRadioOn

3FanOnLampOnTVOn

VectorObject3LampOn

VectorObject4RadioOn

TVOn VectorObject5
VectorObject5

3FanOnLampOnTVOn

67

single pass over the raw dataset in the database. Each tuple in the raw dataset is an event

occurring at a particular time point. For each tuple, we fetch the corresponding episode

list. The episode list contains a list of episode-ids of episodes where this event

participates. For each episode-id in the list, we fetch the corresponding episode object

from the episodes hash table. We now check whether the event transaction time falls in

the range of the episode time interval [StartTime, EndTime]. If it falls in this interval,

we ungroup the day and time of the transaction time of the event in the raw data set to

compute the weekday value. If the time component of the transaction time falls in the

interval range of the episode start time and end time, we use the weekday component of

the transaction time in the raw data set tuple and increment the corresponding week day

support array index for this event in the episode by one and update the hash table of

episodes. This process is repeated for each episode in the episode list. Once all the

episodes corresponding to this device are updated, we fetch the next tuple from the raw

data set and repeat the entire process of computing support.

In this way, we make a single scan over the raw data set and update the support

of corresponding events in each episode for the specified granularity. The process of

computing the support of an event is not straightforward since the episodes discovered

by Hybrid-Apriori do not contain any information for the next granularity e.g., an

episode for daily periodicity contains only the start time and the end time. As Hybrid-

Apriori is a SQL based approach, the episodes discovered have the first day of the

current month and year prefixed to the start and the end time. This is done so that the

aggregate operators of SQL such as the least and the greatest operator can be used in the

68

episode discovery process. On the other hand, the raw data contains all the information

pertaining to the date of the transaction i.e. the time, the day, the month and the year. In

order to compare the timings of the episode with the transaction time of the event in the

raw data set, we extract the time component from the episode and the event and prefix

the Java epoch date to this and then check whether the event time falls within the range

of the episode timings. If it does fall, we extract the weekday from the transaction date

of the event in the raw data set and update the appropriate support index of this event in

the episode.

Once the computing phase is over, validation is carried out for all the episodes

to distinguish the valid episodes from the false positives.

4.1 Implementation of the Partitioned Approach

The partitioned approach partitions the set of episodes and the raw data before

starting the validation process. Partitioning of episodes is done using two approaches:

Uniform distribution and Non-Uniform distribution.

The uniform distribution approach partitions the set of episodes on fixed time

units determined by the number of partitions. It takes advantage of the partitioning

feature of Oracle database. In Oracle8 and beyond, partitions are themselves segments

and they can be stored and managed independently of one another. Segments are

comprised of extents, and extents are comprised of blocks, with blocks being the

smallest unit of space actually managed by the database. The non-partitioned table is

also a segment. The EXCHANGE PARTITION operation used here changes the

identity of the partition to become that of a non-partitioned table, and then changes the

69

identity of the non-partitioned table to become that of a segment. This is done entirely

within the Oracle data dictionary. The identities of the segments themselves do not

change. Nor does any of the data within the segments get moved. Instead, the identity

of segment A (formerly a partition) is changed from SEGMENT_TYPE = ‘TABLE

PARTITION’ to ‘TABLE’, and the identity of segment B (formerly a non-partitioned

table) is changed from SEGMENT_TYPE = ‘TABLE’ to ‘TABLE PARTITION’. This

kind of identity switching is valid if and only if the partition and the table have the same

“logical shape” (i.e. same columns, data types, data-integrity constraints, etc). There are

many types of partitioning methods available. In our case, we use RANGE partitioning.

This type of partitioning creates partitions based on the “range of column" values. Each

partition is defined by a “Partition Bound" (non inclusive) that basically limits the scope

of partition.

We partition the table of episodes in the underlying database on their start time.

The sample queries shown below demonstrate the process of partitioning the table of

episodes.

1. ALTER SESSION set nls_date_format = 'dd-mon-yy hh24:mi:ss'

2. ALTER TABLE F_22 add (dtstarttimeNum number)

3. UPDATE F_22

set dtstarttimeNum =

lpad(TO_NUMBER(TO_CHAR(to_date(dtstarttime,'dd-mon-yy

hh24:mi:ss'), 'HH24miss')),6,'0')

4. CREATE TABLE F_22_P

70

(ID number, item1 varchar2(40) , item2 varchar2(40) ,

dtstarttime date, dtendTime date, confidence number,

dtstarttimenum number) NOLOGGING

partition by range (dtstarttimenum)

(Partition part6_4 values less than (240000))

5. ALTER TABLE F_22_P EXCHANGE PARTITION part6_4 with TABLE

F_22

6. ALTER TABLE F_22_P SPLIT PARTITION part6_4 AT (60000) INTO

(partition part6_1, partition part6_4)

7. ALTER TABLE F_22_P SPLIT PARTITION part6_4 AT (120000) INTO

(partition part6_2, partition part6_4)

8. ALTER TABLE F_22_P SPLIT PARTITION part6_4 AT (180000) INTO

(partition part6_3, partition part6_4)

The above set of SQL statements are used for partitioning based on uniform

distribution with number of partitions equal to four. All the episodes which start before

6 am belong to the first partition while episodes starting between 6 am and noon are

assigned the second partition and so on. Line number 1 sets the date format to our

context. Line number 2 and 3 are necessary because the episodes discovered by Hybrid-

Apriori do not contain the higher granularity information. The only valid component is

the time component. Therefore, line number 3 converts the time component of the start

time of the episode to a number. For example, an episode with start time “1-Oct-2005

13:07:56” will be converted to a number 1307056 and stored in the dtstarttimenum

71

column of the episode table F_22. Range partitioning is now done on this number (i.e.,

dtstarttimenum column as shown in line number 4). The statement in line number 5

swaps the F_22_p table's partition part6_4 with the table F_22. The contents of F_22

(episode table of size 2) are now in the part6_4 partition of F_22_p, and the F_22 table

is empty. Since this operation merely changes the data dictionary and does not

physically move data, it does not generate redo and is extremely quick. Next, as shown

in line number 6, we split this single partition, starting with the lowest boundary 6000

identified as partition part6_1. This SQL statement creates a new partition called

part6_1 and moves the rows with a dtstarttimenum value of less than 60000 into

partition part6_1 from part6_4. Since the table is defined as NOLOGGING, this doesn't

generate much redo. After this operation, the partition part6_4 contains data for the

partitions other than part6_1. We repeat this process for partition part6_2 and partition

part6_3 as shown in line number 7 and 8. At the end partition6_4 contains data

pertaining to its partition i.e., episodes in the time interval [18:00:00, 23:59:59]. This

process is repeated for episodes of all sizes. The partitioned approach to validate can

now access each partition in isolation by querying the episodes and the corresponding

raw data by their partition names.

Partitioning based on uniform distribution does not distribute equal workload

for skewed episodes – episodes having their time interval [start time, end time] more or

less similar. In order to deal with such episodes we implement a partitioned approach

based on the number of episodes discovered. For all episodes with the same episode

size, the total number of episodes is divided by the number of partitions to get the

72

maximum number of episodes in a partition (mk). We then fetch the start time of the

episode with episode-id equal to mk This process is repeated for episode of all sizes and

the maximum of the start time from these is taken as the partition time for the partition.

Once we are done with both the partitioning approaches, we examine the results

of partitioning to determine the approach that distributes the given set of episodes in the

best manner – achieving almost equal load balance among all partitions. We then start

the partition or the parallel approach to validate the frequent episodes by selecting the

best between the two approaches to partitioning.

The partitioned approach deals with three kinds of episodes. The first is a

normal episode, the second is spanning episode and the third is the wrapping episode.

The normal episode is the one that start and end in a single partition. The wrapping

episode is the one which spans multiple periods due to the inherent time wrap property

while the spanning episodes is the one which spans multiple partitions and it depends on

the number of partitions, the partition time point and the time interval of the episode.

The normal episodes are validated in the same partition but the wrapping and the

spanning episodes need to be carried forward with their partial support count computed

in the current partition to the consecutive partition. In order to differentiate the normal

episodes from the wrapping and the spanning episodes we use the episode type attribute

of the episode object as mentioned in the design section of this thesis. In the build phase

of each partition we identified the episodes type based on their start time and the current

partition times. This information is now used in the validation phase. In the validation

phase, the normal episodes are distinguished as valid episodes or false positives while

73

the spanning episodes are validated only if their end time is less than the partition end

time else they are carried forward to the next partition with their partial support. The

wrapping episodes are different from the spanning episodes in the sense that they are

always validated in the last partition. The reason being wrapping episodes may start or

end in any partition or they may span across multiple partitions but since we start the

validation process from the first partition we cannot compute the final cumulative

support until we have scanned the entire set of raw data events i.e. reached the last

partition.

The readPatternsWithPartition class implements the partition approach to

validate the frequent episodes. It is a sequential approach where each partition is

validated in sequence. At the end of each partition it carries forward the spanning and

the wrapping episodes with their partial support to the next partition and appends to the

hash table of episodes populated for that partition. Once the validation phase for the last

partition starts, it validates the wrapping episodes along with the other episodes.

4.2 Implementation of the Parallel Approach

The parallel approach begins with the partitioning of the episodes to validate.

The number of nodes available for computation decides the number of partitions to be

done. The number of partitions can also be computed based on the available memory.

All the participating nodes carry out the build and the computation phase in parallel. In

the validation phase, the normal episodes are validated in parallel while the support

count of spanning and wrapping episodes is sent to a central node where the partial

support count from each node has to be merged before they van be validated. The merge

74

process starts only after it receives partial support count from all the nodes participating

in the validation process. Once the merging is done, the process of validating the

episodes is similar to naïve approach.

4.3 Selecting Episodes spanning multiple partitions

Partitioning of episode using the partition feature of Oracle database does not

work in this approach since the partitions are to be validated in parallel. Hence we need

duplicate the spanning episodes in all partitions and send it to the nodes before the

process of validation can start.

Each server receives the information regarding the partition it has to process and

the corresponding partition values. In order to select the spanning episodes, we take a

SQL based approach. The sample SQL demonstrates how a server responsible for

processing partition number 2 would select the spanning episodes belonging to its

partition from a given set of episodes.

1. SELECT * FROM EpisodeTable f

2. WHERE

3. (/*EP STARTING IN A PARTITION*/

4. to_char(f.dtstarttime,'hh24:mi:ss') < to_char(f.dtendtime,'hh24:mi:ss')

5. AND to_char(f.dtstarttime,'hh24:mi:ss')>='prevPartitionTime' AND

to_char(f.dtstarttime,'hh24:mi:ss')<'currPartitionTime'

6.)

7. OR /*EP ENDING IN A PARTITION */

8. (to_char(f.dtstarttime,'hh24:mi:ss') < to_char(f.dtendtime,'hh24:mi:ss')

75

9. AND to_char(f.dtendtime,'hh24:mi:ss')>='prevPartitionTime' AND

to_char(f.dtendtime,'hh24:mi:ss')<='currPartitionTime'

10.)

11. OR /*EP SPANNING IN A PARTITION */

12. (to_char(f.dtstarttime,'hh24:mi:ss') < to_char(f.dtendtime,'hh24:mi:ss')

13. AND to_char(f.dtstarttime,'hh24:mi:ss')<'currPartitionTime' AND

to_char(f.dtendtime,'hh24:mi:ss')>='currPartitionTime'

14.)

15. OR /*TIME WRAP EPISODES DUE TO FOLDING*/

16. (

17. to_char(f.dtstarttime,'hh24:mi:ss') > to_char(f.dtendtime,'hh24:mi:ss')

18. AND to_char(f.dtstarttime,'hh24:mi:ss')>='prevPartitionTime' AND

to_char(f.dtstarttime,'hh24:mi:ss')<'currPartitionTime'

19.)

20. OR

21. (to_char(f.dtstarttime,'hh24:mi:ss') > to_char(f.dtendtime,'hh24:mi:ss')

22. AND to_char(f.dtendtime,'hh24:mi:ss')>='prevPartitionTime' AND

to_char(f.dtendtime,'hh24:mi:ss')<='currPartitionTime'

23.)

24. OR

25. (to_char(f.dtstarttime,'hh24:mi:ss') > to_char(f.dtendtime,'hh24:mi:ss')

26. AND to_char(f.dtendtime,'hh24:mi:ss')>'currPartitionTime' AND

to_char(f.dtstarttime,'hh24:mi:ss')>='prevPartitionTime' AND

to_char(f.dtstarttime,'hh24:mi:ss')<='240000'

76

27.)

Line number 1 selects all the episodes of size two from the database. Line

numbers 4 to 14 deals with normal episodes and spanning episodes while line numbers

15 to 27 deals with folding episodes which by default span at least two partitions. Line

number 4 to 6 selects normal and spanning episodes that start in the current partition.

Line number 7 to 10 selects episode that end in current partition. Line number 11 to 14

selects episodes that neither starts nor ends in the current partition but still span across

the current partition. Line number 15 to 27 selects all the wrapping episodes. The

conditions checked here are similar to the ones for normal and wrapping episodes. To

summarize, for each partition we look for episodes that start, end or span across this

partition.

The parallel approach to the validation of episodes is a distributed approach

which uses the Java Remote method invocation framework by Sun Microsystems. RMI

capability in Java supports calls to remote procedures. It allows a thread in one JVM to

invoke (call) a method in an object in another JVM that is perhaps on a different

physical machine. A new thread is created in the other (remote) JVM to execute the

called method. Parameters to the remote method and the method's return result, if any,

are passed from one JVM to the other using object serialization over the network.

77

4.4 RMI Architecture for parallel approach

Figure 16 Architecture for the Parallel Approach

As shown above, the central node is responsible for allocating the workload to

each node available for parallel computation and validation of the episodes. The central

node reads a configuration file that contains all the information related to the remote

objects. This file contains the number of nodes available for processing, the uniform

resource locator (URL) and the port number of server. The number of partitions created

is equal to the number of nodes available. Based on the number of partitions, database

of episodes is scanned to generate the partition start and end time for each partition.

This is done for non-uniform distribution approach. For uniform distribution of

episodes, we simply generate timestamps based on the number of partitions. Once the

Central Node

Thread 1 at
Central Node

Server 1
(Remote Object)

129.104.1.10

Server 3
(Remote Object)

129.104.1.12

Server 2
(Remote Object)

129.104.1.11

Database Server

129.104.1.09

129.104.1
.22

Server n-1
(Remote Object)

129.104.1.20

Server n
(Remote Object)

129.104.1.21

Thread 2 at
Central Node

Thread 3 at
Central Node

Thread n-1 at
Central Node

Thread n at
Central Node

78

partition time points are generated, the central node generates a thread for each node

and passes it the URL, port number and the partition information. This thread is

responsible for invoking the validatePartition method of the remote object by sending

the partition information to the server on the remote node. The remote servers upon

receiving the partition information dynamically create the SQL for selecting the

relevant episodes from the database of episodes. The entire process of validating the

episodes as explained in the naïve approach – build phase, support counting phase and

the validation of normal episode now starts at each node in parallel. The spanning and

the wrapping episodes with their partial support count are sent back the client thread.

The client thread sends the results back to the central node that waits for the results to

arrive from all the nodes. Once all the results arrive the merge phase starts at the central

node.

4.5 Merge Phase at the central node

Once all the spanning episodes with their partial support counts from all nodes

are received at the central node, the merge phase starts. In this phase, we merge the

partial support counts of an episode to get their cumulative support count. The pseudo

code for this is shown below. The hash table containing the partial support count of

spanning episodes computed at each node is termed as local hash table (localHT) and

the hash table with the cumulative support count is termed as global hash table

(globalHT). Once the merge phase is over, we start the validation phase that is same as

the validation phase in Naïve approach.

79

1. Create an global hash table ‘globalHT’ for merging the spanning episodes from all

nodes

2. For each local hash table ‘localHT’ of spanning episodes

3. Fetch the episode-key Ki of a spanning episode

4. If the key Ki does not exist in the globatHT

5. Fetch the corresponding spanning episode from the localHT

6. Insert the episode-key and the spanning episode into the globatHT

7. Else

8. Fetch the spanning episode corresponding to this episode-key Ki from the

localHT

9. Fetch the spanning episode corresponding to this episode-key Ki from the

globalHT

10. For each event in the spanning episode of localHT

11. Update the support count of the event in the spanning episode in the

globalHT for the given granularity

Once the merge phase is over we have the cumulative support of the spanning

episodes. The validation phase now distinguishes the false positives from the valid

episodes.

80

4.6 How Java RMI works for the parallel approach

The following table displays the major classes in our implementation of the

parallel approach with their corresponding purpose.

Table 8 Parallel Approach – Implementation overview
Purpose Class Name
1) Interface for remote objects ValidatePatternInterface
2) Remote Object responsible for validation RemoteObjectValidate
3) Serve responsible to serve the clients and invoke the
remote objects ValidateServer
4) Client responsible to send the work load to the remote
object ValidateClientThread
5) Responsible for validating the episodes ValidateWorker
6) Central node responsible for partitioning and creating
threads for each remote object available for validation,
merging and validating the spanning episodes ValidateClient

Here the remoteObjectValidate is our remote object that implements a

validatePatternInterface interface containing a validatePartition method responsible to

validate the partition of episode assigned to it. This method is a remote method which

can be invoked by the clients to validate a set of frequent episodes. The remote object

registers itself with the RMI server validateServer for the clients to locate it. The

validateClient class that acts as a central node is responsible for creating multiple

threads, one each for a server responsible to do the majority of computing. The central

node creates a thread each for the remote servers. The local client thread

validateClientThread passes a validateInfo object as a parameter to the RMI server. The

validateInfo object is an information triplet (IP address, port number, partition to

process) indicating the partition to process and the server responsible for that partition.

81

The RMI server receives this information and passes it to the remote object for further

processing. The remote object for the given work load does all the processing and

returns the results back to the client thread which in turn passes it to the central node.

Thus the client thread lets the remote object to have work performed on its behalf

(computing support of the episodes, validating the normal episodes and returning the

spanning episodes yet to be validated) and returns the results to the central node for

further validation. After receiving the results from all the client threads starts, the

central node starts the merge phase. In the merge phase, the partial support counts of

each spanning episode are summed up to get their cumulative support.

82

The table below summarizes the sequence of steps in the parallel approach

discussed earlier.

Table 9 Sequence of steps in the parallel approach

Steps Validate Client / Central Node Validate Client thread/ Multiple
Threads at Central Node

Remote object
validate /
Multiple
Remote
Objects/Servers

1 Partition the episodes to be validated
based on the number of servers
available.

2 Create a thread each for all the servers
and send each thread one partition
information and a reference of central
node for callback when the partition
results are available from the server

3 Listen to the all the threads to receive
the result set

4 Receive the partition information from the
central node – validate client

5 Look up the remote object/server and send
it the partition information

6 Wait for the server to return the hash table
of spanning episodes and the result of
normal episodes

7 Receive the
partition
information from
the validate client
thread

8 Compute the
support and
validate the
normal episodes

9 Send the spanning
episodes with their
support count and
the result of
normal episodes

10 After receiving the spanning episodes with
their support count, return the result back
to the central node

11 Start merging when results from all
servers have arrived.

12 Merge the partial support counts and
validate the spanning episodes

83

4.7 Summary

This chapter discussed the implementation process to validate frequent episodes.

We propose three approaches to validation and discuss the implementation requirements

of each followed by the implementation issues associated with each approach. We also

discuss the advantages and limitations of each approach. In the next chapter, we

demonstrate the performance and scalability aspects of each approach through extensive

experiments.

84

CHAPTER 5

EXPERIMENTAL RESULTS

In this chapter, we discuss the experimental results for our three approaches to

validate frequent episodes. The objective is to test the performance and scalability of

these algorithms.

Experimental Setup: Experiments for the naïve and partitioned approach were

run on machine with id=1. Parallel approach with three nodes used all the three

machines.

Table 10 Experimental set up

Id 1 2 3
Memory in
GB 1 2 2
Linux type i386 GNU/Linux i386 GNU/Linux i386 GNU/Linux

Version
Red Hat Linux 3.2.3-
53 Red Hat Linux 3.2.3-52

Red Hat Linux 3.2.3-
53

Database Oracle 10G - -

Dataset: A five-month synthetic data is used to test the correctness and the

performance of the validation approaches. We extract data set for one week, one month,

two months and four months from this data set and run the Naïve approach to study the

change in response time with respect to increase in the data set size and hence the

number of episodes to validate. The partitioned approach and the parallel approach are

run for the largest data set size of five months and their performance is compared with

85

 the Naïve approach. For the partition approach, we vary the number of partitions and

analyze variations in response time with the increase in the number of partitions.

The final response time is calculated by taking the average of five runs.

5.1 Performance of Naive approach for daily periodicity

Figure 17 Performance of Naïve Approach with different synthetic data sets

The graph above shows the response time of Naive approach for different sizes

of synthetic data sets as displayed in the table below.

Table 11 Synthetic data set

Type of Data set Synthetic data
Number of
Days in data set

Number of
Events

Number of
Episodes

7 7488 485
30 37440 1476
60 71136 7253
120 151008 6466
150 188848 10198

Naive Approach - Response Time
(Daily periodicity)

0

7

14

21

28

35

No of
Events

7488 37440 71136 151008 188848

No Of
Episodes

485 1476 7253 6466 10198

Number of Episodes to validate

R
ep

so
ns

e
Ti

m
e

in
 m

in
ut

es

86

The experiment is run for a one week, one month, two months, four months and

five month data set. As the graph demonstrates, the time taken by naive approach

depends on the size of the raw data set and the number of episodes to validate. For the

four month data set, we observe that the number of episodes to validate is less than that

of the two month data set but the two month data set is almost double in size and hence

the time taken to validate a four month data set having a lesser number of episode is still

more than the time taken to validate a two month data set.

5.2 Comparison of response time of partitioned approach for daily periodicity

Effect of increase in number of partitions on response time in partitioned

approach for daily periodicity (five month synthetic dataset)

Figure 18 Performance of Parallel Approach for synthetic data set

The above graph demonstrates the effect of memory on the response time for a

synthetic data set worth five months. The details of this data set are described in Table

11. As we increase the number of partitions the number of episodes required to be

Peformance of Parallel Approach
(Daily periodicity)

0

7

14

21

2 4 6 8 12

Number of partitions

R
es

po
ns

e
tim

e
in

m

in
ut

es

87

validated in a partition decreases but the available memory remains the same. As a

result significant reduction in response time is seen with the increase in the number of

partitions. But we can also observe from the following table that the percentage

reduction achieved is not proportional to the increase in the number of partitions, which

implies that the benefit decreases as the number of partitions increases.

Table 12 Evaluation of Partitioned Approach

Base Case Partitions = 2
 Response time in minutes 17.34
Number of Partitions % Improvement in response time Actual Response time
4 52% 9.01
6 35% 6.12
8 29% 5.04
12 24% 4.24

Effect of increase in number of partitions on response time in partitioned

approach for daily periodicity (six month MavHome data set)

Figure 19 Performance of Partitioned Approach for daily periodicity

Performance of Partitioned Approach

0
8

16
24
32
40
48
56
64

4 8 12 24

Number of Partitions

R
es

po
ns

e
tim

e
in

 m
in

ut
es

88

The graph above demonstrates the response time of partitioned approach for

experiments run on MavHome dataset for six months in table 14 for daily periodicity.

As seen from the graph above, the partitioned approach performs well as we increase

the partition. For twenty-four partitions, it validates all the episodes in less than fifteen

minutes. The primary reason for this reduction is the reduced size of the hash table of

episode. As a result, the number of episodes to validate per event instance in the raw

dataset reduces significantly.

Table 13 Partitioned approach - percentage improvement in response time

Base Case Partitions = 4
 Response time in minutes 56
Number of Partitions % Improvement in response time Actual Response time
8 67.06% 37.55
12 53.41% 29.91
24 26.32% 14.74

5.3 Performance of Parallel Approach for daily periodicity

Figure 20 Performance of Parallel approach for synthetic data set

Parallel Approach

0
2
4
6
8

10
12
14

2 3 4

No of nodes

Ti
m

e
in

 m
in

ut
es

89

The above graph demonstrates the experiments for a five-month dataset run in

parallel with two nodes, three nodes and four nodes. This data set contains 188848

events and Hybrid-Apriori discovers 10198 episodes with maximum episode size of

four. The response time decreases with the increase in the number of nodes available for

validating. But as seen from the table below the reduction in response time is not

proportional to the increase in number of nodes.

Table 14 Parallel Approach - percentage improvement in response time

 Actual
Response time

Base Case Nodes=2 12.57
Number of
Partitions/Nodes

% Improvement in
response time

3 50.84% 6.39
4 34.37% 4.32

Table 15 MavHome data set

Dataset MavHome Number of Days=180
Events 217275
SIDs 1634
Episodes 12956
Periodicity Daily

Algorithm
Response Time
(minutes)

Logarithmic
Response time

SID 2.60 0.42
HA 3.29 0.52
Naïve 652.20 2.81
Partition
No. of Partitions

4 56.00 1.75
8 37.55 1.57

12 29.91 1.48
24 14.74 1.17

Status of Episodes
Valid 58469
Invalid 32223

90

Dataset: The following experiments were conducted on the MavHome dataset worth

six months. This dataset has been collected from MavHome and it consists of 217,275

unique event instances with 145 unique events in it. SID discovered 1634 significant

intervals and Hybrid Apriori found 12959 episodes.

5.4 Performance comparison of each approach for daily periodicity

Figure 21 Performance of all three validation approaches

The above graph shows the response time of each approach for five months

synthetic data. This data set contains 188848 events and Hybrid-Apriori discovers

10198 episodes with the maximum episode size of four. The partition and parallel

approach are initially run for two partitions. For parallel approach, the number of

partitions is the number of nodes validating in parallel. As the graph demonstrates time

taken by parallel approach is the least while that by naïve approach is the most. As we

Comparing Naive with Partition and Parallel
Approach (Daily periodicity)

0
7

14
21
28
35
42

Naïve Partition Parallel

Validation Approach

Ti
m

e
in

 m
in

ut
es

Two Partitions Three Partitions

91

increase the partitions or the number of nodes, the time to validate the episodes reduces

further.

The following graph demonstrates the response time of SID, Hybrid-Apriori,

Naïve and Partitioned algorithm with number of partitions equal to 24. The experiments

were run for daily periodicity with the MavHome dataset for six months whose details

are shown in the table 13 above. This particular graph converts the response time in

minutes to the logarithmic scale as the difference between SID and Naïve is very large.

Figure 22 Performance Comparison of all phases in Episode Discovery process

As seen from the above graph, the naïve approach to validate takes significant

time to validate the episodes. It takes approximately eleven hours to validate. This is

because we store and validate all the episodes in the main memory at the same time

while for partitioned approach with number of partitions set to twenty-four, each

partition is stored and validated in isolation and significant difference in response time

0.42 0.52

2.81

1.57

0.00
0.50
1.00
1.50
2.00
2.50
3.00

Significant
Intreval

Discovery

Hybrid Apriori Naïve Partitioned
Approach (p=24)

Algorithm Name

L
o

g
ar

it
h

m
ic

 R
es

p
on

se
T

im
e

92

is seen. The reduction in response time is because partitioning reduces the number of

episodes to validate and corresponding raw data set but the available memory remains

the same.

5.5 Performance of Naïve Approach for Weekly Periodicity

The following graph shows the response time of Naïve approach for synthetic

data sets of 9 weeks and 22 weeks. The nine weeks data set consisted of 74880 events

and 2949 episodes while the twenty-two weeks data set consisted of 217275 events and

Hybrid Apriori discovered 11108 episodes. As observed for daily periodicity, the

response time for weekly periodicity also increases with the increase in the size of the

raw data set and the number of episodes to validate.

Figure 23 Performance of Naïve Approach for Weekly Periodicity

Naïve Approach - Weekly Periodicity

3.02

27.17

0
8

16
24
32

74880 217275

2949 11108

9 22

Total Events, Number of Episodes, No of Weeks of Data

R
es

po
ns

e
Ti

m
e

in

M
in

ut
es

93

5.6 Configuration File

The following table displays the parameters used in episode discovery process

by SID, Hybrid-Apriori and the three approaches to validation.

Table 16 Configuration Parameters

Configuration Parameters Description
Parameters for Significant Interval Discovery
Measure Metrics to be used to generate intervals
 It could be interval length, and/or interval confidence

Req_Confidence
Desired confidence for the intervals generated.
This value is between 0 and 1

Granularity
It specifies the granularity of time for which the information is
collected

 It may be seconds, minutes or hourly.
Interval_Length Specifies the interval length that the user is interested in

Number_of_Days
Number of days is the total number of days for which data is
collected

Approach_Number Type of SID to use. It could be SID[1], SID[n-1], or SID[n-2]
Time_Series Type of data to operate on. It could be time series or numerical
Input_File Input file for numerical data
Period Periodicity could be daily or weekly
Parameters for Hybrid Apriori
Interval_Semantics Type of semantics to discover episodes.
 It could be semantics start or semantics end
Sequential_Window Window parameter for intervals to form an episode
Pattern_Confidence Confidence parameter to prune the episodes discovered
StopLevel Upper bound on the size of episode discovered
 Terminating condition for the episode discovery algorithm
Parameters for partitioned approach
TypeOfPartition Partitioning method
NoOfPartitions Number of partitions to be done
Parameters for parallel approach
NoOfProcessors Number of nodes available for the parallel approach
URLforRemoteObject URL for the remote object
PortNoForRemoteObject Port number on which the Server listens for client requests
Parameters for database
RawDataSource Data source for the algorithm
NameOfDatabase Database name
NameOfMachine Machine name where it is located
NameOfUser User name
PasswordOfUser Password
DBPort Port number of the database
Other Parameters
Complete_Debug Debugging flag
NumberOfThreads No of threads to be created. Used by SID to generate significant
 intervals for each device in parallel

94

5.7 Log files

The validation approach generated log files at the end of each run. It generates

logs related to run time information, episode status and device support. The sample

snippets of each are shown below:

5.7.1 Log file for Episode Status

CreateLog: Starting Logging Tue Sep 06 23:43:33 CDT 2005

Pattern=$948KidsRm1Lamp_OffKitchLght1_Off$ is invalid for weekday=0

Pattern=$948KidsRm1Lamp_OffKitchLght1_Off$ is valid for weekday=1

Pattern=$948KidsRm1Lamp_OffKitchLght1_Off$ is valid for weekday=2

Pattern=$948KidsRm1Lamp_OffKitchLght1_Off$ is valid for weekday=3

Pattern=$948KidsRm1Lamp_OffKitchLght1_Off$ is invalid for weekday=4

Pattern=$948KidsRm1Lamp_OffKitchLght1_Off$ is valid for weekday=5

Pattern=$948KidsRm1Lamp_OffKitchLght1_Off$ is valid for weekday=6

Episode=$948KidsRm1Lamp_OffKitchLght1_Off$ is valid for at least one

weekday

5.7.2 Log file for device support

CreateLog: Starting Logging Tue Sep 06 23:43:33 CDT 2005

###############Next Pattern ##############

Pattern = 948KidsRm1Lamp_OffKitchLght1_Off

StartTime08:22:00,End Time09:22:00

<---Item=KidsRm1Lamp_Off-------->

 Weekday=1, Support=1

95

 Weekday=2, Support=2

 Weekday=3, Support=1

 Weekday=4, Support=1

 Weekday=5, Support=2

 Weekday=6, Support=2

<---Item=KitchLght1_Off-------->

 Weekday=1, Support=1

 Weekday=2, Support=2

 Weekday=3, Support=2

 Weekday=5, Support=1

 Weekday=6, Support=1

96

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

There is ongoing research on sequence mining of time-series data. We study

Hybrid Apriori, an interval based approach to episode discovery that deals with

different periodicities in time-series data. Our study identifies the anomaly in the

Hybrid Apriori by confirming the false positives in the frequent episodes discovered.

The anomaly is due to the folding phase of the algorithm that combines periods in order

to compress data.

We propose a main memory based solution to distinguish the false positives

from the true frequent episodes. Our algorithm to validate the frequent episodes has

several alternatives such as the Naïve approach, the Partitioned approach and the

Parallel approach in order to minimize the overhead of validation in the entire episode

discovery process and is generalized for different periodicities. The naïve approach

validates all the episodes and verifies the correctness, partitioned Approach allowing us

to validate large number of episodes by controlling main memory usage and the parallel

approach allows using as many processors as possible making it a scalable and

performance-oriented approach. The following table summarizes the key features of

each approach.

97

Table 17 Comparison of Validation approaches

Features Naïve Partitioned Parallel

Approach Type Sequential Sequential Parallel
Main memory dependency Most Less Least
Response Time Good Very Good Best
Scalable Least More Most

Dependency on episode
distribution

No Yes Yes

Support for Data set size Small Very Large Very Large

Extensive experiments have been conducted to demonstrate the performance and

scalability of each approach using synthetic and MavHome data sets. The experiments

conducted indicate that the naïve approach has a limit on number of episodes it can

validate while the partitioned approach, divide and conquer approach, can validate

larger set compared to naïve approach. With the increase in number of episodes and

increase in maximum size of episodes, the response time of naïve approach also

increases. The type of partitioning method used affects the performance of the

partitioned approach e.g., for same dataset, partitioning based on uniform distribution

gives better performance than partitioning on non-uniform distribution. The number of

partitions of episodes to validate affects the performance of the partition approach but

the percentage improvement achieved is not proportional to the percentage increase in

the number of partitions. This holds true for number of nodes in the parallel approach

too.

98

6.2 Future work

The current implementation of the Naïve approach computes the support count

by scanning each event instance, ordered by time, and updating the support of the

episodes containing this event. This can be optimized by ordering the raw data set on

the events instead of the time and fetching a batch of event instances and modifying all

the corresponding episodes for the entire batch. This will significantly improve the

response time of the naïve approach.

The response time of the partitioned approach and the parallel approach are

dependant on the distribution of the episodes over a given period. The current

implementation of algorithm to partition the episodes works well for uniform

distribution of episodes but is unable to achieve equal workload for different types of

skewed distributions. An efficient algorithm to deal with skewed distribution, which can

ensure equal distribution of workload in each partition/node, is required to achieve

better response time for the validation algorithm.

99

REFERENCES

1. Heirman, E., Using Information-theoretic Principles to Discover Interesting

Episodes in a Time-ordered Input Sequence, Computer Science and

Engineering. 2004. The University of Texas at Arlington: Arlington.

2. Agrawal, R. and R. Srikant. Mining Sequential Patterns. In ICDE95, Taipei,

Taiwan, pages 3--14, 1995.

3. Han, J. and M. Kamber, Data Mining : Concepts and Techniques. 2001: Morgan

Kaufmann Publishers.

4. Mannila, H., H. Toivonen, and I. Verkamo. Discovering Frequent Episodes in

Sequences. In KDD95, Montreal, Canada, pages 210--215, 1995.

5. A.Srinivasan, S.Shrestha, and S.Chakravarthy. Discovery of Significant Intervals

in Sequential Data. In 1st ADBIS Workshop on Data Mining and Knowledge

Discovery, Tallinn, Estonia, 2005.

6. Han, J., W. Gong, and Y. Yin. Segment-Wise Periodic Patterns in Time Related

Database. In KDD98, New York City, New York, USA: AAAI Press, pages

214--218, 1998.

7. Zaki, M.J., SPADE: An Efficient Algorithm for Mining Frequent Sequences.

Machine Learning Journal, special issue on Unsupervised Learning. Vol.

42(1/2): p. 31--60, 2000.

100

8. Zaki, M.J. Sequence Mining in Categorical Domains: Incorporating

Constraints. In CIKM2000, McLean, Virginia, USA, pages 422-429, 2000.

9. Srikant, R. and R. Agrawal. Mining Sequential Patterns: Generalizations and

Performance Improvements. In EDBT96, Avignon, France, pages 3--17, 1996.

10. Cook, D.J., et al. MavHome: An Agent-Based Smart Home. In PerCom03, Fort

Worth, Texas, USA, pages 521--524, 2003.

11. A.Srinivasan, D.Y.Bhatia, and S.Chakravarthy. Discovery of Interesting

Episodes in Sequence Data. (To Appear) In SAC06, Dijon, France, 2006.

101

BIOGRAPHICAL INFORMATION

Dhawal Bhatia was born on December 21, 1976 in Ahmedabad, India. He

received his Bachelor of Science in Mathematics degree from Gujarat University,

Gujarat, India in April 1997 and Master of Computer Application degree from Gujarat

University, Gujarat, India in July 2000. On graduation he was recruited by the Center

for Electronic Governance (CEG) at the Indian Institute of Management, Ahmedabad

(IIM-A) where he worked for a period of three years. In his role as a research

associate/software developer, he was involved in development of E-Government

projects for the State Government and the Central Government of India. He also

participated in the cost-benefit analysis of E-Government projects for the World Bank

and the Asia Foundation. In fall 2003, he commenced his second graduate program in

Computer Science at The University of Texas, Arlington. He received his Master of

Science in Computer Science from The University of Texas at Arlington in December

2005. Dhawal’s research interests include Decision Support Systems, Prediction

Algorithms, Data warehousing, Data Mining and Business Intelligence.

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	INTRODUCTION
	Sequential pattern mining
	Sequential mining for transactional data
	Sequential mining for time-series data
	Sequential mining for interval based time-series data

	Problem Domain
	Hybrid-Apriori
	
	Anomalies in Hybrid-Apriori

	Proposed Solution
	Other Contribution

	RELATED WORK
	Introduction
	GSP
	WINEPI and MINEPI
	ED
	Hybrid-Apriori
	Hybrid-Apriori and Traditional mining algorithm
	Benefits and issues in Hybrid Apriori

	APPROACHES TO VALIDATE FREQUENT EPISODES
	False Positives and Periodicity of Frequent Episodes
	False Positives and the Process of Discovery of Episodes – An Illustration
	Algorithm Overview
	Building Phase
	Support Counting Phase
	Pruning Phase

	Basic Issues in Identifying False Positives
	Periodicity
	Wrapping Episodes
	S
	Size of the episode discovered
	Computing the support of events in an episode in a single pass

	Analysis of Time Complexity
	Naïve Approach to Identify False Positives
	Pseudo code for Building Phase
	Pseudo code for Support Counting Phase
	Pseudo code for Validate Phase

	Design for Algorithm to Validate Frequent Episodes
	Design for Building Phase
	Design for Support Counting Phase
	Design for Pruning Phase

	Characteristics of the Naïve approach
	Partitioned Approach to Identify False Positives
	Issues in Partitioned Approach
	Size of a partition
	Distribution of episodes
	How to partition an episode

	Phases in Partition Approach
	Partitioning Phase
	Uniform Distribution
	Non-Uniform Distribution

	Fetching Phase
	Building Phase
	Support Counting Phase
	Pruning Phase
	Carry forward Phase

	Advantages and Limitations of Partitioned Approach
	Parallel Approach to Identify False Positives
	Issues in Parallel Approach
	Episode spanning multiple partitions
	Merge the partial support count of spanning episodes

	Phases in Parallel approach
	Advantages and Disadvantages

	IMPLEMENTATION OF VALIDATION ALGORITHM
	Implementation of the Partitioned Approach
	Implementation of the Parallel Approach
	Selecting Episodes spanning multiple partitions
	RMI Architecture for parallel approach
	Merge Phase at the central node
	How Java RMI works for the parallel approach
	Summary

	EXPERIMENTAL RESULTS
	Performance of Naive approach for daily periodicity
	Comparison of response time of partitioned approach for daily periodicity
	Performance of Parallel Approach for daily periodicity
	Performance comparison of each approach for daily periodicity
	Performance of Naïve Approach for Weekly Periodicity
	Configuration File
	Log files
	Log file for Episode Status
	Log file for device support

	CONCLUSIONS AND FUTURE WORK
	Conclusions
	Future work

	REFERENCES
	BIOGRAPHICAL INFORMATION

