
  

APROACHES FOR VALIDATING FREQUENT EPISODES BASED ON 
PERIODICITY IN TIME-SERIES DATA 

 

by 

 

DHAWAL Y BHATIA 

 

Presented to the Faculty of the Graduate School of 

The University of Texas at Arlington in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

MASTER OF SCIENCE IN COMPUTER SCIENCE 

 

 

THE UNIVERSITY OF TEXAS AT ARLINGTON 

December 2005



ii 

ACKNOWLEDGEMENTS 
 

Firstly, I would like to express my deepest sincere gratitude to my advisor, 

Sharma Chakravarthy, for his magnanimous patience, guidance and support through the 

course of this research work. I would also like to thank Mohan Kumar and David 

Levine for serving on my thesis committee and would like to acknowledge the support, 

in part, by NSF grants (ITR 0121297, IIS-0326505, and EIA-0216500) for this research. 

A special thanks to Raman, who spared his valuable time in discussing this 

research and for maintaining a well-administered research environment. This research 

would have been incomplete without the support extended by my fellow ITLABians: 

Akshaya, Sunit, Ajay, Vamshi, Shravan, Vihang, Srihari, Nikhil, Vishesh, Hari, Laali 

and Manu for maintaining high standards of professionalism and for making ITLAB the 

perfect place to work in, filled with fun. A special thanks to Akshaya for being by my 

side and helping me relieve stress levels during the entire tenure of graduation.  

I would also like to thank Shilpa and Ankita, who were my colleagues at the 

Indian Institute of Management, Ahmedabad (IIM-A), for a thorough review of this 

thesis to improve its overall quality and readability. 

My sincere thanks to my Uncle and Aunt, Ugersain and Usha Chopra, who 

motivated and guided me in building the best strategy to achieve my key goals and 

heartfelt aspirations.  



iii 

Last, but certainly not the least, thanks to my family: my parents, Yogendra and 

Vimla, my elder brother Jayesh, my sister-in-law Komal and my nieces Simran and 

Pooja; your love and confidence has made this possible and added more meaning to this 

research and the degree.  

November 4, 2005 



iv 

ABSTRACT 
 

APPROACHES FOR VALIDATING FREQUENT EPISODES BASED ON 
PERIODICITY IN TIME-SERIES DATA 

 

Publication No. ______ 

 

Dhawal Y Bhatia, M.S. 

 

The University of Texas at Arlington, 2005 

 

Supervising Professor:  Sharma Chakravarthy  

There is ongoing research on sequence mining of time-series data. We study 

Hybrid Apriori, an interval-based approach to episode discovery that deals with 

different periodicities in time-series data. Our study identifies the anomaly in the 

Hybrid Apriori by confirming the false positives in the frequent episodes discovered. 

The anomaly is due to the folding phase of the algorithm, which combines periods in 

order to compress data.  

We propose a main memory based solution to distinguish the false positives 

from the true frequent episodes. Our algorithm to validate the frequent episodes has 

several alternatives such as the naïve approach, the partitioned approach and the parallel 

approach in order to minimize the overhead of validation in the entire episode discovery 

process and is also generalized for different periodicities. We discuss the
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 advantages and disadvantages of each approach and do extensive experiments to 

demonstrate the performance and scalability of each approach.   



vi 

TABLE OF CONTENTS 

 
ACKNOWLEDGEMENTS.............................................................................................. ii 

ABSTRACT .................................................................................................................... iv 

LIST OF TABLES.........................................................................................................xiii 

Chapter 

1. INTRODUCTION ........................................................................................................ 1 

1.1 Sequential pattern mining ................................................................................. 2 

1.1.1 Sequential mining for transactional data .................................................. 3 

1.1.2 Sequential mining for time-series data ..................................................... 3 

1.1.3 Sequential mining for interval based time-series data.............................. 4 

1.2 Problem Domain............................................................................................... 5 

1.3 Hybrid-Apriori .................................................................................................. 6 

1.4 Proposed Solution............................................................................................. 7 

1.5 Other Contribution............................................................................................ 8 

2. RELATED WORK....................................................................................................... 9 

2.1 Introduction....................................................................................................... 9 

2.2 GSP................................................................................................................... 9 

2.3 WINEPI and MINEPI..................................................................................... 10 

2.4 ED................................................................................................................... 13 

2.5 Hybrid-Apriori ................................................................................................ 14 



vii 

2.5.1 Hybrid-Apriori and Traditional mining algorithm ................................. 15 

2.5.2 Benefits and issues in Hybrid Apriori .................................................... 18 

3. APPROACHES TO VALIDATE FREQUENT EPISODES ..................................... 20 

3.1 False Positives and Periodicity of Frequent Episodes .................................... 20 

3.2 False Positives and the  
Process of Discovery of Episodes – An Illustration ....................................... 20 

 
3.3 Algorithm Overview....................................................................................... 24 

3.3.1 Building Phase ........................................................................................ 25 

3.3.2 Support Counting Phase ......................................................................... 26 

3.3.3 Pruning Phase ......................................................................................... 26 

3.4 Basic Issues in Identifying False Positives..................................................... 26 

3.4.1 Periodicity............................................................................................... 27 

3.4.2 Wrapping Episodes................................................................................. 29 

3.4.3 Size of the episode discovered................................................................ 33 

3.4.4 Computing the support of events  
in an episode in a single pass.................................................................. 33 

 
3.5 Analysis of Time Complexity......................................................................... 33 

3.6 Naïve Approach to Identify False Positives ................................................... 35 

3.6.1 Pseudo code for Building Phase ............................................................. 35 

3.6.2 Pseudo code for Support Counting Phase............................................... 36 

3.6.3 Pseudo code for Validate Phase.............................................................. 37 

3.7 Design for Algorithm to Validate Frequent Episodes .................................... 40 



viii 

3.7.1 Design for Building Phase ...................................................................... 40 

3.7.2 Design for Support Counting Phase ....................................................... 41 

3.7.3 Design for Pruning Phase ....................................................................... 42 

3.8 Characteristics of the Naïve approach ............................................................ 42 

3.9 Partitioned Approach to Identify False Positives ........................................... 43 

3.10 Issues in Partitioned Approach ....................................................................... 46 

3.10.1 Size of a partition.................................................................................... 46 

3.10.2 Distribution of episodes.......................................................................... 46 

3.10.3 How to partition an episode.................................................................... 49 

3.11 Phases in Partition Approach.......................................................................... 50 

3.11.1 Partitioning Phase ................................................................................... 50 

3.11.2 Fetching Phase ........................................................................................ 51 

3.11.3 Building Phase ........................................................................................ 52 

3.11.4 Support Counting Phase ......................................................................... 52 

3.11.5 Pruning Phase ......................................................................................... 52 

3.11.6 Carry forward Phase ............................................................................... 52 

3.12 Advantages and Limitations of Partitioned Approach.................................... 53 

3.13 Parallel Approach to Identify False Positives................................................. 53 

3.14 Issues in Parallel Approach ............................................................................ 54 

3.14.1 Episode spanning multiple partitions...................................................... 54 



ix 

3.14.2 Merge the partial support count of spanning episodes ........................... 56 

3.15 Phases in Parallel approach ............................................................................ 57 

3.16 Advantages and Disadvantages ...................................................................... 59 

4. IMPLEMENTATION OF VALIDATION ALGORITHM........................................ 61 

4.1 Implementation of the Partitioned Approach ................................................. 68 

4.2 Implementation of the Parallel Approach....................................................... 73 

4.3 Selecting Episodes spanning multiple partitions ............................................ 74 

4.4 RMI Architecture for parallel approach ......................................................... 77 

4.5 Merge Phase at the central node ..................................................................... 78 

4.6 How Java RMI works for the parallel approach ............................................. 80 

4.7 Summary......................................................................................................... 83 

5. EXPERIMENTAL RESULTS ................................................................................... 84 

5.1 Performance of Naive approach for daily periodicity .................................... 85 

5.2 Comparison of response time  
of partitioned approach for daily periodicity.................................................. 86 

 
5.3 Performance of Parallel Approach for daily periodicity................................. 88 

5.4 Performance comparison of each approach for daily periodicity................... 90 

5.5 Performance of Naïve Approach for Weekly Periodicity............................... 92 

5.6 Configuration File........................................................................................... 93 

5.7 Log files .......................................................................................................... 94 

5.7.1 Log file for Episode Status ..................................................................... 94 



x 

5.7.2 Log file for device support ..................................................................... 94 

6. CONCLUSIONS AND FUTURE WORK................................................................. 96 

6.1 Conclusions..................................................................................................... 96 

6.2 Future work..................................................................................................... 98 

REFERENCES ............................................................................................................... 99 

BIOGRAPHICAL INFORMATION............................................................................ 101 



xi 

LIST OF ILLUSTRATIONS 
Figure            Page 
 
1 Sequential Mining: An overview................................................................................... 2 

2 Distribution of events in raw data set .......................................................................... 21 

3  Raw data set after folding ........................................................................................... 22 

4 Significant intervals discovered by SID ...................................................................... 22 

5 Episodes discovered by Hybrid Apriori ...................................................................... 23 

6  Wrapping Episode - An Episode spanning multiple periods/days ............................. 31 

7 Output of Building Phase............................................................................................. 36 

8 Output of Support Counting Phase .............................................................................. 37 

9  Distribution of Episodes in Partitioned Approach...................................................... 45 

10  Distribution of Episodes in a partition (a) Uniform (b) Skewed. ............................. 48 

11  Distribution of Episodes after Partition .................................................................... 55 

12 Episode Object........................................................................................................... 62 

13 Event Object .............................................................................................................. 63 

14 Vector of Events with their Support .......................................................................... 64 

15 Hash Table of Episode and Episode-Id ..................................................................... 66 

16 Architecture for the Parallel Approach...................................................................... 77 

17 Performance of Naïve Approach with different synthetic data sets .......................... 85 

18 Performance of Parallel Approach for synthetic data set .......................................... 86 



xii 

19 Performance of Partitioned Approach for daily periodicity ...................................... 87 

20 Performance of Parallel approach for synthetic data set ........................................... 88 

21 Performance of all three validation approaches......................................................... 90 

22  Performance Comparison of all phases in Episode Discovery process .................... 91 

23 Performance of Naïve Approach for Weekly Periodicity.......................................... 92 



xiii 

LIST OF TABLES 
Table            Page 
 
Table 1 Support of Events in an Episode........................................................................ 24 

Table 2 Example of an Episode ...................................................................................... 28 

Table 3  Support of Events in an Episode....................................................................... 28 

Table 4 Example of a Wrapping Episode ....................................................................... 30 

Table 5 Support Count of each Event for Daily Periodicity........................................... 32 

Table 6 Episode with daily periodicity........................................................................... 37 

Table 7 Analysis of Validation Output........................................................................... 40 

Table 8  Parallel Approach – Implementation overview ................................................ 80 

Table 9  Sequence of steps in the parallel approach....................................................... 82 

Table 10 Experimental set up ......................................................................................... 84 

Table 11 Synthetic data set ............................................................................................. 85 

Table 12   Evaluation of Partitioned Approach .............................................................. 87 

Table 13  Partitioned approach - percentage improvement in response time................. 88 

Table 14 Parallel Approach - percentage improvement in response time ...................... 89 

Table 15  MavHome data set .......................................................................................... 89 

Table 16 Configuration Parameters ................................................................................ 93 

Table 17 Comparison of Validation approaches ............................................................ 97 

 

 



1 

CHAPTER 1  
 

INTRODUCTION 
 

The proliferation of computers in our daily activities has created abundant 

generated data. Collection and analysis of this data is critical for decision-making in our 

lives. Thus, information systems that support decision making in order to automate 

several aspects of life have become a necessity. Database management systems 

developed for such information systems store, manipulate and enable retrieval of data. 

A multitude of database applications are designed and have resulted in the emergence of 

the field known as Data mining. This field has attracted academicians and the industry 

due to the abundance of data and the imminent need for turning it into useful 

information and knowledge. Data mining involves an integration of techniques from 

multiple disciplines such as database technology, statistics, machine learning, high-

performance computing, pattern recognition, neural networks, data visualizations, 

information retrieval, image and signal processing, and spatial data analysis. Data 

mining systems are categorized based on the underlying techniques employed such as 

classification, clustering, prediction, deviation analysis, association analysis and 

sequential mining. 
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Figure 1 Sequential Mining: An overview 

 
1.1 Sequential pattern mining 

 
Sequential pattern mining entails the identification of frequently occurring 

patterns related to time or other sequences. An example of sequential pattern is “A 

customer, who bought Fellowship of the Rings DVD six months ago, is likely to buy the 

Two Towers DVD within a month”. Since many business transactions, 

telecommunication records, weather data and production processes fall into the category 

of time sequence data, sequential mining is useful for target marketing, customer 

retention and so on. The emphasis in our research is on accurate and scalable data 

mining techniques for sequential mining in large database.  
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1.1.1 Sequential mining for transactional data 

Sequential pattern mining was introduced in [2] and it can be conducted on 

transactional data or time-series data. Transactional data stored in a database consists of 

transactions; each transaction is treated as a unique record. If we consider the example 

of a supermarket, the information stored in a record would be the customer-id, 

transaction time and the items purchased. The objective here is to identify sets of items 

that are frequently sold or purchased together. A market basket data analysis of this 

kind enables the vendor to bundle groups of items to maximize sales. For time-series 

data, a database record will consists of sequences of values or events changing with 

time. [3]. These values are typically measured at equal time intervals. Mining 

transactional data sets will typically look for association between data items and will 

discover a rule of type {Beer} implies {Chips}. In contrast, mining a time-series data 

set will provide more insight in to the same rule by discovering that the rule {Beer} 

implies {Chips} has a larger support during 8 pm to 10 pm every Friday. Research in 

time-series data mining covers issues related to trend analysis, similarity search in time 

series data, prediction of natural disasters and mining sequential patterns and periodic 

patterns in time-related data. Time-series analysis can also be used for studying daily 

fluctuations of a stock market, scientific experiments, and medical treatments. 

1.1.2 Sequential mining for time-series data 

This type of data can be represented as follows: when A occurs, B also occurs 

within time ti from the time of occurrence of A. In general three attributes characterize 

sequence data: object, timestamp, and event. Hence, the corresponding input records 
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consist of occurrences of events on an object at a particular time. The major task 

associated with this kind of data is to identify existing sequential relationships or 

patterns in the data. Appropriate techniques are applied to discover the trends or the 

patterns in the data with respect to multiple granularities of time (i.e., different levels of 

abstraction). These trends or patterns may be further used for prediction or decision 

making. The patterns discovered are based on measures of interestingness such as 

support and confidence. Support of an event is defined as the number of occurrences of 

the event. Confidence of a pattern is the probability of its events occurring together. The 

threshold values for these measures are domain specific and are controlled by the user. 

Two algorithms have been proposed in [4] to discover frequent episodes from a given 

set of sequences. The algorithms define a frequent episode as a collection of events that 

occur within the given time interval (window) in a given partial order.  

1.1.3 Sequential mining for interval based time-series data 

Sequential mining algorithms for time-series data can run on point-based data or 

on interval-based data that represents intervals of high activity. Intervals represent 

groups of time or activity that best represents the data with certain characteristics. The 

characteristics of an interval can be its density, length or strength. Every interval has a 

start time and an end time. The difference between the two timings is the length of the 

interval (l). Strength of the interval is the sum of the strength of the points that form the 

interval (s) while density (d) of an interval relates its total strength(s) with its length (l). 

Several approaches to represent time points as intervals are discussed in [5] where the 

focus is on mining of sequential patterns for interval based time-series data. Multiple 
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sequential mining algorithms [2, 4, 6-9] for time-series data exist in the literature. 

However, these algorithms operate on point data for mining frequent episodes/patterns. 

The advantage of interval-based sequential mining algorithm over traditional sequence 

mining approaches is that interval-based sequential mining algorithm operates on 

compressed data for sequence discovery. 

1.2 Problem Domain 
 

One of the applications of a sequential mining is a smart home and the problem 

domain for this thesis is MavHome [10]. This smart home project is a multi-disciplinary 

research project at the University of Texas at Arlington (UTA) that focuses on the 

creation of an intelligent and versatile home environment. The goal here is to create a 

home that acts as a rational agent, perceiving the state of the home through sensors and 

acting upon the environment through effectors. The agent acts in a way to maximize its 

goal; that is, it maximizes comfort and productivity of its inhabitants, minimizes cost, 

and ensures security. 

 To accomplish the goals of a smart home, the time intervals during which the 

inhabitant interacts with specific set of devices needs to be identified. Once this is done, 

the operations of the devices can be automated to eliminate the need for manual 

interaction between the inhabitant and the devices. Examples of patterns of interest in 

MavHome are:  

“Every morning Bill turns on the exercise bike and the fan between 7 am and 

7:15 am” 
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“Every evening between 8 pm and 8:30 pm, Cindy turns on the drawing room 

light and the television to watch CNN news” 

“Every Tuesdays and Saturdays, between 2 p.m. and 3 p.m., Judy turns on the 

laundry machine and the lights in the laundry room.” 

From these examples, we can see that the frequent episodes of interest relate to 

a group of devices with which a smart home inhabitant interacts, which occur during the 

same time interval with sufficient periodicity.  

1.3 Hybrid-Apriori 
 

This is an interval based episode discovery algorithm, proposed in [11], which 

discovers such episodes. Instead of performing computations on large raw data, Hybrid-

Apriori algorithm works on compressed data that has intervals instead of points. This 

reduces the amount of time spent per pass significantly; the number of passes, however, 

remains the same. Generation of frequent episodes is done in three phases: 

1. Folding Phase 

2. Significant Interval Discovery Phase (SID) 

3. Frequent Episodes Discovery Phase (Hybrid Apriori) 

The first phase compresses the time points by folding the data over the 

periodicity provided by the user (e.g., daily, weekly). The second phase represents the 

folded data as intervals and discovers the intervals [5], termed as significant intervals, 

that have the user specified support and interval length. In the third phase, Hybrid-

Apriori algorithm takes these significant intervals as input and identifies the frequent 

episodes that satisfy user specified confidence. 
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1.3.1.1 Anomalies in Hybrid-Apriori     

In the folding phase of hybrid-apriori approach, the periodicity information is 

lost. Consequently, we may find some false positives in the output of this algorithm. 

The elimination of false positives is critical to our problem domain where the episodes 

represent behavior of the inhabitant and assist the agents focused on providing 

automation in these environments.  For instance, consider the scenario of the laundry 

room mentioned earlier. Here, Judy uses the laundry only on Tuesdays and Saturdays 

between 2 p.m. to 3 p.m. Due to the folding of data, information related to the time 

granularity at the next level, i.e., weekday information for daily periodicity, is lost. A 

frequent episode {LRMachOn, LRLightsOn, 2 p.m., 3p.m, 0.8} representing the 

laundry scenario is identified as a daily episode where ‘LRMachOn’ and ‘LRLightsOn’ 

represent the laundry machine and the lights respectively. The episode starts at 2 p.m. 

and ends at 3 p.m. and 0.8 is the confidence of the episode. But in reality, the episode 

occurs only on Tuesdays and Saturdays. If this episode is automated as a daily episode, 

the ultimate objective of a Smart Home, which is to maximize comfort of its inhabitants 

by reducing the manual interaction with the devices, is defeated. This calls for an 

algorithm that can distinguish the actual daily episodes from the false positives in the 

set of frequent episodes identified by Hybrid Apriori.   

1.4 Proposed Solution 
 

We propose a main memory algorithm that makes a single pass over the raw 

dataset and the frequent episodes generated by the Hybrid-Apriori algorithm to 

eliminate the false positives present in the frequent episodes. Multiple approaches to 
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validate the frequent episodes have been developed in this thesis. These approaches 

address the issues of performance and scalability and ensure that the overhead of 

validating the episodes for an interval based episode discovery algorithm is minimal. 

Thus, the entire Hybrid-Apriori algorithm to discover the true frequent episodes now 

consists of four phases: 

1. Folding Phase 

2. Significant Interval Discovery Phase (SID) 

3. Frequent Episodes Discovery Phase (Hybrid Apriori) 

4. Pruning of false positives (Validation) 

Our algorithm to validate the frequent episodes has alternatives such as the 

Naïve approach, the Partitioned approach and the Parallel approach. We discuss the 

advantages of each approach. Through extensive experiments and analysis, we attempt 

to demonstrate the performance and scalability of these alternatives.  

1.5 Other Contribution 
 

We have also compared the interval-based Hybrid-Apriori algorithm with a 

point based main memory algorithm termed ED for episode discovery [1]. This 

comparison has been done with the objective of demonstrating that Hybrid Apriori, in 

spite of the need for validation, would be a better alternative as compared with 

traditional episode discovery algorithms with respect to performance and scalability. 

Additionally, in the process of finding frequent episodes, Hybrid-Apriori generates 

significant intervals and clusters the ones that are useful in their own right for inferring 

individual activities in a smart home environment. 
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CHAPTER 2  
 

RELATED WORK 
 

2.1 Introduction 
 

Traditional algorithms [1, 2, 4, 7, 8] to discover frequent episodes operate on 

time stamped data. To the best of our knowledge, Hybrid-Apriori [11] has been the only 

interval-based sequential mining algorithm that discovers frequent episodes from time-

series data. This algorithm takes significant time-intervals as an input to discover 

episodes of different periodicity. We provide a survey of approaches found in the 

literature in the following sections. We also highlight significant differences between 

the traditional approach to episode discovery and the Hybrid-Apriori approach for 

discovering episodes from significant intervals. We then discuss the anomaly in the 

interval-based episode discovery and provide a brief overview of our proposed solution.  

2.2 GSP 
 

The GSP (Generalized Sequential Patterns) [2] is designed for transactional data 

where each sequence is a list of transactions ordered by transaction time and each 

transaction is a set of items.  Timing constraints such as Maximum Span, Event-set 

Window size, Maximum Gap, and Minimum Gap are applied in this approach. The 

algorithm finds all sequences that satisfy these constraints and whose support is greater 

than user-specified minimum. The support counting method used is COBJ (One 

occurrence per object). The algorithm defines the notion of anti-monotonicity in which 
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a sub sequence of a contiguous sequence may or may not be valid. The sequence c is a 

subsequence of s if any of the following holds: 

! c is derived from s by dropping an event from its first or last event-set. 

! c is derived from s by dropping an event from any of its event-sets that have 

at least two elements. 

! c is a contiguous subsequence of c’, that is a contiguous subsequence of s. 

 This algorithm consists of two phases: the first phase scans the database to 

identify all the frequent items of size one. The second phase is an iterative phase that 

scans the database to discover frequent sequences of the possible sizes. The second 

phase consists of the candidate generations and pruning steps wherein sequences of 

greater length are identified; sequences that are not frequent are pruned out from further 

iterations. The iterative phase is computationally intensive. Therefore, optimizations 

such as hash tree data structures and transformation of the data into a vertical format are 

proposed in this paper. The algorithm terminates when no more sequences are found.  

2.3 WINEPI and MINEPI 
 

The authors in this paper [4] concentrate on sequences of events with an 

associated time of occurrence that can describe the behavior and action of users or 

systems in several domains such as Smart Home environments, telecommunications 

systems, web usage and text mining. WINEPI is an algorithm, designed for discovering 

serial, parallel or composite sequences that represent a frequent episode. A frequent 

episode is defined as a collection of events that occur within the given time interval 

(window) in a given partial order. Based on the ordering of events in an episode, it is 
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classified as a serial episode or a parallel episode. Unlike parallel episodes, serial 

episode require a temporal order of events. Composite sequences are generated from the 

combination of parallel and serial sequences.  

The authors propose two approaches, WINEPI and MINEPI to discover the 

frequent episodes in a given input sequence. In WINEPI, events of the sequences must 

be close to each other. The closeness is determined by the window parameter. A time 

window is slid over the input data and the sequences within the window are considered. 

Thus, the window is defined as a slice of an event sequence and an event sequence is 

then considered as sequences of overlapping windows. The number of windows is 

determined by the width of the window. The number of windows in which an episode 

occurs is the support of the episode. If this support is greater than the minimum support 

threshold specified, the episode is detected as a frequent episode. The algorithm finds 

all sequences that satisfy the time constraints ms and whose support exceeds a user-

defined minimum support (min_sup), counted with the CWIN method - one occurrence 

per span window. The ms time constraint specifies the maximum allowed time 

difference between latest and earliest occurrences of events in the entire sequence. This 

algorithm makes multiple passes over the data. The first pass determines the support for 

all individual events. In other words, for each event the number of windows containing 

the event is counted. Each subsequent pass k starts with generating the k-event long 

candidate sequences Ck from the set of frequent sequences of length k-1 found in the 

previous pass. This approach is based on the subset property of the apriori principle that 

states that a sequence cannot be frequent unless its subsequences are also frequent. The 
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algorithm terminates when no frequent sequences are generated at the end of the pass. 

For parallel episodes, WINEPI uses set of counters and sequence length for support 

counting; a finite state automaton is used for discovering the serial episodes. 

MINEPI, an alternate approach to discovering frequent sequences is a method 

based on minimal occurrences of the frequent sequences. In this approach the exact 

occurrences of the sequences are considered. A minimal occurrence of a sequence is 

determined as having an occurrence in a window w= [ts, te], but not in any of its sub-

windows. For each frequent sequence s, the locations of their minimal occurrences are 

stored, resulting in a set of minimal occurrences denoted by mo(s)={[ts, te] | [ts, te] is a 

minimal window in which s occurs}. The support for a sequence is determined by the 

number of its minimal occurrences |mo(s)|. The approach defines rules of the form: 

s’[w1]-> s[w2], where s’ is a subsequence of s and w1 and w2 are windows. The 

interpretation of the rule is that if s’ has a minimal occurrence at interval [ts, te] which 

is shorter than w1, then s occurs within interval [ts, te’] which is shorter than w2. The 

approach is similar to the universal formulation with w2 corresponding to ms and an 

additional constraint w1 for subsequence length, with CWINMIN as the support 

counting technique. The confidence and frequency of the discovered rules with a large 

number of window widths are obtained in a single run. MINEPI uses the same 

algorithm for candidate generation as WINEPI with a different support counting 

technique. In the first round of the main algorithm mo(s) is computed for all sequences 

of length one. In the subsequent rounds the minimal occurrences of s are located by first 

selecting its two suitable subsequences s1 and s2 and then performing a temporal join 
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on their minimal occurrences. Frequent rules and patterns can be enumerated by looking 

at all the frequent sequences and then its subsequences. For the above algorithm, 

window is an extremely essential parameter since only a window’s worth of sequences 

is discovered. Moreover, the data structures used for this algorithm can exceed the size 

of the database in the initial passes.  But the strength of MINEPI lies in detection of 

episode rules without looking at the data again. The episode rule determines the 

connection between tow sets of events as it consists of two different time bounds. This 

is possible since MINEPI maintains intermediate data structure for each frequent 

episode discovered. Making a single pass over this data structures can help in 

determining the sub episodes and the confidence of the episode rule. A sub graph of a 

frequent episode is considered as a sub episode of the frequent episode. Confidence of 

an episode rule is a ratio of frequency of an episode to its sub episode.  

2.4 ED 
 

The algorithm Episode Discovery (ED) proposed in [1] is a data mining 

algorithm that discovers behavioral patterns in time-ordered input sequence. The 

problem domain in this approach is a smart home where patterns related to inhabitant 

device interactions and the ordering information is discovered. The patterns discovered 

are then used by intelligent agents to automate device interactions. This approach is 

based on the Minimum Description Length (MDL) Principle and discovers multiple 

characteristics of the patterns such as its frequency, periodicity, order and the length of 

a pattern. It uses compression ratio as the evaluation measure since greater compression 

ratio results in a shorter description length. The algorithm has five different phases. 
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First, it partitions the input sequence based on the input parameters such as the window 

time span and other capacity parameters. Second it generates candidates using the set 

intersection and difference operations. Third, pruning is done based on the MDL-based 

evaluation measure - compression ratio achieved. The apriori property to prune is not 

sufficient in this approach as episodes with several characteristics needs to be 

discovered.  Fourth, the candidate evaluation phase where the generated candidates are 

evaluated using the compression ratio and the periodicity and regularity of the patterns 

is discovered using the autocorrelation techniques. Finally, the episodes with greatest 

compression ratio are selected as interesting episodes and candidates that overlap with 

the interesting episodes are pruned. 

2.5 Hybrid-Apriori 
 

Hybrid-Apriori [11] is an SQL-based sequential mining algorithm that takes the 

significant intervals as input from Significant Interval Discovery (SID) algorithm and 

discovers frequent sequences to automate the devices in a smart home. It uses 

CDIST_O (distinct occurrences with possibility of event timestamp overlap) as 

sequence counting method. This method considers the maximum number of all possible 

distinct occurrences of a sequence over all objects; that is, the number of all distinct 

timestamps present in the data for each object. The novelty of the approach lies in using 

interval-based data as input. The interval-based data is a reduced data set consisting of 

significant intervals of events in the raw data discovered by the SID suit of algorithms 

[5]. 
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2.5.1 Hybrid-Apriori and Traditional mining algorithm 

1. The primary difference is the use of time-intervals instead of time points. As 

an ordering criterion, during a tie between sequences having the same 

interval boundaries, the interval with the maximum interval-confidence is 

chosen above the others. Similarly, among sequences with the same start 

point and interval-confidence, the sequence with the earliest end point is 

chosen. Thus, greater importance is placed on sequences with higher 

interval-confidence and smaller lengths, thereby extracting the tightest 

sequential pattern. 

2. Hybrid-Apriori algorithm eliminates some of the steps used by the 

traditional apriori approach. Application of SID algorithm results in 

partitioning and extraction of intervals with sufficient interval-confidence 

from the dataset. Therefore most of the points, which would have been 

eliminated in the support counting phase of the traditional approach, have 

been eliminated before the start of sequential mining. 

3. Pattern-confidence (PC) replaces support counting in the hybrid-apriori 

algorithm that represents the minimum number of occurrence of the 

sequence within the interval. The pattern-confidence of a sequence within an 

interval is the minimum of the interval-confidence (IC) of its events. With 

frequently occurring patterns, pattern-confidence underestimates the actual 

probability of the events occurring together but retains its significance or 

order relative to the other patterns discovered. Instead of using m-copies of 
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frequent items of size one (F1) for support counting, the pattern-confidence 

is found by a two-way join of Fm-1 and F1.  

When m=2 and F1.item1< F1.item1  

F2.pattern-confidence = minimum (F1.item1.IC, F1.item1.IC), 

When m>2 and F1.item1 < last item of Fm-1 and F1.item1.start-time and 

end-time is between start and end time of Fm-1. 

Fm = minimum (Fm-1.PC, F1.item1.IC) 

Fm represents the set of m-length frequent patterns. 

4. The sequential window constraint of Hybrid-Apriori automatically satisfies 

the subset property because of which the pruning based on the subset 

property is not explicitly performed. As an example: Let A (1,10), B (2,5), C 

(7,15), D (17,25) form the significant intervals generated from the SID [n-1] 

algorithm. The figures in the parenthesis indicate the intervals discovered for 

the events. Assuming a window of 10 units, the first pass forms AB (1,10), 

AC (1,15), BC (2,15), CD (7,25). The second pass discovers ABC (1,15). 

First, if all subsets are above threshold pattern-confidence, ABC is 

automatically generated in the third pass. A is combined with B because B 

started within 10 units of start of A. A is also combined with C because C 

started within 10 units of start of A. This automatically implies that B 

combines with C since B started after A. Secondly if we assume that the 

pattern-confidence of sequence BC or any of its subsets is below threshold, 
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the pattern-confidence of the subset ABC automatically falls below the 

threshold from the above equation and is pruned out automatically. 

5. Another difference with respect to traditional sequential mining lies in the 

effective use of sequential window parameter. For a given window 

parameter, two types of interval semantics are defined, which can be used to 

generate mth item set from the (m-1) th set. Semantics-s generates all possible 

combinations of events, which occur within window units of the first event. 

Semantics-e, on the other hand, generates combinations of events that start 

and complete within the window units of the first event. Most of the 

traditional sequential mining techniques deal with events that occur at a 

point and form all possible combination of events within an instance of a 

sliding window. Since points are replaced by intervals, the above two 

semantics need to be considered to form maximal sequences. 

Use of semantics-s results in more sequences as compared with 

semantics-e since events that occur with an interval greater than the window, 

will not participate in the generation of maximal sequences in semantics-e. 

Since the output generated between the two semantics greatly differs in 

quantity, semantics-s can be used to run with representative data sets so as to 

gather more information on the average pattern-length, size and so on. The 

process can then be run with semantics-e on the actual dataset, by setting 

parameters such as stop-level and window-length appropriately. 



18 
 

2.5.2 Benefits and issues in Hybrid Apriori 

Being a SQL-based algorithm, Hybrid Apriori has a greater support for large 

datasets and is able to discover sequences of greater length without facing the space 

constraints typically encountered by main memory algorithms.  Hybrid Apriori takes 

reduced dataset of significant intervals is input. The size of these intervals is 

significantly less compared to the raw dataset. Hence, the time taken per pass is less as 

compared to the traditional algorithms operating on time stamped data. But the 

significant intervals discovered by SID are, however, not lossless. The periodicity 

information is lost due to the folding of data during the interval formation phase. Due to 

folding, the episodes discovered by Hybrid-Apriori may have false positives in it. There 

may be episodes that are discovered as occurring on all days of the week but these 

actually occur only on a particular day. Detection of false positives and their elimination 

is critical to domains such as Smart home, telecommunications alarm management, and 

crime detection. In our thesis, we consider the problem domain to be a smart home - 

MavHome. The MavHome (Managing An Intelligent and Versatile Home) project is a 

multi-disciplinary research project at the University of Texas at Arlington (UTA) 

focused on the creation of an intelligent and versatile home environment [19]. Finding 

frequent patterns enables us to automate device usage and reduce human interaction. 

The MavHome project focuses on the creation of a home that acts as a rational agent. 

We propose several approaches to identify the false positives in the frequent episodes 

discovered and discuss the issues faced in each approach with their proposed solutions. 
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By distinguishing the false positives from the frequent episodes discovered, the 

objectives of MavHome will be served with greater accuracy.   
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CHAPTER 3  
 

APPROACHES TO VALIDATE FREQUENT EPISODES 
 

In chapter 1 (Introduction), we briefly explained why it is important to identify 

the false positives in the frequent episode discovered for interval based time-series data. 

In this section, we explain why false positives are generated and propose approaches to 

identify and prune them from a set of given frequent episodes. 

3.1 False Positives and Periodicity of Frequent Episodes 
 

Hybrid-Apriori discovers episodes for two types for periodicities; daily and 

weekly. It can also be further generalized to monthly and yearly periodicities. In the 

daily periodicity, the entire dataset is folded over 24-hour period. Weekly periodicity, in 

contrast, takes into consideration the time component as well as the weekday of the 

event occurrence. Hence, episodes discovered for daily periodicity may have false 

positives as all the events in an episode may occur at the same time interval but on 

different weekdays. Similarly, for weekly periodicity, false positives would have events 

which occur on same weekday and time interval but the week days may be of different 

month.  

3.2 False Positives and the Process of Discovery of Episodes – An Illustration 
 

The following example illustrates the process of discovery of episodes for daily 

periodicity and how false positives may be possible in it.  
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Consider a small two weeks dataset. This data set has two events, “Fan On” and 

“Lamp On”, representing a sample scenario where the inhabitant uses the study room. 

The following graph displays the spread of the sample data before folding. The Y-axis 

corresponds to the weekdays and the X-axis to the time of occurrence of an event. 

 

 

Figure 2 Distribution of events in raw data set 

After the raw data is folded the information about the weekday, month and year 

is lost. Here the occurrences of the event are grouped by their time e.g., “Lamp On” 

event which occurred at time t=9 units on weekdays 1, 3 and 7 now has a support of 

three at time t=9 units. 
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Figure 3  Raw data set after folding 

The Significant Interval Discovery (SID) algorithm works on the folded dataset 

and discovers significant intervals based on user specified parameters such as interval 

length and interval confidence. Significant intervals discovered for each device are 

shown in the following graph. 

 

Figure 4 Significant intervals discovered by SID 
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The episode discovery algorithm takes the SIDs discovered in the previous step 

as input and finds the frequent episodes based on user specified parameters such as 

sequential window, episode confidence, and maximum episode size. The number of 

events in an episode determines the size of the episode.  Two episodes of size two are 

displayed in the figure. 

 

Figure 5 Episodes discovered by Hybrid Apriori 

With the small dataset above we can observe that the information for the 

weekday is lost. But if we can ungroup this information for each episode discovered and 

compute the support for each weekday from the raw dataset available, then we can 

compute the following statistics. This can help us decide whether an episode is a false 

positive or a valid episode. 

The statistics in the table below show an example of a false positive. The 

example conveys that all the events participating in the episode of size 2 did occur in 

the specified time interval but they did not occur together on the same weekday. 
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Table 1 Support of Events in an Episode 

Episode Start 
Time 7   
Episode Start 
Time 10   
Event in episode FanOn Weekday Support 
  Monday 2 
  Wednesday 2 
  Friday 1 
Event in episode LampOn Weekday Support 
  Sunday 2 
  Tuesday 2 
  Thursday 1 
  Saturday 1 

 

As seen from the above table, the event “Fan On” occurred on Monday, 

Wednesday and Saturday whereas “Lamp On” event occurred on Sunday, Tuesday, 

Thursday and Saturday. Thus, all the items did not occur together on the same weekday 

but still were detected as an episode. This happens because the intervals discovered by 

SID operate on folded data that does not have the information pertaining to the 

periodicity of the event (i.e., the weekday when it occurs).  

3.3 Algorithm Overview 
 

We propose a main memory algorithm that makes a single pass over the raw 

dataset and the frequent episodes generated by the Hybrid-Apriori algorithm This main 

memory algorithm will select the correct episodes and eliminate the false positives 

present in the set of frequent episodes discovered by the Hybrid-Apriori algorithm. 

Multiple approaches to validate the episodes have been developed to address the issues 

of response time, performance, and scalability. 
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The algorithm to validate episodes takes frequent episodes produced by the 

Hybrid-Apriori algorithm as input. It eliminates the false positives in the input to give a 

set of valid episodes as the final output. It scans all the events in the raw data set once 

and computes the support of each event/item in the episode based on the granularity 

specified during the discovery of episodes. The granularity may be daily or weekly. 

Unless specified explicitly, we discuss the case of daily periodicity in this chapter.   If 

the support of the any item/event in the episode is less than the minimum support 

required for an episode then the episode is identified as a false positive.  

The algorithm to validate episodes can be partitioned into three phases: 

1. Building phase  

2. Support counting phase 

3. Pruning phase  

3.3.1 Building Phase 

This phase retrieves the episodes discovered by Hybrid-Apriori algorithm that are in a 

database and stores them in a main memory data structure. Representing them in main 

memory allows us to fetch and update the support count of each event in the episode in 

the computation phase without incurring additional I/Os. It also allows us to group the 

episodes by the events in the episode. Grouping the episodes by their events creates an 

episode list that helps us in fetching the episodes by their events. This grouping is done 

for each event in the entire set of episodes to be validated. The episode list created by 

grouping of episodes is unique to each event and helps in identifying the episodes in 

which a particular event occurs.  
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3.3.2 Support Counting Phase 

The computing phase makes a single pass over the raw data set and computes the 

support for each event in an episode for a specified granularity. For each event in the 

raw dataset, its episode list is fetched. This episode list gives the list of episodes where 

this event occurs. For each episode in this list, we check if the transaction time of the 

event falls in the range of the episode interval. If the time is in the range, we ungroup 

the transaction time and extract the day when the event occurred and accordingly update 

the statistics for the event in the episode. This requires ungrouping of the transaction 

time into time granularity – a transaction time such as “11-23-2005 22:10” for an Event 

D1 is ungrouped into “22:10 Wednesday November 2005” and update the support for 

the event D1 for Wednesday. Thus at the end we have the support statistics for each 

event in the episode ungrouped based on the periodicity of the episode.  

3.3.3 Pruning Phase 

The pruning phase checks the support count for each event in an episode for 

each weekday. If the support count of each event in the episode meets the minimum 

support threshold values for at least one common weekday then the episode is a valid 

episode otherwise it is a false positive.  

3.4 Basic Issues in Identifying False Positives 
 

This section explains the issues addressed in order to identify the false positives 

in the frequent episodes discovered by Hybrid apriori.  The issues discussed are: 

periodicity of the episode, wrapping episodes, size of the episode discovered and 

computing the support of events in an episode in a single pass 
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3.4.1 Periodicity 

Due to the folding and interval representation of raw data, information regarding 

the next-level granularity is lost. Thus, this lost information is not taken into account at 

the time of generating frequent episodes. This may lead to the generation of false 

positives. In order to identify the false positives, we need to go from a low granularity 

of time to a higher one. For this, we need to identify whether all the events in the 

frequent episode discovered in a given time interval occurs together on the same day or 

on different days.  
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For a given episode with daily periodicity shown below, 

Table 2 Example of an Episode 

Episode Event1 Event2 StartTime EndTime Confidence 
73 LampOn RadioOn 14:29:00 14:37:00 0.8 

 

We need to compute support count for each event for all the weekdays such as: 

Table 3  Support of Events in an Episode 

Episode StartTime 14:29:00     
Episode EndTime 14:37:00     
Episode Confidence 0.8     
Event LampOn Weekday Support 
    Sunday 2 
    Monday 3 
    Tuesday 27 
    Wednesday 22 
    Thursday 70 
    Friday 59 
    Saturday 6 
Event RadioOn Weekday Support 
    Sunday 10 
    Monday 29 
    Tuesday 34 
    Wednesday 23 
    Thursday 41 
    Friday 14 
    Saturday 12 

 

Based on the support counts computed for each weekday, we infer whether all 

the events in an episode meet the minimum support threshold for at least one common 

week day. An episode with all its events satisfying this condition is considered as a 

valid episode. Else, it is a case of false positive and is eliminated from the set of 

frequent episodes. Let us consider the scenario of a smart home inhabitant using the 
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laundry room on weekends. In order to automate and thereby reduce the inhabitant’s 

interaction with the devices, we need to identify the day on which the frequent episode 

representing the laundry scenario occurs. The episode discovered by Hybrid-Apriori 

does not give this information. However, after our algorithm that validates the frequent 

episodes makes a pass over the raw data set, we are able to unfurl the higher granularity 

information lost during the folding phase and detect with certainty the day/days on 

which an episode occurs.  

3.4.2 Wrapping Episodes 

The validation of episodes based on periodicity is complicated by the type of 

episodes discovered by the Hybrid Apriori. The episodes discovered by Hybrid-Apriori 

are of two types. They could be normal episodes or they could be episodes generated 

due to folding. The normal episodes start and end on the same day but due to the 

inherent time-wrap property of time-series data, episodes spanning two periods/days are 

discovered. Such episodes are defined as wrapping episodes. Computation of support 

and validation of such episodes is different from the normal episodes. We illustrate this 

with the help of following example: 

Raw dataset:  

1. Fan On 16 Jul 2005 23:51:00 

2. Fan On 16 Jul 2005 23:52:10 

3. Fan On 17 Jul 2005 00:07:00 

4. TV On 16 Jul 2005 23:55:10 

5. TV On 17 Jul 2005 00:05:45 
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6. TV On 17 Jul 2005 00:10:10 

Folding of raw data: 

1. Fan On   23:51:00 

2. Fan On   23:52:10 

3. Fan On   00:07:10 

4. TV On   23:55:10 

5. TV On 00:56:10 

6. TV On 00:10:00 

Significant Interval discovered by SID 

1. Fan On 23:51:10 00:07:00 IC1 

2. TV On 23:55:10 00:10:00 IC2 

Episode discovered by HA 

1. Fan On TV On 23:51:10 00:10:00 PC1 

This episode spans two days. It starts on Saturday night and ends on Sunday 

morning. 

We divide this episode into two sub episodes and compute support for the first 

one for the interval [Start time of the episode, midnight] and for the second one for the 

interval [Midnight, End time of the episode] and add the support of the two to get the 

total support of the folding episode. We illustrate this with the following example: 

Table 4 Example of a Wrapping Episode 

Episode Event1 Event2 StartTime EndTime Confidence 
79 FanOn TVOn 23:51:00 0:10:00 0.8 
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For a wrapping episode, we compute support for two sub-intervals: [23:51:00, 

0:00:00] and [0:00:00, 0:01:00] as shown below: 

 

Figure 6  Wrapping Episode - An Episode spanning multiple periods/days 

 
The following table shows how we compute the final support for a wrapping 

episode. Here the support for a device FanOn in interval [23:51, 00:00] on Monday is 

added to the support of FanOn in interval [00:00, 00:10] on Tuesday and not [00:00, 

00:10] on Monday to get the correct final support for a folding episode. 
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16 18
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Table 5 Support Count of each Event for Daily Periodicity 

Episode 
StartTime 23:51:00     

 Episode 
StartTime 0:00:00       

Episode 
EndTime 0:00:00     

 Episode 
EndTime 0:10:00       

Episode 
Confidence 0.8     

 Episode 
Confidence 0.8       

Event FanOn Weekday PartialSupport1  Event FanOn Weekday PartialSupport2 TotalSupport 
    Wednesday 34      Thursday 2 36 
    Thursday 61      Friday 6 67 

    Friday 38      Saturday 2 40 
    Saturday 21      Sunday 1 22 

    Sunday 24      Monday 4 28 
    Monday 34      Tuesday 5 39 
    Tuesday 27      Wednesday 5 32 

Event TVOn Weekday PartialSupport1  Event TVOn Weekday PartialSupport2  TotalSupport 
    Wednesday 27      Thursday 1 28 
    Thursday 56      Friday 5 61 
    Friday 27      Saturday 2 29 
    Saturday 22      Sunday 1 23 

    Sunday 17      Monday 3 20 
    Monday 9      Tuesday 2 11 

    Tuesday 23      Wednesday 1 24 
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3.4.3 Size of the episode discovered 

The number of items/events in an episode determines the size of an episode. 

Hence the number of events in an episode is not known before hand and has to be 

determined at runtime to represent it correctly in main memory. 

3.4.4 Computing the support of events in an episode in a single pass 

In order to compute the support of an event in an episode for each weekday in a 

given time interval, we can make several passes over the raw dataset and update support 

counts for each event in an episode. For large datasets, this would be inefficient. We 

propose multiple approaches that can identify the false positives in a single pass over 

the raw dataset. In addition, these approaches also address the issues of performance 

and scalability. The proposed approaches are: 

Approach#1: Naïve Approach  

Approach#2: Partition Approach 

Approach#3: Parallel Approach 

We describe each of them in terms of their design issues, significant differences, 

advantages and limitations. In the next chapter, we explain the implementation issues of 

each approach with the proposed solutions.  

3.5 Analysis of Time Complexity 
 

Let us assume the following: 

p denotes the size of the raw data set 

t represents the total number of unique devices in the raw dataset of size p  

q represents the total number of episodes to validate 
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r is the average size of the episode / average number of devices in the 

episode<=t 

s is the average number of episodes where a single device occurs<=q 

The time complexity of the entire algorithm is O(p)*O(s)*O( r) 

An event in an episode has three characteristics: event name, event status and 

event time. In our validation approach, we create two hash tables: hash table of episodes 

and a hash table of events. The hash table of episodes contains episodes hashed on the 

episode-id while the hash table of events contains a list of episode-id grouped by the 

events in the episode. For every event in the raw dataset, we hash the episode-id hash 

table on the event name and its status. This operation is O(1) and it returns us the 

episode-id list which contains the id of episodes where the event occurs. The size of this 

episode list is assumed to be s.  For each episode-id in the list we hash the episode hash 

table and get a corresponding episode. This operation is O(1). The number of events in 

an episode determines its size and we assume it to be r. In order to update the support of 

an event, we need to locate this event in the episode. The events in an episode are stored 

in a vector and the operation to fetch the correct event and its support array takes O(r) 

where r is the average number of events in any episode. Once the appropriate event is 

located, we update the support of the event stored in an array which is O(1). For each 

event instance in the raw data set, we fetch all the episodes where this event occurs and 

update the corresponding support. Hence the response time of the algorithm heavily 

depends on the number of episodes where an event occurs and this number increases 

with the increase in number of episodes (q) to be validated.  
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3.6 Naïve Approach to Identify False Positives 
 

This main memory algorithm validates the episodes discovered by the Hybrid-

Apriori algorithm by identifying the false positives. Each frequent episode is stored in 

main memory and the support count for all the events in the episode are computed by 

making a single pass over the raw data. At the end of the pass, we have the support 

count of each event in an episode ungrouped on the periodicity specified. This 

ungrouped support count is then compared to the minimum support threshold to identify 

and prune the false positives in the set of episodes validated.  

3.6.1 Pseudo code for Building Phase 

The pseudo code for the building phase in the naïve approach to validate the 

frequent episodes based on periodicity consists of the following steps: 

For each episode detected by Hybrid-Apriori algorithm 

      Fetch the episode and determine the type of episode           

      Store the frequent episode in main memory  

      For each event in the episode, 

            If the episode list exists for this event,  

                  Add the episode Id of this episode to the list  

            Else  

                  Create an episode list for this event  

                  Add the episode Id of this episode to the list         
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At the end of build phase, we have the following two data structures populated 

with the episodes and the episode list – set of episodes grouped by the events in the 

episode 

StringObject HybridPatternObject

1ComputerOnFanOnLampOn HybridPatternObject1

2FanOnLampOnRadioOn HybridPatternObject2

3FanOnLampOnTVOn HybridPatternObject3

EpisodeHashTable

Episode-List
HashTable

StringObject VectorObject

VectorObjectItemName

VectorObject1ComputerOn

VectorObject1

1ComputerOnFanOnLampOn

VectorObject2FanOn

VectorObject2

1ComputerOnFanOnLampOn

2FanOnLampOnRadioOn

3FanOnLampOnTVOn

VectorObject3LampOn

VectorObject4RadioOn

TVOn VectorObject5
VectorObject5

3FanOnLampOnTVOn
 

Figure 7 Output of Building Phase 

 
3.6.2 Pseudo code for Support Counting Phase 

The pseudo code for the support counting phase in the naïve approach consists of the 

following steps: 

Fetch an event transaction from the raw dataset  

Retrieve the corresponding episode list 

For each episode in the episode list 



 

37  
 

      Update the support statistics for this event if the transaction time falls in the episode 

time interval 

At the end of the support computation phase, support count for a given granularity 

is available for each event in the episode. The data structure representing the 

episode and the state of the episode after the computation phase now looks as 

follows: 

Table 6 Episode with daily periodicity 

 

 

Figure 8 Output of Support Counting Phase 

3.6.3 Pseudo code for Validate Phase 

1. For each episode in the memory 

2.       Determine the type of episode 

Event E1 LampOn

Event E1 Support

Episode Confidence
(0.8)

End Time
(14:37:00)

Start Time
(14:29:00)

Event Set

Event E2 RadioOn

Event E2 Support

Support Monday (3)

Support Tuesday (27)

Support Sunday(2)

Support Saturday(6)

Support  Friday(59)

Support Thursday(70)

Support Wednesday(22)

Support Monday (29)

Support Tuesday (34)

Support Sunday(10)

Support Saturday(12)

Support  Friday(14)

Support Thursday(41)

Support Wednesday(23)

Episode Event1 Event2 StartTime EndTime Confidence 
73 LampOn RadioOn 14:29:00 14:37:00 0.8 
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3.       If the episode is a normal episode   

4.             Determine the number of events in the episode 

5.             For each weekday 

6.                   For each event,  

7.                         Fetch the support count for the weekday  

8.                         Compare this support count with the support threshold value 

9.                         If the support count is greater than the support threshold 

10.                               Set the EventValid flag to true 

11.                         Else  

12.                               Set the EventValid flag to false 

13.                               Break //no need to check the other events in the episode for       

this weekday                         

14.                         If  EventValid is true  

15.                               Set episodeValid flag to True 

16.                         Else  

17.                               Set episodeValid flag to false 

18.       Else If the episode is a spanning episode 

19.             Determine the number of events in the episode (Same as line#4) 

20.             For each weekday  (Same as line#5) 

21.                  For each event, (Same as line#6) 

22.                         Fetch the support count for two weekdays: current and the 

immediate next 
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23.                         Compare the sum of the support count of two days with the support 

threshold value 

24.                         If the support count is greater than the support threshold (Same as 

line#9) 

25.                        Set the EventValid flag to true (Same as line#10) 

26.             If  EventValid is true (Same as line#14) 

27.              Set episodeValid flag to True (same as line#15) 

28. If  episodeValid flag is True for at least one weekday  

29.             Episode is a valid episode 

30. Else  

31.             Episode is a false positive 
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The validation phase analyses the support computed to determine the validity of the 

episode. This can be depicted as follows: 

Table 7 Analysis of Validation Output  
 

 

3.7 Design for Algorithm to Validate Frequent Episodes 
 

3.7.1 Design for Building Phase  

The building phase for the naïve approach accomplishes two things: One, it 

represents all the episodes using main memory data structures. Two, it groups all 

episodes by the events in it; by creating an episode-id list. The creation of episode-id list 

is done simultaneously with episode caching. For each event in the episode, we either 

create a new episode-id list or update the episode list if one exists. An episode list exists 

for events occurring in multiple episodes. This episode-id list is used in the next phase, 

Support Monday
> MinimumSupport No Yes

Support of
Event E1
LampOn

Support of
Event E2
RadioOn

Episode Status
Support of
all events >

MinSupp

InValid

Support Tuesday
> MinimumSupport Yes Yes Valid

Support Wednesday
> MinimumSupport Yes Yes Valid

Support Thursday
> MinimumSupport Yes Yes Valid

Support Friday
> MinimumSupport Yes No InValid

Support Saturday
> MinimumSupport No No InValid

Support Sunday
> MinimumSupport No No InValid

No of weeks = 26
Min Confidence=0.7

Min Support = 18.2

No of days = 180
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the computation phase, to retrieve all the episodes corresponding to an event while 

scanning the raw data.  

As shown in figure 7, the building phase constructs two hash tables in main 

memory. The first hash table consists of the episodes. Each episode is hashed into one 

bucket. Simultaneously we construct the second hash table that contains the list of 

episodes grouped by the devices in the episode. Each bucket in this hash table is a list of 

episode grouped by the events in the episode. As observed from the figure, the event 

“FanOn” occurs in three episodes. Hence the episode id hash table contains a list of 

three episode-ids in them. Based on this episode id we can retrieve the episode from the 

hash table of episodes. 

3.7.2 Design for Support Counting Phase  

Once all the episodes discovered by the Hybrid-Apriori are stored in main 

memory and episode lists are created for each unique event, we scan the raw data set. 

For each device/event transaction fetched, a corresponding episode list is retrieved. We 

then traverse through this episode list sequentially to fetch an episode_id one at a time. 

We then retrieve the episode corresponding to this episode_id from the main memory 

data structure that has all the episodes. Once the episode is retrieved, we have the start 

time (Ts) and the end time (Te) of the episode. We check whether the transaction time 

of the device/event in the raw data set is within the interval [Ts, Te]. If it falls in the 

interval range, we further drill down into the transaction time and fetch the day – 

Sunday, Monday, …, Saturday –  on which the event occurred and update the support 

count of the event in the episode for that particular day of the week. This is an iterative 
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process which is repeated for each episode whose episode-id exists in the episode lists 

for the event in the transaction fetched from the raw dataset.  

To summarize, we make a single pass over the raw dataset, and for each event 

Em in the raw dataset we retrieve the corresponding episode list from the main memory 

data structure. Now, for each episode id in this list we retrieve the corresponding 

episode from the episodes data structure and update the support statistics of that event 

Em for specified granularity. 

3.7.3 Design for Pruning Phase 

The computation phase computes the support count of all the events in an 

episode for a given periodicity. In the pruning phase, we retrieve each episode and 

compare the support of each event in the episode against the minimum support 

threshold. If all the events in an episode satisfy the minimum support threshold for a 

given periodicity then the episode is considered to be a true episode else it is considered 

a false positive. The periodicity could by daily or weekly. For daily periodicity, we need 

to make sure that all the events in an episode satisfy the minimum support threshold for 

the same weekday. For weekly periodicity, we make sure that the weekday on which the 

episode occurs is in the same month of the year. 

3.8 Characteristics of the Naïve approach 
 

This approach represents each episode as a main memory object and validates it. 

Hence the number of episodes that can be validated would be directly proportional to 

the main memory available. Moreover, the time taken to validate all the episodes will be 

linear to the number of episodes discovered. 
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This approach makes one pass over the episodes generated by the HA algorithm 

to create in-memory data structures. It makes one pass over the raw data set to populate 

the in-memory data structures created during the build phase with support values. 

Finally, the data structures are examined to differentiate between false positives and 

invalid episodes. 

Note that the Hybrid-Apriori algorithm does not generate false negatives. In 

order to generate a false negative, it has to output an episode that does not have enough 

support and confidence. On account of folding the support can only increase and cannot 

decrease. In addition, the Hybrid-Apriori algorithm produces and output in which all 

episodes satisfy the confidence and interval constraints. Hence false negatives are not 

generated. 

The main memory requirement of this algorithm is proportional to the number of 

episodes, number of events in each episode and the granularity size that is being 

validated (e.g., 7 days if folded on daily, 12 months if folded on weekly etc.). For large 

number of episodes the memory requirement may become high and hence this approach 

may not be scalable for data sets that generate large number of episodes. 

3.9 Partitioned Approach to Identify False Positives 
 

In order to overcome the amount of main memory needed, we apply the divide 

and conquer rule in the partitioned approach. We implement a validation algorithm 

which partitions the input data and the episodes to be validated. The partition can be 

done either on the basis of time or the number of episodes. The partitions are processed 

sequentially and hence the memory requirement is proportional to the number of 
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episodes in a partition and not the total number of episodes to be validated. Each 

partition contains the normal episodes, the wrapping episodes and the spanning 

episodes. The normal episodes are the one that start and end in the same partition while 

the spanning episodes are those that span across multiple partitions. The wrapping 

episodes are the one which span across multiple periods and are formed due to the 

inherent time wrap property of time-series data.  For each partition, the false positives 

among the normal episodes are identified at the end of the validation process while the 

spanning episodes that do not have the minimum support are carried forward to the next 

partition for further validation. The wrapping episodes are different from the spanning 

episodes in the sense that they are always validated in the last partition. The reason that 

wrapping episodes may start or end in any partition or they may span across multiple 

partitions but since we start the validation process from the first partition we cannot 

compute the final cumulative support until we have scanned the entire set of raw data 

events i.e. reached the last partition. The following figure shows the distribution of 

episodes in a partitioned approach. 
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Figure 9  Distribution of Episodes in Partitioned Approach 

The above figure shows the partitioned approach for four partitions. As seen, 

there are three types of episodes we need to handle here. They are the normal episodes, 

wrapping episodes and the spanning episodes. In the figure above, the normal episodes 

are episode number 1, 2, 3 and 4. These episode start and end in the same partition. We 

build them into the main memory, compute their support and validate them in the same 

partition. The second type is the wrapping episodes. Episode number 41 is an example 

of wrapping episode. This episode is discovered by Hybrid-Apriori due to the inherent 

time-wrapping property of time-series data. This episode spans at least the last and the 

first partition and depending on the episode length it may span across multiple 

partitions. The third and final type of episodes is the spanning episodes. The spanning 
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episodes in the above figure are episodes number 12, 123, 1234, 23 and 34. This 

episodes span across at least two partitions and may span across multiple partitions. In 

order to validate the wrapping and the spanning episodes, we need to compute their 

partial support in each partition where they span. The partial support of each episode 

has to be carried forward to the consecutive partitions to get their cumulative support. 

The end time of the episode determines where an episode ends and need to be validated 

and pruned to avoid any more computation.  

3.10 Issues in Partitioned Approach 
 

3.10.1 Size of a partition 

In order to overcome the limitations of main memory, we partition the number 

of episodes based on the main memory available. The number of partitions is a user-

defined parameter or can be inferred based on the main memory available. 

Pragmatically, the number of partitions should be such that all the episodes in a single 

partition can fit into the available main memory.  

3.10.2 Distribution of episodes  

Distribution of episodes is extremely important in the partitioned approach to 

achieve the desired performance. The following scenarios explain why the distribution 

of episodes needs to be considered before we partition the given set of episodes.  

Case#1a: All the inhabitants of MavHome works from home 

Case#2a: All the inhabitants of MavHome works from office and the office timings are 

10 am to 5 pm 

Case#1b: Customers going to Wal-Mart between 5pm and midnight 
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Case#2b: Customers going to Wal-Mart between 10am and 5 pm 

Case#1c: People going to watch movie between noon and 6pm  

Case#2c: People going to watch movie between 6pm and midnight 

In the above scenarios, cases 1a, 1b and 1c represent uniform distribution or 

regions of high activity while cases 2a, 2b and 2c represent non-uniform distribution or 

regions of low activity where the number of event instances is few. 

The sample distribution of episodes discovered for cases 1a, 1b or 1c would be 

similar to the following figure while the figure [x] represents the distribution of 

episodes for cases 2a, 2b or 2c. Hence a single approach to partition the episodes would 

not give partitions with an approximately equal number of episodes in it. 
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(b) 

Figure 10  Distribution of Episodes in a partition (a) Uniform (b) Skewed. 
 

In the above figure, partitioning the non-uniform distribution of episodes using 

the fixed partition scheme creates partition numbers P2 and P3 that are the regions of 

inactivity – the time period when all the inhabitants are not at home. These partitions 

either have very few episodes or no episodes to validate.  These two cases demonstrate 

the fact that a single divide and conquer approach would not give the desired 

performance benefits if partitioning the set of frequent episodes does not create 

partitions with an approximately equal number of episodes to validate. In order to 

ensure the best performance, we propose two approaches for partitioning the episodes. 

The first approach is the case where the distribution of episodes in a data set is uniform. 

Here, the episodes are assumed to be uniformly distributed over the periodicity (daily or 
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weekly). Hence partitioning on fixed time values would generate approximately equal 

number of episodes in each partition. For example, if the number of partitions is set to 

four then we divide the entire day into four equal parts: 0-6, 6-12, 12-18, and 18-24. All 

the episodes that start before 6 am belong to the first partition while episodes starting 

between 6 am and noon are assigned the second partition and so on. The second 

approach is for non-uniform distribution as demonstrated by case#2 in the figure above. 

Applying the fixed scheme creates partitions that either have lot of episodes or have 

very few episodes in it that leads to imbalance in the computational load. This defeats 

the purpose of partitioning a large set of episodes into partitions manageable with the 

available memory. Our second approach ensures that balance in computational load is 

achieved by assigning approximately equal number of episodes and keeping the number 

of episodes close to each other across all partitions. This approach takes into 

consideration the total number of episodes rather than their start or end time. This 

makes the partitioning process independent of the distribution of episodes discovered. 

More details on this approach are discussed in the implementation chapter. 

3.10.3 How to partition an episode 

Partitioning of episodes can be done either on the start time or the end time of 

the episode. Partitioning on start time leads to a natural partitioning process since first 

and last partition is adjacent logically and you only need to carry forward the support. 

Natural Partitioning means the first half of the spanning episode will be validated in the 

current partition and the second half will be validated in the next partition. We can also 

partition on the end time of an episode. But this will only take care of the episodes 
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whose end time is less than the partition time. It will not consider the episodes whose 

start time is less than the partition time and which partially belong to this partition. 

3.11 Phases in Partition Approach 
 

1. Partitioning Phase  

2. Fetching Phase  

3. Building Phase  

4. Support Counting Phase  

5. Pruning Phase 

6. Carry forward Phase 

3.11.1 Partitioning Phase 

The number of partition to be done is a user specified parameter. The algorithm 

supports two types of partitioning approaches: 

3.11.1.1 Uniform Distribution 

This approach is a static approach. For n partitions, it divides the periodicity 

(e.g., 24-hour period) into n equal partitions. For example, for daily periodicity and n=4, 

the partition points would be 6, 12, 18, and 24. Based on these values, all the episodes 

and raw data are partitioned. All episodes with their start time less than 6 a.m. and all 

transactions in raw data with their transaction time less than 6 a.m. are processed into 

partition#1. While, all episodes with their start time between 6 a.m. and noon and all 

events in raw data with their transaction time between 6 a.m. and noon are processed 

into partition#2. Similarly, we partition the rest of the episodes and the raw data 

available. 
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This approach works well for episodes with uniform distribution. But for 

skewed episodes, this either creates partitions with very few episodes or too many 

episodes leading to an imbalance in the number of episodes in each partition. 

3.11.1.2 Non-Uniform Distribution 

This approach is used for episodes with a skewed distribution. It aims to balance 

the number of episodes in each partition. Instead of partitioning on fixed time units, this 

approach partitions the episodes based on the number of episodes. Suppose that in the 

set of frequent episodes discovered, we have 100 episodes of size two, 150 episodes of 

size three and 60 episodes of size four. Thus the total number of episodes is 310 and if 

there are four partitions, than each partition should receive approximately 77 episodes 

each. We cannot balance the partitions equally but are able to balance the load nearly 

equally since the size of the episode, the number of episodes of each size and their 

corresponding start and end times are not fixed.  

Once the partition points are computed for both the approaches, we choose an 

approach that creates partitions of approximately equal sizes and proceed to next phase. 

3.11.2 Fetching Phase 

In this phase, the episodes that span in this partition are fetched from the other 

partitions so that their partial support could be computed. For the first partition, the 

folding episodes are fetched and included in the building phase. For the rest of the 

partitions, the fetch phase comes after the building phase since the spanning episodes 

already exist in the main memory with their partial support computed in the previous 

phases. 
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3.11.3 Building Phase 

Due to partitioning, now normal episodes can span across two partitions. These 

are now classified as spanning episodes along with the folding episodes which by 

default span two partitions. Hence, while building the episodes in main memory we 

identify and tag the episode type for later use. The episode is tagged as a normal 

episode, a folding episode or a spanning episode. Based on the type of episode, the 

pruning phase decides whether to validate an episode or carry forward to the next 

partition. The rest of the process is similar to the respective phase in the Naïve 

approach. 

3.11.4 Support Counting Phase 

This phase is similar to respective phase in the Naïve approach. For a given 

partition of episodes, the raw data corresponding to this partition is scanned to compute 

the support for each event in an episode.  

3.11.5 Pruning Phase  

The only difference in this phase with respect to the Naïve approach is that not 

all the episodes whose support is computed are validated. Only the normal episodes and 

the spanning episodes which end in the current partition are validated. The remaining 

spanning episodes are carried forward to the next partition for further processing. 

3.11.6 Carry forward Phase  

In this phase, the spanning episodes that do not end in the current partition are 

carried forward with their partial support count to the next partition. 
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3.12 Advantages and Limitations of Partitioned Approach 
 

This approach allows us to validate each partition in isolation thereby reducing 

the main memory requirements and allowing a larger set of episodes to be validated. 

Instead of representing all the episodes in the main memory at the same time, we do it 

in chunks. We partition the set of episodes and consider each partition in isolation. This 

allows us to deal with larger set of episodes, for a given amount of main memory. 

Partitioning also reduces the response time significantly. As discussed in section 3.5, 

the complexity of the algorithm is O(p)*O(s)*O( r) where p is the size of the raw data 

set , s is the average number of episodes where a single device occurs and r is the 

average size of the episode / average number of devices in the episode. The value of s 

decreases with the decrease in number of episodes in a partition and would thus lead to 

reduced response time. This approach thus takes care of the scalability issues but 

validates each partition sequentially and hence the total time required can be further 

reduced if all the partitions are validated in parallel. 

3.13 Parallel Approach to Identify False Positives 
 

This approach is somewhat similar to the partitioning approach. The major 

difference between the two is that this approach processes all the partitions in parallel 

while the partition approach does it sequentially.  

 In this approach, we assume the availability of number of processors, all with 

the same architecture. We assign one partition to each processing node. The 

computation phase for all the episodes and the pruning phase for the normal episodes 

are executed in parallel at each node. Here we introduce an additional phase, the merge 
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phase, which takes care of the spanning episodes in the set of episodes discovered. This 

merge phase starts after all the nodes finish their respective pruning phase and return the 

spanning episodes with their partial support counts.  

3.14 Issues in Parallel Approach 
 

3.14.1 Episode spanning multiple partitions 

Each partition is validated on a different processor. Hence we need to ensure 

that an episode that spans multiple partitions is included in each partition before we start 

validating an episode. We need to identify the spanning episodes and duplicate the 

spanning episode in all the partitions to compute their partial support.  The partition 

approach was a sequential approach and hence dealing with the spanning episodes was 

quite straightforward. But here since all the partitions are to be processed in parallel we 

need to identify the span of an episode before we start the entire process of identifying 

the false positives. This is needed to ensure that the partial support of spanning episodes 

is computed at all partitions where it spans. To explain how we compute the 

overlapping episodes, we revisit the figure explained in the partitioned approach. 
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Figure 11  Distribution of Episodes after Partition 
 

In the above figure, we have four partitions; one partition is allocated to one 

machine on the cluster of machines available for the parallel approach. Each partition 

has a start time and an end time. The start time of the partition is the end time of the 

previous partition and the end time of the partition is the start time of the consecutive 

partition. Similarly an episode has a start time and the end time. We use these four 

characteristics to compute the set of episodes to be validated by a machine. For each 

machine in the cluster, we select all the episodes satisfying any of the following 

conditions: 
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1. The start time of the episode is greater than the start time of the partition AND 

less than the end time of the partition. 

2. The end time of the episode is greater than the start time of the partition AND 

less than the end time of the partition. 

3. The start time of the episode is less than the start time of the partition AND the 

end time is greater than the end time of the partition. 

The first condition takes care of episodes starting in a partition; the second 

condition takes care of episodes ending the current partition and the third condition 

takes care of episodes spanning across the partition. Hence if we consider partition#2, 

the set of episodes selected by our SQL would consist of episode number 12, 2, 23, 123 

and 1234. 

Similarly, we select the raw data set corresponding to the set of episodes to be 

validated in a partition. The partitioning of raw data set is based on the event occurrence 

time. 

The implementation details of the SQL based approach to solve the above 

problem can be found in the next section. 

3.14.2 Merge the partial support count of spanning episodes 

The normal episodes are validated by each processor while the validation for 

spanning episodes is delayed and is done later by a single processor after the merge 

phase is complete. Each processor sends the partial support count of the spanning 

episodes to a central node that is responsible for merging the support count of these 

episodes. 
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3.15 Phases in Parallel approach 
 

1. Partitioning Phase (One Time) 

2. Fetching Phase (Iterative) 

3. Building Phase (Iterative) 

4. Computing Support Phase (Iterative) 

5. Pruning Phase (Iterative) 

6. Merge Phase (One Time) 

Partitioning Phase  

This phase is the same as described in the partition approach. Based on the 

number of nodes/machines available for parallel computation, we partition and assign a 

partition to each node. 

Fetching Phase  

This phase is similar to the fetching phase in sequential approach. The major 

difference here is that the validation of all partitions is done in parallel and hence we 

need to duplicate the spanning episodes at each node beforehand. This is done to ensure 

that the partial support counts of spanning episodes are computed at each node where it 

spans. We illustrate fetching phase with the following example: 

HTNi – table of all episodes at node ‘i’  

THTNi – temporary table of spanning episodes at node ‘i’ to be duplicated at all 

other nodes in the cluster 

Em = Episode in partition m 

Emnp = Episode spanning three partitions: partition number m, n and p. 
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e.g., E234 implies that episode starts in second partition and ends in fourth partition 

N= Number of nodes in the cluster=4 

E = Set of Episodes to validate={E1,E12,E123,E1234,E2,E23,E234,E3,E34,E4,E41,E412} 

Episodes to validate at node#1 

HTN1 = {E1, E12, E123, E1234} 

THTN1 = {E12, E123, E1234} 

Episodes to validate at node#2 

HTN2= {E2, E23, E234} 

THTN2= {E23, E234}  

Episodes to validate at node#3 

HTN3= {E3, E34} 

THTN3= {E34}  

Episodes to validate at node#4 

HTN4= {E4, E41, E412} 

THTN4= {E41, E412} 

Episode to validate at each node after duplicating the spanning episodes 

HTN1 = {E1, E12, E123, E1234, E41, E412} 

HTN2= {E2, E23, E234, E12, E123, E1234, E412} 

HTN3= {E3, E34, E123, E23, E234, E1234} 

HTN4= {E4, E41, E412, E1234, E234, E34} 

Building Phase  
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The building phase is similar to the building phase in the partitioned approach 

where each node builds the episode and the episode-id lists in main memory. 

Support Counting Phase  

This phase is also similar to computing support phase in the partitioned 

approach where each node computes the support count of events in an episode through a 

single scan of the raw dataset. 

Pruning Phase  

This phase validates only the normal episodes. The spanning episodes with their 

partial support are sent to a central node responsible for validating the spanning episode. 

Each node sends the spanning episode with their partial support count to this node.  

Merge Phase  

The merge phase starts after all the nodes in the cluster send the spanning 

episodes to a central node responsible for merging the partial support of these episodes 

and validating them. First, the partial support count of each episode from all the nodes 

is added to get their cumulative support count. Once the cumulative support count for 

each episode is obtained, the pruning phase starts. This phase, as described in the Naïve 

approach, is executed to identify whether the episode is a valid episode or a false 

positive.  

3.16 Advantages and Disadvantages 
 

We assume that the number of spanning episodes is less and hence duplicate 

them at all nodes. If the number of spanning episodes is significant, the number of 

episodes to be validated by each node would increase. This would make the computing 
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support phase more expensive leading to an increase in the total time to validate. 

Moreover, each node in the cluster will have to send the partial support count of the 

spanning episodes to a central node for merging the partial support count and validating 

them. This is an additional phase compared to the partitioned approach where we carry 

forward the partial support of spanning episodes and discard once they satisfy the 

minimum support. The time to merge depends on the number of spanning episodes and 

is this overhead is meager when compared to the benefits achieved in the total time to 

validate all episodes in parallel. On the other hand, the merge phase cannot start until it 

receives spanning episodes from all the nodes taking part in the validation. This might 

prove to be a bottleneck if load balancing is not achieved while distributing the load to 

each node in the cluster. For very large data sets where the number of episodes to be 

validated is really high, we can observe significant reduction in the response time as the 

number of nodes available to validate increases.  
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CHAPTER 4  
 

IMPLEMENTATION OF VALIDATION ALGORITHM 
 

We choose a main memory approach to validate the frequent episodes. Here, we 

need to maintain two types of information for each episode. First, the output of Hybrid-

Apriori algorithm needs to be stores, which consists of the events in the episode, the 

start time and the end time of the episode and the episode confidence needs. Second, we 

need to compute the support count of each event in the episode for the specified 

granularity and store it while making a single scan over the raw data set. We compute 

the support count for each event in an episode by scanning the raw data. To distinguish 

the false positives from the correct frequent episodes, the validation of events starts 

after the computation phase. Having all the information at a single place simplifies the 

analysis and increases the efficiency of the validation phase. In addition, the episode 

discovered by Hybrid-Apriori could be of different granularity and different sizes. 

Considering all the possible variations of an episode, we chose to represent an episode 

as an object. An object gives us the flexibility to encapsulate all the attributes at a single 

place. We can store multiple objects inside a single object, and decide the size of the 

object at runtime thereby allowing us to deal with any type of variations in the set of 

episodes to be validated. 
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Figure 12 Episode Object 
 

The figure above represents an object that encapsulates the attributes of an 

episode and also contains the data structures to store the computed support of each 

event in the episode. The patternId uniquely identifies each episode to be validated. The 

start time and the end time denote when an episode starts and ends and are used to 

compute the support of events participating in the episode. The patternConfidence 

attribute holds the confidence of the episode discovered. The patternType attribute is a 

derived attribute of an episode. It is used in the partition and the parallel approaches. Its 

value depends on the partition time-points, the start time and the end time of the 

episode. It can take one of the three values: {0, 1, 2}. The mapping for these values is: 

Normal Episode = 0, Spanning Episode = 1 and Folding Episode = 2. The itemSet 

object is a vector that consists of all the events forming a frequent episode. The vector 

data structure in Java is a dynamic array that can grow at run time as needed. The size 

of this vector depends on the number of events in an episode. The number of events in 

an episode is not known in advance and hence a data structure such as an array cannot 

+HybridPattern() : Object

-patternId : int
-itemSet : Object
-startTime : Date
-endTime : Date
-patternConfidence : double
-patternType : int

«implementation class»
HybridPattern
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be used making the vector an ideal choice. Each event in the vector has two attributes: 

item name and item support. Each event in the itemSet vector has an instance of the 

item object. The class diagram for the item object is shown in the following figure: 

 

Figure 13 Event Object 

Thus, an itemSet will contain multiple items and each item would contain the 

item name and its support array. For daily periodicity, we need to compute the support 

for all weekdays and hence the array size is seven. For weekly periodicity, we need to 

compute the support for all months in a year and hence the array size is twelve.  We 

choose an array to store the support of an event on a given day for two reasons. First, 

the size of the support array depends on the periodicity and the periodicity of the 

discovered episodes is known to us in advance. Secondly, the array index can be easily 

used to represent a unique weekday and updating the support would be easy. The Java 

API for date returns the weekday or the month as an integer and we map this to the 

array index of the support array. The following figure displays an itemSet for an episode 

of size three with daily periodicity. This vector of events contains the event names and 

their corresponding support stored in an array. 

+Item() 
+initSupport() : Object 

-itemName : String 
-itemSupport : Object 

«implementation class» 
Item 
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Figure 14 Vector of Events with their Support 
 

The validation process starts with the building phase. Here, we read all the 

episodes from the database and represent them as objects in main memory with the help 

of the data structures explained above. We use the hash table data structure in Java to 

store all the information related to an episode. The building phase creates two hash 

tables: The first is the hash table of episodes while the second is the hash table of 

episode-ids grouped by the events in an episode. We maintain two hash tables because 

updating the support of an event in a given episode is a computationally intensive 

operation and the number of events in the raw data set is very large. For each event we 

need to retrieve all the episodes and check whether the event occurrence time in the raw 

data set is within the range of the start and the end time of the episode. We can do this 

with a single hash table too. But that would be an exhaustive approach whereby for each 

event in the raw data set we need to examine the start time and the end time of all the 
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episodes irrespective of the fact that an event may or may not be present in an episode. 

Even after going through the entire table it is not necessary that an event has at least one 

corresponding episode where it occurs since the raw dataset has many events that do not 

occur in any episode. In addition, the number of times the hash table of episodes will be 

accessed will increase with increase in the size of the raw data set. In order to deal with 

such situations we create a second hash table. This hash table contains all the episodes 

grouped by their episode-ids. Thus for a given event in the raw data set we fetch the list 

of episode-id where it occurs. Now for each episode-id in this list we fetch a 

corresponding episode from the hash table of episodes and check the time interval to 

update the support. Thus by grouping the episodes on their events in a separate hash 

table significant reduction is achieved in the number of episodes we access for each 

event. In addition, the cost of creating the second hash table is not significant since it is 

done simultaneously with the creation of hash table of episodes. This hash table 

contains the episode list that is a vector object which grows dynamically based on the 

number of episodes where an event occurs. The event is the key and the list of episodes 

where the event occurs is the value in this episode list hash table. As explained above, 

this vector of episode-ids in hash table helps us to efficiently retrieve the relevant 

episodes in the computing phase of the validation.  

The following figure displays the hash table of episodes for three episodes and 

the corresponding hash table of events containing the list of episode-ids where an event 

occurs. 



 

66  
 

 

Figure 15 Hash Table of Episode and Episode-Id 
 

We now explain the different phases in the validation algorithm with respect to 

the implementation details. The validation phase starts with the building phase that 

reads all the episodes from the database and creates a hash table of episodes and a hash 

table of episode list. It reads an episode at a time from the database and stores in the 

main memory data structure discussed above. The episode-object is then stored in a 

hash table with the unique episode-id as its key. Simultaneously, we create a new 

episode-id list for each of the events in the episode or append the episode-id if one 

exists. The computing phase starts once all the episodes have been stored in the hash 

table and the corresponding episode-id list is built. In the computing phase, we make a 
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single pass over the raw dataset in the database. Each tuple in the raw dataset is an event 

occurring at a particular time point. For each tuple, we fetch the corresponding episode 

list. The episode list contains a list of episode-ids of episodes where this event 

participates. For each episode-id in the list, we fetch the corresponding episode object 

from the episodes hash table. We now check whether the event transaction time falls in 

the range of the episode time interval [StartTime, EndTime]. If it falls in this interval, 

we ungroup the day and time of the transaction time of the event in the raw data set to 

compute the weekday value. If the time component of the transaction time falls in the 

interval range of the episode start time and end time, we use the weekday component of 

the transaction time in the raw data set tuple and increment the corresponding week day 

support array index for this event in the episode by one and update the hash table of 

episodes. This process is repeated for each episode in the episode list. Once all the 

episodes corresponding to this device are updated, we fetch the next tuple from the raw 

data set and repeat the entire process of computing support.  

In this way, we make a single scan over the raw data set and update the support 

of corresponding events in each episode for the specified granularity. The process of 

computing the support of an event is not straightforward since the episodes discovered 

by Hybrid-Apriori do not contain any information for the next granularity e.g., an 

episode for daily periodicity contains only the start time and the end time. As Hybrid-

Apriori is a SQL based approach, the episodes discovered have the first day of the 

current month and year prefixed to the start and the end time. This is done so that the 

aggregate operators of SQL such as the least and the greatest operator can be used in the 
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episode discovery process. On the other hand, the raw data contains all the information 

pertaining to the date of the transaction i.e. the time, the day, the month and the year. In 

order to compare the timings of the episode with the transaction time of the event in the 

raw data set, we extract the time component from the episode and the event and prefix 

the Java epoch date to this and then check whether the event time falls within the range 

of the episode timings. If it does fall, we extract the weekday from the transaction date 

of the event in the raw data set and update the appropriate support index of this event in 

the episode. 

Once the computing phase is over, validation is carried out for all the episodes 

to distinguish the valid episodes from the false positives. 

4.1 Implementation of the Partitioned Approach 
 

The partitioned approach partitions the set of episodes and the raw data before 

starting the validation process. Partitioning of episodes is done using two approaches: 

Uniform distribution and Non-Uniform distribution.  

The uniform distribution approach partitions the set of episodes on fixed time 

units determined by the number of partitions. It takes advantage of the partitioning 

feature of Oracle database. In Oracle8 and beyond, partitions are themselves segments 

and they can be stored and managed independently of one another.  Segments are 

comprised of extents, and extents are comprised of blocks, with blocks being the 

smallest unit of space actually managed by the database. The non-partitioned table is 

also a segment. The EXCHANGE PARTITION operation used here changes the 

identity of the partition to become that of a non-partitioned table, and then changes the 
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identity of the non-partitioned table to become that of a segment. This is done entirely 

within the Oracle data dictionary.  The identities of the segments themselves do not 

change.  Nor does any of the data within the segments get moved.  Instead, the identity 

of segment A (formerly a partition) is changed from SEGMENT_TYPE = ‘TABLE 

PARTITION’ to ‘TABLE’, and the identity of segment B (formerly a non-partitioned 

table) is changed from SEGMENT_TYPE = ‘TABLE’ to ‘TABLE PARTITION’.  This 

kind of identity switching is valid if and only if the partition and the table have the same 

“logical shape” (i.e. same columns, data types, data-integrity constraints, etc). There are 

many types of partitioning methods available. In our case, we use RANGE partitioning. 

This type of partitioning creates partitions based on the “range of column" values. Each 

partition is defined by a “Partition Bound" (non inclusive) that basically limits the scope 

of partition. 

We partition the table of episodes in the underlying database on their start time. 

The sample queries shown below demonstrate the process of partitioning the table of 

episodes. 

1. ALTER SESSION set nls_date_format = 'dd-mon-yy hh24:mi:ss' 

2. ALTER TABLE F_22  add (dtstarttimeNum number) 

3. UPDATE F_22  

set dtstarttimeNum = 

lpad(TO_NUMBER(TO_CHAR(to_date(dtstarttime,'dd-mon-yy 

hh24:mi:ss'), 'HH24miss')),6,'0') 

4. CREATE TABLE F_22_P  
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(ID number, item1 varchar2(40) , item2 varchar2(40) ,   

dtstarttime date, dtendTime date, confidence number,  

dtstarttimenum number) NOLOGGING   

partition by range (dtstarttimenum)   

(Partition part6_4 values less than (240000) ) 

5. ALTER TABLE F_22_P EXCHANGE PARTITION part6_4 with TABLE 

F_22 

6. ALTER TABLE F_22_P SPLIT PARTITION part6_4 AT (60000) INTO 

(partition part6_1, partition part6_4) 

7. ALTER TABLE F_22_P SPLIT PARTITION part6_4 AT (120000) INTO 

(partition part6_2, partition part6_4) 

8. ALTER TABLE F_22_P SPLIT PARTITION part6_4 AT (180000) INTO 

(partition part6_3, partition part6_4) 

The above set of SQL statements are used for partitioning based on uniform 

distribution with number of partitions equal to four. All the episodes which start before 

6 am belong to the first partition while episodes starting between 6 am and noon are 

assigned the second partition and so on. Line number 1 sets the date format to our 

context. Line number 2 and 3 are necessary because the episodes discovered by Hybrid-

Apriori do not contain the higher granularity information. The only valid component is 

the time component. Therefore, line number 3 converts the time component of the start 

time of the episode to a number. For example, an episode with start time “1-Oct-2005 

13:07:56” will be converted to a number 1307056 and stored in the dtstarttimenum 
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column of the episode table F_22. Range partitioning is now done on this number (i.e., 

dtstarttimenum column as shown in line number 4). The statement in line number 5 

swaps the F_22_p table's partition part6_4 with the table F_22. The contents of F_22 

(episode table of size 2) are now in the part6_4 partition of F_22_p, and the F_22 table 

is empty. Since this operation merely changes the data dictionary and does not 

physically move data, it does not generate redo and is extremely quick. Next, as shown 

in line number 6, we split this single partition, starting with the lowest boundary 6000 

identified as partition part6_1. This SQL statement creates a new partition called 

part6_1 and moves the rows with a dtstarttimenum value of less than 60000 into 

partition part6_1 from part6_4. Since the table is defined as NOLOGGING, this doesn't 

generate much redo. After this operation, the partition part6_4 contains data for the 

partitions other than part6_1. We repeat this process for partition part6_2 and partition 

part6_3 as shown in line number 7 and 8. At the end partition6_4 contains data 

pertaining to its partition i.e., episodes in the time interval [18:00:00, 23:59:59]. This 

process is repeated for episodes of all sizes. The partitioned approach to validate can 

now access each partition in isolation by querying the episodes and the corresponding 

raw data by their partition names.  

Partitioning based on uniform distribution does not distribute equal workload 

for skewed episodes – episodes having their time interval [start time, end time] more or 

less similar. In order to deal with such episodes we implement a partitioned approach 

based on the number of episodes discovered. For all episodes with the same episode 

size, the total number of episodes is divided by the number of partitions to get the 
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maximum number of episodes in a partition (mk). We then fetch the start time of the 

episode with episode-id equal to mk This process is repeated for episode of all sizes and 

the maximum of the start time from these is taken as the partition time for the partition. 

Once we are done with both the partitioning approaches, we examine the results 

of partitioning to determine the approach that distributes the given set of episodes in the 

best manner – achieving almost equal load balance among all partitions. We then start 

the partition or the parallel approach to validate the frequent episodes by selecting the 

best between the two approaches to partitioning. 

The partitioned approach deals with three kinds of episodes. The first is a 

normal episode, the second is spanning episode and the third is the wrapping episode. 

The normal episode is the one that start and end in a single partition. The wrapping 

episode is the one which spans multiple periods due to the inherent time wrap property 

while the spanning episodes is the one which spans multiple partitions and it depends on 

the number of partitions, the partition time point and the time interval of the episode. 

The normal episodes are validated in the same partition but the wrapping and the 

spanning episodes need to be carried forward with their partial support count computed 

in the current partition to the consecutive partition. In order to differentiate the normal 

episodes from the wrapping and the spanning episodes we use the episode type attribute 

of the episode object as mentioned in the design section of this thesis. In the build phase 

of each partition we identified the episodes type based on their start time and the current 

partition times. This information is now used in the validation phase. In the validation 

phase, the normal episodes are distinguished as valid episodes or false positives while 
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the spanning episodes are validated only if their end time is less than the partition end 

time else they are carried forward to the next partition with their partial support. The 

wrapping episodes are different from the spanning episodes in the sense that they are 

always validated in the last partition. The reason being wrapping episodes may start or 

end in any partition or they may span across multiple partitions but since we start the 

validation process from the first partition we cannot compute the final cumulative 

support until we have scanned the entire set of raw data events i.e. reached the last 

partition. 

The readPatternsWithPartition class implements the partition approach to 

validate the frequent episodes. It is a sequential approach where each partition is 

validated in sequence. At the end of each partition it carries forward the spanning and 

the wrapping episodes with their partial support to the next partition and appends to the 

hash table of episodes populated for that partition. Once the validation phase for the last 

partition starts, it validates the wrapping episodes along with the other episodes. 

4.2 Implementation of the Parallel Approach 
 

The parallel approach begins with the partitioning of the episodes to validate. 

The number of nodes available for computation decides the number of partitions to be 

done. The number of partitions can also be computed based on the available memory. 

All the participating nodes carry out the build and the computation phase in parallel. In 

the validation phase, the normal episodes are validated in parallel while the support 

count of spanning and wrapping episodes is sent to a central node where the partial 

support count from each node has to be merged before they van be validated. The merge 
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process starts only after it receives partial support count from all the nodes participating 

in the validation process. Once the merging is done, the process of validating the 

episodes is similar to naïve approach. 

4.3 Selecting Episodes spanning multiple partitions 
 

Partitioning of episode using the partition feature of Oracle database does not 

work in this approach since the partitions are to be validated in parallel. Hence we need 

duplicate the spanning episodes in all partitions and send it to the nodes before the 

process of validation can start.  

Each server receives the information regarding the partition it has to process and 

the corresponding partition values. In order to select the spanning episodes, we take a 

SQL based approach. The sample SQL demonstrates how a server responsible for 

processing partition number 2 would select the spanning episodes belonging to its 

partition from a given set of episodes.  

1. SELECT  *  FROM  EpisodeTable f  

2. WHERE  

3. (                      /*EP STARTING IN A PARTITION*/ 

4. to_char(f.dtstarttime,'hh24:mi:ss') < to_char(f.dtendtime,'hh24:mi:ss')  

5. AND    to_char(f.dtstarttime,'hh24:mi:ss')>='prevPartitionTime' AND   

to_char(f.dtstarttime,'hh24:mi:ss')<'currPartitionTime' 

6. )    

7. OR                    /*EP ENDING IN A PARTITION */ 

8. (    to_char(f.dtstarttime,'hh24:mi:ss') < to_char(f.dtendtime,'hh24:mi:ss')  
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9. AND to_char(f.dtendtime,'hh24:mi:ss')>='prevPartitionTime' AND 

to_char(f.dtendtime,'hh24:mi:ss')<='currPartitionTime' 

10. )    

11. OR                     /*EP SPANNING IN A PARTITION */ 

12. ( to_char(f.dtstarttime,'hh24:mi:ss') < to_char(f.dtendtime,'hh24:mi:ss')  

13. AND to_char(f.dtstarttime,'hh24:mi:ss')<'currPartitionTime' AND 

to_char(f.dtendtime,'hh24:mi:ss')>='currPartitionTime' 

14. )  

15. OR                    /*TIME WRAP EPISODES DUE TO FOLDING*/ 

16. ( 

17. to_char(f.dtstarttime,'hh24:mi:ss') > to_char(f.dtendtime,'hh24:mi:ss')  

18. AND    to_char(f.dtstarttime,'hh24:mi:ss')>='prevPartitionTime' AND 

to_char(f.dtstarttime,'hh24:mi:ss')<'currPartitionTime' 

19. )    

20. OR  

21. (   to_char(f.dtstarttime,'hh24:mi:ss')  >  to_char(f.dtendtime,'hh24:mi:ss')  

22. AND to_char(f.dtendtime,'hh24:mi:ss')>='prevPartitionTime' AND 

to_char(f.dtendtime,'hh24:mi:ss')<='currPartitionTime' 

23. )    

24. OR  

25. (     to_char(f.dtstarttime,'hh24:mi:ss')  >  to_char(f.dtendtime,'hh24:mi:ss')  

26. AND to_char(f.dtendtime,'hh24:mi:ss')>'currPartitionTime' AND 

to_char(f.dtstarttime,'hh24:mi:ss')>='prevPartitionTime' AND 

to_char(f.dtstarttime,'hh24:mi:ss')<='240000' 
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27. )    

Line number 1 selects all the episodes of size two from the database. Line 

numbers 4 to 14 deals with normal episodes and spanning episodes while line numbers 

15 to 27 deals with folding episodes which by default span at least two partitions. Line 

number 4 to 6 selects normal and spanning episodes that start in the current partition. 

Line number 7 to 10 selects episode that end in current partition. Line number 11 to 14 

selects episodes that neither starts nor ends in the current partition but still span across 

the current partition. Line number 15 to 27 selects all the wrapping episodes. The 

conditions checked here are similar to the ones for normal and wrapping episodes. To 

summarize, for each partition we look for episodes that start, end or span across this 

partition. 

The parallel approach to the validation of episodes is a distributed approach 

which uses the Java Remote method invocation framework by Sun Microsystems. RMI 

capability in Java supports calls to remote procedures. It allows a thread in one JVM to 

invoke (call) a method in an object in another JVM that is perhaps on a different 

physical machine. A new thread is created in the other (remote) JVM to execute the 

called method. Parameters to the remote method and the method's return result, if any, 

are passed from one JVM to the other using object serialization over the network.
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4.4 RMI Architecture for parallel approach 
 

 

Figure 16 Architecture for the Parallel Approach 
 

As shown above, the central node is responsible for allocating the workload to 

each node available for parallel computation and validation of the episodes. The central 

node reads a configuration file that contains all the information related to the remote 

objects. This file contains the number of nodes available for processing, the uniform 

resource locator (URL) and the port number of server. The number of partitions created 

is equal to the number of nodes available. Based on the number of partitions, database 

of episodes is scanned to generate the partition start and end time for each partition. 

This is done for non-uniform distribution approach. For uniform distribution of 

episodes, we simply generate timestamps based on the number of partitions. Once the 
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partition time points are generated, the central node generates a thread for each node 

and passes it the URL, port number and the partition information. This thread is 

responsible for invoking the validatePartition method of the remote object by sending 

the partition information to the server on the remote node. The remote servers upon 

receiving the partition information dynamically create the SQL for selecting the 

relevant episodes from the database of episodes. The entire process of validating the 

episodes as explained in the naïve approach – build phase, support counting phase and 

the validation of normal episode now starts at each node in parallel. The spanning and 

the wrapping episodes with their partial support count are sent back the client thread. 

The client thread sends the results back to the central node that waits for the results to 

arrive from all the nodes. Once all the results arrive the merge phase starts at the central 

node. 

4.5 Merge Phase at the central node 
 

Once all the spanning episodes with their partial support counts from all nodes 

are received at the central node, the merge phase starts. In this phase, we merge the 

partial support counts of an episode to get their cumulative support count. The pseudo 

code for this is shown below. The hash table containing the partial support count of 

spanning episodes computed at each node is termed as local hash table (localHT) and 

the hash table with the cumulative support count is termed as global hash table 

(globalHT). Once the merge phase is over, we start the validation phase that is same as 

the validation phase in Naïve approach. 
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1. Create an global hash table ‘globalHT’ for merging the spanning episodes from all 

nodes 

2. For each local hash table ‘localHT’ of spanning episodes 

3. Fetch the episode-key Ki of a spanning episode 

4. If the key Ki does not exist in the globatHT 

5. Fetch the corresponding spanning episode from the localHT 

6. Insert the episode-key and the spanning episode into the globatHT 

7. Else 

8. Fetch the spanning episode corresponding to this episode-key Ki from the      

localHT 

9. Fetch the spanning episode corresponding to this episode-key Ki from the 

globalHT 

10. For each event in the spanning episode of localHT 

11. Update the support count of the event in the spanning episode in the 

globalHT for the given granularity  

Once the merge phase is over we have the cumulative support of the spanning 

episodes. The validation phase now distinguishes the false positives from the valid 

episodes.
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4.6 How Java RMI works for the parallel approach 
 

The following table displays the major classes in our implementation of the 

parallel approach with their corresponding purpose. 

Table 8  Parallel Approach – Implementation overview 
Purpose Class Name 
1) Interface for remote objects ValidatePatternInterface  
2) Remote Object responsible for validation RemoteObjectValidate 
3) Serve responsible to serve the clients and invoke the 
remote objects ValidateServer 
4) Client responsible to send the work load to the remote 
object ValidateClientThread 
5) Responsible for validating the episodes ValidateWorker 
6)  Central node responsible for partitioning and creating 
threads for each remote object available for validation, 
merging and validating the spanning episodes ValidateClient 

 

Here the remoteObjectValidate is our remote object that implements a 

validatePatternInterface interface containing a validatePartition method responsible to 

validate the partition of episode assigned to it. This method is a remote method which 

can be invoked by the clients to validate a set of frequent episodes. The remote object 

registers itself with the RMI server validateServer for the clients to locate it. The 

validateClient class that acts as a central node is responsible for creating multiple 

threads, one each for a server responsible to do the majority of computing.  The central 

node creates a thread each for the remote servers. The local client thread 

validateClientThread passes a validateInfo object as a parameter to the RMI server. The 

validateInfo object is an information triplet (IP address, port number, partition to 

process) indicating the partition to process and the server responsible for that partition. 
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The RMI server receives this information and passes it to the remote object for further 

processing. The remote object for the given work load does all the processing and 

returns the results back to the client thread which in turn passes it to the central node. 

Thus the client thread lets the remote object to have work performed on its behalf 

(computing support of the episodes, validating the normal episodes and returning the 

spanning episodes yet to be validated) and returns the results to the central node for 

further validation. After receiving the results from all the client threads starts, the 

central node starts the merge phase. In the merge phase, the partial support counts of 

each spanning episode are summed up to get their cumulative support. 
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The table below summarizes the sequence of steps in the parallel approach 

discussed earlier. 

Table 9 Sequence of steps in the parallel approach 

Steps Validate Client / Central Node Validate Client thread/ Multiple 
Threads at Central Node 

Remote object 
validate / 
Multiple 
Remote 
Objects/Servers 

1 Partition the episodes to be validated 
based on the number of servers 
available. 

    

2 Create a thread each for all the servers 
and send each thread one partition 
information and a reference of central 
node for callback when the partition 
results are available from the server 

    

3 Listen to the all the threads to receive 
the result set 

    

4   Receive the partition information from the 
central node – validate client 

  

5   Look up the remote object/server and send 
it the partition information 

  

6   Wait for the server to return the hash table 
of spanning episodes and the result of 
normal episodes 

  

7     Receive the 
partition 
information from 
the validate client 
thread 

8     Compute the 
support and 
validate the 
normal episodes 

9     Send the spanning 
episodes with their 
support count and 
the result of 
normal episodes 

10   After receiving the spanning episodes with 
their support count, return the result back 
to the central node 

  

11 Start merging when results from all 
servers have arrived. 

    

12 Merge the partial support counts and 
validate the spanning episodes 
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4.7 Summary 
 

This chapter discussed the implementation process to validate frequent episodes. 

We propose three approaches to validation and discuss the implementation requirements 

of each followed by the implementation issues associated with each approach. We also 

discuss the advantages and limitations of each approach. In the next chapter, we 

demonstrate the performance and scalability aspects of each approach through extensive 

experiments. 

  



 

84  
 

 

CHAPTER 5  
 

EXPERIMENTAL RESULTS 
 

In this chapter, we discuss the experimental results for our three approaches to 

validate frequent episodes. The objective is to test the performance and scalability of 

these algorithms. 

Experimental Setup: Experiments for the naïve and partitioned approach were 

run on machine with id=1. Parallel approach with three nodes used all the three 

machines. 

Table 10 Experimental set up  
 

Id 1 2 3 
Memory in 
GB 1 2 2 
Linux type i386 GNU/Linux  i386 GNU/Linux  i386 GNU/Linux 

Version 
Red Hat Linux 3.2.3-
53 Red Hat Linux 3.2.3-52 

Red Hat Linux 3.2.3-
53 

Database  Oracle 10G - - 
 

Dataset: A five-month synthetic data is used to test the correctness and the 

performance of the validation approaches. We extract data set for one week, one month, 

two months and four months from this data set and run the Naïve approach to study the 

change in response time with respect to increase in the data set size and hence the 

number of episodes to validate. The partitioned approach and the parallel approach are 

run for the largest data set size of five months and their performance is compared with
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 the Naïve approach. For the partition approach, we vary the number of partitions and 

analyze variations in response time with the increase in the number of partitions. 

The final response time is calculated by taking the average of five runs. 

5.1 Performance of Naive approach for daily periodicity 
 

 

Figure 17 Performance of Naïve Approach with different synthetic data sets 
 

The graph above shows the response time of Naive approach for different sizes 

of synthetic data sets as displayed in the table below.  

Table 11 Synthetic data set 

Type of Data set Synthetic data   
Number of  
Days in data set 

Number of  
Events 

Number of 
Episodes 

7 7488 485 
30 37440 1476 
60 71136 7253 
120 151008 6466 
150 188848 10198 
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The experiment is run for a one week, one month, two months, four months and 

five month data set. As the graph demonstrates, the time taken by naive approach 

depends on the size of the raw data set and the number of episodes to validate. For the 

four month data set, we observe that the number of episodes to validate is less than that 

of the two month data set but the two month data set is almost double in size and hence 

the time taken to validate a four month data set having a lesser number of episode is still 

more than the time taken to validate a two month data set. 

5.2 Comparison of response time of partitioned approach for daily periodicity 

Effect of increase in number of partitions on response time in partitioned 

approach for daily periodicity (five month synthetic dataset) 

 

Figure 18 Performance of Parallel Approach for synthetic data set 
 

The above graph demonstrates the effect of memory on the response time for a 

synthetic data set worth five months. The details of this data set are described in Table 
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validated in a partition decreases but the available memory remains the same. As a 

result significant reduction in response time is seen with the increase in the number of 

partitions. But we can also observe from the following table that the percentage 

reduction achieved is not proportional to the increase in the number of partitions, which 

implies that the benefit decreases as the number of partitions increases.  

Table 12   Evaluation of Partitioned Approach  

Base Case Partitions = 2   
  Response time in minutes 17.34 
Number of Partitions % Improvement in response time Actual Response time  
4 52% 9.01 
6 35% 6.12 
8 29% 5.04 
12 24% 4.24 

 

Effect of increase in number of partitions on response time in partitioned 

approach for daily periodicity (six month MavHome data set) 

 

Figure 19 Performance of Partitioned Approach for daily periodicity 
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The graph above demonstrates the response time of partitioned approach for 

experiments run on MavHome dataset for six months in table 14 for daily periodicity. 

As seen from the graph above, the partitioned approach performs well as we increase 

the partition. For twenty-four partitions, it validates all the episodes in less than fifteen 

minutes. The primary reason for this reduction is the reduced size of the hash table of 

episode. As a result, the number of episodes to validate per event instance in the raw 

dataset reduces significantly. 

Table 13  Partitioned approach - percentage improvement in response time 

Base Case Partitions = 4   
  Response time in minutes 56 
Number of Partitions % Improvement in response time  Actual Response time 
8 67.06% 37.55 
12 53.41% 29.91 
24 26.32% 14.74 

 

5.3 Performance of Parallel Approach for daily periodicity 
 

 

Figure 20 Performance of Parallel approach for synthetic data set 
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The above graph demonstrates the experiments for a five-month dataset run in 

parallel with two nodes, three nodes and four nodes. This data set contains 188848 

events and Hybrid-Apriori discovers 10198 episodes with maximum episode size of 

four. The response time decreases with the increase in the number of nodes available for 

validating. But as seen from the table below the reduction in response time is not 

proportional to the increase in number of nodes. 

Table 14 Parallel Approach - percentage improvement in response time 

  
  Actual  
Response time 

Base Case  Nodes=2 12.57 
Number of  
Partitions/Nodes 

% Improvement in  
response time    

3 50.84% 6.39 
4 34.37% 4.32 

 

Table 15  MavHome data set 

Dataset MavHome Number of Days=180 
Events 217275  
SIDs 1634  
Episodes 12956  
Periodicity Daily  

Algorithm 
Response Time 
(minutes) 

Logarithmic 
Response time 

SID 2.60 0.42 
HA 3.29 0.52 
Naïve 652.20 2.81 
Partition   
No. of Partitions  

4 56.00 1.75 
8 37.55 1.57 

12 29.91 1.48 
24 14.74 1.17 

Status of Episodes  
Valid 58469  
Invalid 32223  



 

90  
 

 

 

Dataset: The following experiments were conducted on the MavHome dataset worth 

six months. This dataset has been collected from MavHome and it consists of 217,275 

unique event instances with 145 unique events in it. SID discovered 1634 significant 

intervals and Hybrid Apriori found 12959 episodes. 

5.4 Performance comparison of each approach for daily periodicity 
 

 

Figure 21 Performance of all three validation approaches  
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increase the partitions or the number of nodes, the time to validate the episodes reduces 

further. 

The following graph demonstrates the response time of SID, Hybrid-Apriori, 

Naïve and Partitioned algorithm with number of partitions equal to 24. The experiments 

were run for daily periodicity with the MavHome dataset for six months whose details 

are shown in the table 13 above. This particular graph converts the response time in 

minutes to the logarithmic scale as the difference between SID and Naïve is very large. 

 

Figure 22  Performance Comparison of all phases in Episode Discovery process 
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is seen. The reduction in response time is because partitioning reduces the number of 

episodes to validate and corresponding raw data set but the available memory remains 

the same. 

5.5 Performance of Naïve Approach for Weekly Periodicity 
 

The following graph shows the response time of Naïve approach for synthetic 

data sets of 9 weeks and 22 weeks.  The nine weeks data set consisted of 74880 events 

and 2949 episodes while the twenty-two weeks data set consisted of 217275 events and 

Hybrid Apriori discovered 11108 episodes. As observed for daily periodicity, the 

response time for weekly periodicity also increases with the increase in the size of the 

raw data set and the number of episodes to validate. 

 

Figure 23 Performance of Naïve Approach for Weekly Periodicity

Naïve Approach - Weekly Periodicity

3.02

27.17

0
8

16
24
32

74880 217275

2949 11108

9 22

Total Events, Number of Episodes, No of Weeks of Data

R
es

po
ns

e 
Ti

m
e 

in
 

M
in

ut
es



 

93  
 

 

5.6 Configuration File  
 

The following table displays the parameters used in episode discovery process 

by SID, Hybrid-Apriori and the three approaches to validation. 

Table 16 Configuration Parameters 
 

Configuration Parameters Description 
Parameters for Significant Interval Discovery 
Measure Metrics to be used to generate intervals 
 It could be interval length, and/or interval confidence  

Req_Confidence 
Desired confidence for the intervals generated.  
This value is between 0 and 1 

Granularity 
It specifies the granularity of time for which the information is 
collected 

 It may be seconds, minutes or hourly. 
Interval_Length Specifies the interval length that the user is interested in 

Number_of_Days 
Number of days is the total number of days for which data is 
collected 

Approach_Number Type of SID to use. It could be SID[1], SID[n-1], or SID[n-2] 
Time_Series Type of data to operate on. It could be time series or numerical 
Input_File Input file for numerical data 
Period Periodicity could be daily or weekly 
Parameters for Hybrid Apriori 
Interval_Semantics Type of semantics to discover episodes.  
 It could be semantics start or semantics end 
Sequential_Window Window parameter for intervals to form an episode 
Pattern_Confidence Confidence parameter to prune the episodes discovered 
StopLevel Upper bound on the size of episode discovered 
 Terminating condition for the episode discovery algorithm 
Parameters for partitioned approach 
TypeOfPartition Partitioning method 
NoOfPartitions Number of partitions to be done  
Parameters for parallel approach 
NoOfProcessors Number of nodes available for the parallel approach 
URLforRemoteObject URL for the remote object 
PortNoForRemoteObject Port number on which the Server listens for client requests 
Parameters for database 
RawDataSource Data source for the algorithm 
NameOfDatabase Database name 
NameOfMachine Machine name where it is located 
NameOfUser User name 
PasswordOfUser Password 
DBPort Port number of the database 
Other Parameters 
Complete_Debug Debugging flag 
NumberOfThreads No of threads to be created. Used by SID to generate significant 
 intervals for each device in parallel 
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5.7 Log files 
 

The validation approach generated log files at the end of each run. It generates 

logs related to run time information, episode status and device support. The sample 

snippets of each are shown below: 

5.7.1 Log file for Episode Status 

CreateLog: Starting Logging Tue Sep 06 23:43:33 CDT 2005 

Pattern=$948KidsRm1Lamp_OffKitchLght1_Off$ is invalid for weekday=0 

Pattern=$948KidsRm1Lamp_OffKitchLght1_Off$ is valid for weekday=1 

Pattern=$948KidsRm1Lamp_OffKitchLght1_Off$ is valid for weekday=2 

Pattern=$948KidsRm1Lamp_OffKitchLght1_Off$ is valid for weekday=3 

Pattern=$948KidsRm1Lamp_OffKitchLght1_Off$ is invalid for weekday=4 

Pattern=$948KidsRm1Lamp_OffKitchLght1_Off$ is valid for weekday=5 

Pattern=$948KidsRm1Lamp_OffKitchLght1_Off$ is valid for weekday=6 

Episode=$948KidsRm1Lamp_OffKitchLght1_Off$ is valid for at least one 

weekday 

5.7.2 Log file for device support 

CreateLog: Starting Logging Tue Sep 06 23:43:33 CDT 2005 

###############Next Pattern ############## 

Pattern = 948KidsRm1Lamp_OffKitchLght1_Off 

StartTime08:22:00,End Time09:22:00 

<---Item=KidsRm1Lamp_Off--------> 

  Weekday=1, Support=1 
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  Weekday=2, Support=2 

  Weekday=3, Support=1 

  Weekday=4, Support=1 

  Weekday=5, Support=2 

  Weekday=6, Support=2 

<---Item=KitchLght1_Off--------> 

  Weekday=1, Support=1 

  Weekday=2, Support=2 

  Weekday=3, Support=2 

  Weekday=5, Support=1 

  Weekday=6, Support=1 
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CHAPTER 6  
 

CONCLUSIONS AND FUTURE WORK 
 

6.1 Conclusions 
 
There is ongoing research on sequence mining of time-series data. We study 

Hybrid Apriori, an interval based approach to episode discovery that deals with 

different periodicities in time-series data. Our study identifies the anomaly in the 

Hybrid Apriori by confirming the false positives in the frequent episodes discovered. 

The anomaly is due to the folding phase of the algorithm that combines periods in order 

to compress data. 

We propose a main memory based solution to distinguish the false positives 

from the true frequent episodes. Our algorithm to validate the frequent episodes has 

several alternatives such as the Naïve approach, the Partitioned approach and the 

Parallel approach in order to minimize the overhead of validation in the entire episode 

discovery process and is generalized for different periodicities. The naïve approach 

validates all the episodes and verifies the correctness, partitioned Approach allowing us 

to validate large number of episodes by controlling main memory usage and the parallel 

approach allows using as many processors as possible making it a scalable and 

performance-oriented approach. The following table summarizes the key features of 

each approach. 
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Table 17 Comparison of Validation approaches 

Features Naïve Partitioned Parallel 

Approach Type Sequential Sequential Parallel 
Main memory dependency Most Less Least 
Response Time Good Very Good Best 
Scalable Least More Most 

Dependency on episode 
distribution 

No Yes Yes 

Support for Data set size Small Very Large Very Large 
 

Extensive experiments have been conducted to demonstrate the performance and 

scalability of each approach using synthetic and MavHome data sets.  The experiments 

conducted indicate that the naïve approach has a limit on number of episodes it can 

validate while the partitioned approach, divide and conquer approach, can validate 

larger set compared to naïve approach. With the increase in number of episodes and 

increase in maximum size of episodes, the response time of naïve approach also 

increases. The type of partitioning method used affects the performance of the 

partitioned approach e.g., for same dataset, partitioning based on uniform distribution 

gives better performance than partitioning on non-uniform distribution. The number of 

partitions of episodes to validate affects the performance of the partition approach but 

the percentage improvement achieved is not proportional to the percentage increase in 

the number of partitions. This holds true for number of nodes in the parallel approach 

too. 
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6.2 Future work 
 

The current implementation of the Naïve approach computes the support count 

by scanning each event instance, ordered by time, and updating the support of the 

episodes containing this event. This can be optimized by ordering the raw data set on 

the events instead of the time and fetching a batch of event instances and modifying all 

the corresponding episodes for the entire batch. This will significantly improve the 

response time of the naïve approach. 

The response time of the partitioned approach and the parallel approach are 

dependant on the distribution of the episodes over a given period. The current 

implementation of algorithm to partition the episodes works well for uniform 

distribution of episodes but is unable to achieve equal workload for different types of 

skewed distributions. An efficient algorithm to deal with skewed distribution, which can 

ensure equal distribution of workload in each partition/node, is required to achieve 

better response time for the validation algorithm. 
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