SUPPORTING
ACTIVE DATABASE SEMANTICS
IN SYBASE

By

DAVID VANCE

A THESISPRESENTED TO THE GRADUATE SCHOOL
OF THEUNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE
UNIVERSITY OF FLORIDA

1996

Copyright 1996

by

David Vance

page
ACKNOWLEDGMENTSot e e e e e e e e e e e e e e e e eannnees \
N = 7 AN O SRR Vi
CHAPTERS
1 INTRODUCTION ..ottt e e e e e e e e e e e anaraeeeee s 1
2 POLLING. ... e e e e e e e e e e e nnrees 4
3 POLLINGWITH TRIGGERSAND EVENT TABLES............o oo 10
4 ASYNCHRONOUSTRIGGER TO OPEN SERVER RPC...........ccoooiiiiieeieeee, 23
5 REPLICATION SERVER TOOPEN SERVERcccoiiei e 34
6 SYNCHRONOUS TRIGGER TO OPEN SERVER RPC.........cccociiiiiiiieeiiiieee 38
7 OPEN SERVER GATEWAYY .ottt e 46
8 RULEEVALUATION/EXECUTION IN THE GATEWAY ARCHITECTURE.. 52
9 GATEWAY DESIGN AND IMPLEMENTATION......cccoiiieieeeiicieeeee e 56
1O CONCLUSION ...ttt ettt sttt st e s sbb e e e s snbee e e s saneeee e e 61
REFERENGCESttt e e e e e e e s e e e e e e e e s e rnarreeeeeeeeeaan 62
BIOGRAPHICAL SKETCH ...ttt e e e e e e e e e e e e 63

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

Firstly, thanks are due to my advisor, Dr. Sharma Chakravarthy, for his continual support,
advise, and guidance in this research. | am thankful also to Dr. Eric Hanson for serving on my
committee and especially for teaching an excellent class on Database |mplementation, which has
greatly helped me in the preparation of my thesis aswell as the advancement of my understanding
of databases. Dr. Doug Dankel deserves special thanks, not only for serving on my committee, but
also for approving my admission to the graduate program against his better judgment.

I would like to take this opportunity to thank my Mother and Step-Father for their help,
support, and love throughout the year, as well as for the only nourishing meals | had between
September and May.

Finally, and supremely, | would sincerely thank the God whose | am and whom | serve for
Hislove, for His special acts of providence, and for His sustaining hand upon me in every area of
my life. 1 could have accomplished absolutely nothing apart from Hiswill or without His mercy
and grace which were purchased for me by the Lord Jesus Christ. Thank Y ou for the many lessons
in humility and for the kindness Y ou have shown to Y our very undeserving servant. May honor be
given to Whom honor isdue. If thereisanything of worth, or insight, or help in thisthesis,

SOLI DEO GLORIA (To God Alone be the Glory).

Abstract of Thesis Presented to the Graduate School
of the University of Floridain Partial Fulfillment of the
Requirements for the Degree of Master of Science
SUPPORTING
ACTIVE DATABASE SEMANTICS
IN SYBASE
By
DAVID VANCE
August 1996

Chairman: Dr. Sharma Chakravarthy
Major Department: Computer and Information Science and Engineering

It is possible to add an active database component to Sybase, acommercial DBMS, to
support the full range of active semantics. There are two primary advantages to this approach.
First, existing applications and “ productivity tools,” such as Microsoft Access, can continue to
access the database without modification. This means that active database capability may be
inserted into an existing system without changing the client application programs. Second, all of
Sybase’ s underlying functionality is retained.

Active database semantics can be supported on an existing Sybase SQL Server by building
components based on Sybase’ s connectivity products. Nearly the full range of active database
functionality can be supported on top of an existing database without requiring changesto

applications, although some architectures require very minor additions to the database. Both

immediate and detached semantics can be implemented. Several different architectures for

supporting immediate and detached semantics are described in detail, and their features and
limitations are identified.

In addition to describing severa aternative methods for capturing database events, this
thesis devel ops the process of integrating production rule evaluation and execution into an existing

system, and describes the design and implementation of an actual active database component.

Vi

CHAPTER 1
INTRODUCTION

Traditional database systems are said to be passive, meaning that they only perform the
transactions and queries which are explicitly submitted by a user or an application program.
Active databases, however, can monitor the state of the system for particular events and trigger
appropriate and timely responses when those events arise. The definitions of the desired behavior
are specified in production rules, also known as event-condition-action (ECA) rules, which are
stored inside the database [DAY 94].

While a number of research prototypes of active database systems have been built
[HAN92] [CHA89] [DAY88] [STO90] [STO91] [WID91] [ANW93], production rule capability
in commercia systemsisvery limited [ING92] [ORA92] [SYB96]. The research prototypes listed
are representative of amuch larger number of active database systems which have been designed
using an integrated approach. In other words, the production rule components of active database
systems have typically been integrated directly into the kernel of the DBMS's.

Would it be possible to separate the active part from the database part? If so, it might be
possible to turn any traditional database management system into atrue active database. What
would the limitations be of such an architecture? Thisthesis considers the possibility of adding an

active component into the Sybase SQL Server DBMS.

Advantages Of Decoupling The Active Component From The DBMS

Although there are some advantages to integrating the active component into the DBMS

engine, there are many reasons why the active component should be decoupled from the DBMS:

e Existing applications and software would not have to be changed to call anew
DBMSsAPI.

e Existing databases would not have to be converted or up/down-graded.

e Layered architectures are generally preferred because of their modularity and
simplicity of design.

e Separation produces a more scaleable architecture.

e Once a separate active component has been developed, it may be ported to access other
DBMS's.

e Noneof an existing DBMS s functionality would be lost.

e A more distributed architecture can be designed if the active component is separated.

e Thereisnothing about active database semantics which demands that the rule

execution must be integrated into the DBMS.

The Reason For Choosing Sybase

Sybase has many features which facilitate the implementation of an active component on
top of an existing database. Sybase has an open architecture and offers many connectivity tools
which other DBMS vendors do not. The following features are particularly useful in implementing

the active database architectures:

e triggers,

e server-side cursors,
e SybaseRPC's,

e OpenServers, and

e Replication Servers.

These features and their usefulness are described at appropriate placesin the paper. It
should be noted here that not every architecture requires all of these features; and many of the
architectures described in this paper can be implemented on top of any DBMS.

Another advantage of Sybase is that their OpenClient database API, also known as DB-
Library, iswidely accepted in the industry, and many productivity tools and applications support
that protocol. In addition, it isalso the standard API supported by Microsoft and some TP-

Monitors.

Seamless I ntegration

One important goal in designing an active component is to ensure that any existing Sybase
or Microsoft SQL Server application can continue to function without modification. Therefore, all
of the architectures considered in this thesis will not require any changes to the database clients.

The clients are not aware that any changes have taken place.

CHAPTER 2
POLLING

Overview Of Detached Architectures

Polling only provides what is known as detached semantics. In detached semantics, the
production rule engine, which is called an ECA Server in thisthesis, can not affect the outcome of
atransaction. Events are generated after a transaction has committed, but the rules may perform

further inquiries on the database.

Description

Perhaps the ssimplest way of determining when an event has occurred isto check or poll for
changes on aregular basis. A polling application is aclient of the database where the data of
interest resides. At a specified time interval, the application examines the current state of the
system to determine if any events need to be triggered. The other client application programs do

not need to be modified to implement the polling architecture.

...

| Client Applicati onl—’

= — , 5 Periodic Pollin
; | Client Application——> Passve DBM S : e — 9
| Client Applicati onl—’ :

..

Figure 2-1: The Polling Architecture

For example, Figure 2-2 shows a sample polling program which will check the
Thermometer table every ten seconds to determine if any of the thermometers’ temperatures exceed

100 degrees:

while (1 = 1)

begin
select temperatureld
from Thermometer
where temperature > 100

waitfor delay “00:00:10"
end

Figure 2-2: A Simple Polling Application

Polling is an easy solution if events can only be described as predicates on the current state

of the system. The problem becomes more complicated if events can also be defined as changes to

the state of the system. For example, we might be interested to know if athermometer’s
temperature has risen 10% since the last time we checked. We also might want to know if a new
thermometer is added to the system.

This problem can be solved by comparing the current state of the system with the previous
state. A copy of the data can be kept locally on the client or on the database. Figure 2-3 shows a

polling application which checks for the two events mentioned above.

while (1 = 1)

begin
select t.thermometerId,
“Temperature increased by at least 10%.” event
from Thermometer t, LastThermometer 1
where t.temperature > 1l.temperature * 1.1 and
t.thermometerId = 1l.thermometerId

select thermometerId,
“New Thermometer Added.” event

from Thermometer t

where thermometerId not in
(select thermometerId
from LastThermometer)

delete from LastThermometer

insert into LastThermometer
select * from Thermometer

waitfor delay “00:00:10"
end

Figure 2-3: Another Simple Polling Application

Features

Polling offers the following attractive features:

1. Poalling can be added without changing the existing system.

The application code does not have to be aware of the polling, and the polling piece may be

changed or removed without affecting the other parts of the system.

2. The architecture is ssmple and widely-used.

Polling is often used to report changes to the current state of a system. The architectureis

very smple and easy to implement. The tradeoffs are well understood.

Limitations

There are many limitations to polling which limit its practical usefulness:

1. Some events may be missed.

Thereis no guarantee that all of the eventsin a system will be captured by apoll. If the
polling interval istoo long, or the size of the database is large, two or more changes to the data can

occur between polls.

2. The order of events can not be determined.

If the order of eventsisimportant to the ECA system, this architectureis not suitable. Itis

not possible to even determine the order of the transactions.

3. The architecture is not scaleable.

While a poll may perform satisfactorily with a small amount of data, the performance may

be unacceptable with alarge amount of data. Every time the application polls, Sybase will move

the pages accessed to the front of the LRU/MRU page chain. If the datasizeislarge, thishasthe
effect of flushing out the data which should really be kept in the page cache. Also, if the size of the
data being polled is larger than the page cache, performance will quickly degrade.

If events can be defined as changes to the state of the system, the poller must maintain a
copy of the previous state. If the data quantity is small, thisis not a problem. However, for a
large quantity of data, it isimpractical to either copy the data to other tables within the database or

to retrieve al of the data every time.

4. The response time window may be missed.

If the polling interval istoo long, or if locking delays a poll from completing within a
certain period of time, the ECA server will not be able to respond to changes within the required
time frame. If along transaction is running on the system, it will force the polling application to

wait indefinitely. This may be unacceptable.

5. Client applications may be delayed waiting for the poll to compl ete.

Ironically, the very modification events which the poll isinterested in capturing may be
delayed by the poll. The updates will be forced to wait until the poll releasesits read locks on the

table. This problem obviously becomes more severe asthe interval between polls decreases.

Conclusion

Polling may be an appropriate solution when the problem does not require every event to

be captured and the size of the datais small. Despite the limitations of this architecture, it is

probably used in practice more frequently than any other method to check for events and record

changesto the state of a system.

CHAPTER 3
POLLING WITH TRIGGERS AND EVENT TABLES

Description

The previous architecture suffered from scaleability problems. The entire data set had to
be read every time to determine whether the current state requires events to be generated. If we
already checked the state of the system on the previous poll, it would be preferable to only examine
the data that changed since the last time.

There are afew ways that changes can be detected by the poller. One way isto compare
the entire set of data every time with the previous set. Thisis obviously very expensive for alarge
amount of data, but it does not require any maodification to the existing system. Another possibility
isto add a column to the tables which the client applications would update whenever a
modification was made. This reduces the amount of data which hasto beretrieved, but it requires
modification to existing applications. Additionally, the poller must still keep another copy of the
data for comparison.

An alternative solution in Sybase isto record changes to the data using triggers.

“Triggers’ in Sybase are stored procedures, written in Transact-SQL, which can be set to run
automatically when an insert, update, or a delete on atable takes place. They are executed by the

SQL Server on the SQL Server.

10

11

create trigger RecordTenPercentIncreaseEvent
on Thermometer
for update
as
select i.temperature newTemperature,
d.temperature oldTemperature
from inserted 1, deleted d
where 1i.thermometerId = d.thermometerId and
i.temperature >= d.temperature * 1.10

Figure 3-1: A Sample Trigger

While triggers are very flexible, there are some limitations to their usefulness. Triggers
must be written in Transact-SQL. T-SQL has many limitations which make it impractical for

performing ECA rule evaluation:

e Thereare no complex datatypes.

e Only atomic values (and not tables) may be passed as parameters to stored procedures.
e Thereisno direct access C, other programs, or the underlying operating system.

e The speed of execution isvery slow relative to other languages.

e Stored procedures and triggers may only be nested to a depth of 16.

e The SQL Server isusualy busy serving data anyway.

Although T-SQL is not suitable for performing ECA rule evaluation, it is possible to use
triggers to record changes to the database state. Changes can be stored in a separate table and can
then be retrieved by the polling mechanism. First, we must create tables to contain the data

necessary to describe the event occurrences:

12

create table Thermometer
(
thermometerId
temperature

)

create unique clustered index thermometerId
(thermometerId)

int NOT NULL,
float NOT NULL

on Thermometer

Figure 3-2: An Existing Table

create table NewThermometerEvent

(

thermometerId int NOT NULL,
temperature float NOT NULL,
eventTime datetime NOT NULL

)

create table TenPercentIncreaseEvent

(

thermometerId int NOT NULL,
temperature float NOT NULL,
eventTime datetime NOT NULL

)

Figure 3-3: Additional Event Tables

A clustered index should be created on each event table to prevent a bottleneck. If the
index is not created, al new rowswill be added to the end of the last page. Note that the index can

not be unigue, since there is nothing unique about the rows. Asaresult, the index should be

created with the ALLOW_DUP_ROW option.

create clustered index thermometerId
on NewThermometerEvent (thermometerId)
with ALLOW_DUP_ROW

create clustered index thermometerId
on TenPercentIncrease (thermometerId)
with ALLOW_DUP_ROW

Figure 3-4: Event Table Indexes

13

If thisimplementation is not acceptable, an identity column can be added to the table to

artificially impose row unigueness.

Ooccurs.

Now atrigger must be added to insert changes into the event table when a modification

create trigger RecordNewThermometerEvent
on Thermometer

for insert

as

insert into NewThermometerEvent
select *, getdate ()
from inserted

create trigger RecordTenPercentIncreaseEvent
on Thermometer

for update

as

insert into TenPercentIncreaseEvent
select i.*, getdate ()
from inserted 1, deleted d

where 1i.thermometerId = d.thermometerId and
i.temperature >= d.temperature * 1.10

Figure 3-5: Create Triggers

The trigger will add rows to the event tables whenever the original table is modified.

NewThermometer Event
105 75.1 12/1/95 10:01:33.031 AM
106 95.3 12/1/95 10:05:01.313 AM
107 80.0 12/1/95 10:05:01.313 AM

TenPercerntl ncreaseEvent

[Thermometers are inserted.]

thermometer|d

33 79.3 12/1/95 10:03:33.339 AM
76 65.0 12/1/95 10:08:50.268 AM
80 89.9 12/1/95 10:00:01.112 AM

[Temperatures have increased by at least 10%.]

Figure 3-6: Event Tables After Events Have Occurred

Now the polling mechanism can retrieve the events without copying or querying the

original data.

14

15

while (1 = 1)
begin
begin transaction

select *,
“New Thermometer Added.” event
from NewThermometerEvent
order by eventTime
holdlock
delete from NewThermometerEvent

commit transaction

begin transaction

select *,

“Temperature increased by at least 10%.” event
from TenPercentIncreaseEvent
order by eventTime

holdlock
delete from TenPercentIncreaseEvent
commit transaction

waitfor delay “00:00:10"
end

Figure 3-7: Example Polling Application

Notice that the “holdlock” keyword must be used to ensure that new datawill not be
entered between the time when the events are read and the time when they are deleted. Since
holdlock is prone to cause deadlocks, it is possible to rewrite the transaction to first acquire an

exclusive lock on the table by doing afalse update. By first performing aglobal update by

executing “update NewThermometerEvent set temperature = temperature where 0=1", the entire

table will be locked and the chance of deadlocks will be reduced.

16

..

| Client Applicati on|—>
: . tabl
. [Client Applicatio—— Passive DBM S =

| Client Application——| o

Existing . SN

- - e i Nemmmmmmm

create trigger TenPercentIncreaseEvent

on Thermometer for update 2. event table
as
insert into TenPercentIncreaseEvent appended
select i.*, getdate ()
from inserted I, deleted d

where 1i.thermometerId = d.thermometerId and
i.temperature >= d.temperature * 1.10

3. event tables
processed

Periodic Polling
Application

Figure 3-8: The“Polling With Triggers And Event Tables” Architecture

Generating events with Sybase’ simmediate triggers may record intermediate modifications
as events which are not present at the completion of the transaction. For example, consider the

following client application which records temperatures for different kinds of thermometers:

17

#!/bin/sh

The getNextNewTemperature checks thermometers for new
temperatures.

/usr/local/bin/getNextNewTemperature |
read thermometerId temperature

isgl -Uuser -Ppassword << !

use Monitor
go

begin transaction

update Thermometer

set temperature = Stemperature
where thermometerId = S$SthermometerId
/*
** Compensate for Kelvin thermometers
*/
if exists (select =*
from KelvinThermometers
where thermometerId = $thermometerId)
begin
update Thermometer
set temperature = temperature - 273.16
where thermometerId = $thermometerId
end

commit transaction
go
|

Figure 3-9: The Intermediate State Problem

In this case, two updates can occur before the system has reached the final state. Using
this mechanism, the Kelvin thermometers will always generate the +10% temperature event. While
it is possible for the triggers to compensate for this, there may be other inconsistent states yet

waiting to occur.

18

It isapoor architectural solution to have the triggers compensate for intermediate results
and temporary inconsistencies which are generated by applications. The problem isinherent in the
nature of the immediate trigger semantics. Ideally, Sybase would provide deferred triggers which
would fire before the end of atransaction. Then the triggers would not have to be concerned with
determining whether changes to system states are real or transient. (Incidentally, | have personaly
made a feature request to Sybase to allow deferred integrity checks. They did not seem eager to
incorporate this feature.)

The best solution to this problem would be to have the polling application check for
offsetting results within atransaction. Unfortunately, thereis no way in T-SQL to determine the
current transaction ID#. Therefore, it is not possible to look at an event table and tell which events

are in the same transaction. Otherwise, deferred events could be recorded in a separate event table.

create trigger RecordTenPercentIncreaseEvent
on Thermometer

for update

as

insert into TenPercentIncreaseEvent
select i.*, getdate ()
from inserted 1, deleted d
where 1i.thermometerId = d.thermometerId and
i.temperature >= d.temperature * 1.10

/*
** QOffset previous results in this transaction

*/

update DeferredTenPercentIncrEvent

set temperature = i.temperature,
eventTime = getdate ()

from inserted i, DeferredTenPercentIncrEvent e

where i.thermometerId = e.thermometerId and
i.temperature >= 1.10 * ??????2??7? and
e.transactionId = ??2???°?°?

/*

** Create a new deferred event if the temperature
** hasg not been modified during this transaction.

*/

insert into DeferredTenPercentIncrEvent
select i.*, getdate ()
from inserted 1, deleted d
where 1i.thermometerId = d.thermometerId and
i.temperature >= d.temperature * 1.10 and
i.thermometerId not in
(select thermometerId
from DeferredTenPercentIncrEvent
where transactionId = ??2??2????)

Figure 3-10: The Reason That Net Effects Of Transactions Cannot Be Determined

Features

1. The method for generating events is sound and complete.

20

The insertions made by trigger will be rolled back if the original transaction is rolled back.
Therefore, this method will not miss any modifications will not produce any incorrect event
records. Since the dataserver itself will be making the insertions, there is no possibility that a client

would fail to record a change.

2. Existing applications remain unchanged, only minor database changes are necessary.

This method requires only the addition of triggers to the database and does not require

changes to the existing applications.

3. Enhanced performance.

Performance is substantially better than the previous architecture, because only the

changes to the system are examined.

4. Robustness.

If the poller fails and a period of time passes before it can be restarted, no events are | ost.

Limitations

1. The events may actually be intermediate changes which do not reflect a consistent database

state.

Generating events with Sybase’ simmediate triggers may record intermediate modifications

as events which are not present at the completion of the transaction. It is not possible to determine

21

the net result of offsetting modificationsin atrigger. If deferred semantics are required, this

architecture will not be suitable.

2. Thereisno way to determine the order of events.

Although the modification time was recorded, the time which the transaction actually
completed is unknown. If the ordering of eventsisimportant to the ECA system, this architecture
is not suitable. Deferred triggers would make the times more accurate, but thereis still no
guarantee that the time in the event tables reflects the actua order in which the transactions

committed.

3. The architectureis not scaleable.

Since there would theoretically be only afew event entries per poll, every client and the
poller must contend to access avery few pages. It should be noted, however, that the scaleability

is much better than the previous solution.

4. The response time window may be missed.

Thisproblemisintrinsic to polling applications. If the polling interval istoo long, or if
locking delays a poll, the ECA server will not be able to respond to changes within the required
timeframe. If along transaction is running on the system, it will force the polling application to

wait indefinitely. This may be unacceptable.

5. Client applications may be delayed waiting for the poll to compl ete.

22

The client applications may actually be delayed longer in this architecture than in the last
one because they must wait for the poller to perform adelete and not just aselect. There are also

increased locking requirements in this architecture.

6. The possibility of deadlocks isintroduced.

Since the poller and the clients are all modifying the same small table, it is possible for
deadlocks to occur. Consider the case where the poller has acquired the first page of atwo-page
event table, but must wait for a client application to finish its transaction and release the second
page. The client needs to make one more modification before the end of the transaction, but it
needs to acquire the first page of the event table to do so. A deadlock will occur.

It is possible to avoid this problem by forcing both the trigger and the poller to acquire

exclusive table locks before they continue. Thiswill degrade the system’ s throughput, however.

Conclusion

The main benefit of this architecture isthat events are never lost and that performanceis
increased. However, the intermediate event problem can be difficult or impossible to solve, and the

architecture still suffers from the problems of polling.

CHAPTER 4
ASYNCHRONOUS TRIGGER TO OPEN SERVER RPC

Description
The Sybase system architecture has allowed one way to escape from T-SQL: the Sybase
RPC. Sybase RPC's are not compatible with any operating system’s RPC’s, and they should not
be confused.
In T-SQL, it is possible to execute a procedure on aremote server by predicating the call

with the server’ s name.

/* Execute sp who on the MathDataServer */

exec MathDataServer...sp_who

/*
** Execute sharma’s grade update procedure in the
** cop5725 database on the server SYBASE

*/

declare @aGrade char (1)
select @aGrade = “A”

exec SYBASE.cop5725.sharma.updateGrade
@student = “Vance”, @grade = @aGrade

Figure 4-1: Examples Of Executing RPC’'s On Remote Servers

Not only isit possible to execute procedures on remote SQL Servers, it is possible to

execute procedures on remote OpenServers.

23

24

OpenServer/C is anon-preemptive multithread C library available from Sybase upon
which the SQL Server isbased. Infact, it isthe basisfor most Sybase server and middleware
products including Omni SQL Server, all Sybase gateways, and Replication Server. Thelibrary
allows for a C program to become a server to multiple Sybase client programs. It alowsthe
programmer to authenticate logins, receive language (e.g. SQL) requests, receive procedure calls,
and return results in Tabular Data Stream (TDS) format, which all Sybase clients can receive.

It is possible to have atrigger call an OpenServer whenever a modification has occurred.

Consider the following architecture:

..

| Client Applicati on|—>
|CIientAppIicaIion|—> Passive DBM S
| Client Applicati on|—>

Existing.__: ...

4[1. trigger called]7
create trigger TenPercentIncreaseEvent 2. RPC requeSt

..

on Thermometer for update

as

Y ECA Server

/* for each row inserted */ (an OpenServer)
exec ECAServer...TenPercentIncrease, /*...*/

VA

[3. returnsimmediately]

Figure 4-2: The “Asynchronous Trigger/OpenServer RPC” Architecture

25

The trigger can aert the OpenServer that a change in the database state has occurred and
pass up to 255 (simple) parameters describing the change. Upon receiving the RPC notification,
the OpenServer can immediately return a confirmation to the SQL Server and allow it to continue
processing.

Since RPC'’s, like stored procedures, can only pass simple, atomic data values, the trigger

must use a cursor to loop through the inserted and del eted tables.

create trigger RecordTenPercentIncreaseEvent
on Thermometer

for update

as

declare @thermometerId int,
@temperature float

declare cursor eventCursor for
select i.thermometerId, i.temperature
from inserted 1, deleted d
where 1i.thermometerId = d.thermometerId and
i.temperature >= d.temperature * 1.10

fetch eventCursor into @thermometerId, @temperature

while (@esglstatus = 0)
begin
exec ECAServer...TenPercentIncrease
@thermometerId = @thermometerId,
@temperature = @temperature

fetch eventCursor into @thermometerId, @temperature
end

close cursor eventCursor
deallocate cursor eventCursor

Figure 4-3: Trigger Which Calls An RPC

26

If atransaction aborts, the server does not “roll back” the RPC calls. Once the RPC call
has been sent, it can not “retrieved” when the transaction aborts. Even with deferred triggers, there
would not be away to simulate two-phase commit to an OpenServer. It would have to be
integrated into the deepest level of the Sybase kernel.

Since thisisthe case, the ECA Server must “call back” the database to see if the event
really took place. Of course, the ECA Server will have to wait until the calling transaction either
commits or aborts to acquire read permission on the modified pages. Hereisthe revised

architecture:

..

| Client Applicati onl—’
| Client Applicaiio——— Passive DBM S
| Client Applicati onl—’

................
..

{1. trigger called]i —[4. event verifie(]—

create trigger TenPercentIncreaseEvent 2. RPC request

on Thermometer for update

as

T ECA Server

/* for each row inserted */ (an OpenServer)
exec ECAServer...TenPercentIncrease, /*...*/

VAV

[3. returnsimmediately]

Figure 4-4: The Revised “ Asynchronous Trigger/Open Server RPC” Architecture

27

By calling the server back, we can solve the problem where intermediate events are
generated and deferred semantics are required. Now, the RPC becomes a notification that an event
has possibly occurred. When the ECA Server logs back in, it must wait for the transaction to
release its locks by committing or aborting. After the transaction has finished, only the final
consistent state remains. Thus, any intermediate results that generated fal se events can be verified.

This method for verifying the validity of the event is not an guaranteed to be correct. By
the time the ECA Server tries to access the data, another modification may have taken place,
obscuring the previous results.

This can be solved by incorporating the event tables of the previous architecture. Instead
of verifying the results by looking at the original tables, changes can be checked against the event
tables. However, itisstill impossibleto tell which changes resulted from which transaction. We
can only verify that some transaction produced the change. Figure 4-5 shows the revised

architecture.

28

..

|CIientAppIicaIion|—>
|CIientAppIicaIion|—>

Passive DBM S

original
tables

|CIientAppIicaIion|—>

Existing .

on Thermometer for update
as

create trigger TenPercentIncreaseEvent

/* ...
insert into TenPercentIncreaseEvent
select /*..

/* ..

*/

L*/

L/

/* for each row inserted */

exec ECAServer...TenPercentIncrease,

2. event table
appended
(5. event verified)
Jx. %]
(3. RPC request)
[4, return5|mmed|ately] ECA Server

(an OpenServer)

Figure 4-5: The Twice Revised “ Asynchronous Trigger/OpenServer RPC” Architecture

Features

1. Thereisno latency in reporting events.

The ECA server isimmediately notified of any modifications.

2. No polling is necessary.

29

Since the dataserver is now actively reporting events, periodic polling is not necessary.

3. Existing applications remain unchanged, only minor database changes are necessary.

This method requires only some minor dataserver configuration and the addition of the

triggers to the database. Changes are not required to the existing applications.

4. All modifications will be reported by the trigger.

Since atrigger generates the events, no modifications will be missed.

Limitations

This architecture seems very attractive, but there are some important limitations.

1. Events must be verified.

Thereis no way to roll-back an RPC event notification if atransaction aborts.

Verification of eventsisrequired. Itisnot always possible to verify that an event has occurred.

2. Deferred semantics are not always achievable.

By the time the ECA Server logs back into the SQL Server, another modification may have

taken place obscuring the previous consistent database state.

3. Poor performance.

The dataserver must reconnect to the OpenServer each time the RPC is made. Whilethis

isafairly quick process, there may be a noticeable impact on performance if alarge number are

30

required. Also, the transaction will have to wait for the non-preemptive ECA Server to accept a
connection request.

To implement this architecture, the OpenServer should be a separate processin the
operating system whose main purpose is to accept and process RPC calls. Otherwise, clients could

experience long delays.

4. The ECA Server may be prevented from making additional inquiries.

If the transaction that has generated the RPC request is holding locks, the ECA Server
will not be able to view the transaction’s dirty data. In other words, if the ECA Server must make
its own database inquiries during condition evaluation, it must obviously use a separate connection
to the dataserver. Sinceit isaseparate process, it will have to wait for the original transaction to

release its locks before the server can access any of the transaction’ s dirty pages.

5. Thereisno way to determine the order of events.

We have a somewhat more accurate indicator than the previous architecture, however. In
the process of verifying the results of atransaction, the ECA Server will block. The pages are not
released until the completion of the transaction. Therefore, we can use the verification time to
order the events. Thisis not aways correct, but it is certainly a better estimate than we had
previoudy. If thetrue ordering of eventsisimportant to the ECA system, this architecture is not

suitable.

6. Poor robustness.

31

If the OpenServer fails, the events must be stored locally, like in the previous architecture.
Thetrigger should check the value of @@error after the RPC has been made. If the SQL Server
could not connect, the insert would still be made asusual. When the OpenServer restarts, it must
check to seeif any events have been queued at the server.

Even though all of the events can be recovered this way, the SQL Server RPC request will
have to time-out each time. Even though the time-out period is configurable, the delay may be
unacceptabl e to the client applications. A better solution isto maintain the state of the OpenServer
on the SQL Server. If the Open server fails, the server can make anote and insert the eventsin the
gueue. When the OpenServer recovers, it can reset the flag. Figure 4-6 shows atrigger which can

accomplish this.

create trigger RecordTenPercentIncreaseEvent
on Thermometer

for update

as

declare @thermometerId int,
@temperature float,
@serverStatusg int

insert into TenPercentIncreaseEvent
values (@thermometerId, @temperature, getdate ())

select @serverStatus = status
from OpenServer
where name = “ECAServer”

declare cursor eventCursor for
select i.thermometerId, i.temperature
from inserted 1, deleted d
where 1i.thermometerId = d.thermometerId and
i.temperature >= d.temperature * 1.10

fetch eventCursor into @thermometerId, @temperature

while (@@sglstatus = 0 and @serverStatus > 0)
begin
exec ECAServer...TenPercentIncrease
@thermometerId = @thermometerId,
@temperature = @temperature

if (@eerror > 0)
begin

select @serverStatus = 0

update OpenServer

set status = 0
where name = “ECAServer”
end

fetch eventCursor into @thermometerId, @temperature
end

close cursor eventCursor
deallocate cursor eventCursor

Figure 4-6: Trigger Which Calls An RPC With Error Handling

33

Note that thiswill lock the page containing the ECA Server’s entry in the OpenServer
table until this transaction completes. Thiswill have the effect of blocking al of the other
transactions that use the OpenServer. They will be prevented from selecting or updating the status
until the transaction commits. Also, the change will not be permanent if the transaction aborts.

We can create a different OpenServer with an RPC that connects back into the server and
changes the status asynchronously. Thiswould successfully solve the locking problem, since the
RPC call would not be part of the original transaction. Now if that server fails, we should reflect
thisin the OpenServer table. Of course, we are now back in the same position where we started. It

would provide an additional level of robustness, however.

Conclusion

This architecture eliminates the latency of polling, but at the expense of delaying the

initiating transaction. 1f the number of RPC callsis high, thiswill not be suitable.

CHAPTER 5
REPLICATION SERVER TO OPEN SERVER

Description

Sybase offers a product called Replication Server which is capable of re-creating the
results of transactions on remote servers. While thisis usually used to replicate data, it can al'so be
used to generate events.

Replication server works by reading the SQL Server’stransaction logs. It determines
whether a transaction has been committed or rolled back, so only committed transactions are
forwarded. SQL statements which modify more than one record are rewritten to modify one record
at atime. For example, a delete statement which originally deleted two records will be turned into
two delete statements which will delete one row each by primary key.

The replication server guarantees never to lose any modifications. The transactions are
applied in the order they were committed at the primary. Transactions are applied serialy in each
database to minimize contention. Since thisis adetached architecture, there is almost no impact on
the performance of the SQL Server. The database only maintains a pointer to the last log record
processed by the Replication Server’'s Log Transfer Manager process.

The SQL which the Replication Server generates can be sent to an OpenServer. The
OpenServer can parse the SQL and generate events based on the modifications that were

performed. The architectureis shown in Figure 5-1.

34

35

|CIientAppIicaIion|—>
|CIientAppIicaIion|—> Passive DBM S
|CIientAppIicaIion|—>
LBdsting. G
1. transaction
logs read
Log Transfer
M anager
|
2. transaction Iogs\
transferred)
:
ECA Server 4—[3_ SOL Generated]— Repllcatlon
(an OpenServer) Server

Figure 5-1: The“Replication Server To OpenServer” Architecture

Features

1. Excellent performance

The Replication Server architecture does not significantly degrade the performance of the

SQL Server. Thelatency delay isvery low, usualy less than a second for small changes.

2. Events are generated in the correct order.

36

The ECA Server will be able to correctly order events because the SQL is sent in the order

in which the transactions compl eted.

3. Intermediate modifications can be detected and compensation can be made.

Since the transactions that are sent by the Replication Server are al wrapped in begin
transaction/commit transaction pairs, the ECA Server can compensate for any intermediate
modifications. By examining the net result of the transaction, deferred events can be properly

generated.

4. Eventscan not belost.

The replication server will never lose any modifications.

5. No bogus events are generated.

Aborted transactions are not forwarded by the Replication Server

6. Robustness

Even if the Replication Server fails, the recovery is automatically handled.

7. Scaleability

Replication has been proven to efficiently handle hundreds of transactions per second.

Limitations

1. Latency

37

Although the Replication Server isvery efficient, thereis still a delay between the time that
data is modified and the time the event can be generated. A maximum latency time can not be

guaranteed.

Conclusion

Thisisthe best architecture for implementing the detached active database semantics.

CHAPTER 6
SYNCHRONOUS TRIGGER TO OPEN SERVER RPC

Overview Of Immediate Semantics

While the previous four architectures supported only detached semantics, the next two
additionally support immediate semantics. Inimmediate semantics, the ECA Server can decide
whether to commit or abort aclient’s transaction. The events can be generated immediately as the
transaction is executing, deferred until immediately before a transaction commits, as well as

decoupled entirely to execute after a transaction completes.

Description

In the previous section, atrigger called an RPC on the ECA Server to inform the server of
apossible event occurrence. In Sybase, it is possible to pass parameters both directions. A user-
defined return status for the RPC may also be returned to the caller. A simple extension to the

asynchronous architecture is for the trigger to wait for a confirmation from the ECA Server.

38

/* Execute sp who on the MathDataServer */

declare @status int

exec @status = MathDataServer...sp who

/*

** Execute sharma’s fibonacci calculator in the cop5555

** database on the server SYBASE

*/

declare @value int

exec @status = SYBASE.cop5555.sharma.computeFibonacci
@term = 10, @result = @value output

Figure 6-1: Examples Of Passing Parameters And A Return Status To A Remote Server

40

..

| Client Applicati onl—’
: . tabl
. [Client Applicatio——— Passive DBM S =

|CIientAppIicaIion|—>

Existing :

4[1. trigger called]7

create trigger TenPercentIncreaseEvent
on Thermometer for update

as

VA Y

insert into TenPercentIncreaseEvent 2. event table

select /*...*/ appended
/* for each row inserted */ [5 event Verlfled]

exec @returnStatus =
ECAServer...TenPercentIncrease, /*...*/

if (@returnStatus != 0)
begin
rollback tran [
return
end

3. RPC request)

VA

ECA Server

[4. returns with instructi on§ (an OpenServer)

Figure 6-2: The“Synchronous Trigger To OpenServer RPC Architecture”

The return status from the ECA Server’'s RPC call should be checked to determine whether

to abort or continue the transaction.

create trigger RecordTenPercentIncreaseEvent
on Thermometer
for update as
declare @thermometerId int, @temperature float,
@serverStatus 1int, @returnStatus int

insert into TenPercentIncreaseEvent
select i.thermometerId, i.temperature
from inserted 1, deleted d
where 1i.thermometerId = d.thermometerId and
i.temperature >= d.temperature * 1.10

select @serverStatus = status
from OpenServer
where name = “ECAServer”

declare cursor eventCursor for
select i.thermometerId, i.temperature
from inserted 1, deleted d
where 1i.thermometerId = d.thermometerId and
i.temperature >= d.temperature * 1.10

fetch eventCursor into @thermometerId, @temperature

while (@@sglstatus = 0 and @serverStatus > 0)
begin
exec @returnStatus = ECAServer...TenPercentIncrease
@thermometerId = @thermometerId,
@temperature @temperature

if (@eerror > 0)
begin
select @serverStatus = 0
update OpenServer
set status = 0
where mname = “ECAServer”
end
if (@returnStatus != 0)
begin
rollback tran
return
end
fetch eventCursor into @thermometerId, @temperature
end

close cursor eventCursor
deallocate cursor eventCursor

Figure 6-3: Trigger Which Calls An RPC With Error Handling And Return Status

42

Itisalso truein this architecture that the ECA Server must wait for the transaction to
abort before it can access the transaction’ s dirty data. However, this limitation is much more
serious in the synchronous architecture than in the asynchronous one. If the ECA Server even
attempts to access pages held by the calling transaction, the system will be in a state of deadlock
which is not detectable by the SQL Server. The ECA Server must constantly check itself with a
separate connection to determine whether or not it isin a deadlock state. Thisis entirely possible
to implement, but what status should be returned to the trigger if this happens?

Perhaps the ECA Server should allow the transaction to continue and then take remedial
action using the previous architecture’'s callback semantics. The select request will obviously block
until the transaction has either committed or aborted. After the transaction has committed or
aborted, it will be too late to change the outcome of the transaction. The ECA may not even be
able to correct the results of the previous transaction if another modification is already in progress.

In this architecture, only immediate trigger semantics may be used with confidence.
Deferred semantics, like the asynchronous architecture, must be implemented using a database

callback, which is proneto error.

Features

1. Time-constrained requirements are met.

If the system must take action within a specified time frame, this architecture provides for

immediate response.

43

2. Existing applications remain unchanged, only minor database changes are necessary.

This method requires only some minor dataserver reconfiguration and the addition of the

triggers to the database. Changes are not required to the existing applications.

3. All modifications will be reported by the trigger.

Since atrigger generates the events, no modifications will be missed.

Limitations

1. Immediate trigger semantics require verification.

Thereis no way to roll-back an RPC event notification if atransaction aborts.

Verification of eventsis required.

2. Reliable deferred trigger semantics are difficult or impossible to achieve.

For the ECA Server to affect the outcome of atransaction based on a deferred event, it

must take remedial action on the database. Thisis unacceptable.

3. Temporarily inconsistent states within transactions can generate events.

Again, without deferred triggers or the ability to determine the current transaction’s
transaction | D#, there is no way to guarantee the final result of offsetting modifications can be

determined. If deferred semantics are required, this solution will not provide the correct results.

4. Deadlocks are very likely to occur

44

The ECA Server must maintain its own deadlock checking since the SQL Server can not

be aware of the problem.

5. Poor performance

The dataserver must reconnect to the OpenServer each time the RPC is made. While this
isafairly quick process, there may be a noticeable impact on performance if alarge number of
RPC’s are generated. Also, the dataserver will have to wait for the non-preemptive ECA Server to
accept a connection request.

To implement this architecture, the OpenServer should be a separate processin the
operating system whose primary purpose isto accept and process RPC calls. Otherwise, clients

could experience long delays.

6. The ECA Server may be prevented from making additional inquiries.

The ECA Server needs to make its own database inquiries during condition evaluation, it
must obviously use a separate connection to the dataserver. It will have to wait for the initiating

transaction to release its locks before the server can access any of the transaction’ s dirty pages.

7. Thereisno way to determine the order of events.

The verification time is agood, but not an accurate indicator to determine order the
commit times of the transactions. If the true ordering of eventsisimportant to the ECA system,

this architecture is not suitable.

8. Poor robustness.

45

Asin the asynchronous architecture, if the OpenServer fails, the SQL Server will
experience delays waiting for RPC time-outs. Updating the status of the OpenServer can aso have
the effect of suspending other transactions which rely on the OpenServer until the transaction
completes.

This problem is not unique to this architecture. Multiple points of failure are common
with any tightly-coupled distributed architecture. It would be possible to run a backup OpenServer
to handle RPC requests, but it may be impossible to transfer the state information of the failed

OpenServer to its backup.

Conclusion

This architecture is only practical for using immediate trigger semantics with an ECA

Server which does not need to make additional inquiries.

CHAPTER 7
OPEN SERVER GATEWAY

Description

When an OpenServer is placed as an intermediate between a client and a server, it iscalled
agateway. If we add a gateway between each client application and the SQL Server, we can solve
many of the limitations in the previous architectures.

To reiterate, OpenServers look exactly like SQL Serversto application programs, so the
programs would not have to be modified to run with this architecture.

The gateway server accepts a connection from a client and passes the authentication
information along to the SQL Server. After the connection has been established, the gateway can
take control of the client process. Language (SQL) and procedure requests from the client are pre-
processed by the ECA Server to determine if events should be generated. Notice that in this

architecture, a select event can be defined.

46

47

..

|CIientAppIicaIion|—

. [Client Application— Passive DBM S

|CIientAppIicaIion|—

LBAsing

ECA Server

(an OpenServer)

Figure 7-1: The " OpenServer Gateway” Architecture

This architecture is similar to alayered API approach, except the layer is truly transparent
to the client. By using the gateway architecture, modularity is achieved and maintenance costs are
reduced.

Itisfinally possible to use deferred trigger semanticsin this architecture. Before any
transaction is committed, the ECA Server can interrupt the transaction and perform inquiries on the
SQL Server.

There are some limitations to generating events by only using the SQL Requests. For
example, the ECA Server may not be able to determine which rows will be modified by a complex
update statement. It may also be impossible to check afterwards. To solve this problem, triggers
can be added to report the results of modification statements. Before sending back the event

notifications, the SQL Server must notify the ECA Server that the results are for internal use and

48

are not to be returned to the client application. This may be easily done with a user-definable

raiserror call which can be trapped at the ECA Server.

create trigger RecordTenPercentIncreaseEvent
on Thermometer
for update
as
if (right (host name (), 1) = ‘*’)) /* indicates gateway */
begin
/*
** Notify the gateway that an event has a occurred
** go it can intercept the output.

*/

if exists (select i.thermometerId, i.temperature
from inserted i, deleted d
where 1i.thermometerId = d.thermometerId and
i.temperature >= d.temperature * 1.10)
begin
raiserror 200001 “TenPercentIncreaseEvent”

select i.thermometerId, i.temperature
from inserted 1, deleted d
where 1i.thermometerId = d.thermometerId and
i.temperature >= d.temperature * 1.10
end
end

Figure 7-2: Trigger Which Returns Events To A Gateway

This solves the problem for immediate trigger semantics. For deferred semantics, the ECA

Server can interrupt the client before committing and check the final state of the system based on
the eventsiit received.
Also, since the ECA Server is now the same process as the client application, the Server

may make additional inquiriesinto the state of the system without blocking.

49

Features

1. Both immediate and deferred trigger semantics can be implemented.

By being able to interrupt the transaction before committing, this architecture achieves

deferred semantics.

2. The ECA server may make additional inquiries without blocking

Sincethe ECA Server isthe same process as the client application, no livelock or deadlock

Can occur.

3. Eventsare generated in the correct order.

Sincethe ECA Server isresponsible for executing transaction commits, the ECA Server

will be able to correctly order eventsin order of transaction completion.

4. No latency.

If the system must take action within a specified time frame, this architecture provides for

immediate response.

5. Existing applications remain unchanged, only minor database changes are necessary.

This method requires only the addition of the triggers to the database. Changes are not

required to the existing applications.

6. All modifications will be reported by the trigger.

50

Since atrigger generates the events, no modifications will be missed.

7. Excellent performance

This architecture does not significantly degrade the performance of the SQL Server. The
gateway can be run on the same machine as the SQL Server to minimize the cost of sending event

notifications.

8. Events can not be lost.

The ECA Server must process all events synchronously.

9. No spurious events are generated.

Aborted transactions do not generate bogus events because the ECA Server can implement

atwo-phase commit.

10. Scalesbility

Multiple gateway instances can communicate with a central ECA Server since the gateway
isonly really responsible for event generation. By using two-phase commit for communication
between the gateway and the central ECA Server, total ordering of transactions can still be

achieved. If asingle gateway fails, it will not affect the overal state of the ECA system.

11. Parallel execution of ECA Server and SQL Server

For events that are generated by SQL parsing, the ECA Server can process ECA rules

while the SQL Server computes results. Thiswas not possible with the previous architecture.

12. Portability.

It is possible to use the gateway to connect to other DBMS' s besides Sybase which

support triggers.

Limitations

There are no significant limitations in this architecture.

Conclusion

Thisisthe best architecture for implementing the immediate semantics of an active

database.

Y

CHAPTER 8
RULE EVALUATION AND EXECUTION
IN THE GATEWAY ARCHITECTURE

I ntroduction

In this section, the capabilities and limitations of the gateway architecture are described
with respect to capturing events, evaluating conditions, executing actions, and supporting the

HiPAC coupling modes.

Capturing Events

By raising eventsin triggers, al database modification events which take place through
insert, update, and delete commands may be captured. In addition, the gateway can also detect and
generate transaction commit, abort, and prepare-to-commit events. The ECA server can generate
additional events by interpreting the SQL requests. For example, an event could correspond to the
invocation of a stored procedure. Since the gateway is responsible for forwarding all of the SQL,
an event could actually modify arequest before submitting it to the server. Thereforeit is possible
to support a query-rewrite mechanism similar to POSTRGES. Detecting composite events must be
accomplished by the ECA server itself by collecting and evaluating the atomic eventsit receives
from the server. Temporal events may be specified, and must be managed by the ECA server.

While capturing modification eventsis straight-forward, capturing retrieval or selection
eventsisimpossible. Without integrating the active component into the DBMS, there is no way to

tell which rowsin atable were selected in either the result set or the predicate of the query.

52

53

A magjor limitation to Sybase’ s triggersis that they cannot execute commands outside the
server, except by RPC. By evaluating and executing rules at the ECA server, the events,
conditions, and actions can step outside the boundaries of Sybase. Hence, it is possible for the

ECA server to monitor external systems and generate events based on their state.

Evaluating Conditions

The condition part of arule may, of course, specify aquery over the entire database. In
addition, transition events may be specified, since Sybase triggers provide access both to the
modified data and to the data that existed before the modification.

Conditions need not be limited to evaluating the state of the database. For example, a
condition might inquire into the state of an external system during its evaluation. It could even
create adialog box at the user’s console and ask for confirmation before proceeding. Conditions

may be as sophisticated as necessary and are not restricted to SQL.

Executing Actions

Actions at the ECA server may be any database or non-database operation. When an
action is executed, it can make additional modifications to the database and thus trigger additional
rules. Sincethe ECA server manages the client connections, actions have the ability to abort the
current transaction. Like conditions, actions may invoke operations outside the database, such as
sending events to the user’ s application, communicating with another system, or accessing another
database altogether.

In POSTGRES, an action can replace the triggering operation by using the keyword

“instead.” Itisnot possible to provide this functionality with the gateway architecture, since the

54

ECA server is dependent upon Sybase triggers to generate events. Since the operation has already
occurred when the trigger is executed, the triggering operation cannot be replaced. An action must

be expressly written to compensate the effect of the operation if these semantics are required.

Rule Execution Semantics

Since Sybase triggers only support set-oriented operations, namely insert, update, and
delete, the minimum granularity of rule processing is a set of tuple-level operations. Itis
impossible to capture events at the level of the individual tuple without changing Sybase's
semantics.

Sybase supports the concept of transaction save-points, so error recovery is possible
during rule processing. If aparticular rule fails during execution, or the results of a particular

action need to be undone, the ECA server can roll back the transaction to the proper place.

Coupling Modes

LikeHiPAC, the gateway architecture can support the immediate, deferred, and decoupled
modes of coupling between events and conditions, as well as between conditions and actions.
Immediate semantics are easy to implement. The ECA server can use the application’s connection,
or another connection if desired, to execute commands in the middle of the transaction. If, because
of locking or other reasons, the rules must use the client application’s connection to Sybase, the
rules must obvioudly run serially. If locking is not a concern, another database connection can be
used the rules may run concurrently.

For deferred and detached semantics, the events must be collected and stored until the end

of the transaction. When the ECA server determines that a transaction is ready to commit or has

55

committed, it can then perform its operations on the server. In this case, the rules are considering
the net effect of the transaction on the database. However, the before and after image of the

modified tuples are available to the server.

CHAPTER 9
GATEWAY DESIGN AND IMPLEMENTATION

I ntroduction

To illustrate the power of the gateway architecture, this section describes the design and
implementation of an actual active database gateway component. Although thisimplementation
does not support every possible active database feature, it does provide a substantial amount of
flexibility and illustrates the potential of this design.

A very simple and powerful gateway implementation is to separate the ECA server into a
communication module and arule module. The communication module is responsible for
negotiating all of the communication between the clients and the Sybase SQL Server. In addition,
this component must route events which are generated by the SQL Server to the rule module and
allow the rule module to control auser’stransaction. The rule module is responsible for handling

the events, evaluating the conditions, and executing the actions with the proper semantics.

56

57

Client Application

Client Applicati onjl

Communication

Passive DBM S

Module A
Client Application L)
N
T RT Ah
! i I
/ ' | o
; g
Two-way Rule ! 'I
. 2. Module . s
communication | K
for event and ; ¥
transaction info — Y | .
Rule g
Module K
I
e &
One rule module Rule
per client Module
application

Database
connection(s)

Figure 9-1: A Possible Gateway |mplementation

The Communication Module

One multi-threaded communication module stands between the Sybase SQL Server and al

of its client applications. When it receives a connection request from aclient, it opens a connection

on the Sybase server with the user’ slogin and password. Through this connection will pass all of

the user’s SQL commands and all of the server’sresults. After successfully connecting to the SQL

Server, the communication modul e starts a rule module by creating a heavyweight process,

retaining control of the rule modul€'s stdin, stdout, and stderr file descriptors.

58

When a database event occurs, the communication modul e receives the event parameters
from the SQL Server. The event and the associated parameters are then forwarded to the rule
module for evaluation. The rule module may either use the same database connection as the client
application or may establish its own connection through the gateway to evaluate and execute the
rules on the server. For example, the rule module might need to connect to the Sybase as the
system administrator to perform a special operation which the user does not have permission to
run. Alternatively, the rule module might want to evaluate rulesin parallel. All of the event
handling takes place behind the scenes, and the client application sees only a Sybase SQL Server
connection.

When a client disconnects, the communication module closes the database connection and

terminates the rule module.

The Rule Module

Onerule moduleis created for every user connection. When a user connects to the
communication component, the user’ s connection profile, including the name and password, are
sent to the rule module so that the rule module may make additional database connections as that
user. Therule server does not connect directly to Sybase, but rather connects back through the
communication module so events may be captured. As mentioned before, the rule module may
make additional connectionsif necessary, either with the user’s connection profile or with another
profile.

All of the conditions to be evaluated when an event occurs are stored in atablein the
Sybase database. For this particular implementation, the condition and action code iswritten in

TCL, but any interpreted language can be substituted. When an event occurs, the rule module

59

retrieves all of the conditions associated with an event and evaluates them in turn. The conditions
which make additional database inquiries are evaluated through a default database connection
unless otherwise specified. Since the events are written in TCL, any legal command may be
executed on the rule modul€’ sinterpreter. This gives the architecture tremendous power and
flexibility. Conditions and actions may be activated or deactivated on the fly, and the very
condition and action code may be changed if desired. Whether or not thisis a good feature, it does
show what is possible with this implementation. Although it is contrary to the von Neuman
architecture model, self-modifying code is occasionally used in practice.

If acondition evaluates to be true, the rule component retrieves all of the actions
associated with that event and condition from atable in the Sybase database. With this design, a
particular action may be taken whenever a certain condition is true, no matter what event
precipitated the evaluation of the condition. Actions may generate other events, send message to
running applications, or perhaps start new ones.

Conditions and actions are prioritized in the database so a particular order of evaluation
and execution may be enforced. These conditions and actions may also be active or inactive
depending upon the state of the system, and may be toggled on the fly. It is possible that new
conditions and actions could be generated by the rule handler at run-time as well.

For detached coupling mode, the rule modul e asks the communication module to send a
notification upon completion of the transaction. The detached condition or action code resumes
execution after the notification is sent. The rule module is responsible for collecting and executing
the appropriate code, and the communication module is only responsible for informing the rule

modul e of the transaction state.

60

For deferred trigger semantics, the rule server asks the communication server to suspend
the transaction before completion and alow the rule server to take control. The rule server then
either commits or aborts the transaction after the production rules have been evaluated and
executed.

Conclusion

This implementation of the gateway concept is very powerful and usable. Unfortunately,
the flexibility is a double-edged sword. A more robust design would not give the rule programmer
quite so much liberty and attempt to prevent infinite loops in execution. Nevertheless, this
architectureillustrates many of the features of the gateway architecture and provides an exampl e of

the practicality of the design.

61

CHAPTER 10
CONCLUSION

By decoupling the active component from the database, production rule support may be
added to an existing Sybase system without any loss of functionality. Nearly the full range of
active semantics can be supported without using an integrated active database architecture. The
gateway concept described earlier is a particularly powerful example of how events at the SQL
Server can be captured in away which is transparent to the database clients.

Considering the recent proliferation of Sybase database installations and the large number
of existing systemswhich have already been built on this technology, the prospect of seamlessly
integrating an active component is very attractiveindeed. For many users, this may be the only
practical way to begin using production rulestoday. Additionally, because the active database
component is external to Sybase, its power is not limited to what the database can provide, but
only by what the architect can design and implement.

Since the client-server paradigm is rapidly being surpassed by the multi-tiered architecture,
a decoupled active database architecture may be the best prospect for the future of active
databases. Perhaps database researchers should work to specify an industry-standard protocol by
which the many different DBMS's could communicate with a middle-tier active database

component.

REFERENCES

[ANW93] E. Anwar, L. Maugis. A New Perspective on Rule Support for Object-Oriented

[CHAS8Y]

[DAY94]

[DAYS8S]

[HANOZ]

[INGO2]
[ORA92]

[STOQ0]

[STOO1]

[SYB96]

[WID91]

Databases. In Proceedings of the ACM SIGMOD International Conference on Very
Large Databases, 1993.

S. Chakravarthy, et al. HIPAC: A Research Project in Active, Time-Constrained
Database Management (final report). Technical Report XAIT-89-02, Xerox Advanced
Information Technology, Cambridge, Massachusetts, 1989.

U. Daydl, E. N. Hanson, and J. Wisdom. Active Database Systems. InModern
Database Systems. The Object Model, Interoperability, and BeyondAddison-Wesley,

Reading, Massachusetts, 1994.

U. Dayal, et a. The HiPAC project: Combining Active Databases and Timing
Constraints. SIGMOD Record. 17(1):51-70, 1988.

E. Hanson, Rule condition and action execution in Ariel. Proceedings of the ACM
SIGMOD International Conference on Management of Data, 1992.

INGRES. INGRES/SQL Reference Manual, Version 6.4 ASK Computer Co., 1992.

ORACLE. ORACLEY Reference Manua. ORACLE Corporation, 1992,

M. Stonebreaker, A. Jhingran, J. Goh, and S. Potamianos. On Rules, Procedures,
Caching, and Views in Database Systems. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 1990.

M. Stonebreaker and G. Kemnitz. The POSTGRES Next-Generation Database
Management System. Communications of the ACM 34(10):78-92, 1991.

Sybase. Sybase SQL Server Reference Manual: Volume 1 Sybase, Inc., 1996.

J. Widom, R. Cochrane, and B. Lindsay. Implementing Set-Oriented Production Rules
as an Extension to Starburst. In Proceedings of the Seventeenth | nternational
Conference on Very Large Databases 1991.

62

BIOGRAPHICAL SKETCH

David Vance was born in Waynesboro, Virginiain 1969. Hereceived his undergraduate
degreein Computer Science from the University of Delaware, Newark, Delaware, in January 1993.
He expects to receive his Master of Science degree in Computer and Information Science from the
University of Florida, Gainesville, Florida, in August 1996. He has been working as a Sybase
database administrator since receiving his undergraduate degree in 1993. His current research
interests lie in integrating databases with multi-tiered architectures, particularly in the

Java/Neo/Joe environment.

| certify that | have read this study and that in my opinion it conforms to acceptable
standards of scholarly presentation and is fully adequate, in scope and quality, as athesis for the
degree of Master of Science.

Sharma Chakravarthy, Chair
Associate Professor of Computer and
Information Science and Engineering

| certify that | have read this study and that in my opinion it conforms to acceptable
standards of scholarly presentation and is fully adequate, in scope and quality, as athesis for the
degree of Master of Science.

Eric N. Hanson
Assistant Professor of Computer and
Information Science and Engineering

| certify that | have read this study and that in my opinion it conforms to acceptable
standards of scholarly presentation and is fully adequate, in scope and quality, as athesis for the
degree of Master of Science.

Douglas D. Dankel, Il
Assistant Professor of Computer and
Information Science and Engineering

This thesis was submitted to the Graduate Faculty of the Department of Computer and
Information Science and Engineering in the College of Liberal Artsand Sciences and to the
Graduate School and was accepted as partial fulfillment of the requirements for the degree of
Master of Science.

August 1996

Dean, Graduate School

