
SNOOP: AN EVENT SPECIFICATION LANGUAGE
FOR ACTIVE DATABASE SYSTEMS

By

DEEPAK MISHRA

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

1991

ACKNOWLEDGEMENTS

It's a great pleasure to express my sincere gratitude to Dr. Sharma Chakravarthy

for giving me an opportunity to work on this interesting topic and for providing

continuous guidance and support throughout the course of this research work. I am

grateful to Dr. Sham Navathe for introducing me to the �eld of database management

and for assisting beyond academic requirements. I thank Dr. Herman Lam for

serving on my supervisory committee and for his careful perusal of this thesis. I am

deeply indebted to my uncle, Dr. Sachchidanand Mishra, for his continuous support,

inspiration and encouragement. I would like to thank Sharon Grant for maintaining a

well administered research environment. I also thank many of my friends for making

my stay in Gainesville memorable.

This research was supported by the National Science Foundation

Grant IRI# 9011216 and the Florida High Technology and Industrial Council Grant

UPN# 89090848.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS : ii

ABSTRACT : iv

CHAPTERS

1 INTRODUCTION : 1

2 SURVEY OF RELATED WORK : 7

2.1 Interrupts and Signals in Operating Systems : : : : : : : : : : : : : : 7
2.1.1 Interrupts : 7
2.1.2 Signals : 8

2.2 Exception Handling in Programming Languages : : : : : : : : : : : : 9
2.3 Procedural Attachment and Demons in A. I. : : : : : : : : : : : : : : 10

2.3.1 Procedural Attachment : 10
2.3.2 Demons : 11

2.4 Situation Monitoring in Databases : : : : : : : : : : : : : : : : : : : 12
2.4.1 ON Clause in CODASYL : 12
2.4.2 System R : 13
2.4.3 Ariel : 13
2.4.4 Event/Trigger Mechanism (ETM) : : : : : : : : : : : : : : : : 15
2.4.5 High Performance Active Database System (HiPAC) : : : : : 16
2.4.6 Interbase : 18
2.4.7 OSAM* : 19
2.4.8 Postgres : 20
2.4.9 Starburst : 21
2.4.10 Sybase : 22

3 PROBLEM STATEMENT AND OUR APPROACH : : : : : : : : : : : : 24

3.1 Requirements : 24
3.2 Motivation for this Work : 25
3.3 Our Approach : 26

4 EVENT SPECIFICATION LANGUAGE : : : : : : : : : : : : : : : : : : : 28

4.1 De�nition of Event : 28
4.2 Event Classi�cation : 30

iii

4.2.1 Primitive Events : 31
4.2.2 Composite Events : 37

4.3 Timing Constraints and Contingency Plans : : : : : : : : : : : : : : : 42
4.4 Grammar for SNOOP : 44

5 EVENT DETECTION : 46

5.1 Detection : 46
5.1.1 Primitive Event Detection : 47
5.1.2 Composite Event Detection : : : : : : : : : : : : : : : : : : : 48

5.2 Examples : 51
5.3 A Composite Event Detector : 56

5.3.1 Event Compiler : 57
5.3.2 Event Graph : 58

6 CONCLUSION AND FUTURE RESEARCH : : : : : : : : : : : : : : : : 68

6.1 Conclusion : 68
6.2 Future Research : 69

APPENDICES

REFERENCES : 73

BIOGRAPHICAL SKETCH : 75

iv

Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Ful�llment of the

Requirements for the Degree of Master of Science

SNOOP: AN EVENT SPECIFICATION LANGUAGE

FOR ACTIVE DATABASE SYSTEMS

By

Deepak Mishra

December 1991

Chairman: Dr. Sharma Chakravarthy
Major Department: Computer and Information Sciences

Several application areas such as o�ce automation, inventory control, comput-

er integrated manufacturing (CIM), network management and hospital monitoring

require timely response to critical situations in addition to automatic monitoring.

These applications are poorly served by the state-of-the-art DBMSs that are passive

in nature. Active DBMSs present innovative technology to model such applications.

These systems maintain prede�ned events, conditions and actions (or situation-action

rules) and whenever a speci�ed event occurs, execute corresponding actions according

to the outcome of the condition evaluation.

Making a system active to meet the requirements of a wide range of applications

entails an expressive event speci�cation capability and its e�cient detection. Extant

systems do not support a variety of events and event operators needed to model

non-traditional applications.

v

This thesis de�nes an event speci�cation language, SNOOP. We give precise se-

mantics of primitive events and several event operators needed to express composite

events. SNOOP supports temporal, periodic, aperiodic, explicit and composite events

in addition to the traditional database events and provides a method for handling

contingency plans used in time-constrained applications.

Furthermore, we propose the design of a composite event detector that captures

the notion of modularity and extensibility. We de�ne di�erent contexts, namely

Recent, Chronicle and Cumulative, for detecting composite events and describe their

implications on event signalling.

vi

CHAPTER 1

INTRODUCTION

A traditional database is a passive repository of data where the system only

executes explicit requests from applications. This traditional view of databases as

information repositories used for storing and explicitly retrieving required informa-

tion was adequate for a large class of applications. However, the need for having a

database system capable of reacting to speci�c situations (event-condition pairs) has

been recognized in several newer applications. These applications require automatic

monitoring of conditions de�ned over the state of the database and a capability to

take actions, possibly subject to some timing constraints, when the state of the un-

derlying database changes. For example, inventory management in a factory requires

that the quantity on hand of each item be monitored and whenever the quantity on

hand of an item falls below a threshold, then a reorder process may have to be ini-

tiated. This scenario involves monitoring for an event { the transaction that caused

the quantity to decrease, evaluation of a condition { the quantity of the item going

below the threshold and executing one or more actions { reordering the product and

notifying the manager. Similarly, in a library database, borrowers are required to

return the books before they are due; otherwise a noti�cation needs to be sent to

those who failed to return the book. This requires monitoring the due date of the

book and issuing a noti�cation and computing the late charges when the book is

returned.

1

2

A large class of non-traditional applications such as hospital monitoring system,

air-tra�c control, process control, network management, computer integrated manu-

facturing, o�ce automation, computer aided design (CAD) and battle management

also require timely detection of and response to critical situations. For example, a

network control system monitors various types of events, such as network partitions,

link overloading, hardware failure and takes corresponding actions such as �nding

alternate path, to get the communication failure status of modems and to correlate

this with past failures to diagnose the problem and take appropriate measures. Simi-

larly, view management in a distributed information system requires monitoring any

of changes in the stored relation and automatic recti�cation of any inconsistency or

noti�cation of the user when a cache becomes obsolete. Many time-constrained ap-

plications need to take alternate actions if the speci�ed action could not be executed

within the prespeci�ed time. For example, in a process control application, the boiler

pressure needs to be monitored and if it increases by an undesirable amount, remedial

measures need to be taken within a speci�ed time to release the pressure and if that

is not possible, a contingency plan (e.g. sounding an alarm to evacuate the boiler

room) may have to be executed.

Design databases have non-trivial consistency requirements. Data objects in com-

puter aided design (CAD) are characterized by highly complex structures and a lot

of intricate dependencies. This results in numerous consistency constraints that have

much higher complexity than traditional business oriented database applications. In

addition, CAD applications typically have long transactions. This entails tolerating

inconsistency over unpredictably long periods of time. The time and extent of check-

ing consistency and how to react to a consistency violation needs to be determined

dynamically and under user control rather than only at the end of the transaction.

3

These additional requirements of design database are not met by the traditional ap-

proach of integrating consistency control within the transaction manager ([DIT86],

[KOT88]).

All of the above applications require monitoring of conditions de�ned on the state

of the database and evaluate the conditions when the state of the database changes to

invoke speci�c actions. For these applications, the correctness of result depends not

only on the correct interleaving of transactions but also on the timely invocation of

conditions and actions. These applications are poorly served by the state-of-the-art

database management systems.

In the absence of explicit support for situation monitoring, requirements of time

constrained applications can be met using special purpose mechanisms in at least

two ways [CHA89a]. The �rst approach is to write a special application program

that periodically queries or polls the database to determine if situations being mon-

itored have occurred. Figure 1.1 depicts the polling approach on a passive DBMS.

The second approach is to embed the situation monitoring within each program that

updates the database and also include the corresponding action as part of the appli-

cation code. This approach of augmenting each program to include situation-action

mechanism is shown in Figure 1.2. Neither of these two approaches is completely

satisfactory. Polling requires �ne tuning of the periodicity with which the database

should be queried to obtain a timely response. Frequent polling leads to thrashing

i.e. overloading the database with queries that return empty answers most of the

time, whereas infrequent polling runs the risk of missing the response window. Em-

bedding situation monitoring in an application limits the extent to which condition

evaluation can be optimized and severely compromises modularity, since the updat-

ing component is logically performing the task of another software component that

should respond to the update. Therefore any modi�cation to the situations being

4

monitored or to the corresponding actions will require modifying every application

program that updates the database.

�

-

- PASSIVE DBMSUpdates

Periodic

Queries
Applications

Answers

Figure 1.1. The Polling Approach

�
Applications

DBMSPASSIVE +
Situation Monitoring

Figure 1.2. Embedding Situation Monitoring in Applications

Making a DBMS active by extending its functionality to incorporate e�cient sit-

uation monitoring as its integral part (as proposed in HiPAC [CHA89a] is an elegant

solution to these problems. We de�ne an active DBMS as a system that provides

full functionality of a traditional DBMS and is capable of reacting automatically

and asynchronously to events occurring in its environment. The system continuously

monitors occurrences of these events and reacts without waiting for explicit user or

application-initiated requests. Situations, actions and timing requirements are all

speci�ed declaratively to the system. The system then monitors the occurrences of

5

speci�ed events and executes corresponding actions according to the outcome of the

condition evaluation. This provides both modularity and timely response.

Before an event can be recognized, it should be speci�ed and its parameters should

be de�ned in the system. A survey of recent work in this �eld [CHA90b] reveals that

these systems support a small number of events and provide few operators to express

composite events. In this thesis, we describe an event speci�cation language SNOOP

that subsumes the events supported in the existing systems and extends them by

providing newer events and event operators.

This thesis is organized as follows: Chapter two briey describes active construct-

s provided in the di�erent branches of computer science with emphasis on database

systems. We analyze current research and commercial e�orts in the �eld of active

databases to identify the events and event operators that are needed but not sup-

ported in these systems.

In Chapter three we set the requirements for an event speci�cation language. We

discuss applications that are not well served by the extant systems and based on that

identify events and event algebra need to be supported.

Chapter four presents our approach to event classi�cation and speci�cation. We

discuss event hierarchy, identify primitive events and de�ne operators along with

their semantics and give examples to show their need. We also provide an event

speci�cation language that can be used to generate complex event expressions and

propose a method to implement contingency plans required in a time-constrained

environment.

Chapter Five deals with event detection. We de�ne various contexts of detecting

complex events and give algorithms for their detection and evaluating their parame-

ters. We also propose the design of a composite event detector.

6

Finally, Chapter Six concludes the research presented in this thesis and suggests

areas for future research.

CHAPTER 2

SURVEY OF RELATED WORK

This chapter briey discuss situation monitoring in di�erent application areas such

as operating systems, programming languages, arti�cial intelligence and database

management systems. We speci�cally analyze recent research and commercial e�orts

in the �eld of active databases to identify the events supported in these systems.

2.1 Interrupts and Signals in Operating Systems

An operating system is an event-driven program [PET85]. It waits for various

synchronous and asynchronous occurrences, and when such events occur, it responds

to their need according to some prede�ned priority. Operating systems provide two

basic facilities namely, interrupts and signals, to model various events.

2.1.1 Interrupts

An interrupt is a signal to the central processor indicating that a special event

has occurred and that at the earliest convenient time, the system should temporarily

suspend its current activity and respond to the needs of the event. Types of inter-

rupts actually supported in the system and their priorities depend on the computer

manufacturer, model of computer and the operating system con�guration of the par-

ticular installation. Table 2.1 shows a list of typical interrupt classes [TUR86].

7

8

Table 2.1. Typical Interrupt Classes

Class Description
Increasing Priority

System call Request to the operating system for a standard service

Program error Invalid instruction, invalid access to protected memory,
division by zero, etc.

Input/output Input/output device needs attention

Timer Designated time of day is reached or an interval of time
has elapsed

Machine Memory parity error, invalid CPU state, etc.
Malfunction

Power failure Loss of electrical power

2.1.2 Signals

Signals inform processes of the occurrences of asynchronous events. They are the

software equivalent of interrupts and signal-handling routines perform the equivalent

function of interrupt service routine. Processes may send signals to each other or

the kernel may send signals internally. Broadly, signals can be classi�ed as follows

[BAC88]:

� Signals having to do with the termination of the process, sent when a process

exits or when a process invokes the signal system call.

� Signals having to do with process induced exceptions such as when a process

accesses an address outside its virtual address space, when it attempts to write

memory that is read-only (such as program text), or when it executes a privi-

leged instruction or for various hardware errors.

9

� Signals having to do with the unrecoverable conditions during a system call,

such as running out of system resources during exec after the original space has

been released.

� Signals caused by an unexpected error condition during a system call, such as

making a nonexistent system call, writing a pipe that has no reader processes,

or using an illegal \reference" value for the lseek (Unix) system call.

� Signals originating from a process in user mode, such as when a process wish-

es to receive an alarm signal after a period of time, or when processes send

arbitrary signals to each other with the kill (Unix) system call.

� Signals related to terminal interaction such as when a user hangs up a terminal,

or when a user presses \break" or \delete" keys on a terminal keyboard.

� Signals for tracing execution of a process.

2.2 Exception Handling in Programming Languages

Program execution may cause some exceptional occurrences as a result of errors,

such as overow, underow, attempted division by zero or array subscript going out of

range. These \exceptional" events may make normal program execution undesirable

or even impossible. The term exception refers to an exceptional situation or error.

Exceptions have three aspects: declaration, raising and handling. To declare an

exception means to give it a name. To raise an exception means to abandon normal

program execution. To handle an exception means to take some appropriate actions.

When an exception is raised, normal program execution is terminated and the control

is transferred to an exception handler which is a specially written part of the program.

Notable examples of languages which provide exception handling are PL/I, MESA,

ML, CLU and Ada. Though Algol-68 also included exception handling facilities, these

10

were restricted to �les and were not available for general program execution. PL/I

and Ada provide exception handling in a fairly general forms to enable them to be

used as a standard programming tool rather than exclusively for error handling.

A condition in a PL/I program is an occurrence that can cause a program in-

terrupt. It may be the detection of an unexpected error or an occurrence that is

expected at an unpredictable time. For example, OVERFLOW is an unexpected

error. It occurs when arithmetic expression generates answer that is too large for the

speci�ed data format. The FINISH condition is an example of an occurrence that is

expected but at an unpredictable time. A number of conditions may be speci�ed in

the ON statement [HUG79].

Ada contains an extensive set of features for exception handling ([CAV86], [GEH84]).

These are on the same lines as the PL/I On-conditions, but are more powerful and

somewhat better designed. There are two types of exceptions in Ada: pre-de�ned and

user-de�ned. Prede�ned exceptions need not be declared or raised by the user. They

are raised automatically when the corresponding situation is detected. User-de�ned

exceptions are raised explicitly by the raise statement.

2.3 Procedural Attachment and Demons in A. I.

2.3.1 Procedural Attachment

Procedural attachment is a method of attaching programs to the data structures,

such as slots in a frame ([CHAR80],[WIN79]). Slot values are obtained by execut-

ing these programs for properly instantiated arguments. There are typically three

kinds of procedural attachment{ IF-NEEDED, IF-ADDED, and IF-REMOVED that

provide a mechanism for triggering arbitrary procedures.

IF-NEEDED procedure is triggered IF we NEED the value of a slot that does not

have an explicitly stated value. IF-ADDED procedure is run to perform an arbitrary

11

computation when a new item is added to the slot. IF-REMOVED procedure is

invoked when an item is removed from the slot.

2.3.2 Demons

Demons are a convenient construct for situations in which we wish to specify the

execution of asynchronous activity that arises from a particular change of state in

the modeled environment. A demon has a trigger and a response. As an example,

consider a demon DC-OHM in an expert problem solving system ARS [WIN79]. This

demon implements ohm's law in a circuit-speci�c knowledge base.

(LAW DC-OHM ASAP ((R RESISTOR) V1 V2 I RES)

()

((= (VOLTAGE (T1 !?R)) !>V1) (= (VOLTAGE (T2 !?R)) !>V2)

(= (CURRENT (T1 !?R)) !>I) (= (RESISTANCE !?R) !>RES))

(EQUATION '(&{ V1 V2) '(&* RES I) R))

The keyword LAW de�nes the demon DC-OHM. ASAP indicates its invocation

priority. V1, V2, I and RES are the local variables to hold the two terminal

voltages, the current, and the resistance value of the resistor. In addition, the type-

restricted local variable R is used for the resistor about which the deduction will be

made. The long list beginning with (= (VOLTAGE ... contains the demon's trigger

slots. Their purpose is dual: to provide patterns to direct the invocation or triggering

of the demon, and to gather the information needed in applying Ohm's law once the

demon is invoked.

The ARS antecedent reasoning mechanism will signal DC-OHM whenever a fact

is asserted that matches any of DC-OHM's trigger slots. When the demon is invoked,

it will apply all of its trigger patterns to the database, using its argument as the value

of R during the match to make sure that it �nds voltages, current and resistance for

12

a single resistor instead of for four di�erent resistors. Variables appearing in the

pattern with the \!>" operator have no e�ect on the triggering of the demon, but at

the matching stage they are assigned whatever value they happen to match, if the

pattern matches anything at all.

After the matching phase, the body of the demon is executed. In this case the

body is just a call to the function EQUATION, which does all the work of extracting

any possible new information from the speci�ed equation and the parameter values

obtained by the matching phase.

2.4 Situation Monitoring in Databases

In the following subsections we mention initial attempts to handle situation mon-

itoring in databases (CODASYL and System R) and provide a brief survey of recent

research and commercial e�orts in the �eld of active database systems. The goal of

the survey is to evaluate the approaches taken in these systems and to identify their

limitations for modeling various applications. A detailed evaluation of some these

systems can be found in [CHA90b].

2.4.1 ON Clause in CODASYL

CODASYL [OLL78] is one of the oldest database system recommendation that

was developed to overcome the problems of �le systems. The CODASYL recommen-

dation provides database procedures those are de�ned by the database administrator

and are automatically invoked at execution time when some situation arises. This

mechanism is implemented by using \ON Clause" which can be de�ned at the fol-

lowing levels:

� realm

� record type

13

� item

� set type

As a simple example of the ON clause, consider the one on the item level:

ON [ERROR DURING] database operation CALL db-procedure

Where a database operation can be STORE, GET or MODIFY.

For example:

ON STORE CALL LOGPROC

speci�es that immediately after the execution of the STORE statement, procedure

LOGPROC is executed and then the control is transferred back to the statement after

STORE. ERROR DURING option speci�es that the action should be executed only

when an error occurs during the execution of STORE rather than at the end of the

execution.

ON clauses on realm, record types and set types are similar to the above discussion

for items.

2.4.2 System R

In system R, ([ESW75],[ESW76]) active constructs are used for integrity checking.

It provides a set of integrity facilities in the form of SQL statements such as ASSERT,

DROP ASSERTION, DEFINE TRIGGER, DROP TRIGGER and ENFORCE IN-

TEGRITY. The ENFORCE INTEGRITY statement, forces the application to check

speci�ed integrity constraints at the end of the transaction without actually causing

a COMMIT. Using these constructs, it is possible to specify rules that are triggered

whenever the state of the database changes.

14

2.4.3 Ariel

Ariel [HAN89] is a relational database system which is built upon the foundation

provided by the EXODUS database tool kit. It supports rules that are triggered

either by database events or temporal events. Database events are associated with

the following kinds of database operations (optional clauses are enclosed by square

brackets):

� append [to] relation-name

� delete [from] relation name

� replace [to] relation-name [(attribute-list)]

� retrieve [from] relation-name [(attribute-list)]

Ariel adopts set-oriented method of rule triggering. This means the rules are triggered

only once at the end of the corresponding database operation for a set of a�ected

tuples. This is in contrast to the approach where a rule is triggered once for each

a�ected tuple.

Temporal events are also supported in this system. System generates one temporal

event every second. Syntax for the time-speci�er is as follows:

time-speci�er!

time = time-list

j every [INTEGER] time-unit

[starting time-value]

[ending time-value]

where a time-value has the form YY:MM:DD:HH:MM:SS, a time-list is a comma

separated list of one or more time-values and a time-unit can be one of hours, days

etc. In the above speci�cation YY:MM:DD and SS are optional. If YY:MM:DD �elds

15

are omitted the event becomes a periodic event that occurs each day at HH:MM:SS.

Omission of SS �elds defaults to 00. It provides disjunction of temporal events in the

form of a time-list which is a list of time-values, separated by commas.

The parameters of database events are represented by a tuple variable whose scope

is determined for di�erent database operation (shown in bold with optional clauses

surrounded by square brackets) as follows:

� append [to] R: The tuple variable R is bound to the set of tuples just appended

to R.

� delete [from] R: The tuple variable R is bound to the set of tuples just deleted

from R.

� replace [to] R [(attribute-list)]: The tuple variable R is bound to the set of

new tuples just created by modifying existing tuples from R. The tuple variable

previous R refers to the previous values of the modi�ed tuples.

� retrieve [from] R [(attribute-list)]: The tuple variable R is bound to the set

of tuples just retrieved from R.

Temporal events seem not to contain any parameters in this model.

2.4.4 Event/Trigger Mechanism (ETM)

Event/Trigger Mechanism (ETM hereafter)([DIT86], [KOT88]) is a system de-

veloped at University of Karlsruhe to meet the complex consistency requirements in

design databases. In ETM, an event is an indicator (represented by a speci�c iden-

ti�er) that can be raised to ag a certain situation to the database. The declaration

of an event type is done by giving a event identi�er < E id > and a list formal

parameters < fop > to pass context information from event to action.

16

event < E id > (< fop1 >:< fop type >; ::::;

< fopn >:< fop type >));

An event type can be instantiated an arbitrary number of times by `raising the event'.

This is done by calling the operation:

raise < E id > (acp1; acp2:::::; acpn);

with actual parameters acpi.

There are two kinds of events supported in ETM, standard (implicit) event and

explicit event. Standard events are associated with the start and termination of

database operations and are raised by the system itself. Given a speci�c database

schema, it is possible to generate type-dependent standard events (e.g. insertion of

a record of type t). Explicit events are events that are raised explicitly by the user

or application program.

2.4.5 High Performance Active Database System (HiPAC)

HiPAC ([CHA89a],[CHA89b], [CHA90a]) was a research e�ort on active and time

constrained data management. In HiPAC, an event is an entity that has an identi�er

and a list of typed formal parameters. For each event, one operation signal is de�ned

that binds the formal parameters speci�ed for the event to actual parameters. It has

�ve kinds of primitive events:

1. Database events

2. Begin of the Transaction

3. End of the Transaction

4. Temporal Events

5. Abstract Events

17

Database events are related to database operations and are further classi�ed into

Insert, Delete and Update. For example, Insert Position (Ship-ID: String, Location

: (Lat, Long)) is a database operation that inserts an entity instance of the Position

entity type into the database. When an operation is executed, the parameters are

bound to actual entities and values in the database such as Insert Position (S1234,

(40N, 70W)). Since database operation executions are not instantaneous but occupy

intervals of time, two events are de�ned for each operations: the beginning of the

operation and the end of the operation.

As the name implies, begin and end of the transaction are events those are sig-

nalled at the beginning and end of a transaction. Parameters of these events include

the transaction, user, and session identi�ers, and { implicitly { the entire database

state.

A temporal event can be absolute points in time, de�ned by the system clock

(e. g., 9:00:00 a.m., April 10, 1988), relative (30 seconds after event A occurred),

or periodic (every day at midnight). An absolute event is speci�ed as a time string,

relative event is de�ned as a reference event and a reference interval and periodic

event is speci�ed as a reference point (i.e. the point of �rst occurrence) and a period

(an interval). Parameters of a temporal event are Event-id and Description.

Abstract events are not necessarily associated with a database operation or time,

and cannot be directly detected by HiPAC. These events and their parameters are

de�ned in the model, but are detected and signalled by users or other program-

s. For example, Flight Airborne (Flight No, Destination, Takeo� Time, Aircraft,

Wind Speed, Wind Direction) is an abstract event, which is signalled by a user when

a ight takes o�.

In addition to these primitive events, three event operators, namely, disjunction,

sequence and closure are provided to form composite events.

18

The disjunction of two events, E1 and E2, is a composite event E, denoted (E1

j E2), that is signalled when either E1 or E2 is signalled. E's arguments are the

\outerunion" of E1's arguments and E2's arguments. For example, in a battle man-

agement application, if both ships and targets can move, then a single rule �red

by the composite event (Update Position (S : Ship) j Update Position (T : Target))

can check whether the critical distance between ships and targets has been crossed,

instead of writing two rules.

The sequence of two events, E1 and E2, is a composite event denoted (E1;E2) that

is signalled when E2 is signalled, provided E1 had been signalled before. Argument of

this composite event is the union of of the arguments of E1 and E2. For example, the

event (Update Inventory(I, A, S); EOT) will be signalled at the end of the transaction

in which the inventory is updated.

The closure operator is useful for the rules that should be �red only once per

transaction, provided a given event was signalled at least once during the transaction,

rather than �ring every time the event was signalled. The closure of event E is denoted

E�, where E has been signalled an arbitrary number of times in a transaction. E�'s

arguments are accumulated from the E's arguments. This operator is especially useful

for integrity checking.

2.4.6 Interbase

Interbase ([INT90a],[INT90b]) is a relational database system developed by Inter-

base Software Corporation. In Interbase a trigger is a piece of code that executes a

speci�c action when a record in a relation is stored, modi�ed, or erased. Thus Inter-

base supports only database events. Each database operation has a time indicator,

pre or post, associated with it which speci�es whether to �re the trigger before or

after the operation. There are two prede�ned context variables, old refers to the

19

record that is being modi�ed or deleted and new refers to the new record that is

being modi�ed or inserted. It is also possible to de�ne and post arbitrary events by

using triggers. To model an event the trigger must do the following:

� Identify the event by specifying a unique string.

� Specify the conditions under which the event manager will notify interested

programs that the event has occurred.

For example, the following trigger posts an event that indicates a 1% change in the

stock price:

de�ne trigger stock event for stocks

post modify 0:

if new.price / old.price > 1.01 or

new.price / old.price < .99

post new.company;

end trigger;

This trigger checks to see if the change in stock prices exceeds 1%. When the change

does exceed 1%, the trigger posts the event. This consists of passing the name

contained in its argument to the Interbase event manager. The event manager then

checks to see if the name is in the event table, which lists the events in which active

programs have registered interest.

2.4.7 OSAM*

The Object-oriented Semantic Association Model (OSAM*) ([LAM89], [SU88])

is a system developed at University of Florida. In the rule de�nition language of

OSAM* [SIN90], an event consists of a trigger-operation and a trigger-time. The

trigger-operation speci�es the operation that causes that event to occur and can be

20

a data manipulation operation such as InsertObject, InsertInstance, DeleteObject,

DeleteInstance, Update and Retrieve or can be a user-de�ned operation. Trigger-time

speci�es when to trigger the rule and can be one of `before', `after' or `parallel'. More

than one operation can be speci�ed in the event part and thus it supports disjunction

of events.

An event related to an operation can be signalled `before' an operation is executed

in a transaction, immediately `after' an operation is executed in a transaction or

`after' all the operations are executed in a transaction. By default, all the events are

signalled after all the operations are executed in the transaction. Parameters of these

events are all the `a�ected' data items.

2.4.8 Postgres

Postgres [STO87] is the successor to INGRES relational database system. In the

second Postgres rule system [STO90] (PRS2), only database events (retrieve, replace,

delete and append) are provided as primitive events. Semantics of these events is

that at the time an individual tuple is accessed, updated, inserted or deleted, there

is a CURRENT tuple (for retrieves, replaces, and deletes) and a NEW tuple (for

replaces and appends). If the speci�ed event is true for the CURRENT tuple then

the condition is evaluated. Postgres does not di�erentiate between \begin" and \end"

of the operation.

Besides these database events, Postgres provides a restricted \disjunction" of

events. Keywords new (i.e. replace or append) or old (i.e. delete or replace) can

appear in place of retrieve, replace, delete or append.

An event can be speci�ed as follows:

ON event TO object

where object is either

21

a relation name

or

relation.column, ..., relation.column.

2.4.9 Starburst

Starburst [WID90] is a relational database system developed by IBM Almaden

Research Center. It has the notion of operation block, which is a stream of data

manipulation operations such as insert, delete and update, that is executed indivis-

ibly. Execution of an operation block causes a state change of the database called

transition. A transition predicate is a list of basic transition predicates, which specify

particular operations on particular tables. For example, basic transition predicate

inserted into t (where t is the table name) holds with respect to any transition ef-

fect that identi�es one or more tuples in table t. The syntax for transition predicate

is:

trans-pred ::= basic-trans-pred

j basic-trans-pred or trans-pred

basic-tran-pred ::= inserted into table

j deleted from table

j updated table.column

j updated table

Starburst supports set oriented production rules. After a given transition, those

rules whose transition predicate holds with respect to the e�ect of the transition are

triggered.

Thus starburst provides database events that occur as an overall e�ect of a tran-

sition, rather than individual e�ects of the component operations. For example, if a

tuple is updated by several operations and is then deleted, only deletion is considered,

22

since this is the net e�ect of the transition. It also provides disjunction as an event

operator.

In starburst, parameters of an event are one or more logical tables corresponding

to the associated transition predicate.

� If inserted into t is the basic transition predicate, then logical table inserted

t holds the tuples inserted into t by the transition that triggered the rule.

� If deleted from t is the basic transition predicate, then logical table deleted

t holds the tuples deleted from t by the transition that triggered the rule.

� If updated t.c is the basic transition predicate, then logical table old updated

t.c refers to the tuples of table t in the previous state of the database in which

column c was updated by the transition that triggered the rule; logical table

new updated t.c refers to the current values of the same tuples.

� If updated t is the basic transition predicate, then logical table old updated

t refers to the tuples of table t in the previous state of the database that were

updated by the transition that triggered the rule; logical table new updated

t refers to the current values of the same tuples.

2.4.10 Sybase

Sybase is a relational database system that is developed by the Sybase Inc. In

Sybase [SYB87] a trigger is a special kind of stored procedure that goes into e�ect

when a database operation is carried out. One or more of three operations, insert,

update and delete, can be speci�ed on a particular table. At the end of the execution

of these operations, corresponding events are signalled.

Parameters of delete event is logical table deleted that contains the rows removed

from the speci�ed table. Parameters of insert event is a logical table inserted that

23

holds the rows added to the speci�ed table. Parameters of update event are the

updated rows: rows before the changes are added to the logical table deleted and rows

after the changes are added to the logical table inserted.

In the above sections we have briey described some approaches to situation mon-

itoring in di�erent branches of computer science. Though active constructs supported

in �elds other than database systems satisfy the requirements of speci�c application

areas, they are not suitable for modeling database applications.

Analysis of current active database systems reveals that these systems support

events with varying degrees of capabilities. Most of the systems provide only database

events and disjunction as the only operator in a restricted fashion. In HiPAC, al-

though the need for temporal events and contingency plans was established, no formal

approach was given. Ariel supports temporal events, however its speci�cation is not

very expressive.

In the next chapter, we discuss the need for various events and present our ap-

proach to event speci�cation.

CHAPTER 3

PROBLEM STATEMENT AND OUR APPROACH

3.1 Requirements

Event-condition-action or ECA rules impart capabilities to a database system to

react automatically and asynchronously to state changes and/or to the occurrences

of other events. When an event occurs (is signalled), the condition is evaluated

and if the condition is satis�ed, the action is executed. This requires monitoring

various events of interest that may cause a rule to �re. Before an event can be

recognized, it should be speci�ed and its semantics should be de�ned in the system.

Commonly used data de�nition and manipulation languages (DDL and DML) do

not support speci�cation of events required in active database system. Some systems

allow assertions, invariants, and integrity constraints to be speci�ed which can be

viewed as special provisions for supporting some requirements in the absence of a

general purpose event speci�cation language. In addition to the traditional notion

of events which correspond to database operations, such as access, insert, delete and

update, various other events need to be supported.

Many database and nondatabase applications have requirements intimately re-

lated to time. These applications need to execute di�erent actions at prespeci�ed

time. For instance, an automatic door locking system in an o�ce may be required

to lock all the doors of the building exactly at 5 p.m. and to open them again next

day at 7 a.m. except holidays. Similarly, in a garage or in an elevator it may be

required to close the door at a prespeci�ed time after the event \door open". As a

24

25

traditional database example consider the case of a bank database. In this database

it may be necessary to prevent any transaction after 5 p.m. until 8 a.m. next day.

As another example, a patient's database in a hospital, may be required to prompt

the operator to enter patient's recent bloodpressure and temperature one hour after

the drugs have been given. Besides these applications many other applications need

to deal with time. This makes it necessary to de�ne time events formally and to

provide a concrete method for their speci�cation and detection.

In several applications, databases are a part of the system and a number of events

are detected by application programs outside the purview of the database system.

For example, in network management, sampling of multiplexors and modems are

done by the system and their results are maintained by the database system. For

example, in a process control system, any changes in the parameters of the process

such as temperature or pressure are detected by the application programs and then

are signalled to the database system for processing. System should provide facilities

for specifying and managing such user or application generated signals.

Many other time-constrained applications require to execute an alternate action

if the action can not be realized within a prespeci�ed time. For example, in a process

control system it may be necessary to open the boiler valve automatically within

�ve seconds after the pressure exceeds maximum limit and if this could not be done

evacuation of boiler room and other appropriate action should be performed as con-

tingency plans. System should provide a method for handling such contingency plans

required in time-constrained applications.

3.2 Motivation for this Work

Primarily, rules comprising of event, condition, and action speci�cations (ECA

rules) were proposed as a uniform paradigm for accomplishing active databases. Of

26

the three components, event speci�cation is perhaps the least understood although

database events and few operators were de�ned in HiPAC and the need for temporal

and other types of events were also recognized. Conditions and actions are better

understood as they correspond to queries and transactions respectively.

Expressiveness of the event speci�cation language and the e�ciency of event detec-

tion determines the power of an active system. In other words, support for condition-

action needs to be complemented adequately with an expressive event speci�cation

language. A myopic view of supporting a small number of events (e.g. database

events such as insert, delete and modify) will severely limit the ability to model

complex applications where temporal and other events need to be combined with

database events. This thesis attempts to de�ne an event speci�cation language that

not only supports primitive events of several types but also operators for constructing

complex events needed for the applications discussed earlier.

3.3 Our Approach

Although it is possible to provide a prede�ned set of events in any system, this

approach will make the system restrictive and di�cult to extend. Instead, if we take

the approach of identifying primitive events and providing a language for construct-

ing composite events, we would overcome both the limitations. In fact, this approach

is similar to one taken in programming languages by providing a small set of prim-

itive data types and constructs for building complex types as desired by the user.

Composite events are formed by using a set of primitive events and event operators.

For example, in a process control system, the operator may have to be noti�ed when-

ever one or more parameters of the process change their values. This event can be

speci�ed by using the `Or' operator. To meet the requirements of several advanced

27

and nontraditional applications, we have provided various operators such as Or, All,

Sequence, Periodic, and Aperiodic.

In the next chapter, we describe an event hierarchy, de�ne various operators and

give examples to show their need.

CHAPTER 4

EVENT SPECIFICATION LANGUAGE

In this chapter we present an event speci�cation language SNOOP. We start with

a formal de�nition of event and describe various events and event operators provided

in our language. We discuss parameter computation for composite events and propose

a method for implementing contingency plans.

4.1 De�nition of Event

To conceive the notion of events, it is helpful to imagine a continuous time line.

The line is divided into a number of segments where each segment equals the granu-

larity of the time scale of a given abstraction. Thus from the system's point of view

time is discrete rather than continuous. A time scale is the marking scheme on the

time line. For example, a calendar can be considered as a time scale with years,

months, days, hours etc. as time units and second as its least count. Some other

marking scheme may have the least count, equal to the fraction of a second.

An event is something that happens at a point in time (e.g. ight 456 takes o�,

insert tuple t1 into R). As none of the things are instantaneous, an event is simply

an occurrence that is fast compared to the granularity of the time scale chosen.

Occurrences of an event are expressed using the granularity of the time scale and

hence, are mapped to distinct points on the linear time line. For example, any event

that occurs at some point to which lies between two consecutive seconds tsn and

tsn+1 will be extrapolated to tsn+1 . Most often an event such as `depressing a button'

has multiple occurrences corresponding to the points (on the time line) at which the

28

29

button was depressed. Hence occurrences of events for a given event type can be

characterized as a relation which maps event type to its occurrences. Alternately,

it can also be expressed as a boolean function on event instance and the time of

occurrence.

It is important to distinguish conditions from events. A condition is a boolean

function of object values, such as `the temperature is above 50�F'. A condition is valid

over an interval of time. For example, `the temperature remains above 50�F from 1

p.m. to 6 p.m. on Aug 1, 1991'. Conditions de�ne `states' and hence are used in

ECA rules as guards on transitions. A guarded transition �res when its event occurs

but only if the guard condition is also true. For example, when a person sits in the

car (event), if the temperature is above 80�F (condition), then turn on air-conditioner

(action which leads to another state).

To indicate common structure and behavior, events can be organized into an

hierarchy of event classes. Each event is an instance of its class and has a unique

occurrence. The term event is typically used to refer both an event instance and

an event class. However these usage does not pose any problem and the intent is

usually clear from the context. We will use `E' to represent an event class and `e' to

represent an event instance to make the distinction where necessary. Each event class

has formal parameter members associated with it, that are instantiated and passed

as actual parameters when the event occurs. Event-type and time of occurrence

are implicit parameters of all events. For example, in a relational database system,

`INSERT' is an event class and each insert operation to relation R is an event

instance of this class, which may have parameters such as the relation name and

inserted tuples in addition to implicit parameters.

An event has three aspects: occurrence, which is the process of instantiating its

formal parameters; detection, which is the process of collecting and recording its

30

actual parameters and signalling, which is the process of sending an interrupt to the

condition evaluator indicating that the event has occurred and providing the actual

parameters.

The language developed in this thesis is application and model independent. How-

ever, for concreteness we use the relational model to show the computation of pa-

rameters for composite events.

4.2 Event Classi�cation

Figure 4.1 shows the event hierarchy we have developed to depict the event classi-

�cation. Events can be broadly classi�ed into: i) primitive events - events which act

as the basic building blocks and for each of which an detector need to be associated

and embedded in the system and ii) composite events - events those are formed using

a set of operators, primitive events and composite events constructed so far.

@
@
@@

�
�
��

�
�

�
�

�
�

�
��

e
e
e
e
ee

Q
Q
Q
Q
Q
Q
Q
QQ

�
�

�
�

�
�

�
�

��

�
�

�
�

�
��

Q
Q
Q
Q
Q
Q
Q
Q
QQ

aaaaaaaaaaaaaaaa

,
,
,
,
,
,
,
,,ZZ

Z
Z
Z
Z
Z
Z
ZZ

Database Events Temporal Events

Absolute

BOB EOB

Relative

Events

Composite EventsPrimitive Events

Explicit Events

UpdateDeleteAccess InsertTransaction

Figure 4.1. Event Classi�cation

31

4.2.1 Primitive Events

Primitive events are further classi�ed into database events, begin of block (BOB)

and end of block (EOB), temporal events and explicit events. BOB and EOB are

events that occur at the beginning and at the end of the execution of a block of

statements. Database events are related to database operations such as transaction,

access, insert, update and delete. Temporal events are related to time and are of two

types: absolute events are absolute point in time, for example, at 5p.m. and relative

events, that are de�ned with respect to an explicit reference point, for example, 5

seconds after event E where E is either a primitive event or a composite event. Explicit

events are the events which are signalled along with their parameters by the user or

other application programs and are managed by the system. Each event (primitive

or otherwise) has a well-de�ned set of parameter attributes that are instantiated for

each occurrence of that event.

4.2.1.1 Begin (BOB) and end (EOB) of block

BOB and EOB are the events that correspond to the beginning and end of a block

of statements. Block is a generalization of functions, procedures, and transactions.

It can be a common database operation such as access, insert, delete and modify or

a transaction or any arbitrary procedure. Parameters of these events are event-type,

time-stamp, block-id and the parameters of the block itself. Typically, parameters of

BOB include the input parameters and parameters of EOB include the output pa-

rameters of that block. Block-id is the parameter that identi�es the type of operation

such as insert, delete or the name of the procedure. In case of a transaction its value

identi�es the transaction uniquely.

32

Most of the operations including database operations such as insert, delete etc.

are not instantaneous as they take a �nite amount of time for their execution. There-

fore they can not be treated as a single event or the event would correspond to the

completion of the operation. Using BOB and EOB, we can de�ne two events, begin

of the operation, and end of the operation for each operation or for any arbitrary

sequence of operations (e.g. transaction) that has well-de�ned bounds. This corre-

sponds to pre and post of other systems such as OSAM*. The term \begin" connotes

a point before the �rst operation after entering the block and \end" corresponds to

the point after the last operation but before leaving the block or sequence of oper-

ations. This concept of begin and end holds in mapping an event to a point as an

event must map to a single point on the time line. Whenever an attempt is made

to execute an operation, corresponding begin event occurs. On successful execution

of the operation, corresponding end event occurs, however in case of an abort the

operation is terminated without the occurrence of an end event. We further stipulate

that whenever an operation is speci�ed as an event without begin or end pre�x, end

is assumed.

4.2.1.2 Database events

Access. Operation occurs when a data item is accessed. Parameters of begin

access event include the relation name and the predicate. The parameters of end

access event include the relation name and the accessed tuples.

Insert. Operation occurs when a data item is inserted into the database. The

parameters of begin insert and end insert are the relation name and the data items

being inserted.

33

Delete. Operation occurs when a data item is deleted from the database. Param-

eters of the begin delete are the relation name and the deletion predicate. Parameters

of end delete event include the relation name and the data items being deleted.

Update. Operation occurs when a data item is updated in the database. Con-

ceptually it is possible to simulate an update operation by an insert following a delete.

However, \update" is a primitive event because during update, the data item is not

deleted from the database but is overwritten. Thus the update operation implies that

the object-id (whether value based or not) remains unchanged. However, 1 it can be

replaced by an atomic sequence of deletion followed by an insertion. For example,

a block of statements, [Begin of Transaction, delete, insert, End of transaction] sim-

ulates an update. Arguments of the begin update and end update event include the

relation name and the updated data items.

4.2.1.3 Temporal events

A temporal event is an instance of the temporal event class. To de�ne a temporal

event, we need to de�ne the corresponding point on the time line. Because it's an

in�nite line, any point on it can only be de�ned with respect to a prede�ned reference

point. Calendars have been used for time speci�cation and have an implicit reference

point. It is possible to have calendars with di�erent reference points and granularity

(i.e. timing units such as years, months etc.). A time string comprises of timing units

and is used for specifying a de�nite point on the line. For example, (h:m:s)mm/dd/yy

is a time string. Again, any form of time string can be used that conforms to the

calendar rules and is prede�ned in the system. For example, (h:m:s)dd/mm/yy is the

time string used in Europe.

1In case of value-based object-ids which are accessible to the user and hence can be reused in
the newly formed tuple.

34

Another approach to time speci�cation is to provide a reference point as well as

the o�set in terms of timing units. The reference point should be chosen as any well

de�ned point on the time line. For example, it can be the moment when a certain

event takes place or it may be taken as the moment when the calendar starts. O�set

is the amount of time in terms of timing units and is also represented by a time

string. Thus a time string may either specify an absolute value of time as a point on

the line or it may represent an amount of time as o�set. To resolve this ambiguity we

adopt the notation in which we enclose the time string representing a point on the

line within angular brackets <> and the time string representing interval or o�set

within square brackets []. The method of providing reference point and o�set is more

general.

Depending upon the method of speci�cation, temporal events have been classi�ed

into absolute event and relative event.

Absolute event. Absolute temporal event is de�ned with respect to the implicit

reference point of the calendar system. It is the absolute value of time and is repre-

sented as: < timestring >. It is possible to choose any calendar and any format for

the time string. Thus in the western calendar an absolute event may be denoted as

the time string < (h : m : s)mm=dd=yy >. For example, start of the 21st century may

be speci�ed as < (00 : 00 : 00)01=01=2001 >. Here it should be noted that this time

string isn't the same as o�set. O�set would be [(00 : 00 : 00)00=00=2000], because in

a < timestring > \yy", \mm" and \dd" �elds denote the current year, month and

day in progression and \(h:m:s)" shows the amount of time that has elapsed on that

particular day. Absolute temporal events are useful in many situation. For example,

in a university database all students may be required to pay the fees by a certain date

and in case of the delay, a late fees may have to be charged in their account. Such

35

a database would contain a rule which will be triggered by the absolute event and

will scan all the student records checking for dues. As the action part, it will charge

a certain late fees in the account of those students who missed the deadline. In the

speci�cation of an absolute temporal event, a �eld in the time string may contain a

wild card, which is denoted by `-' and represents any valid value of that �eld. This is

especially useful in the speci�cation of a periodic event discussed latter. In addition,

a wild card can be used as a method for increasing the granularity. An empty �eld

is not allowed in the time string representing an absolute event in order to avoid

ambiguities. Parameters of an absolute temporal event are event-type and time of

occurrence.

The notion of current time is speci�ed by the variable `now'. Based on this we

de�ne de�nite events as events those are bound to occur between the interval t

such that now � t < t0 where t' is a point on the time line. A de�nite event indicates

that its occurrence is guaranteed within a �nite amount of time. For example, `end

of the 21st century is a de�nite event whereas `the end of the cold war is not a de�nite

event.

Absolute events that have the value less than `now' are assumed to have occurred

and are not detected and processed. Only meaningful absolute events whose values

are greater than `now' at the speci�cation or activation time (i.e. de�nite events) are

detected and processed.

Relative event. Relative event too corresponds to a unique point on the time

line but in this case reference point and o�set both are explicitly speci�ed as part of

the event. Reference point may be any event including an absolute temporal event.

O�set may be de�ned in any time scale known to the system which may be di�erent

than the calendar being used for absolute events. The syntax for relative event is

36

event+ [timestring]. In the representation of an o�set, an empty �eld in the time

string, results in a zero value of that �eld. As an example of relative event, consider

a patient database in a hospital which prompts the operator for the patient's blood

pressure one hour after the medications are given. Similarly, an airline reservation

system may have the rule which requires the passengers to purchase the ticket within

24 hours after the booking has been made or the booking may be canceled.

A relative event has been de�ned to be a primitive event as it's the most natural

representation of a point on the temporal line. Parameters of a relative event E = E1

+ time consists of event-type and the time of occurrence. Parameters of E1 which

acts as an explicit reference point does not constitute the parameters of E, and E is

treated strictly as a temporal event. 2

4.2.1.4 Explicit events

Explicit events are events whose parameters are explicitly speci�ed and supplied

by the users or application programs. For consistency, we insist that parameters of

explicit event must include event-type and the time of occurrence. Explicit events

are assumed to be detected outside of the system but are signalled to the system

along with their parameters. Thus these events are accepted and processed but are

not detected by the system. For example, tornado watch(location,expected time,

wind speed) is an explicit event which will be signalled by a satellite center to all the

systems.

Similarly, when executing the action part of a rule, it may be necessary to signal

an event that conveys the e�ect of action to other rules. For convenience we call

them rule events which are essentially explicit events because they are raised while

2There are situations in which parameters of E are relevant and need to be included in the
parameter relations of E. For such cases, the `sequence' operator (de�ned later) need to be used: E
= E1; (E1 + time).

37

executing the action part of a rule and their parameters are explicitly speci�ed by

the user. Rule events are especially useful in implementing contingency plans which

are discussed later.

4.2.2 Composite Events

Though primitive events discussed so far, alone are su�cient for several classes of

applications, it is not possible to specify complex events needed to model many other

applications. For example, requirement that event e1 be followed by event e2, can

not be speci�ed by using only the primitive events. We de�ne a composite event as

an event expression formed by using a set of primitive events, event operators, and

composite events constructed so far. Figure 4.2 shows the event operators provided

in SNOOP. Below, we describe each of these operators and give precise semantics

for computing the parameters of composite events. In this thesis, we have restricted

ourselves to a relational system and hence relational operators are used for computing

the parameters of composite events.

�
�
�
�
��

e
e
e
e
ee

������������������

�
�

�
�

�
�

�
�

�
��

�
�
�
�
�
�
�
��

e
e
e
e
e
e
e
ee

HHHHHHHHHHHHHHHHH
PeriodicSequenceOr

Event Operators

All 3

A A*

Aperiodic

Figure 4.2. Event Operators

3It is possible to simulate this operator by combining `Or' and `Sequence'.

38

4.2.2.1 Disjunction

Disjunction of two events, denoted by E1 _ E2 is signalled when E1 or E2 is

signalled. Arguments of the composite event thus formed, are the outerunion of E1's

arguments and E2's arguments. This operator is useful when the occurrence of one

or more (i.e.inclusive-Or) events out of a set of events may cause a rule to �re. For

example in a process control system, if pressure, temperature or humidity exceeds

the limit, the operator may have to be noti�ed. In this case `Or' constructor provides

a succinct solution to the problem.

In this thesis, we have assumed that no two events can occur simultaneously.

However this assumption no longer holds in a multiprocessor environment. More-

over, explicit events can also occur simultaneously. In case of concurrent occurrences,

it is necessary to gather the parameters of all the events and then signal the com-

posite event only once. How long the system should wait for the availability of the

parameters of these event is not clear and further research is required in this area.

4.2.2.2 Sequence

Sequence of two events E1 and E2 is a composite event, which is denoted by

E1;E2, and is signalled when E2 is signalled provided E1 has already been signalled.

This means that the time of occurrence of E1 is guaranteed to be less than the time

of occurrence of E2. Parameters of the composite events are the outerunion of the

parameters of E1 and E2. This constructor is necessary when a prede�ned order has

to be imposed over the occurrences of events. For example, in a network management

system, if corrective actions need to be taken on the occurrence of the composite event

\link break down; diagnosis completed".

It's is possible that after the occurrence of E1, E2 does not occur at all. This will

lead the system into a state of in�nite waiting, expecting E2 to occur. To avoid this

39

situation, it is desirable that every `;' expression be followed by a de�nite event such

as EOT (end of transaction) or any absolute temporal event.

4.2.2.3 Conjunction

A composite event E, denoted by All(E1,E2), is signalled when both the events

are signalled disregarding the order of occurrence. Parameters of E are de�ned as

the outerunion of the parameters of both the events. The order of occurrences of

component events can easily be derived from this parameter relation by sorting the

time of occurrences of these events. Conjunction of events is useful in the situations

where �ring of a rule depends upon the occurrence of a set of events. It is possible

to simulate an `All' condition with the combination of `;' and `Or'. For example;

(E1,E2) can be written as ((E1;E2) _ (E2;E1)). However this will result in long

event expressions or it will be necessary to write many rules and save the arguments

of each event in the database so that they can be used after the occurrences of all

the events. As an example, consider the cooling system of an atomic reactor that

has three pumps for redundancy that circulates the coolant. When all three pumps

fail, the reactor need to be shut down immediately. In some situation, it may desired

to use this event in disjunction with a de�nite event to avoid in�nite waiting. For

example; (E1,E2)_EOT.

4.2.2.4 Aperiodic event

A. An aperiodic event E is represented by A(E1,E2,E1') where E1, E2 and E1'

are event expressions. E is signalled each time E2 occurs during the interval de�ned

by the occurrences of E1 and E1' and its parameters are passed as the parameters of

E. This operator is useful when the occurrence of an event has to be monitored within

a prede�ned time interval. For example, an application that requires any change in

40

the temperature of an object to be signalled from the beginning of an experiment to

the end of that experiment can easily be modeled by this operator.

A*. There are situations when a given event is signalled more than once during

a given interval (e.g. transaction) and rather than �ring the rule every time the event

was signalled, we want the rule to be �red only once. To meet this requirement, we

provide an operator A�(E1,E2,E1') that accumulates the e�ect of E2 and signals

E only once at a point that corresponds to the occurrence of E1'. Between the

occurrences of E1 and E1', it is necessary that the parameters of the event E2 should

be accumulated so that they can be passed to the condition evaluator. Therefore the

parameters of the composite event E = A�(E1,E2,E1') are the union of the parameters

of all the occurrences of E2. If E2 does not occur between E1 and E1', parameters of

E that correspond to E2 are assigned NULL. This constructor is especially useful in

integrity checking, because we want to check the constraints only at the end of the

transaction.

4.2.2.5 Periodic event

We de�ne periodic event as an event p that repeats itself within a constant and

�nite amount of time. Though, p may be instances of any event class 4, only temporal

event class makes sense from the event detection perspective. From this de�nition, it

is obvious that a periodic event may be represented by a triplet, comprised of an event

E, the time period t after which an instance p of temporal event class takes place and

a terminating event E' that marks the end of the periodic event. Events E and E'

may be any well de�ned events including absolute temporal event and interval t can

be speci�ed as a time string. Periodic event has many applications. For example, In

4This is already accomplished in aperiodic event.

41

a bank database, it may be required to print the summary of all the transactions of

each customer at the end of the month.

Periodic event p is speci�ed as P(E1,t,E1') where E1 and E1' are event expressions

and t is the time period in some time scale . It is important to note that t is a

constant and can not be replaced by a wild card because this will result in continuous

occurrences of p. Terminating event E' marks the end of the time interval, that

begins at the occurrence of E1, and over which occurrences of instances p have to

be monitored. For example, beginning of each month of 1992 is a periodic event

and can be speci�ed as- P((00:00:00)01/01/1992, (00:00:00)01//, (-:-:-)12/-/1992).

In this particular case, use of wild card may result in a succinct representation of the

same event - ((00:00:00)-/01/1992). However, not all periodic events can be speci�ed

using wild card and in that case the user will have to resort to the former method

of speci�cation. For example,in an inventory database it is required to place a new

order for some material after each 17 days, in the year 1993, until the project is

over. Also assume that at the end of the year if the project is not over new tenders

would have to be invited. This event is a periodic event with two terminating events

and can be speci�ed as: P ((00 : 00 : 00)01=01=1993; (00 : 00 : 00)00=17=00; (23 :

59 : 59)12=31=1993 _ End of Project) where End of Project is an explicit event.

Parameters of a periodic event is same as the arguments of any other temporal event.

In both the events, aperiodic and periodic, a time interval is marked by the

occurrences of two di�erent events E1 and E1' which can either be a primitive event

or a composite event. To form a meaningful expression, time of occurrence of E1

must always be less than the time of occurrence of E1'. We also provide two special

symbol �1 and +1 which can be used to mark begin and end of an interval that

begins at time �1 and ends at time +1 on the time line respectively.

42

4.3 Timing Constraints and Contingency Plans

There are applications that require to take certain actions if the expected event

does not take place within a speci�ed time. For example, in a public telephone booth,

after the connection is established, an event \deposit coin" is monitored and if the

required amount is not deposited within a prespeci�ed time, the action \terminate

connection" may have to be executed. Similarly, in a distributed database system,

after the data has been transferred to the remote cite, sender must wait for the

acknowledgement and should retransmit the same data in case the receiver does not

acknowledge the receipt of the data within a certain time. If `S' is the event that

corresponds to the transmission of data and `Ack' is the event that represents the

receipt of the acknowledgement from the remote site then the event and condition

parts for the rule that retransmit the data if the acknowledgement does not arrives

within 10 seconds after the transmission can be expressed by using A* operator as

follows.

Event: A*(S, Ack, S+[(10::)//])

Cond : Count(`Ack' in P rule-id) = 0

The event of this rule occurs 10 seconds after the occurrence of event `Ack'. We

assume that parameters of the event of a rule are recorded in a relation P rule-

id. \Count" is a function that returns the number of tuples corresponding to the

occurrences of event `Ack' in the parameter relation of A* event. Above rule executes

its action if the acknowledgement is not received within the speci�ed interval.

Many other time-constrained applications require to monitor speci�ed situations

and execute corresponding actions, subjected to some timing constraints. Contin-

gency plans are alternate actions which should be executed if the speci�ed action

can not be realized within the speci�ed time limit. Contingency plans can easily be

43

implemented using the `A*' operator. The rule compiler converts a rule that has

contingency plans into two rules. The �rst rule contains the same event, condition

and action as that of the main rule and signals a \Rule Event" explicitly at the be-

ginning and at the end of the \action". In this case, rule events are essentially BOB

and EOB where block is the \action" part of the rule. These two rule events form

the event part of the second rule. For example, a system monitoring the boiler status

may have the following rule 5-

rule7 : ON pressure change

IF pressure > dangerous

open valve

WITHIN 00:00:25

ELSE

sound alarm

Rule compiler will converts this rule into following two rules :

rule7a : ON pressure change

IF pressure > dangerous

signal(Rule Event1)

open valve

signal(Rule Event2)

rule7b : On pressure change; A*(Rule Event1, Rule Event2,

Rule Event1 + [(25::)//])

IF Count (Rule Event2 in P rule7b) = 0

Terminate(action7a)

Sound Alarm

5In this example, we have assumed `Immediate Coupling Mode', further research is necessary
to explore the implications of other coupling modes on this method of implementing contingency
plans.

44

Rule7 is triggered by an event `pressure change'. It evaluates the condition to

check whether the pressure exceeds a prede�ned limit. If the condition is evaluated

to be true, it tries to open the valve within 25 seconds and if it can not be done an

alarm is sounded. As can be seen, combined e�ect of rule 7a and 7b is equivalent to the

e�ect of rule7. The function `count' used in the condition part of rule7b, is a special

function that gives the number of tuples in the parameter relation corresponding to

the occurrence of the speci�ed event.

4.4 Grammar for SNOOP

To provide an unambiguous evaluation method for event expressions, we have

given a default precedence for event operators, which can be changed by the user if

desired by changing the priorities associated with them. Priorities of the operators are

used by the detection algorithm for building the event tree discussed later. Following

is the grammar for the event speci�cation language.

E1 ::= E1 _ E2 j E2

E2 ::= E2 ; E3 j E3

E3 ::= All(E4) j E5

E4 ::= E4, E5 j E5

E5 ::= j A(E1,E1,E1)

A�(E1; E1; E1)

j P(E1,[time string],E1)

j< timestring >

j (E1) + [timestring]

j External Event

j BOB

j EOB

45

j L:(E1) /* Where L is a label */

j (E1)

Event expressions generated by above BNF are left associative. An event expres-

sion can either be a primitive event or a composite event. Label association with an

event expression identi�es that primitive or composite event. Rule-id is considered

as the label for the top-level event expression. Labels are useful in the parameter

computation of composite events. They are the identi�cations for the subexpressions

in a complex event expression. They act as the event type for that composite event

and for each such event a `time of occurrence' attribute is inserted in the param-

eter relation. Without label association it would be impossible to distinguish the

occurrence of that composite event and to access the time of its occurrence in the

parameter relation.

The above BNF can be used to generate complex event expressions. The compu-

tation of the parameters of corresponding composite events depends upon the context

in which the events are detected. In the next chapter, we discuss various contexts for

detecting composite events and give the design of a composite event detector.

CHAPTER 5

EVENT DETECTION

This chapter discusses issues related to event detection. In section 5.1 we de�ne

detection of events and discuss the need for di�erent contexts for detecting prim-

itive and composite events. In section 5.2, we give examples to demonstrate the

expressiveness of SNOOP in di�erent application domains. Finally, in section 5.3,

we propose the architecture of a composite event detector and give algorithms for

detecting composite events.

5.1 Detection

Detection of an event is de�ned as the process of collecting and recording the

parameters of the event including the time of occurrence. This process may take �nite

amount of time and as a consequence, an event may not be detected immediately

at the point of occurrence but rather a point after the occurrence. Assuming the

discretization of time line, if To is the point of occurrence and Td is the point of

detection of an event, then Te = Td � To is called the latency of event detection.

Value of this delay, in a sense, quanti�es the timeliness of the detection of an event.

In order to avoid the risk of missing the response window, it is desirable to keep

the value of Te as small as possible. In time-constrained applications (that have

contingency plans discussed in chapter4), Te plays a critical role.

Event detector is a component of the system that records the occurrences of events

by collecting their parameters and makes this information available to condition

evaluator.

46

47

Process of event detection has two aspects: primitive event detection and com-

posite event detection. Following subsections discuss each of them individually.

5.1.1 Primitive Event Detection

In order to detect each primitive event (except, explicit events that are detected

by users or application programs) a separate detection mechanism need to be em-

bedded within the system. For example, to detect temporal events a separate event

detector need to be composed that uses the system clock to detect the speci�ed tem-

poral events. Similarly, to detect database events, detection mechanism need to be

embedded within the part of the system which is responsible for reading and writing

the data on the disk.

Database events that are related to database operations are commonly used in

various applications. Typically, a single database operation a�ects many tuples. For

example, a single insert operation may insert �ve tuples. Moreover, these opera-

tions are always executed in a transaction that usually comprise of many database

operations. Thus there are three possibilities for signalling database events: tuple-

oriented, operation-oriented and set-oriented.

� In the `tuple-oriented'approach, the event related to a database operation is

signalled at the tuple level. For example, if an insert operation inserts �ve tuples

then the event insert will be signalled �ve times corresponding to each tuple and

parameters will be passed separately. For example, consider an interactive data

entry application which allows the operator to enter student's records. This

application may have a rule that informs the operator regarding any obvious

error in the inserted tuple immediately at the end of its insertion. This rule

need to be triggered at the tuple level. In addition, this approach may be useful

for enhancing concurrency.

48

� In the `operation-oriented' approach, signalling of an event is based upon

the corresponding operation. Thus, the event `insert' in the above example will

be signalled only once with accumulated parameters (i.e. with all the inserted

tuples). We take this approach to model database events.

� The `set-oriented' approach [WID90] has the notion of a block of statements

in which a block may contain many operations and at the end of the execution of

a block, events corresponding to each operations are signalled with accumulated

parameters. In this approach operations that cancel out each other (e.g. insert

followed by a delete) are not counted at all and same operations (e.g. more than

one inserts to same relation) are merged into one operation. Also deletion of a

tuple followed by the insertion of a new tuple is not considered as an update to

the original tuple. This approach is especially useful in integrity checking as we

want to check integrity constraints at the end of the transaction. We support

this approach by providing the A* operator.

5.1.2 Composite Event Detection

Composite events are expressed in SNOOP by event expressions that are gener-

ated by using the BNF given in chapter 4. A composite event may be comprised of

several primitive events. Because the occurrences of these events may not be simul-

taneous, the event detector need to record the occurrences of each event by saving

its parameters so that they can be used to evaluate the event expression represent-

ing the composite event. We adopt a notation E(E1,E2,...En) to represent an event

expression E, where Ei=1::n are its component primitive events. Many occurrences of

components primitive events propound di�erent possibilities for detecting composite

events that involve operators `All' and `Sequence'. To illustrate this, consider follow-

ing two events:

49

A = All(E1, E2); E3

B = E1 _ E2 _ E3 and

Figure 5.1 shows the occurrences of di�erent instances of event E1, E2 and E3.

Event A is signalled at the point where atleast one instance of all the three events

A
A
A
A
A
A
A
A
AA

�
�
�
��

T
T
T
TT

�
�
�
��

?

;

All

e21

e36

e15

e13

e12

t6

E3E2

t2

E1

t1

t4

t5

t3

Time

tbegin

e24

Figure 5.1.

has occurred with E3 as the last occurrence. Event B is signalled each time when

an instance of any of the three events E1, E2 or E3 occurs. Parameters of event

A include parameters of all the three events E1, E2 and E3 and depend upon their

50

instances being taken into account. However, this problem does not exist in the com-

putation of parameters of event B because it involves only one occurrence. In the

following paragraphs, we explore di�erent possibilities for combining the instances

of component events and based on that de�ne various contexts for composite event

detection.

The event detector begins monitoring a composite event E, represented by the

event expression E(E1,E2,...En), at a point tbegin on the time line, which corresponds

to the time when the event E is last activated. Event detector maintains parameter

relations for all component events in the composite event. At time tbegin, which is

speci�c to each composite event, parameter relation of all component events E1, E2,

... En are cleared. Whenever an event Ei occurs, its parameters are recorded in its

parameter relation. In case of multiple occurrences of the same event, its param-

eters are accumulated in the same parameter relation. When the last component

event needed to evaluate the event expression occurs, the expression is evaluated by

using the event algebra and if true, the composite event is signalled along with its

parameters. Also when an event is deactivated, all unused occurrences of its compo-

nent events are discarded. We de�ne three contexts for combining the instances of

component events in a composite event.

� In recent context, most recent occurrence of each Ei is taken into account for

computing the parameters of E. When E is evaluated to be true, the composite

event is signalled and all the entries in the parameter relations of component

events are deleted. For example, in recent context, parameters of event A will

be computed by using event instances e13, e24 and e36.

� In chronicle context, instances of component events are taken into account in

a chronological order for computing the parameters of the composite event E.

51

When E is signalled, its parameters are computed by using the oldest instance

of each component event and then parameters of these instances are deleted

from the corresponding relations. For example, parameters of event A in this

context will be computed by using event instances e12, e21 and e36.

� In cumulative context, parameters of E include the parameters of multiple

occurrences of each Ei. Whenever E is signalled, all the entries in the parameter

relations associated with each Ei are deleted. For example, parameters of event

A will include all the instances of each event.

A context can be speci�ed only to the top-level event expression. Allowing di�erent

context speci�cation to the sub-expressions of an event expression will entail further

complexities and future work is required in this area.

These contexts a�ect the semantics of operators that involve multiple instances

of component events such as `All' and `Sequence'. A context does not have any

signi�cance to other operators.

5.2 Examples

In this section, we give examples of various events and discuss parameter compu-

tation. Context is assumed to be `recent' unless speci�ed otherwise. We assume that

the name of the parameter relation of the event of a rule is the rule-id of that rule

and T id denotes the transaction id attribute in the parameter relation.

Example 1.

� Suppose a rule is triggered when a tuple is inserted in the relation R. This event

(operation-oriented approach) can be speci�ed as:

ON Begin Insert to R

This will have the parameter relation schema as:

52

(BOB, Time, T id, Insert, STUDENT, inserted tuple)

Where `Insert' is the block-id.

� Above rule will be �red each time an insert operation takes place. If it is

required to �re the rule only once at the end of the transaction (but before

commit i.e. set-oriented approach) with accumulated parameters then the event

can be expressed as: A*(BOT, I, EOT)

Where BOT = Begin of the transaction

I = Insert to relation R and

EOT = End of the transaction

The event will be signalled only once at the end of the transaction but before

commit. Parameters of this composite event will be the union of the parameters

of all the occurrences of `Insert' event. In addition, it will also have its own

event type and the time of occurrence attributes.

Example 2. Consider a hospital database that has a rule which prompts the

operator to enter the patient's bloodpressure 30 minutes after the medications are

given. Event for this rule can be speci�ed as:

ON (Given Medicin to patient id) + [(:30:)//]

Parameters of this event will be (Temporal, Time), where `Temporal' is the even-

t type.

Example 3. In this example, we consider an application that requires to take

certain action according to the variations in the IBM stock price.

� If the application requires to sample the IBM stock every 30 minutes and plot

the price trend every day. In addition, whenever the price crosses a prede�ned

number , it needs to inform the manager. Event for this rule can be written as:

53

P(< (08::)-/-/->, [(:30:)//)],< (17::)-/-/->)

The event will be signalled after each 30 minutes. In the action part, new price

will be plotted against the time and if the point goes beyond a certain line the

manager will be informed perhaps for selling or buying the stocks. Parameters

of this event will be (Temporal, Time), where `Temporal' is the event type.

� Suppose the same application is also required to plot the price trend of Xerox

stocks. Further assume that any change in this stock price is explicitly signalled

by an agent (explicit event) and need to be plotted at that time. Also as in

the above example, whenever the price crosses a prede�ned number it needs to

inform the manager. Such event can be expressed as:

A(< (08::)-/-/->, price change, < (17::)-/-/- >)

Parameters of this event are the parameters of the event `price change'.

� Suppose it is required to plot the price trend of the Xerox stock and analyze it

at the end of every day. In this situation, the rule need not to be triggered each

time the price changes, rather we want the event to be signalled only once at

the end of the day with accumulated parameters. This can expressed as follows:

A*(<(08::)-/-/- >, price change, < (17::)-/-/- >)

This event will be signalled only once with accumulated parameters. Parame-

ters of this event will be the union of the parameters of all the occurrences of

the middle event.

Example 4. Consider a process control system which has a rule that alarms the

operator whenever temperature, pressure or humidity crosses a threshold. Event part

of this rule can speci�ed as:

54

(Pressure change)_ (Temperature change) _ (humidity change)

This composite event will be signalled whenever any of these event occurs. Pa-

rameters of this event will be the outerunion of the parameters of all three events.

Example 5. Consider the problem of distributed database managers (dm1, d-

m2,.... dmn). Whenever a database manager makes an update to the database, it

informs other managers about the update and then goes into an inactive state until

all the managers acknowledge the receipt of this information. If sij is the event that

represents the transmission of information from ith manager to jth manager and aij

is the event that represents the receipt of the acknowledgement by ith manager from

jth manager then the event part of a rule that brings an inactive manager dm1 into

an active state can be expressed as follows:

All((s12; a12); (s13; a13); :::(s1n; a1n))

This composite event will take place when manager dm1 receives the last ac-

knowledgement. Parameters of this event will be the outerunion of all the component

primitive events.

Example 6. Suppose in a reactor, the coolant is circulated by three pumps A,

B, and C. The system need to be shut down if 2 out of the three pumps fail. Event

for such rule can be written as:

All(failA; failB) _All(failA; failC) _All(failB; failC)

Example 7. To show the need of `cumulative context', consider a software devel-

opment environment. Suppose the software contains three modules and each module

is worked on by a separate development team. A set of bugs to be �xed in the next

release is assigned to each development team. After �xing its set of bugs, correspond-

ing team signals the event (fixed modulen, Time, bug number, description). Even

55

after �xing these bugs, teams continue to signal removal of any other possible bugs

until all three teams accomplish the debugging of their corresponding set. At that

time, they are informed to stop signalling further bug �xes and the release is made.

This event can be expressed as:

All((fixed module1, ...), (fixed module2, ...),

(fixed module3, ...))

Figure 5.2 shows a possible parameter relation of this event. It should be noted

that this event can not be expressed by using A* operator.

-Rule id

TimeEvent Type Event Type Time Bug Number Description

fixed module2 1

2

3

- -

-

-

fixed module1 - 1

2

-

-

fixed module2 - 4 -

fixed module3
- 1 -

2

3

4

-

-

-

Figure 5.2. Parameter Relation

56

5.3 A Composite Event Detector

Architecture of the event detector is shown in the �gure 5.4. Event detector

accepts rule de�nitions as input and creates appropriate structures which is used in

the actual detection process. When a primitive event occurs, event detector records its

occurrence and evaluates event expressions those contain this event as a component.

When an expression is evaluated to be true, corresponding event is signalled and its

parameters are passed to the condition evaluator.

�

�

�

�

�

�
Events

Signal

Forest

Event

EOBBOB,

Event

Expressions

External

Event

Compiler

Events

Clock

Figure 5.3. Composite Event Detector

57

5.3.1 Event Compiler

Event Compiler takes rule de�nitions as input and converts the event expressions

contained in them into an appropriate tree structure which is used in the actual

detection process. If the rule contains an `else' part, it constructs corresponding

rule events and creates the other rule. It also accepts de�nitions of explicit events to

form the corresponding parameter relation. Algorithm for building the graph is as

follows:

Algorithm Compile Event

begin

Read rule de�nition;

if the rule has a contingency plan

De�ne trees (i.e. nodes) corresponding to rule event1 and rule event2 in the forest;

Modify `action' part of the original rule;

Create Rule b;

endif;

For all event expressions

begin

build tree;

Mark the top node with rule-id;

merge it in the event forest;

end;

end.

58

5.3.2 Event Graph

Event graph comprises of non-terminal nodes (N-nodes), terminal nodes (T-nodes)

and links. Each node represent either a primitive event or a composite event. N-

nodes represent composite events and may have several incoming and several outgoing

links. T-nodes represent primitive events and have one incoming and several outgoing

links. Links are the means through which stimulation is sent to the nodes. When

a primitive event occurs, it stimulates the terminal node that represents this event.

This in turn ripples stimulation to all the nodes attached to it via outgoing links.

When a node is stimulated, it executes the corresponding procedure which evaluates

the corresponding operator and if true, sends stimulation to all other nodes connected

to it by pushing the parameters of the events. If the node is marked with the rule-id,

it also signals the corresponding event to the condition evaluator. Following is the

algorithm for detecting composite events.

Algorithm Detection

begin

On the occurrence of a primitive event

begin

store its parameter in the corresponding terminal node `t'

in the forest;

call proc stimulate(t);

end;

end.

Procedure proc stimulate(n)

begin

For all rule-ids attached to the node `n'

59

signal event;

For all outgoing links i

begin

push parameters in the nodei connected by link i

call proc N node(nodei);

end;

Delete pushed entries in the parameter relation of nodei;

end.

Procedure proc N node

begin

case nodei of

`Or' : store the parameters in the relation;

proc stimulate(This node);

`All': store the parameters in the relation;

If all the component events have occurred

proc stimulate(This node);

`A' : If left event

mark it as occurred;

else if middle event and left event is marked as occurred

if (context = Chronicle)

call proc stimulate(This node);

else if (context = recent)

save current parameters as the most recent occurrence;

else if (context = cumulative)

accumulate parameters

60

endif

else if right event

if (context = Recent or Cumulative)

call proc stimulate(This node);

mark left and right events as not occurred.

endif

`A*' : If left event

mark it as occurred;

else if middle event and left event is marked as occurred

accumulate parameters;

else if right event

call proc stimulate(This node)

mark left and right events as not occurred.

endif

`P' : If left event

mark it as occurred;

else if middle event and left event is marked as occurred

call proc stimulate(This node);

else if right event

mark left and right events as not occurred.

endif

end case;

end.

As an example, consider the following composite event:

E = All(E1, E2); E3

61

Detection of this event in recent context is shown in the following �gures. Event eij

indicates the occurrence of event type Ei at time tj.

In the next chapter, we conclude this thesis by comparing our approach with the

systems studied in chapter 2 and discuss areas for future work.

62

l
l
l
l
ll

,
,

,
,

,,

HHHHHHHHHH

���������

E3

e21t1

E2

E3

E1

All

;

E1 E2TimeEvent type

Time E1 E2

Figure 5.4. Occurrence of event e31

63

l
l
l
l
ll

,
,

,
,

,,

HHHHHHHHHH

���������

e12

E3

e21

E2

E3

E1

All

;

Time E1 E2Event type

Time E1 E2

Figure 5.5. Occurrence of event e12

64

l
l
l
l
ll

,
,

,
,

,,

HHHHHHHHHH

���������

e12

e21

t3 e13

E3

E2

E3

E1

All

;

Time E1 E2Event type

Time E1 E2

Figure 5.6. Occurrence of event e13

65

l
l
l
l
ll

,
,

,
,

,,

HHHHHHHHHH

���������

e24

e13

E3

E2

E3

E1

All

;

Time E1 E2Event type

Time E1 E2

Figure 5.7. Occurrence of event e34

66

l
l
l
l
ll

,
,

,
,

,,

HHHHHHHHHH

���������

e15t5

e24

e13

E3

E2

E3

E1

All

;

Time E1 E2Event type

Time E1 E2

Figure 5.8. Occurrence of event e15

67

-

l
l
l
l
ll

,
,

,
,

,,

HHHHHHHHHH

���������

rule-id t6
Signal Event

e36

e15t5

e24

e13

E3

E2

E3

E1

All

;

Time E1 E2Event type

Time E1 E2

Figure 5.9. Occurrence of event e26

CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

6.1 Conclusion

In this thesis we have presented an event speci�cation language that is rich enough

to express variety of events needed to model non-traditional applications. We have

de�ned several events including database, temporal, explicit, periodic and aperiodic

events and have proposed a technique for implementing contingency plans required

in a time-constrained environment. We have identi�ed various contexts for detecting

composite events and have presented the design of a composite event detector. The

contribution of the thesis are:

� Classi�cation of events into an event hierarchy.

� Generalization of BOT and EOT of HiPAC into BOB and EOB that can be

applied to any grouping of statements.

� Temporal events and their semantics.

� Several event operators for constructing composite events and their semantics.

� Parameter computation within the relational model as a relation.

� A mechanism for dealing with contingency plans without stepping out of the

framework proposed in this thesis.

� Identi�cation of various contexts for computing parameters of composite events.

� Algorithms for detecting composite events.

68

69

Our language subsumes the events supported in the extant active database sys-

tems including Ariel, ETM, HiPAC, Interbase, OSAM*, Postgres, Starburst and

Sybase. Table 6.1 compares SNOOP with the events supported in the systems stud-

ied in chapter 2.

6.2 Future Research

De�ning an event speci�cation language and devising methods for detecting com-

plex events is an abstruse task. This research represents an initial attempt in this

direction. Following paragraphs mention areas those remain unaddressed in our work

but are critical to the task at hand.

� E�cient detection of primitive events is crucial to the performance of ECA rule

mechanism. Design and speci�cation of primitive event detectors that need to

be embedded within the database system is an important task. We feel that

considerable amount of work is required to incorporate these event detectors

within di�erent database models including relational and object-oriented.

� Our approach to event speci�cation and parameter computation is restricted to

a relational model. We have de�ned parameters of each event as relation and

have used relational concepts for computing the parameters of composite events.

Further work is necessary to tailor the theory for object-oriented environment.

Especially, parameters of database events need to be rede�ned.

� While discussing inclusive-or operator we have ignored the possibility of simul-

taneous occurrence of events. However, explicit events may take place with

other primitive events at the same time. Moreover, simultaneous occurrences

are natural in a multiprocessor environment. In this situation two courses of

action exist: either to �re the rule as soon as the parameters of a primitive

70

event becomes available to the composite event detector or to wait until the

parameters of all the events, those occurred simultaneously, become available

and then �re the rule with the combined parameters of all events.

� We feel that speci�cation of temporal events need to be made more expres-

sive. Some applications such as an automatic door locking system in an o�ce

which is required to open the doors everyday at 8a.m. and then close them

at 5p.m. except week-ends are not well served by SNOOP. Similarly, operator

`All' should be made more expressive. For example, consider a cooling system

that comprises of six pumps and if four out of six pumps fail the event has

to be signalled as a catastrophic condition to shut o� the entire system. This

composite event can not be succinctly speci�ed in our language.

� Currently, we do not allow context association to subexpressions of an event

expression. However, this may be useful for modeling complex applications.

Allowing context association to subexpression will require modi�cations in the

detection algorithm.

� While discussing contingency plans, we have assumed the `immediate' coupling

mode. Implications of other modes, such as deferred and detached, are yet to

be investigated.

� A rich SQL-like rule language that can hide the coarse rule structure, and

can provide a user-friendly interface will certainly be bene�cial. This higher

level language must address parameter passing to the condition and action

and should provide higher level constructs to ease the task of end users. For

example, in the speci�cation of periodic event, it would be useful to provide a

modi�ed operator P � that would be signalled at the end of the speci�ed interval

71

and would contain an optional action as its fourth parameter. This would be

useful in many situation. For instance, consider a �nancial database where it is

required to sample the IBM stock price each hour during an interval 8a.m. to

5p.m. and then plot the graph at 5p.m. Such applications would be elegantly

served by this operator.

72

REFERENCES

[Bac88] Maurice J. Bach. The Design of the Unix Operating System. Prentice-
Hall International, Inc., Englewood Cli�s, N.J., 1988.

[C+89] Sharma Chakravarthy et al. HiPAC: A Research Project in Active, Time
Constrained Database Management. Technical Report XAIT-89-02, Xe-
rox Advanced Information Technology, Cambridge, MA, July 1989.

[CG86] Phillip Caverly and Philip Goldstein. Introduction to Ada: A Top-Down
Approach for Programmers. Brooks/Cole Publishing Company, Mon-
terey, California, 1986.

[Cha89] Sharma Chakravarthy. Rule management and Evaluation: An Active
DBMS Perspective. In Special issue of ACM Sigmod Record on rule
processing in databases, September 1989.

[Cha90] Sharma Chakravarthy. Overview of HiPAC: A Research Project on Ac-
tive, Time-Constrained Database Management. Technical Report UF-
CIS TR-90-18, University of Florida, Gainesville, Florida, May 1990.

[CNGM90] Sharma Chakravarthy, S. B. Navathe, S. Garg, and A. Mishra, D. and-
Sharma. An Evaluation of Active DBMS Developments. Technical Re-
port UF-CIS TR-90-23, University of Florida, Gainesville, Florida, 1990.

[CRM80] Eugene Charniak, Christopher K. Riesbeck, and Drew V. McDermot-
t. Arti�cial Intelligence Programming. Lawrence Erlbaum Associates,
Publishers, Hillsdale, New Jersey, 1980.

[DKM86] Klaus R. Dittrich, Angelika M. Kotz, and Jutta A. Mulle. An Even-
t/Trigger Mechanism to Enforce Complex Consistency Constraints in
Design Databases. In ACM SIGMOD, September 1986.

[EC75] K. P. Eswaran and D. D. Chamberlain. Functional Speci�cations of a
Subsystem for Data Base Integrity. In Proceedings of 1st International
Conference on Very Large Data Bases, Sept. 1975.

[Esw76] K. P. Eswaran. Speci�cations, Implementations, and Interactions of a
Trigger Subsystem in an Integrated Database System. Technical Report
RJ1820, IBM, San Jose CA, 1976.

[Geh84] Narain Gehani. Ada, An Adavanced Introduction including Reference
Manual For The Ada Programming Language. Prentice-Hall, Inc. Engle-
wood Cli�s, New Jersey, 1984.

73

74

[Han89] Eric N. Hanson. An Initial Report on The Design of Ariel: A DBMS
With an Integrated Production Rule System. In Special issue of ACM
Sigmod Record on rule processing in databases, September 1989.

[Hug79] Joan K. Hughes. PL/I Structured Programming. John Wiley & Sons,
1979.

[Int90a] Interbase Software Corporation, 209 Burlington Road, Bedford, MA
01730. Data De�nition Guide, February 1990.

[Int90b] Interbase Software Corporation, 209 Burlington Road, Bedford, MA
01730. DDL Reference, February 1990.

[KDM88] A. Kotz, K. Dittrich, and J. Mulle. Supporting Semantic Rules by a Gen-
eralized Event/Trigger Mechanism. In Proceedings International Confer-
ence on Extending Database Technology, Venice, March 1988.

[LSA89] H. Lam, S.Y.W. Su, and A. M. Alashqur. Integrating the Concepts and
Techniques of Semantic Modeling and the Object-Oriented Paradigms.
In Proceedings of the 13th International Computer Software and Appli-
cations Conference, Orlando, Florida, September 1989.

[Oll78] WilliamT. Olle. The Codasyl Approach to Data Base Management. John
Wiley & Sons, 1978.

[PS85] James L. Peterson and Abraham Silberschatz. Operating System Con-
cepts. Addison-Wesley Publishing Company, second edition, 1985.

[S+90] M. Stonebraker et al. On Rules, Procedures, Caching and Views in
Database Systems. In ACM SIGMOD, May 1990.

[Sin90] Madhulika Singh. Transaction Oriented Rule Processing in An Object-
Oriented Knowledge Base Management System. Master's thesis, Univer-
sity of Florida, 1990.

[SKL88] S. Y. W. Su, V. Krishnamurthy, and H. Lam. An object-oriented seman-
tic association model. In Arti�cial Intelligence: Manufacturing Theory
and Practice. The Institute of Industrial Engineers, 1988.

[SR87] M. Stonebraker and Lawrence Rowe. The Postgres Papers. Technical Re-
port UCB/ERL M86/85, Dept. of Electrical Engineering and Computer
Science, Univ. of California, University of California, Berkeley, CA94720,
June 1987.

[Syb87] Sybase, Inc., Sybase, Inc. Berkeley, CA 94710. Transact-SQL User's
Guide, 1987.

[Tur86] Raymond W. Turner. Operating Systems, Design and Implementations.
Macmillan Publishing Company, 1986.

[WB79] Patrick HenryWinston and Richard Henry Brown. Arti�cial Intelligence:
An MIT Perspective. The MIT Press, Cambridge, Massachusetts, 1979.

[WF90] Jennifer Widom and Sheldon J. Finkelstein. Set-Oriented Production
Rules in Relational Database Systems. In ACM Sigmod, May 1990.

BIOGRAPHICAL SKETCH

Deepak Mishra was born on April 2, 1966, in Raipur, (M.P.), India. He received a

Bachelor of Engineering degree (with distinction) in Computer Engineering from G.S.

Institute of Technology and Science, Indore, India in June 1988. After his graduation,

he worked as a lecturer in the Department of Computer Engineering of the institute.

He joined the Department of Computer and Information Sciences at the University

of Florida in August 1989 to pursue a masters' degree and since then has worked

as a research assistant in the database systems research and development center of

the department. His research interests include arti�cial intelligence, object-oriented

engineering design databases, and active database systems.

75

76

I certify that I have read this study and that in my opinion it conforms to accept-
able standards of scholarly presentation and is fully adequate, in scope and quality,
as a thesis for the degree of Master of Science.

Sharma Chakravarthy, Chairman
Associate Professor of Computer and

Information Sciences

I certify that I have read this study and that in my opinion it conforms to accept-
able standards of scholarly presentation and is fully adequate, in scope and quality,
as a thesis for the degree of Master of Science.

Shamkant B. Navathe, Cochairman
Professor of Computer and

Information Sciences

I certify that I have read this study and that in my opinion it conforms to accept-
able standards of scholarly presentation and is fully adequate, in scope and quality,
as a thesis for the degree of Master of Science.

Herman Lam
Associate Professor of Electrical Engineering

This thesis was submitted to the Graduate Faculty of the College of
Engineering and to the Graduate School and was accepted as partial ful�llment of
the requirements for the degree of Master of Science.

December 1991
Winfred M. Phillips
Dean, College of Engineering

Madelyn M. Lockhart
Dean, Graduate School

