
M-INFOSIFT: A GRAPH-BASED APPROACH FOR MULTICLASS

DOCUMENT CLASSIFICATION

by

ARAVIND VENKATACHALAM

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2007

To my parents and friends who have always encouraged me to strive for the best.

ACKNOWLEDGEMENTS

I express my sincere gratitude and thankfulness to Dr. Sharma Chakravarthy for

his constant motivation, support and guidance through out this research work. Without

his persistent help and advice, this work would not have been complete. I would also

like to thank Dr. Mohan Kumar and Dr. Nan Zhang for taking their time and serving

on my committee.

I am extremely grateful to Dr. Raman Adaikkalavan and Hari hara Subrama-

nium Chelladurai for continually and convincingly conveying the spirit of adventure in

regard to research and introducing ITLAB. I would also like to thank Aditya Telang and

Roochi Mishra for their support and help. I must also appreciate all my current and ex

ITLABians for their encouragement.

I am grateful to my parents Mr.Venkatachalam and Mrs. Dhanalakshmi Venkat-

achalam and sister Aruna Venkatachalam for offering their constant love and support.

Without their endurance and encouragement, this work would not be even possible. Last

but not the least, I thank all my friends (Raaji, Aravind Vummidi, Jaiki, Suresh Kumar,

Priya, Bindu and Akarsha) for their love and support. I thank the Almighty for the

infinite grace and benevolence.

July 20, 2007

iii

ABSTRACT

M-INFOSIFT: A GRAPH-BASED APPROACH FOR MULTICLASS DOCUMENT

CLASSIFICATION

Publication No.

ARAVIND VENKATACHALAM, M.S.

The University of Texas at Arlington, 2007

Supervising Professor: Sharma Chakravarthy

With the increase in the amount of data being introduced into the Internet on a

daily basis, the problem of managing these large amount of data is an unavoidable prob-

lem. The area of document classification has been examined, explored and experimented

as a technique for organizing and managing vast repositories of electronic documents such

as emails, text and web pages. Over the past decade, several approaches such as machine

learning, data mining, information retrieval and others have been proposed for addressing

this problem of classifying electronic documents. While a majority of these techniques

rely on extracting high-frequency keywords, they ignore the aspect of extracting groups

of related keywords. Additionally, they fail to capture the salient relationships between

a number of keywords and their inherent structure, which can prove to be a decisive

element in classifying specific types of documents (e.g., web-pages). To this effect, the

design of InfoSift was proposed which incorporates graph mining techniques for docu-

ment classification by using a supervised learning model. Perhaps for the first time it

was shown how the structure within a document can be used for classification. It was

also shown that the techniques can be applied to different types of documents, such as

text, email, and web. This framework focused on identifying representative substructures

iv

using graph mining approach and to classify an incoming unknown document to a folder

using a ranking mechanism.

However, in the real world, documents are categorized into multiple folders based

on varied characteristics (such as multiple folders for different emails or multiple classes

for documents). Existing approaches have not used structural relationships with in a

document for classification and are based on the occurrence of words. Adopting these

approaches within the InfoSift framework do not lead to a feasible solution due to the

consideration of group of keywords and their relationships with other words. In order to

bridge this gap between the strength of InfoSift and issues of Multi-folder classification,

a different technique needs to be investigated.

Hence, in this thesis, we introduce a new approach to extend the abilities of InfoSift

to support Multiple categories (folders). A ranking technique to order the representative -

common and recurring - structures generated from pre-classified documents to categorize

new incoming documents has been presented. This approach is based on a global ranking

model that incorporates several factors regarding document classification and overcomes

numerous problems while using existing approaches for multiple folder classification in the

InfoSift system. A number of parameters which influence the generation of representative

substructures in single folder classification are analyzed, re-examined, and adapted to

multiple folders. Additional graph representations have been analyzed and their use

has been validated experimentally. Exhaustive experiments substantiating the selection

of parameters for classification of unknown documents into multiple folders have been

conducted for text, emails and web pages.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

LIST OF FIGURES . ix

CHAPTER

1. INTRODUCTION . 1

1.1 Data Mining . 2

1.2 Overview of Classification . 3

1.3 Problem Domain . 4

1.4 Text, Email, and Web Document Classification 6

1.4.1 Text . 6

1.4.2 Email . 7

1.4.3 Web page . 10

1.5 Focus of the Thesis . 10

2. RELATED WORK . 13

2.1 Text Classification Techniques . 14

2.1.1 Term Frequency - Inverse Document Frequency 14

2.1.2 Naive Bayesian Classifier . 15

2.1.3 k-Nearest Neighbor Classifiers . 16

2.1.4 Support Vector Machines . 17

2.2 Email Classification Techniques . 19

2.2.1 Information Retrieval Based Classification 19

2.2.2 Machine Learning Based Classification 20

2.2.3 Rule Based Classification . 20

2.2.4 Temporal Feature based classification 21

vi

2.2.5 InfoSift . 22

2.3 Web Page Classification Techniques . 23

2.4 Multiclass Classification . 24

2.4.1 One-Against-Rest(1-r) approach 24

2.4.2 One-Against-One(1-1) approach 24

2.4.3 Error-Correcting Output Coding 25

3. OVERVIEW OF GRAPH MINING . 27

3.1 Overview of Subdue . 28

3.1.1 Substructure Discovery in Subdue 30

3.1.2 Compression and Evaluation of Substructures 31

3.1.3 Inexact Graph Discovery . 32

3.2 Parameters for Subdue substructure discovery 34

4. OVERVIEW OF GRAPH BASED CLASSIFICATION SYSTEM 36

4.1 System Overview . 37

4.2 System Description in Detail . 39

4.2.1 Pre-processing . 39

4.2.2 Graph Representation . 44

4.2.3 Computation of Folder Characteristics 47

5. FRAMEWORK FOR MULTIPLE FOLDER CLASSIFICATION 54

5.1 Substructure Pruning . 54

5.2 Substructure Ranking . 55

5.2.1 Rank Formulation . 56

5.2.2 Size of the Representative Substructure 60

5.2.3 Computation of GRR terms . 60

5.3 Classification . 65

6. EXPERIMENTAL EVALUATION . 66

6.1 Implementation Details . 66

6.1.1 Configuration Parameters . 67

vii

6.1.2 Graph Representation and Generation 70

6.1.3 Substructure Discovery . 70

6.1.4 Representative Substructure Pruning and Ranking 71

6.2 Experimental Results . 71

6.2.1 Classification on Text Repositories 72

6.2.2 Graph Mining Vs Naive Bayes . 73

6.2.3 Feature Subset Selection . 75

6.2.4 Inexact Vs Exact Graph Match 77

6.2.5 Comparison between Tree and Star Representation 78

6.2.6 Prune Vs No Pruning . 78

6.3 Classification on Email Corpora . 80

6.3.1 Comparing Graph Mining with Naive Bayes 80

6.3.2 Effect of Feature Set Size . 83

6.3.3 Exact Vs Inexact Graph Match 84

6.3.4 Tree Vs Star Representations . 85

6.4 Web Page Classification . 87

7. CONCLUSIONS AND FUTURE WORK . 90

REFERENCES . 93

BIOGRAPHICAL STATEMENT . 99

viii

LIST OF FIGURES

Figure Page

1.1 Main Techniques in data mining . 3

2.1 The decision line(solid) with maximal margin 18

3.1 High-level view of shapes . 28

3.2 Graph representation of shapes example 29

3.3 Subdue Input for shapes example . 29

3.4 Subdue Output for shapes example . 30

4.1 System Overview . 37

4.2 Document Sample . 41

4.3 Words in Document Sample . 41

4.4 Words in Document Sample after Stop Word Elimination 42

4.5 Frequent Set of words . 43

4.6 Frequent Set after Feature Selection . 43

4.7 Tree Representation of a Text Document 44

4.8 Tree Representation of an Email . 45

4.9 Star Representation of a Text Document 45

4.10 Tree Representation of a Web Document 46

4.11 Star Representation of a Web Document 46

4.12 Input to Subdue of Sample Document . 47

4.13 Formulas for calculating nsubs . 50

4.14 Tree Representation of Sample Email . 52

4.15 Star Representation of Sample Email . 52

5.1 Sample Graph g1 . 62

5.2 Sample Graph g2 . 62

ix

5.3 Output for Transforming g1 to g2 . 62

6.1 m-InfoSift Vs Naive Bayes . 73

6.2 Error Rate comparison between m-InfoSift and Naive Bayes 75

6.3 Effect of Feature Subset Selection . 76

6.4 Exact Vs Inexact Substructure Discovery 77

6.5 Star Vs Tree representation . 78

6.6 Prune Vs No Prune comparison . 79

6.7 m-InfoSift Vs Naive Bayes for Listserv dataset 81

6.8 Error Rate comparison:m-InfoSift Vs Naive Bayes 81

6.9 m-InfoSift Vs Naive Bayes for Enron dataset 82

6.10 Error Rate comparison:m-InfoSift Vs Naive Bayes for Enron dataset . . . 82

6.11 Effect of Feature Subset Selection for Listserv dataset 83

6.12 Effect of Feature Subset Selection for Enron dataset 84

6.13 Exact Vs Inexact Substructure Discovery for Listserv dataset 85

6.14 Exact Vs Inexact Substructure Discovery for Enron dataset 85

6.15 Star Vs Tree representation for Listserv dataset 86

6.16 Star Vs Tree representation for Enron dataset 86

6.17 m-InfoSift Vs Naive Bayes for Web page classification 87

6.18 Error rate comparison:m-InfoSift Vs Naive Bayes for Web page
Classification . 88

6.19 Exact Vs Inexact Graph Match for Web page classification 89

x

CHAPTER 1

INTRODUCTION

Data collection and information management has always been one of the major

concerns in many application domains. As data in different forms continues to grow at

an alarming rate, the problem of extracting relevant aspects of this data and storing for

future retrieval become more prominent. The issue is further compounded on the World

Wide Web where determining relevant information from diverse and vast data sources is

more complicated owing to the heterogeneity of the data. Even though many approaches

have been proposed for this purpose, active research is still going on in order to go beyond

’indices’.

Information management is a critical task owing to the inter-dependence of several

applications that require relevant information in different structure and forms. Instant

access to large amounts of information available through the Internet entails a need for

mechanisms that determine the relevance of information being accessed. One of the

prominent ways for finding the relevancy is adopted by modern day search-engines (such

as Google) to do a simple lookup of a ’keyword’ (specified by the analyst or user) in

these data sources. But these conventional techniques (or similar ones proposed by the

Information Retrieval community) do not always bring out all the necessary details when

processing of data is needed with respect to a particular context. Additionally, the

non-traditional nature of data means that the traditional approaches can not be applied

even if the size of data is relatively small. For instance, if the intent is to bring out

information regarding the programming language Java, simply providing the keyword

’java’ might result in irrelevant information (such as ’java’ as in a type of coffee or

name of an island, etc.). Providing additional information for processing and extracting

relevant features can circumvent this problem. In other cases, management of information

1

2

might be as complicated as generating summary of the extracted information. Another

mechanism for information management would be to employ data mining techniques such

as classification, clustering, etc.

1.1 Data Mining

Data Mining, also know as Knowledge-Discovery in Databases, is the process of

automatically searching large volumes of data for useful patterns that might otherwise

be unknown. Some other definitions of data mining are:

‘The nontrivial extraction of implicit, previously unknown, and potentially useful

information from data’.

‘The science of extracting useful information from large data sets or databases’.

Data mining has been used to extract interesting patterns or features of information

from large amounts of data. It includes analyzing the data (pre-processing of data),

finding relevant frequent patterns and summarizing data (post-processing of results).

Data mining tasks are mainly divided into two categories [1]

• Predictive tasks: The main objective is to predict the value of an attribute based

on already known values of other attributes.

• Descriptive tasks: The main objective is to derive patterns that lends information

in order to derive the underlying relationships in data.

Based on the main techniques used in data mining AS shown in Figure 1.1, Pre-

dictive Modeling refers to the process of building a model for the target variable as a

function of other variables. The main two types of predictive modeling are Classification

and Regression. Classification is used for target variables that are binary valued. For

example, predicting whether a customer will purchase the item or not in a retail store.

Regression is used for continuous valued target variables. For example, forecasting the

future price of an item. The goal of both the tasks is to minimize the error between

the predicted and true values of the target variable, Association Analysis is to dis-

3

Figure 1.1 Main Techniques in data mining

cover patterns that describe the features associated with the data which are typically

represented in the form of rules. The main goal of association is to find the most inter-

esting patterns in an efficient manner. For example, finding web pages that are accessed

together, Cluster Analysis is to find groups of closely related characteristics so that

characteristics that belong to the same cluster are more similar to each other than charac-

teristics that belong to other clusters. For example, grouping news articles based on their

contents, and Anomaly Detection refers to the task of identifying observations whose

characteristics are significantly different from the rest of the data. These observations

are known as outliers. One example of this task is to detect fraudulent transactions in

credit card records. Additionally, data mining can be categorized into several branches

such as – structured data mining, unstructured data mining, unsupervised learning and

supervised learning. In this thesis, we consider ’classification’ using supervised learning

and act as a mechanism for information management.

1.2 Overview of Classification

The problem of classification involves the process of learning relevant features or

attributes of a class and using the same to determine if a new sample belongs to that

class. Pre-classified examples in classes are used as a training set to build a descriptor

for each class. To determine the destination class for an unknown sample, it is compared

4

with the descriptors of all classes and categorized where the similarity is maximal. The

classification technique analyzes records that are already known to belong to a certain

class, and creates a profile for a member of that class from the common characteristics of

the records. This can then be used to apply to new records, that is, records that have not

yet been classified. This enables us to predict if the new records belong to that particular

class or not by checking on similarity between the new records and the descriptors. It

allows us to retrieve similar objects easily, as they are grouped together and also it does

enable us to search effectively for a particular sample.

A practical scenario would be a consumer company seeking to maximize sales of

a new item. User behavior corresponding to a class of customers, who in the past have

availed such offers can be learnt to derive relevant attributes. Subsequently, spending

patterns of new customers can be compared with what has been learnt to determine if they

are potential customers for target marketing. In the view of information management,

classification allows retrieval of similar objects seamlessly, as they are grouped together.

It also enables analysts to search effectively for a particular sample.

This thesis aims at applying a novel approach based on graph mining to solve

the problem of classification, in particular, classifying unknown samples across different

classes. Text, email and web page repositories have been considered for our work. Details

about graph mining are given in Chapter 3. In the following sections, we will discuss the

various issues of text, emails and web page classification and inherent challenges of the

domain.

1.3 Problem Domain

The belief that the process of classification or supervised learning (that entails

grouping of related or similar entities) can benefit from the application of data mining

techniques, has prompted this research direction. We have chosen data mining approach

as an answer to the problem of information management since it includes finding out

5

interesting, non-trivial, implicit and important patterns. Classification, in particular,

has been explored in order to address the issue of management.

Existing techniques on classifying documents rely heavily on extracting keywords or

highly occurring frequent words in documents. They ignore the importance of extracting

a group of related terms that co-occur and more importantly, the inherent structure

of a document to classify them. There is no reason to believe that documents within a

class/folder adhere to a set of patterns and that these patterns closely correspond to, and

are derived from the documents of the particular class or folder. A classification system

that determines the patterns of various term associations, with their structure, that

emerge from documents of a class and uses these patterns for classifying similar unknown

samples is needed. The ability to classify based on similar and not exact occurrences of

patterns is singularly important in most classification tasks, as no two samples are exactly

alike. This work is an extension to the already existing work, InfoSift [2]. InfoSift

introduced the concept of graph mining to the problem of classification of documents

where content of a document can are represented in the form of a graph to preserve the

structure and documents can be classified based on the occurrence of similar subgraphs in

unknown documents. While InfoSift dealt with analyzing whether the incoming unknown

samples can be classified to a single folder (binary classification), this thesis extends

the approach to classify an unknown sample across multiple folders. To the best of

our knowledge, there does not exist any work in the area of text, email or web page

classification that infers patterns, along with structure, from text/emails and relies on

these learnt patterns for classification.

Since all documents have inherent patterns in them, finding out the interesting or

non-trivial patterns would actually help to describe the document which could be used

for decision making process. The process of pattern discovery can be automated by data

mining techniques and the discovered patterns can be used for classification purposes.

The unknown samples can be checked with patterns from different classes in order to find

the best match. The motivation behind this thesis is to apply graph mining techniques

6

for finding interesting patterns from multiple classes and use these patterns for classifying

unknown documents. We believe that text and web documents have a structure, as well,

in the form of the title, keywords, section headings, the HTML tag elements in case of web

pages and the document body. Emails can be represented using structural relationships

as it has a structure in the form of the information contained in the headers, the subject

and the body. The next section explains the document in each domain in more detail.

1.4 Text, Email, and Web Document Classification

Classification of text is a problem of assigning already known class labels to in-

coming and unclassified documents/text/emails1. The class labels are assigned to the

incoming unknown documents based on the sample of pre-classified documents used as

the training corpus. In the past, text classification has been used in the context of infor-

mation retrieval (as is elaborated by the literature on this topic) In this thesis, we deal

with general text, email, and web pages for classification using graph mining techniques.

The domain and the structure of emails and web pages provide certain knowledge that

can be incorporated into the classification task.

1.4.1 Text

Text classification primarily deals with documents where the major part comprises

of texts. Some examples are news feeds, research documents, etc. While text classifica-

tion in the beginning was based mainly on heuristic methods, such as applying a set of

rules based on expert knowledge. Lately, the focus has turned to automatic learning and

even classification methods. The need for categorization of news stories has prompted

a range of solutions that draw upon different techniques from various fields. It includes

machine learning techniques such as Support vector machines, Decision tree classifierS,

k-Nearest neighbor algorithms and neural networks. Statistical techniques such as Linear

least SquareFit, Probabilisitic Bayesian classification and Rule Induction are few other

1These terms have been used interchangeably throughout

7

approaches that have been widely used. Term Frequency and Inverse Document Fre-

quency (TF/IDF) classifiers have also been applied to the problem of text classification.

In all the existing text classification techniques, relevant features are extracted from

the training corpus. These features are either used to build vectors which consists of the

extracted terms quantified by their occurrence frequencies or to train the classifier to

learn those features corresponding to the class to enable classification. These techniques

are discussed in detail in Chapter 4.

1.4.2 Email

Electronic mail is a fast, efficient, inexpensive and one of the most preferred way

of communication and method of reaching out to a large group of people. It has evolved

as one of the most convenient means of communication between individuals as well as

groups. Emails can be viewed as a special type of document with some unique identifying

information such as From header, To header, CC header, Attachments, etc. Email solves

problems like physical traveling and synchronization but as simple as it is, it has got its

fair share of disadvantages too. Some problems with emails are loss of context, spam,

and inconsistency in information. Another problem with emails is the management of

emails. Many users are overwhelmed with a large amount of emails received or sent and

SPEND a large amount of time in sifting and classifying them to corresponding folders.

A misclassification of an email is as good as losing the email considering the sheer volume

of emails received each day and the number of folders to be maintained.

The problem of email management can benefit from a tool for easy storing and

retrieval of emails automatically. One aspect of email management is to classify the

emails into appropriate folders. An automated technique seems to be important consid-

ering the amount of time spent in processing the emails by individuals. This time can

be greatly reduced if either traditional classification techniques can be adapted or new

techniques developed to address the problem of email classification. In general, any email

management system would require a classification component for effective management

8

of emails. The problem of managing different folders and sub folders only magnifies

the issue. Hence, email classification is one of the critical tools needed for the effective

management of information in the Internet age.

1.4.2.1 Challenges to Email Classification

Email classification can be viewed as a special case of text classification but the

characteristics of documents and emails differ significantly. This poses an additional

challenge which is not encountered in text or document classification. Email classification

is also more trickier than text classification as it is based on a user’s personal preferences

(different mail filing habits ranging from who rarely classify emails to one who follow a

strict hierarchy), varying criteria for filing emails into folders, etc. Emails also differ from

documents in richness of content. Additionally, emails may vary drastically from folder

to folder. Hence email classification needs more than just application of conventional

approaches. Consequently, email classification uses disparate criteria which are difficult

to quantify. In addition, as opposed to a static set of corpus typically used for training in

text classification, the email environment is constantly changing with a need for adaptive

and incremental re-training. Some of the differences and challenges between email and

document classification are:

1. User preferences: Manual classification of emails is based on personal preferences

and hence the criteria used may not be as simple as those used for text classifica-

tion. For example, different users may classify the same message into vastly different

folders based on their preference. This varies significantly from document classifi-

cation where the class label associated with a document is independent of the user.

This distinction needs to be taken into account by any technique proposed/used

for email classification.

2. Variations in Information: The information content of emails vary significantly,

and other factors, such as the sender, the group the email is addressed to, etc.

play an important role in classification. This is in contrast to documents which are

9

richer in content resulting in easier identification of topics or context. In case of

emails, the above factors assume importance as the body of the message may not

yield enough information.

3. Folder’s characteristics: The characteristics of folders may vary from dense

(more number of emails) to relatively sparse. A classification system needs to

perform reasonably well even in the absence of a large training set. A graceful

degradation in accuracy may be acceptable with decreasing training data. Emails

within a folder may not be cohesive i.e., the contents may be disparate and not

have many common words or a theme. We characterize these folders on a spectrum

of homogeneous to heterogeneous. A folder may lose its homogeneity as it becomes

dense making it difficult to associate appropriate central theme/structures with the

folder.

4. Sub-folder classification: Emails are typically classified into sub-folders within a

folder. The differences in the emails classified to sub-folders may be purely semantic

(e.g., individual course offerings within the courses folder, travel within the projects

folder etc.,) or theme oriented. The ability to classify emails to appropriate sub-

folders will require a clear separation of representative folder characteristics or

traits. Email folders may also be split when the number of emails in the folder

becomes unmanageable or contents of many folders may be merged at times. Any

approach used for email classification should be able to deal with these nuances

which are typically absent in text classification.

Text classification techniques can be used to solve the problem of email classifi-

cation but they have to take into account the differences listed above. Additionally,

they can draw information available in the email domain for classification. A number of

text classification techniques have been applied to the problem of classification. Further

elaboration on some of these are given in Chapter 2.

10

1.4.3 Web page

Web pages possess an inherent structure in the form of title, meta tags, anchors to

other relevant pages, body, etc. which can be used to classify other unknown web pages.

Web-page classification is much more difficult than pure-text classification due to a large

variety of noisy information embedded in Web pages. Due to the different dimensionality

and different representations of web pages, simply classifying them with techniques based

on ordinary text documents would not be suitable. Hence, we use the structure of web

page in order to derive patterns with relationships in order to classify them.

1.5 Focus of the Thesis

In this thesis we propose an approach that adapts graph mining techniques for

classification of documents (text, emails and web pages) across multiple classes. It is

based on the premise that representative (common and recurring) structures/patterns

can be extracted from pre-classified classes and can be effectively used for unknown

sample documents. Supervised learning along with domain characteristics are exploited

to identify the composition of previously labeled documents or emails and these are used

for the classification of unknown text samples or incoming emails. This work mainly

concentrates on how patterns from multiple classes can be used for classifying unknown

samples. We have proposed a scheme for globally ranking the patterns discovered from

multiple classes. Ranking function defined over representative subgraphs generated from

folders depends on – importance of a structure in a single class, and its uniqueness or

commonality across multiple classes. To this effect we have developed a system by the

name m-InfoSift that deals with multiclass classification of incoming documents.

Documents in a given class correspond to one another and the similarity between

them provides the discriminating capability required to distinguish one class from an-

other. Also, users organize email folders based on their content, patterns that occur in

the email messages, and personal preferences (for creating folders and sub-folders). Our

approach is based on the basis that a class or an email folder consists of representative

11

documents or emails and the structure and content of the emails can be extracted to work

with domain knowledge. We also hypothesize that the notion of inexact graph match is

critical to our work in order to extract patterns that are similar to each other. It helps

in grouping similar patterns rather than looking for exact/identical patterns, which may

be difficult in textual domains.

Significant work carried out in the area of graph based data mining includes the

frequent subgraph discovery algorithm (FSG) [3], the Subdue substructure discovery

system [4] and the frequent graph miner:gSpan [5] among others. Our work requires a

means of substructure discovery directed by specific constraints (explained later). The

notion of matching inexactly within bounds dictated by various domain characteristics

is necessary. FSG and gSpan do not have this notion of matching inexactly within

a threshold value as they use canonical labeling. We have chosen to use the Subdue

substructure discovery system as it supports many concepts such as inexact graph match,

which we consider important.

Subdue discovers frequently occurring subgraphs using the minimum description

principle. Isomorphism or inexact graph match is used to make sure similar (and not

merely exact) substructures are identified. Since Subdue identifies a large number of

such patterns, they are sifted into a manageable number of patterns using several criteria

such as, the frequency of occurrence, size of the pattern, average size of documents or

emails in the class or email folder, the size of the document class or email folder and so

on. All these patterns are ranked based on their importance to the class in which they

occur and their uniqueness across all the other classes. The incoming sample is classified

to the class of the best matching structure.

Given the task of discovering frequent patterns and using them to classify unknown

samples, we divide our task into the following phases:

1. Discover interesting structures from all the classes under consideration

2. Rank all the structures across all the classes

12

3. Classify the incoming unknown samples to the class of highest matching ranked

structure

Phases 1 and 3 have been extensively researched by Aery [2]. While the thesis estab-

lished a framework for adapting graph mining techniques for classification of unknown

sample to single folder, this thesis extends its functionality and utility to multi-folder

classification by ranking all the structures across all folders. Our approach also includes

a formula for calculating ranks for the representative structures which is based on the

intuition behind the use of TF-IDF principle.

The rest of the thesis is organized as follows: Chapter 2 presents the related work

in the area of text, email and web page classification. Chapter 3 gives a basic overview of

graph mining and discusses the Subdue system. Chapter 4 presents an overview of graph

mining system. Chapter 5 discusses the working details of the system explaining the

different parameters concerned. Experimental results, comparisons and implementation

details are presented in Chapter 6 while Chapter 7 outlines the conclusion and future

work.

CHAPTER 2

RELATED WORK

Document classification is a problem of assigning an unknown electronic document

to one or more categories, based upon its contents. In other words, assigning pre-defined

class labels to incoming, unclassified documents. These class labels are defined based on a

sample of pre-classified documents used as a training corpus. This problem of document

classification has been well researched upon and a lot of techniques have been proposed

which include information retrieval, machine learning, and probability-based techniques

among others.

This chapter briefly presents a concise overview of some of the widely used ap-

proaches for document classification. A lot of these techniques involve email and web

page classification as well. The various techniques proposed for classification include

Support Vector Machines (SVM) [6], decision trees [7, 8, 6], k-Nearest-Neighbor (k -NN)

classifiers [9, 10, 11], Linear Least Square fit technique [12], rule induction [13, 14, 15, 16],

neural networks [17, 18] and Bayesian probabilistic classification [19, 20, 21, 8, 6, 22].

Also, the class of Term Frequency - Inverse Document Frequency (TF-IDF) classifiers

[23] from information retrieval have been applied to the problem of text classification.

The following sections describes some of the text classification techniques along

with techniques that deal in email classification and web page classification. A discus-

sion of some of these systems is presented when we consider the related work in area of

email classification. Techniques and approaches that automate the task of filing emails

and classifying them is also discussed in this chapter. For classifying web pages, tech-

niques that combine conventional text classification approaches THAT incorporate the

domain knowledge have been proposed.We will now discuss some of the text classification

approaches that have been outlined earlier.

13

14

2.1 Text Classification Techniques

This section provides a brief overview of some of the popularly used text catego-

rization techniques. The various text classification methods have been drawn from fields

as diverse as machine learning, probability theory and statistical learning theory amongst

others. To provide an idea of the diversity by way of which each of these methods solve

a text classification problem at hand, we will now discuss some of the aforementioned

techniques.

2.1.1 Term Frequency - Inverse Document Frequency

The TF-IDF weight is often used in information retrieval and text mining tech-

niques. It is a statistical measure that is used to evaluate how relevant or important a

word is to a document or in a collection of documents. The importance of the word is

directly proportional to its occurrence frequency in the same document but is offset by

the frequency of occurrence in the corpus. A lot of work in information retrieval use the

TF-IDF weight scheme as part of their work. Variations of TF-IDF techniques have been

used in search engines as a tool in scoring and finding relevant documents to the words

in a given user query.

Term frequency is the number of times the given term occurs in a document. This

count is usually normalized to prevent a bias towards longer documents (which may have

a higher term frequency regardless of the actual importance of that term in the document)

to give a measure of the importance of the term ti within the particular document. The

term frequency is given as

ti =
ni

∑

k nk

(2.1)

where ni is the occurrence frequency of term ti and the denominator if the number

of occurrence of all the terms.

The inverse document frequency is a measure of the general importance of that

term across all the documents in the corpus. This weight is calculated by dividing the

15

number of words contained in the document by the total number of documents in the

corpus. The inverse document frequency is given as

idfi = log
|D|

|{d:d ∋ ti}|
(2.2)

where |D| is the total number of documents in the corpus and |{d:d ∋ ti}| is the

total number of documents in which term ti occurs in.

Then the tf-idf of that term is given by

tfidf = tf.idf (2.3)

A high weight can be obtained by a high term frequency (in the given document)

and a low document frequency of the term in the whole corpus of documents. This tends

to filter out the common terms across the documents giving in a high weight to the unique

terms in a document. We have adopted a similar technique in our approach of filtering

out common representative substructures from the unique substructures that are mined

from the input graph. This will be explained further in the upcoming chapters.

2.1.2 Naive Bayesian Classifier

The naive Bayesian classifier is a probability based classifier that assigns class

membership or a posterior probability value to a sample based on a combination of the

prior probability of occurrence of a class and probabilities of the terms (also called the

likelihood), given they belong to that class. For the text classification task, this translates

to the combination of the probabilities of terms and the existing categories to predict

the category of a given document. Using the Bayes rule we can predict the posterior

probability of a category Cj among a set of possible categories C = C1, C2, C3.....Cn and

given a set of terms T = t1, t2, t3.....tn as

p (Cj|t1, t2, t3.....tn) ∝ p (t1, t2, t3.....tn|Cj)p (Cj) (2.4)

16

Naive Bayesian classifiers make a simplifying assumption of term independence (albeit

incorrectly), that the conditional probability of a term occurring in a document is in-

dependent of the conditional probabilities of other terms that appear in that document

i.e.,

p (T |Cj) ∝
n

∑

k=1

(tk|Cj) (2.5)

Using this naive assumption, the posterior probability can be re-written as

p (Cj|T) ∝ p (Cj)
n

∑

k=1

(tk|Cj) (2.6)

Although the assumption made is strong and not often accurate, it does simplify the

computation of term probabilities (as they can be calculated independent of each other).

The performance of the classifier is good and compares well with other sophisticated

techniques such as decision trees and neural networks. In our evaluation process, we have

compared the performance of our approach with that of Naive Bayes and the results are

shown in the forth coming chapter.

2.1.3 k-Nearest Neighbor Classifiers

In k-NN classifiers, as the name suggests, the classification of an unknown test

sample is based on its ‘k’ nearest neighbors. The assumption is that the classification of

an instance is based on others that are similar to it. Each document in the training set

is represented by a feature vector, which is the set of relevant attributes of the sample.

The technique for feature extraction can be as simple as the occurrence frequency of the

term in the document. To classify an unknown sample, its corresponding feature vector

is constructed and compared with the feature vectors of all samples in the training set.

The similarity metric used is generally a distance measure such as the cosine distance

function given in equation 2.7.

SIM(Vj, X) =

∑

k∈(Vj

T
X) (wk,j × fk)

√

∑n

k=1 (wk,j)
2 ·

∑n

k=1 (fk)
2

(2.7)

17

where, Vj is the vector corresponding to the jth document in the training set

X is the unknown sample to be classified

wk,j is the weight of the kth term in document j

fk is the weight of the same term in the test sample and

the denominator is the norm of the two document vectors

Only those terms that occur both in the test and training documents are considered.

This similarity measure produces a high value when the two vectors being compared are

similar. A value of 1 indicates the two vectors are identical, while a similarity value of 0

indicates that the two are unrelated.

The training examples are ranked according to their distance from the test sample

and the k nearest examples are selected. To assign a class label to the test sample,

weighting schemes have been devised, but a simple rule that assigns a class label that

corresponds to the majority of its neighbors can be used. The performance of k-NN

again, is among the best for techniques proposed for text classification [24]. The classifier

performs well as it uses the majority decision of k training samples. Due to the same,

the effect of noisy data is also reduced. The drawback of the approach is the presence

of a large feature space, which can become problematic as the size of the training set

increases.

2.1.4 Support Vector Machines

Support Vector Machines (SVM) were introduced by Vapnik [25] in 1979 [26], but

have become popular in the last decade or so. Support Vector Machines belong to the

set of discriminant classifiers (which include neural networks and decision trees among

others). They are based on the Structural Risk Minimization principle [26] and aim at

minimizing structural risk instead of empirical risk. Let us consider the simplest case

that corresponds to a linearly separable vector space. The problem here is to find a

decision surface that best separates the positive and negative examples of a class. A

decision surface that does so is called a ‘hyperplane’ and includes the notion of a margin,

18

which corresponds to how much the decision surface can be moved without affecting

classification. A linear SVM can therefore be stated as a hyperplane that maximizes this

margin between a set of positive and negative examples of a class. The margin is the

distance from the hyperplane to the nearest of the negative and positive samples. The

solid line in figure 2.1 shows the hyperplane that separates the positive and negative

training samples of a class and the thin lines on either side define the margin by which

the hyperplane can be moved without causing misclassification. The hyperplane in the

figure has maximal margin, any other decision surface will have a smaller margin than

the one shown.

Figure 2.1 The decision line(solid) with maximal margin
The Support Vectors are points on the dashed lines

The optimal separating hyperplane is given by the equation

w ∗ x − b = 0 (2.8)

The linearly separable cases can be generalized to linearly non-separable cases. The

performance of Support Vector Machines for text classification tasks has been studied in

detail and they exhibit a remarkably better performance than most other classification

techniques [24]. SVM classifiers perform well even in the presence of sparse data, as in

19

effect the classification mainly depends upon the support vectors of a class. They are

capable of handling large data sizes and the classifier performance is consistently good.

From the above discussions on classification techniques, it is clear that the problem

has been studied in depth and different methodologies have been applied to solve the

task at hand. With this discussion on text classification techniques, we now present the

relevant work in the area of email classification.

2.2 Email Classification Techniques

As we have stated before, the problem of email classification presents certain chal-

lenges that are not found in text classification. Certain characteristics of the domain

(e.g., information contained in the headers and so on) have to be taken into account

to ensure good classification. Many text classification techniques have been applied to

the problem of email classification. Based on the mechanism used, email classification

schemes can be broadly categorized into: i) Rule based classification, ii) Information Re-

trieval based classification and iii) Machine Learning based classification techniques. In

the sections that follow, we present an outline of some systems that have been developed

to automate the task of email classification.

2.2.1 Information Retrieval Based Classification

Segal and Kephart [27] use the TF-IDF classifier as the means for classification

in SwiftFile, which is implemented as an add-on to Lotus Notes. The system predicts

three likely destination folders for every incoming email message. The TF-IDF classifier

is based on the TF-IDF technique used in information retrieval. For each email folder,

a vector of terms that are frequent across the emails in the folder (term frequency) and

infrequent across other folders (inverse document frequency) is created. The set of terms

thus selected is capable of discriminating the features of a given folder with those of

other folders. To classify an incoming email, the term frequency vector of the email

is constructed. It is compared with the TF-IDF vectors of all folders using a cosine

20

similarity metric that is similar to the one stated in equation 2.7. The new email is

classified to the folder where the value of the cosine distance function is maximum.

The TF-IDF classifier performs well even in the absence of large training data

and the classifier accuracy remains reasonable as the amount of training data increases,

adding to the heterogeneity of a folder. The classifier learns incrementally with every

new message that is added or deleted from a folder, eliminating the need for re-training

from scratch.

2.2.2 Machine Learning Based Classification

Various machine learning based classification systems have been developed. The

iFile system by Rennie [28] uses the naive Bayes approach for effective training, providing

good classification accuracy, and for performing iterative learning. The naive Bayesian

probabilistic classifier has also been used to filter junk email effectively as shown by

Sahami et.al [29]. The Re:Agent email classifier by Boone [30] first uses the TF-IDF

measure to extract useful features from the mails and then predicts the actions to be

performed using the trained data and a set of keywords. It uses the nearest neighbor

classifier and a neural network for prediction purposes and compares the results obtained

with the standard IR, TF-IDF algorithm. Mail Agent Interface (Magi) by Payne and

Edwards [31] uses the symbolic rule induction system CN2 [32] to induce a user-profile

from observations of user interactions. The system suggests actions such as ‘delete’,

‘forward’ and so on for each new email message based on the training, hence results for

multi-class categorization are difficult to assess.

2.2.3 Rule Based Classification

Rule based classification systems use rules to classify emails into folders. William

Cohen [33] uses the RIPPER learning algorithm to induce ”keyword spotting rules”

for email classification. RIPPER is a propositional learner capable of handling large

data sets [34]. Cohen argues that keyword spotting is more useful as it induces an

21

understandable description of the email filter. The RIPPER system is compared with

a traditional IR method based on the TF-IDF weighting scheme and both show similar

accuracy. The i-ems (Intelligent Mail Sorter) [35] rule based classification system learns

rules based only on sender information and keywords. Ishmail [36] is another rule-based

classifier integrated with the Emacs mail program Rmail.

Although rules are easy for people to understand [37], managing a rule set may

not be so. As the number and characteristics of incoming emails change, the rules in the

rule set may have to be modified to reflect the same. This puts a cognitive burden on

the user to review and update the rule-set from time to time, often involving a complete

re-writing of rules.

Most of the email managers (e.g., outlook, eudora), allow users’ to set rules for

classifying email to folders. These rules have to be specified manually and can use

words from various categories. The main problem here is in the manual specification and

management of these rules which can become cumbersome and need to be changed often

to make them work properly.

2.2.4 Temporal Feature based classification

Kiritchenko et.al.,[38] employs temporal features in order to classify email mes-

sages into classes. Temporal features such the day of the week, time of the day, etc.

have been incorporated into the traditional classification approaches. Relevant temporal

features are extracted from emails and combined along with conventional content-based

classification approaches in order to build a much richer information space to improve

accuracy.

A set of emails is viewed as an event sequence (c1, t1) → (c2, t2) → → (cn, tn),

where each event corresponds to an email and is represented as a pair (ci, ti) with ci ∈ C

being the category of email (event type) and ti being the timestamp of the email. The

events are based on the tiemstamps. These temporal relations are then transformed into

patterns called temporal sequential patterns which is an ordered sequence of event types

22

c1 → c2 → ... → ck along with an ordered sequence of time intervals d1 → d2 → ... → dk.

A Apiori-like algorithm was developed to mine frequent sequential patterns in the input

dataset. These sequential patterns are used to classify the incoming unknown emails.

2.2.5 InfoSift

The work done in InfoSift [2] by Manu Aery forms the foundation for this the-

sis. It showed the feasibility of graph mining approach for document classification and

established a framework that included the identification and evaluation of parameters

that are relevant for this approach to classification. Although graph mining techniques

for classification was first employed in InfoSift, it only addressed binary classification

to establish the feasibility and framework by performing extensive experiments to tune

parameters. The use of domain knowledge for the purpose of classification has also been

highlighted in this work. Experimental results are shown in comparison with naive Bayes

for classification of text, email, and web pages. This thesis expands the framework de-

veloped in InfoSift to multiple classes by ranking the patterns obtained from various

classes in order to maintain a global rank list based on the interestingness, uniqueness

and commonality of that pattern in all classes. This thesis also re-examines some of the

parameters for their sensitivity to multi-folder classification. The simple ranking formula

used in InfoSift has been generalized to address multiclass classification.

From the discussion on email classification techniques, it is clear that a classifier

should be able to learn from the email environment of the user. The learnt information

should be used to automatically file emails to the corresponding folders or to provide

intelligent suggestions to the user. The information contained within the email headers

is important as many systems that learn rules based on the same or derive features from

the information in the headers consider it useful for classification. The use of domain

knowledge for classification when available, adds to the set of features to make a domain

informed decision during classification. We will now move onto the problem of web page

23

classification, which again, can make use of the features that are unique to the domain

of the web.

2.3 Web Page Classification Techniques

We will now briefly discuss the relevant work in the area of web page classification.

Although it may seem that text classification techniques can be applied to solve the

problem of web page classification, it may not be as straightforward since HTML pages

have an underlying structure represented by the various tag elements. It is important to

take into account this structural information for classification. Attardi et. al., [39] argue

that conventional text classification techniques are content driven and to not exploit the

hypertext nature of the web that is characterized by linked pages that have structure.

They believe that web page classification needs to be context driven and must derive

useful information from the structure and link information. The idea that the content

in a link and the context around it must provide enough information to classify the

document pointed by the link is the main motivation. The authors claim that a blurb

of a page provides significant information about the content of page in a concise manner

than the page itself (thereby reducing the noise). The information contained within the

links that point to a given page and the context around them are used to assign a category

to the page.

Schenker, Last et.al., [40] have used graph models for classifying web documents.

The graph is constructed from the text of the web page and the words contained in the

title and hyperlinks. An extension of the k -NN algorithm is used to handle graph based

data. The graph theoretical-distance measure for computing the distance translates to

the maximal common subgraph distance proposed in [41]. The graph model for classifying

web pages is compared with the k-NN algorithm that uses the conventional feature vector

approach. The performance of the graph model is better than the conventional bag-of-

words approach and is also more efficient.

24

2.4 Multiclass Classification

The approaches explained in the previous sections give an insight into different

techniques used for the task of classification. The approaches have been used for building

binary classifiers, whether the target variable (unknown document, in our case), can be

classified to a single class or not. This section presents the approaches that have extended

the binary classifiers to handle multiclass problems.

2.4.1 One-Against-Rest(1-r) approach

The one-against-rest [42] approach decomposes the problem into multiple binary

classification problems. If Y = y1, y2, ..yk is the set of classes of the input data then

using this approach, the problem is divided into K binary classification problems. For

each class yi ∈ Y , a binary problem is created where all instances that belong to yi are

considered as positive instances, while the remaining are considered as negative instances.

A binary classifier is then constructed to separate instances of class yi from the rest of

the class. A voting scheme is typically employed to combine the predictions, where the

class receiving the highest number of votes is assigned to the unknown document. In this

approach, if an instance is classified as negative, then all the other classes except for the

positive class receive a vote.

2.4.2 One-Against-One(1-1) approach

In the one-against-one approach [43, 44, 42], K(K − 1)/2 binary classifiers are

constructed where each classifier is used to distinguish between a pair of classes, (yi, yj).

Instances that do not belong to either of the two classes, yi or yj, are ignored when con-

structing the binary classifier for (yi, yj). As in the previous approach, the test document

is classified to a class by combining the predictions made by the binary classifiers. A

voting system is also employed in this approach. The output of the binary classifiers can

be transformed into probability estimates rather than just votes as voting might lead

25

to ties between classes. The unknown document can e classified to the class with the

highest probability.

2.4.3 Error-Correcting Output Coding

The problem with the previous two multiclass classification approaches are that

they are sensitive to the binary classification errors, i.e., even if one binary classifier make

a mistake in its prediction, then there might be a tie between different classes ending up

in wrongly classifying the documents. The Error-Correcting Output Correction(ECOC)

[45, 46, 47] method provides a more robust way for handling multiple folder classification.

It is based on information-theoretic approach foe sending messages across noisy channels.

The idea behind this approach is to add redundancy into transmitted message by means

of a codeword, so that the receiver may detect errors in the received message and perhaps

recover the original message if the number of errors is small.

For multiclass learning, each class yi is represented as a unique bit string of length

n kown as its codeword. Then n binary classifiers are trained to predict each bit of the

codeword string. The predicted class of test instance is given by the codeword whose

Hamming distance(distance between a pair of bit strings is given by the number of bits

that they differ) is closest to the codeword produced by the binary classifiers. A property

of the ECOC method is that if the minimum distance between any pair of codewords

is d, then any ⌊(d − 1)/2)⌋ errors in the output code can be corrected using its nearest

codeword. An important issue is how to design the appropriate set of codewords for

different classes. The codewords between different classes should be made as different or

the distance between them should be made as large as possible.

The approach proposed in this thesis is different from the earlier approaches applied

to the problem of document classification. It is also different from the approaches that

have been attempted for document classification. Though a graph based model has been

used for classifying web pages, a conventional classification technique adapted to work

with graphs is used for the actual classification. To the best of our knowledge, we are

26

not aware of any work on the use of graph mining techniques for text, email or web

page classification. With this overview of the related literature in the area of document

classification, the discussion on graph mining and graph mining techniques is presented

in the next chapter.

CHAPTER 3

OVERVIEW OF GRAPH MINING

Data in many applications have an inherent structure and reducing them to non-

structural (or transactional) format will result in loss of information. Graph represen-

tation provides a natural format for preserving the inherent structural characteristics.

If processing can be done on this representation it will provide better results as the se-

mantics of the applications (in the form of relationships) is preserved during processing.

Complex structural relationships can be modeled as graphs if no constraints are assumed

(such as no cycles, no multiple edges, only directional edges, and constraints on vertex

and edge labels). Graphs model the data in the form of a vertex (to characterize the

data), and edges (that typify extra information). Unlike transaction mining, Graph

mining is used to mine structural data such as DNA sequences, electrical circuits, chem-

ical compounds, social networks, schemes (such as money laundering and fraud) that

have associations and relationships of transactions, etc. A graph representation comes

across as a natural choice for representing complex relationships as the data visualization

process is relatively simple as compared to a transactional representation. Data repre-

sentation in the form of a graph preserves the structural information of the data which

may otherwise be lost if it is translated into other representation schemes.

An email message is inherently made up of a structure that can be used be used

for its representation and can be exploited for its classification. The structural relation-

ships between the headers, subject and body of an email can be represented as a graph.

This approach of considering the structure of a document is unique from other forms

of document classification that assume the document as a set (or bag) of words having

no particular structure. This is also true of other documents such as web pages and

text documents that have a structure in the form of title, section headings, HTML tag

27

28

elements, meta tags, anchors to other pages and document body. By making use of the

structural information they can be made amenable to graph mining.

3.1 Overview of Subdue

Subdue [4, 48], earliest work on graph mining, uses information-theoretic model

for determining the best substructure given a forest of unconstrained graphs. It is a

substructure discovery system that was developed by Cook and Holder. The Subdue

discovery algorithm discovers repetitive patterns and interesting substructures in graph

representations of input data. A substructure is a connected subgraph within the graph

representation. Within the representation, entities and objects are mapped to vertices

and the relationship between these objects is represented as an edge between the cor-

responding pair of vertices. An instance of a substructure in an input graph is a set

of vertices and edges from the input graph that match the graphical representation of

the substructure. The input to Subdue is a forest of graphs and the output is a set of

substructures that are ranked based on their ability to compress the input graph using

the Minimum Description Length [4] (MDL) principle. The compression technique is

elaborated in detail in the following sections.

The input is in the form of a table consisting of a list of unique vertices in the

graph and its corresponding edges between them. The output is list of representative

substructures discovered in the input graph where each is qualified by its size and occur-

Figure 3.1 High-level view of shapes

29

Figure 3.2 Graph representation of shapes example

Figure 3.3 Subdue Input for shapes example

rence frequency in the input graph. Consider the example in figure 3.1. It is a high-level

view of shapes resting on a table. The graphical representation of these shapes is shown

in figure 3.2.

The input for Subdue (for this particular example) is as shown in figure 3.3. This

input is in a form of a file consisting of the list of vertices and the edges between the

vertices. Subdue generates the best substructures that compress the input graph

the most and lists out the top n substructures. The output given by subdue for the

example in Figure 3.3 is displayed in Figure 3.4. The following section briefly explains

the Subdue’s substructure discovery process.

30

Figure 3.4 Subdue Output for shapes example

3.1.1 Substructure Discovery in Subdue

The substructure discovery in Subdue is done by using a beam search and progresses

in an iterative manner stating with substructures of size 1 and expanding to successively

larger substructures. A list consisting of a set of substructures to be expanded is main-

tained. The input graph is compressed by replacing the instances of these substructures

by a single node. The resulting input graph is then used for the next iteration to find

other interesting substructures. This process continues until the number of iterations

specified by the user is reached or it meets one of the several halting conditions, such as

the total number of substructures needed , provided by the user.

The occurrences of substructures that have an exact match are unlikely to occur

in most domains. Substructure instances that are not exactly same but are similar can

also be discovered by Subdue. Subdue is capable of discovering both exact and inexact

(isomorphic) substructures in the input graph. Subdue employs a branch and bound

31

algorithm that runs in polynomial time for inexact graph match and discovers graphs

that differ by a threshold given by the user. This discovery process is to find repetitive

and hence, interesting substructures or patterns, and to compress the graph by replacing

the instances of these patterns by a single node in order to provide a hierarchical view of

the original input graph. This heuristic is explained in the next section.

3.1.2 Compression and Evaluation of Substructures

There are two schemes that Subdue uses for evaluating the candidate substructures

in order to determine the best substructures. They are:

1. Compression based on MDL principle: The MDL principle states that the best

theory to describe a set of data is one that minimizes the description length of the

entire data set. The description length corresponds to the number of bIts required

to encode the input. This theory was described by Rinssanen [49] and has been

used in various applications such as decision tree induction, image processing and

others. Subdue employs this principle for substructure discovery where the best

substructure is the one that minimizes the description length of the original input

graph. According to the principle, the description length of the input graph is given

as

DL(S) + DL(G|S) (3.1)

where,

S is the discovered substructure

G is the input graph

DL(S) is the number of bits required to encode the substructure

DL(G|S) is the number of bits required to encode the input graph G after it has

been compressed by the substructure S

32

The final value of the MDL is defined as

MDL =
DL(G)

DL(S) + DL(G|S)
(3.2)

A higher MDL value signifies a substructure, that reduces the description length

of the original data or in other words, compresses it better. The compression is

defined as

Compression =
1

MDL
(3.3)

2. Compression based on size of the graph: The second compression scheme, based

only on size, uses a simple and more efficient but less accurate measure as compared

to the MDL metric. The value of a substructure S in graph G is

Size(G)

(Size(S) + Size(G|S))
(3.4)

Here,

Size (G) = Number of vertices (G) + Number of edges (G)

Size (S) = Number of vertices (S) + Number of edges (S)

Size(G|S) = (Number of vertices (G) - i * Number of vertices (S) + i) +

(Number of edges(G) - i * Number of edges(S))

where,

G is the input graph,

S is the discovered substructure,

G|S is the input graph after it has been compressed by the substructure and

i is the number of substructure instances.

3.1.3 Inexact Graph Discovery

Inexact graph discovery in Subdue aids in grouping similar substructures as a single

substructure for both identification and representation. The algorithm developed by

Bunke and Allerman [50] is used for inexact graph discovery where a cost is assigned for

each dissimilarity. The distortion between two substructures might be a variation in the

33

edge or in the vertex descriptions like an addition, deletion or substitution of vertices or

edges. Two substructures are considered to be isomorphic as long as the cost difference in

generating both the substructures to be identical falls within the range the user considers

acceptable. Even finding similar substructures is an NP complete problem and requires

an exponential algorithm. Subdue uses a branch and bound algorithm that is executed in

polynomial time by considering reduced number of mappings. The threshold parameter

is used in order to control the number of differences between two substructures. Grouping

similar substructures as the same substructure forms an integral part in classification of

documents which we will elaborate in further sections.

The concept of inexact graph match is one of the most important aspects of our

approach. It allows for substructures that vary slightly in their vertex or edge label

descriptions to be chosen as instances of a single substructure. The amount of variation

permissible is determined by the threshold parameter provided by the user. It specifies

the bound on the difference that is allowed between instances of a substructure. Subdue

assigns all transformations (insertion, deletion of an edge or vertex and so on) between

instances an uniform cost of 1. For a given substructure instance inst, to be classified

as an instance of another substructure sub, the following condition needs to be satisfied:

matchcost(sub, inst) ≤ size(inst) ∗ threshold. In other words, the total transformation

cost needs to be less than the number determined by the particular value of threshold

and substructure size.

If the size of substructures is large, then even with a small value of threshold,

there can be a large variation in the edge and vertex labels of the two instances being

considered. The default value for threshold is 0.0, which means that the graphs have to

match exactly. A very large value of threshold may not be meaningful as it will match

two dissimilar graphs. The exact value of threshold has to be determined from the size

of the input graph; knowledge of folder characteristics is essential for determining the

same.

34

3.2 Parameters for Subdue substructure discovery

There are a number of parameters that Subdue provides the user in order to control

the flow of the substructure discovery process. The input to Subdue is the file contain-

ing the list of vertices and corresponding edges as shown in Figure 3.3. Some of the

parameters are briefly described below:

1. BEAM: This parameter specifies the number of top substructures that are retained

for expansion in each iteration of the discovery algorithm. The default value of the

beam is 4.

2. ITERATIONS: Iterations is used to specify the number of iterations to be made

over the input graph. The best substructure from the previous iterations is taken

to compress the graph for the next iteration. The default is no compression.

3. LIMIT: Limit specifies the number of different substructures to be considered in

each iteration. The default value is (number of vertices + number of edges)/2.

4. NSUBS: This parameter is used to specify the number of substructures to be

returned as the result from the total number of substructures that Subdue discovers.

5. OUTPUT: This parameter controls the screen output of Subdue. The various

values are

1 Print the best substructure found in each iteration.

2 Prints the best ‘n’ substructures, where n is the number specified in the nsubs

parameter.

3 Print the best ‘n’ substructures, as well as the substructure instances.

4 Print the best ‘n’ substructures along with their instances and intermediate

substructures as they are discovered.

5 Same as above, prints also each substructure considered.

6. OVERLAP: Specifying this parameter to Subdue allows the algorithm to consider

overlap in the instances of the substructures. Instances of substructures are said to

overlap if they have a common substructure in them. During graph compression an

OVERLAP <iteration> edge is added between each pair of overlapping instances,

35

and external edges to shared vertices are duplicated to all instances sharing the

vertex.

7. PRUNE: If this parameter is specified, then the child substructures whose value

lesser than their parent substructures are ignored. Since the evaluation heuristics

are not monotonic, pruning may cause SUBDUE to miss some good substructures,

however, it will improve the running time. The default is no pruning.

8. SIZE: This parameter is used to limit the size of the substructures that are con-

sidered. Size refers to the number of vertices in the substructure. A minimum and

maximum value is specified that determines the range of the size parameter.

9. THRESHOLD: This is the parameter that provides a similarity measure for the

inexact graph match. Threshold specifies how different one instance of a substruc-

ture can be from the other instance. The instances match if matchcost(sub, inst) <=

size(inst) ∗ threshold. The default value is 0.0, which means that the graphs should

match exactly. Currently, Subdue supports threshold values up to 0.3.

With this overview of Graph Mining and an introduction to the Subdue discovery

system, we elucidate the process of incorporating documents for folder classification using

graph mining in the InfoSift System.

CHAPTER 4

OVERVIEW OF GRAPH BASED CLASSIFICATION SYSTEM

The main approach for solving document classification problems is to develop a

scheme that can scan through the contents of the documents and assign a class label to

it indicating the folder that best matches the interest of the document. In this chapter, we

present a brief overview of the m-InfoSift system and describe the parameters adopted

for document classification. The system has been developed to adopt graph mining

techniques for document classification across multiple folders. InfoSift, its predecessor,

had the ability to distinguish and categorize incoming documents into a single class.

Our work in this thesis extends the current approach to multi-folder classification by

generalizing the ranking formula proposed earlier to a global ranking formula that can

be used for multi-folder classification. Changes to the existing system and new additions

are discussed in detail in Chapter 5. In this chapter, we delve into the specifications

of the parameters involved in graph mining (in both, m-InfoSift and InfoSift) and the

reasons for choosing the same.

We adopt a supervised classification approach wherein the training set comprises of

pre-classified documents (text, emails, web-pages) with a class label assigned to each of

them. The substructures generated by applying graph mining to these training samples

are ranked based on their representativeness and uniqueness and inserted into a global

sorted list. Once the substructures have been ranked, the incoming test documents are

processed based on their contents and representativeness. The overall flow of control is

showed in Figure 4.1.

36

37

Figure 4.1 System Overview

4.1 System Overview

The document classification process in mainly divided into two phases: Training

phase and Classification phase. The classifier is first trained on a set of data where sub-

structures are generated, pruned and ranked. Then the classifier uses these substructures

to classify the incoming unknown documents. This section gives a brief description of

each step followed concerning the training and classification phase as shown in Figure

4.1.

1. Pre-Processing: The documents in the training set contain stop words and dif-

ferent forms of the same word which need to be eliminated in order to generate

interesting substructures. Stop word (such as – is, to, from, etc.) elimination,

Stemming and Feature selection are done before various characteristics of the class

38

can be calculated in order to derive the parameters for substructure discovery.

Some examples of the class characteristics are average size of documents in a class,

number of unique words, etc. Details of stop word elimination and Stemming are

discussed in Section 4.2.1.

2. Graph Representation: Once the test documents have been pruned and the

respective folder characteristics have been computed, the documents are represented

in the form of graphs using the Graph Generator module. Text, emails and web

pages have a definite inherent structure attached to them which is used to generate

graphs. We have proposed different canonical graph representation schemes in order

to generate substructures with better structural representation. The details about

the different schemes are elaborated in Section 4.2.2.

3. Substructure Extraction: Subdue (described in Chapter 3) is used to extract

interesting representative substructures from the training data set. The parameters

for Subdue depend upon the folder characteristics which are computed during the

process of representing the input in the form of graphs. One of the salient parame-

ters is the threshold which allows grouping of similar substructures to be considered

as the same substructure.

4. Substructure Pruning: The output of the discovery process generates a large

number of substructures; however, only a percentage of them contribute towards

the classification process since the variation observed amongst majority of these

substructures is only minimal. Furthermore, the cost of retaining and processing

all the generated substructures is high and certainly not desirable in an already

expensive processing technique (graph mining). Due to these reasons, the sub-

structures have to be significantly pruned before they can be ranked and employed

for classification. The aim of pruning is to identify only those substructures that

would help in discriminating the unknown documents during classification. Hence,

the output substructures are pruned based upon a range of conditions (elaborated

39

in Chapter 5) and only those which cover a significant portion of the class are

retained.

5. Substructures Merging and Ranking: Once all the substructures from different

classes have been generated and pruned, they are merged into a single list in order

to be ranked. Some representative substructures occur more frequently or measure

well in terms of size; hence, these can be considered to be more important than

the others. It is therefore important to discriminate the substructures from the

view point of classification. Certainly, there is a difference in a match with a highly

ranked substructure versus a lower one. The ranking of substructures globally

across all the training classes mainly dismisses the problem of selecting the order of

folders for processing. More details about ranking are discussed in further sections.

6. Processing incoming unknown Documents: Pre-processing (similar to the one

applied to the test samples such as stop word removal, stemming, etc.) is applied

to the unknown sample to be classified to bring it into a canonical representation.

The canonical representation of this document is then converted into a graph for

classification.

7. Classification: The test document, augmented with the graph representing the

substructure in the ranked order, is fed to the classifier to check for any occurrences

of the substructure in the test document. The test document is grouped to the same

class as that of the highest ranking substructure that occurs in it.

4.2 System Description in Detail

In the following discussions, an elaborate description of the pre-processing, graph

generation and various parameters in substructure generation step is provided.

4.2.1 Pre-processing

A document usually contains a number of unnecessary words that can adversely

affect the characterization process and do not help in characterization of the document.

40

Moreover, using the entire document, with all the words, would be overwhelming. For

example, words constituting articles, conjunctions and more common words that occur

frequently across all the documents does not aid in classification of the document and

can be pruned without affecting the outcome. Even inflected and derived words, such as

’eat’,’eating’,’ate’,etc., could be reduced to their stems in order to preserve the semantics

and yet reduce the number of unique words in the document. It is important that the

original document is pre-processed appropriately as it will otherwise add noise in the

form of irrelevant words and reduce the effectiveness of any mining approach.

Several techniques have been used for pre-processing the documents in order to

prune the size of input to retain only interesting words. The main goal for pre-processing

in InfoSift is to retain the frequent substructures across the document. In order to achieve

this, all the words that comprise the substructures have to be retained in the document as

well. The terms have to occur frequently across all documents instead of a single one. This

notion of retaining the frequent words across the documents takes care of the disparity of

some documents being longer than others. Therefore, prior to representing the documents

as graphs, the documents are pre-processed by these consequent techniques.

4.2.1.1 Stop Word Elimination

Stop words, such as conjunctions, articles and even common words that occur

frequently across all documents, are eliminated. Some of the more frequently used stop

words for English include ”a”, ”of”, ”the”, ”I”, ”it”, ”you”, and ”and”. These are

generally regarded as ’functional words’ which do not carry meaning (are not as important

for communication). The assumption is that the meaning can be conveyed more clearly,

or interpreted more easily, by ignoring these functional words. Stop word elimination is

performed by many search engines in order to assist users with queries to provide better

results by avoiding searching for functional words.

Consider the document shown in Figure 4.2. The conjunctions or articles in the

document do not assist in generating interesting substructures or in classification. Con-

41

Figure 4.2 Document Sample

sequently, the words considered for representing a document are those which occur fre-

quently, preferably across all the documents in a given class and not merely in a single

document. Assuming the set of words in that document sample is as shown in Figure 4.3,

the frequent set considered for further processing after stop word elimination is displayed

in Figure 4.4.

Figure 4.3 Words in Document Sample

4.2.1.2 Stemming

Stemming is the process of reducing the inflected words to their roots/base/stem.

This process reduces the number of unique words through out the documents and also

aids in classification. For example, the words ’seeing’, ’see’, ’seen’ are all reduced to

the same word ’see’. Words ending with ’ed’, ’ing’, ’ly’, which are used to represent

42

Figure 4.4 Words in Document Sample after Stop Word Elimination

the tenses of the verb or adjectives in English grammar, are stripped to their root. A

problem with Stemming might be homograph disambiguation, which means a single word

can have more than one meaning. For example, the word ’saw’, which would be reduced

to its root ’see’, like in the previous example, can also mean the tool used in carpentry

to cut of wood. Since the advantages of stemming surmounts its limitation, it is followed

as a part of our preprocessing.

4.2.1.3 Feature Selection

Feature Selection [51] or feature reduction is a technique commonly used in machine

learning for selecting a subset of relevant features in order to build the learning model.

This process removes the most irrelevant and redundant features from data and also helps

improve the performance of learning models by enhancing the generalization capability

and ameliorates the learning process. In our system, words, after stop word elimination

and Stemming, are ranked based on their occurrence frequencies across the documents in

a class and only those words whose frequencies account for more than f% of the sum of

all frequencies are retained. Occurrence of the unique words across different folders are

counted while multiple occurrences of the word in the same document are not considered.

Words that are a part of this frequent set are considered for generation of graphs. The

postulation behind this being that lower frequency words may not contribute towards

classification. The parameter f is tuned to observe its effect and identify any possible

43

Figure 4.5 Frequent Set of words

Figure 4.6 Frequent Set after Feature Selection

dependency on the effect of classification. This ensures the words chosen are frequent

not only in a single document, but across a substantial number of documents in class.

Consider the sample document, belonging to a class, in Figure 4.2. To construct the

graph corresponding to this document, the set of frequent terms across all the documents

is considered. Assuming the set of frequent terms is as shown in Figure 4.5 and the

feature selection parameter, f, is 90, the top words that correspond to 90% of the sum

of frequencies of all words in the documents is taken. In our example, the summation

of frequencies comes to 101 and 90% of 101 is approximately 90. Only the top n words

whose sum of frequencies add up to 90 is considered for graph generation. The words in

the frequent set after feature selection are illustrated in Figure 4.6.

44

Figure 4.7 Tree Representation of a Text Document

4.2.2 Graph Representation

The graph representations are chosen based on the domain knowledge in order to

provide emphasis on the domains. For example, information about the structure of an

email message sent over the network or the structural layout of a web page would help

in representing the documents as graphs. We have proposed two graph representations

that can be used across different domains such as text, emails and web pages. The

canonical representation shown in Figure 4.7 is a tree representation. The graph starts

with the type of document as the root and then branches out based on the domain. In

this example, the document is a text and hence the root is attached to two other vertices,

title and body. All the words in the title and body of the document are attached to the

title and body vertex respectively with the edge label as contains. The representation of

an email message under this representation is shown in Figure 4.8. This scheme considers

all the information in an email message with each word in the email connected to the

central root vertex.

Figure 4.9 illustrates an alternative graph representation, star representation, de-

veloped to be used across different domains. It consists of a central anchor or root vertex.

The chosen words from the document form the the remaining vertices, along with the

edges that connect them to the central root vertex with the edge contains. The example

45

Figure 4.8 Tree Representation of an Email

Figure 4.9 Star Representation of a Text Document

shown in Figure 4.9 is for a document. A star representation of an email would contain

’Email’ as the central vertex and corresponding labels directing to the other vertices con-

structed from the message. The ability to label edges makes this simple representation

quite effective if the labels corresponds to the various components of a document, email

or web page.

Figure 4.10 shows the representation of a web-page in the form of a graph that

takes into account the information represented by the title of the page, hyper links that

point to other pages and the information represented in the page. Hyper links have also

been represented in the graphs since they point to information sources relevant to the

current page. The star representation of a Web document is shown in Figure 4.11.

46

Figure 4.10 Tree Representation of a Web Document

Figure 4.11 Star Representation of a Web Document

Once the documents have been represented as graphs, they can be mined for finding

the representative substructures. The input file to the graph miner consists of vertex and

edge entries corresponding to the graphs. Each vertex entry associates a unique vertex

id with every vertex label. Each entry corresponding to an edge is represented as an

undirected edge between a pair of vertices and the corresponding edge label. The input

file to the Subdue system corresponding to the representation in Figure 4.9 is shown in

Figure 4.12.

The discovery process is derived by certain parameters that are determined as part

of pre-processing and graph generation phase. The discussion of parameters warrants

47

Figure 4.12 Input to Subdue of Sample Document

a detailed study and are explained as the next step towards classification followed by

substructure generation.

4.2.3 Computation of Folder Characteristics

The main goal in our approach is to identify representative substructures for a given

class of documents and use them for classification. In order to achieve this, we have to

choose a number of input parameters for the Subdue algorithm that determine the number

and type of substructures identified during substructure discovery. The training set of

classes itself needs to be used as a source in order to derive these parameters. Certain

characteristics of the class need to be taken into account in order to determine the

representative substructures that best characterize a particular class. These parameters

must be tunable and effective for diverse document and class characteristics. Not all

classes exhibit similar properties; certain classes may be more dense as compared to others

and certain others may have larger document content providing extensive amounts of

information for training the classifier. For instance, in the email domain, due to constant

addition, deletion and movement of emails, the folder contents keep changing rapidly.

Hence, class characteristics need to be quantified and specified as input parameters to

the Subdue discovery algorithm to ensure that the substructure discovery process is

based on traits of the class. If the discovery process is guided by these parameters, the

substructures generated are likely to better reflect the contents of the class. Some of

48

these characteristics, which we believe are substantial to compute the parameters, are

considered in the following discussions.

4.2.3.1 Average Document Size, Discovery and Classification Threshold

In the textual domain, it is impractical to find instances that match exactly. For

the purpose of classification, flexibility in matching instances of substructures is impor-

tant. This latitude in matching similar instances should be applicable while building

the descriptor for the document as well as while comparing an unknown sample with

the class descriptor. This matching of similar instances is carried by the inexact graph

match in Subdue. As discussed in Section 3.1.3, the threshold parameter determines

the amount of inexactness between two instances. This is by determining the number of

vertices and edges that vary among the instances of the same substructure. The actual

number is determined by 4.1.

(num of vertices + num of edges) × threshold (4.1)

A small value of threshold allows a significant amount of inexactness while com-

paring substructure instances of documents that contain a large number of words. It

is because even with a small value, the value computed by Equation 4.2 would allow

reasonable number of variations. However, for documents with relatively smaller content

and hence fewer vertices in the input graph representation, a larger value of threshold is

required. Employing the size of the documents in a class, we can determine the amount

of inexactness to allow for a graph match. If the amount of inexactness to be allowed

in terms of the number of edge/vertex label variations is ’i ’, then value of threshold is

computed as in Equation 4.2

threshold =
i

avgs

(4.2)

where, avgs is the average size of the documents in the class.

49

The above formula derives the right value of threshold taking into account the size

of the documents in the class. For smaller documents, the value of the threshold will be

larger compared to that of larger sized documents. In any case, the maximum number

of variations is capped at 4 (larger values only lead to different substructures being

considered as similar substructures which in turn lead to increase in misclassification).

Here, we have interpreted average document size as a parameter that affects pattern

discovery and used it to compute the value of threshold that allows for a reasonable

amount of variation and at the same time, preserves the similarity between instances.

The value of threshold is used during substructure discovery process and further during

classification.

4.2.3.2 Number of Substructures

The number of substructures returned by Subdue is limited by the parameter nsubs.

To ensure that the representative set consists of substructures that characterize the class,

the number of substructures to be returned has to be derived from the class characteris-

tics. If there are a large number of documents in a class, there probably will be a large

number of substructure instances as well. But all of these substructures do not aid in

classification. We have derived the number of substructures by using both the class size

and the average document size along with weights to emphasize each factor. The formula

is given in the Equation 4.3.

nsubs = w1 × Cs + w2 × avgs, w1 > w2 (4.3)

where, Cs is the size of the class and

w1 is the weighting factor applied to the same

avgs is the average size of the documents in the class and

w2 is the weight applied to the average document size

The formula for nsubs is built on two class characteristics: 1) Size of the class and

2) Average document size in the class. As evident, the size of the class has got a greater

50

impact in deriving the value for nsubs. Classes have been discriminated into small(less

than 60 documents) , medium(61 to 200) and large(Greater than 200 documents) based

on the number of documents contained within them. The value of w1 is based on the class

size. The formulas for calculating nsubs based upon the class size in shown in Figure

4.13.

Figure 4.13 Formulas for calculating nsubs

Subdue generates and picks substructures based on their ability to compress the

original graph. Hence, for a smaller class, large substructures, despite their low frequen-

cies, are picked up as best substructures because abstracting even their few instances,

results in greater compression. To make sure that smaller substructures with higher fre-

quencies are also considered, a larger value of nsubs is required. Therefore, taking into

account the need for a large nsubs with a small class size and scaling it to increase in

average document size, w1 has been assigned a value of 1.25 and 0.50 for w2 for small

classes. These values have been determined based on experimental observations for the

InfoSift framework [2]. The weight w2 is fixed at 0.50 for all average document sizes.

However, for medium classes, it is likely that repetitive substructures, rather than

isolated instances of long substructures, will be reported as the best substructures. Thus,

the value of nsubs can be taken as a fraction of the class size and scaled with an increase

in average document size leading to a value of 0.90 for w1. Classes with more than 200

documents are considered to be large and an increase in class size thereafter will serve

to increase substructures instances rather than the number of substructures themselves.

51

Consequently, the term corresponding to the class size has been capped at 150 to include

the top most frequently occurring substructures.

4.2.3.3 Beam

As explained in Section 3.2, beam determines the number of best substructures

retained at the end of each iteration of the discovery algorithm. Beam ensures that

interesting substructures discovered during each set of iterations are available for further

consideration. The beam value is chosen in proportion to the class size. Large sized classes

typically contain many patterns owing to the presence of a large number of documents. A

low value of beam results in loss of some interesting substructures while a larger value of

beam only increases the computation and processing time. Hence, the beam values have

to be chosen based on the class size to ensure no interesting substructures are missed.

Experiments employing different beam values on different class sizes were performed.

Beam value of 4 returned good results and have been used for experiments. Larger value

of beams only leads to increased computation time and resources during substructure

discovery and pruning of unwanted substructures while a smaller value of beam did not

include many interesting substructures.

4.2.3.4 Minimum Size

The representative substructures that are chosen should provide enough informa-

tion for differentiate against folders. Substructures that are common across all the fold-

ers/emails provide no differentiating capability. For instance, a substructure that con-

sists of information regarding only the headers of emails, like sender and addressee, will

not help in classification as emails with same information will be hard to differentiate

from each other. This is not an acute problem for single folder classification (where the

email is classified to one folder or not). However, for multiple folder classification, this

problem aggravates by a great extent. It becomes vital to have further information for

enabling successful multi-folder classification. The representative substructures chosen

52

should provide enough information for discrimination amongst folders. The size should

be constrained above a minimum to pick up substructures that contain information more

than just a common ’core’.

Figure 4.14 Tree Representation of Sample Email

From the graph representation of Figure 4.14, it can be inferred that the smallest

sized substructure contain at least four vertices(Email, Header and any two among ’To’,

’From’,’Cc’). Substructures smaller than this are common to all emails within a folder and

also across all folders. Therefore, the minimum size of the substructures to be reported

is constrained at 4. Using a lower minimum size result in a lot of misclassification of the

test documents. This constraint needs to be determined from the graph representation

scheme employed.

Figure 4.15 Star Representation of Sample Email

53

For the star representation shown in Figure 4.15, the minimum size of the substruc-

ture should be 3. This ensures that the substructures that are picked have sizes greater

than the size of substructures that are most likely to be common across many document

folders, and hence capable of discriminating between the same.

Having provided a detailed description of the parameters that affect substructure

discovery, vis-s-vis, classification of incoming test documents, as well as a means to

derive these parameters with appropriate validation, we now elaborate the post discovery

processing steps before classification in Chapter 5 and implementation along with our

findings in Chapter 6.

CHAPTER 5

FRAMEWORK FOR MULTIPLE FOLDER CLASSIFICATION

This chapter discusses the processing steps after the representative substructures

have been discovered. The generation of representative substructures is explained in

Chapter 3 using the Subdue’s substructure discovery process. The goal of any classifica-

tion system is to classify the unknown test document into a folder exhibiting the most

similar characteristics. In order to achieve this, representative substructures are gener-

ated based upon the input folders’ (training set) characteristics, and are used against

the incoming test documents to determine the best match. Once the substructures have

been generated, they are pruned in order to retain only the unique patterns of words

and then they are ranked based on how well they represent the class they were generated

from. These two process are discussed in this chapter along with the classification of test

documents.

5.1 Substructure Pruning

The substructure discovery process generates the top nsubs substructures from the

training set. Retaining and processing all of these substructures is a problem since a

majority of these substructures may be redundant and are not likely to be useful for the

purpose of classification. As inexact graph match has been employed, substructures that

are variants of each other in terms of just one edge or one vertex are returned as best

substructures. Retaining several substructures that have the same frequency and size but

vary only sightly in terms of content will not aid in distinguishing the incoming document

and will only contribute towards increasing the processing time. Therefore, pruning is

necessary in order to retain only those substructures that truly represent the class and

54

55

cover a wide area in the input graph during compression in each set of iterations. Pruning

of substructures is required in the following two cases:

• Substructures with same frequency, size and MDL value: Substructures differing in

either frequency, size or MDL value are retained to ensure uniqueness. For example,

two substructures, each having ten vertices and different occurrence frequency,

are not similar since the same substructure is not reported twice with different

occurrence frequency. But two substructures, each with ten vertices and same

occurrence frequency with minimal difference, such as different vertex or edge label,

are redundant and are pruned. Therefore, each substructure in the representative

set after pruning refers to an unique pattern that follows from the documents of

the class under construction.

• Substructures with low frequency in large classes: On the account of using compres-

sion as a heuristic, the discovery algorithm also identifies certain large substructures

that do not occur frequently. It is due to the fact that replacing these huge sub-

structures greatly compresses the original input graph. Hence, these substructures

are returned by Subdue as part of the best substructure list even though they do not

occur frequently. These substructures do not significantly add to the substructure

set as they do not cover substantial portion of the class contents. Therefore, sub-

structures with very low frequency as compared to the class size are discarded from

consideration. The representative substructures generated from different categories

(folders) are generated and pruned to retain unique substructures for ranking.

5.2 Substructure Ranking

The representative set of substructures are generated and pruned separately for

each folder. Thus, each of the folders in the training set have a list of pruned represen-

tative substructures correspondingly. In order to classify the incoming test document in

the best category exhibiting similar characteristics, the test document has to be matched

against the representative substructures in each category and the best match is found

56

by trying to find which of the representative substructures occur in the test document.

Ranking of the representative substructures is done in order to position the representative

substructures in an ordinal scale in relation to each other so that the test document can

be classified to the same class as that of the first matching representative substructure.

The InfoSift framework currently ranks the substructures in each category in relation to

the other substructures in the same category only.

Extending this scheme for multiple categories poses a problem of tyring to clas-

sify the test documents based on the local rank of a representative substructure. It

additionally depends on the size of the folders in the training data set. A match with

a higher ranked substructure in one category holds more weight than a match with a

lower ranked substructure in another folder the degree of match for a test document

with the substructure is not represented by the rank of the substructure in the folder.

For example, a test document can match with a representative substructure RS1 ranked

10 belonging to Folder f1 and also match with another representative substructure RS2

ranked 1 belonging to folder f2. Though it would be right to label the test document as

belonging to folder f2, the test document could match RS1 with a better similarity there-

fore belonging to f1. This calls for a scheme that could rank the substructures from each

other based on their representativeness in a folder. This thesis proposes a formula in this

direction for ordering the representative substructures based on their representativeness

across all the folders in the training set.

5.2.1 Rank Formulation

The pruned representative substructures list of each folder is collected and ap-

pended into a single list to rank them globally. All the representative substructures are

compared against each other and ranked based on how unique they are. A rank, called

the GlobalRepresentativenessRank(GRR), for each representative substructure is cal-

culated and are ordered based on the same. The GRR of a representative substructure

is given in Equation 5.1:

57

GRR(RS) =

[

FRS(fRS, RS)

FRS(A,RS)
×

1

IFF (RS)2

]

×
SRS

MaxRS

(5.1)

where,

RS is the Representative Substructure

fRS is the folder in which RS was extracted from

FRS(f, RS) is Frequency Term of RS across folder f

A is training data set containing all the folders

FRS(A,RS) is the Frequency Term of RS across all the folders in Training set

represented as A

IFF (RS) is the Inverse Folder Frequency of RS

SRS is the Size of RS

MaxRS is the Size of the largest RS in the global list

The equation in 5.1 computes the rank of the representative substructure RS glob-

ally across all the folders in the training set given as the input to the learning model.

The rank comprises of two characteristics of the substructure in concern: i) its occur-

rence frequency in both – the folder it was extracted from and the training set and ii)

its size. The details of these characteristics and the method of computation for the same

are discussed in the following subsections.

5.2.1.1 Frequency of Representative Substructure

Representative substructures are a group of words with a structure that co-occur

throughout the document class. It is relevant to calculate their occurrence frequency in

order to rank them in comparison with each other. The frequency term is shown in the

enclosed square brackets in the Formula 5.1. It is based on the principle that the weight

assigned to the representative substructure is proportional to its frequency in the folder

it was extracted from and inversely proportional to its frequency across other folders.

The frequency term comprises of three elements, thus, elaborating the importance of the

58

representative substructure based on its occurrence frequency. The three elements are

discussed below:

5.2.1.2 Frequency Term of Representative Substructure in folder fRS

FRS(fRS, RS)(Frequency of Representative Substructure in folder fRS) term cap-

tures the importance of the group of words with a structure that relate together in

the representative substructure RS. The value of FRS(fRS, RS) is in turn computed by

equation given in 5.2:

FRS(fRS, RS) =
freq(RS, fRS)

n
∑

i=1

freq(RSi, fRS)

(5.2)

where

RS is the Representative Substructure

fRS is the folder in which RS is extracted from

freq(RS, fRS) is the occurrence frequency of RS in fRS

freq(RSi, fRS) is the occurrence frequency of ith RS in fRS

n is the total number of substructures extracted in fRS

In the above formula, the denominator is the sum of the frequency of all repre-

sentative substructures in that folder. The denominator remains same for each RS in a

folder. If the frequency of the RS is high, this term results in a higher value. Otherwise

it will result in a lower value. The frequency of each RS is normalized against the total

frequency in that folder.

5.2.1.3 Frequency Term of Representative Substructure in all folders A

This term represents the commonality of the representative substructure by com-

puting the occurrence of RS through out the different folders in the training set. The

importance of a representative substructure RS is inversely proportional to its occurrence

59

in other document classes since it does not aid in classification of test documents. This

term can be computed by the equation in 5.3:

FRS(A,RS) =

m
∑

j=1

freq(RS, fj)

m
∑

j=1

n
∑

i=1

freq(RSi, fj)

(5.3)

where

A is training data set containing all the folders

RS is the Representative Substructure

freq(RS, fj) is the occurrence frequency of RS in fj

freq(RSi, fj) is the occurrence frequency of RSi in fj

m is the total number of folders in the training set

n is the total number of substructures in fj

The numerator in the above formula is the frequency of RS in all the folders of the

training set. The denominator is the total frequency of all RS in the training set. If RS

occurs in many folders, including the one it was extracted from, then a higher value is

evaluated for the numerator as the frequencies of RS in each of the folder, it exists in,

is added up to compute its total frequency across the training set. Its total occurrence

frequency is normalized against the total occurrence of all RS in training dataset. The

more frequently RS occurs across different folders, the more common is the substructure

and hence lower is the value of the rank assigned to it.

5.2.1.4 Inverse Folder Frequency

This term determines the number of folders in which representative substructure

RS occurs. The intuition is that, if a representative substructure occurs in many doc-

ument classes, then it is not a good discriminator and it should be ranked lesser than

the ones which occur in fewer document classes. The basis of IFF weighting is the ob-

60

servation that words that occur frequently across the same document class and rarely

across other documents are likely to be of particular importance in identifying relevant

material. The IFF term provides a high value for common representative substructures

and low value for unique representative substructures. So when the inverse of IFF(RS) is

considered, it provides a high value for rarely occurring substructure and low value for a

representative substructure that exists across many folders. For example, if RS exists in

3 folders (including the folder it was generated from), then the value for 1
IFF (RS)2

would

be 0.1111(1/9). Whereas, a RS that exists only in the folder it was generated from would

have a value of 1.

5.2.2 Size of the Representative Substructure

The final term in the global rank formula in Equation 5.1 considers the size of the

representative substructure. Relatively large sized frequent substructures signify greater

similarity among the documents in a class. The size of a representative substructure is

computed by Equation 5.4.

SRS = (number of vertices inRS + number of edges inRS) (5.4)

The size of the representative substructure is compared with the largest substruc-

ture in the global list. Based on its relative size, a weight is evaluated to the representa-

tive substructure. Therefore, a representative substructure that compares well with the

size of the largest substructure, is assigned a higher weight when compared to smaller

substructures.

5.2.3 Computation of GRR terms

The GRR of a RS is directly proportional to its occurrence frequency in the folder

it was extracted from and inversely proportional to the its commonality. The common-

ality of RS is defined by its occurrence across all the folders in the training set. The

61

previous section introduced the GRR and its behavior. This section elaborates on how

the frequency terms are computed.

5.2.3.1 Frequency Term of Representative Substructure in folder fRS

The frequency of RS in fRS is given by Subdue in its output of best substructures.

For example, in Figure 3.4, the positive instance for each representative substructure de-

notes its frequency of occurrence across the folder. The frequency of all the representative

substructures across folder fRS can be computed by summing up the positive instances

of all the representative substructures that have been extracted in folder fRS. This term

is evaluated to a high value when the representative substructure occurs more frequently

across the document class it was generated from.

5.2.3.2 Frequency Term of Representative Substructure in all folders A

This term is assigns a weight based on the commonality of RS. The numerator of

this term denotes the frequency of representative substructure RS in all the folders in the

training set. This is computed by calculating the frequency of RS across all the folders

in the training set and then discounting its occurrence frequency in the folder it was

generated from. Checking whether RS exists in all other folders is not straight forward

because RS might be a subgraph of the representative substructures in other folders or

the same words constituting RS might not be in the same order in the representative

substructures of other folders. Inspecting whether a representative substructure occurs,

as a whole or part of another substructure, in other folders is done using the graph match

module of Subdue. The intuition behind finding if a representative substructure exists

as whole or as a subgraph in other folders is that the common words that comprises

a representative substructure, whole or a part of it, needs to be lowly ranked so that

they do not lead to wrongly classified test documents. The graph match module is used

instead of Subdue in order to increase the efficiency in terms of processing time.

62

Figure 5.1 Sample Graph g1

Figure 5.2 Sample Graph g2

The graph match module takes two graphs as input and computes the cost of

transforming the largest of the input graphs into the smaller graph. The cost is computed

by summing up the number of operations to be done on the larger graph, such as adding

or deleting a vertex label or an edge label, to map it to the larger graph. The output of

the graph match module comprises of the vertex mapping of largest graph to the smaller

graph along with the cost. For example, consider transforming graph g1 to graph g2 as

shown in Figures 5.1 and 5.2.

Figure 5.3 Output for Transforming g1 to g2

63

As illustrated, graph g1 has got 5 vertices and correspondingly 5 edges while graph

g2 has got 4 vertices and edges. Vertices of g1(larger graph) are mapped to vertices of g2

along with the edges. The output of transforming g1 to g2 is shown in Figure 5.3. A cost

of 2 is assigned to change the labels of vertices 2 and 3 of g1 (Rafael, Nadal) to vertices 2

and 3 of g2 (Said, Aluminum), cost of 1 to delete the extra vertex 5 (Roger) and a cost of

1 to delete the extra edge ’u 1 5 contain’. Therefore, the graph match module computes

a cost of 4 for transforming g1 to g2.

The graph match module can be used to find if two representative substructures

are exactly the same or if one representative substructure is a subgraph of the other. The

Algorithm 1 shown below has been developed for this purpose.

Algorithm 1 To find if a RS is a subgraph of another RS

1: Obtain the two representative substructures RS1 and RS2

2: Find the largest substructure of the two and initialize it RS2 and the smaller one as RS1

3: Calculate (v2v1) + (e2e1) where

v2 and e2 are the number of vertices and edges of RS2

v1 and e1 are the number of vertices and edges of RS1

4: Compute the match cost between RS1 and RS2 using Graph match module. Let M.C be the cost of transforming

RS2 to RS1

5: if (M.C ≤ ((v2v1) + (e2 − e1))) then

6: RS2 is RS1 or contains RS1 as a subgraph

7: else

8: RS2 is not RS1 and does not contain RS1 as a subgraph

9: end if

The algorithm is initiated by finding the larger of the two subgraphs/substructures

given as input. The largest subgraph is tried to map to the smaller one as explained

before. The difference between the sizes of the two substructures are found by the formula

(v2 − v1) + (e2 − e1). The match cost of transforming one substructure to another is

computed using the graph match module. The difference in size is compared with the

match cost computed. Two cases arises as explained below

64

• If the match cost is lesser or equal to the difference in size of the two substructure,

then the two substructures are considered to be same or one substructure is part

of the other

• If the match cost is higher than the difference in the size of the two substructures,

then the two substructures are neither same nor one is a subgraph of the other

Using this algorithm, the frequency of the substructure across different folders is

computed by summing up the frequencies computed for RS against each other RS of

other folders. The denominator of the term FRS(A,RS), as shown in equation 5.3, is

the summation of the frequencies of all the representative substructures in all the folders

of the training set. This term determines the common representative substructure Rs

occurs across all the folders. The importance of RS is inversely proportional to its

commonality in occurrence across folders.

5.2.3.3 Inverse Folder Frequency

The Inverse folder Frequency of RS determines the number of different folders RS

occurs in. This measure is computed while calculating FRS(A,RS) by maintaining an

index of all the different folders which contains the same representative substructures as

RS or part of RS. The calculation of FRS(A,RS) and IFF (RS) is done by making one

pass through all the RS of all the folders in the training data set.

In conclusion, the terms of the GRR are computed from Subdue’s output and using

the graph match module. The graph match module is used to overcome the unnecessary

overhead of using Subdue and increase efficiency in terms of processing time. All the

terms of the GRR are computed by making one pass through the list of RS in each

folders of the training data set. A representative substructure gets a higher GRR due to

the following reasons:

1. It occurs frequently across the same folder it was extracted from

2. It occurs less frequently across all the other folders in the training set

65

3. The size of the representative substructure compares well to the largest substructure

in the global list

Once all the representative substructure are ranked, they are ordered based on

their GRR. The list of ordered substructures are then used during classification. The

classification process is explained in the following section.

5.3 Classification

The ranked substructures are used for classifying the incoming unknown docu-

ments. In order to assign an appropriate label to this document, it is compared with

the ranked substructures. As with the generation of representative substructures, inexact

graph match is used for comparing the unknown document with predefined representative

substructures. Each ranked substructure is embedded into the test document to create

a forest of two graphs: 1) the test document represented as a graph, and 2) the graph of

the representative substructure.

The classifier is used to generate representative substructures from the forest of

graphs with a minimum size set to the size of the representative substructure embedded

into the test document. The list of substructures generated by the classifier are checked

for its occurrence frequency. If the occurrence of the substructure (which is the embedded

representative substructure) is greater than 1, then the test document has got an instance

of the representative substructure in it. It denotes that the test document contains the

words that make up the representative substructure, along with the same relationship.

It also means that the test document comprises of the frequent words that represent the

document class in the form of the representative substructure. Hence, the test document

is filed to the same class with the highest ranked substructure match signifying higher

correlation with the class contents.

With this discussion, we move on to the implementation aspects and present our

findings for our approached with elaborate experimental results.

CHAPTER 6

EXPERIMENTAL EVALUATION

This chapter presents the experimental analysis and results performed to reinforce

our premise that words in document classes exhibit relationships and these patterns can

be used to learn and aid in classification of unknown documents. The applicability of this

approach across multiple folders for heterogeneous textual domains namely text, emails

and web pages have been considered. The performance of the classifier on these domains

is consistent and the results have been presented in detail in separate sections. The

experimental setup and a brief description of the dataset used is also provided. A brief

overview of the system implementation and the details of the configuration parameters

is presented below.

6.1 Implementation Details

The framework for multi-folder document classification in InfoSift has been de-

signed in Perl. Perl has been chosen due to its excellent support for text manipula-

tion and processing. As Perl was designed for string processing and extraction, its a

natural choice for document pre-processing and feature extraction. The availability of

pre-developed modules and functions for many routine tasks and the ability to handle

complex data structures in Perl have been utilized in the implementation. As the dis-

covery algorithm is implemented in C, the choice of using an interpreted language for

developing the various modules of the document classification system does not slow down

the overall performance. The prototype system is an amalgamation of separate yet inter-

related set of modules namely, document pre-processing, graph generation, substructure

extraction, substructure pruning, representative substructure ranking and classification.

66

67

The input to the training model of system is a set of one or more document classes,

along with various parameters for graph generation and pattern discovery . The pa-

rameters are provided in a configuration file comprising of options for – split for cross

validation, choice of graph representation, beam value, etc. The system pre-processes the

classes in the training set, generates graphs, computes the various class characteristics

and invokes the substructure discovery algorithm. The output generate is pruned and

ranked across all the folders in the training set to produce the global rank list. This list

is then used during classification of the test document. The outcome of the classification

along with the output of each module are logged for analysis. In the discussion that en-

sues, we will briefly describe some of the implementation aspects of the various modules

and details about the different configuration parameters.

6.1.1 Configuration Parameters

The modules in the document classification system operates based on the values

provided by the user in the form of the configuration file. Options for various parameters

such as choice of graph, representation scheme, randomized generation of training and

test data sets and so on have been provided. Values that are substantial such as the

substructure discovery threshold can also be provided in the configuration file. Default

values are assigned in case any of the parameters are absent in the file. Besides the

parameters specified in the configuration file, parameters such as nsubs are computed

based upon the document class size and average document size during pre-processing of

documents. The various parameters along with the various values are listed below:

1. Number of Document Classes: The total number of document classes fed to

the training model.

2. Name of Document Classes: The names of the document classes or folders that

contain the documents to train the classifier.

3. Graph Representation: Various graph representations such as star and tree have

been proposed for different domains. Each graph representation have been assigned

68

an unique number id. The choice of the graph representation is input to the system

using the option for the scheme.

4. Training Test Set Split: The document classes containing the different docu-

ments provide information for training the classifier. The percentage of the class

sample to be used for training can be specified as a ratio using this parameter in

the configuration file. An training/test split of 80:20 and 60:40 have been used

i.e., 80% or 60% of the documents in the class are used to train the documents in

order to generate representative substructures that represent the documents and

the remaining 20% or 40% of the documents are used for classification.

5. Feature Subset Selection: The top f% of the features representing the document

class to be selected during the pre-processing of the folder content.

6. Random/Sequential Generation: The option of choosing the first n% of the

documents in the class or randomly chosen n% documents to act as the training

set can be determines using this parameter.

7. Seed: In case of random selection of documents for the training set and test set

for classification, a seed value can be provided for the randomized generation. If

left unspecified, the system supplies a default value of 100 for generation process.

8. Log File: The file name to log the results of the outputs of each modules dur-

ing processing and classification. The logged information also contains values of

the parameters that were specified in the configuration file. Additionally, informa-

tion regarding the substructure generation and the representative substructure that

matched with the test document are logged for further analysis. In case the log file

is not specified, a default name derived from the class names and other attributes

is used.

9. Graph File: The documents in the training set are represented as a forest of

graphs for the substructure discovery process. The file name to store the forest of

graphs is specified using this parameter. If a file name is not specified, a default

value is assigned to the file based on the class names and its attributes.

69

10. Substructure Output File: The file name to store the output of the substruc-

ture generation process. It contains the values of the input parameters to the

substructure discovery algorithm in the Subdue system along with the top best

substructures that were extracted from the input training data set. This file is

used during the pruning process in order to filter out the repetitive substructures

that were extracted. A default filename is taken if no name is specified.

11. Substructure Discovery Threshold: The amount of inexactness that is permis-

sible during substructure discovery process is specified using this parameter. This

value can be specified by the user else it is calculated as explained in Equation 4.2.

A value of 0.1 has been used for our experiments to compare the effect of inexact

graph match on classification with exact graph match.

12. Classification Threshold: This value represents the threshold during the classi-

fication of the test document. As the classifier searches for the occurrences of the

representative substructure inside the graph representation of the test document,

an amount of inexactness is also allowed to group similar instances of patterns just

as in substructure discovery. This value can be specified by the user else the same

value as substructure discovery threshold is used as default. A value of 0.05 have

been used for our experiments.

13. Minsize: The minimum size of the substructures generated by the substructure

discovery process can be constrained above a certain value by this parameter.

14. Beam: The value of the beam for the substructure discovery algorithm. Values of

the 2,4,8 and 12 have been used for the experiments. If the values are unspecified,

then a value of 4 is used for small classes and a value of 8 has been used for medium

and large classes by default.

15. Prune: This parameter can be turned on or off depending upon whether the output

of the discovery process containing the list of best substructures needs to be pruned

or used as is for classification. The default is to prune the substructures.

70

With this overview of the configuration settings, we move onto the details of other

implementation issues.

6.1.2 Graph Representation and Generation

The documents that are collected as training set from the document class are used

to derive substructures to represent the respective class. For this reason, the documents

are converted into graphs that act as inputs to the substructure discovery process. The

graph generator developed is capable of generating graphs for various domains such

as text, email and web pages. For processing emails, the Perl packages Mail::Internet

and Mail::Address are used to extract the header and body information respectively.

HTML::TokenParser package is used for processing web pages and deriving the necessary

information from the HTML tags in the pages.

Associative arrays or Hashes in Perl have been used to store the term-frequency

pairs of the features in the training set. The documents that form the training set are

used to construct a global hash of term occurrences across all the documents in the class.

This set of terms are pruned based on the feature subset selection percentage that is to

be retained. During the construction of the graphs for sample documents, only those

terms that occur in the global hash after pruning are considered. Class statistics such as

document class size and average document size in the class are also computed and logged

for substructure discovery during graph generation.

6.1.3 Substructure Discovery

The pattern discovery pattern is handled by the Subdue substructure discovery

algorithm. The input to this system such as threshold, minsize, graph input file, output

file name, etc. are specified in the configuration file. The output of the substructure

generation process is written to the file which is processed to prune substructures and

generate the representatives of the class under construction.

71

6.1.4 Representative Substructure Pruning and Ranking

The representative substructures are compared to eliminate those that are similar

in terms of substructure size, MDL and frequency and differ only in their description of

an edge or vertex label. The list of best substructures from the substructure generation

output file is analyzed to discount the similar substructures as per our definition of

similarity explained in Section 5.1. In addition, certain large-sized classes substructures

that are highly infrequent are pruned as well.

The pruned substructures from each folder in the training set are merged together

into a single list and ranked against each other to position them in an ordinal scale based

on their representativeness. Associative arrays are used to store the representative sub-

structures. The Data::Dumper module is used to save the information in the form of hash

data structure. The ranked substructures are sorted using the sort function provided by

Perl. For each unique rank(key of the hash), information about the corresponding sub-

structure such as substructure name, folder it belongs to, rank value, size, FRS(f,RS),

FRS(A,RS), IFF (RS) are stored. During classification, the classifier tries to match

the test document with the substructures in the sorted order. Once a match is found,

the classifier stops further comparison with representative substructures and assigns the

same label as that of the representative substructure that it matched with.

6.2 Experimental Results

The results of classification experiments on different domains such as text, emails

and web pages repositories are discussed here. The experiments have been carried out

on Intel Xeon CPU 2.80Ghz dual processor machines with 2GB memory. Exhaustive

experiments on a large number of classes with diverse characteristics (different document

class size, dense,sparse classes, etc.) have been carried on to study the effect of parameters

on classification of unknown test documents in a multiple folder environment. Since each

domain presents issues that are unique to it, they have been considered separately for

72

discussion. The following subsections describes each domain with an introduction to the

data set used for experimenting along with presenting and discussing the results.

6.2.1 Classification on Text Repositories

The dataset for text classification is derived from Reuters-21578 1 corpus, which

has been used as a benchmark for text categorization tasks. The data was originally

collected and labeled by Carnegie Group, Inc. and Reuters, Ltd. in the course of de-

veloping the CONSTRUE text categorization system. The documents in these classes

comprise of news articles from various categories, with multiple category assignments for

many documents. The category distribution is skewed with majority of the categories

containing varying number documents (from a few to a few thousand) in it. The unla-

beled documents in the corpus have not been considered for our experimental analysis.

The resulting set of 60 topic categories such as Cotton, Cocoa, etc. have been used for

training and testing purposes.

Numerous experiments have been performed to determine the viability of the pro-

posed approach and to study the effect of various class and document characteristics on

classification. The performance metrics used for evaluation is Accuracy (given by Equa-

tion 6.1) and Error rate (given by Equation 6.2). The performance of our approach

is compared with the probabilistic Naive Bayesian classifier, implemented in the Bow

library developed by Andrew McCallum 2. The experiment results are now discussed in

detail:

Accuracy =
CD

n
∑

i=1

TDi

(6.1)

1available at http://www.daviddlewis.com/resources/testcollections/reuters21578/
2available at www.cs.cmu.edu/ mccallum/bow/

73

ErrorRate =
WD

n
∑

i=1

TDi

(6.2)

where,

CD is the number of correctly classified test documents

WD is the number of wrongly classified test documents

TD is the test document

n is the total number of test documents to be classified, i.e., test dataset size

6.2.2 Graph Mining Vs Naive Bayes

Figure 6.1 shows the comparison between the performance of our approach with

the Naive Bayesian one. Both the approaches have been tested on different training set

size from multiple folders (2 to 16 folders) containing small, medium and large classes.

Figure 6.1 m-InfoSift Vs Naive Bayes

The classification of the Graph Mining approach is consistently better than the

Bayesian approach. Both the classifiers perform well with small number of folders such

74

as 2, 4 and 6. With the increase in the number of folders in the training set, classification

accuracy of both the approaches decreases due to the increasing number of misclassified

test documents. Some of the reasons as to why a test document might get wrongly

classified is listed below.

• Lack of adequate data in test document: Some of the test documents from the

class did not contain enough information for it to be classified to any specific class.

Test documents with minimum information tend to match with substructures of

minimum size, which occur in most of the documents in various classes and hence

gets a low rank. This leads to the test document being classified to the wrong

folder.

• Folders with lot of heterogeneous documents: The input datasets used for exper-

imental analysis contain classes with documents already labeled and classified.

Sometimes the classes contains documents dealing with diversified information ,

i.e., the documents under the same class are very heterogeneous. This leads to

large substructures with very low frequency returned as the best substructures

by the discovery algorithm. These substructures are ranked lower than the sub-

structures of smaller size with high frequency from other folders. Therefore, small

substructures with very high frequency in folders tend to get a higher rank than the

large substructures with very low frequency of the heterogeneous folder. So when

the test document, which actually belongs to this heterogeneous folder, is tried to

classified, it is likely to get classified to the wrong folder due to presence of highly

ranked small substructures of other folders.

In the case of Naive Bayes approach, the classifier depends largely on the size of

the classes in the training set. When a large class is paired up with small classes in

the training dataset, the probability that the most commonly occurring word in the test

document to occur in the large class is higher and hence test documents are classified

to the wrong folder. The global ranking of representative substructures overcomes this

problem by ranking group of words with structure based on how uniquely represent the

75

class. As evident from the result shown in Figure 6.1, the difference in performance

is clearly distinguishable for larger number of classes in the training set. The term

probability based Naive Bayes approach clearly assigns the wrong label to a lot more test

documents than our approach for large folders. Though Naive Bayes has been proven

successful for classification of binary values(whether a test document can be classified to

a particular class or not), its independence assumptions are mostly inaccurate when used

for multiclass classification. The error rate computation corroborating this discussion is

illustrated in Figure 6.2.

Figure 6.2 Error Rate comparison between m-InfoSift and Naive Bayes

It is clear from the results shown that our approach of ranking the substructures

across multiple folders in the training dataset out performs conventional techniques like

Naive Bayes in terms of classification accuracy.

6.2.3 Feature Subset Selection

Experiments were conducted to study the effect of the size of the vocabulary or

feature set selection on classification. In our experiments, we have used four values for

feature set selection by extracting the top 60%, 80%, 90% and 100%. Using a feature

selection value of 100% would actually retain all the not so frequent words. It is to

76

study if these in frequent words does have an effect on classification of the incoming

test document though retaining all of them would increase processing and substructure

discovery time. graphs representing the training set documents are constructed only from

the words occurring in the the feature set. Details about feature subset selection have

been elaborated in Section 4.2.1.3. The results of the comparison is shown in Figure 6.3.

It is expected that the presence of large number of features,which are words, will result

Figure 6.3 Effect of Feature Subset Selection

in better classification, along with a decrease in accuracy with a reduction in feature set

size. However, the results show that retaining all the words in the feature set, by using

a feature selection size of 100%, do not give the best classifcation accuracy. A feature

selection of 80% and 90% performed better over 60%. One reason is that a feature subset

selection of 60% contained words that were common across lot of documents which in turn

affect the substructure discovery by extracting substructures that were common across

different document classes. Feature selection of 80% and 90% contained much more

features than 60% which resulted in generating substructures that better represented the

document class from each other. It did not include all words, like in 100%, which led

to many unwanted substructures being generated. A value of 90% also contained less

frequent words in its frequent global set which led substructures to contain lot more less

77

frequently features. This in turn led to a performance that is similar to 100% feature

selection. This makes a strong case for using a value of 80% as feature selection for the

rest of our experiments.

Figure 6.4 Exact Vs Inexact Substructure Discovery

6.2.4 Inexact Vs Exact Graph Match

The ability to match similar substructure instances while making allowances for

small variations is important for classification tasks exploiting graph mining techniques

where exact matches are hard to find. To this end we have performed experiments

to study the classification accuracy on textual domains using exact and inexact graph

match. The results are shown in Figure 6.4.

As evident from Figure 6.4, inexact graph performs better than exact graph match.

The performance of exact and inexact graph match is similar for smaller number of folders

but with the increase in the number of folders, the difference in performance becomes

more clearer. The training set of classes comprises of both small classes and large classes.

A reason as to the better performance of inexact graph match is because it is able to

group similar instances that vary slightly even in the absence of large training data in

the case of small folders.

78

6.2.5 Comparison between Tree and Star Representation

We have proposed two graph representations that have been used to represent the

training and test documents to the graph mining system, Subdue. Figure 6.5 show the

results of the comparison of the two graph representations on the classification accuracy.

Figure 6.5 Star Vs Tree representation

As seen in Figure 6.5, the tree representation has a better accuracy over the star

representation. The tree representation exhibit better structural relationships between

the words than the star representation. The better performance of the tree structure

is contributed due to the presence of extra layer in its structure(the first layer contains

only the root node followed by another layer containing vertices of different components

that make up the document like title, body, etc. and a third layer of vertices with all the

features attached to the corresponding vertices in the second layer). The star has got

only two layers: the root forms the first and the rest of the vertices form the second.

6.2.6 Prune Vs No Pruning

The substructure discovery process generates lot many substructures from the train-

ing dataset given as the input. But all of them are not likely to contribute towards

79

Figure 6.6 Prune Vs No Prune comparison

classification. Furthermore, the cost of processing all of the substructures only increases.

Due to these reasons, a pruning option was developed where instances of slightly varying

substructures were analyzed and pruned except for a single instance. Figure 6.6 illus-

trates the results on classification accuracy with the pruning option set on and with no

pruning.

The approach combined with pruning turned out to show better result. This was

due to the lesser number of substructures that were retained that still exhibited their

corresponding class characteristics. The more the number of substructures retained, the

more the chance for a test document to get misclassified. Therefore, our approach with

the pruning option turned on gave a better accuracy.

With these experiments carried on the text corpus we are able to make claims

that the graph mining with a global rank scheme compares and even outperforms a

conventional text classifier in many cases with regard to multiple folder classification. As

expected and suggested earlier, inexact graph match yields better classification results

when compared to exact graph match. A tree representation with its superior structure

showed better classification ability than the star representation consistently. Pruning

of the substructures aided towards a better classification result. With these results, we

80

move on to show our result of our ranking approach with the global rank scheme on email

collections.

6.3 Classification on Email Corpora

Although text classification techniques have also been applied to classify email

messages, certain features of this domain that present challenges needs to be addressed.

Many of these challenges have been outlined in Chapter 1. We have used various folders

that were selected from public Listserv’s and personal emails from different persons in

order to provide a diversity. These several distinct folders’ size varies from 10 to 470

odd emails. This email repository was collected to perform experimental analysis for the

InfoSift system.

Additionally, to show that our approach is consistent and complete, experiments

have also been carried on Enron Email Dataset 3. The Enron email dataset was collected

and prepared by the CALO 4 project. It comprises of data in the form of emails from

about 150 users organized into folders. The email folders in this dataset have been cleaned

and organized before it can be used for training the classifier. Some pre-processing steps

include removing the non-topical folders(folders containing email messages regardless of

their contents such as Inbox, Sent, Trash, Drafts, etc.), removing folders that are too

small(does not contain any messages) or too large(contain more than 600 messages), etc.

Experiments were conducted on both these data sets in order to show that our approach

is compatible to different types of messages from the same domain. The results of our

experiments are presented in the following sections.

6.3.1 Comparing Graph Mining with Naive Bayes

The performance of our approach is compared with Probabilistic Bayesian approach

as done in text classification. Our approach does perform well irrespective of the type of

3Publicly available at http://www.cs.cmu.edu/ enron/
4More information at http://www.ai.sri.com/project/CALO

81

Figure 6.7 m-InfoSift Vs Naive Bayes for Listserv dataset

folders that were grouped together in the training data set because with the increase in

the number of folders that were used to train the classifier, the diversity in folders also

increased as all the folders of different sizes were collected as training set. Figure 6.7

shows the results comparing the accuracy of our approach against Naive Bayes for the

Listserv dataset.

Figure 6.8 Error Rate comparison:m-InfoSift Vs Naive Bayes

The Bayesian classifier compared poorly due to large number of false positives. One

of the main feature of the global rank scheme is the presence of fewer false positives when

82

Figure 6.9 m-InfoSift Vs Naive Bayes for Enron dataset

Figure 6.10 Error Rate comparison:m-InfoSift Vs Naive Bayes for Enron dataset

compared to a conventional classification technique such as the Naive Bayes approach.

This is evident from the Figure 6.8.

The performance of graph mining classification is consistent across Enron dataset

too. Though the difference in performance of both the classifiers for the Enron dataset

is not as distinguishable when compared to that over Listserv dataset, our approach out

performs Naive Bayes approach. The results for Enron dataset is presented in Figures

6.9 and 6.10.

As explained in Text classification, Naive Bayes assigns probabilities to word occur-

rences. Terms that are common to multiple folders and having a higher weight assignment

83

in one folder will outweigh others during classification which in turn leads to lot many

wrongly classified emails. Our approach, on the other hand, identifies patterns of word

occurrences and rank them across all the folders thereby avoiding this problem.

6.3.2 Effect of Feature Set Size

The features that comprise the email graphs are chosen from the top ’f% ’of the

sum of frequencies in folders making up the training dataset. Experiments have been

carried out with three different values as in text classification. A value of 60% or 80% as

feature set retained only the top 60% or 80% of the terms that made in the frequent word

list whereas a value of 100% would retain all in the frequent set of words. The results of

the experiments are shown in Figures 6.11 and 6.12. As in the case of text classification,

a similar observation was noted in the case of email classification.

Figure 6.11 Effect of Feature Subset Selection for Listserv dataset

The performance of the classifier was similar to the performance observed in test

domains. When a value of 80% was used as the feature selection ratio, the performance of

the classifier was consistently better than retaining all the words by using 100% or using

a lower number of frequent words in using 60%. Though feature set size of 100% fared

well when comapred to 80%, the amount of processing time during graph generation and

84

Figure 6.12 Effect of Feature Subset Selection for Enron dataset

substructure discovery is larger than in 80%. The classification accuracy reduces with

the increase in the number of folders. This behavior is expected as the chances of email

getting correctly classified to the right folder decreases with the increase in the number

of substructures in the global rank list.

6.3.3 Exact Vs Inexact Graph Match

As in the case of text classification, inexact graph match exhibits better perfor-

mance when compared to exact graph match. Emails do not correspond to a set of

vocabulary and the information content of emails is relatively low as compared to text

documents. Therefore, it is difficult to find exact patterns throughout the document class

and the ability to match instances with slight variations becomes significant. Results for

the comparison between exact and inexact graph match is shown in Figures 6.13 and

6.14, for Enron dataset.

The training data set contained folders of varying size and evidently inexact graph

match performs better despite the heterogeneous email content for training the classifier.

This differs from the exact match which groups instances that are identical, something

that is hard to come by in a training data set with diverse content.

85

Figure 6.13 Exact Vs Inexact Substructure Discovery for Listserv dataset

Figure 6.14 Exact Vs Inexact Substructure Discovery for Enron dataset

6.3.4 Tree Vs Star Representations

Experiments were conducted to study the effect of different graph representations

on email classification. The tree representation showed better performance in classifica-

tion as shown in Figures 6.15. This figure corresponds to the Listserv dataset collected

for the InfoSift framework.

The difference in performance between star and tree representation is greater in

email domain rather than in text classification. This is attributed to the enhanced

structural information exhibited by email messages when compared to text documents.

The tree representation represents emails, along with their structural information, in

86

Figure 6.15 Star Vs Tree representation for Listserv dataset

Figure 6.16 Star Vs Tree representation for Enron dataset

a better way than the star representation. This is reinforced with the results of the

experiments conducted on Enron data set. Figure 6.16 illustrates the results of Tree Vs

Star representations on Enron email data set. Evidently, tree representation has a better

performance in classification than the star representation.

With the above experimental results, we can draw conclusions on email classifi-

cation. The performance of the system is consistent though the classification accuracy

reduces with the increase with the training and test data size, which is expected. These

experimental results strengthens our argument that each domain has got structural infor-

mation which can be exploited for classification purposes. These structural information

87

when translated to graphs using tree representation showed good performance for clas-

sification. Our document classification system was up to the challenge of finding similar

substructures in email folders though emails in folders may not exhibit significant similar

characteristics as they deal with diverse issues. This ability of find instances of similar

substructures and grouping them is done using inexact graph match. In summary, the

performance of the document classification system for multiple folders was consistent over

various folder and email traits with which we validate our premise for the adaptation of

graph mining techniques for classification.

6.4 Web Page Classification

For evaluation of web pages, we have conducted experiments on web collections

called the K-Series 5. The K-series consists of around 2,300 documents that belong to

20 different categories such as Art, Entertainment, Music, etc. A random selection of

850 documents have been used for experimental evaluation, and similar to the text clas-

sification methodology, Accuracy and Error rate are considered as performance metric.

Figure 6.17 m-InfoSift Vs Naive Bayes for Web page classification

5publicly available at ftp://cs.umn.edu/users/boley/PDDPdata/

88

Experiments carried on the K-corpus for comparison with Naive Bayes is shown

in Figure 6.17. The Naive bayes approach’s performance was consistently below the

performance of our document classification approach except for smaller training size. The

error rate of test documents being wrongly classified is shown in Figure 6.18. The rate

of test documents being wrongly classified is similar for a smaller training set. However,

for a larger training set our graph approach consistently performed better.

Figure 6.18 Error rate comparison:m-InfoSift Vs Naive Bayes for Web page classification

The strength of our approach lies in ranking the substructures globally across all

the document classes in the training set which in turn produces lower number of false

positives when compared to Naive Bayes. With the increase in the number of distinct

folders in the training set, the error rate also increases for both the approaches but when

compared with each other, our approach exhibits a superior performance. Experiments

were also conducted to study the classification due to exact and inexact graph match.

The results are shown in Figure 6.19. As expected, the performance of inexact graph

match was better than exact graph match.

As a summation, we have conducted exhaustive experiments across various domains

and presented our results of our findings. The ranking scheme proposed and developed

89

Figure 6.19 Exact Vs Inexact Graph Match for Web page classification

has shown consistent performance in terms of aiding multiple folder classification of

documents.

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this thesis, we have proposed a new ranking technique that is appropriate for

graphs and substructures that works well for multi-folder classification. The proposed

technique ranks the representative substructures generated from each document class in

the training set. This scheme of ranking overcomes the problem of having to depend on

the size of the folders in the training set which is common in conventional probability

based classification techniques. The ranking formula developed and tested in this thesis

is a generalization of the formula used for single folder classification. In other words, this

formula can also be applied for single folder classification to determine the confidence

with which an incoming document can be assigned to a folder.

The classifier based on the ranking works well with several textual domains such as

text repositories, email folders, and web pages collections as has been shown experimen-

tally. The validity of the global ranking technique has been established by the consistent

performance of the classifier over these domains. Various parameters that affect the rank-

ing and therefore classification of the test documents have been identified and analyzed

in detail. The results of our approach validate the effectiveness of the ranking technique

to adapt multiple category classification for the existing InfoSift framework.

Additional document preprocessing approaches like Stemming were incorporated

with the existing techniques like stop word elimination. The concept of feature subset

selection enables us to classify data even when the amount of data available for training

purpose is insufficient. Graph representations like tree and star have been studied in

order to represent the documents in training and test set to incorporate useful domain

information for classifying unknown samples. Inexact graph match forms the main basis

for classifying test document even when the training set exhibit diverse characteristics.

90

91

The ability to match instances of similar substructures as the same substructure boosts

the chances of a test document to get classified. Experiments have been conducted with

different graph representations on domains such as text, email and web pages and it can

be ascertained from that results that the tree structure gives a better accuracy. Different

values of thresholds have been employed during substructure discovery and classification

and the value of 0.1 for discovery process and 0.05 during classification showed better

performance. The classification threshold is lower than the discovery threshold in order

to reduce the misclassification of test documents. Finally,our approach has also been

shown to work for documents from different domains experimentally.

Although the performance of the classifier system is as expected of a classifier that

uses a mining subsystem, further work is needed to reduce the error rate to lower mis-

classification of the test documents. Some of the enhancements that can be done are

outlined in the following discussion. Though the Subdue system is used for substructure

discovery, it is not directly suitable nor built for classification tasks. Other classifying

techniques which take structure of the content into account can be delved upon to im-

prove classification accuracy. Currently, the pruning of the substructure is done after the

discovery of the substructures outside Subdue. In order to reduce the processing time,

pruning can be incorporated along with the substructure discovery process in Subdue.

Substructures with same MDL, frequency and size can be pruned once they are discov-

ered rather than pruning them separately to save time. A more detailed analysis of the

data sets can be done in order to derive more characteristics for better classification. For

example, the amount of diversity among the documents of the same class, the number

of heterogeneous or homogeneous documents in the folder, etc. needs to be looked upon

before it can be part of the training data set. Current graph representations have no

means to differentially weigh different parts of the graph. For instance, a greater signifi-

cance can be attached to the words in the title of the document rather when compared

to the words in the body. A scheme incorporating this concept can be used for better

classification.

92

In the case of email classification, the adaptation of the classifier to the changes in

the email folders is critical to achieve good classification accuracy. The current system

does not deal with changes as the whole classification scheme is based on static training

data set. Therefore, incremental learning mechanisms, such as selective learning and

batch learning, can be added in order for the classifier to adapt to the dynamic changes

in the email domain. The basic assumption in our approach of document classification

has been that an incoming test document belongs to a single folder only and the classifier

matches the test document with a single folder only. In the future, the test document

can be tried to classified to multiple folders using similarity techniques.

Currently, the accuracy of the document classification system has been compared

with Naive Bayes approach alone. Comparison besides naive Bayes or other ranking tech-

niques for the purpose of classification will reveal useful insights to enhance performance.

The future work also includes the development of a graphical user interface for the email

classifier to be coupled with an email agent. While this thesis focuses on the need for a

global ranking scheme and establishes the ranking formula developed for classification of

documents in textual domains, other application domains needs to be investigated. For

example, our ranking scheme can be adapted to check if a document already exists in

multiple categories in a patent database.

In conclusion, we believe that the global ranking technique developed will bridge

the gap between adapting graph mining techniques and document classification in regard

to multiple folder document classification.

REFERENCES

[1] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Addison

Wesley, 2006.

[2] M. Aery, “Infosift:adapting graph mining techniques for document classification,”

Master’s thesis, The University of Texas at Arlington, 2004. [Online]. Available:

http://www.cse.uta.edu/research/publications/Downloads/CSE-2003-39.pdf

[3] M. Kuramochi and G. Karypis, “Frequent subgraph discovery,” IEEE International

Conference on Data Mining, pp. 313–320, 2001.

[4] D. J. Cook and L. B. Holder, “Substructure discovery using minimum

description length and background knowledge,” Journal of Artificial Intel-

ligence Research, vol. 1, pp. 231–255, 1994. [Online]. Available: cite-

seer.ist.psu.edu/article/cook94substructure.html

[5] X. Yan and J. Han, “gspan:graph-based substructure pattern mining,” Proceedings

of the IEEE International Conference on Data Mining, 2002.

[6] T. Joachims, “Text categorization with support vector machines: Learning with

many relevant features,” ECML, pp. 137–142, 1998.

[7] C. Apte, F. Damerau, and S. M. Weiss, “Text mining with decision trees and decision

rules,” Conference on Automated Learning and Discovery, 1998.

[8] I. Molinier, “Is learning bias an issus on the text categorization problem?” Technical

Report LAFORIA-LIP6, Universite Paris VI, 1997.

[9] W. Lam and C. Ho, “Using a generalized instance set for automatic text categoriza-

tion,” In the Proceedings of the 21st Annual Internation ACM SIGIR Conference on

Research and Development of Information Retrieval (SIGIR’98), pp. 81–89, 1998.

93

94

[10] B. Masand, G. Linoff, and D. Waltz, “Classifying news stories using memory based

reasoning,” In the 15th Annual Internation ACM SIGIR Conference on Research

and Development of Information Retrieval (SIGIR’92), pp. 59–64, 1992.

[11] Y. Yang, “Expert network: Effective and efficient learning from human decisions

in text categorization and retrieval,” In the 17th Annual Internation ACM SIGIR

Conference on Research and Development of Information Retrieval (SIGIR’94), pp.

13–22, 1994.

[12] Y. Yang and C. G. Chute, “An example-based mapping method for text categoriza-

tion and retrieval,” ACM Transactions on Information Systems (TOIS), vol. 12(3),

pp. 252–277, 1994.

[13] C. Apte, F.Damerau, and S. Weiss, “Towards language independent automated

learning of text categorization models,” In the Proceedings of the 17th Annual

ACM/SIGIR conference, 1994.

[14] W. W. Cohen, “Text categorization and relational learning,” In the Twelfth Inter-

national Conference on Machine Learning (ICML’95), 1995.

[15] W. W. Cohen and Y. Singer, “Context-sensitive methods for text categorization,”

In SIGIR’96: Proceedings of the 19th Annual International ACM SIGIR Conference

on Research and Development of Information Retrieval, pp. 307–315, 1996.

[16] I. Moulinier, G. Raskinis, and J. Ganascia, “Text categorization: a symbolic ap-

proach,” In the Proceedings of the Fifth Annual Symposium on Document Analysis

and Information Retrieval, 1996.

[17] E. D. Wiener, J. O. Pedersen, and A. S. Weigend, “A neural network approach to

topic spotting,” in Proceedings of SDAIR-95, 4th Annual Symposium on Document

Analysis and Information Retrieval, Las Vegas, US, 1995, pp. 317–332. [Online].

Available: citeseer.ist.psu.edu/wiener95neural.html

95

[18] H. T. Ng, W. B. Goh, and K. L. Low, “Feature selection, perceptron

learning, and a usability case study for text categorization,” in Proceedings of

SIGIR-97, 20th ACM International Conference on Research and Development in

Information Retrieval, N. J. Belkin, A. D. Narasimhalu, and P. Willett, Eds.

Philadelphia, US: ACM Press, New York, US, 1997, pp. 67–73. [Online]. Available:

citeseer.ist.psu.edu/ng97feature.html

[19] A. K. McCallum and K. Nigam, “A comparison of event models for naive bayes text

classification,” In the 15th Annual Internation ACM SIGIR Conference on Research

and Development of Information Retrieval (SIGIR’92), pp. 59–64, 1992.

[20] L. D. Baker and A. K. McCallum, “Distributional clustering of words for text catego-

rization,” In Proceedings of the 21st Annual Internation ACM SIGIR Conference on

Research and Development of Information Retrieval (SIGIR’98), pp. 96–103, 1998.

[21] D. Koller and M. Sahami, “Heirarchically classifying text using very few words,” In

the 14th International Conference on Machine Learning (ICML’97), pp. 170–178,

1997.

[22] K. Tzeras and S. Hartman, “Automatic indexing based on bayesian inference net-

works,” In the 16th Annual Internation ACM SIGIR Conference on Research and

Development of Information Retrieval (SIGIR’93), pp. 22–34, 1993.

[23] G. Salton, “Developments in automatic text retrieval,” Science, vol. 253, pp. 947–

980, 1991.

[24] Y. Yang and X. Liu, “A re-examination of text categorization methods,” ACM

SIGIR, pp. 42–49, 1999.

[25] V. N. Vapnik, The Nature of Statistical Learning Theory. Springler, New York,

1995.

[26] ——, Estimate of Dependences based on Emperical Data [In Russian]. Nauka,

Moscow, 1979. (English Translation Springer Verlag, New York, 1982).

96

[27] R. B. Segal and J. O. Kephart, “Swiftfile: An intelligent assistant for organizing

e-mail,” Proceedings of AAAI 2000 Spring Symposium on Adaptive User Interfaces,

pp. 107–112, 2000.

[28] J. D. M.Rennie, “ifile:an application of machine learning to e-mail filtering,” Pro-

ceedings of KDD-2000 Text Mining Workshop,Boston Aug, 2000.

[29] M. Sahami, D. Heckerman, and E. Horovitz, “A bayesian approach to filtering junk

e-mail,” AAAI-98 Workshop on Learning for Text Categorization, 1998.

[30] G. Boone, “Concept Features in Re:Agent, an Intelligent Email Agent,”

in Proceedings of the 2nd International Conference on Autonomous Agents

(Agents’98), K. P. Sycara and M. Wooldridge, Eds. New York: ACM Press, 9–13,

1998, pp. 141–148. [Online]. Available: citeseer.ist.psu.edu/boone98concept.html

[31] T. Payne and P. Edwards, “Interface agents that learn: An investigation of learning

issues in a mail agent interface,” Applied Artificial Intelligence, pp. 1–32, 1997.

[32] P. Clark and T. Niblett, “The cn2 induction algorithm,” Machine Learning, pp.

261–283, 1989.

[33] W. Cohen, “Learning to classify English text with ILP methods,” in Advances in

Inductive Logic Programming, L. De Raedt, Ed. IOS Press, 1996, pp. 124–143.

[Online]. Available: citeseer.ist.psu.edu/cohen96learning.html

[34] W. W. Cohen, “Fast effective rule induction,” In Machine Learning: Proceedings

of the Twelfth International Conference, Lake Taho, California, Morgan Kaufmann,

1995.

[35] E. Crawford, J. Kay, and E. McCreath, “Automatic induction of rules for e-mail clas-

sification,” Proceedings of the Sixth Australasian Document Computing Symposium,

Coffs Harbour, Australia, 2001.

[36] J. Heflman and C. Isbell, “Ishmail: Immediate identification of important informa-

tion, at&t labs,” 1995.

97

[37] J. Catlett, “Megainduction: A test flight,” International Conference on Machine

Learning, 1991.

[38] Email Classification with Temporal Features, 2004.

[39] G. Attardi, A. Gulli, and F. Sebastiani, “Automatic we page categorization by link

and context analysis,” In Chris Hutchison and Gaetano Lanzarone (eds.), Proc. of

THAI’99, pp. 105–119, 1999.

[40] A. Schenker, M. Last, H. Bunke, and A. Kandel, “Classification of web documents

using a graph model,” icdar, vol. 01, p. 240, 2003.

[41] H. Bunke and K. Shearer, “A graph distance metric based on maximal common

subgraph,” Pattern Recognition Letters, pp. 753–758, 2001.

[42] D. Tax and R. Duin, “Using two-class classifiers for multiclass classification,” 2002,

pp. II: 124–127.

[43] E. L. Allwein, R. E. Schapire, and Y. Singer, “Reducing multiclass to binary:

A unifying approach for margin classifiers,” in Proc. 17th International Conf.

on Machine Learning. Morgan Kaufmann, San Francisco, CA, 2000, pp. 9–16.

[Online]. Available: citeseer.ist.psu.edu/allwein00reducing.html

[44] T. Hastie and R. Tibshirani, “Classification by pairwise coupling,” in Advances

in Neural Information Processing Systems, M. I. Jordan, M. J. Kearns,

and S. A. Solla, Eds., vol. 10. The MIT Press, 1998. [Online]. Available:

citeseer.ist.psu.edu/hastie98classification.html

[45] A. Berger, “Error-correcting output coding for text classification,” 1999. [Online].

Available: citeseer.ist.psu.edu/article/berger99errorcorrecting.html

[46] T. G. Dietterich and G. Bakiri, “Solving multiclass learning problems via

error-correcting output codes,” Journal of Artificial Intelligence Research, vol. 2,

pp. 263–286, 1995. [Online]. Available: citeseer.ist.psu.edu/dietterich95solving.html

98

[47] E. B. Kong and T. G. Dietterich, “Error-correcting output coding corrects bias and

variance,” in International Conference on Machine Learning, 1995, pp. 313–321.

[Online]. Available: citeseer.ist.psu.edu/kong95errorcorrecting.html

[48] N. S. Ketkar, L. B. Holder, and D. J. Cook, “Subdue: compression-based frequent

pattern discovery in graph data,” in OSDM ’05: Proceedings of the 1st international

workshop on open source data mining. New York, NY, USA: ACM Press, 2005, pp.

71–76.

[49] J. Rissanen, “Stochastic complexity in statistical enquiry,” World Publishing Com-

pany, 1989.

[50] H. Bunke and G. Allerman, “Inexact graph match for structural pattern recogni-

tion,” Pattern Recognition Letters, pp. 245–253, 1983.

[51] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection.” Jour-

nal of Machine Learning Research, vol. 3, pp. 1157–1182, 2003.

BIOGRAPHICAL STATEMENT

Aravind Venkatachalam was born in Fahaheel, Kuwait in 1982. He did his primary

schooling in Kuwait and his secondary schooling in India. He received his Bachelors of

Technology degree from the University of Madras in 2004 where he won the ’Best Student

Award’. His interest in research brought him to The University of Texas at Arlington

where he later obtained his Masters degree in Computer Science and Engineering in 2007.

His interest includes Data Mining, Information Retrieval and Information Integration.

99

