

A DATAFLOW APPROACH TO EFFICIENT CHANGE DETECTION OF

HTML/XML DOCUMENTS IN WEBVIGIL

The members of the Committee approve the master’s
thesis of Anoop Sanka

Sharma Chakravarthy
Supervising Professor ______________________________________

Leonidas Fegaras ______________________________________

Alp Aslandogan ______________________________________

Copyright © by Anoop Sanka

All Rights Reserved

A DATAFLOW APPROACH TO EFFICIENT CHANGE DETECTION OF

HTML/XML DOCUMENTS IN WEBVIGIL

by

ANOOP SANKA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2003

 iv

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dr. Sharma Chakravarthy,

for giving me an opportunity to work on this challenging topic and providing me ample

guidance and support through the course of this research.

I would like to thank Dr. Leonidas Fegaras and Dr. Alp Aslandogan for serving

on my committee.

I am grateful to Ramji Beera, Raman Adaikkalavan, Hari Prasad Yalamanchali,

Naveen Pandrangi, and Jyoti Jacob for their invaluable help and advice during the

implementation of this work. I would like to thank all my friends in the ITLAB for their

help, support and encouragement.

I would like to acknowledge the support of the Office of Naval Research, the

SPAWAR System Center-San Diego & by the Rome Laboratory (grant F30602-01-2-

0543), and by NSF (grant IIS-0123730) for this research work.

I am thankful to my parents and brother for their constant support and

encouragement throughout my academic career without which I would not have reached

this position.

August 12, 2003

 v

ABSTRACT

A DATAFLOW APPROACH TO EFFICIENT CHANGE DETECTION OF

HTML/XML DOCUMENTS IN WEBVIGIL

Publication No. ______

Anoop Sanka, MS

The University of Texas at Arlington, 2003

Supervising Professor: Supervising Professor Name

Data on the web is constantly increasing. Many a times, users are interested in

specific changes to the data on the web. Currently, in order to detect changes of interest,

users have to poll the pages periodically and check for the changes they are interested

in. Efficient and effective change detection and notification is critical in many

environments where a lot of resources are wasted in monitoring changes to the web

manually. WebVigiL is a change monitoring system, which efficiently monitors

changes to the page on behalf of the user and notifies the changes in a timely manner. It

is a general-purpose, server based information monitoring and notification system.

This thesis investigates how active capability (ECA Rules) has been adapted for

change monitoring. WebVigiL supports several types of changes such as keywords,

 vi

phrases, links, images, and any change. A change detector, which facilitates monitoring

primitive (above types) and composite (combinations of above types) changes to

HTML/XML pages has been designed and implemented. Algorithms for detecting

composite changes are discussed. Grouping techniques for efficient change detection

are also discussed.

 vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. iv

ABSTRACT... v

LIST OF ILLUSTRATIONS.. x

LIST OF TABLES .. xii

Chapter

 1. INTODUCTION……….. 1

 2. RELATED WORK…………... 4

 2.1 AIDE .. 4

 2.2 WebGUIDE ... 5

 2.3 NetMind... 5

 2.4 WebMon.. 6

 2.5 WebCQ ... 6

 2.6 Xyleme ... 7

 3. WEBVIGIL ARCHITECTURE .. 9

 3.1 Sentinel... 9

 3.2 Verification Module... 11

 3.3 Knowledge Base... 12

 3.4 Change Detection Module... 12

 viii

 3.4.1 Detection Algorithms... 13

 3.5 Fetch Module ... 13

 3.6 Version Management Module.. 14

 3.7 Presentation Module ... 15

 3.7.1 Change Presentation ... 15

 3.7.2 Change Notification.. 16

 4. ECA RULE GENERATION... 18

 4.1 Local Event Detector .. 19

 4.2 Activation/Deactivation.. 25

 4.3 Fetching.. 28

 5. CHANGE DETECTION GRAPH.. 33

 5.1 Introduction.. 33

 5.2 Naïve Approach ... 34

 5.3 Hash-Based Approach.. 35

 5.4 Change Detection Graph... 36

 5.4.1 Sentinel Grouping.. 40

 5.4.2 Illustration Of Composite Change Detection................................ 49

 5.5 Parallelizing Change Detection... 51

 6. STORAGE AND RETRIEVAL OF PAGES... 53

 6.1 Introduction.. 53

 6.2 Hash-based Approach.. 54

 6.3 Directory-based Approach.. 54

 ix

 6.4 Experimental evaluation... 55

 7. IMPLEMENTATION .. 58

 7.1 Implementation of ECA Rule Generation.. 58

 7.2 Implementation of Change Detection Graph... 63

 7.2.1 Composite Change Detection.. 66

 7.3 Multithreading Issues .. 70

 7.3.1 Multithreading the Change Detection... 70

 7.3.2 Synchronization Issues .. 71

 7.3.3 Implementation of Locks... 77

 8. CONCLUSIONS AND FUTURE WORK .. 80

 8.1 Conclusion... 80

 8.2 Future work... 81
Appendix

A. HASH FUNCTIONS ... 83

REFERENCES ... 84

BIOGRAPHICAL INFORMATION .. 87

 x

LIST OF ILLUSTRATIONS

Figure Page

 3.1 WebVigiL Architecture.. 10

4.1 Periodic Event... 29

4.2 Change Detection Module ... 31

5.1 Naïve Approach.. 35

5.2 Hash-Based Approach.. 36

5.3 Change Detection Graph... 37

5.4 Primitive Change Example ... 39

5.5 Compare Options with Every:4.. 42

5.6 Grouping Data Structure.. 43

5.7 Grouping Algorithm... 44

5.8 Grouping Example... 45

5.9 Composite Change Detection Graph.. 46

5.10 Composite Example .. 47

5.11 Composite Change Detection Example .. 50

5.12 Parallelism in CDG.. 51

6.1 Build Time Analysis... 55

6.2 Reconstruction + Seek Time.. 56

7.1 CDG Class Hierarchy ... 63

 xi

7.2 Complete System.. 69

 7.3 Class Diagram of Lock Package.. 76

 7.4 Lock Hash Table Data Structure ... 78

 7.5 Locking Algorithm for URL Nodes.. 79

 xii

LIST OF TABLES

Table Page

 5.1 Change Types Supported.. 38

 5.2 Compare-Options Supported .. 42

 5.3 Semantics of Composite Event... 45

 7.1 ECA Agent Class API... 59

 7.2 Member Functions of URLNode Class.. 64

 7.3 Description of ChangeList and ListOfChangeLists Class..................................... 65

 7.4 Member Functions of Sentinel Class .. 65

 7.5 Member Functions of Change Type Node Class .. 66

 7.6 Member Functions of NOT Class.. 67

 7.7 Member Functions of OR Class... 67

 7.8 Member Functions of AND Class.. 69

 7.9 Data Structures and Synchronization.. 75

 1

CHAPTER 1

INTRODUCTION

The World Wide Web has become one of the most important media for sharing

information resources and continues to grow at an alarming rate. Users surfing the web, may

either be searching for specific information or simply browsing the web. Different users may

be interested in knowing changes to specific web pages and their contents (or even

combinations there-of), and want to know when those changes take place. For example, tech-

savvy users may want to monitor new technologies and new research results from

engineering fields and business information of competitors. Such information would be

essential for maintaining the competitive edge. Students may want to know when the web

contents of the courses (they have registered for) change; users may want to know when

news items are posted in a specific context (appearance of key words, phrases etc.) they are

interested in. This needs periodic polling of the web (i.e., retrieval of one or more pages) to

see whether the information has changed. Generally, to discover information of interest the

users need to constantly monitor certain web sites and web pages. This is a drain on the

bandwidth as well as labor intensive.

In large software development projects, there exist a number of documents, such as

requirements analysis, design specification, detailed design document, and implementation

documents. The life cycle of such projects is in years (and some in decades) and changes to

various documents of the project take place throughout the life cycle. Typically, a large

number of people are working on the project and managers need to be aware of the changes

to any one of the documents to make sure the changes are propagated properly to other

 2

relevant documents and appropriate actions are taken. Large software developments happen

in distributed environments.

Today, information retrieval is mostly done using the pull paradigm, where the user is

responsible for posing the appropriate query (or queries or initiating the search) to retrieve

needed information. The burden of knowing changes to the contents of pages in interested

web sites is on the user, rather than on the system. Although there are a number of

applications (airlines, for example) that selectively send interested information periodically,

the approach typically uses a mailing list to send the same information to all users. Other

tools that provide real-time updates in the web context (e.g., stock updates) are customized

for a specific purpose and have to be running continuously and underneath still uses a naïve

pull paradigm to refresh the screen periodically. In general, the ability to specify changes to

arbitrary documents and get notified according to user-preferred ways will be useful for

reducing/avoiding the wasteful navigation of web in this information age. In other words,

users are interested in a variety of information from different sources and there is a real need

for systems to be developed to support the task of automatically identifying changes and

notifying the changes to the users in a timely and effective manner. The proposed system –

WebVigiL provides a powerful way to disseminate information efficiently without sending

unnecessary or irrelevant information to the users. It also frees the user from having to

constantly monitor for changes using the pull paradigm.

Active rules have been proposed as a paradigm to satisfy the needs of many database

and other applications that require a timely response to situations. Event–Condition–Action

(or ECA) rules are used to capture the active capability in a system. The utility and

functionality of active capability (ECA rules) has been well established in the context of

databases. In order for the active capability to be useful for a large class of advanced

 3

applications, it is necessary to go beyond what has been proposed/developed in the context of

databases.

In the case of large-scale network centric environments such as web, users might be

interested in monitoring changes to a particular page or a part of the page such as images,

links, keywords and etc. In most cases, user’s interest may not pertain to images, links and

keywords only, but to a combination of them. Web pages that are monitored for detecting the

changes may be of type HTML or XML. Changes to pages and changes in images, links,

keywords and etc., act as the primitive events themselves when mapped to the ECA rules and

their combination form composite events. Thus, some of the techniques developed for active

databases, when extended appropriately will provide a solution to detect changes in the web.

This thesis focuses on developing a framework and to provide a selective propagation

approach to detect changes that are of interest to the users in the web and other large-scale

network-centric environments by adapting and extending the existing active technology.

This thesis is organized as follows. Chapter 2 explains the existing change detection

and notification systems and explains how WebVigiL differs from the rest. Chapter 3

presents an overview of the current WebVigiL architecture. Chapter 4 explains the ECA Rule

generation and how Local Event Detector (LED) is used to facilitate the process. Chapter 5

discusses the various approaches and the architecture of the Change Detection Graph used

for detecting primitive and composite changes. Chapter 6 explains the Storage and Retrieval

of pages used for storing the pages fetched for monitoring. Chapter 7 extends the above to

explain the implementation details. Chapter 8 has conclusions and future work.

 4

CHAPTER 2

RELATED WORK

Several tools are available to assist users to track when the web pages of interest have

changed. Most of the tools offer service from a centralized server or a client’s machine.

Client-based tools focus mainly when to fetch the pages of interest rather than how the pages

have changed. This is because of the complexity involved in keeping track of changes to the

content for numerous versions. If specific changes to a page have to be detected, a

differencing tool has to run on the client machine. In spite of having such a tool, when the

user wants to track composite changes (for example, links AND images change on a page)

additional information has to be maintained. And as the requirements grow, the complexity at

the client end also increases. This gave way to the server-based systems. Server based tools

track pages that are previously registered or submitted by users and notifies them via email or

over the web upon request. The following are some of the server-based tools developed for

change monitoring to web pages.

2.1 AIDE (AT&T Internet Difference Engine)

AIDE [1] is both client and server based. It is a collection of tools. The tools consist

of: w3newer, which detects changes to pages; snapshot, which permits a user to store a copy

of the page and to compare any subsequent versions of the page; HtmlDiff, the differencing

tool used to compute the changes between two pages. W3newer runs on the client machine

and when observes a change on a page, it informs the snapshot to save a copy. Snapshot is an

 5

external service that archives the versions of the page and whenever a new version of a page

arrives to the system through w3newer, it invokes the HtmlDiff. When the user requests the

changes, the snapshot is contacted. The user could obtain the difference between any

versions of the page. Because of its architecture the necessity of grouping users who monitor

the same page does not arise. The drawbacks of this system are that the user cannot specify

customized changes (links, images, keywords) or composite change (links AND images) on a

page. Changes to XML pages are not supported.

2.2 WebGUIDE

WebGUIDE is an extension to AIDE. It consists of the following tools: AIDE and

Ciao [2]. Ciao is a graphical navigator that allows users to query and browse structural

connections embedded in a document repository. The same drawbacks described for AIDE

apply to this system as well.

2.3 NetMind

NetMind [3] formerly known as URL-minder provides keyword or text-based change

detection and notification service over web pages. NetMind detects changes to links, images,

keywords and phrases in an HTML page. The medium of notification to users about the

change is via e-mail or mobile phone. The user might be interested in a change to a page but

not when there are changes to articles or some set of words the user is not interested. Such

change detection request cannot be specified. There is no support for composite changes

(when both links AND images change) on a page. There is no provision for the user to come

back later and view the last changes that have been detected. The frequency of when to poll

the page is predefined. The user cannot explicitly specify when to poll the page for change

detection and on what versions of page the change should be computed. Since the

 6

implementation is hidden behind a CGI interface, how changes are detected is not known.

Change detection to XML pages is not supported.

2.4 WebMon

WebMon [4] is proposed for tracking information change over the Internet. The user

can specify the web page to be monitored, select the monitoring function and state the

monitoring frequency. The monitoring function can be any customized change such as

change in the time stamp, links, images or phrases. The change detection is based on the

structure of the page. The assumption is that, HTML pages have stable structure. Issues such

as grouping users having overlapping monitoring requests are not considered. Change

detection to XML pages is not supported. A combination of changes on a page is not

supported.

2.5 WebCQ

WebCQ [5] is a prototype system for large-scale web information monitoring and

delivery, which makes use of the structure present in hypertext and the concept of continuous

queries. WebCQ is designed to discover and detect changes to the web pages and to provide

a personalized notification of the changes to the users. Users monitoring requests are

modeled as continuous queries on the web. WebCQ change detection robot is responsible for

discovering and detecting changes to web pages. The authors specify that composite changes

can be detected, but currently the system does not seem to support them. WebCQ lacks a fine

grouping strategy. For example, the change is computed more than once for two users having

the same set of keywords. The grouping is based on a single keyword rather than a set of

keywords. Only change detection to HTML documents is supported. The user has to set the

polling frequency explicitly, the system does not tune to the change frequency of the page

 7

i.e., the system does not learn from the polling patterns. The input specification language is

limited. The user cannot specify the monitoring request to be dependent on the status of other

monitoring requests. Change is always computed between the successive versions of the

page. The user cannot specify what versions (window concept) of the page should participate

in change computation.

2.6 Xyleme

In [6], the authors present a Dynamic Warehouse for Web -- Xyleme, which monitors

the flow of incoming documents. The flow of documents consists of XML pages and HTML

pages. The authors present a subscription language for specifying the pages to be monitored.

Depending on type of information requested by the user the pages are monitored using either

monitoring or continuous query. For query of type monitoring, changes to a page are

discovered when the system reads the page and for continuous queries changes are

discovered by regularly asking the same query. Composite changes are also supported. The

user cannot specify the monitoring request to be dependent on the status of other monitoring

requests. The users also cannot specify what versions of the page should participate in

change computation.

The following are some of the other distinct characteristics of WebVigiL:

 1) Properties of monitoring requests can be inherited: The user has the option of specifying

the monitoring request to be dependent on the status of other monitoring requests. One can

specify the start/end of a request to be the start/end of another request.

 2) Flexible specification of versions: All the above systems compute changes between two

successive pages. In WebVigiL the user can explicitly specify the pages that can participate

in change detection.

 8

None of the above systems except Xyleme use the ECA (Event-Condition-Action)

paradigm for monitoring the web. ECA Rules help in adding new functionality to the system

seamlessly.

9

CHAPTER 3

WEBVIGIL ARCHITECTURE

WebVigiL is a change detection and notification system, which can monitor and

detect changes to unstructured documents in general. The current work addresses

HTML/XML documents that are part of a web repository. WebVigiL aims at investigating

the specification, management, and propagation of changes as requested by the user in a

timely manner while meeting the quality of service requirements. Figure 3.1 summarizes the

high level architecture of WebVigiL. Users specify their interest in the form of a Sentinel that

is used for change detection and presentation. Information from the sentinel is extracted and

stored in a data/knowledge base (currently Oracle) and is used by the other modules in the

system. The functionality of each module in the architecture shown in Figure 3.1 is described

briefly in the following sections.

3.1 Sentinel

WebVigiL provides an expressive language with well-defined semantics for

specifying the monitoring requirements pertaining to the Web. Each monitoring request is

termed a Sentinel. Briefly, the specification language supports the following features:

• A suite of change types at appropriate levels of granularity that are of interest to a

large class of users. For example, changes only at the level of a page may be

overkill in many cases. One may be looking for changes to keywords or phrases

 10

of interest. Also multiple or composite changes (for example, changes to links and

changes to images) to a page are supported.

• Ability to monitor a page based on the actual change frequency, or at a user-

specified frequency. The specification of the actual change frequency relieves the

user of knowing when the page changes and requests the system to do its best

effort. A learning algorithm (based on history) is used for this purpose.

• Multiple notification paradigms such as e-mail, fax, dashboard etc.

• Multiple ways to compare changes (e.g., pair-wise, every n, or moving n).

• Specification of a sentinel in terms of previously defined sentinels. Also, start and

stopping of a sentinel may be based on other sentinels. This provides a

mechanism for tracking correlated changes.

Figure 3.1 WebVigiL Architecture

 11

For example consider the Scenario: Jill wants to be notified daily by e-mail about

changes to links and images to the page “http://www.cnn.com” starting from December 2,

2002 to January 2, 2003. The sentinel generated for the above scenario is as follows:

 Create Sentinel s1 Using http://www.cnn.com

 Monitor all links AND all images

 Fetch every 2 days

 From 12/02/02 To 01/02/03

 Notify By email jill@aol.com Every 4 day

 Compare pairwise

A detailed explanation is given in [7].

3.2 Verification Module

Verification module provides the required communication interface between the

system and the user for specification of sentinels. User requests (sentinels) are processed for

syntactic and semantic correctness. Valid sentinels are populated in Knowledge base (Oracle

is used currently) and a notification of the valid sentinels is sent to the change detection

module. In general the functionality of verification module can be summarized as

• Load balancing of syntactic validation between client and server, thereby

reducing excessive communication between the client and the server (e.g.,

validating start date set to a date in past at the client’s end).

• Semantic validation of sentinels at the server, as the dependency information

specified in the sentinel is available at the server. For example if the start of a

sentinel s1 was specified on the end of another sentinel s2, and at the time of

specification if s2 had already expired an error should be thrown to the user.

 12

3.3 Knowledge Base:

Knowledge Base is a persistent repository containing meta-data about each user,

number and names of sentinels set by each user, and details of the contents of the sentinel

(frequency of notification, change type etc.). The details of a sentinel need to be stored (in a

persistent and recoverable manner) as several modules use this information at run time. For

example, the change detection module detects changes based on sentinel information such as

the URL to be monitored, the change and compare specifications, and the start and end of a

sentinel. The fetch module fetches the pages based on the user specified fetch policy. The

notification module requires appropriate contact information and notification mechanism to

notify the changes. User information, such as the sentinel installation date, and the page

versions for change detection and storage path of detected changes also need to be stored to

allow a user to keep track of his/her sentinels.

To satisfy all the above requirements, the metadata (the WebVigiL Knowledge Base)

generated and used by different modules is stored in a relational DBMS. The monitoring

request is parsed and sentinel properties are extracted, validated, and stored in the KB. For

example, the following parameters are stored for notification: the frequency of notification

and the mechanism to notify the user. In addition, important run time parameters computed

by different modules, such as the status of the created sentinels and parameters of the change

detection module are also persisted in the KB. Finally, relational database provides

mechanisms to extract the required information in a convenient manner in the form of queries

or using the JDBC Bridge.

3.4 Change Detection Module

Every valid user request arriving at WebVigiL, initiates a series of operations that

occur at different points in time. Some of these operations are: creation of a sentinel (based

 13

on start time), monitoring the requested page, detecting changes of interest, notifying the

user(s) of the change, and deactivation of sentinel. In WebVigiL, for every sentinel, the ECA

rule generation module generates ECA rules [8] to perform some of these operations. This

module is responsible for:

1. Activating and deactivating sentinels

2. Constructing and Maintaining Change Detection Graph

3. Generating Fetch rules.

This will be detailed in later chapters of this thesis.

3.4.1 Detection algorithms

A detection algorithm associated with each change type computes changes between

two versions of a page with respect to that change type. For a change to be detected, the

object of interest is extracted from the available versions of the page depending upon the

change type. Change detection algorithms have been developed to detect different types of

changes to HTML and XML pages. The change types currently supported are: links, images,

all words, keywords and phrase. Change to links, images, words and keyword(s) is captured

in terms of insertion or deletion. For phrases in addition to insertion/deletion updates are also

detected. Refer [7, 9] for more detail.

3.5 Fetch Module

The Fetch Module [9] of WebVigiL is responsible for retrieving the pages registered

with it and thus serves as a local wrapper for the task of fetching pages depending upon the

user set fetching policy i.e., fetching a page after a specified interval (set by the user) or

fetching the page on change (the system determines the frequency of fetching based on actual

change frequency of the pages). The Fetch module informs the version controller of every

 14

version it fetches, stores it in the page repository and notifies the change detection graph (or

CDG) of a successful fetch. The wrapper fetches the page only when there is change in the

properties of the pages. By properties, we mean the size of the page and the last modified

time stamp. When there is a change in time stamp of the page with an increase or decrease in

page size, the wrapper fetches and caches the page. In cases where time stamp is modified,

but the page size remains the same, the wrapper fetches and calculates the checksum of the

page. This version of the page is cached only if the calculated checksum differs from the

checksum of the cached (previous) version of this page.

3.6 Version Management

An important feature of WebVigiL architecture is its server-based repository service

(Version controller) that archives and manages versions of pages. WebVigiL retrieves and

stores only those pages needed by a sentinel. The primary purpose of the repository service is

to reduce the number of network connections to the remote web server, thereby reducing

network traffic. When a remote page-fetch is initiated, the repository service checks for the

existence of the remote page in its cache and if present, the latest version of the page in the

cache is returned. In cases of cache miss, the repository service requests that the page be

fetched from the appropriate remote server. Subsequent requests for the web page can access

the page from the cache instead of repeatedly invoking a fetch procedure.

 The repository service reduces network traffic and latency for obtaining the web

page because WebVigiL can obtain the “Target Web Pages” from the cache instead of having

to request the page directly from the remote server. The quality of service for the repository

service includes managing multiple versions of pages without excessive storage overhead.

 15

3.7 Presentation Module

 The principal functionality of this module is to clearly present the detected

differences between two web pages to the user. Therefore, computing and displaying the

detected differences is very important.

3.7.1 Change Presentation

Different methods of displaying changes used by the existing tools are: i) merging

two documents, ii) displaying only the changes and iii) highlighting the differences in both

the pages. Summarizing the common and changed data into a single merged document has

the advantage of displaying the common portions only once. The disadvantage of this

approach is that it is difficult for the user to view the changes when they are large in number.

Displaying only the computed differences is a better option when the user is interested in

tracking changes to multiple pages or when the number of changes is large. But, highlighting

the differences by displaying both the pages side-by-side is preferable for changes like “any

change” and “phrase change”. In this case, the detected differences can be perceived better if

the change in the new page is shown relative to the old page.

Because WebVigiL will track multiple types of changes on a web page, and

eventually notify using different media (email, PDA, laptop etc.), combination of all

presentation styles discussed above will be relevant, as the information to be notified will

vary depending on factors such as notification method, number of detected differences and

type of changes.

 16

3.7.2 Change Notification

 Users need to be notified of detected changes. The mechanism selected for

notification is important especially when multiple types of devices with varying capabilities

are involved. What, when and how to notify are three important issues for notification.

3.7.2.1 Presentation Content

Presentation content should be concise and lucid. Users should be able to clearly

perceive the computed differences in the context of his/her predefined specification. The

notification report could contain the following basic information:

• The change detected in the latest page relative to the reference page

• User specified type of change like “any change”, “all words” etc.

• URL for which the change detection module is invoked.

• Small summary explaining the detected changes.

This could include status of changes such as insert, delete and changed for certain

type of user-defined types of changes such as “images”, “all links” and “keywords” and/or

the different timestamps indicating the modification, polling, change detection and

notification date. The size of the notification report will depend upon the maximum

information that can be sent to a user by satisfying the network quality of service

requirements.

3.7.2.2 Notification frequency

A detected change can be notified in two ways: i) notify immediately when the

change is detected or ii) notify after a fixed time interval. The user may want to be notified

immediately of changes on particular pages. In such cases, immediate notification should be

sent to the user. Alternatively, frequency of change detection will be very high for web pages

 17

that are modified frequently. Since frequent notification of these detected changes may

become a bottleneck on the network, it is preferable to send the notification periodically. The

notification has to be sent to the user taking into consideration the QoS constraints. The

system should incorporate the flexibility to allow users to specify the desired frequency of

notification. For example, in sentinel s1, Jill wants to be notified every 4 days, irrespective of

when the changes are detected.

3.7.2.3 Notification methods

Different notify options such as email, fax, PDA and interactive, can be used for

notification. Interactive is a retrieval-based notification approach where the user retrieves the

detected changes as and when needed. A dashboard will be provided to the user to view and

query the changes generated by his/her sentinels.

WebVigiL architecture shown in the Figure 3.1 has five modules and many

components within them. This thesis deals mainly with change detection module along with

fetch and version management modules. In the change detection module, ECA rule

generation and change detection graph components are addressed. In the fetch module, event

based fetching and in the version management module, storage and retrieval of pages

components are addressed. All the modules along with their components are discussed in the

following chapters.

 18

CHAPTER 4

ECA RULE GENERATION

Every valid user request arriving at WebVigiL initiates a series of operations that

occur at different points in time. Some of these operations are: activating a sentinel (based

on start time), monitoring the requested page, detecting changes of interest, notifying the

change to the user(s), and deactivating a sentinel (based on end time). In WebVigiL, for

every sentinel, the ECA rule generation module generates ECA rules [8, 10] to perform some

of these operations.

Briefly, an event-condition-action rule has three components: an event (occurrence of

an event), a condition (checked when the associated event occurs), and an action (operations

to be carried out when the condition evaluates to true). The ECA paradigm has been used for

monitoring the database state in active databases and as a stand-alone concept for monitoring

objects in applications (both centralized and distributed [11]). As part of the Active Object-

oriented system [12, 13], a local event detector (LED) has been developed as a library that

can be used to declare events and associate rules to be executed when events occur in a

seamless manner. It is actually an event detector that has been implemented to detect events

in java applications and execute rules defined on them. Primitive events (as method

executions) and temporal events (both absolute and relative time), as well as composite

events are supported in LED. The existing event specification language “SNOOP” [14] is

used for specifying composite events. WebVigiL uses Periodic event operator for change

 19

detection and PLUS operator for activation and deactivation of sentinels. ECA rules provide

an elegant mechanism for supporting asynchronous executions based on events (temporal or

otherwise).

This chapter provides an overview of the tools/components used in this module and

discusses how ECA rules are used for: i) activation and deactivation of sentinels, and ii) for

generating fetch rules for retrieving pages.

4.1 LED (Local Event Detector)

4.1.1 Primitive Event
An event is an occurrence of interest at a specific point in time. Primitive events are

the elementary occurrences and are classified into domain-specific events (e.g., database,

oodb, WebVigiL), temporal, and explicit events. Domain-specific events are specific to a

domain and are associated with the manipulation of data in that domain (such as the creation,

deletion, or insertion that are executed over a period of time in an RDBMS). Event modifiers

(begin and end) were introduced to transform operations that take an interval into an

instantaneous event. In other words, the event modifiers (begin and end) are used to map the

logical events at the conceptual level to physical events. The begin event modifier denotes

the starting point of an event and the end event modifier denotes the ending point. Temporal

events correspond to absolute and relative temporal events. The absolute temporal event is an

event associated with an absolute value of time. For example, 4 P.M. on July 4, 1999 is an

absolute event. The relative temporal event is an event corresponding to a specific point on

the time line, which is an offset from another time point (specified either as absolute or as an

 20

event). Explicit (also termed abstract) events are explicitly defined in an application, but

their occurrences are either detected outside of the application or conveyed to the application

or the application explicitly raises those events.

4.1.2 Composite Events
A composite event is an event that is composed of primitive events and/or other

composite events by applying Snoop [14] event operators such as OR, AND, SEQUENCE,

NOT. In order words, the constituent events of the composite event can be primitive events

and/or previously defined composite events.

4.1.3 Snoop Event Operators
The event operators are used to construct composite events. Some of these event

operators and its point semantics [14] are described briefly in the following section. The

upper case letter E, which represents an event type, is a function from the time domain on the

Boolean values. The function is given by

E (t) = True if an event type E occurs at time point t

False otherwise

• Conjunction: AND (?)

Conjunction of two events E1 and E2, denoted by E1 ? E 2 is applied when E1 occurs

and E 2 occurs in any arbitrary order. Formally,

(E1 ? E2) (t) = (E1 (t1) ? E2 (t)) ? ((E1 (t) ? E2 (t1))

and t1 ≤ t

 21

• Sequence (;)

The sequence of two events E1 and E2, denoted by E1 ; E 2 occurs when E1 happens

before E2. The timestamp of occurrence of E1 is less the timestamp of occurrence E2.

Formally,

(E1; E1) (t) = E1 (t1) ? E2 (t) and t1 < t

• Periodic Operator (P)

The periodic operator, denoted by P (E1, [t], E3) is used to express a periodic event

that repeats itself within a constant and finite amount of time. The event P is signaled for

every amount of time t in the half-open interval (E1, E3]. Formally,

P (E1, [TI], E3) (t) = (E1(t1) ? ~ E3(t2))

and t1 < t2 and t1 + x * TI = t for some 0 < x < t and t2 ≤ t

where TI is a time specification.

• Plus (+)

The plus operator denoted by E1+ [T] is applied when T time units are elapsed after

E1 occurs.

4.1.4 Parameter Context
Four parameter contexts — recent, chronicle, continuous, and cumulative — were

introduced to provide a mechanism for capturing meaningful application semantics and

reduce the space and computation overhead for the detection of composite events using the

point semantics described above. The contexts are defined by using the notions of initiator

and terminator for events. An event that initiates the occurrence of a composite event is

 22

termed the initiator of the composite event. An event that completes the detection of a

composite event is denoted as the terminator of the composite event. For example, a

composite event (E1 ? E2 ? E3) has E1 as initiator and E3 as terminator.

• Recent:

In the recent context, only the most recent occurrence of the initiator (when there are

multiple instances of the same event) for any event that has started the detection of that event

is used. When the event occurs, all the occurrences of events, those are used in the parameter

relation and cannot be initiators of that event in the future, are deleted. In this context, not all

occurrences of a constituent event will be used in detecting a composite event. Furthermore,

an initiator of an event will continue to initiate new event occurrences until a new initiator

occurs.

• Chronicle:

In the chronicle context, the initiator-terminator pair is unique for an event

occurrence. The oldest initiator is paired with the oldest terminator for each event. When

event occurs, the occurrences of the events are deleted. The event occurrence can be used at

most once for computing the parameters of the composite event.

• Continuous :

 In the continuous context, each initiator of an event starts a separate detection of that

event. A terminator event occurrence may detect one or more occurrences of the same event.

The initiator and terminator are discarded after an event is detected.

• Cumulative:

 23

In the cumulative context, all occurrences of an event type are accumulated as

instances of that event until the event is detected. When the event occurs, all the occurrences

that are used for detecting are discarded.

4.1.5 Coupling Modes
In early systems such as POSTGRES [15], condition evaluation and action execution

were done immediately after the event was detected. However, in some situations this is too

restrictive. For integrity checks, condition evaluation and action execution need to be done at

the end of a transaction before it commits. Coupling modes were introduced [16] to specify a

relative point in time where condition evaluation and action execution should take place after

the event is detected, with the constraint that the action will be performed only when the

condition is satisfied. There are three coupling modes:

• Immediate:

When an event is detected, the transaction is suspended, and the condition associated

with the event is evaluated immediately. If the condition evaluates to true, the action is

executed. The execution of the triggering transaction is suspended while the condition

evaluation and action execution are completed.

• Deferred:

The triggering transaction is continued after an event is detected. Condition

evaluation and action execution are done at the end of the triggering transaction before it

commits.

 24

• Detached (or decoupled):

Condition evaluation and action execution are done in a separate transaction (or

triggered transaction) from the triggering transaction. The detached mode can be classified

into two types (totally independent and causally dependent). When two transactions are

totally independent, the triggered transaction is executed regardless of whether the triggering

transaction commits or aborts. On the other hands, the triggered transaction can commit only

after the triggering transaction commits for the causally dependent mode.

4.1.6 Rule Priority
In addition to the parameter context, coupling mode associated with a rule, there is

also a priority assigned to each rule. The default priority of a rule is a priority of 1. The

priority increases with the increase in the numerical value i.e., 2 has a higher priority than 1,

3 is a higher priority than 2 and so on. Rules of the same priority are executed concurrently

and rules of a higher priority are always executed before rules of a lower priority. It is

possible that a rule raises events that in turn could fire more rules and so on. This results in a

cascaded rule execution. Furthermore, rules can be specified either in the immediate coupling

mode or the deferred coupling mode. Both the priority and coupling mode of a rule have to

be taken into account for scheduling the rule for execution.

We use the Java LED (Java Local Event Detector) for WebVigiL. LED is a library

designed to provide support for primitive and composite events, and rules in Java

applications in a seamless manner. It is actually an event detector that was implemented to

detect events in Java applications and executes rules defined on them. Primitive event

 25

detection as well as composite event detection in various parameter contexts and coupling

modes has been implemented in LED. Also, the application developer has to explicitly put

the raiseBeginEvent and raiseEndEvent calls inside the methods that have been defined as

primitive events [17].

4.2 Activation/Deactivation
 A sentinel’s life span is specified by the start and end time. During its lifespan, a

sentinel is active and participates in change detection. A sentinel is enabled (participates in

change detection) by default at its start time, and can be disabled explicitly by the user during

its lifespan. The start/end time of a sentinel can be a point on the time line or can be an event

[7] that references another sentinel’s start or end time. When a sentinel’s start time is now, it

is enabled immediately. But in cases where the start is at a later time point or depends on

another event that has not occurred, enabling of the sentinel is deferred until that time is

reached or the event of interest has occurred. To facilitate this we need a triggering

mechanism that will raise the event required to enable/disable a sentinel. In WebVigiL, the

change detection module generates appropriate events and rules and are instantiated using the

LED. The start and end events are implemented as primitive events. Start and end of a

sentinel are treated as potential events as they can trigger the start or end of other sentinels.

For every sentinel, start and end events are created and rules are associated.

Event Start_si = createEvent(“start_si”) (1)

Rule Rstart_si = createRule(Start_si, condition_si, action_si) (2)

 26

Statement 1 shows the start event creation and statement 2 shows the rule creation for a

sentinel si. More than one rule can be associated with an event (i.e., Rstart_s1 .. Rstart_sn can

be associated with event Start_s1). When the event created in statement 1 is raised the rules

associated with it (statement 2) are triggered. When the rule is triggered the action is

performed only when the condition is true. With enabling/disabling sentinels there are no

conditions to check, thus the event is raised and the respective rule enables the sentinel. An

event can be raised in the following ways.

• Absolute Time: Consider the scenario where s1 is defined in the interval [06/02/03,

07/02/03]. At time 06/02/03 the start event associated with sentinel s1 has to be raised for

it to get enabled. Following are the events and rules that are generated to enable sentinel

s1:

Event Start_s1 = createEvent(“start_s1”)

Rule Rstart_s1 = createRule(Start_s1, condition_s1, action_s1)

Event ETime1 = createTemporalEvent (06/02/03)

Rule RTime1 = createRule (Etime1, condition, action)

When event ETime1 is raised at the specified time point, rule RTime1 is triggered.

The action associated with rule Rtime1 in turn raises the event Start_s1. When Start_s1 is

invoked the action (action_s1) associated with rule (Rstart_s1) enables sentinel s1.

• Relative: The start/end of a sentinel may depend on the start/end of other sentinels.

Sentinel s2 should be enabled, if it is defined over the interval [start (s1), end (s1)], when

s1 is enabled. Another rule that raises the event Start_s2 is associated with event Start_s1.

 27

The following are the events and rules that are generated in order to enable s2 when s1 is

enabled.

Event Start_s2 = createEvent(“start_s2”)

Rule Rstart_s2 = createRule(Start_s2, condition_s2, action_s2)

Rule Relative_Start_s2 = createRule (Start_s1, condition, action)

When a sentinel s3 specifies its time interval as [start (s2)+ 1 day, end (s2)+ 1 week],

s3 should be enabled after 1 day since s2 is enabled. Composite event PLUS is used to

achieve the above. The events and rules generated in order to enable s3 are as follows.

Event Start_s3 = createEvent(“start_s3”)

Rule Rstart_s3 = createRule(Start_s3, condition_s3, action_s3)

Event S2Plus_1day = createPlusEvent (Start_s2, 1 day)

Rule R_Start_s3 = createRule (S2Plus_1day, condition, action)

The event Start_s3 is raised by the rule R_Start_s3 when the plus event S2Plus_1day is

raised. And finally sentinel s3 is enabled. Each sentinel generates a start and an end event.

Rules are associated with these events to trigger the start or end of other sentinels.

All the above examples are based on sentinels that are relative to start of other

sentinels. A sentinel’s start can also depend on the end status of other sentinels and vice

versa. Generalized event and rule definition is as follows.

Event ei = createEvent(“event_ei”) (3)

Rule R_ei = createRule(ei, condition_ei, action_ei) (4)

 28

In the above statements ei can be the relative event (start/end) or absolute time based event (t)

or a plus event (ei + t).

4.3 Fetching
In order to monitor the page targeted by the sentinel, it has to be fetched using the

specified periodicity. In WebVigiL, we use the PERIODIC event to achieve this fetch in an

asynchronous manner. A periodic event is an event that repeats itself within a constant and

finite amount of time. The initiator and terminator are the start and end events of a sentinel

and t is the interval with which the page should be monitored. The actual fetch of the page is

performed by the rule associated with the periodic event. The sentinels in WebVigiL can be

classified into two categories.

• Fixed fetch-Interval: In this case, the interval for polling is explicitly specified by the

user. For example, the user knows that the page changes several times a day but he is

interested in changes happening each hour. In WebVigiL for every sentinel belonging to

this category, a unique periodic event with an associated fetch rule is generated. For

sentinel s1 whose periodicity is defined as 2 days, the periodic event generated is as

follows.

Event FetchEvent_s1 = createPeriodicEvent (Start_s1, 2 days, End_s1)

Rule FetchRule_s1 = createRule (FetchEvent_s1, condition, action)

 Figure 4.1 shows the graphical interpretation of the periodic event FetchEvent_s1.

 29

Figure 4.1: Periodic Event

• On-Change: This specification requests the WebVigiL system to detect the changes as

soon as it takes place. In order to do so, the system has to fetch the page at some pre-

determined frequency and learn to fetch the page as its modification history is collected.

The initial interval of polling the page is set by the system to a predefined value. This is

useful in scenarios where the user is interested in every change occurring to the page but

has no clue when the page changes. Currently the system initially starts with a small

interval (1 hour) and learns from the previous change intervals [9]. All sentinels

monitoring the same page belonging to this category share a common fetch rule.

Consider the scenario where sentinel s2 is defined in the interval [06/02/03, 07/02/03] on

pagei and sentinel s3 defined in the interval [06/01/03, 07/01/03] on the same pagei with

on-change specification. Initially when s2 registers with the system the periodic event

generated is

Event FetchEvent_Pagei = createPeriodicEvent (Start_s2, t, End_s2)

 30

Rule FetchRule_Pagei = createRule (FetchEvent_Pagei, condition, action)

When sentinel s3 registers with the system, as both s2 and s3 are requesting monitoring of

the same page and fall under the same category, the previous fetch rule

(FetchRule_Pagei) generated is shared. Since s3 starts at an earlier time than s2, the

polling should initiate when event Start_s3 is raised, and terminate when End_s2 is raised

(end time of s2 is later than end time of s3). Thus the earlier initiator and terminator of

the periodic event generated should be replaced (FetchEvent_Pagei) with Start_s3 and

End_s2 respectively. The periodic event reflecting the changes is

 Event FetchEvent_Pagei = createPeriodicEvent (Start_s3, t, End_s2)

If all the succeeding sentinels registering with the system belong to the same category of

s2 and s3, the periodic event initiators and terminators have to be determined at runtime

and if needed, be replaced at runtime. Furthermore, the user can also explicitly disable a

sentinel before it has started which results in computing the initiators and terminators. In

order to avoid this computation each time a sentinel belonging to the same category is

registered, dummy initiator and dummy terminator are created. The periodic event

generated would be

Event FetchEvent_Pagei = createPeriodicEvent (Start_dummy, t, End_dummy)

When the start of a sentinel is raised the rule associated with it checks on the status of the

periodic event (i.e., initialized). If initialized it does not raise the Start_dummy event.

Similarly when the end of the sentinel is raised it checks whether the Fetch rule is

servicing other sentinels. Based on this information the End_dummy event is raised.

 31

Figure 4.2: Change Detection Module

Since the initiator and terminator are raised only once, the contexts (section 4.1.4) do not

apply. Hence, the default RECENT context is used. The rules associated with all the events

(absolute, relative, plus and periodic) generated are executed in the immediate coupling

mode. Currently, the priority of all the rules is assumed to be the same. In this manner, ECA

rules are used to asynchronously activate (enable) and deactivate (disable) sentinels at run

time. Once the appropriate events and rules are created, the local event detector handles the

execution at run time. By enabling/disabling of sentinel, we mean addition/deletion of that

sentinel to the change detection graph that is detailed in the next chapter. The following

Figure 4.2 shows the individual modules in the Change Detection module. The sentinel is

 32

received as input to the ECA Rule generation that creates the rules necessary for monitoring

using the LED. The rules, upon firing, inform the change detection graph for

enabling/disabling the sentinels. The fetch module fetches the pages (Fetch Rules) and

propagates them to the change detection graph for participation in change computation and

detection.

 33

CHAPTER 5

CHANGE DETECTION GRAPH

5.1 Introduction
For each document/page (HTML/XML) of interest, when the page is fetched the

change is detected and reported to all the sentinels interested in that change. Change is

detected between the current page and the previously cached page for the same URL.

Change detection algorithms CH-DIFF and CX-DIFF [7, 9, 18] have been developed to

support the change types (links, images, keywords, phrases, all-words) for HTML and

XML pages, respectively. The framework for monitoring is based upon the use of events.

Fetching of a page is considered an event that starts the process of change detection. Each

type of detected change is considered an event that is propagated to detect composite

events. The WebVigiL system detects these events for each document (page) on which a

sentinel is set. The system should also be able to detect composite events. A composite

event is an event expression comprising a set of events related through one or more event

operators such as NOT, AND, OR [6].

As we are assuming a large number of users setting sentinels on URL’s for

different types of changes, we are likely to have overlaps among URL’s, types of

changes, frequency of access etc. One of the goals of WebVigiL is to process sentinels

efficiently and be able to scale to a very large number of sentinels. Version control is also

34

an important issue, as versions of a page should be maintained (depending upon the

window specification). This thesis addresses the efficient evaluation (i.e., change

detection) of sentinels. Some of the issues that need to be addressed are

• Mapping of URL’s to an internal representation

• Raising an event when a page is fetched

• Detecting changes for ALL sentinels (with different types of changes) efficiently

• Detecting composite events

• Passing changes detected to the notification module

The following sections discuss some of the approaches for handling the above

issues.

5.2 Naïve Approach
One approach for change detection is to maintain a hash table with the page of

interest as the key and the value being a list of sentinels monitoring that particular page.

When the page is fetched, the sentinel(s) on that page are extracted and change type is

detected for each sentinel. For example, for sentinels S1 and S2 that are interested in links

change to Pagei the mapping constructed is shown in Figure 5.1. When Pagei is fetched

the sentinels S1 and S2 are extracted. For each of the sentinels the previous version of the

page is fetched from the cache and the change detection algorithm for links is executed

and is notified if there is a change.

This approach is rather naïve since, when there are sentinels interested on same

change type on the same page, the change is computed twice. In the above example, if S1

and S2 are monitoring links change to “www.uta.edu”(Pagei), then change detection is

35

computed twice for each sentinel. In order to attain scalability more efficient approach for

change detection is required.

Figure 5.1 : Naïve Approach

5.3 Hash-Based Approach
In order to avoid the redundant computation when two or more sentinels

subscribe to the same properties (same target page and change type) a grouping can be

established. Multiple sentinels monitoring the same change type on the same page can be

grouped together. In this approach a hash table is maintained with the monitoring page as

the hash key. Each bucket of the hash table contains a list of groups, one group (change

types) per page. Sentinels that share the same target page are hashed into the same

bucket. Consider sentinels S3 and S4 that are interested in images change to

“www.uta.edu” (pagei) in addition to the other sentinels discussed in the previous

approach. Figure 5.2 shows the mapping structure constructed for all the sentinels.

When Pagei is fetched, all the groups corresponding to the page are retrieved and

the corresponding changes are detected based on the group property (change type). Hence

for sentinels S1, S2 the change is computed once. Similarly for S3, S4 the change is

computed only once. With this approach the redundant computation is avoided. A

composite change refers to a “combination” of changes via operators. For example,

36

changes to links AND images is a composite change, where AND is the operator. This

change is detected only when both links and images change on the page. But, in order to

achieve composite change detection on the same page or multiple pages, this approach

induces lot of complexity. Either hashing or grouping can be used for composite change

detection. Sentinels from different buckets need to be interlinked for composite change

detection. Deletion of sentinels with composite changes will also pose problems, as the

information needs to be propagated from the root sentinel node.

Figure 5.2 : Hash-Based Approach

5.4 Change Detection Graph
We need a data structure that will allow us to asynchronously feed fetched pages

for change detection, allow parallelism where possible, optimize the computation by

grouping sentinels over URL’s and change types, and facilitate composite change

detection using the same paradigm as primitive change detection. Deletion and

propagation of delete semantics must be straightforward in the representation chosen.

Although a number of data structures have been proposed in the literature for event

37

detection, such as Petri nets [19], extended automata [20], it has been shown that event

graphs [14, 21] support the requirements at the granularity and grouping that is

appropriate for our problem. Hence, we have adapted and extended the event graph

approach proposed for snoop [8] for detecting primitive as well as composite changes.

Below, we describe the extended structure along with its advantages.

Primitive change detection involves detecting changes to links, images, keywords

etc., in a page. In order to facilitate primitive change detection, grouping of sentinels, and

data flow we construct a graph. This graph is referred to as the change detection graph

(CDG). The graph is constructed bottom up as shown in Figure 5.3. The different types of

nodes in the graph are as follows:

Figure 5.3: Change Detection Graph

• URL node (Un): A URL node is a leaf node at level-0 (L0) that denotes the

page of interest (e.g., “www.uta.edu”). The number of URL nodes in the

graph is equal to the number of distinct pages the system is monitoring at

that particular instant of time. At this level whenever the version of a page

is fetched (treated as fetch event), it is propagated to respective nodes at

level-1.

38

• Change type node (Cn): All level-1 (L1) nodes in the graph are change

type nodes. This node represents the type of change on a page (links,

images, keywords, phrases etc., see Table 5-1). Change detection of pages

is performed at this level. The maximum number of change type nodes

that are created in the system is equal to the product of the number of

change types supported and the number of URL nodes present at that time

instant. Currently the number of change types is equal to 6. Each URL

node can be connected to at most 6 change type nodes.

Table 5-1. Change Types Supported

Change Type Description
Links All the Links in the URL given
Images All the images in the given URL
Phrases Changes to a particular phrase(s)
Keywords Changes to a particular keyword(s)
Any-change Any change in the given URL
All-words Changes to all the words excluding user defined set of words

in the given URL

In the graph, to facilitate the propagation of changes, the relationship between

nodes at different levels is captured using the subscription/notification mechanism. The

higher-level nodes subscribe to the lower level nodes in the graph. This subscription

information is maintained in the subscriber list at each node. The subscriber list at each

node contains the following

• Level-0: Contains references of level-1 nodes.

• Level-1: Contains references of sentinels monitoring that change.

The change is computed for all the sentinels present in the subscriber list at the

change type node (Cn). There can be more than one sentinel associated with each change

39

type node. The arrows in the graph represent the data flow. For example, consider two

sentinels, S1 monitoring changes to links and S3 monitoring changes to images on pagei

as shown in Figure 5.4. The node references are maintained at the URL node (pagei).

When the new version of the pagei is fetched, it is propagated to the links and images

node. At each change type node, the previous version is retrieved from the version

controller and the appropriate (links, images) change is computed. If there is change, the

sentinels subscribed to it are notified, in this case it is notified to S1 and S3.

Figure 5.4: Primitive Change Example

When a sentinel reaches its end time or is explicitly disabled by the user, the

sentinel no longer participates in change detection. This information is propagated to the

change type node with which the sentinel is associated. Since the change type node is a

subscriber to the URL node, it decides on whether to remove its subscription based on the

other sentinels that are associated with it. Once this information is propagated to the URL

node it removes the references of the corresponding change type node and does not send

the next version of the page for change computation. For example, if sentinel S1 shown in

Figure 5.4 is disabled, the next version of the page is not propagated to the links node

from URL node (pagei), since there are no other sentinel that are interested in links

40

change. Graph structure suites well in these kinds of applications where flow of data is

required.

5.4.1 Sentinel Grouping
System scalability and performance issues arise when there are large numbers of

sentinels registered with WebVigiL. Typically, the system should not impose a restriction

on the number of sentinels it can handle. This introduces the need for a technique to

minimize the susceptibility of the system to attain efficiency in change computation and

to guarantee the quality of service. Consider the scenario where there are n sentinels

registered to monitor the changes to the same page. Instead of computing the change n

times, it could be reduced to once if we could group all those sentinels together.

Grouping is required not only for scalability of the system but also to reduce the I/O

involved in fetching the old version of the page and high computation involved in parsing

the documents and extracting information. Pages with huge content add additional

burden. Sentinel grouping is an optimization technique developed to minimize change

computation. Grouping of sentinels are based on change type, fetch type and compare-

options. All these types of grouping are explained in the following paragraphs.

Sentinels are grouped when there is more than one sentinel interested in the same

change type. For example, more than one student might be interested in knowing if there

are any new questions added (links) to the course message board. In this case, all the

students’ sentinels are grouped together for change detection. As another example, on a

university sports page where forthcoming events are listed, students might be interested

in knowing if their sport of interest (keywords) appears or when there is change to the

41

paragraph (phrase) containing venue and time of a particular game. Another scenario is

where users are interested in any change to a page but each user is interested in a

different set of words that should not be included in the change detection such as articles

(a, an, the). Based on the semantics of the change type the corresponding nodes maintain

either a set containing the union of all the words (keywords/phrases) or intersection of all

the words (all-words). For example, sentinel s6 is interested in keywords {x, y} and s7 on

keywords {y, z} on the same page. The change type node maintains the union of all the

individual sentinel’s keywords {x,y,z}.

A sentinel belongs to two categories depending on the fetch type (section 3.1).

Only those sentinels belonging to on-change fetch type are considered for grouping, as

the change is computed on the versions of page fetched by the common fetch rule.

Sentinels belonging to fixed-interval are not grouped as each has its own version of page

being fetched by their respective fetch rules. In spite of sentinel belonging to on-change

the other attribute that plays a role in the grouping strategy is the compare-options (pair-

wise, moving:n, every:n see Table 5-2)(section 3.1). For example, a page is updated

thrice a day and a user is interested on every consecutive change (Pair-wise) whereas

another user is interested in changes only once a day (every:3). Here the versions of

pages involved for change computation are different and hence the sentinels cannot be

grouped together. Furthermore, sentinel’s belonging to the same compare-option need not

belong to the same group and hence cannot be grouped together.

42

Table 5-2. Compare-options supported

Compare-
options

Descriptions Point of detection

Pair-wise Detects changes to consecutive
versions of the same page

Once the subsequent version
arrives

Moving:n Detects changes to versions “i” and (i-
n+1) (where “i” is the version of the
page fetched and “n” is the moving
window size) of the same page

Once the nth version arrives

Every:n Detects changes to every “n” versions
of the same page

Every change is detected after
waiting for “n” versions. These
versions are termed as waiting
versions.

Figure 5.5: Compare-Options with Every: 4.

Consider the following example where S1 and S2 are on-change sentinels

monitoring the same change on the same page (P) with the compare-option of “every:4”

as shown in Figure 5.5. The points on the time line denote either the arrival of sentinels

or the versions of page P. For S1, change is detected between the versions (p1, p4) and so

on. When S2 arrives, since there is already a cached version p2 the change is detected

between (p2, p5) and so on. For S3 the change is computed with (p4, p7). Hence S1 and S2

cannot be grouped together whereas S1 and S3 can be grouped. This behavior is

applicable only to sentinels with every as the compare-option since only selected versions

43

of the page participate in change detection. For S1, p2 and p3 are not used even though

fetched whereas this is not the case for other compare-options (pair-wise and moving). If

there is a sentinel S4 on “moving:4” and has arrived along with S1, p1 and p4 participate in

change initially, but later on (<p2, p5>, <p3, p6>…) all versions fetched will participate

in change detection. Hence any other sentinel Si interested on “moving:4” arriving at a

later time will be grouped along with S4. The same applies to sentinels having pair-wise

as their compare-option.

Thus the sentinels are grouped on a combination of change type, fetch type (on-

change), compare-options. When the compare-option is “every:n” then the corresponding

time at which the sentinel arrives is taken into consideration.

Figure 5.6: Grouping Data Structure

Figure 5.6 shows the information used for grouping sentinels based on the

strategy explained above. The “subscriber list ptr” contains all sentinels that belong to the

same group. The “word set” attribute is null for links, images and any-change or union

44

for keywords and phrase or intersection for all-words depending on the change type. The

number of waiting versions is used to differentiate sentinels with the same compare-

option “every:n” and also to determine when to compute the change. Figure 5.7 shows

the algorithm used to group sentinels and Figure 5.8 shows the various stages of the data

structure based on the time line showed in Figure 5.5 as the algorithm is applied. The

following algorithm is used to determine the group to which the sentinel belongs.

Figure 5.7 : Grouping Algorithm

As shown in Figure 5.8 when sentinel S1 arrives the number of waiting versions is

set to 4 as it has to wait for four versions (no cached version) in order to compute the

change. As each version of the page is fetched the number of waiting versions is

decremented. When S2 arrives it has to wait for another three versions (cached copy is

available) for change computation. Hence it is not grouped with S1. As the version P4 is

fetched the number of waiting versions for S1 equals to zero and the change is computed.

After change computation the value is set to three for the next computation. And finally

45

when S3 arrives since S1 is also waiting for the same number of versions, they are

grouped together.

Figure 5.8 : Grouping Example
So far primitive change detection has been discussed. In the following paragraphs

composite change detection will be discussed. A composite event is an event expression

comprising a set of events connected through one or more composite event operators

such as NOT, AND, OR (refer Table 5-3).

Table 5-3: Semantics of Composite Event

Operator Semantics
NOT (unary) Non-occurrence of a given event, (¬ C1) where C1 is the constituent event
OR Changes to either of the constituent events, (C1 ∨ C2) where C1 and C2

are constituent events.
AND Changes to both the constituent events on the same versions of the page,

(C1 ∧ C2) where C1 and C2 are constituent events.

46

Figure 5.9. Composite Change Detection Graph

 As shown in Figure 5.9 composite event nodes are in the levels L2 and

above. Composite Node represents a combination of change types through the operators

NOT, AND, and OR. They can extend to any number of levels. These nodes are created

for every sentinel monitoring a composite event. Level-2 and above contains references

of the nodes belonging to the immediate higher level (composite event containing more

than two constituents) or sentinels.

The change is computed for all the sentinels present in the subscriber list at the

change type node. Hence, for sentinels monitoring composite changes, a representation at

its constituent change type node is needed. This is implemented by creating proxy

sentinels with the same properties of the original sentinel at each of the constituent

change type node. Consider the scenario where sentinel S5 is interested in links and

47

images change to “pagei” (refer Figure 5.10). When the new version of the “pagei” is

fetched it is propagated to the links and images node. If there is a change, sentinels

subscribed to it are notified. Sentinel Sand acts as a proxy for S5. When Sand is notified the

change computed is in turn propagated to the AND node. At the AND node, S5 is

informed only when it receives notifications from both its constituent Sand sentinels.

Figure 5.10: Composite Example

Following are the steps taken when a new sentinel is registered with the system:

1). The URL node corresponding to the target page of sentinel is created if there is

none.

2). The change type node associated with the target change is obtained; if there is

none, a new node is created.

3). The grouping structure is traversed to obtain the group to which the new sentinel

belongs. If there is no such group a new group is created and the sentinel is

48

appended to the list of sentinels pointed (“subscriber list ptr”) by the grouping

structure.

If the sentinel is any-change, links or images, the sentinel is added to the

subscriber list of the group. If the sentinel is keywords or phrases, a union is

performed between the keywords/phrases of the new sentinel and words/phrases

belonging to the word set of the group. If the sentinel is all-words an intersection

is performed on the word set and the words the sentinel is not interested in.

As versions of a page are fetched and are propagated through the change

detection graph, the following steps are performed:

1) The event fetchedPage (URL) is raised at the node corresponding to that URL.

The event is further propagated to all the subscribers at that URL node.

2) At the change type node, for each group the corresponding old page (based on the

compare-option) is retrieved from the version controller and change is computed

with the current page. If there is a change detected, all the subscribers in that

group are notified. When there is no change then only those sentinels interested

on NOT change are notified.

In case the change type is keywords or phrases, the change is computed for all the

words/phrases present in the word set against the two pages. If a change is

detected then for each sentinel we check if his or her words/phrases of interest is

present in the change computed and notify them accordingly.

For a composite event AND the sentinel is notified only after notifications from

both the constituent events on the same set of versions are received. In case of OR it is

49

notified when notifications from either of the constituent events is received. The

notifications contain the change and the set of versions on which the change is detected.

NOT is detected when the change in the notification is null.

5.4.2 Illustration of Composite Change Detection

Consider the following sentinels monitoring composite changes on page p with

the same compare-option and fetch frequency.

 S1 - C1 OR C2

 S2 - C1 AND C2

 S3 - (C1 OR C2) AND C3

Where C1, C2, C3 represent the events (changes to links, images, keywords,

phrases, all-words, any-change). The time line showing the occurrence of events and the

detection process is illustrated in the following Figure 5.11. On the time line, Ck
i (x,y)

represents the change detection event Ck on versions x and y of page p and i denotes the

ith occurrence of the event Ck. The event graph shows the nodes from the level-1 (does

not include the URL node representing page p). Figure 5.11 shows the composite event

detection process for each sentinel. The time line indicates the relative order of primitive

events with respect to their time of occurrences. All event propagations are done in a

bottom-up fashion. The leaves of the graph have no storage and hence pass the primitive

events directly to the parent nodes.

The various operations at the time points where primitive events are detected are

shown in Figure 5.11. The arrows pointing from the child node to its parent in the graph

indicate the detection and flow of events. The OR event is straightforward and is detected

whenever any of its constituent events are raised. Hence S1 is notified at t1, t2 and t3. At

time t1 when C1
1 (1,2) is propagated to the AND node, it waits for the event to be raised

from the other constituent event on the same versions (1,2) for S3 to be notified. At time

50

t2 it receives C1
2 (2,3) that replaces C1

1 (1,2). Currently the composite operators can be

specified on the same page and not across different pages. So when a version “i” is

Figure 5.11: Composite Change Detection Example

fetched, all the monitored changes are computed on versions “i-1” and “i” (for pair-wise

change detection). If there is a change, the corresponding primitive events are raised.

Hence when the next change is computed between versions “i” and “i+1” and the

composite node does not get any notification from its other constituent on versions “i”

and “i-1”, it means there is no change detected between “i” and “i-1”. Hence all old event

occurrences are replaced by the new occurrences. This is illustrated in the Figure 5.11 at

time t2. S2 is notified at time t3 when it receives C1
2 (2,3) and C2

1 (2,3). At time t3 the AND

node corresponding to S3 saves both the versions C1
2 (2,3) and C2

1 (2,3) and when C3
1 (2,3) is

received S3 is notified twice for the combinations (C1
2 (2,3), C3

1 (2,3)) and (C2
1 (2,3), C3

1 (2,3)).

51

Figure 5.12. Parallelism in CDG

5.5 Parallelizing Change Detection

The Change Detection Graph (CDG) is designed to detect changes to pages that are

fetched by the fetch rules. When there are large numbers of sentinels registered, for the

system to be scalable, change detection for sentinels should be handled simultaneously.

This can be achieved through parallel detection of changes to different URL’s at the same

time. As shown in Figure 5.12 the fetch rules place the versions of the pages into the

buffer. As each URL is assigned a separate URL node and the change detection of

different URL’s do not interfere with each other. Hence change detection of different

URL’s can be processed concurrently. Here parallelism is achieved only between

different URL’s (inter-URL). Currently WebVigiL supports only inter-URL parallelism.

52

The implementation details are discussed in CHAPTER 7. As discussed so far,

graph architecture used for change detection facilitates scalability, efficiency and

parallelism.

 53

CHAPTER 6

STORAGE AND RETRIEVAL OF PAGES

This chapter discusses different approaches for storage and retrieval of pages that

are being fetched for change detection.

6.1 Introduction

An important feature of WebVigiL architecture is its demand-driven page

fetching using its server-based repository service that archives and manages versions of

pages. WebVigiL stores only those pages that are needed by a sentinel in the cache. The

primary purpose of the repository service is to reduce the number of network connections

to the remote web server, there-by reducing network traffic, which in turn reduces the

communication cost. All the pages are fetched from the web server based on the page

properties. For static pages last modified time (LMT) is retrieved before the page is

fetched. For dynamic pages, as the LMT is not available the page is fetched and

checksum is computed. When a page fetch is initiated, the repository service checks for

the existence of the latest version of the page in its cache and if present, the latest version

of the page in the cache is returned. In the case of static pages, if the LMT of the page is

equal to the LMT of the cached copy it is not fetched. In the case of dynamic page, the

page is fetched and the checksum of old version in the cache is compared with the

checksum of fetched page. If the checksums are equal then the page is not stored in the

cache to avoid duplication of the versions. In case of a cache miss, the repository service

requests that the page be fetched from the appropriate web server. In order to detect

54

changes to a particular page, versions of that page have to be stored in the cache. To

maintain these versions in the cache, each URL has to be mapped to a unique directory.

The complete URL cannot be used as a directory name since the length of the URL is

very large in many cases. Two approaches to establish the required mapping for the

directory structure is discussed below.

6.2 Hash-based Approach

In this approach, each unique URL is inserted into a hash table with URL as the

key. Mapping is generated for each key (i.e., unique URL). This mapping represents the

directory where the corresponding versions of the unique URL are to be stored. Consider

two URL's “x/y/z/i.htm” and “x/y/z/j.htm”, which have common path “x/y/z”. Instead of

generating the mapping for each of these URL’s, a mapping is generated for the common

path once and is reused whenever required. In the above example, when a version of the

first URL (“x/y/z/i.htm”) is fetched, it is saved in the directory U1F1, where U1 is the

mapping generated for “x/y/z” and F1 is the mapping generated for “i.htm”. U1 and F1

are maintained as values with the corresponding URL path as the key in the hash table so

that they can be reused. When a version of second URL (“x/y/z/j.htm”) is fetched it is

stored in the directory U1F2, where the mapping for “x/y/z” is got from the hash table

(i.e., U1) and F2 is the mapping generated for “j.htm”. All versions pertaining to these

URL’s are stored under U1F1 and U1F2 respectively.

6.3 Directory-based approach

In this approach the path of the URL is replicated for the directory structure. For

example, for the URL “x/y/z/i.htm”, the directory structure can be “x\y\z\i.htm”. But, in

case of dynamic pages the filename (i.e., “i.htm”) can be very large. As the underlying

operating system imposes a restriction on the length of the directory name, we cannot

55

create directories for dynamic pages. Hence we use hash-based approach to generate a

unique mapping for the file name. Thus, the directory structure is a concatenation of URL

up to the filename (i.e., “x/y/z/”) with the mapping generated. For the above example the

file “i.htm” is mapped to F1 and all versions of the page are stored under the directory

“x\y\z\F1”.

Figure 6.1: Build Time Analysis

6.4 Experimental evaluation

Two approaches explained above were evaluated based on two criteria’s i) time

taken to construct the mapping, and ii) time taken to reconstruct the mapping (in case of

recovery) plus time taken to retrieve the page given its URL. In these evaluations

filename in the URL is not considered, since both the approaches uses the same hash

based functions provided in Java 1.4 for generating the mapping. Thus selection of data

sets for the experiments were based on the length of the path (excluding the file name) of

the URL denoted as depth. For example, for the URL “x/y/z/i.htm” depth is 3. The data

sets are represented as “L#” where “#” denotes the number of URL's with depth varying

between 1 and 3 and “M#” with depth varying between 4 and 6. For example, L10K,

represents 10K URL’s with depth range 1 to 3. Based on an experiment where 30,000

Build Time

0

500000

1000000

1500000

2000000

L10K L30K L50K L70K M10K M30K M50K M70K

Data Set

T
im

e
(m

se
c)

Hash-based

Directory-based

56

URL’s were extracted from the web, the maximum depth was limited to 6. The

experiments were run on a single processor Intel Pentium (700Mhz) machine with

256MB RAM, loaded with Windows 2000 operating system.

Figure 6.2: Reconstruction + Seek Time

 Figure 6.1 shows the time taken to build the mapping for each data set. As it is

shown in the Figure 6.1 for L/M10K, L/M30K directory based approach takes more time

than hash-based approach, but for M50K, M70K it is nearly three times. The directory-

based approach takes more time as more I/O is involved. The complete directory

representing the URL was created using a single mkdir command. Figure 6.2 shows the

time taken to rebuild the mapping plus time taken to retrieve the page given its URL.

Mapping is persisted as and when unique URL's are hashed (during the build time).

During reconstruction, unique mappings for persisted URL's are not regenerated, thus

saving time. From Figure 6.2 it is observed that, as the depth increases, more number of

directories has to be traversed (one cd command was issued for each directory), thus

increasing the time for directory-based approach even though there is no reconstruction

required. Based on the performance results, hashed-based approach was selected for

Reconstruct + Seek Time

0
50000

100000
150000
200000
250000
300000
350000
400000

L10K L30K L50K L70K M10K M30K M50K M70K

Data Set

T
im

e
(m

se
c)

Hash-based

Directory-based

57

caching the pages. In the hash-based approach, some of the different hash functions

available in the literature [22] have been tested against the hash function provided by

Java 1.4. It has been observed that the URL’s are more uniformly distributed when

hashed using the java hash function. The variation in the number of entries in each bucket

was not large when java hash is used. The pseudo code for the hash functions is shown in

Appendix A.

 58

CHAPTER 7

IMPLEMENTATION

 This chapter discusses the implementation details of the ECA Rule generation

module, Change detection and issues involved in parallelizing the computation over the

change detection graph and the whole system WebVigiL. In addition, synchronization

issues and the selection criteria for synchronization primitives are also discussed.

7.1 Implementation of ECA Rule Generation

For every user request (sentinel) registered with the system a sentinel object is

instantiated. The sentinel object captures all the properties of the sentinel such as, status

(enabled/disabled), change type (primitive/composite), fetch type (on-change/fixed-

interval), compare-options, and etc. All the sentinels are stored in a hash table called the

“sentinelList”. Sentinel id forms the key for the hash table and the corresponding sentinel

object is stored as the value. The hash function gives the handle to the sentinel object,

which is used when the user wants to explicitly enable/disable a sentinel. This hash table

eliminates the need for traversing the graph to acquire a handle on the sentinel object.

Local Event Detector (LED) [16] is used for generating the start and end events. The

methods of sentinel are used to raise the events to achieve the desired functionality.

ECAAgent class in LED contains the API to be used for generating events. The

ECAAgent instance stores the names of all events and their associated event handles. The

handle to ECAAgent is obtained as shown below:

import sentinel.led.*;

 59

ECAAgent myAgent = ECAAgent.initializeECAAgent();

With the API provided by ECAAgent, the user can create class level and instance level

primitive events, composite events and define rules on those events. The following table

shows the methods used in creation of events and rules that is used for generating events.

Table 7-1. ECA Agent Class API

Method Return Type Description

CreatePrimitiveEvent EventHandle This method creates a primitive event of

instance level.

createCompositeEvent EventHandle This method creates a composite event of

instance level.

CreateRule EventHandle This method creates an instance level rule

on the specified object instance

RaiseBeginEvent static void This method raises an event at the

beginning of a method.

An event is raised through the “raiseBeginEvent” method. A sentinel object raises this

event in its methods “start()” and “end()”.The syntax of creating primitive events is

createPrimitiveEvent (java.lang.String eventName,

 java.lang.class className,

EventModifier type,

java.lang.String methodName,

java.lang.Object objectName);

Where “className” represents the class associated with the event, “objectName”

represents the object raising the event. For sentinel Sid that has to start at time t1 and ends

at time t2. The following events are generated.

EventHandle Start_Sid = myAgent.createPrimitiveEvent ("Start_Sid”,

 60

 "webvigil.Sentinel", EventModifier.Begin,

 "void start()",sentList.getSentObj(Sid));

EventHandle End_Sid = myAgent.createPrimitiveEvent ("End_Sid",

 "webvigil..Sentinel",EventModifier.END,

 "void end()",sentList.getSentObj(Sid));

The syntax for creating temporal events is

createPrimitiveEvent (java.lang.String eventName,

 java.lang.class className,

java.lang.String timeString)

where “timeString” represents the time expression.

The temporal events generated for triggering Sid at t1 and t2 are shown below

EventHandle Time_t1 = myAgent.createPrimitiveEvent ("t1”,

 "webvigil.sentinel",

 t1);

EventHandle Time_t2 = myAgent.createPrimitiveEvent ("t2”,

 "webvigil.sentinel",

 t2);

The syntax for creating rules is

createRule (java.lang.Object targetInstance,

 java.lang.String ruleName,

 EventHandle eventHandle,

 Condition condition,

 Action action)

Where “condition” and “action” are the methods that have to be executed on the object

represented by “targetInstance”, when the event is raised. “eventHandle” is the handle to

the event on which the rule is specified.

 61

The rule associated with the start event is shown below.

Rule TimeRule_t1 = myAgent.createRule (new Rules() ,

 "startRule", Time_t1,

 “webvigil.Rules.Condition()”

“webvigil.Rules.Action()”);

Similarly for all the other events, the rules are generated as above. Here when

there is more than one sentinel that has to be started or ended at time t1, a linked list of all

these sentinels (“SentinelList”) is maintained in the “Rules” object. “Condition()” is

executed when the event “Time_t1” is raised. In the activation/deactivation of sentinels

the paradigm is E-CA rather than E-C-A and hence the condition is always true. The

action method retrieves all the sentinels present in its “SentinelList” and raises the events

accordingly. When the sentinel Si is dependent on other sentinels, say Start_Si = start_Sj

plus time, a PLUS (composite event) event is generated [16]. The rules associated with

all the events such as absolute and relative have the same functionality.

 The other events generated by the ECA Rule generation module are the fetch

rules that are involved in fetching the pages. As explained in section 4.3 PERIODIC

events are used to achieve the required fetch functionality. The following sections

illustrate the implementation details for each fetch type.

7.1.1 Fixed Interval Fetch Event Generation

The syntax for generating periodic event is shown below

CreateCompositeEvent(EventType eventType,

java.lang.String eventName,

 EventHandle leftEvent,

 java.lang.String timeString,

 62

 EventHandle rightEvent)

Where “EventType” is a composite event [16] such as PERIODIC, AND etc.

For a sentinel Sid belonging to fetch type “fixed interval” the following are the events

generated.

 EventHandle Fetch_Sid = CreateCompositeEvent (EventType.PERIODIC,

 “Fetch_Sid”, Start_Sid, time-interval, End_Sid);

Here “time-interval” is the user defined polling frequency. The rules associated with

event “Fetch_Sid” fetch the pages. They are more detailed in [8].

7.1.2 On-Change Fetch Event Generation
All the sentinels belonging to this category share the same fetch event. As

explained in section 4.3, dummy events are generated to achieve the functionality. These

dummy events are primitive events. The fetch rule generated is shown below

EventHandle Fetch_Sid = CreateCompositeEvent (EventType.PERIODIC,

 “Fetch_URLi”, Dummy_Starturl, time-interval,

 Dummy_Endurl);

The pseudo code for action part of “StartRule_Sid” and “EndRule_Sid” is shown below

Action Part of StartRule_Sid

1. Query URLi node for the number of active sentinels on URLi belonging to on-change
 type
2. If the number of active sentinels is zero then raise the event Dummy_Starturl
3. Enable the sentinel Sid

Action Part of EndRule_Sid
1. Query URLi node for the number of active sentinels on URLi belonging to on-change
 type
2. If the number of active sentinels is one then raise the event Dummy_Endurl
3. Disable the sentinel Sid

 63

7.2 Implementation of Change Detection Graph

Figure 7.1. CDG Class Hierarchy

Figure 7.1 depicts the hierarchy among the key classes used in the

implementation. Primitive changes are the different changes monitored on the pages

(links, images, any-change, all-words, phrases and keywords). The composite changes

constitute NOT, OR and AND. In, Figure 7.1 each box represents a class. The classes

Change Type Node and Composite are abstract classes, the classes Node and Notifiable

are interface classes and all the other classes are normal classes. The Node interface has

an insertSentinel method that is implemented by all the event classes. The insertSentinel

method implements the addition of sentinels to the grouping structure. The classes AND,

 64

OR, and NOT are normal classes whose instances represent the composite event nodes in

the change detection graph. Each URL representing the page monitored belongs to the

class URLNode. A list of all the URL’s and their corresponding references are maintained

in hash table termed as URL Node List. The following table describes the methods of the

class URLNode. The URLNode class has a linked list associated with it. This linked list

contains the references to all the ChangeTypeNode objects.

Table 7-2: Member Functions of URLNode Class

Method Description

InsertChangeType
Inserts the change type nodes into the subscriber list

when they are created. If properly inserted returns true.

GetNumberOfSentinels(fetch-

type)

Returns the number of active sentinels monitoring this

page. This method is called in the action part of sentinels

belonging to on-change.

PropogateVersion(page-type)
Invoked when a version corresponding to the URL is

fetched. This version is propagated to all its subscribers.

Change Parameters

The events (primitive and composite) are associated with a ChangeList that is

passed to the sentinels. The change list constitutes the change detected, the versions on

which the change is detected, the type of the page (HTML/XML) and the time at which

the change is detected. The change is a vector containing three lists; i). insert list

containing objects (links, images, words, phrases) that are inserted. ii). Delete list

containing the objects that are deleted and iii) move list containing objects that are

moved. A primitive event is associated with a single ChangeList whereas a composite

event is associated with multiple sets of ChangeList, that is, the collection of the

ChangeList of all the constituent events. This collection is called ListOfChangeLists.

 65

Table 7-3: Description of ChangeList and ListOfChangeLists Classes

Class Name Description

ChangeList Created at the ChangeTypeNode’s to store the change parameters

and are propagated to the sentinels.

ListOfChangeLists Linked List containing the ChangeList’s.

The following table shows some of the methods in the sentinel class. It contains the

reference to the producer (ChangeTypeNode or Composite) and also a subscriber

reference to which it acts as a representative (Composite). It also contains a flag

indicating its state (enabled/disabled).

Table 7-4: Member Functions of Sentinel Class

Method Description

Enable()
Changes its state to enabled and informs its producer. It also

updates the knowledge base. This method is invoked in the

start rule associated with this sentinel.

Disable()
Changes its state to disabled and informs its producer. It

also updates the knowledge base. Return type is void. This

is invoked in the end rule associated with this sentinel.

Notify(ChangeList

change, Boolean flag)

This method is invoked when ChangeTypeNode computes

change. The flag is true if there is a change and false if there

is no change. If the subscriber list is empty and the change is

true the notification module is notified about the change. If

the change is false the notification module is not informed.

If there is a subscriber (Composite) it is notified of the

computed change with the flag.

 66

The following table shows some of the methods of ChangeTypeNode. It contains the

following references; i). Change detection algorithms (HTML/XML), ii). Grouping

structure, iii). Subscriber list containing sentinels, iv). Producer (URLNode), and v).

Version Controller.

Table 7-5: Member Functions of Change Type Node Class

Method Description

InsertSentinel(Sentinel) Called when a new sentinel is inserted. The grouping structure

takes care of the insertion of the sentinel in the proper group.

Propagate() Invoked for propagating changes to the sentinels when a

change is computed. If there is a change then a flag is

associated with

DetectChange(Version) Invoked by URLNode to propagate a version. The version

manager is contacted for the corresponding previous version

based on the group and based on the version type

(HTML/XML) the corresponding change detection algorithms

are invoked. The corresponding sentinels are informed about

the change and a flag indicating whether the change is detected.

7.2.1 Composite Change Detection

This section discusses the implementation of change detection mechanism at the

composite node. The NOT node contains the reference of the sentinel subscribed to it and

also the reference to the proxy sentinel created to represent this event at its child node.

The following table shows the methods

 67

Table 7-6: Member Functions of NOT Class

Method Description

Propagate (ListOfChangeLists list,

Boolean flag)

The proxy sentinel created at the child node

invokes this method. The flag is negated and the

subscriber (Sentinel) is notified.

InsertSentinel (Sentinel sentinel,

Node node)

Adds the sentinel to its subscriber list. A proxy

sentinel is created and the InsertSentinel method of

the node is called.

The following table shows the important methods in OR class. The OR node contains the

references of both the children i.e., the references to the sentinels that represent it. It also

contains the reference of the sentinel, which is subscribed to this event (OR).

Table 7-7: Member Functions of OR Class

Method Description

Propagate(ListOfChangeLists list,

Boolean flag)

The proxy sentinel created at the child node

invokes this method. The list contains the changes

computed and the flag denotes whether there is a

change detected or not. If the flag is true, only then

the sentinel subscribed to it is notified.

InsertSentinel(Sentinel sentinel,

Node leftNode, Node rightNode)

Adds the sentinel to its subscriber list. Two proxy

sentinels are created and the InsertSentinel method

of the leftNode and rightNode is called.

The AND node contains two additional data structures with respect to the OR node. As

the change should be detected on two versions of the same page, the change detection

 68

should wait until the changes are obtained from both the children. These changes are

stored in a change table represented by the class ChangeTable. The AND node contains

two change tables for each of its children. A change table consists of a set of entries.

Each entry in the change table denotes an event occurrence. An event entry consists of a

ListOfChangeLists and changeflag indicating whether a change is detected or not at the

lower level. The steps for detecting AND events are shown below.

1. If the ListOfChangeLists and changeflag is propagated from the left event

2. If the left table is not empty

3. Remove all the entries in the leftchange table, thus maintaining the latest

change event (on the same versions of the page).

4. For every entry in the right table, logical AND is computed on the

changeflag received from the left event and ListOfChangeLists are

merged together and the merged ListOfChangeLists and computed

changeflag is propagated to the sentinel subscribed to it.

5. Else

6. Add the ListOfChangeLists and changeflag to the table

7. If the ListOfChangeLists and changeflag is propagated from the right event

8. If the right table is not empty

9. Remove all the entries in the rightchange table, thus maintaining the latest

change event.

10. For every entry in the left table, logical AND is computed on the

changeflag received from the right event and ListOfChangeLists are

merged together and the merged ListOfChangeLists and computed

changeflag is propagated to the sentinel subscribed to it.

11. Else

12. Add the ListOfChangeLists and changeflag to the table

 69

The following table shows the methods.

Table 7-8: Member Functions of AND Class

Method Description

Propagate(ListOfChangeLists list,

Boolean flag)

The proxy sentinel created at the child node invokes

this method. The event is detected as explained

above and the subscriber (Sentinel) is notified with

the merged lists and the flag indicating the detection

of event.

InsertSentinel(Sentinel sentinel,

Node leftNode, Node rightNode)

Adds the sentinel to its subscriber list. Two proxy

sentinels are created and the InsertSentinel method

of the rightNode and leftNode are called.

Figure 7.2: Complete System

 70

7.3 Multithreading Issues

As shown in the Figure 7.2 when the user registers a sentinel with the system, the

activation thread creates the required ECA rules and the corresponding nodes in the

CDG. Once the fetch rule associated with the sentinel fires, the version of the page is

fetched and the version manager is informed. The version manager puts the version in the

version buffer. The thread waiting on the version buffer removes the version and

propagates it to the CDG for change detection. This means that if there are versions

fetched and waiting in the buffer to be serviced they will be handled serially by the CDG.

This wait will be significant when there are several fetch rules fetching the pages. In

order to make the CDG scalable it should be able to detect changes to multiple pages

concurrently. Hence the first design goal is to have a multitasking CDG. Multitasking

can be achieved by multithreading. In case of multithreading each version will be

serviced in a separate thread. When changes are detected concurrently, two or more

threads may be accessing the same data structures at a given time. To prevent race

conditions, appropriate synchronization mechanisms must be provided for the protection

of data structures. However, locking of data structures must not be so coarse-grained that

it will effectively serialize their access. Hence synchronization mechanisms must be

carefully chosen to a fine granularity of locking and to maximize concurrency.

7.3.1 Multithreading the Change Detection

In order to make the CDG multithreaded a new thread can be spawned for each

version of page inserted into the version buffer. Versions are fetched at a faster rate as it

involves only fetching the page, whereas change detection involves invoking the different

change detection algorithms. Spawning a new thread for each version, results in creation

of more number of threads that in turn reduce the system performance due to context

switches. This can be avoided by maintaining a thread pool as shown in Figure 7.2.

 71

Hence the parallelism is restricted to the size of the thread pool. The size of the thread

pool is configurable and can be set to any value. This value can be decided through

experiments.

7.3.2 Synchronization Issues

The System is made up of several data structures that will be shared and hence

may be concurrently accessed by threads. Following is the list of shared data structures:

1. Notify Buffer: This buffer is handled by the UI (User interface) to insert the new

registrations; the activation thread waiting on the buffer processes these requests.

2. Version Buffer: Queue containing the versions of pages. The fetch rules associated

with each sentinel insert the versions of pages fetched and the change detection

threads (Thread pool) retrieve each version for change detection.

3. Change Detection Graph (CDG): Graph of URL nodes, change type nodes, and

operator nodes. Accessed by change detection threads for propagation of versions and

also by the rules in LED when enabling/disabling a sentinel. When a sentinel is

enabled/disabled, the sentinel information is propagated to the corresponding nodes

(URL node, change type node) in the graph.

4. URL Node List: List of URL nodes. The LED (Local Event Detector) and the change

detection threads share this list. The rules associated with a sentinel’s start/ end time

access this list to insert/delete the URL node corresponding to the sentinel. The

change detection threads access this list to retrieve the URL node corresponding to

the version of page.

Race Conditions.

When the result of two or more threads performing an operation depends on

unpredictable timing factors, there is race condition. There are a number of situations

where race conditions can occur during change detection. The use of buffers (for

 72

decoupling the computations) and asynchronous actions (such as delete, disable etc.) can

occur at any time the changes are being detected. Before we describe the proposed

solution, we give a few examples of scenarios where race conditions can occur.

1. Thread A is in the process of deleting a URL node at position 7 from the URL Node

list. Thread B is traversing the URL Node list to get the URL node at position 13 to which

it wants to propagate the version. Thread B could be looking at node 7 when the list

manipulation is occurring. Thread B will decide that node 7 is not the desired node and

moves to the next position in the list. However, since thread A has disconnected this node

from the list the next position could be NULL. The result of what thread B reads will

hence depend on the timing factor and has been compromised by the race condition.

Hence the access of the URL node list and several such shared data structures must be

guarded for mutual exclusion.

2. Consider only one sentinel registered (links changes on page p). Thread A will be

accessing the CDG while propagating the version of the page from the URL node

(representing p) to the change type node (links). Even before the propagation, when

sentinel reaches end time, thread B (end rule) will delete the links node since there are no

more sentinels interested on links change leading to a race condition. Mutual exclusion

can be attained using synchronization mechanisms or locks. In addition, locks are also

used for controlling the sequence of execution of threads.

3. The fetch rule is inserting versions of the same page at a faster rate. Thread A from the

thread pool starts and is processing version1. As there is no control over which thread is

preempted and which thread is executed by the operating system, another thread B

(belonging to the thread pool) can start processing version2 and detects change before

version1 is processed. This results in incorrect change detection.

In order to control this execution, locks are used. There are several types of locks [23]

(semaphores) and the right choice must be made.

 73

7.3.2.1 Types of Locks

Mutex lock is a synchronization primitive that allows multiple threads to

synchronize access to shared data by providing mutual exclusion. The mutex lock has

only 2 states: locked and unlocked. Once a thread has acquired the mutex lock on a data

structure other threads attempting to lock the structure will be blocked until it is

unlocked. Since mutex allows only one thread to access any data at a given time, it is the

most restrictive type of access control. For example, when a mutex is used to synchronize

access to a list, the mutex will control the entire list. While the list is being accessed by

one thread it is unavailable to all other threads. If most accesses are reads and writes of

the existing nodes as opposed to insertions and removes, then a more efficient approach

will be to allow items in the list to be individually locked.

Read-write lock is another synchronization primitive that was designed

specifically for situations where shared data is read often by multiple threads/ tasks and

rarely written. A read-write lock is similar to a mutex lock except that it allows multiple

threads to concurrently acquire the read lock whereas only one writer at a time may

acquire a write lock. In the current scenario the Insert or delete operation on a list will

require acquiring the read-write lock in the writelock mode, while the seek (search) of a

node will require acquiring the lock in the readlock mode. By using the read-write locks

we can have parallel search operations on the URL node list. The only drawback of using

read-write locks is that locking operations take more time than the locking operations on

mutexes. Hence locking strategy must be chosen carefully. Read-write locks are justified

for the URL node list where inserts to the list happen not that often, only when new pages

are requested for monitoring; thereafter all other operations are search operations on the

graph to find a particular node. Readlock mode can be used to allow threads to search the

list in parallel.

 74

Semaphore is a synchronization primitive that has a value associated with it,

which is the number of shared resources regulated by the semaphore. Whenever a thread

acquires a semaphore, the semaphore count is decreased by 1. Whenever a thread releases

a semaphore, its count is increased by 1. Any thread wanting to acquire the semaphore

must wait till its count is greater than 0. Traditionally, semaphore operations have been

known as P and V operations. P operation is equivalent to acquiring the semaphore. V

operation is the same as releasing the semaphore. Semaphores are used primarily when

there is more than one shared resource that needs to be regulated.

For synchronization of data structures in the system, mutex locks or semaphores can be

used when the operations involved are primarily inserts and deletes that require exclusive

access. For data structures such as the Url node list, where a majority of the operations

are search operations on the list and updates on individual nodes, read-write locks can be

used for locking the list and semaphore or mutex locks can be used for locking individual

nodes. Details of the locking algorithm are explained in the next section. Table 5-1 shows

the choice of locks made for locking the various data structures.

7.3.2.2 Locking of Change Detection Graph

In a multithreaded system, several threads of execution share the Change

Detection Graph (CDG), and access to the graph has to be synchronized. Using a mutex

lock for the CDG locking will give only two states (locked and unlocked) of access for

the entire graph so that only one thread can be accessing it at any time. To allow finer

granularity, more than one thread should be able to access independent nodes of the

graph concurrently, as long as they are not updating the same nodes. Since in the graph

the processing at each lower level node depends on the information at the higher-level

nodes, locking each node will not solve the synchronization issue. Hence a lock has to be

 75

obtained on the leaf node (URL node). Once the leaf node is locked, other threads cannot

access higher-level nodes connected through the leaf node. Access to all higher-level

Table 7-9: Data Structures and Synchronization

DATA STRUCTURES LOCK USED with RATIONALE

Notify Buffer, Version

Buffer

Mutex locks are used since operations used are primarily

inserts and deletes. These operations need an exclusive lock mode

that is provided by mutex locks. Using mutex locks is preferred to

read-write locks because an operation on read-write lock has a

high overhead.

URL Node List Read Write locks are used for locking the list, as

operations on the list are primarily search of the list to find an

individual node. Shared mode (read lock) can be used while

scanning the list to allow parallel scans and exclusive mode

(write lock) is needed when nodes are inserted or deleted from the

list.

Change Detection Graph

(CDG)

Read-write lock for locking URL node list. Write lock

provides exclusive access to graph while inserting or deleting a

node. When accessing list in shared (read) mode, lock hash table

is used for managing access to individual nodes. Lock hash table

minimizes number of semaphores needed to lock nodes of the

CDG. Thread suspend and continue calls are used to prevent

more than one thread from accessing any node at a time. Lock

hash table minimizes overhead of managing several locks.

nodes in the graph has to be started at the leaf node. One way to achieve a finer

granularity would be to have a read-write lock on the change detection graph and a

semaphore lock on each URL node of the tree. However, when a large number of pages

 76

are monitored, the number of URL nodes in the graph will grow. Allocating and

maintaining locks for each and every URL node of the graph is cumbersome and will

require too many locks. A better option is to maintain a hash table of the URL nodes of

the graph that are currently being accessed. Each URL node of the graph will hash to a

bucket of the hash table. The bucket will maintain a list whose elements represent the Ids

of URL nodes of the CDG currently being accessed. Thread IDs of threads waiting for a

particular node will also be saved in a queue for each element in the list. In order to

traverse the list of node IDs the bucket needs to be locked. This means that the maximum

number on semaphore locks required for synchronizing access to the CDG is equal to the

number of buckets. In this way number of locks to be maintained is minimized and at the

same time a fine granularity of locking is achieved for locking the CDG.

Figure 7.3. Class diagram of lock package in WebVigiL

 77

7.3.3 Implementation of Locks [23]

The locks used in accessing different data structures have been explained in

chapter 5. This section explains the implementation of these locks. All locks belong to the

webvigil.locks package. The locks in this package provide three different types of

synchronization protocols. They are:

1. Sync: acquire/release protocols

2. Channel: put/take protocols

3. Executor: executing Runnable tasks

WebVigiL uses only one protocol, the sync protocol. All the locks, Mutex,

ReadWrite and Semaphore locks in this protocol implement Sync interface. This interface

provides three methods, acquire(), release() and attempt(), which the locks override. The

first method acquire() is used when a lock is needed to be acquired. It is essential when a

thread needs to enter a synchronized block. The thread that enters the critical section or

synchronized block (in JAVA jargon) needs to release the lock to let other threads

waiting to enter the critical section. The release() method is used for this purpose. The

other method attempt() is used to acquire a lock within a specified amount of time.

Read/Write locks come with the facility to control the number of readers and writers. It

also provides mechanisms to assign priorities to readers and writers. WebVigiL does not

need locks with such priority. Read Write locks in WebVigiL are used only for issuing

read locks and write locks. It should be noted that the locks in this package are non-

reentrant meaning the thread that owns a lock has to wait for that lock till it releases. The

relationship between different locks in this package is shown in Figure 7.3.

7.3.3.1 Lock Hash Table

The classes defined for the hash table are HTLock , HBucket and HLink. HTLock

is the lock hash table class. There is a single instance of this class in the system. HBucket

 78

is the class for each bucket of the hash table. Each bucket is guarded by a semaphore

bucket_sema, and each bucket contains a chain of HLink. The HLink contains obj_id,

thr_id , next and nextp. Obj_id is the unique ID (address of the node is used for hashing)

of the URL node being accessed by a thread whose thread id is thr_id. next is a pointer to

the next HLink in the bucket chain. nextp is a pointer to an HLink which contains the

thr_id of a thread that is suspended and waiting to access the same URL node. Figure 7.4

gives the data structure of the lock hash table.

Figure 7.4.Lock Hash Table Data Structure

When a version of the page is fetched, it is propagated to the corresponding URL

node. For traversal, read-write locks are used to give shared access to the URL node list.

Lock hash table is used to access individual nodes when the version of page is

propagated. Each node of the CDG must have a unique object ID for hashing purposes.

Since the address of the node is unique, it is used as the object ID. The sequence of

operations needed for locking is as follows: First the node object is hashed to find its

bucket in the hash table. A semaphore lock (bucket_sema) is then acquired on the bucket

 79

so that no two threads may be accessing its chain of HLink at the same time. The bucket

chain is then searched for the object ID of the URL node. If the object ID is not found, it

means that no other thread is accessing this node. Then an HLink containing that node’s

object ID and thread ID are added to the bucket’s HLink chain, the bucket semaphore is

released, and the current thread is granted access to the URL node. The thread can now

detect changes that are monitored on that page. On the other hand, if the object ID is

found in the chain, it means that another thread is operating on the node at the same time.

The current thread’s thread ID is added to the list of waiting threads for that URL node.

bucket_sema is released once the object ID is located, so that other threads can traverse

the HLink chain for accessing nodes of the CDG. The current thread is suspended and

will be continued only when the desired URL node becomes available to it. After a thread

finishes accessing the URL node, it removes its thread ID from the HLink chain. The

next thread in the queue of suspended threads is released by a “thread_resume” and it can

now access that URL node. Figure 7.5 gives the locking algorithm.

Figure 7.5. Locking Algorithm for URL nodes

 80

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusion
WebVigiL is envisioned as a complete system that allows monitoring and notification

of changes to structured documents in a distributed environment. WebVigiL is a system

currently under development at ITLAB at The University of Texas at Arlington for

providing an alternative paradigm for monitoring changes to the web (or any structured

document). The contribution of this thesis towards the system is in the following areas:

• Design and Development of ECA Rule Generation

• Construction and Maintaining Change Detection Graph

• Storage and Retrieval of pages

In the ECA Rule Generation module, ECA Rules to support enabling and disabling of

sentinels based on the start and end events and fetch rules for fetching pages for on-

change and fixed-interval option has been designed and implemented. Construction and

maintaining of change detection graph to support primitive events (changes to links,

images, keywords, phrases, any-change and all-words) and composite events (NOT,

AND and OR) has been designed and implemented. The grouping structure for efficient

change detection based on the fetch type and compare-options has been developed. The

multithreading and synchronization techniques have been designed and tested for

correctness. The storage structure for storing the versions of the pages being fetched is

 81

developed and implemented. All these modules have been integrated into the WebVigiL

system.

8.2 Future work
Currently sentinels belonging to the category of fixed-interval fetch type have

individual fetch rules. Grouping of these sentinels together can be investigated. Pages

having frames are not handled. A page with multiple frames has a base page, in which the

reference to the pages in frames is given. Hence the base page is a set of references to

various other pages. Change detection to these pages can be achieved by having a

composite change on all the referenced pages and the base page. This composite change

detection across multiple pages can be incorporated to handle pages with multiple frames.

In the current implementation the number of change detection threads is set to ten.

This thread pool size can be determined based on testing and analyzing the time taken for

change detection by each thread. Persistence and recovery issues with respect to the

system have to be dealt.

 82

APPENDIX A

HASH FUNCTIONS

 83

Function 1

hashValue = x;

for(i=0; i<n; i++)

hashValue = 131*hashValue + key[i];

 hashValue = i % tableSize;

where n is the length of the key (string), key[i] is the ith character of the key, tableSize

represents the length of the hash table (number of buckets), x is initialized to a random

number preferably a prime number.

Function 2

hashValue = x;

for (i=n-1; i>=0; i--)

hashValue = ((hashValue<<5)^(hashValue>>27))^key[i];

 hashValue = hashValue % tableSize;

here x equals 0.6180339887. This number is called magic number (sqrt(5)-1/2) [22].

The other variables are same as in Function 1.

Function 3 (Java Hash)

hashValue = 0;

for(i=0; i<n; i++)

 hashValue = hashValue + key[i]*31^(n-1);

 hashValue = hashValue % tableSize;

where key[i] is the ith character of the key, n is the length of the key. The other

variables are same as in Function 1.

 84

REFERENCES

[1] Douglis, F., et al., The AT&T Internet Difference Engine: Tracking and Viewing

Changes on the Web, in World Wide Web. 1998, Baltzer Science Publishers. p. 27-

44.

[2] Chen, Y.-F. and E. Koutsofios. WebCiao: A Website Visualization and Tracking

System. in WebNet97. 1997.

[3] Mind-it, http://www.netmind.com/.

[4] Lu, B., S.C. Hui, and Y. Zhang. Personalized Information Monitoring over the Web.

in First International Conference on Information Technology and Applications

(ICITA). 2002. Australia.

[5] Liu, L., C. Pu, and W. Tang. WebCQ: Detecting and Delivering Information

Changes on the Web. in Proceedings of International Conference on Information

and Knowledge Management (CIKM). 2000. Washington D.C: ACM Press.

[6] Xyleme, http://www.xyleme.com/.

[7] Jacob, J., WebVigiL: Sentinel specification and user-intent based change detection

for Extensible Markup Language (XML). 2003, The University of Texas at

Arlington.

85

[8] Chakravarthy, S. and D. Mishra, Snoop: An Expressive Event Specification

Language for Active Databases. Data and Knowledge Engineering, 1994. 14(10): p.

1--26.

[9] Pandrangi, N., WebVigiL: Adaptive fetching and user-profile based change

detection of HTML pages. 2003, The University of Texas at Arlington.

[10] Chakravarthy, S., et al., Composite Events for Active Databases: Semantics,

Contexts and Detection, in Proc. Int'l. Conf. on Very Large Data Bases VLDB.

1994: Santiago, Chile. p. 606--617.

[11] Tanpisut, W., Design and Implementation of Event based subscription/notification

paradigm for distributed environments. 2001, The University of Texas at Arlington.

[12] Anwar, E., L. Maugis, and S. Chakravarthy, A New Perspective on Rule Support for

Object-Oriented Databases, in 1993 ACM SIGMOD Conf. on Management of Data.

1993: Washington D.C. p. 99-108.

[13] Chakravarthy, S., et al., Design of Sentinel: An Object-Oriented DBMS with Event-

Based Rules. Information and Software Technology, 1994. 36(9): p. 559--568.

[14] Mishra, D., SNOOP: An Event Specification Language for Active Databases, in MS

Thesis. 1991, Database Systems R&D Center CIS Department University of Florida,

E470-CSE, Gainesville, FL 32611.

[15] Stonebraker, M. and G. Kemnitz, The Postgres Next-Generation Database

Management System. Communications of the ACM, 1991. 34(10): p. 78--92.

[16] Chakravarthy, S., et al., HiPAC: A research project in active, time-constrained

database management. 1989, Tech. Report (89-02), Xerox Advanced Information

Technology: Cambridge.

86

[17] Dasari, R., Events And Rules For JAVA: Design And Implemenation Of A Seamless

Approach, in Database Systems R&D Center, CIS Department. 1999, University of

Florida: Gainesville.

[18] Pandrangi, N., et al. WebVigiL: User Profile-Based Change Detection for

HTML/XML Documents. in Twentieth British National Conference on Databases.

2003. Coventry, UK.

[19] Gatziu, S. and K.R. Dittrich, SAMOS: an Active, Object-Oriented Database System.

in IEEE Quarterly Bulletin on Data Engineering, 1992. 15(1-4): p. 23--26.

[20] Gehani, N. and H.V. Jagadish, Active Database Facilities in Ode. IEEE Bulletin of

the Technical Committee on Data Engineering, 1992. 15(1-4).

[21] Krishnaprasad, V., Event Detection for Supporting Active Capability in an

OODBMS: Semantics, Architecture, and Implementation, in MS Thesis. 1994,

Database Systems R&D Center, CIS Department, University of Florida, Gainesville,

FL 32611.

[22] Knuth, D.E., The Art of Computer Programming. 3 ed. Vol. 3. 1998: Addison-

Wesley.

[23] Lea, D., Concurrent Programming in Java. Second Editio, 2000.

87

BIOGRAPHICAL INFORMATION

Anoop Sanka was born on June 20, 1978 in Rajahmundry, India. He received his

Bachelor of Technology degree in Computer Science and Engineering from National

Institute of Engineering, Mysore, India in September 1999. In the Fall of 2000, he started his

graduate studies in Computer Science and Engineering at The University of Texas,

Arlington. He received his Master of Science in Computer Science and Engineering from

The University of Texas at Arlington, in December 2003. His research interests include

active databases and Web technologies.

