A DATAFLOW APPROACH TO EFFICIENT CHANGE DETECTION OF

HTML/XML DOCUMENTSIN WEBVIGIL

The members of the Committee approve the master’s
thesis of Anoop Sanka

Sharma Chakravarthy
Supervising Professor

Leonidas Fegaras

Alp Adandogan

Copyright © by Anoop Sanka

All Rights Reserved

A DATAFLOW APPROACH TO EFFICIENT CHANGE DETECTION OF

HTML/XML DOCUMENTSIN WEBVIGIL

by

ANOOP SANKA

Presented to the Faculty of the Graduate School of
The Universty of Texasat Arlington in Partid Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXASAT ARLINGTON

December 2003

ACKNOWLEDGEMENTS

Firg and foremost, | would like to thank my advisor, Dr. Sharma Chakravarthy,
for giving me an opportunity to work on this chdlenging topic and providing me ample
guidance and support through the course of this research.

I would like to thank Dr. Leonidas Fegaras and Dr. Alp Adandogan for serving
on my committee.

| am grateful to Ramji Beera, Raman Adaikkalavan, Hari Prasad Yadamanchdli,
Naveen Pandrangi, and Jyoti Jacob for their invauable help and advice during the
implementation of this work. | would like to thank al my friends in the ITLAB for ther
help, support and encouragement.

I would like to acknowledge the support of the Office of Nava Research, the
SPAWAR System Center-San Diego & by the Rome Laboratory (grant F30602-01-2-
0543), and by NSF (grant 11S-0123730) for this research work.

| am thankful to my paents and brother for their constant support and
encouragement throughout my academic career without which |1 would not have reached
this postion.

August 12, 2003

ABSTRACT

A DATAFLOW APPROACH TO EFFICIENT CHANGE DETECTION OF

HTML/XML DOCUMENTSIN WEBVIGIL

Publication No.

Anoop Sanka, MS

The Universty of Texas a Arlington, 2003

Supervising Professor: Supervising Professor Name

Daa on the web is congantly increasng. Many a times, users are interested in
specific changes to the data on the web. Currently, in order to detect changes of interest,
users have to poll the pages periodicdly and check for the changes they are interested
in. Efficdent and effective change detection and natification is criticd in many
environments where a lot of resources are wasted in monitoring changes to the web
menudly. WebVigiL is a change monitoring sysdem, which effidently monitors
changes to the page on behdf of the user and natifies the changes in a timey manner. It
isagenerd-purpose, server based information monitoring and natification system.

This theds investigates how active capability (ECA Rules) has been adapted for

change monitoring. WebVigiL supports severd types of changes such as keywords,
v

phrases, links, images, and any change. A change detector, which facilitates monitoring
primitive (above types) and composite (combinations of above types) changes to
HTML/XML pages has been desgned and implemented. Algorithms for detecting

composite changes are discussed. Grouping techniques for efficient change detection

are also discussed.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS...... .ot v

ABSTRACT et n e e b s r e e e e neenee s %

LIST OF ILLUSTRATIONS.... .ottt sttt st s nnee s X

LIST OF TABLES ..ot Xii
Chapter

1 INTODUCTION. ... et it sr e neennee s 1

2. RELATED WORKttt st s 4

2L AIDE e e 4

22 WEDGUIDEooiiieiesie st s 5

PG B N\ 11/ 11 0o S 5

2 A WEDIMON. ...ttt 6

25 WEDCQ .ot eee s see e s e es e ser e ses e see s seeesens 6

2.6 XYIBIME ... 7

3. WEBVIGIL ARCHITECTUREcc.oiiieeeeeeeeeee e 9

T = 1] = S 9

32 Veification MOQUIE..........ccoiireiieeeee e 11

B3 KNOWIEAGE BESE.......coveeeeeeeeeee ettt 12

3.4 Change Detection MOdUIE.........cooeiiiiieeeee e 12

Vi

34.1 Detection AlgOrthmsS.........coeviiirerereeeeee e

3.5 Fetch Module....................

3.6 Verson Management MOQUIE.ccceveeeeeeseeie e

3.7 Presentation Module..........

3.7.1 Change Presentation...........ccveeeieenieeiieceese e

3.7.2 Change Noatification

4. ECA RULE GENERATION.......
4.1 Loca Event Detector

4.2 Activation/Deectivation.....

4.3 Fetching.......ccoeveeceeeeennens

5. CHANGE DETECTION GRAPH........coiiiiiiieeeee e

5.1 Introduction...........ccceeuee.
5.2 Naive Approach...............
5.3 Hash-Based Approach......
5.4 Change Detection Graph...

5.4.1 Sentind Grouping....

5.4.2 lllugtration Of Composite Change Detection............ccccoveerereenne.

5.5 Pardldizing Change DEECHON..........ccceeveeieeieseecie e

6. STORAGE AND RETRIEVAL OF PAGES..........cccooiiiieiiee e

6.1 Introduction..............cc.......
6.2 Hash-based Approach......

6.3 Directory-based Approach

viii

6.4 Experimental @ValUation............ccoeriierenineneeeee s

7. IMPLEMENTATION ...ttt sttt st s
7.1 Implementation of ECA Rule Generation.............cccceveevcieeniecceesee s,

7.2 Implementation of Change Detection Graph...........cccccvvecevieeneeseseennns

7.2.1 Composite Change Detection............coceveenereenneesienieseesie e

7.3 MUItIthreading ISUESoceeieeeece e

7.3.1 Multithreading the Change Detection............ccocevvvevenereneneenees

7.3.2 SynChroniZation 1SSUES.........ceccveeiieciee et

7.3.3 Implementation Of LOCKS..........ccoveeveeiiesierece e

8. CONCLUSIONSAND FUTURE WORKeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneennnnens
8.1 CONCIUSION.....cceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e ees

B2 FULUME WOIK. ..ot e e et e e e e e e e e e neeeeeees
Appendix

A.HASH FUNCTIONS .o s
REFERENCES s

BIOGRAPHICAL INFORMATION ..ot

LIST OF ILLUSTRATIONS

Figure Page
3.1 WEDVIQIL AFCHITECIUNE.coveeie ettt et 10
4.1 PefiOIC EVENL....cceiieieieee e e 29
4.2 Change Detection MOQUIE...........ccoiiiiiieeee s 31
5.1 NaIVE APPIOBCN.......ccuiiieitieite e ste et s e re e te e sreense e e s re e reeneeens 35
5.2 HashrBased APPrOaCh.........cocooiiiiiiiiiiesee e 36
5.3 Change Detection Graph..........coieeiiriiieeniee e 37
5.4 Primitive Change EXAMPIEcccoveeiiceceesie et 39
5.5 Compare OptioNSWIth EVENY:4A.......c.ooiiiiie e 42
5.6 Grouping Data SITUCLUIE..........ccceieeiieeie ettt 43
5.7 Grouping AlQOMIMcouoiiiiieeee e 44
5.8 Grouping EXaMPIE.couiiieeee e s 45
5.9 Composite Change Detection Graph..........cccceceieereeiesieeseece e 46
5.10 ComMPOSITE EXAMPIE ..ottt 47
5.11 Composite Change Detection EXamMple..........cccoveeieeieceesece e 50
512 PAAlEISMIN CDG......cceiiiiieriiiieieeie ettt s 51
6.1 BUIlA TIME ANAYSS. ...ttt 55
6.2 RECONSITUCHION + SEEK TIME......cceiieieceeiesteee e 56
7.1 CDG Class HIErAChYc.coiiiiiiiiiieeeeeee e 63

7.2 COMPIELE SYSEEM......oiiceeceece et reene s e e nre s 69

7.3 Class Diagram of LOCK PaCKagE.cueeririiiiererie st 76
7.4 Lock Hash Tahle Data SITUCKUNE.........cc.eeieeeieeeeeeie e 78
7.5 Locking Algorithm for URL NOGES...........cevveienieirsieseeee e 79

Xi

Table

5.1

5.2

5.3

7.1

7.2

7.3

1.4

7.5

7.6

7.7

7.8

7.9

LIST OF TABLES

Page
Change TYPES SUPPOIEDccciiiieeiie ettt et 38
Compare-Options SUPPOIE........cccueeeereeieseeseeie et ens 42
Semantics of COMPOSIE EVENL..........c.ooeeiiiiiiierieee e s 45
ECA AQENt ClaSS APttt st 59
Member Functions of URLNOGE CIESS..........coeierierienineeeceeseese e 64
Description of Changelist and LiOfChangelids Class.......ocoveveevieeiiecieciienne 65
Member FuNctions of Sentingl ClasS..........covviereeneneereseeees e 65
Member Functions of Change Type Node Class..........ccocceveenerenennecieneen 66
Member FUNCtionS Of NOT CIESS........cciieiririeieireeeesesree s 67
Member FUNCIONS Of OR CIESS........couiiieieieieriesie e 67
Member FUNCIONS Of AND CIESS........cceiiiieieiesieseseseeee e 69
Data Structures and SynChroniZation.............ceveeeeeieereeieseese e 75

Xii

CHAPTER 1

INTRODUCTION

The World Wide Web has become one of the most important media for sharing
information resources and continues to grow a an darming rate. Usars surfing the web, may
ether be searching for specific information or smply browsing the web. Different users may
be interested in knowing changes to specific web pages and their contents (or even
combinations there-of), and want to know when those changes take place. For example, tech-
savwy users may want to monitor new technologies and new research results from
enginering fidds and busness information of competitors. Such information would be
essential for maintaining the competitive edge. Students may want to know when the web
contents of the courses (they have registered for) change; users may want to know when
news items are posted in a specific context (appearance of key words, phrases etc.) they are
interested in. This needs periodic polling of the web (i.e, retrievad of one or more pages) to
see whether the information has changed. Generaly, to discover information of interest the
users need to congtantly monitor certain web dStes and web pages. This is a drain on the
bandwidth as well aslabor intensve.

In large software development projects, there exist a number of documents, such as
requirements andyss, design specification, detaled desgn document, and implementation
documents. The life cycle of such projects is in years (and some in decades) and changes to
various documents of the project take place throughout the life cycle. Typicdly, a large
number of people are working on the project and managers need to be aware of the changes

to any one of the documents to make sure the changes are propagated properly to other

relevant documents and appropriate actions are taken. Large software developments happen
in digtributed environments.

Today, information retrieva is mostly done using the pull paradigm, where the user is
responsible for posing the appropriste query (or queries or initiating the search) to retrieve
needed information. The burden of knowing changes to the contents of pages in interested
web dtes is on the user, rather than on the sysem. Although there are a number of
goplications (arlines, for example) that sdectivdly send interested information periodicaly,
the approach typicdly uses a malling lig to send the same information to all users. Other
tools that provide real-time updates in the web context (eg., stock updates) are customized
for a gpecific purpose and have to be running continuoudy and undernegth Hill uses a naive
pull paradigm to refresh the screen periodicaly. In generd, the ability to specify changes to
arbitrary documents and get notified according to user-preferred ways will be useful for
reducing/avoiding the wagteful navigation of web in this information age. In other words,
users are interested in a variety of information from different sources and there is a red need
for sysems to be developed to support the task of automaticaly identifying changes and
notifying the changes to the usars in a timely and effective manner. The proposed system —
WebVigiL provides a poweful way to disssminate information efficiently without sending
unnecessty or irrdevant information to the users It aso frees the user from having to
condantly monitor for changes using the pull paradigm.

Active rules have been proposed as a paradigm to satisfy the needs of many database
and other gpplications that require a timely response to Stuations. Event—Condition—Action
(or ECA) rules are used to capture the active capability in a sysem. The utility and
functiondity of active cgpability (ECA rules) has been well established in the context of
databases. In order for the active capability to be useful for a large class of advanced

gpplications, it is necessary to go beyond what has been proposed/developed in the context of
databases.

In the case of large-scde network centric environments such as web, users might be
interested in monitoring changes to a particular page or a part of the page such as images,
links, keywords and etc. In most cases, user's interest may not pertain to images, links and
keywords only, but to a combination of them. Web pages that are monitored for detecting the
changes may be of type HTML or XML. Changes to pages and changes in images, links,
keywords and etc., act as the primitive events themsalves when mapped to the ECA rules and
their combination form composte events. Thus, some of the techniques developed for active
databases, when extended appropriately will provide a solution to detect changes in the web.
This thess focuses on deveoping a framework and to provide a sdective propagation
approach to detect changes that are of interest to the users in the web and other large-scale
network-centric environments by adapting and extending the existing active technology.

This thess is organized as follows. Chapter 2 explains the existing change detection
and notification sysems and explans how WebVigL differs from the rest. Chepter 3
presents an overview of the current WebVigiL architecture. Chapter 4 explains the ECA Rule
generation and how Loca Event Detector (LED) is used to facilitate the process. Chapter 5
discusses the various gpproaches and the architecture of the Change Detection Graph used
for detecting primitive and composite changes. Chapter 6 explains the Storage and Retrievd
of pages usad for gtoring the pages fetched for monitoring. Chapter 7 extends the above to

explain the implementation details. Chapter 8 has conclusions and future work.

CHAPTER 2
RELATED WORK

Severd tools are available to assist users to track when the web pages of interest have
changed. Mogt of the tools offer service from a centrdized server or a client’'s machine.
Client-based tools focus mainly when to fetch the pages of interest rather than how the pages
have changed. This is because of the complexity nvolved in keeping track of changes to the
content for numerous versons. If specific changes to a page have to be detected, a
differencing tool has to run on the client machine. In spite of having such a tool, when the
user wants to track composte changes (for example, links AND images change on a page)
additiond information has to be maintained. And as the requirements grow, the complexity a
the client end a0 increases. This gave way to the server-based systems. Server based tools
track pages that are previoudy registered or submitted by users and notifies them via emall or
over the web upon request. The following are some of the server-based tools developed for

change monitoring to web pages.

2.1 AIDE (AT&T Internet Difference Engine)

AIDE [1] is both client and server based. It is a collection of tools. The tools consst
of: w3newer, which detects changes to pages, snapshot, which permits a user to store a copy
of the page and to compare any subsequent versons of the page, HtmIDIff, the differencing
tool used to compute the changes between two pages. W3newer runs on the client machine

and when observes a change on a page, it informs the snapshot to save a copy. Sngpshot is an

4

externd sarvice that archives the versons of the page and whenever a new verson of a page
arives to the sysem through w3newer, it invokes the HtmIDiff. When the user requests the
changes, the snapshot is contacted. The user could obtain the difference between any
versons of the page. Because of its architecture the necessity of grouping users who monitor
the same page does not arise. The drawbacks of this syssem are that the user cannot specify
customized changes (links, images, keywords) or composite change (links AND images) on a
page. Changesto XML pages are not supported.

2.2 WebGUIDE

WebGUIDE is an extenson to AIDE. It condgts of the following tools. AIDE and
Ciao [2]. Ciao is a grgphicd navigator that alows users to query and browse sructurd
connections embedded in a document repository. The same drawbacks described for AIDE

aoply to this sysem aswell.

2.3 NetMind

NetMind [3] formerly known as URL-minder provides keyword or text-based change
detection and notification service over web pages. NetMind detects changes to links, images,
keywords and phrases in an HTML page. The medium of notification to users about the
change is via email or mobile phone. The user might be interested in a change to a page but
not when there are changes to articles or some set of words the user is not interested. Such
change detection request cannot be specified. There is no support for composte changes
(when both links AND images change) on a page. There is no provison for the user to come
back later and view the last changes that have been detected. The frequency of when to poll
the page is predefined. The user cannot explicitly specify when to poll the page for change

detection and on what versons of page the change should be computed. Since the

5

implementation is hidden behind a CGl interface, how changes are detected is not known.

Change detection to XML pagesis not supported.

24 WebMon

WebMon [4] is proposed for tracking information change over the Internet. The user
can specify the web page to be monitored, sdect the monitoring function and dae the
monitoring frequency. The monitoring function can be any cusomized change such as
change in the time stamp, links, images or phrases. The change detection is based on the
dructure of the page. The assumption is that, HTML pages have stable structure. Issues such
a grouping users having overlapping monitoring requests are not consdered. Change
detection to XML pages is not supported. A combination of changes on a page is not

supported.

25 WebCQ

WebCQ [5] is a prototype sysem for large-scde web information monitoring and
delivery, which makes use of the Structure present in hypertext and the concept of continuous
queries. WebCQ is designed to discover and detect changes to the web pages and to provide
a personalized notification of the changes to the users Usars monitoring requests are
modeled as continuous queries on the web. WebCQ change detection robot is responsible for
discovering and detecting changes to web pages. The authors specify that composite changes
can be detected, but currently the system does not seem to support them. WebCQ lacks a fine
grouping strategy. For example, the change is computed more than once for two users having
the same sat of keywords. The grouping is based on a single keyword rather than a set of
keywords. Only change detection to HTML documents is supported. The user has to set the
polling frequency explicitly, the sysem does not tune to the change frequency of the page

6

i.e, the sysem does not learn from the polling patterns. The input specification language is
limited. The user cannot specify the monitoring request to be dependent on the status of other
monitoring requests. Change is aways computed between the successve versons of the
page. The user cannot specify what versons (window concept) of the page should participate

in change computation.

26 Xyleme

In [6], the authors present a Dynamic Warehouse for Web -- Xyleme, which monitors
the flow of incoming documents. The flow of documents conssts of XML pages and HTML
pages. The authors present a subscription language for specifying the pages to be monitored.
Depending on type of information requested by the user the pages are monitored using ether
monitoring or continuous query. For query of type monitoring, changes to a page ae
discovered when the sysem reads the page and for continuous queries changes ae
discovered by regularly asking the same query. Composite changes are dso supported. The
user cannot specify the monitoring request to be dependent on the status of other monitoring
requests. The users dso cannot specify what versons of the page should participate in
change compuitation.

Thefollowing are some of the other distinct characteristics of WebVigiL:

1) Properties of monitoring requests can be inherited: The user has the option of specifying
the monitoring request to be dependent on the status of other monitoring requests. One can
specify the sart/end of arequest to be the start/end of another request.

2) Hexible specification of versons. All the above systems compute changes between two
successive pages. In WebVigiL the user can explicitly specify the pages that can participate
in change detection.

None of the above sysems except Xyleme use the ECA (Event-Condition-Action)
paradigm for monitoring the web. ECA Rules help in adding new functiondity to the sysem
Seamledy.

CHAPTER 3
WEBVIGIL ARCHITECTURE

WebVigiL is a change detection and notification sysem, which can monitor and
detect changes to undructured documents in generd. The current work addresses
HTML/XML documents that are pat of a web repodtory. WebVigiL ams a investigating
the specification, management, and propagation of changes as requested by the user in a
timedy manner while meeting the qudity of sarvice requirements. Figure 3.1 summarizes the
high level architecture of WebVigiL. Users specify ther interest in the form of a Sentinel that
is usad for change detection and presentation. Information from the sentind is extracted and
stored n a datalknowledge base (currently Oracle) and is used by the other modules in the
sysem. The functiondity of each module in the architecture shown in Figure 3.1 is described
briefly in the following sections

3.1 Sentind
WebVigiL provides an expressve language with well-defined semantics for
gpecifying the monitoring requirements pertaining to the Web. Each monitoring request is
termed a Sentinel. Briefly, the specification language supports the following features:
A suite of change types a appropriate levels of granularity that are of interest to a
large class of users. For example, changes only at the level of apage may be

overkill in many cases. One may be looking for changes to keywords or phrases

of interest. Also multiple or composite changes (for example, changes to links and
changes to images) to a page are supported.

Ability to monitor a page based on the actua change frequency, or a a user-
gpecified frequency. The specification of the actual change frequency relievesthe
user of knowing when the page changes and requests the system to do its best
effort. A learning agorithm (based on history) is used for this purpose.

Multiple notification paradigms such as e-mail, fax, dashboard etc.

Multiple ways to compare changes (e.g., pair-wise, every n, or moving n).
Specification of asenting in terms of previoudy defined sentinds. Also, gart and
stopping of asentinel may be based on other sentinels. This provides a

mechanism for tracking correlated changes.

WVerifi cation Module Presentation Module
Syntactic & Semantic Validetion | ZoPSlEes T T siitEision Cpians
] Knowdedge Base
Sentinel Inheritanice Properties Interactive Presentati on
Sentinel v T

‘ ECA Eule Generatt on ‘

‘ Change Detection Graph ‘

| CH-Diff |
| CH-Diff |
i Change Detection Module
Wy v,
| ¥
Event Based Fetching . Wersionno | WVerdon Contrel
Learning on Change Storage and Betrieval of pages
. _ = i
Interval based Fetching Storing page Page Repoditory Chang e Management
Fetch Madulr Version Management Module
Figure 3.1 WebVigiL Architecture

10

For example consder the Scenario: JlIl wants to be notified daly by e-mal about
changes to links and images to the page “http:/Amww.cnn.com” darting from December 2,
2002 to January 2, 2003. The sentinel generated for the above scenario is asfollows:
Creste Sentind s1 Using http:/Avww.cnn.com
Monitor dl links AND dl images
Fetch every 2 days
From 12/02/02 To 01/02/03
Notify By email jill@aol.com Every 4 day
Compare pairwise

A detaled explanationisgivenin [7].

3.2 Veification Module
Veification module provides the required communication interface between the

system and the user for specification of sentingls. User requests (sentinels) are processed for
gyntactic and semantic correctness. Vdid sentinels are populated in Knowledge base (Oracle
is used currently) and a notification of the vaid sentings is sent to the change detection
module. In generd the functiondity of verification module can be summarized as

Load balancing of syntactic vaidation between client and server, thereby

reducing excessive communication between the client and the server (eg.,

validating start date set to adate in past a the client’s end).

Semantic vaidation of sentinds a the server, as the dependency information

gpecified in the sentindl is available at the server. For exampleif the start of a

sentind s1 was specified on the end of another sentind 2, and at the time of

gpecification if s2 had dready expired an error should be thrown to the user.

11

3.3 Knowledge Base:

Knowledge Base is a perdgent repodtory containing meta-data about each user,
number and names of sentinds set by each user, and details of the contents of the sentind
(frequency of natification, change type etc.). The detals of a sentind need to be dtored (in a
persstent and recoverable manner) as severd modules use this information a run time. For
example, the change detection module detects changes based on sentind information such as
the URL to be monitored, the change and compare specifications, and the start and end of a
sentind. The fetch module feiches the pages based on the user specified feich policy. The
notification module requires appropriate contact information and notification mechanism to
notify the changes User information, such as the sentind inddlation date, and the page
versons for change detection and storage path of detected changes also need to be stored to
dlow auser to keep track of his’her sentingls.

To satisfy al the above requirements, the metadata (the WebVigiL Knowledge Base)
generated and used by different modules is stored in a rdaiond DBMS. The monitoring
request is parsed and senting properties are extracted, validated, and stored in the KB. For
example, the following parameters are dtored for notification: the frequency of natification
and the mechanism to notify the user. In addition, important run time parameters computed
by different modues, such as the status of the created sentinds and parameters of the change
detection module are dso pessed in the KB. Findly, reaiond database provides
mechanisms to extract the required information in a convenient manner in the form of queries

or usng the JIDBC Bridge.

3.4 Change Detection Module
Every vdid user request ariving a WebVigiL, initistes a series of operations that

occur a different points in time. Some of these operations are: creation of a sentind (based

12

on dat time), monitoring the requested page, detecting changes of interest, notifying the
user(s) of the change, and deactivation of sentind. In WebVigiL, for every sentind, the ECA
rule generation module generates ECA rules [8] to perform some of these operations. This
moduleis respongble for:

1. Activating and deactivating sentinds

2. Condructing and Maintaining Change Detection Graph

3. Generating Fetch rules.
Thiswill be detalled in later chapters of thisthess.

3.4.1 Detection dgorithms

A detection dgorithm associated with each change type computes changes between
two versions of a page with respect to that change type. For a change to be detected, the
object of interest is extracted from the available versons of the page depending upon the
change type. Change detection agorithms have been developed to detect different types of
changes to HTML and XML pages. The change types currently supported are: links, images,
al words, keywords and phrase. Change to links, images, words and keyword(s) is captured
in terms of insertion or deetion. For phrases in addition to insertion/deletion updates are dso
detected. Refer [7, 9] for more detall.

3.5 Fetch Module

The Fetch Module [9] of WebVigiL is responsble for retrieving the pages registered
with it and thus serves as a locd wrapper for the task of fetching pages depending upon the
user st fetching policy i.e, fetching a page after a specified intervd (set by the user) or
fetching the page on change (the systlem determines the frequency of fetching based on actud
change frequency of the pages). The Fetch module informs the verson controller of every

13

verson it fetches, dores it in the page repository and notifies the change detection graph (or
CDG) of a successful fetch. The wrapper fetches the page only when there is change in the
properties of the pages. By properties, we mean the size of the page and the last modified
time samp. When there is a change in time samp of the page with an increase or decrease in
page size, the wrapper fetches and caches the page. In cases where time stamp is modified,
but the page sze remains the same, the wrapper fetches and caculates the checksum of the
page. This verson of the page is cached only if the cdculated checksum differs from the

checksum of the cached (previous) verson of this page.

3.6 Verson Management
An important feature of WebVigiL architecture is its server-based repository service
(Verson controller) that archives and manages versons of pages. WebVigiL retrieves and
gores only those pages needed by a sentind. The primary purpose of the repository service is
to reduce the number of network connections to the remote web server, thereby reducing
network traffic. When a remote page-fetch is initiated, the repository service checks for the
exisence of the remote page in its cache and if present, the latest version of the page in the
cache is returned. In cases of cache miss, the repository service requests that the page be
fetched from the appropriate remote server. Subsequent requests for the web page can access
the page from the cache instead of repestedly invoking afetch procedure.
The repostory service reduces network traffic and latency for obtaining the web
page because WebVigiL can obtain the “Target Web Pages’ from the cache insteed of having
to request the page directly from the remote server. The qudity of service for the repository

service includes managing multiple versons of pages without excessive storage overheed.

14

3.7 Presentation Module

The principd functiondity of this module is to clearly present the detected
differences between two web pages to the user. Therefore, computing and displaying the
detected differencesis very important.

3.7.1 Change Presentation

Different methods of displaying changes used by the exising tools are i) merging
two documents, ii) displaying only the changes and iii) highlighting the differences in both
the pages. Summarizing the common and changed data into a single merged document has
the advantage of displaying the common portions only once. The disadvantage of this
aoproach is that it is difficult for the user to view the changes when they are large in number.
Displaying only the computed differences is a better option when the user is interested in
tracking changes to multiple pages or when the number of changes is large. But, highlighting
the differences by displaying both the pages sde-by-sde is preferable for changes like “any
change” and “phrase change’. In this case, the detected differences can be perceived better if
the change in the new page is shown relative to the old page.

Because WebVigiL will track multiple types of changes on a web page and
eventudly notify udng different media (emal, PDA, laptop etc), combination of Al
presentation styles discussed above will be relevant, as the information to be notified will
vary depending on factors such as notification method, number of detected differences and
type of changes.

15

3.7.2 Change Natification

Users need to be notified of detected changes. The mechanism sdected for
notification is important especidly when multiple types of devices with varying capabilities

areinvolved. What, when and how to notify are three important issues for notification.

3.7.2.1 Presentation Content

Presentation content should be concise and lucid. Users should be able to clearly
perceve the computed differences in the context of hisher predefined specification. The
natification report could contain the following basic information:

The change detected in the latest page relative to the reference page
User specified type of change like “any change’, “dl words’ etc.
URL for which the change detection module isinvoked.

Smadl summary explaining the detected changes.

This could include satus of changes such as insert, delete and changed for certain
type of user-defined types of changes such as “images’, “dl links’ and “keywords’ and/or
the different timestamps indicating the modification, polling, change detection and
notification date. The dze of the notification report will depend upon the maximum
information that can be sent to a user by saisfying the network qudity of service

requirements.

3.7.2.2 Notification frequency

A detected change can be notified in two ways i) notify immediady when the
change is detected or ii) notify after a fixed time interval. The usr may want to be notified
immediately of changes on particular pages. In such cases, immediate notification should be
sent to the user. Alternatively, frequency of change detection will be very high for web pages

16

that are modified frequently. Since frequent notification of these detected changes may
become a bottleneck on the network, it is preferable to send the notification periodically. The
notification has to be sent to the user taking into consderation the QoS congraints. The
system should incorporate the flexibility to alow users to specify the desred frequency of
notification. For example, in sentingd sl, Jill wants to be notified every 4 days, irrespective of

when the changes are detected.

3.7.2.3 Notification methods

Different notify options such as emall, fax, PDA and interactive, can be used for
notification. Interactive is a retrieva-based notification approach where the user retrieves the
detected changes as and when needed. A dashboard will be provided to the user to view and

query the changes generated by higher sentinels.

WebVigiL architecture shown in the Fgure 3.1 has five modules and many
components within them. This thess deds mainly with change detection module dong with
feich and verson management modules. In the change detection module, ECA rule
generation and change detection graph components are addressed. In the fetch module, event
based fetching and in the verson management module, storage and retrievd of pages
components are addressed. All the modules aong with their components are discussed in the
following chepters.

17

CHAPTER 4

ECA RULE GENERATION
Every vdid user request ariving a WebVigiL initiates a series of operations tha

occur at different points in time. Some of these operations are activating a sentind (based
on dat time), monitoring the requested page, detecting changes of interest, notifying the
change to the usex(s), and deactivating a sentind (based on end time). In WebVigiL, for
every sentind, the ECA rule generation module generates ECA rules [8, 10] to perform some
of these operations.

Briefly, an event-condition-action rule has three components. an event (occurrence of
an event), a condition (checked when the associated event occurs), and an action (operations
to be carried out when the condition evaluates to true). The ECA paradigm has been used for
monitoring the database date in active databases and as a stand-aone concept for monitoring
objects in applications (both centrdized and digtributed [11]). As part of the Active Object-
oriented system [12, 13], a local event detector (LED) has been developed as a library that
can be used to declare events and associate rules to be executed when events occur in a
seamless manner. It is actudly an event detector that has been implemented to detect events
in java applications and execute rules defined on them. Primitive events (as method
executions) and tempord events (both absolute and relative time), as well as composte
events are supported in LED. The exiding event specification language “SNOOP’ [14] is
used for gpecifying composite events. WebVigiL uses Periodic event operator for change

18

detection and PLUS operator for activation and deactivation of sentinds. ECA rules provide
an degant mechanism for supporting asynchronous executions based on events (tempord or
otherwise).

This chapter provides an overview of the tools/components used in this module and
discusses how ECA rules are used for: i) activation and deectivation of sentinds, and ii) for

generating fetch rules for retrieving pages.

4.1 LED (Local Event Detector)

4.1.1 Primitive Event
An event is an occurrence of interest at a specific point in time. Primitive events are

the dementary occurrences and are classfied into doman-specific events (eg., database,
oodb, WebVigiL), tempora, and explicit events. Domain-specific events are specific to a
domain and are associated with the manipulation of data in that domain (such as the creation,
deletion, or insertion that are executed over a period of time in an RDBMS). Event modifiers
(begin and end) were introduced to transform operations that teke an intervd into an
ingtantaneous event. In other words, the event modifiers (begin and end) are used to map the
logicd events a the conceptud level to physcd events The begin event modifier denotes
the garting point of an event and the end event modifier denotes the ending point. Tempord
events correspond to absolute and relative tempora events. The absolute tempord event is an
event asociated with an absolute vaue of time. For example, 4 P.M. on July 4, 1999 is an
absolute event. The reative tempord event is an event corresponding to a specific point on

the time line, which is an offst from another ime point (specified ether as asolute or as an
19

event). Explicit (dso termed abdtract) events are explicitly defined in an application, but
their occurrences are ether detected outside of the agpplication or conveyed to the application

or the gpplication explicitly raises those events.

4.1.2 Composte Events
A composite event is an event that is composed of primitive events and/or other

composite events by applying Snoop [14] event operators such as OR, AND, SEQUENCE,
NOT. In order words, the condituent events of the composte event can be primitive events

and/or previoudy defined composite events.

4.1.3 Snhoop Event Operators
The event operators are used to construct composite events. Some of these event

operators and its point semantics [14] ae described briefly in the following section. The
upper case letter E, which represents an event type, is a function from the time domain on the
Boolean vdues. The function is given by

E (t) = Trueif an event type E occurs at time point t

False otherwise

Conjunction: AND (?)
Conjunction of two events i and E, denoted by & ? E » is applied when B occurs

and E» occursin any arbitrary order. Formaly,
E?E)O = E()?E 1) ? (B (1) ? Ex (t1))

andtl £ t

20

Sequence (;)
The sequence of two events B and B, denoted by & ; E, occurs when & happens

before E,. The timestamp of occurrence of E; is less the timestamp of occurrence Eo.
Formdly,
ExsE) @) =B (D) ?Ex2 () andtl <t

Periodic Operator (P)
The periodic operator, denoted by P (Ei, [t], Eg) is used to express a periodic event

that repeats itsdf within a congant and finite amount of time. The event P is sgnded for
every amount of timet in the haf-open intervd (E;, Es]. Formally,

P(Es, [TI], Bs) () = (Ea(tD) ? ~ E5(t2))

andtl<t2andtl+x* Tl =tforsomeO<x<tandt2£ t

where Tl isatime specification.

Plus (+)
The plus operator denoted by B+ [T] is goplied when T time units are elapsed after

E; occurs.

4.1.4 Parameter Context
Four parameter contexts — recent, chronicle, continuous, and cumulative — were

introduced to provide a mechanism for capturing meaningful application semantics and
reduce the space and computation overhead for the detection of composte events usng the
point semantics described above. The contexts are defined by using the notions of initiator

and terminator for events. An event that initiates the occurrence of a compodte event is

21

termed the initiator of the compodte event. An event that completes the detection of a
composite event is denoted as the terminator of the composite event. For example, a
composite event (E1 ? E2 ? E3) has E1 asinitiator and E3 as terminator.

Recent:

In the recent context, only the most recent occurrence of the initistor (when there are
multiple ingtances of the same event) for any event that has Sarted the detection of that event
is used. When the event occurs, al the occurrences of events, those are used in the parameter
relation and cannot be initiators of that event in the future, are deleted. In this context, not al
occurrences of a condituent event will be used in detecting a composite event. Furthermore,
an initistor of an event will continue to initiste new event occurrences until a new initiator
occurs.

Chronicdle:

In the chronicle context, the initiator-terminator par is unique for an event
occurrence. The oldest initiator is pared with the oldest terminator for each event. When
event occurs, the occurrences of the events are deleted. The event occurrence can be used at
most once for computing the parameters of the composite event.

Continuous:
In the continuous context, each initiator of an event darts a separate detection of that

event. A terminator event occurrence may detect one or more occurrences of the same event.
Theinitiator and terminator are discarded after an event is detected.

Cumulative:

22

In the cumulative context, al occurrences of an event type are accumulated as
ingtances of that event until the event is detected. When the event occurs, al the occurrences

that are used for detecting are discarded.

4.1.5 Coupling Modes
In early systems such as POSTGRES [15], condition evauation and action execution

were done immediately after the event was detected. However, in some Stuations this is too
redrictive. For integrity checks, condition evauation and action execution need to be done at
the end of a transaction before it commits. Coupling modes were introduced [16] to specify a
relative point in time where condition evauation and action execution should take place after
the event is detected, with the condraint that the action will be performed only when the
condition is satisfied. There are three coupling modes:

Immediate:
When an event is detected, the transaction is suspended, and the condition associated

with the event is evaduaed immediately. If the condition evduaes to true, the action is
executed. The execution of the triggering transaction is suspended while the condition
evauation and action execution are completed.

Deferred:
The triggering transaction is continued after an event is detected. Condition

evduaion and action execution are done a the end of the triggering transaction before it

commits.

23

Detached (or decoupled):

Condition evaudion and action execution are done in a separate transaction (or
triggered transaction) from the triggering transaction. The detached mode can be classfied
into two types (totaly independent and causdly dependent). When two transactions are
totaly independent, the triggered transaction is executed regardless of whether the triggering
transaction commits or aborts. On the other hands, the triggered transaction can commit only

after the triggering transaction commits for the causally dependent mode.

4.1.6 RulePriority
In addition to the parameter context, coupling mode associated with a rule, there is

dso a priority assigned to each rule. The default priority of a rule is a priority of 1. The
priority increases with the increase in the numerica vaue i.e, 2 has a higher priority than 1,
3 is a higher priority than 2 and so on. Rules of the same priority are executed concurrently
and rules of a higher priority are dways executed before rules of a lower priority. It is
possble that a rule raises events that in turn could fire more rules and so on. This results in a
cascaded rule execution. Furthermore, rules can be specified either in the immediate coupling
mode or the deferred coupling mode. Both the priority and coupling mode of a rule have to

be taken into account for scheduling the rue for execution.

We use the Java LED (Java Locd Event Detector) for WebVigiL. LED is a library
desgned to provide support for primitive and composte events, and rules in Java
aoplications in a seamless manner. It is actually an event detector that was implemented to

detect events in Java applications and executes rules defined on them. Primitive event
24

detection as wedl as composite event detection in various parameter contexts and coupling
modes has been implemented in LED. Also, the gpplication developer has to explicitly put
the raseBeginEvent and raiseEndEvent cdls indde the methods that have been defined as

primitive events [17].

4.2 Activation/Deactivation
A sentind’s life span is gpecified by the gat and end time. During its lifespan, a

senting is active and participates in change detection. A sentind is endbled (participates in
change detection) by default at its start time, and can be disabled explicitly by the user during
its lifespan. The dart/end time of a senting can be a point on the time line or can be an event
[7] that references another sentind’s start or end time. When a sentind’s dart time is now, it
is enabled immediately. But in cases where the dart is a a later time point or depends on
another event that has not occurred, endbling of the sentind is deferred until that time is
reeched or the event of interest has occurred. To facilitate this we need a triggering
mechaniam that will raise the event required to endble/dissble a sentind. In WebVigiL, the
change detection module generates gppropriate events and rules and are indantiated using the
LED. The dat and end events are implemented as primitive events. Start and end of a
sentind are trested as potentid events as they can trigger the start or end of other sentinels.

For every sentinel, start and end events are created and rules are associated.

Event Stat 5§ = createEvent(“start_s”) @

Rule Rsart_s = createRule(Start_s, condition_s, action_s) @)

25

Statement 1 shows the start event creation and statement 2 shows the rule creation for a
sentingl $. More than one rule can be associated with an event (i.e, Rdart s, .. Rdtart s, can
be associated with event Start ;). When the event created in statement 1 is raised the rules
associated with it (datement 2) are triggered. When the rule is triggered the action is
performed only when the condition is true. With enabling/disabling sentinds there are no
conditions to check, thus the event is raised and the respective rule enables the sentind. An
event can beraised in the following ways.

Absolute Time Condder the scenario where s is defined in the interva [06/02/03,

07/02/03]. At time 06/02/03 the start event associated with sentingl § has to be raised for

it to get enabled. Following are the events and rules that are generated to enable senting

Si:

Event Stat s = createEvent(“sart_s,”)
RuleRsart s, = createRule(Start_s;, condition_s;, action_s;)
Event ETime; = createTempora Event (06/02/03)
RueRTime; = createRule (Etimel, condition, action)
When event ETime; is rased a the specified time point, rule RTime; is triggered.
The action associated with rule Rtime; in turn raises the event Stat 5. When Start ' s; is
invoked the action (action_s;) associated with rule (Retart_s;) enadbles sentind 5.
Rdative The dat/end of a sentind may depend on the dat/end of other sentinds.
Sentind s, should be endbled, if it is defined over the interva [dart (s1), end (s1)], when

s is endbled. Another rule that raises the event Start s, is associated with event Start_s;.

26

The following are the events and rules that are generated in order to endble $ when g is

enabled.

Event Sat s, = createEvent(“sart_ s,”)

RueRdat s, = createRule(Start_s,, condition_ s, action)

Rule Rdative Stat s, = createRule (Start_s;, condition, action)

When a sentingl § specifies its time interval as [dart (3)+ 1 day, end (5)+ 1 week],
s should be enabled after 1 day snce s, is enabled. Composite event PLUS is used to
achieve the above. The events and rules generated in order to enable 3 are asfollows.

Event Start 53 = createEvent(“start_s3”)

RuleRstart 53 = createRule(Start_ss, condition_sg, action s3)

Event S;Plus 1day = createPlusEvent (Start s, 1 day)

RuleR Stat 53 = createRule (S;Plus_1day, condition, action)

The event Start_s; is raised by the rule R_Start_ s3 when the plus event SPlus 1day is
rased. And findly sentind s3 is enabled. Each sentind generates a start and an end event.
Rules are associated with these events to trigger the start or end of other sentinels.

All the above examples are based on sentinds that are reative to dat of other
sentinds. A sentind’s dart can aso depend on the end datus of other sentinds and vice
versa Generdized event and rule definition is as follows.

Evente = createEvent(“event_g”) 3)

RuleR g = createRule(g, condition_g, action_g) @)

27

In the above statements g can be the reative evert (Start/end) or absolute time based event ()

or aplusevent (g +1t).

4.3 Fetching
In order to monitor the page targeted by the sentind, it has to be fetched using the

specified periodicity. In WebVigiL, we use the PERIODIC event to achieve this fetch in a
asynchronous manner. A periodic event is an event that repeats itsdlf within a congtant and
finite amount of time. The initistor and terminator are the start and end events of a senting
and t is the interval with which the page should be monitored. The actud fetch of the page is
performed by the rule associated with the periodic event. The sentinels in WebVigiL can be
classfied into two categories.

Fixed fetch-Intervd: In this case, the intervd for polling is explicitly specified by the

user. For example, the user knows that the page changes severd times a day but he is

interested in changes happening each hour. In WebVigiL for every sentind belonging to

this category, a unique periodic event with an associated fetch rule is generated. For

sentind s whose periodicity is defined as 2 days, the periodic event generated is as

follows.

Event FetchEvent_s; = createPeriodicEvent (Start_s;, 2 days, End_s;)

RuleFetchRule 5, = createRule (FetchEvent_s; condition, action)

Figure 4.1 shows the graphicd interpretation of the periodic event FetchEvent_s;.

28

FetchEvent s,

/‘\ FetchRule 5

Start 51 End 5
2 ays

¥

Figure 4.1: Periodic Event

On-Change This specification requests the WebVigiL sysem to detect the changes as
soon as it takes place. In order to do so, the system has to fetch the page at some pre-
determined frequency and learn to fetch the page as its modification history is collected.
The initid interva of polling the page is set by the sysem to a predefined vadue This is
useful in scenarios where the user is interested in every change occurring to the page but
has no cdue when the page changes. Currently the system initidly darts with a smal
interval (1 hour) and learns from the previous change intervas [9]. All sentinds
monitoring the same page belonging to this category share a common fetch rule
Condder the scenario where sentingl s is defined in the interval [06/02/03, 07/02/03] on
page: and sentind s3 defined in the intervad [06/01/03, 07/01/03] on the same page; with
on-change specification. Initidly when s, regigers with the system the periodic event
generated is

Event FetchEvent_Page; = createPeriodicEvent (Stat_ s, t, End s)

29

Rule FetchRule Page; = createRule (FetchEvent_Page;, condition, action)
When sentind g registers with the system, as both s and g are requesting monitoring of
the same page and fdl wunder the same caegory, the previous fetch rule
(FetchRule Page)) generated is shared. Since s3 darts & an earlier time than s, the
polling should initiate when event Start s is raised, and terminate when End s is raised
(end time of 2 is laer than end time of s3). Thus the earlier initiator and terminator of
the periodic event generated should be replaced (FetchEvent Page) with Start s3 and
End_s2 respectively. The periodic event reflecting the changes is

Event FetchEvent_Page; = createPeriodicEvent (Start_ss, t, End_ sy)
If al the succeeding sentinels regigtering with the system belong to the same category of
2 and s3, the periodic event initiators and terminators have to be determined at runtime
and if needed, be replaced a runtime. Furthermore, the user can dso explicitly disable a
sentind before it has darted which results in computing the initiastors and terminators. In
order to avoid this computation each time a sentind belonging to the same category is
regigered, dummy initistor and dummy terminator are crested. The periodic event
generated would be

Event FetchEvent_Page; = createPeriodicEvent (Start_dummy, t, End_dummy)
When the start of a sentindl is raised the rule associated with it checks on the status of the
periodic event (i.e, initidized). If initidized it does not rase the Stat dummy event.
Smilaly when the end of the sentind is raised it checks whether the Fetch rule is

servicing other sentingls. Based on this information the End_dummy event is raised.

30

CHANGE DETECTION

Sentinel

» ECA RULE GENERATION

l

CHANGE
L DETECTION >
]]:E) —» GRAPTH Notification
FETCH MODULE

I

Figure 4.2: Change Detection Module

Since the initiator and terminator are raised only once, the contexts (section 4.1.4) do not
aoply. Hence, the default RECENT context is used. The rules associated with dl the events
(absolute, relative, plus and periodic) generated are executed in the immediate coupling
mode. Currently, the priority of al the rules is assumed to be the same. In this manner, ECA
rules are used to asynchronoudy ectivate (enable) and desctivate (disable) sentinds at run
time. Once the appropriate events and rules are created, the local event detector handles the
execution & run time. By enabling/disabling of sentind, we mean addition/deetion of that
sentingd to the change detection graph that is detalled in the next chapter. The following

Figure 4.2 shows the individud modules in the Change Detection module. The sentind is
31

received as input to the ECA Rule generation that creates the rules necessary for monitoring
usng the LED. The rules, upon firing, inform the change detection graph for
endbling/disdbling the sentinds. The fetch module fetches the pages (Fetch Rules) and
propagates them to the change detection graph for participation in change computation and

detection.

32

CHAPTER 5

CHANGE DETECTION GRAPH

5.1 Introduction
For each document/page (HTML/XML) of interest, when the page is fetched the

change is detected and reported to al the sentines interested in that change. Change is
detected between the current page and the previoudy cached page for the same URL.
Change detection dgorithms CH-DIFF and CX-DIFF [7, 9, 18] have been developed to
support the change types (links, images, keywords, phrases, al-words) for HTML and
XML pages, respectively. The framework for monitoring is based upon the use of events.
Fetching of a page is consdered an event that starts the process of change detection. Each
type of detected change is consdered an event that is propagated to detect composite
events. The WebVigiL system detects these events for each document (page) on which a
sentind is s&t. The system should aso be able to detect composite events. A composite
event is an event expresson comprisng a set of events related through one or more event
operators such asNOT, AND, OR [6].

As we ae assuming a large number of usars seting sentinds on URL'’s for
different types of changes, we ae likdy to have overlgps among URL'Ss types of
changes, frequency of access etc. One of the gods of WebVigiL is to process sentingls

efficiently and be able to scde to a very large number of sentines. Verson control is aso

33

an important issue, as versons of a page should be maintained (depending upon the
window specification). This theds addresses the efficient evdudion (i.e, change
detection) of sentinels. Some of the issues that need to be addressed are

Mapping of URL’sto an internd representation

Raising an event when apage is fetched

Detecting changes for ALL sentindls (with different types of changes) efficiently

Detecting composite events

Passing changes detected to the notification module

The fdllowing sections discuss some of the gpproaches for handling the above

issues.

5.2 Naive Approach
One gpproach for change detection is to maintain a hash table with the page of

interest as the key and the vaue being a lis of sentinds monitoring that particular page.
When the page is fetched, the sentinel(s) on that page are extracted and change type is
detected for each sentind. For example, for sentinds § and S that are interested in links
change to Page, the mapping condructed is shown in Figure 5.1. When Page is fetched
the sentinds § and S are extracted. For each of the sentinels the previous verson of the
page is fetched from the cache and the change detection dgorithm for links is executed
and isnatified if there is a change.

This gpproach is rather naive snce, when there are sentings interested on same
change type on the same page, the change is computed twice. In the above example, if S

and S, are monitoring links change to “www.utaedu’(Page), then change detection is

34

computed twice for each sentind. In order to attain scaability more efficient gpproach for

change detection isrequired.

Pagcj -

Figure 5.1 : Naive Approach

5.3 Hash-Based Approach
In order to avoid the redundant computation when two or more sentingls

subscribe to the same properties (same target page and change type) a grouping can be
established. Multiple sentinds monitoring the same change type on the same page can be
grouped together. In this gproach a hash table is maintained with the monitoring page as
the hash key. Each bucket of the hash table contains a list of groups, one group (change
types) per page. Sentingls that share the same target page are hashed into the same
bucket. Consder seinds S3 and S; that ae intereted in images change to
“www.utaedu” (page) in addition to the other sentinds discussed in the previous
approach. Figure 5.2 shows the mapping structure congtructed for al the sentines.

When Page; is fetched, dl the groups corresponding to the page are retrieved and
the corresponding changes are detected based on the group property (change type). Hence
for sntinds S;, S, the change is computed once. Smilarly for Sz, Ss the change is
computed only once. With this gpproach the redundant computation is avoided. A

composite change refers to a “combination” of changes via operators. For example,

35

changes to links AND images is a composte change, where AND is the operator. This
change is detected only when both links and images change on the page. But, in order to
achieve compodte change detection on the same page or multiple pages, this gpproach
induces lot of complexity. Either hashing or grouping can be used for composite change
detection. Sentinds from different buckets need to be interlinked for composite change
detection. Deetion of sentinds with composite changes will aso pose problems, as the

information needs to be propagated from the root sentinel node.

Page, | _......... Page;

LiI]kS - |

¥

L

Images | I

Figure 5.2 : HashtBased Approach

5.4 Change Detection Graph
We need a data structure that will dlow us to asynchronoudy feed fetched pages

for change deection, dlow padldisn where possible, optimize the computation by
grouping sentinds over URL’s and change types, and facilitate composite change
detection usng the same paadigm as primitive change detection. Ddetion and
propagation of delete semantics must be draightforward in the representation chosen.

Although a number of data structures have been proposed in the literature for event

36

detection, such as Petri nets [19], extended automata [20], it has been shown that event
graphs [14, 21] support the requirements a the granulaity and grouping that is
appropriate for our problem. Hence, we have adapted and extended the event graph
approach proposed for snoop [8] for detecting primitive as well as compodte changes.
Below, we describe the extended structure along with its advantages.

Primitive change detection involves detecting changes to links, images, keywords
efc., in a page. In order to facilitate primitive change detection, grouping of sentinels, and
data flow we congruct a graph. This greph is referred to as the change detection graph
(CDG). The graph is congtructed bottom up as shown in Figure 5.3. The different types of

nodes in the graph are as follows:

b U'[ﬂD v Oz,
I

Fgure 5.3: Change Detection Graph

URL node (Un): A URL node is a leaf node at leve-0 (Lo) that denotes the
page of interest (eg. “www.utaedu’). The number of URL nodes in the
greph is equad to the number of distinct pages the system is monitoring at
that particular ingant of time. At this levdl whenever the verson of a page
Is fetched (treated as fetch event), it is propagated to respective nodes at

levd-1.

37

Change type node (C,): All levd-1 (L;) nodes in the graph are change
type nodes. This node represents the type of change on a page (links,
Images, keywords, phrases etc., see Table 5-1). Change detection of pages
is paformed a this levd. The maximum number of change type nodes
that are created in the system is equad to the product of the number of
change types supported and the number of URL nodes present at that time
indant. Currently the number of change types is equa to 6. Each URL

node can be connected to at most 6 change type nodes.

Table 5-1. Change Types Supported

Change Type Description
Links All the Linksin the URL given
Images All theimagesin the given URL
Phrases Changes to a particular phrase(s)
Keywords Changes to a particular keyword(s)
Any-change Any change in the given URL
All-words Changes to dl the words excluding user defined set of words
in the given URL

In the graph, to facilitate the propagation of changes, the reationship between
nodes a different levels is captured using the subscription/notification mechanism. The
higher-level nodes subscribe to the lower level nodes in the greph. This subscription
information is maintained in the subscriber list a each node. The subscriber ligt a each
node contains the following

Level-0: Contains references of level-1 nodes.
Level- 1. Contains references of sentinds monitoring that change.
The change is computed for al the sentinels present in the subscriber ligt at the

change type node (C,). There can be more than one sentind asociated with each change

38

type node. The arrows in the graph represent the data flow. For example, consider two
sentinds, S; monitoring changes to links and Sz monitoring changes to images on page
as shown in Fgure 5.4. The node references are maintained at the URL node (page).
When the new verson of the page is fetched, it is propagated to the links and images
node. At each change type node, the previous verson is retrieved from the verson
controller and the appropriate (links, images) change is computed. If there is change, the

senting's subscribed to it are notified, in thiscaseit isnotifiedto S; and Ss.

L-iﬂks Im ages

M= =] i

N/

qm L0

Page

Figure 5.4: Primitive Change Example

When a sentind reeches its end time or is explicitly dissbled by the user, the
sentind no longer paticipates in change detection. This information is propagated to the
change type node with which the sentind is associated. Since the change type node is a
subscriber to the URL node, it decides on whether to remove its subscription based on the
other sentindls that are associated with it. Once this information is propagated to the URL
node it removes the references of the corresponding change type node and does not send
the next verson of the page for change computation. For example, if sentind § shown in
Figure 5.4 is disabled, the next versgon of the page is not propagated to the links node

from URL node (page), since there are no other sentind that are interested in links

39

change. Graph dructure suites well in these kinds of applications where flow of data is

required.

54.1 Sentind Grouping
System scdability and performance issues arise when there are large numbers of

sentines registered with WebVigiL. Typicdly, the sysem should not impose a redriction
on the number of sentinds it can handle. This introduces the need for a technique to
minimize the susceptibility of the sysem to atain efficiency in change computation and
to guarantee the qudity of service. Condder the scenario where there are n sentinds
registered to monitor the changes to the same page. Instead of computing the change n
times, it could be reduced to once if we could group dl those sentines together.
Grouping is required not only for scaability of the sysem but aso to reduce the I/O
involved in fetching the old verson of the page and high computation involved in parsng
the documents and extracting information. Pages with huge content add additiond
burden. Sentind grouping is an optimization technique developed to minimize change
computation. Grouping of sentinels are based on change type, fetch type and compare-
options. All these types of grouping are explained in the following paragraphs.

Sentines are grouped when there is more than one sentind interested in the same
change type. For example, more than one student might be interested in knowing if there
are any new questions added (links) to the course message board. In this case, dl the
sudents sentinds are grouped together for change detection. As another example, on a
univergty sports page where forthcoming events are listed, students might be interested

in knowing if their sport of interest (keywords) appears or when there is change to the

40

paragraph (phrase) containing venue and time of a particular game. Another scenario is
where usars are interested in any change to a page but each user is interested in a
different set of words that should not be included in the change detection such as articles
(a an, the). Based on the semantics of the change type the corresponding nodes maintain
ether a st containing the union of al the words (keywords/phrases) or intersection of dl
the words (dl-words). For example, sentind 6 is interested in keywords {x, y} and s7 on
keywords {y, z} on the same page. The change type node maintains the union of dl the
individud sentind’s keywords{x,y,z} .

A sentined belongs to two categories depending on the fetch type (section 3.1).
Only those sentinds belonging to on-change fetch type are considered for grouping, as
the change is computed on the versons of page fetched by the common fetch rule.
Sentines belonging to fixed-interval are not grouped as each has its own verson of page
being fetched by their respective fetch rules. In spite of sentind belonging to on-change
the other dtribute that plays a role in the grouping drategy is the compare-options (pair-
wise, moving:n, every:n see Table 5-2)(section 3.1). For example, a page is updated
thrice a day and a user is interested on every consecutive change (Pair-wise) whereas
another user is interested in changes only once a day (every:3). Here the versons of
pages involved for change computation are different and hence the sentinds cannot be
grouped together. Furthermore, sentind’s belonging to the same compare-option need not

bel ong to the same group and hence camnot be grouped together.

41

Table 5-2. Compare-options supported

Compare- Descriptions Point of detection
options
Par-wise Detects changes to consecutive Once the subsequent version
versons of the same page arives
Moving:n Detects changes to versons “i” and (i- Oncethen" version arrives

n+1) (where“i” isthe verson of the
page fetched and “n” isthe moving
window sze) of the same page

Every:n Detects changesto every “n” versons Every changeis detected after
of the same page waiting for “n” versons. These
versons are termed as waiting
Versions.
51 > S P,—Versioni of page P

J].Tl Pg l Ps Irdi Ps P; P; P; F;];rl 0 P;ll
I I
4 4

4 ; »
5 Time
S, 4 . 4
57 4 4

Figure 5.5: Compare-Options with Every: 4.

Congder the following example whee S; and S, are onchange sentinds
monitoring the same change on the same page (P) with the compare-option of “every:4”
as shown in Fgure 5.5. The points on the time line denote either the arrivd of sentinds
or the versons of page P. For S, change is detected between the versons (p1, ps) and so
on. When S, arives, snce there is dready a cached verson p, the change is detected
between (p2, ps) and so on. For S the change is computed with (p4, p7). Hence S and S
cannot be grouped together whereas S; and Sz can be grouped. This behavior is

goplicable only to sentinds with every as the compare-option since only selected versons

42

of the page participate in change detection. For § p2 and p3 are not used even though
fetched whereas this is not the case for other compare-options (pair-wise and moving). If
there is a sentind § on “moving:4” and has arived dong with §, p1 and p, paticipate in
change initidly, but later on (<p2, p5>, <p3, p6>...) dl versons fetched will participate
in change detection. Hence any other sentind S interested on “moving:4” ariving a a
later time will be grouped dong with S;. The same agpplies to sentinds having par-wise
as their compare-option.

Thus the sentinels are grouped on a combination of change type, fetch type (on+
change), compare-options. When the compare-option is “every:n” then the corresponding

time a which the sentind arrivesis taken into congderation.

_ cornpare fetch subseriber | word | wating | next .. g
~ | options | frequency | listptr set | version# | ptr | .

Fgure 5.6: Grouping Data Structure

Figure 5.6 shows the information used for grouping sentinds based on the
drategy explained above. The “subscriber list ptr” contains al sentingls that belong to the

same group. The “word set” attribute is null for links, images and any-change or union

43

for keywords and phrase or intersection for all-words depending on the change type. The
number of wating versons is used to differentiste sentinds with the same compare-
option “every:n” and adso to determine when to compute the change. Figure 5.7 shows
the agorithm used to group sentinds and Figure 5.8 shows the various stages of the data
dructure based on the time line showed in Fgure 5.5 as the dgorithm is applied. The

fallowing dgorithm is used to determine the group to which the sentind belongs.

Grouping (Sentinel s, Compare-option option, Reference n)
* Inputs: Sentinel 5, Compare-option Fvery, Reference i */
1. Get dl the groups with the compare options equal to option and reference equal to n
2. ifno group exists go to step 12
3. swatch {ophion)
4 case Pair-wise go to step 13
5. case Mowing o to step 13
fi case Every:
7 for each group
g get watingversions = number of versions the group 1z wating for

9. ifthere iz aversion of the page in the cache
10. ifn-1 = watingversions go to step 13
11. else if n = waltingversions go to step 13

12 Create a new group
13 Add the = to the group
14. End

Figure 5.7 : Grouping Algorithm
As shown in Figure 5.8 when sentind S arives the number of waiting versons is

st to 4 as it has to wait for four versons (no cached verson) in order to compute the
change. As each verson of the page is fetched the number of wating versons is
decremented. When S, arrives it has to wait for another three versons (cached copy is
avalable) for change computation. Hence it is not grouped with §. As the version R, is
fetched the number of waiting versons for § equals to zero and the change is computed.

After change computation the vaue is st to three for the next computation. And findly

when S; arives snce S; is dso wating for the same number of versons, they are

grouped together.

Event Group # Waiting versiontf Sentinels
Arrival ofSI 1 4 Sl
Fetch of P1 1 3 Sl
Fetch of Pz 1 2 Sl
AI'I'iVHl Gf;_qg 1 2 Sl

2 3 Sa
Fetch of P3 1 1 Sl
2 2 Sa
Fetch of P, 1 3 51 (change computed)
2 1 Sq
Arrival of S 1 3 51, 5
2 1 S,

Figure 5.8 : Grouping Example

So far primitive change detection has been discussed. In the following paragraphs

composite change detection will be discussed. A composite event is an event expression

comprisng a set of events connected through one or more composite event operators

such as NOT, AND, OR (refer Table 5-3).

Table 5-3: Semantics of Composite Event

Operator Semantics
NOT (unary) | Non-occurrence of agiven event, (@ C;) where C; isthe condtituent event
OR Changes to either of the constituent events, (C; U C») where C1 and C2
are condtituent events.
AND Changes to both the congtituent events on the same versions of the page,

(C1 U C,) where C; and C, are condituent events.

45

AND
A s Ls

O ™ S
@ '|'|1L ‘-\\\ J,® L ,
f 111 :_ﬂ.i !;
& III it . T 1:"'.
1 g G & Ce 8 I,

LY

"
t
L4 -Ii- b |
I
|
I
I
I
I

I

Figure 5.9. Composite Change Detection Graph

As shown in Figure 5.9 composite event nodes are in the levels L, and
above. Composite Node represents a combination of change types through the operators
NOT, AND, and OR. They can extend to any number of levels. These nodes are created
for every sentind monitoring a composite event. Level-2 and above contains references
of the nodes belonging to the immediaie higher level (composite event containing more
than two condtituents) or sentingls.

The change is computed for al the sentinels present in the subscriber ligt at the
change type node. Hence, for sentinels monitoring composite changes, a representation at
its condituent change type node is needed. This is implemented by creating proxy
sentinds with the same propeties of the origind sentind a esch of the condituent

change type node. Condder the scenario where sentind Ss is interested in links and

46

images change to “page” (refer Figure 5.10). When the new verson of the “page” is
fetched it is propagated to the links and images node. If there is a change, sentines
subscribed to it are notified. Sentind Spq acts as a proxy for §. When Syng is natified the
change computed is in turn propagated to the AND node. At the AND node, Ss is

informed only when it recalves natifications from both its constituent Sy Sentinels.

AND

55

Links Dages
+ | 4_% %_.—h—p

Sard 52 Sl 53 54 Sand

l;

page;

Figure 5.10: Composte Example

Following are the steps taken when anew sentingl is registered with the system:

1). The URL node corresponding to the target page of senting is created if there is
none.

2). The change type node associated with the target change is obtained; if there is
none, anew node is created.

3). The grouping dructure is traversed to obtain the group to which the new sentine

belongs. If there is no such group a new group is crested and the sentind is

47

appended to the lig of sentinds pointed (“subscriber list ptr”) by the grouping
structure.

If the sentind is any-change, links or images, the sentind is added to the
subscriber list of the group. If the sentind is keywords or phrases, a union is
performed between the keywords/phrases of the new sentind and words/phrases
belonging to the word set of the group. If the sentind is dl-words an intersection

is performed on the word set and the words the sentingl is not interested in.

As versons of a page are fetched and are propagated through the change

detection graph, the following steps are performed:

1) The event fetchedPage (URL) is raised a the node corresponding to that URL.
The event is further propagated to al the subscribers a that URL node.

2) At the change type node, for each group the corresponding old page (based on the

compare-option) is retrieved from the verson controller and change is computed
with the current page. If there is a change detected, al the subscribers in that
group are notified. When there is no change then only those sentings interested
on NOT change are notified.
In case the change type is keywords or phrases, the change is computed for dl the
words/phrases present in the word set againgt the two pages. If a change is
detected then for each sentind we check if his or her words/phrases of interest is
present in the change computed and natify them accordingly.

For a compodte event AND the sentind is notified only after notifications from

both the condituent events on the same s&t of versons are received. In case of OR it is

48

notified when natifications from ather of the condituent events is receved. The
notifications contain the change and the set of versons on which the change is detected.

NOT is detected when the change in the natification is null.

5.4.2 |lludration of Composite Change Detection

Condder the following sentinds monitoring composite changes on page p with
the same compare-option and fetch frequency.

S1-CiORC,

S - C1 AND C;

S5- (C1 OR Cy) AND C3

Where C;, C,, Cs represent the events (changes to links, images, keywords,
phrases, dl-words, any-change). The time line showing the occurrence of events and the
detection process is illustrated in the following Figure 5.11. On the time ling, G *¥)
represents the change detection event G; on versons x and y of page p and i denotes the
i occurrence of the event Cy. The event graph shows the nodes from the level-1 (does
not include the URL node representing page p). Figure 5.11 shows the composite event
detection process for each sentingd. The time line indicates the relative order of primitive
events with respect to their time of occurrences. All event propagations are done in a
bottom-up fashion. The leaves of the graph have no storage and hence pass the primitive
events directly to the parent nodes.

The various operdaions a the time points where primitive events are detected are
shown in Fgure 5.11. The arrows pointing from the child node to its parent in the graph
indicate the detection and flow of events. The OR event is straightforward and is detected
whenever any of its condtituent events are raised. Hence S is notified at §, & and &. At
time & when G! @2 is propagated to the AND node, it waits for the event to be raised

from the other congtituent event on the same versions (1,2) for S to be notified. At time

49

t, it receives C;2 ¥ that replaces C;* 2. Currently the composite operators can be

specified on the same page and not across different pages. So when averson “i” is

t t ts 1" >
|C11 na | o2 o | cles) time
AND AND
Cll L O Cli in O
.)3 A .)3 A
Motifyy 5 R Motifyyr 5 0o lien o
P i
Cl{:}) o C3G
At time ta
AND Motify 5
28 L 1
i e
()

Attime ty

Figure 5.11: Composite Change Detection Example
fetched, dl the monitored changes are computed on versons “i-1" and “i” (for par-wise
change detection). If there is a change, the corresponding primitive events are raised.
Hence when the next change is computed between versons “i” and “i+1” and the
composite node does not get any natification from its other condituent on versons “i”
and “i-1”, it means there is no change detected between “i” and “i-1". Hence dl old event
occurrences are replaced by the new occurrences. This is illustrated in the Figure 5.11 at
time . S is notified a time & when it recdves C;2 ®® and Gt %), At time t; the AND
node corresponding to S saves both the versions G2 ?® and C,t 2 and when Gi ?? is

received S; is notified twice for the combinations (C12), C3® (2 and (C,t 29, C5t (29),

50

Buffer
& & Iy
Fetch Fules

Figure 5.12. Pardldlism in CDG

5.5 Paralldizing Change Detection

The Change Detection Graph (CDG) is designed to detect changes to pages that are
fetched by the fetch rules. When there are large numbers of sentinds registered, for the
sysem to be scdable, change detection for sentines should be handled simultaneoudy.
This can be achieved through paradld detection of changes to different URL’s a the same
time. As shown in Figure 5.12 the fetch rules place the versons of the pages into the
buffer. As each URL is asdgned a separate URL node and the change detection of
different URL’s do not interfere with each other. Hence change detection of different
URL’s can be processed concurrently. Here padleism is achieved only between
different URL’ s (inter-URL). Currently WebVigiL supports only inter-URL pardleliam.

51

The implementation details are discussed in CHAPTER 7. As discussed so far,
graph architecture used for change detection facilitates scaability, effidency and
pardldiam.

52

CHAPTER 6
STORAGE AND RETRIEVAL OF PAGES

This chapter discusses different approaches for storage and retrieva of pages that
are being fetched for change detection.

6.1 Introduction

An important feature of WebVigiL architecture is its demand-driven page
fetching uang its sarver-based repodtory service that archives and manages versions of
pages. WebVigiL stores only those pages that are needed by a sentind in the cache. The
primary purpose of the repository service is to reduce the number of network connections
to the remote web server, there-by reducing network traffic, which in turn reduces the
communication cost. All the pages are fetched from the web server based on the page
properties. For datic pages last modified time (LMT) is retrieved before the page is
fetched. For dynamic pages, as the LMT is not avalable the page is fetched and
checksum is computed. When a page fetch is initiated, the repogitory service checks for
the existence of the latest verson of the page in its cache and if present, the latest verson
of the page in the cache is returned. In the case of datic pages, if the LMT of the page is
equal to the LMT of the cached copy it is not fetched. In the case of dynamic page, the
page is fetched and the checksum of old verson in the cache is compared with the
checksum of fetched page. If the checksums are equd then the page is not stored in the
cache to avoid duplication of the versons. In case of a cache miss, the repostory sarvice

requests that the page be fetched from the appropriate web server. In order to detect

53

changes to a particular page, versons of that page have to be stored in the cache. To
maintain these versons in the cache, each URL has to be mapped to a unique directory.
The complete URL cannot be used as a directory name since the length of the URL is
veay large in many cases. Two gpproaches to edtablish the required mapping for the

directory structureis discussed below.

6.2 Hash-based Approach

In this gpproach, each unique URL is insarted into a hash table with URL as the
key. Mapping is generated for each key (i.e, unique URL). This mapping represents the
directory where the corresponding versons of the unique URL are to be stored. Consider
two URL's “xly/zfintm” and “xfy/zfj.htm”, which have common path “x/y/Z’. Indead of
generaing the mapping for each of these URL’s, a mapping is generated for the common
path once and is reused whenever required. In the above example, when a verson of the
fird URL (“x/y/z/i.ntm”) is fetched, it is saved in the directory U1F1, where U1 is the
mapping generated for “x/y/z’ and F1 is the mapping generated for “i.htm”. Ul and F1
are maintained as vaues with the corresponding URL path as the key in the hash table s0
that they can be reused. When a verson of second URL (“x/y/z/j.htm”) is fetched it is
dored in the directory U1F2, where the mapping for “x/y/z’ is got from the hash table
(i.e, Ul) and F2 is the mapping generated for “j.ntm”. All versons pertaining to these
URL’s are stored under U1F1 and U1F2 respectively.

6.3 Directory-based approach

In this gpproach the path of the URL is replicated for the directory structure. For
example, for the URL “x/y/z/ihtm”, the directory sructure can be “xX\WAi.htm”. But, in
cae of dynamic pages the filename (i.e, “i.htm”) can be very large. As the underlying

operating system imposes a redriction on the length of the directory name, we cannot

54

cregte directories for dynamic pages. Hence we use hash-based approach to generate a
unique mapping for the file name. Thus, the directory Structure is a concatenation of URL
up to the filename (i.e, “x/y/z/") with the mapping generated. For the above example the
file “i.htm” is mapped to F1 and dl versons of the page are stored under the directory

“WAFL”.

Build Time

2000000

1500000
O Hash-based
1000000)
Directory-based
500000
0 i e ﬂ = = = il = r. = =

L10K L30K L50K L70K M10K M30K M50K M70K

Time (msec)

Data Set

Figure 6.1: Build Time Andyss

6.4 Experimental evaluation

Two approaches explained above were evaluated based on two criterids i) time
taken to congtruct the mapping, and ii) ime taken to recongtruct the mapping (in case of
recovery) plus time teken to retrieve the page given its URL. In these evduations
filename in the URL is not consdered, since both the approaches uses the same hash
based functions provided in Java 1.4 for generating the mapping. Thus sdection of data
sets for the experiments were based on the length of the path (excluding the file name) of
the URL denoted as depth. For example, for the URL “x/y/z/i.htm” depth is 3. The data
sets are represented as “L# where “#’ denotes the number of URL's with depth varying
between 1 and 3 and “M#’ with depth varying between 4 and 6. For example, L10K,
represents 10K URL’s with depth range 1 to 3. Based on an experiment where 30,000

55

URL’s were extracted from the web, the maximum depth was limited to 6. The
experiments were run on a dngle processor Inte Pentium (700Mhz) machine with
256MB RAM, |loaded with Windows 2000 operating system.

Reconstruct + Seek Time

400000
350000

- 300000
é 250000 8 Hash-based
£E 200000 .
g 150000 Directory-based
i= 100000
50000
0 — i -

L1I0K L30K 50K L70K MI10K M30K M50K M70K
Data Set

Figure 6.2: Recongtruction + Seek Time

Figure 6.1 shows the time taken to build the mapping for each data set. As it is
shown in the Figure 6.1 for L/IM10K, L/M30K directory based approach takes more time
than hashbased approach, but for M50K, M70K it is nearly three times. The directory-
based gpproach tekes more time as more 1/O is involved. The complete directory
representing the URL was crested using a sngle mkdir command. Fgure 6.2 shows the
time taken to rebuild the mapping plus time teken to retrieve the page given its URL.
Mapping is perssed as and when unique URL's are hashed (during the build time).
During recondruction, unique mappings for perssted URL's are not regenerated, thus
saving time. From Figure 6.2 it is observed that, as the depth increases, more number of
directories has to be traversed (one cd command was issued for each directory), thus
increesing the time for directory-based approach even though there is no recondruction
required. Based on the performance results, hashed-based approach was selected for

56

caching the pages. In the hashrbased approach, some of the different hash functions
avaladle in the literature [22] have been tested againgt the hash function provided by
Java 1.4. It has been observed that the URL’s are more uniformly distributed when
hashed using the java hash function. The variaion in the number of entries in each bucket
was not large when java hash is used. The pseudo code for the hash functions is shown in

Appendix A.

57

CHAPTER 7
IMPLEMENTATION

This chepter discusses the implementation detaills of the ECA Rule generation
module, Change detection and issues involved in padldizing the computation over the
change detection graph and the whole sysem WebVigiL. In addition, synchronization

issues and the sdection criteriafor synchronization primitives are dso discussed.

7.1 Implementation of ECA Rule Generation

For every user request (sentinegl) registered with the sysem a sentind object is
ingantiated. The sentind object captures al the properties of the sentind such as, dtatus
(enabled/disabled), change type (primitive/composite), fetch type (on-changefixed-
interval), compare-options, and etc. All the sentinds are stored in a hash table cdled the
“sentineLig”. Sentine id forms the key for the hash table and the corresponding sentind
object is dored as the vaue. The hash function gives the handle to the sentind object,
which is used when the user wants to explicitly enable/disable a sentind. This hash table
eliminates the need for traverang the greph to acquire a handle on the sentind object.
Loca Event Detector (LED) [16] is used for generating the stat and end events. The
methods of sentind are used to raise the events to achieve the desired functiondity.

ECAAgent class in LED contains the APl to be used for generating events. The
ECAAgent ingtance dtores the names of dl events and their associated event handles. The
handle to ECAAgent is obtained as shown below:

import sentingl.led.*;

58

ECAAgent myAgent = ECAAgent.initidizeECAAgent();
With the AP provided by ECAAgent, the user can create class level and instance leve
primitive events, composite events and define rules on those events. The following table

shows the methods used in creation of events and rules that is used for generating events.
Table 7-1. ECA Agent Class AP

Method Return Type Description

CreatePrimitiveEvent EventHandle This method creates a primitive event of
ingtance leve.

createCompositeEvent EventHandle This method creates a composite event of
ingtance levdl.

CresteRule EventHandle This method creates an indtance leve rule
on the specified object instance

RaiseBeginEvent ddic vod This method rases an event a the
beginning of a method.

An event is raised through the “raiseBeginEvent” method. A sentind object raises this
event in its methods “ sart()” and “end()” . The syntax of creating primitive eventsis
crestePrimitiveEvent (javalang.String eventName,

javalang.class className,

EventModifier type,

javalang.String methodName,

javalang.Object objectName);
Where “className’ represents the class associated with the event, “objectName’
represents the object raisng the event. For sentind Sy that has to start a time t; and ends
a timet,. Thefollowing events are generated.

EventHandle Start_S4 = myAgent.createPrimitiveEvent ("Sart S,

59

"webvigil.Sentind", EventModiifier.Begin,
"void start()",sentList.getSentObj(Sa));
EventHandle End_Sq = myAgent.crestePrimitiveEvent ("End_Sq",
"webvigil..Sentind" EventModifier.END,
"void end()",sentList.getSentObj(Sa));
The syntax for creating tempora eventsis
crestePrimitiveEvent (javalang.String eventName,
javalang.class className,
javalang.String timeSiring)
where “timeString” represents the time expression.
Thetempord events generated for triggering Sq at t1 and t, are shown below
EventHandle Time _t; = myAgent.createPrimitiveEvent ("t1”,
"webvigil.sentind”,
t1);
EventHandle Time_t, = myAgent.createPrimitiveEvent ('t2”,
"webvigil.sentind”,
t2);
The syntax for cregting rulesis
createRule (javalang.Object targetinstance,
javalang.String ruleName,
EventHandle eventHandle,
Condition condition,
Action action)
Where “condition” and “action” are the methods that have to be executed on the object
represented by “targetingtance’, when the event israised. “eventHandle’ isthe handle to
the event on which the ruleis specified.

60

The rule associated with the start event is shown below.
RuleTimeRule t; = myAgent.cresteRule (new Rules() ,
"gatRule’, Time t;,
“webvigil.Rules Condition()”
“webvigil.RulesAction()”);
Smilaly for dl the other events the rules are generated as above. Here when
there is more than one sentind that has to be dtarted or ended & time t1, alinked lig of dl
these sentinds (“SentindLig”) is maintaned in the “Rules’ object. “Condition()” is
executed when the event “Time t;” is rased. In the activation/desctivation of sentings
the paradigm is E-CA rather than E-C-A and hence the condition is dways true. The
action method retrieves dl the sentinds present in its “SentineLis” and raises the events
accordingly. When the sentind S is dependent on other sentinels, sy Start § = start_S§
plus time, a PLUS (composite event) event is generated [16]. The rules associated with
al the events such as absolute and relative have the same functiondity.
The other events generated by the ECA Rule generation module are the feich
rules tha are involved in fetching the pages As explaned in section 4.3 PERIODIC
events are used to achieve the required fetch functiondity. The following sections

illudrate the implementation details for each fetch type.

7.1.1 Fixed Interva Fetch Event Generation

The syntax for generating periodic event is shown below
CreateCompositeEvent(EventType eventType,
javalang.String eventName,
EventHandle |eftEvent,

javalang.String timeString,

61

EventHandle rightEvent)
Where “EventType” is acomposite event [16] such as PERIODIC, AND etc.
For a sentind Sy bedonging to fetch type “fixed interval” the following are the events
generated.
EventHandle Fetch_Sy = CreateCompositeEvent (EventType.PERIODIC,
“Fetch_Sq", Start_Sg, time-interval, End_Syq);
Here “time-interval” is the user defined polling frequency. The rules associated with
event “Fetch_Sq” fetch the pages. They are more detailed in [8].

7.1.2 On-Change Fetch Event Generation
All the sentinds belonging to this category share the same fetch event. As

explaned in section 4.3, dummy events are generated to achieve the functiondity. These

dummy events are primitive events. The fetch rule generated is shown below

EventHandle Fetch Sy = CreateCompositeEvent (EventType. PERIODIC,
“Fetch URL;”, Dummy_Start,, time-interval,

Dumrny_Erﬂurl) ,

The pseudo code for action part of “ StartRule_Sy” and “EndRule_Sq4” is shown below

Action Part of StartRule_S4

1. Query URL,; node for the number of active sentinels on URL; beonging to on-change
type

2. If the number of active sentinels is zero then raise the event Dummy_Start,

3. Enable the sentind Sy

Action Part of EndRule_S4

1. Query URL,; node for the number of active sentinels on URL; belonging to on-change
type

2. If the number of active sentinels is one then raise the event Dummy_End,,,

3. Disable the sentinel Sy

62

7.2 Implementation of Change Detection Graph

Mode Motifable
Cherge Nype Nodde Corposite Septina

Pt Bl

AND OF NOT

Links Keywords
y
Images All words
Any change Phrases

Figure 7.1. CDG Class Hierarchy

Figure 7.1 depicts the hierarcchy among the key classes used in the
implementation. Primitive changes are the differet changes monitored on the pages
(links, images, any-change, dl-words, phrases and keywords). The composite changes
congtitute NOT, OR and AND. In, Fgure 7.1 each box represents a class. The classes
Change Type Node and Composite are abstract classes, the classes Node and Notifiable
are interface classes and dl the other classes are norma classes. The Node interface has
an insertSentind method that is implemented by dl the event dasses. The insartSentind

method implements the addition of sentinels to the grouping sructure. The classes AND,

63

OR, and NOT are normd classes whose instances represent the composite event nodes in
the change detection graph. Each URL representing the page monitored belongs to the
class URLNode. A I of dl the URL’s and their corresponding references are maintained
in hash table termed as URL Node List. The following table describes the methods of the
class URLNode. The URLNode class has a linked list associated with it. This linked list

contains the references to all the ChangeTypeNode objects.

Table 7-2: Member Functions of URLNode Class

Method Description
Inserts the change type nodes into the subscriber ligt
InsertChangeType
when they are created. If properly inserted returns true.
Returns the number of active sentinds monitoring this
GetNumberOf Sentinels(fetch- N . Ve s ronng T
page. This method is caled in the action part of sentinds
t .
yPe) belonging to on-change.
) Invoked when a verson corresponding to the URL is
PropogateV ersion(page-type)
fetched. Thisverson is propagated to dl its subscribers.
Change Parameters

The events (primitive and composite) are associated with a Changeligt that is
passed to the sentinels. The change lis conditutes the change detected, the versons on
which the change is detected, the type of the page (HTML/XML) and the time a which
the change is detected. The change is a vector containing three ligs i). insart list
containing objects (links, images, words, phrases) that are insated. ii). Deete ligt
containing the objects that are deleted and iii) move li containing objects that are
moved. A primitive event is associated with a sngle ChangelList whereas a composite
event is associated with multiple sats of ChangelLid, thet is, the collection of the
ChangeL.igt of dl the congtituent events. This collection is called LisOfChangeLists

Table 7-3: Description of Changelist and ListOfChangelists Classes

ClassName Description
ChangelLigt Created a the ChangeTypeNode's to store the change parameters
and are propagated to the sentinds.
LigOfChangelists | Linked Ligt containing the Changelid’s.

The following table

shows some of the methods in the sentind class. It contains the

reference to the producer (ChangeTypeNode or Composite) and dso a subscriber

reference to which

it acts as a representative (Composite). It dso contains a flag

indicating its sate (enabled/disabled).

Table 7-4: Member Functions of Sentind Class

Method Description

Encble() Changes its gate to enabled and informs its producer. It dso
updates the knowledge base. This method is invoked in the
dart rule associated with this senting.

Disgble) Changes its dstate to disabled and informs its producer. It
aso updates the knowledge base. Return type is void. This
isinvoked in the end rule associated with this sentingl.

This method is invoked when ChangeT ode computes

Notify(Changel ist geTypehode: comp
change. The flag is true if there is a change and fd<se if there

change, Boolean flag)

is no change. If the subscriber ligt is empty and the change is
true the notification module is notified about the change. If
the change is fdse the natification module is not informed.
If there is a subscriber (Composite) it is notified of the
computed change with the flag.

65

The following table shows some of the methods of ChangeTypeNode. It contains the

following references,

i). Change deection dgorithms (HTML/XML), ii). Grouping

structure, iii). Subscriber list containing sentings, iv). Producer (URLNode), and v).

Verson Controller.

Table 7-5: Member Functions of Change Type Node Class

Method Description
InsertSenting (Sentind) | Called when a new sentind is inserted. The grouping sructure
takes care of theinsartion of the sentind in the proper group.
Propagate() Invoked for propagating changes to the sentinds when a
change is computed. If there is a change then a flag is
associated with
DetectChange(Verson) | Invoked by URLNode to propagate a verson. The verson

manager is contacted for the corresponding previous verson
based on the group and based on the veson type
(HTML/XML) the corresponding change detection dgorithms
ae invoked. The corresponding sentinels are informed about
the change and aflag indicating whether the change is detected.

7.2.1 Composite Change Detection

This section discusses the implementation of change detection mechanism a the

composite node. The NOT node contains the reference of the sentind subscribed to it and

a0 the reference to the proxy senting created to represent this event at its child node.

The following table shows the methods

66

Table 7-6: Member Functions of NOT Class

Method

Description

Propagate (LisOfChangeligtslit,
Boolean flag)

The proxy sentind crested a the child node
invokes this method. The flag is negated and the
subscriber (Sentindl) is notified.

InsertSentind (Sentinel sentind,
Node node)

Adds the sentind to its subscriber list. A proxy
sentingd is created and the InsertSentind method of
the nodeis cdled.

The following table shows the important methods in OR class. The OR node contains the

references of both the children i.e, the references to the sentinds that represent it. It aso

contains the reference of the sentingl, which is subscribed to this event (OR).

Table 7-7: Member Functions of OR Class

Method

Description

Propagate(LisOfChangeligslidt,
Boolean flag)

The proxy sentind crested a the child node
invokes this method. The list contains the changes
computed and the flag denotes whether there is a
change detected or not. If the flag is true, only then
the sentingl subscribed to it is notified.

InsertSenting (Sentinegl sentind,
Node leftNode, Node rightNode)

Adds the sentind to its subscriber list. Two proxy
sentingls are created and the InsertSentind method
of the leftNode and rightNode is cdled.

The AND node contains two additional data structures with respect to the OR node. As

the change should be detected on two versons of the same page, the change detection

67

should wait until the changes are obtained from both the children. These changes are

stored in a change table represented by the class ChangeTable. The AND node contains

two change tables for each of its children. A change table conssts of a set of entries

Each entry in the change table denotes an event occurrence. An event entry consss d a

LigOfChangelists and changeflag indicating whether a change is detected or not at the

lower level. The steps for detecting AND events are shown below.

1. If the LigOfChangeL.ists and changeflag is propagated from the left event

2. If the left table is not empty

3. Remove dl the entries in the leftchange table, thus maintaining the latest
change event (on the same versions of the page).

4. For every entry in the right table, logicd AND is computed on the
changeflag received from the left event and LigOfChangelists are
merged together and the merged ListOfChangelists and computed
changeflag is propagated to the sentingl subscribed to it.

5. Else

6. Add the LigOfChangelists and changeflag to the table

7. If the LigOfChangelists and changeflag is propagated from the right event

8. If the right table is not empty

0. Remove dl the entries in the rightchange table, thus maintaining the latest
change event.
10. For evary entry in the left table, logicd AND is computed on the

changeflag receved from the right event and LisOfChangelLists are
merged together and the merged ListOfChangelists and computed
changeflag is propagated to the sentingl subscribed to it.

11. Else

12. Add the LigOfChangelists and changeflag to the table

68

The following table shows the methods.

Table 7-8: Member Functions of AND Class

Method

Description

Propagate(LisOfChangeligsligt,

The proxy sentingl crested at the child node invokes

Boolean flag) this method. The event is detected as explained
above and the subscriber (Sentingd) is notified with
the merged ligs and the flag indicating the detection
of event.

I nsertSentine (Sentind sentind, | Adds the sentind to its subscriber lis. Two proxy

Node leftNode, Node rightNode)

sentinds are created and the InsatSentind method

of the rightNode and leftNode are called.

Sentinel _
Mot £y Buffer
User } Artivatian Thread
Interface

ECa REULE

GENERATION

L CHANGE

E | DETECTICH

D GRAPH

K‘\

Change Detection The

Version Manager

_.. 1
Version Buffer

Thread Ponl

Fgure 7.2: Complete System

69

7.3 Multithreading | ssues

As shown in the Fgure 7.2 when the user regigers a sentind with the system, the
activation thread creates the required ECA rules and the corresponding nodes in the
CDG. Once the fetch rule associated with the sentind fires, the verson of the page is
fetched and the verson manager is informed. The verson manager puts the verson in the
verson buffer. The thread wating on the verson buffer removes the verson and
propagates it to the CDG for change detection. This means that if there are versons
fetched and wating in the buffer to be serviced they will be handled seridly by the CDG.
This wait will be ggnificant when there are severa feich rules fetching the pages. In
order to make the CDG scdable it should be able to detect changes to multiple pages
concurently. Hence the fird desgn god is to have a multitasking CDG. Multitasking
can be achieved by multithreading. In case of multithreading each verson will be
sarviced in a separate thread. When changes are detected concurrently, two or more
threads may be accessing the same data structures at a given time. To prevent race
conditions, appropriate synchronization mechanisms must be provided for the protection
of data structures. However, locking of data structures must not be so coarse-grained that
it will effectivdy seridize ther access. Hence synchronization mechanisms must be

carefully chosen to afine granularity of locking and to maximize concurrency.

7.3.1 Multithreading the Change Detection

In order to make the CDG multithreaded a new thread can be gawned for each
verson of page insarted into the verson buffer. Versons are feiched a a faster rate as it
involves only fetching the page, wheress change detection involves invoking the different
change detection dgorithms. Spawning a new thread for each verson, results in cregtion
of more number of threads that in turn reduce the system performance due to context

switches. This can be avoided by maintaining a thread pool as shown in Fgure 7.2.

70

Hence the paralldism is redricted to the sze of the thread pool. The sze of the thread

pool is configurable and can be s&t to any value. This value can be decided through

experiments.

7.3.2 Synchronization Issues

The System is made up of severd data Structures that will be shared and hence

may be concurrently accessed by threads. Following isthe list of shared data structures:

1.

Notify Buffer: This buffer is handled by the Ul (User interface) to insert the new
regitrations; the activation thread waiting on the buffer processes these requests.

Verson Buffer: Queue containing the versons of pages. The fetch rules associated
with each sentind insert the versons of pages fetched and the change detection
threads (Thread pool) retrieve each version for change detection.

Change Detection Graph (CDG): Graph of URL nodes, change type nodes, and
operator nodes. Accessed by change detection threads for propagation of versions and
adso by the rules in LED when endbling/disbling a sentind. When a sentind is
enabled/disabled, the sentind information is propagated to the corresponding nodes
(URL node, change type node) in the graph.

URL Node Ligt: List of URL nodes. The LED (Local Event Detector) and the change
detection threads share this list. The rules associated with a sentind’s art/ end time
access this lig to insert/delete the URL node corresponding to the sentind. The
change detection threads access this list to retrieve the URL node corresponding to

the version of page.

Race Conditions.

When the result of two or more threads performing an operation depends on

unpredictable timing factors, there is race condition. There are a number of gStuations

where race conditions can occur during change detection. The use of buffers (for

71

decoupling the computations) and asynchronous actions (such as delete, disable etc.) can
occur a any time the changes are being detected. Before we describe the proposed
solution, we give afew examples of scenarios where race conditions can occur.

1. Thread A is in the process of deleting a URL rode at position 7 from the URL Node
list. Threed B is traverang the URL Node list to get the URL node at position 13 to which
it wants to propagate the verson. Thread B could be looking a node 7 when the list
manipulation is occurring. Thread B will decide that node 7 is not the desired node and
moves to the next pogtion in the list. However, since thread A has disconnected this node
from the ligt the next postion could be NULL. The result of what thread B reads will
hence depend on the timing factor and has been compromised by the race condition.
Hence the access of the URL node list and severa such shared data structures must be
guarded for mutud excluson.

2. Condder only one sentind registered (links changes on page p). Thread A will be
accessing the CDG while propagatiing the verson of the page from the URL node
(representing p) to the change type node (links). Even before the propagation, when
sentingl reaches end time, thread B (end rule) will delete the links node since there are no
more sentingls interested on links change leading to a race condition. Mutuad excluson
can be atained usng synchronization mechanisms or locks. In addition, locks are dso
used for controlling the sequence of execution of threads.

3. The fetch rule is insarting versons of the same page a a faster rate. Thread A from the
thread pool sarts and is processing verson. As there is no control over which thread is
preempted and which thread is executed by the operating system, another thread B
(belonging to the thread pool) can start processing versorn, and detects change before
verson is processed. This resultsin incorrect change detection.

In order to control this execution, locks are used. There are severd types of locks [23]

(semaphores) and the right choice must be made.

72

7.3.2.1 Typesof Locks

Mutex lock is a synchronization primitive that adlows multiple threads to
synchronize access to shared data by providing mutua excluson. The mutex lock has
only 2 gtates: locked and unlocked. Once a thread has acquired the mutex lock on a data
dructure other threads attempting to lock the dtructure will be blocked until it is
unlocked. Since mutex dlows only one thread to access any data & a given time, it is the
most redtrictive type of access control. For example, when a mutex is used to synchronize
access to a lig, the mutex will control the entire list. While the list is being accessed by
one thread it is unavailable to dl other threads. If most accesses are reads and writes of
the exiging nodes as opposed to insertions and removes, then a more efficient gpproach
will beto dlow itemsin thelist to be individualy locked.

Read-write lock is another synchronization primitive that was desgned
gpecificdly for Stuations where shared data is read often by multiple threads tasks and
rarely written. A read-write lock is smilar to a mutex lock except that it dlows multiple
threads to concurrently acquire the read lock whereas only one writer & a time may
acquire a write lock. In the current scenario the Insert or delete operation on a ligt will
require acquiring the read-write lock in the writelock mode, while the seek (search) of a
node will require acquiring the lock in the readlock mode. By using the read-write locks
we can have pardld search operations on the URL node list. The only drawback of using
read-write locks is that locking operations take more time than the locking operations on
mutexes. Hence locking strategy must be chosen carefully. Read-write locks are judtified
for the URL node list where inserts to the list happen not that often, only when new pages
are requested for monitoring; thereafter dl other operations are search operations on the
graph to find a particular node. Readlock mode can be used to alow threads to search the
ligtin pardld.

73

Semaphore is a synchronization primitive that has a vaue associaed with i,
which is the number of shared resources regulated by the semaphore. Whenever a thread
acquires a semaphore, the semaphore count is decreased by 1. Whenever a thread releases
a semaphore, its count is increased by 1. Any thread wanting to acquire the semaphore
must wait till its count is greater than 0. Traditionaly, semaphore operations have been
known as P and V operations. P operdtion is equivdent to acquiring the semaphore. V
operation is the same as releasng the semaphore. Semaphores are used primarily when
there is more than one shared resource that needs to be regulated.

For synchronization of data Structures in the system, mutex locks or semaphores can be
used when the operations involved are primarily inserts and deletes that require exclusve
access. For data structures such as the Url node list, where a mgority of the operations
are search operations on the list and updates on individua nodes, read-write locks can be
used for locking the list and semaphore or mutex locks can be used for locking individua
nodes. Detalls of the locking agorithm are explained in the next section. Table 5-1 shows

the choice of locks made for locking the various data structures.

7.3.2.2 Locking of Change Detection Graph

In a multithreaded system, severd threads of execution share the Change
Detection Graph (CDG), and access to the graph has to be synchronized. Using a mutex
lock for the CDG locking will give only two states (locked and unlocked) of access for
the entire graph so that only one thread can be accessing it a any time. To dlow finer
granularity, more than one thread should be able to access independent nodes of the
graph concurrently, as long as they are not updating the same nodes. Since in the graph
the processng & each lower level node depends on the information at the higher-levd
nodes, locking each node will not solve the synchronization issue. Hence a lock has to be

74

obtained on the leaf node (URL node). Once the leaf node is locked, other threads cannot

access higher-level nodes connected through the leaf node. Accessto al higher-leve

Table 7-9: Data Structures and Synchronization

DATA STRUCTURES

LOCK USED with RATIONALE

Notify Buffer, Verson

Mutex locks are used since operations used are primarily

Buffer inserts and deletes. These operations need an exclusive lock mode
that is provided by mutex locks. Usng mutex locks is preferred to
read-write locks because an operation on read-write lock has a
high overhead.

URL NodelList Read Write locks ae used for locking the ligt, as

operations on the lig are primarily search of the lig to find an
individud node. Shared mode (read lock) can be used while
scaning the lig to dlow padld scans and excusve mode
(write lock) is needed when nodes are inserted or deleted from the
list.

Change Detection Graph
(CDG)

Read-write lock for locking URL node list. Write lock
provides exclusve access to grgph while inserting or deleting a
node. When accessing list in shared (read) mode, lock hash table
is used for managing access to individua nodes. Lock hash table
minimizes number of semagphores needed to lock nodes of the
CDG. Thread suspend and continue cals are used to prevent
more than one thread from accessing any node a a time. Lock

hash table minimizes overhead of managing severd locks.

nodes in the greph has to be dated a the leaf node. One way to achieve a finer

granularity would be to have a read-write lock on the change detection graph and a

semaphore lock on each URL node of the tree. However, when a large number of pages

75

are monitored, the number of URL nodes in the graph will grow. Allocating and
maintaning locks for each and every URL node of the graph is cumbersome and will
require too many locks. A better option is to maintain a hash table of the URL nodes of
the graph that are currently being accessed. Each URL node of the graph will hash to a
bucket of the hash table. The bucket will maintain a lis whose dements represent the Ids
of URL nodes of the CDG currently being accessed. Thread IDs of threads waiting for a
paticular node will aso be saved in a queue for each dement in the lis. In order to
traverse the list of node IDs the bucket needs to be locked. This means that the maximum
number on semaphore locks required for synchronizing access to the CDG is equd to the
number of buckets. In this way number of locks to be maintained is minimized and a the
same time afine granularity of locking is achieved for locking the CDG.

Interface Sync

void acquire ()
voidrelease ()
boolean attempt{msecs)

......................

Mintex RLodk WLodk Semnaphore

Figure 7.3. Class diagram of lock package in WebVigiL

76

7.3.3 Implementation of Locks[23]

The locks used in accessng different data dructures have been explained in
chapter 5. This section explains the implementation of these locks. All locks belong to the
webvigil.locks package. The locks in this package provide three different types of
synchronization protocols. They are:

1. Sync: acquire/release protocols
2. Channd: put/take protocols
3. Executor: executing Runnable tasks

WebVigiL uses only one protocol, the sync protocol. All the locks, Mutex,
ReadWrite and Semaphore locks in this protocol implement Sync interface. This interface
provides three methods, acquire(), release() and attempt(), which the locks override. The
fird method acquire() is used when a lock is needed to be acquired. It is essentia when a
thread needs to enter a synchronized block. The thread that enters the critical section or
gynchronized block (in JAVA jargon) needs to relesse the lock to let other threads
waiting to enter the criticd section. The release() method is used for this purpose. The
other method attempt() is used to acquire a lock within a specified amount of time.
Read/Write locks come with the facility to control the number of readers and writers. It
aso provides mechanisms to assign priorities to readers and writers. WebVigiL does not
need locks with such priority. Read Write locks in WebVigiL are used only for issuing
read locks and write locks. It should be noted that the locks in this package are nor+
reentrant meaning the thread that owns a lock has to wait for that lock till it releases. The

relationship between different locksin this package is shown in Figure 7.3.

7.3.3.1 Lock Hash Table

The classes defined for the hash table are HTLock , HBucket and HLink. HTLock
is the lock hash table class. There is a sngle ingance of this class in the sysem. HBucket

77

is the class for each bucket of the hash table. Each bucket is guarded by a semaphore
bucket_sema, and each bucket contains a chain of HLink. The HLink contains obj_id,
thr_id, next and nextp. Obj_id is the unique ID (address of the node is used for hashing)
of the URL node being accessed by a thread whose thread id is thr_id. next is a pointer to
the next HLink in the bucket chain. nextp is a pointer to an HLink which contains the
thr_id of a thread that is suspended and waiting to access the same URL node. Figure 7.4
gives the data structure of the lock hash table.

HTLock
HBucket | bucket sema b i
thr 1d
HBucket | bucket sema
Tnextp
next .
HBucket | bucket sema | g obj id |—m obj_id
thr 1d thr 1d
HBucket | bucket _sema HLink HlLink

Figure 7.4.Lock Hash Table Data Structure

When a verson of the page is fetched, it is propagated to the corresponding URL
node. For traversal, read-write locks are used to give shared access to the URL node list.
Lock hash table is used to access individud nodes when the verdon of page is
propagated. Each node of the CDG must have a unique object ID for hashing purposes.
Since the address of the node is unique, it is used as the object ID. The sequence of
operations needed for locking is as follows First the node object is hashed to find its

bucket in the hash table. A semaphore lock (bucket_sema) is then acquired on the bucket

78

so that no two threads may be accessing its chain of HLink at the same time. The bucket
chan is then searched for the object ID of the URL node. If the object ID is not found, it
means that no other thread is accessing this node. Then an HLink containing that node' s
object ID and thread ID are added to the bucket's HLink chain, the bucket semaphore is
released, and the current thread is granted access to the URL node. The thread can now
detect changes that are monitored on that page. On the other hand, if the object ID is
found in the chain, it means that another thread is operating on the node at the same time.
The current thread's thread ID is added to the list of waiting threads for that URL node.
bucket_sema is released once the object ID is located, so that other threads can traverse
the HLink chain for accessng nodes of the CDG. The current thread is suspended and
will be continued only when the desred URL node becomes available to it. After a thread
finishes accessng the URL node, it removes its threed ID from the HLink chain. The
next thread in the queue of suspended threads is released by a ‘thread_resume’ and it can

now access that URL node. Figure 7.5 gives the locking dgorithm.

LOCKING UKL NODE

bucket 1d = hashing{object 1d)
Plhucket semalbucket 1d))
Search hbucket for object_1d
Found object 1d:
-itzert irto wertical chain{gquene of
waitityg threads)
-WVibucket semathucket 1d))
-suspend{current thread 1d)
Else
-insett into bucket chain
-Vibucket semalhucket 1d))

RELEASING URL NODE

bucket 1d =hashing({object id)
Plbucket semalbucket 1d))
Search hhucket chan for object 1d
Ifnesxtp 1= nmill
Sibucket sernathucket 1d)
tesume the next thread in
wating thread queue
Else
-delete hlink from chain
Sihucket semathucket 1dD

Figure 7.5. Locking Algorithm for URL nodes

79

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusion
WebVigiL is envisoned as a complete system tha dlows monitoring and notification

of changes to structured documents in a digtributed environment. WebVigiL is a system
currently under devdopment a ITLAB a The Universty of Texas a Arlington for
providing an dternative paradigm for monitoring changes to the web (or any sructured
document). The contribution of this thesis towards the sysem is in the following areas:

Design and Development of ECA Rule Generation

Congruction and Maintaining Change Detection Graph

Storage and Retrievd of pages

In the ECA Rule Generation module, ECA Rules to support enabling and disabling of

sentinels based on the dat and end events and fetch rules for fetching pages for on
change and fixed-interva option has been desgned and implemented. Congtruction and
maintaining of change detection graph to support primitive events (changes to links,
images, keywords, phrases, any-change and dl-words) and composite events (NOT,
AND and OR) has been desgned and implemented. The grouping dructure for efficient
change detection based on the fetch type and compare-options has been developed. The
multithreading and synchronization techniques have been designed and tested for

correctness. The storage sructure for storing the versons of the pages being fetched is

80

developed and implemented. All these modules have been integrated into the WebVigiL

sysem.

8.2 Futurework
Currently sentinds beonging to the category of fixed-intervd fetch type have

individua fetch rules. Grouping of these sentines together can be investigated. Pages
having frames are not handled. A page with multiple frames has a base page, in which the
reference to the pages in frames is given. Hence the base page is a set of references to
various other pages. Change detection to these pages can be achieved by having a
composite change on al the referenced pages and the base page. This composite change
detection across multiple pages can be incorporated to handle pages with multiple frames.

In the current implementation the number of change detection threads is st to ten.
This thread pool size can be determined based on testing and andyzing the time taken for
change detection by each thread. Persstence and recovery issues with respect to the

system have to be dedlt.

81

APPENDIX A

HASH FUNCTIONS

82

Function 1
hashVdue = x;
for(i=0; i<n; i++)
hashVdue = 131*hashVdue + key[i];
hashvVdue =i % tableSize;
where n is the length of the key (dring), key[i] is the ith character of the key, tableSize

represents the length of the hash table (number of buckets), x is initidized to a random
number preferably a prime number.
Function 2

hashVdue = x;
for (i=n-1; i>=0; i--)
hashVaue = ((hashVaue<<5)\(hashVdue>>27)) key[i];
hashVaue = hashVaue % tableSize;
here x equals 0.6180339887. This number is caled magic number (sort(5)-1/2) [22].

The other variables are same as in Function 1.

Function 3 (Java Hash)

hashVdue = 0;
for(i=0; i<n; i++)
hashVaue = hashVaue + key[i]* 31\(n-1);
hashVaue = hashVaue % tableS ze;
where key[i] istheith character of the key, n isthe length of the key. The other

variables are same asin Function 1.

83

(1

(2]

(3l

(4

(5]

(6]

(7]

REFERENCES

Douglis, F., et d., The AT&T Internet Difference Engine: Tracking and Viewing
Changes on the Web, in World Wide Web. 1998, Bdtzer Science Publishers. p. 27-
44,

Chen, Y.-F. and E. Koutsofios. WebCiao: A Website Visualization and Tracking
System. in WebNet97. 1997.

Mind-it, http://www.netmind.conv.

Lu, B., SC. Hui, and Y. Zhang. Personalized Information Monitoring over the Web.
in First International Conference on Information Technology and Applications
(ICITA). 2002. Augtrdia

Liu, L., C. Pu, and W. Tang. WebCQ: Detecting and Delivering Information
Changes on the Web. in Proceedings of International Conference on Information

and Knowledge Management (CIKM). 2000. Washington D.C: ACM Press.
Xyleme, http://www.xyleme.conv.

Jacob, J., WebVigiL: Sentinel specification and user-intent based change detection
for Extensible Markup Language (XML). 2003, The Univerdty of Texas a
Arlington.

84

[8] Chakravathy, S. and D. Misra Shoop: An Expressive Event Specification
Language for Active Databases. Data and Knowledge Engineering, 1994. 14(10): p.
1--26.

[9] Pandrangi, N., WebVigiL: Adaptive fetching and user-profile based change
detection of HTML pages. 2003, The University of Texas a Arlington.

[10] Chakravarthy, S., et d., Composite Events for Active Databases. Semantics,
Contexts and Detection, in Proc. Int'l. Conf. on Very Large Data Bases VLDB.
1994: Santiago, Chile. p. 606--617.

[11] Tanpisut, W., Design and Implementation of Event based subscription/notification

paradigm for distributed environments 2001, The Univerdty of Texas a Arlington.

[12] Anwar, E., L. Maugis, and S. Chakravarthy, A New Per spective on Rule Support for
Object-Oriented Databases, in 1993 ACM SGMOD Conf. on Management of Data.
1993: Washington D.C. p. 99-108.

[13] Chakravarthy, S, et d., Design of Sentinel: An Object-Oriented DBMS with Event-
Based Rules. Information and Software Technology, 1994. 36(9): p. 559--568.

[14] Mishra, D., SNOOP: An Event Specification Language for Active Databases, in MS
Thesis. 1991, Database Systems R&D Center CIS Department Universty of Florida,
E470-CSE, Gainesville, FL 32611.

[15] Stonebraker, M. and G. Kemnitz, The Postgres Next-Generation Database
Management System. Communications of the ACM, 1991. 34(10): p. 78--92.

[16] Chakravarthy, S., et d., HIPAC: A research project in active, time-constrained
database management. 1989, Tech. Report (89-02), Xerox Advanced Information
Technology: Cambridge.

85

[17] Dasari, R., Events And Rules For JAVA: Design And Implemenation Of A Seamless
Approach, in Database Systems R&D Center, CIS Department. 1999, Universty of
Horida: Gainesville.

[18] Pandrangi, N., e d. WebVigiL: User ProfileBased Change Detection for
HTML/XML Documents in Twentieth British National Conference on Databases.
2003. Coventry, UK.

[19] Gatziu, S. and K.R. Dittrich, SAMOS an Active, Object-Oriented Database System.
in IEEE Quarterly Bulletin on Data Engineering, 1992. 15(1-4): p. 23--26.

[20] Gehani, N. and H.V. Jagadish, Active Database Facilities in Ode. |EEE Bulletin of
the Technicd Committee on Data Engineering, 1992. 15(1-4).

[21] Krishnaprasad, V., Event Detection for Supporting Active Capability in an
OODBMS Semantics, Architecture, and Implementation, in MS Thesis. 1994,
Database Systems R&D Center, CIS Department, Universty of Florida, Gainesville,
FL 32611.

[22) Knuth, D.E., The Art of Computer Programming. 3 ed. Vol. 3. 1998: Addison
Wedey.

[23] Lea, D., Concurrent Programming in Java. Second Editio, 2000.

86

BIOGRAPHICAL INFORMATION

Anoop Sanka was born on June 20, 1978 in Rgahmundry, India. He received his
Bachdor of Technology degree in Computer Science and Engineering from Nationd
Indtitute of Engineering, Mysore, India in September 1999. In the Fdl of 2000, he dtarted his
graduate dudies in Computer Science and Engineering a The Univerdty of Texas,
Arlington. He received his Magster of Science in Computer Science and Engineering from
The Universty of Texas a Arlington, in December 2003. His research interess include
active databases and Web technologies.

87

