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ABSTRACT 

QP-SUBDUE: PROCESSING QUERIES OVER GRAPH DATABASES 

ANKUR GOYAL, M.S. 

The University of Texas at Arlington, 2015 

Supervising Professor: Dr. Sharma Chakravarthy 

Graphs have become one of the preferred ways to store structured data for 

various applications such as social network graphs, complex molecular structure, etc. 

Proliferation of graph databases has resulted in a growing need for effective querying 

methods to retrieve desired information. Querying has been widely studied in rela-

tional databases where the query optimizer finds a sequence of query execution steps 

(or plans) for efficient execution of the given query. Until now, most of the work on 

graph databases has concentrated on mining. For querying graph databases, users 

have to either learn a graph query language for posing their queries or use provided 

customized searches of specific substructures. Hence, there is a clear need for posing 

queries using graphs, consider alternative plans, and select a plan that can be pro-

cessed efficiently on the graph database. 

In this thesis, we propose an approach to generate plans from a query using a 

cost-based approach that is tailored to the characteristics of the graph database. We 

collect metadata pertaining to the graph database and use cost estimates to evaluate 

the cost of execution of each plan. We use a branch and bound algorithm to limit 
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the state space generated for identifying a good plan. Extensive experiments on 

different types of queries over two graph databases (IMDB and DBLP) are performed 

to validate our approach. Subdue a graph mining algorithm has been modified to 

process a query plan instead of performing mining. 
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CHAPTER 1 

INTRODUCTION 

With the advent of automated data collection tools, massive amounts of data are 

being generated. Technology has given us inexpensive ways to store this considerable 

amount of data. Google receives millions of searches/queries per minute; in addition, 

the volume of email messages being exchanged is ever increasing when other forms 

such as tweets and others (e.g., Whatsapp) are included. DBLP [1], a computer 

science bibliography, has around 2.8 million records (conference, workshop papers, 

and journal articles). Freebase [2], an online collection of structured data, harvested 

from various sources, has around 47 million topics and 2.7 billion facts. Internet 

Movie Database (IMDB) [3] contains information about 3.3 million movie titles and 

6.6 million people associated with movies, TV-series etc. This clearly shows that the 

amount and types of data being generated are significantly large and querying them 

is becoming a useful alternative and a challenge. 

Data is collected and stored to find useful information (either by mining or 

by search or by querying) that is beneficial either for business or individuals. For 

example, DBLP has the information of authors, journals, and conference papers. If 

an employer in a research lab wants to hire people who have published papers on a 

particular topic, s/he may want to query the DBLP data. Another example could be 

to find authors who have published or co-authored papers in prestigious conferences 

(e.g., SIGMOD) during a specific period. Moreover, people use Freebase to find infor-

mation, such as find Vietnamese restaurant in Palo Alto, California [4]. In addition, 

nowadays social networking has also become very popular which gives a platform to 
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build social relations among people who share interests, activities, backgrounds, or 

real-life connections. Currently, many social networking sites are available, such as 

Facebook, Twitter, LinkedIn, etc. and users may want to query these sites to find 

relevant and useful information. Most of this information is structured in that rela-

tionships (e.g., works for, founder of) are explicit in these data sets unlike traditional 

applications such as payroll, airline reservation, etc. Despite the rich data sets and 

their structures, they cannot be queried the way user wants. Queries are limited and 

decided by the vendors or corporate stake holders. For example, DBLP provides an 

option to find papers of a particular author, but instead if a user is interested in 

finding a paper, where author1 has collaborated with author2, but not with author3 

in a certain period of time, then these types of queries are not supported. IMDB, 

which contains the movie database, can be queried to find information about movies, 

genres, actors, etc. But again, if a user wants a movie in a particular period of time 

and with a specific genre, company, or actor, these queries are not supported. The 

goal is to support arbitrary queries over these data sets that have rich representation 

already captured in the form of a graph. Providing a capability to allow queries over 

these representations will avoid conversion of this data into a traditional relational 

representation for querying purposes. However, these queries need to be processed 

using a different representation of data than relations or tables. As a result, both 

query processing and optimization techniques need to be developed for this purpose. 

Our focus is to design a platform for a user, where the users queries should be driven 

by his needs. Therefore, we need a way to process this data to extract meaningful 

information. 

Relational database management systems (RDBMS) have been widely used 

across industries. Research and development over several decades have resulted in 

efficient storage alternatives, optimization of queries, and other tools. One of the 
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drawbacks is that the application needs to be modeled first using this representation 

in order to avail the benefits. More importantly, the relationships within the data 

are lost during the mapping process thereby making it difficult to understand the 

connections in data and to formulate queries. New applications are emerging whose 

data representation may benefit from alternative ways of data storage and manage-

ment. Nowadays, data is generated or evolved at a higher rate. Also, data is typically 

not structured. Therefore, traditional databases with a need to create schema first 

may not be the best choice for these applications. A graph is more intuitive and 

also has a sound theoretical basis. Moreover the graph model can natively support 

many of these applications thatmay require forcing them into a RDBMS representa-

tion. Batra and Tyagi [5] explain that graph databases are able to accept all types 

of data- structured, unstructured, and semi-structured – more easily than relational 

databases, which rely on a predefined schema. 

Moreover, graph databases are more flexible forthe aforementioned applications 

and provide the capability to keep data in their native representation where relation-

ships are explicit. Relational models, on the other hand, work best when there are a 

relatively small and static number of relationships between objects. When the data 

sets become larger and the query contains results from many tables, then it may 

require expensive join operations. Conversely, in a graph database, query processing 

does not have to scan the entire graph to find the nodes that meet the search crite-

ria. It looks only at records that are directly connected to other records. For such 

applications graph database may perform better than traditional RDBMS. Once the 

data is modeled we can query this data. 

As mentioned earlier, current systems such as DBLP, IMDB, and Freebase sup-

port a limited class of queries. DBLP, which has all the information of authors, pub-

lications, conferences and publication year, can be accessed through a web interface. 
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We can find interesting information, such as, find all the papers written by particular 

author, DBLP returns all the publication papers, journals, books, etc. written by 

that author. Moreover, it provides various ways to refine the result set such as refine 

by author, venue and year. However, there are queries which are not supported by 

DBLP. For example, Find an author who has written a paper with author1 but not 

with author2 or Find papers written by author1 after 2005 etc. In the case of IMDB, 

queries such as find movies where person1 and person2 have worked as actors and 

person3 has worked as director in 1995 and movie genre should not be drama cannot 

be supported by the existing interface. To support these and other more expressive 

types of queries, we model this data as a graph, where each individual entity can be 

represented as a node and the relationship between them can be represented by an 

edge. After modeling this data into graph structure, we have to find patterns in this 

data for a query having similar graph form but includes conditions, wild cards etc. 

The abundance of graph data in a variety of domains implies that graph query-

ing and graph mining have become important for information retrieval and analysis. 

Graph mining identifies frequent and interesting graph patterns, classifies new graphs 

based on knowledge of known graphs, or clusters graph into subclasses. A graph query, 

on the other hand, takes a graph pattern as an input and retrieves patterns that sat-

isfy the input graph that includes conditions, ranges, and wild card specifications from 

graph databases. As in any other form of querying, graph querying needs to find all 

the occurrences of a given substructure. Typically, a query is in the form of a con-

nected sub graph which is relatively very small as compared to the size of the graph 

database. Therefore, a query is given as an input to find exact matches in graph data. 

A given query can be processed in many ways to find these exact matches. Given a 

query graph with many vertices and edges, its processing can theoretically start from 

any node and. compute answers. There will be several possible ways to compute the 
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results for the same query depending on the start node. For a given query,number of 

potential plans depends on the number of possible starting nodes of the query graph. 

In a query of n nodes, if there are k unknown nodes, there can be n-k different plans 

(all nodes except unknown nodes can be the starting point). If unknown nodes are 

also used as starting points then they match every node in the graph which increases 

the search space significantly. Clearly, if there are multiple alternatives (plans), a 

cost metric is needed to differentiate with respect to the computation needed for its 

evaluation. Each plan, when executed generates different number of intermediate 

substructures. Intuitively, a plan that generates more intermediate substructures is 

costlier. In order to compute the cost, typically, selectivity, cardinality and other in-

formation are used in relational databases. Along the same lines, there are two issues 

that need to be identified for graph databases. First, what meta information needs 

to be collected from the graph that can be used to evaluate query plans, and second, 

how to generate that information efficiently. Once we find a good query plan, based 

on cost of processing that plan, results can be obtained from the query processor. 

This requires an algorithm that accepts a query plan and computes the results from 

the graph database efficiently. 

In this thesis, we address general-purpose query processing over a graph database. 

For that, we develop techniques and approaches for generating alternative plans and 

for computing their estimated costs. The goal is to develop a cost metric that is 

applicable to a graph database query evaluation. We also develop a query proces-

sor to process a plan generated by our plan generator. We evaluate our approach 

experimentally by using a couple of real-world graph databases. Our approach will 

use query specification that is more expressive than what can be queried over earlier 

work in this area. 
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The remainder of the thesis is organized as follows. Chapter 2 presents the 

related work in the areas of relational query processing and optimization. Chapter 

3 discusses an overview of graph mining and querying. Chapter 4 discusses graph 

representations and how to specify a general/arbitrary query. Chapter 5 explains 

the generation of alternative plans, cost model, and heuristics used for state space 

generation and pruning. Chapter 6 details the implementation of a graph query 

optimizer and processing of a query plan using subdue. Chapter 7 shows experimental 

results to validate our approach. Conclusions and future work are outlined in Chapter 

8. 

6 



CHAPTER 2 

RELATED WORK 

Graph querying is useful for retrieving information from emerging graph databases 

such as Freebase and knowledgebase. Querying a database, although different from 

mining, is useful for retrieving desired information which satisfies the conditions we 

already know. For example, the query list all founders of a company who attended 

Harvard or Yale is more specific than mining where one is looking for patterns that 

may be of interest because it occurs a lot of times in the database. For querying a 

graph database we need a query which is in the form of graph to obtain the exact 

matches. As mentioned earlier, a query can be evaluated in multiple ways by gen-

erating alternate plans and a good plan (i.e., cheaper to evaluate) is chosen among 

alternative plans generated, Therefore, the problem of graph querying boils down 

to explore alternate viable plans, estimate a cost for each of these plans, have an 

approach to avoid exhaustive generation of search space, and finally choose a plan 

for actual evaluation. Query processing and optimization processing have been well 

researched and a number of techniques have been proposed. This chapter briefly 

presents an overview of some of the widely used approaches for query optimization 

and query processing. Various techniques proposed for query optimization and query 

processing include query optimization in relational databases [6], Graph-grep [7], G-

index [8], G-ray [9], and Subdue [10]. The following sections describe some of the 

query optimization and query processing approaches. A discussion of some of these 

systems is presented when we consider the related work in the area of graph mining. 
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2.1 Query Optimization in RDBMS 

Query optimization is one of the accomplishments of relational database re-

search. A query optimizer attempts to determine a good execution plan for a given 

query by considering a large number of possible query plans. There is a trade-off 

between the amount of time spent on optimization and the cost savings provided by 

the chosen plan. Therefore, the optimizer uses techniques to keep the search space 

generated manageable and still obtain a good plan for evaluation. A given query 

can be evaluated in many possible ways and the difference between the best and the 

worst plan, in terms of cost of its computation, can be significantly different. Rela-

tional databases use different parameters to evaluate the cost. According to Jakre and 

Koach [11], query optimization cost model typically is an objective function consisting 

of the following costs; 

1. Secondary storage access cost: The cost of loading data pages from secondary 

storage into main memory. This is influenced by the number of pages to be 

retrieved, clustering of data on physical pages, and size of available buffer space. 

2. Storage cost: Each operator is associated with a CPU cost and the cost of using 

the CPU during that operator evaluation is called computation cost. 

Query optimization algorithm is strongly influenced by these cost components. 

For each operator, there are algorithms available in RDBMS and several factors (i.e. 

the size of each table, availability of an index, etc.) affect the cost of an algorithm. 

There are some common techniques used in developing an evaluation algorithm and 

one of them is the concept of access path, which is a way of retrieving data from 

a table. An access path consists of a file scan or an index plus matching selection 

condition. Each relational operator takes one or more tables as an input and access 

methods are used to retrieve tuples. 
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Consider a selection operation that is a conjunction of multiple conditions of 

the form attr op value where op is one of the comparison operators <, <=, =, ! =, 

>= or >. These selections are said to be in conjunctive normal form. Each condition 

is called a conjunct. A hash index matches a CNF selection if there is an equality 

condition. A tree index matches CNF selection for non equality conditions. An index 

can match a subset of the conjuncts in a selection condition. The most selective 

access path is the one that retrieves the fewest pages. For each conjunct there are 

some tuples from the table that satisfy the condition; this fraction of tuples is called 

a reduction factor. So based on reduction factor, optimizer estimates the number of 

tuples. 

A query optimizer uses different heuristics to reduce the cost of an execution 

plan. One of the main heuristics is to apply select and project operations before 

applying the join because a join is a relatively expensive operation and a good heuristic 

used is to reduce the sizes of intermediate results. In other words, the size of the file 

resulting from a join operation is usually a multiplicative function of the size of the 

input files. Similarly, the size of intermediate tables is reduced by carrying forward 

only the required attributes. The select and project operations reduce the size of an 

intermediate file. The query optimizer generally applies these operations before join 

operation and joins are implemented based on the availability of index on relations. 

To estimate the costs of various execution strategies, some meta information is 

needed. This information is stored in the DBMS catalog which is used by a query op-

timizer. A catalog typically contains the size (Number of pages) of each file, number 

of records in each file, record size, and number of blocks. The records may be un-

ordered, ordered by an attribute, or ordered without a primary or clustering index; all 

this information is kept in the catalog. Another important parameter is the number 

of distinct values of an attribute and its selectivity, which is the fraction of records 
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satisfying equality condition on the attribute. This gives an estimation of selection 

cardinality of an attribute, which is the average number of records that will satisfy 

an equality selection condition on that attribute. Different query plans generated 

are evaluated using this information and the plan with the least cost is selected, and 

finally that plan is executed to evaluate the query. 

In our work, we have adopted a similar approach and use meta information 

associated with a graph database. We analyze the graph once to glean the meta 

information such as different node labels, their connection information, edge label 

information, etc, which will be discussed in detail in the following chapters. 

According to Ramkrishnan and Gehrke [12], to identify equivalent expressions 

for a given query, a relational query optimizer uses relational algebra equivalences. 

For all such expressions of the query, all available implementation techniques are 

considered, thereby generating several alternative query evaluation plans. The query 

optimizer estimates the cost of each plan and chooses an optimal plan. Two plans 

over the same set of input tables are said to be equivalent if the results produced by 

them are the same. 

A typical SQL query consists of select, from, where, group by and order by 

clauses. The fields in each select clause are projected from the Cartesian product of 

tables in the from clause. The use of equivalences enables us to convert this initial 

representation into equivalent expressions. Particularly, selections and cross-products 

can be combined into joins and joins can be reordered. Consider a query having 

multiple joins. Three relational algebra operator trees that are equivalent to query 

would be left-deep tree, right-deep tree, and bushy tree. Optimizers typically use a 

dynamic programming approach to efficiently search the class of all left-deep plans. 

If an optimizer considers all possible plans, the number of plans would be exponential 

which differs in join order. Of course, the decision rules out many alternative plans 
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that may cost less than the best plan using a left-deep tree. The optimizer only 

considers the left deep plans because, as the number of joins increases, the number of 

alternative plans also increases rapidly and it becomes necessary to prune the search 

space. Moreover, using left deep trees, fully pipelined plans can be generated, which 

means intermediate results are not materialized. 

After considering a set of plans, the query optimizer estimates the cost of each 

plan. The cost of a plan is typically the sum of costs of all operators in the query 

plan. The cost of individual relational operators in the plan is calculated using the 

information from system catalog. I/O costs play major role in determining the total 

cost. The I/O cost of a plan consists of a cost of reading input tables from the 

disk, cost of writing intermediate tables if necessary (e.g., for a sort-merge join), and 

sorting the final results if query specifies an output order. The cost of a fully pipelined 

plan is dominated by the cost of reading input tables which depends on the access 

paths used to read input tables. For plans that are not fully pipelined, the cost of 

materializing temporary tables needs to be taken into account. The number of tuples 

in the result of a selection is estimated by multiplying the input size by the reduction 

factor for the selection condition while the number of tuples in the result of projection 

is the same as input. In the case of a projection query optimizer carries forward only 

required attributes thus reducing the size of intermediate results. The result size for 

a join can be estimated by multiplying the maximum result size which is the product 

of the input table sizes, by the reduction factor of the join condition. 

In the case of graph data, we use a similar approach. Rather than expanding all 

the plans, we only consider subset of plan space to be expanded. Cost model for our 

approach estimates the number of intermediate substructures that will be generated. 

We evaluate the cost of each plan by its number of intermediate substructures which 

will be discussed further in upcoming chapters. 
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2.2 Query processing on Graph Data 

Graph is a powerful tool for representing and understanding objects and their 

relationships in various application domains. Due to increasing popularity of graph 

databases, graph query processing has been widely researched. However, as men-

tioned earlier, existing querying systems have limitations and do not support queries 

containing operators (<, >, =, ! =). Moreover, most of the querying systems do 

not follow a plan to evaluate queries. Existing research has been conducted mainly 

on two types of graph databases. The first involves, one large graph (such as social 

networking graph, web graph etc.) and the second consists of multiple small graphs 

(such as chemical compounds, blog graphs etc.). In this section we discuss about var-

ious techniques for graph querying such as Graph-grep, G-Index, and G-Ray. We also 

establish the relationship between graph mining and graph querying in the upcoming 

sections. 

Graph querying is the process of finding similar query patterns in the graph 

data. A lot of research has been done in this field earlier. Shasha, Wang and Guino 

[7] propose an algorithm called Graph-grep which is a variable path index approach. 

The first step in this algorithm is to construct an index which essentially is done by 

finding all possible paths up to length l, from all nodes. Then, it stores all possible 

paths in a hash table. The second step is to filter the database; the query graph is 

parsed to build its fingerprint (hashed set of paths). Database is filtered by comparing 

the fingerprint of the query with the fingerprint of the database. A graph, for which at 

least one value in its fingerprint is less than the corresponding value in the fingerprint 

of the query, is discarded when looking for an exact sub graph match. The last step 

is finding sub graphs matching the query; after filtering, this algorithm searches for 

all the matching sub graphs in the remaining graphs. The branches of a depth-first 

traversal tree of the query are decomposed into sequences of overlapping label-paths, 
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which are called patterns. Then, it joins all the sub paths on an overlapping node to 

get the final results. Since all the paths are already hashed so this approach provides 

fast results. However if the graph size is large, keeping all paths up to length l takes 

huge space. Since this approach breaks the query and graph into different paths so it 

loses the structural information which makes it difficult for the chemical compounds 

that requires structural information to be preserved. This approach cannot handle 

queries containing comparison operators. 

This approach evaluates the query graph from the main graph using indexing 

techniques. In our approach, instead of indexing we use an exploration approach. A 

node is fully explored and, with the exception of required nodes every other node is 

discarded. Unlike graph-grep approach, structural information is also preserved. 

Another approach by Yan, Yu and Han [8] suggests indexing frequent struc-

tures, called the G-index. In this approach the authors define the substructure to 

be frequent if its threshold is greater than the minimum support threshold and all 

frequent substructures are indexed. Each substructure is associated with an id list. 

Given a graph query q, if q is frequent, the graphs containing q can be retrieved 

directly since q is indexed. The G-index only indexes structures which are distinct, 

which means that if the same substructure is generated twice, it indexes only once. 

G-index uses Depth First Search (DFS) coding to translate the graph into 

unique edge sequence called canonical label. If two substructures are the same that 

means, they must share the same canonical label; the G-index holds canonical labels 

in a prefix tree. Given a query, G-index enumerates all its fragments up to a maximum 

size and locates them in the index and then it intersects the id lists associated with 

these fragments, which is the candidate answer set. After getting the candidate 

answer set, it verifies whether the graphs in answer set really contain the query graph. 
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However, this approach does not answer infrequent queries because it only indexes 

the frequent substructures, and if graph is large then index size becomes greater. 

In our querying approach, we do not use indexing scheme because in a large 

graph index size becomes very large and updating indexes incurs an additional cost; 

instead we use exploration approach where we explore the nodes in a specific order. 

Therefore, our querying system answers all queries (both frequent and infrequent) un-

like G-index. In addition, G-index does not handle queries with comparison operators 

and does not follow any plan to evaluate the query. 

Another approach presented by Gallagher, Faloutsos and Eliasi-Rad [9], called 

G-Ray, finds both exact and inexact matches. This approach first finds a seed node 

and then expands the seed node by finding a matching node followed by bridging both 

nodes by the best possible path. G-Ray proposes a goodness score which is a measure 

of proximity between two nodes. Based on this goodness score, it ranks the results. 

In this approach each vertex stores the information of remaining vertices. Therefore, 

space requirement is significant and it also does not differentiate between two results 

having the same goodness score. Unlike other approaches, G-ray keeps the attribute 

information of each node. For example, if there are two nodes California and Steve 

Jobs, their attribute could be state and person, respectively. In our approach we use 

the similar approach and keep the attribute information of each node. Our approach, 

on the other hand, does not deal with inexact results, which means if any node from 

the query is not found during the exploration, the result set contains null. 

In this chapter, we have discussed the overview of related work in the area of 

query optimization and query processing. With this overview of the related literature 

in the area of graph query processing, the discussion on graph mining techniques is 

presented in the next chapter. 
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CHAPTER 3 

OVERVIEW OF GRAPH MINING AND GRAPH QUERYING 

3.1 Overview of Graph Mining 

Data mining is the process of discovering hidden patterns in large data. The 

goal of the data mining process is to extract non-intuitive information from a data 

set and use it for making business decisions. Data, in many applications, have an in-

herent structure and converting them to non-structural (RDBMS) format will result 

in loss of information. Graph representation provides a natural format for preserv-

ing the inherent structural characteristics. If processing can be done directly on this 

representation, it will provide better results as the semantics of the applications (in 

the form of relationships) is preserved during processing. Complex structural rela-

tionships can be modeled as graphs if no constraints are assumed (such as cycles, 

multiple edges, only directional edges, and constraints on vertex and edge labels). 

Graphs model the data in the form of a vertex (to characterize the data), and edges 

(that typify extra information). Graph mining is used to mine structural data such 

as DNA sequences, electrical circuits, chemical compounds, social networks, schemes 

(such as money laundering and fraud) that have associations and relationships among 

transactions, etc. A graph representation comes across as a natural choice for repre-

senting complex relationships as the data visualization process is relatively simple as 

compared to a data in traditional RDBMS representation. Data representation in the 

form of a graph preserves the structural information of the data which may otherwise 

be lost if it is translated into other representation schemes. 
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3.2 Overview of Graph Mining System Subdue 

Subdue [10], the earliest work on graph mining, uses information-theoretic 

model for determining the best substructure given a forest of unconstrained graphs. 

This substructure discovery system was developed by Cook and Holder. The Sub-

due discovery algorithm discovers repetitive patterns and interesting substructures in 

graph representations of input data. A substructure is a connected sub graph within 

the graph representation. In a graph, entities and objects are mapped to the vertices 

and the relationship between these objects is represented as the edge between the cor-

responding pair of vertices. An instance of a substructure in an input graph is a set 

of vertices and edges from the input graph that matches the graphical representation 

of the substructure. 

The input to Subdue is a forest of graphs and the output is a set of substructures 

that are ranked based on their ability to compress the input graph using the Minimum 

Description Length (MDL) principle. The compression technique is elaborated in 

detail in the following sections. 

Figure 3.1. High-level view of shapes. 

The input is in the form of a table consisting of a list of unique vertices in the 

graph and edges between them. The output is a list of representative substructures 
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discovered in the input graph that compress the graph most and each is qualified by its 

size and occurrence frequency in the input graph. Consider the example in Figure 3.1 

. It is a high-level view of shapes resting on a table. The graphical representation of 

these shapes is shown in Figure 3.2 below. 

Figure 3.2. Graph representation of shapes example. 

The input for Subdue (for this particular example) is as shown in Figure 3.3. 

This input is in the form of a file consisting of the list of vertices and the edges 

between the vertices. 

Figure 3.3. Subdue Input for shapes example. 
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Subdue generates the best substructures that compress the input graph the 

most and lists out the top n substructures. The output given by subdue for the 

example in Figure 3.2 is displayed in Figure 3.4. 

Figure 3.4. Subdue Output for shapes example. 

3.2.1 Parameters for control flow 

There are a number of parameters that Subdue provides the user in order to 

control the flow of the substructure discovery process. The input to Subdue is the file 

containing the list of vertices and corresponding edges as shown in Figure 3.2. The 

parameters which drive the discovery process of Subdue are as follows: 
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1. BEAM: This parameter specifies the number of top substructures. Top BEAM 

substructures are retained for the expansion in each iteration of the discovery 

algorithm. The default value of the beam is 4. 

2. ITERATIONS: Iterations is used to specify the number of iterations to be made 

over the input graph. The best substructure from the previous iterations is taken 

to compress the graph for the next iteration. The default is no compression. 

3. LIMIT: Limit specifies the number of different substructures to be considered in 

each iteration. The default value is (number of vertices + number of edges)/2. 

4. NSUBS: This parameter is used to specify the number of substructures to be 

returned as the result from the total number of substructures that Subdue 

discovers. 

5. OVERLAP: Specifying this parameter to Subdue allows the algorithm to con-

sider overlap in the instances of the substructures. Instances of substructures 

are said to overlap if they have a common substructure in them. 

6. PRUNE: If this parameter is specified, then the child substructures whose value 

is lesser than their parent substructures are ignored. Since the evaluation heuris-

tics are not monotonic, pruning may cause SUBDUE to miss some good sub-

structures, however, it will improve the running time. The default is no pruning. 

7. SIZE: This parameter is used to limit the size of the substructures that are con-

sidered. Size refers to the number of vertices in the substructure. A minimum 

and maximum value is specified that determines the range of the size parameter. 

8. THRESHOLD: This is the parameter that provides a similarity measure for 

the inexact graph match. Threshold specifies how different one instance of a 

substructure can be from the other instance. The instances match if match-

cost(sub, inst) <= size(inst)∗ threshold. The default value is 0.0, which means 
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that the graphs should match exactly. Currently, Subdue supports threshold 

values up to 0.3. 

3.2.2 Substructure Discovery in Subdue 

The substructure discovery in Subdue is done by using a beam search and 

progresses in an iterative manner starting with substructures of size 1 and expanding 

to successively larger substructures. A list consisting of a set of substructures to be 

expanded is maintained. The input graph is compressed by replacing the instances of 

these substructures by a single node. The resulting input graph is then used for the 

next iteration to find other interesting substructures. This process continues until 

the number of iterations specified by the user is reached or it meets one of the several 

halting conditions such as the total number of substructures needed provided by the 

user. The occurrences of substructures that have an exact match are unlikely to occur 

in most domains. Substructure instances that are not exactly the same but are similar 

can also be discovered by Subdue. Subdue is capable of discovering both exact and 

inexact (isomorphic) substructures in the input graph. Subdue employs a branch and 

bound algorithm that runs in polynomial time for inexact graph match and discovers 

graphs that differ by a threshold given by the user. This discovery process is used to 

find repetitive and interesting substructures or patterns. After that it compresses the 

graph by replacing the instances of these patterns by a single node in order to provide 

a hierarchical view of the original input graph. Subdue compresses the input graph 

using the substructures generated. In order to determine which of those substructures 

compress the graph best, Subdue uses the MDL principle to evaluate the compressed 

substructure. After compressing the substructure in multiple iterations, the best 

substructures are output. Subdue system finds interesting and repetitive patterns 

using graph mining. 
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However, if a user wants matches of a specific pattern then graph mining may 

not be the best idea because the user is interested in specific pattern. Graph querying, 

on the other hand, takes graph pattern as an input and retrieves similar patterns from 

the data graph. In graph querying, we find all the occurrences of a given substructure. 

In the following section we discuss the relationship between graph mining and graph 

querying and also discuss how a graph mining system can be re-purposed into a graph 

querying system. 

3.3 Graph Mining to Graph Querying 

The abundance of graph data in a variety of domains implies that graph query-

ing is needed in addition to graph mining as a form of information retrieval and 

analysis. Graph querying can be seen as a special case of graph mining where ex-

ploration looks for specific patterns that match a query and hence can be deemed as 

restrictive mining. Graph mining identifies frequent and significant graph patterns, 

classifies new graphs based on the knowledge of known graphs, or clusters graphs 

into subclasses according to the mutual relevance. A graph query, on the other hand, 

takes a graph pattern as input and retrieves exact match patterns from the data. In 

graph querying, we want to find all the occurrences of a given substructure. Graph 

mining, unlike graph querying, starts with all the vertices in the graph and hence, is 

called unrestricted search. Therefore, for querying specific patterns, general purpose 

mining approach can be modified based on the nodes in a query. We can make use 

of information from query graph to improve our search. 

In general, a mining system can be converted to a querying system by restricting 

its start nodes for expansion followed by expanding starting nodes to desired nodes. 

Intermediate substructures that do not follow the query patterns are discarded. Thus 

a querying system can be developed with modifications to a mining system. Having 
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provided an overview of graph mining, graph querying, and an introduction to the 

Subdue discovery system, in the next chapter, we elucidate how data graphs and 

query graphs are represented as well as the types or classes of queries that can be 

handled in our approach. 
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CHAPTER 4 

GRAPH AND QUERY REPRESENTATION 

4.1 Graph Representation 

In this section, we discuss the representations used for the graph databases. A 

graph consists of nodes and edges. A node typically contains a node label, a node 

id and an edge connecting to the other node. An edge is a connection between two 

nodes which can be labeled or unlabeled, directed, or undirected. Consider the graph 

shown in Figure 4.1. 

Figure 4.1. An example graph containing movie information. 
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Figure 4.1 shows a portion of a graph database consisting of a movie and its 

related information. Nodes are connected to each other based on the relationship 

between them. If a user wants to retrieve the information from this graph, s/he can 

query this graph. For example, Find male actors in the movie Beyond all boundaries 

in the year 2011. In this case all the nodes which are connected to the movie Beyond 

all boundaries with the edge label actor, would be its answers. Another example of a 

query could be Find persons who have worked in the movie Beyond all boundaries in 

the year 2011. In this case, the person is an additional information which denotes the 

general category for actors/actress in the graph. Since this additional information is 

missing in the graph (Figure 4.1), so this query cannot be answered with the given in-

formation. This necessitates the categorization of the nodes based on their attributes. 

Moreover, graphs (i.e., IMDB, DBLP, Freebase, Knowledge graph) nowadays come 

with the property information along with the node. In other words, each node be-

longs to some category. Therefore, to group node labels with the same semantics 

(e.g., author, city) in the graph, the concept of type nodes can be used. Non-type 

nodes are viewed as instance nodes. Every instance node is connected to its respec-

tive type node and other instance nodes. The concept of type node is analogous to a 

super class and all instance nodes belong to the super class. For example, in the case 

of a social network graph, if two instance nodes John and Mary belong to the type 

Person then John and Mary nodes would be connected with its type node Person. 

In case of DBLP there are four types of nodes: author; paper; year; and conference. 

Each type of node is connected to all instances which are of that type. For example, 

instances of conferences are the values of conferences such as sigmod, cikm, etc., and 

the instances for author are names of author who have published a paper, such as 

Jeffrey D. Ullman, Shantunu Sharma, etc. Consider the graph in Figure 4.2, which 

is an extended version of the graph in Figure 4.1 including the type information. 
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Figure 4.2. An example graph with the type information . 

In Figure 4.2 there are six type nodes shown. Number of type nodes is applica-

tion dependent. This number is an indicator of how many different categories of the 

nodes exist in the dataset. All instance nodes are connected to their respective type 

nodes and with other instance nodes as appropriate. This signifies the connection 

among instances. It captures both property relationship of an entity and relationship 

across entities. 
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4.2 Graph Query and its Representation 

A query is a request to retrieve the information from the graph database and 

it can be as simple as, Find names of restaurants in Arlington, or more complex 

like, Find movies with all its cast information where the movie genre should not be 

Drama, and all movies should be before 2005, cast should be male and working as 

an actor, and movies should belong to the company Paramount pictures. Based on 

the different types of queries, it can be classified into several categories. In the graph 

database model, several types of queries can be specified: 

1. Single relation queries 

2. Join queries (multi-relational queries) 

3. Queries with logical operators (AND, OR) 

4. Range queries (<, >, =, >=, <=, ! =) 

5. Aggregate queries (Count) 

Similarly, a general graph query processing system should be able to answer 

all query categories. Consider a conjunction of conditions of the form attr op value, 

where op is one of the comparison operators (<, >, =, >=, <=, ! =), and attr could 

be a type or an instance. This is called conjunctive normal form (CNF). General 

query can be represented as follows. 

26 



Figure 4.3. General query graph . 

Figure 4.3 is a general representation of a query graph. There can be any number 

of nodes in a query. The above mentioned query categories can be represented using 

this general representation. In this section, we discuss types of queries with the help 

of examples. 

1. Single/Multi-relational queries: For each instance node there is only the equal 

operator present in the query. For instance, Find papers published by the 

author Karl Aberer in the conference BNCOD in the year 2011, is an example 

of a simple query. Its graphical representation (Figure 4.4) is as follows. 
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Figure 4.4. Representation for a Simple Query . 

Figure 4.4 represents the graph form of the aforementioned simple query. Each 

instance node is connected to its respective type node. In this query we have to 

find papers, so the node connected to the type paper is ?. All the edge labels 

in this query are the same as the edge labels in the main graph. 

2. Queries with logical operators: Logical operators include AND, OR, NOT op-

erations. Queries typically include one or more logical operators. Each of the 

above operators is represented in a slightly different manner. 

(a) AND: This operator is used in queries where all the conditions have to 

be true in order to fetch the results. Essentially each AND condition is 

a different node in the query. For instance, Find paper written by Saket 

Sathe and Karl Aberer in 2011 is an example of a query with AND operator. 
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In this query Saket Sathe and Karl Aberer are two conditions which have 

to be fulfilled. Following is the representation of the given query. 

Figure 4.5. Representation for an AND Query . 

Figure 4.5 represents the graph form of the AND query. In the case of an 

AND condition both the author nodes are connected to the paper node, 

that means both the conditions should be satisfied. Each instance node 

is connected to its respective type node and other instance nodes. In this 

query we have to find papers, so the node connected to the type paper is 

?. 

(b) OR: This operator is used if any one out of all given conditions is true. 

So in this case, result would be the union of all the OR conditions. For 

example, Find paper published by Karl Aberer in 2010 or 2011 in the 
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conference sigmod. in this query results from both the year would include 

in the answer set. OR queries are represented as follows. 

Figure 4.6. Representation for an OR Query . 

Figure 4.6 represents the graph form of the OR query. In the case of OR 

conditions both the year conditions are denoted in two different plans. The 

result would be the union of both the plans having unique elements. In 

the case of OR queries, all OR conditions are represented in different sub 

plans and the result would be the union of all the sub plans. Each instance 

node is connected to its respective type node and other instance nodes. 

(c) NOT: If we want all the results except for a particular condition, the NOT 

operator is used. In this case, the result set would include all the results 

except the given NOT condition. To represent NOT query, != symbol is 
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used. For instance, Find all the movies where Brad Pitt has worked as a 

director except in the year 2005 shows an example of a NOT query. In this 

query, results from all years except 2005 would be in the result set. NOT 

queries are represented as follows. 

Figure 4.7. Representation for a NOT Query . 

Figure 4.7 represents the graph form of the NOT query. In the case of a 

NOT condition, instead of equality sign we use ! = symbol to represent 

the condition, that means except the given value, all others should satisfy 

the condition. 

Moreover, queries may contain a combination of more than one logical operator 

and range operators. In this case each logical operator is represented as mentioned 

above and the result set would include the answers satisfying all the conditions. For 

instance, Find movies with all its cast where movie genre should not be Drama, and 

all movies should be before 2005, cast should be male and working as an actor and 

movies should belong to the company Paramount pictures contains more than one 
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logical operator along with a specified range. Following is the representation of this 

query. 

Figure 4.8. Representations for Queries with a Combination of Logical and Range 
Operator . 

Figure 4.8 represents the graph form of the query having a combination of 

multiple logical and range operators. Each instance node is connected to its respective 

type node along with other instances. 

In this chapter we have discussed several categories of the queries and their 

representation. A graph query generally consists of a small number of nodes and 

edges compare to the graph database. A querying system takes a query as an input 

and retrieves all the exact matches of the query in the main graph. A general query 

answering system can start from any node in the query and expand to a sequence 
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of edges in the query graph until all matches are found. An ordering of nodes in 

which each node (with the desired label) is expanded exactly once forms a query 

plan. Having provided a detailed description of the query categories, in the next 

chapter we discuss about alternative query plans and how one plan differs from other 

plan. We also discuss the cost metric to evaluate plans. 
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CHAPTER 5 

PLANS AND THEIR COST EVALUATION 

Queries are the primary mechanism for retrieving desired information from any 

dataset. Query results are generated by accessing the relevant data by traversing 

graph databases, in a way that yields the requested information. A query may have 

multiple results. For a given query, based on the different starting points there may 

be multiple ways to evaluate the same query and these alternatives are called plans. 

It is critical that all alternatives give the same result. This chapter discusses the cost 

metric for the evaluation of alternative plans and when one plan is considered better 

than the other. We also discuss the catalog information and cost formulas needed for 

evaluating a plan. 

5.1 Query and its matches 

A query is a small graph or a pattern (as compared to the graph database) 

which may have multiple exact matches in the data graph. A query is input to the 

graph query processor and all the matching patterns are returned. Consider Figure 5.1 

which shows the main graph, the query and its exact matches. 
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Figure 5.1. A query graph, a data graph and its exact matches. 

Figure 5.1 shows the graphical representation of the query (Find movies by Brad 

Pitt where he has worked as an actor in the year 2011), the graph data and its exact 

matches. It is evident from the figure that there is only one exact match present in 

the data graph for the corresponding query. As mentioned earlier, a graph query is a 

connected graph generally consists of a small number of nodes (10s to 100s) and edges. 

A general query answering system can start from any node in the query. For the query 

shown in Figure 5.1, there are five possible starting nodes (except the node having ?) 

and we can start with any one of them and can expand the node based on the query. 

An ordering of nodes, in which each query node is expanded exactly once, forms a 

query plan. Obviously there will be multiple query plans, each having a different 

ordering of nodes for a single query. Clearly, in Figure 5.1, we have five possible plans 

based on different starting points. If there are multiple plans then we need some way 

to evaluate these plans and assess why one plan is better than the others. Intuitively, 
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a query plan that generates more intermediate results is costlier.This generation of 

intermediate results needs to be quantified in some way based on the graph properties 

to convert it into a cost. As discussed earlier, given a query of n nodes with k unknown 

nodes, number of plans in the query would be n-k. Clearly, evaluating each and every 

plan will be computationally expensive. Since unknown nodes match every node in 

the graph, we do not consider them as an initial heuristics (this is similar to the 

postponing or delaying Cartesian product in a relational model.) Therefore, finding a 

query plan that minimizes the size of intermediate results is a challenge. Cardinality, 

selectivity, and join ordering are used in the relational query optimization. Similar to 

the relational model, for graph databases, the requirement is to collect appropriate 

metadata information that can be used to evaluate query plans. In the next section 

we discuss the parameters to evaluate the cost of a plan and the analogy between the 

metadata of the RDBMS and the graph database. 

5.2 Cost Metric for evaluation of plan 

As discussed in the previous chapter,a query may contain comparison operators 

(such as <, >, <=, >=, ! =, =), logical operators (AND, OR) and combinations of 

these. Before we can evaluate the cost, some meta information is needed to estimate 

the cost of an operation. 

As mentioned earlier, in relational databases some meta information is kept to 

estimate the cost of a plan. Graph databasesare analogous to the relational databases 

in some ways. For instance, in the graph databases, the type nodes are similar to 

the attribute names in relational databases. Similarly, the number of instances of a 

type node is analogous to the number of values of an attribute. Another important 

parameter is the number of connection an instance node (of a particular type) has 

to other instance nodes of a specific type with specific edge label. In the case of a 
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graph, we can identify the number of connection from a type node to its instance node 

based on the given condition; this gives an estimation of the selection cardinality of 

a node. Therefore, we need to store some graph information in order to estimate 

the cost of a plan. This information can be gleaned by processing the graph, which 

can be effectively used for estimating the number of intermediate substructure. This 

information is collected and stored in agraph catalog. A traversal of the graph is 

likely to be needed for collecting this information. If the graph evolves the additional 

information can be gathered incrementally. In this section we discuss the graph cat-

alog which contains the relevant graph statistics which can be utilized for evaluating 

a plan.The following metadata is extracted from the graph. 

1. Unique Type Names: This captures all the names of unique type nodes present 

in the graph. In other words, it contains all the category information of nodes 

in the graph. For example, in Figure 5.1 there are three categories (person, 

year, and movie) of nodes. This information is analogous to the attribute name 

in RDBMS. We can determine the category (type) of that instance node by its 

connection to a type node. 

2. Type cardinality: Type cardinality is defined as the number of instances of a 

particular type node. If there are multiple edge labels from the type node to 

its instance nodes then the type cardinality is taken with all the different edge 

labels. This gives us the type cardinality of that type node. As mentioned 

earlier, this type cardinality is used to estimate the number of substructures 

generated after exploring the type node. 

3. Average Instance cardinality: This number defines the number of connections 

of an instance with other instances. For example, if an instance of type1 is 

connected with on an average k instances of type2 and l instances of type3 

then average instance cardinality of that node would be k+l. This instance 
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cardinality is used for the estimation of the number of substructures which are 

generated after exploring an instance node. 

4. Average Connection cardinality: Connection cardinality is the number of the 

connection of an instance with another instance with particular edge label. This 

information is analogous to the join cardinality in relation databases. While 

exploring an instance node to another instance node, this information is used 

to determine the number of intermediate substructures with the particular edge 

label. 

5. Min and Max values of each type instances: For numeric attributes (such as 

year), this information tells the range of instances. For example, if there are 

100 unique values of the instances of a year type node then, given a value we 

can estimate the number of substructures based on the condition in node. For 

non-numeric attributes min and max does not exist. 

All nodes in a query follow the form attr op value where op is one of the 

comparison operators <, <=, =, ! =, >= or > and attr is either a type or an instance. 

Based the on value of op, selectivity is calculated. For example, if there is an equality 

operator, the selectivity of equality condition would be 1/ type cardinality, which 

means the intermediate result size would select only one out of total instances of 

that particular type node. Similarly, for > and < condition, the selectivity would be 

(max-value)/(max-min) and (value-min)/(max-min) respectively. For ! = condition, 

the selectivity would be 1- selectivity of an equal condition. 

Given a query, the purpose of a query plan generator is to generate a good 

plan and eliminate potentially bad ones.Any cost computation based on meta data is 

only an estimate and hence the estimate needs to be accurate in order to identify a 

good plan. Having provided a detailed description of the graph catalog that contains 

all necessary information to estimate the query plans, we now elaborate the design 
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and architecture of query optimizer in the following chapter. A general graph query 

optimizer will accept a given a query (from a file) and use the catalog information 

to find a good plan that will be evaluated over the graph database. Note that even 

after identifying a good query plan, the query plan needs to be executed for finding 

exact matches from the graph. This calls for query answering techniques which shall 

also be discussed in the next chapter. 
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CHAPTER 6 

DESIGN AND ALGORITHM 

The general approach for the query evaluation is to develop a strategy that 

can generate an efficient plan and then execute that plan to obtain the results. In 

this chapter, we discuss the meta data collected for the catalog, a branch and bound 

algorithm for the generation of one or more plans, and finally modifications to the 

mining algorithm used by Subdue to convert it into the plan processor. Following is 

the architecture of our query processor. 

Figure 6.1. System architecture . 

Figure 6.1 explains the architectural diagram of the query processor. The query 

processing is mainly divided into two phases: plan generation and plan execution. As 
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shown in the figure, generated catalog file and the query are input to the plan gener-

ator which outputs a good (i.e., low cost) plan for the given query. After generating 

the plan, it is used by the plan executor along with the graph database to execute 

that plan. In the following sections we discuss details of each component described 

in Figure 6.1. 

6.1 Catalog generation 

A graph needs to be processed in order to collect the metadata associated with 

it. Given a graph along with its node and edge labels, we collect all the catalog 

information described in the chapter 5. Consider a graph G(V , E), which has k type 

nodes (t1,t2,......,tk) and each type node ti (i ∈ (1, k) is associated with mi instance/s 

in the G(V , E). Catalog information is calculated as follows: 

1. Type name: Each node in the graph has some attributes associated with it. 

All vertex label of attribute/type node (t1,t2,......,tk ) presented in G(V , E) are 

therefore type nodes. 

2. Type cardinality: For type node ti, the type cardinality would be mi. Type 

cardinality for a type node can be computed by counting all the nodes in G(V , 

E) having similar attribute. In other words, given the type node, degree of that 

type node is the type cardinality. 

3. Average instance cardinality: For a given type, average instance cardinality can 

be computed by taking average of degrees of instances of that type. Average 

instance cardinality for a type node ti is 

jX=mi 

degree(mij )/mi 

j=1 

where mi is the number of instances of type ti and mij is a particular instance 

of type ti where j ∈ (1, mi). 
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4. Average connection cardinality: Connection cardinality for a given type is com-

puted by taking an average of number of connections to other type instances 

with particular edge label in G(V , E). For two type nodes ti and tj , if there are 

ni and nj number of instances ( out of mi and mj respectively ) involved with 

edge label e then the connection cardinality from ti to tj for edge label e would 

be eij /mi where eij is the total number of edges between mi and mj with edge 

label e . 

5. Min and Max values: If ti is a numeric node type (such as year) then out of mi 

instances, minimum and maximum values are kept. 

Consider the graph in Figure 6.2. This graph is a snap shot of the IMDB 

database. The catalog computation explained above is shown for this example graph. 

Figure 6.2. IMDB example graph . 

Using the formulae described above, the following catalog information is gener-

ated. 

42 



Figure 6.3. Catalog for graph in Figure 6.2 . 

Figure 6.3 has four columns. First two columns are From Node and To Node, 

third column contains the edge label between first two columns, and in the last column 

average cardinality information is kept. If we traverse from From Node to To Node 

with that edge label, then the average cardinality in the catalog is used in the cost 

estimation. An ∗ in the catalog represents all, which essentially means the instance 

cardinality of From Node. For the numeric attributes min and max values are also 

computed to estimate the selection cardinality. With the discussion of catalog gener-

ation, in the section below, we elaborate on how this catalog information is used to 

estimate costs of partial plans as they are generated. 
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6.2 Cost estimation of partial plans 

For any query, assuming the availability of a catalog, the goal of plan generator 

is to generate a good plan. In plan generation we use the number of substructure 

generated during the answer computation as a cost metric. Intuitively, a plan which 

generates more number of substructures while computing an answer is costlier. To 

keep track of the cost of a partial plan, two parameters cost and currSubs are 

maintained. Cost signifies the total number of substructure generated by the plan so 

far while currSubs maintains the number of estimated current substructures during 

the expansion in that iteration. The algorithm first finds the seed node to start with. 

For a query with n nodes, if there are m unknown nodes, this algorithm starts from all 

the n-m nodes and the estimated cost is associated with each of the starting nodes. 

The unknown nodes (i.e., nodes with a question mark) are not used as a starting 

nodes as its cardinality is the number of nodes in the graph as a ? matches any label. 

The plan generation algorithm uses the branch and bound algorithm and beam size 

(k) which determines the number of plans to be expanded after each iteration. The 

algorithm picks k (out of n-m) least cost plan for expansion. All connections of a node 

are known from the query. In a plan, a node is expanded to the node which generates 

less number of substructures compared to other nodes. After each expansion, cost 

is updated. This algorithm continues expanding k least cost plans until it covers all 

edges in the query for all k plans. The sequence of nodes in which they are expanded 

is returned as a plan. 

6.2.1 Cost estimation in plan generation 

In the plan generation algorithm cost is incurred in each expansion. Cost is 

typically the function of instance cardinality of the node (which we are expanding on) 

and the number of current substructure in the plan. If the plan which is expanded 
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on ti (or an instance of ti) to tj (or an instance of tj ) with an edge label e then the 

cost would be the multiplication of instance cardinality of ti and number of current 

substructure. Similarly number of estimated substructure would be the product of 

current number of substructure, connection cardinality (ti to tj with edge label e), 

and the selectivity of a query node. In each iteration substructure having n node 

is expanded to substructure with n+1 nodes and corresponding cost and number of 

current substructures are updated. 

6.2.2 Algorithm of the plan generator 

Above is the algorithm for generation of the plan. This algorithm takes catalog 

information and a query graph as input and generates a good plan as an output (line 

1 to line 2). This algorithm uses the branch and bound technique to limit the search 

space and for that one parameter Beam Width (k) is kept. It means that at a time 

only k out of all possible plans will be expanded. This algorithm starts with taking 

all the known nodes in the query as starting point of the plans (line 3 to line 6). All 

the plans are now initialized with the estimated cost based on the catalog information 

(line 7 to line 9). This algorithm now picks best k cost plans and expand these plans 

from n edge substructure to n+1 edge substructure. After each iteration best k plans 

are updated. Algorithm continues until k least cost plans get completed (line 10 to 

line 17). 

Consider a query ”Find persons who have worked as actors in the movie Beyond 

all boundaries in 2011”. The graphical and subdue representation of the query is 

shown in the Figure 6.4 and Figure 6.5 respectively. The beam size (k) in this example 

is 5. The catalog is shown in the Figure 6.6. 
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Figure 6.4. Graphical representation of the query. 

Figure 6.5. Subdue representation of the query. 
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Figure 6.6. Catalog for IMDB dataset (12K vertices and 30K edges). 

The query plan is evaluated for the given query in Figure 6.4. In this query 

there are 6 nodes and out of that only 1 node is unknown, therefore the algorithm 

starts from all the remaining 5 nodes. cost and currSubs are initialized by 1 for each 

of the plan, since there are only one substructure in each of the plan. Following the 

algorithm plans are generated as shown in the figure below. 
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Figure 6.7. Output plans are shown for the given query graph. 

In above Figure 6.7 all five plans are shown with their estimated cost (number 

of intermediate substructure). Each plan gives the same result set but is different 

in terms of generating intermediate number of substructure. Intuitively if a plan 

generates more number of substructure, it will take more amount of time to process, 

hence is a costlier plan than the one which generates less number of intermediate 

substructure. There are two factors which determine the cost of a plan. First is the 

degree (cardinality) of a node. If we start with a node which has higher degree than 

other node, that means it will generate number of substructure equal to its degree. 

In all the plans shown in above figure, plan 1 starts from a node which has degree 

higher than other starting nodes so initial cost becomes high. Second is position of an 
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unknown node, if algorithm expands to an unknown node first, then the number of 

substructure in the plan becomes more, so each expansion is performed for all number 

of substructures in the plan. Therefore the cost of the plan becomes high. This is 

analogous to pushing selection and projection down in the tree in the RDBMS. In 

the plan 1 in above figure, first expansion is on unknown node, due to this plan keeps 

all the generated substructure. Each expansion after that is performed on all these 

number of substructures, that is why the estimated cost of the plan 1 is more. In 

all the plans except plan 1 number of expansions after encountering unknown node 

are comparatively less, hence the costs of other plans are less compare to the plan 

1. In plan 2 algorithm expands on all possible known nodes first, that is the reason 

why plan 2 performs best among all the plans. Plan 2 and Plan 4 encounter unknown 

node at same position, so the difference in cost is because of the cardinality of starting 

nodes. After generating a good plan by the plan generator, the plan is fed to the plan 

executor with the graph database. In the section below we elaborate the modifications 

in an existing system called Subdue and the working of plan executor. 

6.3 Plan Execution 

As discussed earlier in previous chapters that Subdue is a graph mining system 

which takes the graph database as an input and finds the interesting substructure 

from the data. We also elaborated the relationship between graph mining and graph 

querying. A querying (also called as restrictive mining) is a special case of mining. 

In this section we discuss the modifications in the Subdue, and how a mining system 

can be converted to a querying system. 

In mining algorithm the only input is the graph databases and the output is 

hidden interesting substructures. On the other hand, in the case of querying system, 

query plan (sequence of nodes to be traversed) also needs to be input to find the 
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matches. Graph mining algorithm starts from all the unique node labels in the graph 

while in our case, we start from a unique vertex label specified in the plan. Instead 

of expanding in all possible ways (in case of mining), we restrict the expansion (to 

only the particular node with specified edge label) based on the plan. In addition, 

to support comparison operators we have implemented <, <=, >, >=, ! =, and 

= operators. When the node is expanded to the desired node label, operators are 

checked to ensure that whether the node (which algorithm is going to expand upon) 

meets the condition. If the node does not meet the condition it is discarded. We 

continue until all the nodes and edges in the plan get covered. 

The algorithm for plan execution takes graph database and query graph as 

input and outputs all the exact matches to the query (line 1 to line 2). Each plan is 

a sequence of nodes to be traversed. This algorithm starts from finding the first node 

label in the graph database (line 3) and expands this node to next node as specified 

in the plan . It keeps on expanding on the nodes to the desired nodes according to 

the plan until all the nodes and edges get covered (line 4 to line 7). 

Figure 6.8. Results from the plan executor for the input query plan. 
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After executing the plan in QP-Subdue results are shown in the form of a 

graph. For the query in Figure 6.4 results are shown in the above figure, which 

are the exact matches of the specified query. In this chapter we have explained 

the design of the system architecture and also elaborated the detailed algorithm of 

each component involved. Having provided this discussion, in the next chapter we 

elaborate the experiments and their results on various plans. 
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Algorithm 1 Plan Generation algorithm 
1: Input : Query Graph, Catalog information, Beam Size (k) 

2: Output : k alternative plans with their estimated cost 

3: initialize planNodeList with null 

4: for each node q in the query add q as a starting point of a plan do 

5: add q to planNodeList 

6: end for 

7: for each node p in planNodeList do 

8: initialize p with the estimated cost using the catalog information 

9: end for 

10: while number of completed plans ¡ k do 

11: for each of k lowest cost plans do 

12: expand each plan to the next node 

13: cost = previous cost + added cost; 

14: end for 

15: update k lowest plans 

16: update number of completed plans 

17: end while 

18: write out k plans 
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Algorithm 2 Plan Execution algorithm 
1: Input : Graph database, Query graph 

2: Output : Exact matches of the query graph in the graph database 

3: Initialize current node with the starting node based on the plan 

4: while all the nodes and edges in the plan get visited do 

5: Expand the current node to the desired node with specific edge based on the 

plan 

6: Update the current node according to the plan 

7: end while 
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CHAPTER 7 

EXPERIMENTAL EVALUATION 

This chapter presents the results of extensive experimental analysis performed 

on various queries of different databases. The experimental result reinforce our 

premise that the number of intermediate substructures generated in any plan de-

termines the execution time of the plan. The consistent performance of the plan 

generator across different types of queries and databases establishes the applicability 

of our proposed approach for plan generation. As we have considered different real 

time graph databases and queries, the performance of the plan generator for each 

database is presented in detail in a separate section. The experimental setup and 

a brief description of the data set used is also provided. Before we elaborate the 

performance of the plan generator, a brief overview of the system implementation is 

presented below. 

7.1 Implementation 

The plan generator is implemented in Java. Java has been chosen as the lan-

guage of choice, as it provides excellent support for string processing, since the labels 

in a typical graph database are strings. The plan execution algorithm is implemented 

in C as it is a modification of the Subdue system that has been implemented in C. 

In order to make it easier for a user, the inputs from an end user is kept to a mini-

mum and a configuration file is used to provide either defaults or choices. A scripting 

language is used to accept the configuration file containing all the information. The 

QP-Subdue system consists of the following modules: i) catalog generator, ii) plan 
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generator which can output various types of plans including all plans for a query, a 

query processor that takes a graph database, a plan, and outputs the exact answers to 

that plan. The QP-Subdue system generates several intermediate outputs including 

the catalog file, a plan file consisting one or more plans for each query, and an output 

file for each query. The configuration file contains all the information needed for the 

QP-Subdue system to process one or more queries on a graph database. 

In the implementation of the various routines, we have been able to optimize 

greatly due to the use of Java, which is geared towards string processing and ex-

traction. The availability of pre-developed functions for many routine tasks and the 

ability of handle complex data structures that have been utilized in the implementa-

tion justify its use. In the discussion that ensues we will briefly describe some of the 

implementation aspects of the various modules and parameters used. 

7.1.1 Plan generation 

Plan generator takes catalog information and query graph as input. The catalog 

information needs to be stored before we can utilize this. As described in the previous 

chapter that for expansion in the query plan, we need to find the average cardinality 

information for the unique tuple (combination of from node, to node and edge label). 

The combination of unique tuple is stored as a key in a hash map and the value of 

the hash map is the average cardinality. After processing the catalog files query file 

is also processed. In query processing we create an adjacency list for each node based 

on the connectivity and assign a boolean flag with each node to keep track of whether 

the node is a type or an instance node. A query node has the vertex label in the form 

of attr op value. However, in the graph database, vertices have only value. attr and 

op in the query node carry the information of type of node and operator respectively. 

This information is kept separately during the parsing of query. In other words, attr 
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and op is stored separately than the actual vertex label (value). This algorithm also 

uses branch and bound technique to limit the search space, which means only beam 

width(k) number of plan are expanded instead of expanding all the plans. We keep 

track of top k plans with their plan id in a hash map and after each iteration, hash 

map is updated. In each expansion estimated cardinality information is taken from 

the catalog and estimated cost of a plan is updated. The output is a plan file which 

consists of top k plan with their estimated cost. 

Input for the plan generator is a catalog and a query file, and output is the plan 

file. Catalog is shown in the Figure 7.1. 

Figure 7.1. Catalog file. 

Similarly, the graph query is represented using the subdue representation. Graph-

ical query and subdue representation are shown in the Figure 7.2 and Figure 7.3 

respectively. 
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Figure 7.2. Graphical representation of a query. 

Figure 7.3. Input file of the query in Figure 7.2. 

After processing the query, plan generator outputs a plan which is fed into plan 

processor. Figure 7.4 is the representation of the output plan. 

57 



Figure 7.4. Plan file (input to the plan processor) . 

In above figure, plan is the sequence of edges, to be visited. In this case the first 

node would be 2011, which is expanded on year node with edge label is. = operator 

means that the node is equal to year. Similarly all the edges are covered in the plan. 

In the section below, implementation of plan executor is discussed. 

7.1.2 Plan Execution 

Plan execution takes place after the plan generation. Plan file and graph 

database are input to the plan executor. Plan executor first processes the graph 

database and stores the information of vertices and edges. Plan file contains the se-

quence of nodes with operators and edges. Subdue starts the discovery process by 

finding the starting node mentioned in the plan file. In this step, all vertices with this 

label become the starting point (instances of the substructure having one node). From 

the plan file, now next node along with edge label and operator is looked up. After 

first iteration, all these instances (starting nodes) are expanded in all possible ways 

but only those substructures are kept which meet the conditions (next node label, 

edge label connecting both the nodes and operator) specified in the plan file. This 

process continues until all the nodes and edges in the plan file get visited. Structures 
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which do not meet the conditions in the plan file, are discarded. After processing the 

query results are shown in the form of subdue graph representation as shown in the 

figure below. 

Figure 7.5. Query matches after processing the plan on the graph database . 

The query matches are shown in the above figure, which have representation 

similar to the query. In the section below we discuss the experimental analysis of 

various categories of queries and the performance of the plan generator. 

7.2 Experimental Analysis 

With the important implementation details outlined, we now elaborate the 

performance of the plan generator for various queries over different graph databases. 

All experiments have been carried out on Dual Core AMD Opteron 2 GHz processor 

machine with 16 GB memory. Extensive experiments on different queries with diverse 

59 



characteristics have been carried out to study the performance of the plan generator. 

In the section below we discuss the data set and query characteristics. 

To evaluate the performance of the plan generator, we used IMDB and DBLP 

data sets for the experiments. The maximum size we could handle for these graph 

databases is with 350000 nodes and 1200000 edges on 16 GB machine, since the 

whole graph loads in the main memory. DBLP data set contains the information 

of publications along with the information of their authors, conferences and years. 

Similarly, IMDB graph database contains the information of movies, actors, genres, 

year, company, etc. 

For the above mentioned graph databases, we took queries having different 

characteristics such as queries with a comparison operator (<, <=, >, >=, ! =, =), 

queries with a combination of multiple comparison operators, queries with logical 

operator (OR, AND) and queries with a combination of logical and comparison op-

erators. In the section below we demonstrate the performance of the plan evaluator 

on different categories of a query. Plan generator generates a good plan using the 

information of catalog and query. Intuitively, a plan which generates less number of 

intermediate substructure, should take less amount of time to obtain results. There-

fore the minimum cost plan would be a plan which generates minimum number of 

intermediate substructure among all possible plans. Similarly the maximum cost plan 

would be the plan which generates maximum number of intermediate substructure. 

In order to see the difference among various plans, we generated all the possible plans 

from the query and picked minimum, median and maximum cost plans to see the ef-

ficiency of the plan generator and to evaluate the difference in time taken to execute 

various plans. 
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7.2.1 Performance of plans 

• AND Query: ”Find tv-series and its company name, where Kelsey, Wagner 

has worked as an animator and genre of the tv-series should be animation and 

comedy” is an example query to IMDB graph database containing AND logical 

operator. The AND operation is between two genres animation and comedy. 

The result set would contain tv-series which belong to both the specified genres. 

Below are the results of running different plans (min, med, max cost plans) on 

different sizes of IMDB data set. 

Figure 7.6. Execution time (in secs)of an AND query on different sizes of databases 
for min, med, and max cost plan . 

As it is clear from the figure that in each data set, minimum cost plan takes 

significantly less amount of time. Clearly, the difference in execution time be-

tween min cost plan versus other plans is due to the number of intermediate 

substructure generated/processed. The minimum cost plan performs at least 
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300 times better than the worst plan in all the cases. It evidently shows the 

efficiency of the plan generator. 

• COMB Query: ”Find tv-series and its company by Soler, Rebecca where the 

genres should be drama and family and the year is not equal to 1996 ” is a 

query to IMDB graph database which contains a combination of both compar-

ison and logical operator. In this query the result set would contain tv-series 

which belong to both drama and family in all the years except 1996. In different 

plans, different number of intermediate substructures are generated. Execution 

time for different plans over different sizes of data set is shown in the following 

figure. 

Figure 7.7. Execution time (in secs) of a COMB query on different sizes of databases 
for min, med, and max cost plan . 

62 



In the figure above min, med, and max cost plans are run on the different data 

set and in each data set, performance of the minimum cost plan is significantly 

higher than other plans. 

• OR Query: ”Find tv-series and its company where Kelsey, Wagner has worked 

as an animator OR Soler, Rebecca has worked as an actress” is a query to IMDB 

graph database having an OR operator. As explained earlier, OR queries are 

divided into multiple sub plans based on the OR condition specified. Therefore, 

this query first finds the tv-series where Kelsey, Wagner has worked as an 

animator and then the second part finds tv-series where Soler, Rebecca has 

worked as an actress. The union of both the sub plans would be the result set. 

The same query is run on different sizes of IMDB graph database and following 

results are obtained. 

Figure 7.8. Execution time (in secs) of an OR query on different sizes of databases 
for min, med, and max cost plan . 
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Again, the performance of the minimum cost plan by the plan generator is 

exceptional compared to the other plans. On the largest data set the minimum 

cost plan performs approximately 300 times faster than the maximum cost plan. 

If we compare the execution time of this OR query with the execution time of 

above mentioned AND and COMB query, the time taken in the case of OR is 

more. One of the reason for it is because of multiple sub plans. The time for 

the minimum cost plan on different data sets varies from 10 milliseconds to 20 

milliseconds, while for the maximum cost plan it varies approximately from 15 

seconds to 59 seconds. 

• Comparison operator (<): ”Find papers published by the author Eric Hanson 

before the year 2009 ” is an example of query which contains < operator, and 

this query is run on DBLP graph database. In this query, user is looking for 

papers by a particular author before the specified year. We run this query on 

DBLP graph databases of different sizes, following are the results of executing 

different plans on these data set. 
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Figure 7.9. Execution time (in secs) of a query containing comparison operator on 
different sizes of databases for min, med, and max cost plan . 

In the figure shown above, for each data set, three plans are executed for the 

same query. The minimum cost plan executes in considerably less amount 

of time compared to other plans. This shows the effectiveness of the plan 

generator. 

• COMB Query: ”Find papers where Yuri Breitbart AND Abraham Silberschatz 

have collaborated together after the year 1980” shows an example of a combi-

nation of a query with comparison and logical operator. In this query the AND 

operation is in between two authors and all the papers after 1980 would be in 

the result set. This query on DBLP data set performs as shown in the following 

figure. 
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Figure 7.10. Execution time (in secs) of a combination of multiple operator on dif-
ferent sizes of databases for min, med, and max cost plan . 

Execution time is shown in the figure for the query with a combination of 

multiple operators. The time varies for minimum cost plan from 9 millisecond to 

19 millisecond on different data sets, while for the maximum cost plan, it varies 

approximately from 9 seconds to 30 seconds. In each data set, the minimum 

cost plan performs better than any other plan. 

• Query with multiple unknowns: Plan generator is also able to handle queries 

which have multiple unknown nodes. ”Find authors with their papers and 

conference information in year 2005” is an example of a query which has multiple 

unknown nodes (authors, papers, conference). Clearly if there are multiple 

unknown nodes that means the expansion would happen to all possible nodes, 

therefore number of intermediate substructure would be more. The execution 

time for this query is shown in the following figure. 
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Figure 7.11. Execution time (in secs) on different sizes of databases for min, med, 
and max cost plan . 

It is clear from the above results that execution time of this query is compar-

atively more than any other previously mentioned query. As explained that it is 

because of more number of intermediate substructure. In this query the minimum 

cost plan varies from 70 milliseconds to 3.8 seconds, while the maximum cost plan 

varies from 13 seconds to 451 seconds. Evidently, the effectiveness of the plan gener-

ator is in bringing down the time from 451 seconds to 3.8 seconds in the largest data 

set. In all the data set this system is capable of generating a plan which is at least 

100 times faster than the worst plan. 

In summary, we have carried out exhaustive experiments across various domains 

and presented the results of our findings. The consistent performance of the plan 

generator has validated our expectation about the feasibility of the proposed novel 

approach for various types of queries over graph databases. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

In this thesis, we have proposed an approach for query optimization in graph 

databases that uses similar techniques employed in relational databases. We have 

developed a framework that allows us to generate query plans for various types of 

queries which include comparison and logical operations. Our premise that time taken 

to evaluate the query depends on the intermediate number of substructures is justified 

by the time taken in the execution of different plans which differ in their estimated 

number of intermediate substructures. The plan which generates less number of 

substructures takes less time for its execution. The proposed approach overcomes 

the limitation of conventional techniques in graph databases that evaluate the query 

without generating any specific plan. 

In order to evaluate queries efficiently, we have developed the plan generator for 

various types of queries and have also demonstrated how a graph mining system can be 

modified to a graph querying system. The need for a plan generator for generating cost 

effective plans has been established. Various parameters that affect plan generation 

have been identified and analyzed in detail. The results of the exhaustive experiments 

that were carried out validate the effectiveness of our approach. 

We have proposed a query representation scheme for various types of queries 

(containing different relational and logical operators) which can be used to retrieve 

meaningful information from a graph databases. The plan generator effectively uses 

the catalog information which is generated just once from the graph database (by 

making a single pass over the graph database input file and not even materializing 
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the graph in memory; hence this can be used for a graph database of any size) and used 

for query processing. With the work presented in this thesis, we have developed the 

underpinnings of the query optimization techniques for graph databases. Although 

the performance of query optimizer is good, more work needs to be carried out to 

include complex conditions that involve both relational and logical operators including 

the NOT operator. Some of the enhancements that can be carried out are outlined 

in the following discussion. 

The performance of the queries generated by our plan generator for various 

types of queries is significantly better. However, further improvement can be done 

in handling a broader range of queries. In the current implementation, we handle 

queries with all comparison operator (<, <=, >, >=, =, ! =) and logical operator 

including AND and OR. Relational databases, on the other hand, are capable of 

handling wide range of query categories (Logical NOT, order by, group by, In, and 

Conjunctive Normal Form etc.) and aggregation. If we compare our work with the 

relational databases, it can be significantly improved by incorporating other useful 

operators. Another scope of improvement is in the catalog information. Currently 

we are keeping only average values of different type nodes and their instances. In 

the relational databases, histograms are used to keep more accurate information. 

Similar techniques can be used in case of graph databases. This aspect needs to be 

investigated to make this approach more robust as it would provide more accurate 

estimation of the cost of a plan. 

Moreover, although the Subdue system developed for substructure discovery 

has been modified as a query processor and performs well; additional modifications 

may further improve the performance of QP-Subdue. The current system expands its 

instances by either one edge or one node and one edge. Clearly, for query processing, 

if a node has k edges associated with it, it will take k iterations to obtain k edge 
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substructure. Instead, it may be more useful to expand all the k edges at once in 

a single iteration. This will further reduce the intermediate number of substructure 

and therefore execution time for query processing. 

In the current system, user has to input the query in the way a general graph is 

represented and the result is also returned in the same way. Instead it may be more 

intuitive if we develop a GUI for the same where user can formulate the query in its 

graphical representation by dragging and dropping the desired entities. In the GUI, 

user will be able to see the generated plan from the query and the results in more 

natural and cognitive way. 

In conclusion, we believe the adaptation of query optimization techniques for 

graph databases are effective and opens up new possibilities and a research direction 

that is novel and different from contemporary techniques. 
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