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ABSTRACT

MLN-Subdue: Decoupling Approach-Based Substructure Discovery In Multilayer

Networks (MLNs)

Anish Rai, M.S.

The University of Texas at Arlington, 2020

Supervising Professor: Dr. Sharma Chakravarthy

Substructure discovery is well-researched for single graphs (both simple and

attribute) as it is an important component of knowledge discovery for many applica-

tions such as finding the core substructure in a protein, important concept in a large

graph, etc. However, multilayer networks or MLNs (instead of attribute graphs) have

been shown to be better for modeling complex data sets that have multiple entity

and feature types. This model provides more clarity on semantics of data sets as

well as the ability to use an arbitrary subset of layers for analysis. However, the

challenge is that many algorithms such as community and centrality detection as well

as substructure discovery need to be extended to MLN representation.

With the representation of complex data sets as MLNs brings new challenges

in terms of finding substructures in MLNs or a subset of MLNs. A naive approach

would be to collapse (or aggregate) all (or a subset of) layers into a single attribute

graph and use extant algorithms. There are a number of substructure discovery al-

gorithms ranging from memory-based, disk-based, SQL-based, and partitioned using

map/reduce framework.
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While substructure discovery has been widely used for the analysis of single

networks, attribute graphs, and forests, the development of an efficient substructure

discovery methods for multilayer networks without aggregation is currently not avail-

able. This thesis proposes a new decoupling approach-based substructure discovery

algorithm for homogeneous MLNs (or HoMLNs). HoMLNs are MLNs where each

layer has the same set of nodes but different connectivity in each layer.

In this dissertation, we propose a decoupling approach-based algorithm for

HoMLNs where aggregation is not needed. Further, the algorithm has been im-

plemented using the Map/Reduce framework in order to handle arbitrary number of

layers and improving the response time through parallelism. Each layer is processed

individually/separately in parallel, but the substructures generated for each layer

are combined after each iteration to identify substructures across layers (or MLN).

The focus is on correctness of the algorithm and resource utilization with respect to

number of layers. The proposed algorithm is validated analytically as well through

extensive experimental analysis on large real-world and synthetic graphs.
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CHAPTER 1

INTRODUCTION

Developing efficient algorithms for mining frequent itemsets in a large database

has been one of the key areas of data mining research. We can use these itemsets

for discovering association rules [1] or extracting prevalent patterns that exist in the

database. In the recent years, data mining techniques are facing challenges to cope

with complex types of objects with inherent relationships, as they are difficult to be

modeled with the traditional approaches. Such data are typically modelled as graphs.

Graphs are considered to be a useful natural data structure which can be easily

applied to model relationships among complex objects in a variety of applications

such as chemical, bioinformatics, computer vision, social networks, text retrieval and

web analysis. In particular, when graphs are modeled such that each vertex of the

graph will correspond to an entity and each edge will correspond to a relationship

between two entities, then the problem of finding frequent patterns becomes that of

discovering subgraphs which occurs frequently or compress the graph better over the

entire graph or forest.

Substructure discovery is one of the well addressed problems in graph mining

domain and is the process of finding interesting patterns that occur in the graph/set

of graphs. The motivation for this process is to find inherent regularities in the data.

For example:

• What products are often purchased together?

• What kinds of DNA are sensitive to this new drug?

• What are the subsequent purchases after buying a PC?
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• Can we classify web documents using frequent patterns?

Figure 1.1 shows an example graph with repetitive patterns, these patterns can

also be used to see how it compresses the graph.

Figure 1.1: An example graph

Figure 1.2 shows how frequent patterns in Figure 1.2(a) can be used to compress

the graph given in Figure 1.1 to Figure 1.2(b) and the compressed graph can be further

compressed hierarchically to Figure 1.2(c).

The substructure discovery process can be divided into two major steps. The

first step is to iteratively generate subgraphs of all sizes in the graph. The next step

is to find matching ones in the given graph/graphs in each iteration using subgraph

isomorphism. In general, the following four aspects influence the execution of various

substructure discovery algorithms and also the output generated by them.

• Graph representation

• Subgraph generation

• Algorithmic approach

2



Figure 1.2: Frequent patterns in graphs used for compression

• Frequency evaluation

1.1 Need For Multilayer Networks

As research on complex systems has matured, it has become increasingly es-

sential to move beyond simple graphs and investigate more complicated and realistic

frameworks. For example, edges often exhibit heterogeneous features: Modern so-

cial networks frequently encompass multiple types of connectivity information; for

instance, explicitly acknowledged friend relationships might complement behavioral

measures that link users according to their actions or interests. One way to represent

these networks are as a Multilayer graph, where each layer contains a unique set of

edges over the same underlying vertices (users). Multilayer Networks arise naturally

when we have more than one source of connectivity information for a group of users.

However, it is not obvious to extend standard graph analysis techniques to the Mul-

tilayer setting in a flexible way. In this paper, we focus on developing algorithms and

methods for mining Multilayer Networks for substructure discovery.

3



The advantages of modelling data using MLN’s are discussed in [2,3]. Multilayer

Networks can be of different types.

• Homogeneous Multilayer Networks

• Heterogeneous Multilayer Networks

• Hybrid Multilayer Networks

Homogeneous Multilayer Networks are used to model distinct relationships that

exist among the same type of entities as intralayer edges) and the interlayer edge sets

are implicit as the same set of nodes are present in every layer. Relationships among

different types of entities are modeled through heterogeneous Multilayer network. The

interlayer edges are explicitly represented to demonstrate the relationship across lay-

ers. In addition, for modeling multi-featured data that capture multiple relationships

within and across different types of entity sets, a combination of homogeneous and

heterogeneous Multilayer Networks can be used, called hybrid Multilayer Network.

Figure 1.3 below shows two types of types of Multilayer Networks.

Graph mining in Multilayer Networks has attracted significant attention in the

past several years, many algorithms have been proposed for mining complex net-

works [4,5] for Cliques and Communities, but these algorithms assume that the data

structure of the mining task is small enough to fit in the memory of a computer. But

this assumption doesn’t hold any longer as very large scale data sets are ubiquitous

in today’s world: worldwide web, online social network, huge search and query logs

regularly collected and processed by search engines. Because of this massive scale, do-

ing analysis and computations on these data sets is infeasible for individual machines.

Therefore it is imperative to look for distributed ways for storing and processing these

data.

4



Figure 1.3: Types of MLN

1.2 Problem Statement

The problem addressed by this thesis is to find interesting substructures in a

given Homogeneous Multilayer Network without converting the MLN into a single

graph. The main challenge here is to compute the interlayer substructures across

multiple layers correctly and efficiently.

The existing algorithms in literature [6, 7] cannot be used in the multilayer

setting as they are designed to find substructures in a single graph. If used to find

substructures in each layer, many substructures that exist across layers will not be

found. For example Figure 1.4 shows the use of existing algorithms to find substruc-

tures of size 2 in each layer independently, but when we combine the graph as single

graph and then find the substructures as we see in Figure 1.5, we see that many

substructures that exist across layers were not found by the existing algorithms when

5



we processed them independently. So, the main objective of this thesis is to process

multiple layers independently and find frequent patters in each layer and across layers

effectively, such that no relationship remains unexplored.

Figure 1.4: Frequent subgraphs in HoMLN using existing approach

1.2.1 Alternatives For Substructures Discovery in a HoMLN

1. Collapse/aggregate the layers to form a single graph is an alternative

which can be used to find substructures correctly in a given Homogeneous Mul-

tilayer network, but using this approach has its downside such as

• Combining the layers to generate a single graph, which is costly, moreover

combining the layers can generate a graph of large sizes which cannot be

processed in the memory of single processor and then again we need to

resort to the partitioned approach [8] for finding substructures.

• It restricts the use of parallel processing as we cannot process each layer

independently and in parallel.

• Does not provide clarity to the system, as it is difficult to determine that

the substructures generated are from which layer and for every subset of

6



Figure 1.5: Frequent subgraphs: Two Layers Combined

layers we want to find substructures, we need to combine them separately

which is inefficient and expensive.

2. Decoupling based approach equivalent to the “Divide and Conquer” ap-

proach is another alternative to find interesting patterns/substructures in a

Multilayer network. The goal is to find substructures in each layer indepen-

dently and the combine the results to generate substructures that exist across

layers. We use the decoupling based approach to address our problem as it

allows us to process the layers independently and in parallel, moreover the

structure of the MLN is preserved and it provides the flexibility to work on a

subset of layers.

1.3 Map/Reduce: A Distributed Framework

Map/Reduce is a framework for processing huge datasets using distributed com-

putation using appropriate number of processors. Its effectiveness and simplicity has

7



resulted in its implementation by different companies and global adoption for a wide

range of applications including large scale graph computations [9,10]. It is primarily

popular because of its model of processing enormous amounts of data in a massively

parallel fashion using large number of commodity machines. Its ability to handle lower

level issues such as job distribution, data storage, flow and fault tolerance automati-

cally provides a simple computational abstraction. In Map/Reduce computations are

done in three phases:

• Map Phase: It reads a collection of values or key/value from a input source

(HDFS: File system used by hadoop to store data) and invokes a user defined

Mapper function on each input element independently and in parallel, and

emits zero or more key/value pairs associated with that input element.

• Shuffle Phase: This phase groups together all the key/value pairs emitted by

the mapper sharing the same key, and outputs each distinct group to the next

phase.

• Reduce Phase: It invokes a user-dened Reducer function on each distinct

group, independently and in parallel, and emits zero or more values to associate

with the group’s key. The emitted key/value pairs can then be written on the

disk or be the input of a Map phase in a following iteration.

We have chosen the Map/Reduce paradigm to address our problem of substruc-

ture discovery in a Multilayer Network as we are interested in processing the layers

independently and in parallel and the Map/Reduce framework provides the architec-

ture to accomplish that goal in a flexible way. The Mapper allows us to process the

layers in parallel to find substructures in each layer and then the Reducer enables us

to group all the substructures generated in each layer to find the substructures that

exist across all layers. Using this framework, our goal to preserve the MLN structure

and process the layers independently is also accomplished. Moreover if we don’t have

8



enough resources (Mappers/Reducers) to match the number of layers, Map/Reduce

framework also allows us to process multiple layers in a single processor.

1.3.1 Substructure discovery using Map/Reduce

Experiments indicate that instead of using high computation supercomputer,

it is feasible to use a cluster of cheap commodity machines for graph mining on large

data sets. At Present, an iterative algorithm is used for substructure discovery on

partitioned graph using Map/Reduce paradigm that generates all substructures of

increasing sizes (starting from substructure of size one that has one edge), eliminates

duplicates if necessary, counts the number of identical (or similar) substructures, ap-

plies a metric (e.g. frequency) to rank the substructures. This process is repeated

until a given substructure size is reached or there are no more substructures to gen-

erate. In each iteration, either all substructures or a subset of substructures (using

ranking) is carried forward to restrict the expansion process.

This approach partitions a single large graph in smaller chunks and processes

them in parallel. However, this thesis focuses on developing algorithms that works

on a Multilayer graph. So the process of iteratively generating bigger substructures

in each partition and computing identical substructures needs to be remodelled to

work correctly on Multi-layer graphs, where processing in each layer should not be

dependent on the other, as that beats the purpose of parallelization.

1.4 Thesis Contributions

The contributions of this thesis are:

• Advancing a scalable graph mining approach for substructure discovery in a

homogeneous multi-layer network, where each layer is processed independently

and in parallel.
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• Correctly combining the edges in each layer to generate substructures across

layers.

• Developing a Map/Reduce based substructure discovery algorithm on large sin-

gle graphs to work correctly on multi layer graphs.

• Managing graph mining operations such as graph expansion, similarity compu-

tations in a Map reduce framework.

• Extensive experimental analysis using large scale real-world and synthetic datasets.

1.5 Road Map

Rest of the thesis is organized as follows:

• Chapter 2 surveys the related research work with respect to the motivation of

this dissertation.

• Chapter 3 elaborates on the preliminaries for graph mining such as input graph

representation, sub graph expansion, duplicate elimination, graph isomorphism,

partition management in the Map/Reduce framework.

• Chapter 4 presents our partition based graph mining technique and algorithm

for substructure discovery in a multi-layer network.

• Chapter 5 discusses the implementation details for all the components used for

substructure discovery in a Multi-Layer Network.

• Chapter 6 provides extensive experimental analysis of several data sets along

with drill-down analysis.

• Chapter 7 concludes the dissertation with directions for future work.

10



CHAPTER 2

RELATED WORK

As the focus of this thesis is mining interesting substructures in a Homogeneous

Multilayer Network, we now present the relevant work on single and multilayered

graphs.

2.1 Main Memory Approaches

One of the first prominent algorithm proposed for substructure discovery us-

ing a main memory approach was SUBDUE [6, 11–13]. The substructure discovery

algorithm used by subdue is a computationally- constrained beam search where sub-

structure are generated iteratively and evaluated using the MDL [14] metric. Input

to the subdue algorithm is in the form of a labelled multigraph, where two vertices

can have multiple edges between them. The algorithm begins with substructure of

size one (one edge). Each iteration through the algorithm selects the best (or all)

substructures and expands the instances of these substructures by one neighboring

edge in all possible ways. The algorithm retains the best substructures in a list,

which is returned when either all possible substructures have been considered or the

total amount of computation exceeds a given limit. One of the interesting property

of subdue is the use of background knowledge [15], it is used to guide the search

towards more appropriate substructures. This background knowledge is encoded in

the form of rules for evaluating substructures, and can represent domain independent

or domain-dependent rules. Every time when a substructure is being evaluated, these

11



input rules are used to determine the value of the substructure under consideration.

Because only the most-favored substructures are kept and expanded, these rules bias

the discovery process of the system. Each rule is assigned a positive, negative or

zero weight, that biases the procedure towards a type of substructure. Hence, the

evaluation of each substructure is guided by the MDL principle and the background

knowledge provided by the user.

Apriori based approach It is similar to frequent item set mining and searches

for repetitive substructures and starts with graphs of small sizes and proceeds in a

bottom-up approach. AGM [16] Apriori Graph mining algorithm generates candi-

date graphs, merges any two candidate graphs at an instant and checks whether the

resultant graph is a sub graph in a given graph / graph database or not. Here, the

size of a graph is denoted by the number of vertices present in that graph. Two

graphs of size ‘k’ can be merged together to form a resultant graph of size ‘k+1’.One

or more resultant graphs of size ‘k+1’ is again fed into the apriori algorithm to obtain

a resultant graph of size ‘k+2’. So, in each and every iteration of this algorithm,

two graphs (arbitrarily chosen from the candidate set) are merged together to form

a resultant graph whose size is increased by one vertex.

2.2 Disk based approach

This approach [17] was developed to overcome the problem of storing the entire

data set in main memory, where some portion of data is kept in memory and the

rest on disk. Since random access to disk based graphs can be difficult and costly,

indexing the graph seemed to be the optimal choice. Frequent subgraphs are ideal

candidates for indexing since they are relatively stable to database updates, thereby

12



making incremental maintenance of index affordable. They also provide an efficient

solution on index construction: we can first mine discriminative structures from a

small portion of a large database, and then build the complete index based on these

structures by scanning the whole database once.

2.3 Database approach

Disk-based algorithms solved the problem of keeping portions of the graph in

memory for processing. However, these algorithms need to assemble data between

external storage and main memory buffer which has to be coded into the algorithm.

The performance of disk-based approaches can be very sensitive to optimal transfer

of data between disk and memory, as well as buffer size, buffer management (or

replacement policies) and hit ratios. An alternative approach [18, 19] was proposed

to overcome this by efficient buffer management and query optimization, by mapping

these graph mining algorithms to SQL. Although scalability was achieved to graph

sizes over a million nodes and edges, use of joins for substructure expansion turned

out to be computationally expensive as they involved joins of very large relations.

Also, the removal of duplicate substructures required sorting columns (in row-based

RDBMSs) making this component expensive as well in terms of the number of joins

needed.

2.4 Partition based approach

As the size of the data is increasing rapidly, many problems are so large or

complex that it is impractical or impossible to solve them on a single computer, espe-

cially with given limited memory. Scalable parallel computing algorithms holds the
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key role for solving the problem in this context. This approach [7,8] was proposed to

addresses the problem of substructure discovery by dividing the graph into smaller

partitions and then combining the results across partitions effectively. A MapReduce

based algorithm for horizontal scalabilty of substructure discovery that can work with

any partitioning strategy.

As the goal of this approach is to partition the data among different processors, a

substructure partition and a corresponding adjacency partition needs to be created

to expand a substructure. Below are the two partitioning schemes proposed.

Range partitioning scheme: This strategy partitions the global adjacency

list based on the range information to create adjacency list partitions as the global

adjacency list cannot be loaded in memory. The range information is then used to

determine the adjacency partition for a single vertex and directs a k-edge substructure

to its appropriate adjacency partition. The range adjacency list partitions do not have

any intersection of vertices among them (adjacency list of a vertex cannot be present

in more than one partition).In this approach, adjacency list partitions are contiguous

range of vertex ids. The number (and even the size) of partitions can tailored to match

memory availability. Range partitioning can be done over a single pass of the graph

data input. After all the substructures are routed to their appropriate partitions then

it generates all substructures of increasing sizes (starting from substructure of size

one that has one edge), counts the number of identical (or similar) substructures and

applies a metric to rank the substructures. This process is repeated until a given

substructure size is reached or there are no more substructures to generate.

Arbitrary partitioning: In this approach each substructure partition is paired

with a corresponding adjacency partition. In every iteration, each substructure par-

tition is expanded in parallel using the corresponding adjacency partition. But an
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expansion of a substructure may add a vertex id whose adjacency list is not in the

current adjacency partition which necessitates the update of adjacency partition by

adding the adjacency list of the new vertex after every iteration. With graphs of

bigger sizes, such an update phase has a huge bearing on the I/O. One way to elim-

inate the above overhead is to keep the adjacency partition fixed in each iteration

like we did in Range partitioning but it also has a cost associated with it, routing

the substructure to a processor holding the appropriate adjacency partition. Hence

connectivity of the graph plays a crucial role, typically a worst case update in the

arbitrary partitioning approach requires updating every adjacency partition making

it very expensive, so with the graphs of increasing sizes, Range approach is believed

to perform better.

2.5 Subgraph Mining in a Multilayer Network

All the previous approaches were for single graphs, but in many applications

graphs are enriched by additional information, for example vertices in graphs can

have multiple relationship between them, where the multiple edges can be modelled

as different layers of the same underlying graph. As there exist multiple edges be-

tween vertices, this paper considers that edge labels represent characteristic’s of the

relationship.

The Algorithm [4] determines to find clusters in a multilayer graphs by partly using

an efficient algorithm [20] which is used for finding quasi cliques and then find all one

dimensional clusters in a single layer and the next step is to compose the resulting

patterns to find multi-dimensional clusters and to limit the search space it removes

the redundant clusters. So, the overall focus of this work is to find clusters of vertices

that are densely connected by edges with similar edge labels in a subset of graph
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layers. But being a main memory approach this technique cannot be used for large

graphs which cannot be processed in the memory of a single processor.

All of the work discussed above are for substructure discovery in single graphs,

however our problem is to find substructures in MLN, by processing the layers inde-

pendently. Most of the work done in Multilayer Network, not particularly addresses

substructure discovery. We take inspiration from the Substructure discovery algo-

rithm in single graphs, decoupling based approach used in Multilayer Network and

work on developing an algorithm for substructure discovery in a Homogeneous Mul-

tilayer Network.
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CHAPTER 3

Preliminaries

Graph mining consists of algorithms applied to a graph data in order to discover

interesting substructures as knowledge. A graph is a collection of objects. Each object

in a graph is called a node (or vertex). Corresponding to the connections in a network,

there are edges (or links) in a graph. Each edge in a graph joins two distinct nodes.

In this chapter we present the preliminaries for graph mining, substructure discovery

and various aspects involved in it.

3.1 Graphs

Graphs are used to represent many real-life applications such as networks. These

networks may include paths in a city or a telephone network. Graphs are also used

in social networks like LinkedIn, Facebook. For example, in Facebook, each person is

represented with a vertex (or node). Each node is a structure and contains information

like person id, name, gender etc, and the nodes are connected with edges which can

represent the relationship between them.

3.1.1 Input Graph Representation

Graph representation is an important aspect in substructure discovery because

it has direct and significant influence on memory usage as well as execution time

of the algorithm. Various graph representation schemes are available, among which

adjacency matrix, adjacency list, hash table are frequently used by the mining algo-

rithms. Adjacency matrix representation is easier to implement, but there can be a
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considerable waste of memory if the input graph is sparse whereas the adjacency list

representation consumes less space compared to adjacency matrix [21]. In this paper,

we focus on labeled graphs where node and edge labels are not assumed to be unique,

however all the vertex ids are unique. Figure 3.1 shows a graph with vertex ids, node

and edge labels.

Figure 3.1: Input Graph

Our input graph is represented as a sequence of one edge substructures includ-

ing its direction. Each edge is represented as a 5 element tuple (edge label, source

vertex id, source vertex label, destination vertex id, destination vertex label). A graph

is stored as a ascii file with a 1-edge substructure in each line and acts as an input to

our algorithm.

3.1.2 Adjacency list

An adjacency list of a vertex id is the list of edges in which that vertex id ap-

pears. The number of edges in an adjacency list for vertex is the sum of in and out

degrees of that vertex in the graph. We use the adjacency list of a vertex to expand
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Figure 3.2: Graph Input Along with Adjacency List

vertex id with an edge in which that vertex id appears by adding one edge to that

instance from the adjacency list. Figure 3.2 shows the one edge substructures and

the adjacency list associated with it.

3.2 Graph expansion

As we are interested in discovering substructures of any size and our input is

a single edge substructure, graph expansion plays an important role in the process.

Expanding each edge of the input by adding a single edge in every direction forms the

base of our expansion, to ensure correctness the expansion process is unconstrained,

that is each substructure independently grows into a number of larger substructures

in each iteration. Such a expansion leads to duplicates, which must be dealt with

(by removing them) to ensure correctness. Figure 3.3 shows an example of how du-

plicates are formed during substructures discovery. Note: The duplicates have the

same vertex id and the same connectivity.
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Figure 3.3: Duplicate generation

3.2.1 Canonical Instance

To identify duplicates, we employ a lexicographic ordering on edge label. If

there are multiple edges with the same edge label in a substructure, they are ordered

on the source vertex label. If source vertex label is also same, they are further ordered

on the destination vertex label. If edge label, and vertex labels are also identical, then

source and destination vertex ids are used for ordering. Hence, a substructure can be

uniquely represented using the above lexicographic order of 1-edge components. We

call this a canonical k-edge instance. Intuitively, two duplicate k-edge substructures

must have the same ordering of vertex ids and thereby the same canonical k-edge

instance. Figure 3.4 shows an example of duplicates and its instance and shows how

duplicates will have the same canonical instance.

3.2.2 Graph Isomorphism

We use graph isomorphism to detect identical substructures in a graph. Iso-

morphs have the same vertex and edge labels but differ in vertex ids, and it is im-

perative to identify isomorphs so that we can count there occurrences. Intuitively,
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Figure 3.4: Canonical Instance

two isomorphic substructures shall have the same relative ordering of vertex ids. So,

we use the canonical instance to derive canonical substructure from it by replacing

each vertex id with their relative positions in the instance starting from one. The

inclusion of these relative positions is critical for differentiating the connectivity of

the instances.

Figure 3.5 shows an example of how canonical substructure is created from the canon-

ical instance. We can see that the isomorphs have different canonical instances. How-

ever using the above technique, the relative positioning of Vertex id (2, 5, 4) for the

canonical instance 1 and (7, 10, 9) for the canonical instance 2 boils down to (1, 2,

3). Hence we can identify isomorphs using the canonical substructure.

Canonical Labeling is one of the key operations in our approach as it enables us

Figure 3.5: Graph Isomorphism
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to determine duplicates and isomorphic instances and we will use the notion of a

canonical instance and a canonical substructure throughout this paper to distinguish

between duplicates and isomorphic substructures.

3.2.3 Frequency Calculation

Knowing (or counting) the number of isomorphic substructures is important

for subgraph discovery. Depending on the metric used frequency or compressibility is

used for identifying interesting substructures. Typically, each substructure occurs in

the graph multiple times. Therefore, the importance of a substructure with respect

to the graph can be measured using metrics based on the number of occurrences.

This measure is typically used to rank the substructures. One of the commonly

used ranking metrics for graph mining are: Minimum Description Length (MDL) [14]

and frequency to rank the substructures. Minimum Description Length highlights

the importance of substructure on how well it can compress the entire graph. Both

the structure of the subgraph and the number of its instances have a bearing on

compression. Frequency, on the other hand, determines the importance of a canonical

substructure solely by the number of occurrences of its instances. Note that, counting

the number of instances is common to both of these metrics.

Substructure discovery in large graphs becomes complicated as patterns in the graphs

starts to overlap, we have used a MRN (Most Restrictive Node) [22,23] metric to count

the non overlapping instances. But we also keep a track of the overlapping instances

and use both to compute the frequency and MDL for a given substructure.
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CHAPTER 4

DECOUPLING-BASED APPROACH

This chapter focuses on the design of the algorithm for a parallel processing

environment for discovering substructures in a Multilayer Network. We are using

an iterative algorithm that generates all substructures of increasing sizes in each

iteration in each layer (Intra-Layer) and combines the expanded substructures of

each layer to create (Inter-Layer) substructures, eliminates duplicates, counts the

number of isomorphic substructures and applies a metric to rank them. This process

is repeated until a given substructure size is reached or there are no more substructures

to generate. For m layers, m k-edge substructures from each of m layers are used to

generate k-edge substructures of m layers.

4.1 Decoupling-Based Approach

As we want to support processing each layer of the Multilayer Network inde-

pendently and in parallel, we use a decoupling-based approach developed in [5] for

substructure discovery. It uses the ”divide and conquer” technique to generate sub-

structures for individual layers and then combines substructures from individual layers

to find substructures across MLN. We first find substructures of size k in each layer

(starting with k value as 1) independently and then apply the composition function

(which is the combining algorithm explained later) to find the substructures of size k

that exists across all layers. In particular, we do not apply the composition function

after finding substructures of all the sizes in each layer, but we do it after each iter-

ation. For example, we start with a k-edge substructure in each layer (k is 1 for the
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first iteration), and expand all the vertices in that substructure separately by adding

one edge. We then apply the composition function on the expanded instances of each

layer to find substructures that exist across layers and this process continues itera-

tively until a termination condition is applied. Figure 4.1 shows the overview of the

decoupling-based approach for substructure discovery in a Homogeneous Multilayer

Network.

Figure 4.1: Overview of the Decoupling Approach for Substructure Discovery

Using a Decoupling approach instead of combining multiple layers as a single

graphs has numerous advantages:

• It perseveres the MLN modelling and structure. But if we choose to combine

the graphs, it is not possible to identify that the substructures generated are

from which layer.

• It provides the flexibility to work on a subset of layers. Suppose we have 10

layers and we only want to find substructures in 6 Layers, then the decoupling

approach provides a easy way to do that, whereas if we use the alternative

approach of combining the graphs, we need to combine graphs for all the subset

of layers we want to work on, which is ineffcient and expensive.
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• Using a Decoupling approach provides parallelization opportunities where we

can process each layer in parallel, which helps decrease the response time.

.

4.2 Combining Algorithm

As discussed above, finding substructures in each layer is not enough, as lot of

substructures that exist across layers remains unexplored. So to ensure correctness,

we need to develop an algorithm to combine the substructures from each layer to find

substructures that exist across layers. We are dealing with homogeneous Multilayer

network, where all the layers have the same set of nodes but the connectivity across the

nodes in each layer is different. For any connected subgraph, there exists a common

vertex or node between them which connects to the edges from different layers which

forms the basis of our combining algorithm. So, if we group all the substructures

generated from each layer based on their vertex id (node), it will bring all the edges

across layers together and then we can combine the edges that share a common vertex

id that exist in different layers.

As we use an iterative substructure discovery algorithm where we find sub-

structures of increasing sizes in each layer, combine substructures from each layer

after each iteration so we do not miss substructures of that size in the MLN. We use

a recursive algorithm for combining substructures from m layers of size k using – edge

substructures from each layer (size of the substructure remains same after combin-

ing). The motivation behind is to ensure consistency for the size of the substructures

generated after each expansion and combining in each iteration. Using this approach

we do not have to deal with substructures of varying sizes in each iteration.

Now, lets take a detailed look at the algorithm used for substructure discovery

in MLNs. The first step of the algorithm is to group the instances based on their
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Vertex id, then apply the Combine-MLN function which is a recursive function that

checks for all the combinations in a k-edge substructure and combines the Intralayer

substructures which share the same Vertex Id, this function is applied on all the ver-

tices of the graph. Figure 4.2 Shows a 3-edge substructure from a MLN with 3 layers,

grouped on Vertex id 1. Our goal is to find all possible 3-edges substructures across

layers. We now apply the Combine-MLN function on all the edges grouped on this

Vertex id, which has two parameters:

1. Size of the MLN (No of Layers)

2. Size of the input and combined substructures (they are same in our approach)

Figure 4.2: Substructures grouped on Vertex id on 1

Figure 4.3 shows our Combine-MLN function, where the size of the MLN and

substructure is 3, can be referred from the Figure 4.2. We can either choose 1-edge

substructures from all the 3 layers or 2-edge substructure from 1 layer and the other

1-edge from either layer. The left branch of the tree with “L1=0” indicates that “0”

edges are to be chosen from Layer1, and all the substructures are to be found from

Layer2 and Layer3. All the substructures of this category are found at Step:1 and

2, which can be referred from Figure 4.4. The centre branch with “L1=1”, means

1-edge substructure from Layer1 and the other 2 from Layer2 and Layer3, which

brings two conditions: 1-edge from both the layers or 2-edge from either layer. All

the substructures of this combination are found at Step:3, 4 and 5. The rightmost
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Figure 4.3: Example of the Recursive function used for Combining

branch with “L1=2”, specifies that a 2-edge substructures is to be chosen from Layer1

and the other 1-edge from either Layer2 or 3. Substructures of this group are found

at Step:6 and 7.

Figure 4.4 shows all the substructures across layers found by this function at each

step (by step number. Similarly all the branches of the tree specifies a condition for

the size of the substructure to be chosen and the Combine-MLN function is called

at each step until the base case is reached which is, the required size of substructure

reaches to zero or only one layer is left to process. The number combinations increases

as the size of the substructures starts to increase in each iteration, contributing to

width of the tree, whereas the number of Layers in the MLN is directly proportional

to the height of the tree, which remains fixed across iteration.

Now, lets see Figure 4.5, which has two layers, and shows all the 2-edge sub-

structures in each layer, now when we apply the Combine-MLN function on each

Vertex id of the graph as shown above, we find all the substructures of size 2, which
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Figure 4.4: 3-edge MLN Substructures Generated by Combine-MLN

exist across layers. The parameters of Combine-MLN function here is(2,2), which

means there are 2 layers and the required size of the substructure is 2.

Together combined, are all the substructures in a Homogeneous MLN which would

not have been possible to find if don’t combine substructures across layers.

4.2.1 Challenges for Combining

As we are checking for all the combination in Intralayer edges, in some cases it

can lead to generation of duplicates, when the same subset of a edge from the same

layer is combined with the same edge from a different layer. Figure 4.6 shows how

duplicates are generated. We need to remove them to ensure correctness. We can

either remove it using a SET or before we add them to the list of local combined

instances at each step, we can check the adjacent index’s for duplicates and remove

them. Moreover, our combining follows the canonical form so that we can identify

the duplicates.
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Figure 4.5: Combining Inter-Layer edges on Vertex id

Using this approach, we find all the substructures of all sizes that exist across layers

in each iteration and don’t miss out on any substructures.

4.3 Algorithmic Approach

In this section we will discuss our iterative algorithm used for finding substruc-

tures in a Homogeneous Multilayer Network
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Figure 4.6: Example of Duplicates Generated during combining

Algorithm 1 Substructure Discovery in a Multi layer Network

Require: -

1: Input: Homogeneous Multilayer Network

2: Output: Top n-substructures in a Multilayer Network

3: Load Adjacency list for each layer

4: for each edge in MLN:

5: Expand k-edge substructure by one edge in all directions in each layer

6: Eliminate Duplicates using the Canonical representation in each layer

7: end for

8: for each expanded instance:

9: Group all the expanded instances from each layer based on their Vertex id

10: Combine all k-edge Intralayer edges sharing the same Vertex id and exist in

different layers to form k-edge Interlayer edges

11: Eliminate Duplicates generated during Combining the Intralayer edges

12: end for
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13: for all the canonical instances in the MLN:

14: Count the frequency of all the instances using Graph Isomorphism with or

without Overlaps// Using relative canonical representation

15: end for

16: Apply Metric Frequency or MDL // With Overlaps or Ignoring Overlaps

17: Apply Heuristic BEAM to retain top-n substructures and their instances to

be used the next iteration // Specify n depending on the need

18: Increment k by 1 for the next Iteration

19: Begin from Step 4 for the next iteration

We now discuss the four major components of our Algorithm in detail

1. Expansion: Each layer is read as the input to our algorithm (one instance at

a time), while the adjacency list is loaded and kept in memory for expansion

(line 3). We expand each edge in the input by adding one edge in all directions

using the adjacency list (line 4-5). As the expansion process is unconstrained to

ensure correctness, some Duplicates are generated which needs to be removed to

ensure correct count. As the expansion process follows the canonical ordering,

we can identify duplicates and remove them (line 6) before sending to the next

step .

2. Combining: Now that we have all the expanded substructures from each layer,

we group them based on their vertex id(node) (line 9), the reason behind this is

as we are dealing with a Homogeneous Multilayer network, where all the layers

have the same set of underlying nodes. So it will bring all the edges with same
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vertex id from each layer together and then we combine all the edges across

layers that share a common vertex id and exist in different layer (line 10), but

there are challenges associated with it which we have addressed in the above

section. Now that we have all the edges Inter and Intra we move to the next

step.

3. Frequency Counting: We use Graph Isomorphism to detect exact (identical)

patterns in a graph. Intuitively, two isomorphic substructures will have the

same relative ordering of the vertex ids and they have the same vertex and edge

labels. Note: the canonical instances already follows the lexicographic ordering,

hence it is easy to generate a k-edge canonical substructures, using the relative

positioning of unique vertex id in the order of their appearance in the canonical

instance. Now we group all the instances based on their canonical form and

count their frequency (line 13-14).

4. Apply Metric: To restrict the future expansion to high quality substructures,

we use a metric (line 16) MDL or Frequency to determine the importance of a

particular substructure. We then apply a heuristic (BEAM) (line 17), whose

value determines how many substructures are to be carried in the next iteration.

So this will prune the unimportant candidates and will only use the high quality

substructures for future expansion.
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CHAPTER 5

Implementation Details

This chapter contains the implementation details of all the methods and proce-

dures used for Substructure Discovery in a Homogeneous Multilayer Network using

the Map/Reduce architecture and its open source implementation, Hadoop [24].

5.1 Layer Generation

A data set modeled as an HoMLN would have each layer as a graph and that

would be the input to this substructure discovery algorithm. Since we are not using

MLNs at present, we create MLNs from a large single attribute graph for the purposes

of testing with large number of layers and control other graph characteristics, such

as sparcity (% of edges as compared to a complete graph). We use this approach

for empirical verification as well by embedding substructures of known frequency to

make sure we get the same substructures when processed as a single graph and when

processed as layers.

Hence, the first step of implementation is the generation of Homogeneous Layers

from a single attribute graph. For this we use the synthetic graph generator Subgen.

It allows us to generate graphs of different sizes and embed substructures with varying

sizes and frequency. The graphs generated by Subgen is not in the form supported

by our algorithm. We do not make any assumptions about the input representation

of graphs. We need to modify the graph format to the one required by our algorithm.

We use a python script to modify the data generated by Subgen, into our input

format. Our input graph is represented as a sequence of one edge substructures that
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includes direction. Each edge is represented as a 5 element tuple (edge label, source

vertex id, source vertex label, destination vertex id, destination vertex label).

5.1.1 Partitioning Schemes

Now that we have the graph in our format, we need to create Layers from it.

With the help of a python script we start writing out edges from the input data

into different files/layers. The function reads each edge from the input (single graph)

and partitions it into different files, the number of files depends on the number of

layers required. We have created multiple layers, depending on the need. Each edge

is written into a single file only, i.e we don’t have the same edge in multiple layers.

We have implemented two partitioning schemes to generate our homogeneous layers,

the intuition behind using two partitioning schemes is to verify that our algorithm

works correctly irrespective of how the data is partitioned and does not depend on

the connectivity of the graph. The other reason is also to investigate that whether

the different partitioning schemes have a bearing on response time. Below we discuss

the two partitioning schemes used:

1. Random Partitioning: as the name indicates, we partition the data arbitrar-

ily in to k layers, such that same edge is not repeated across multiple layers and

all the layers have the same set of nodes.

2. Edge based Partitioning: In this scheme, we partition the data based on

Edge labels, such that the edges with same edge label remains in the same

layer, needless to say we can have multiple edge labels in a single layer if the

edge labels are more than the number of layers, but they will be distinct across

layers.
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5.2 Adjacency List Generator

One of the most significant part of the substructure discovery algorithm is the

Adjacency list, which aids the expansion process. We have to generate the adjacency

list for each layer, as the expansion process in each layer is done independently.

Input to create our adjacency list is the input graph we use for our algorithm,

we initialize a Hash Map, and iterate on all the edges in the graph and assign the

vertex id as the key which exist in a particular edge and add all the edges in the

value list which have that vertex id. Note: Each layer will have its own adjacency

list and the connectivity of the graphs for a particular vertex id will be different

in each adjacency list. We use a python script to create our adjacency list, but

the Map/Reduce framework can be used if the size of the graph is too large. The

parameters passed to our adjacency list generator is the number of layers for which

we need to create our adjacency list.

5.3 Algorithm in the Map/Reduce Framework

Finding a substructure that best compresses the graph consists of: generating

substructures of all sizes (starting from a single edge), eliminating duplicates, com-

bining substructures across layers and counting isomorphic (identical) substructures

in each iteration. This strategy reveals two grouping criteria among substructures:

instances across different layers must be grouped for the combining phase and then

the isomorphic instances needs to be grouped based (on their canonical substructure

form) for ranking. As these two process are sequential, we can count the isomorphic

substructures only after we have all the substructures from each layer and across

layers, this necessitates the use of a two chained Map/Reduce job in each iteration

of our algorithm. The first Map/Reduce job aids expansion of a substructure in each
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layer, combines the intralayer substructures and remove duplicates while the second

Map/Reduce job finds the top-k isomorphic substructures across layers with the best

rank to be used as candidates for the next iteration.

Figure 5.1: Workflow of Substructure Discovery in MLN

Figure 5.1 shows the overall flow of how substructure discovery in an MLN is

done using the Map/Reduce framework. In Map/Reduce based substructure discov-

ery, a mapper uses a single layer and its corresponding adjacency list to expand the

substructures. The adjacency list of each layer is loaded in memory once in each

mapper (using the setup method in Map/Reduce). Each mapper reads a single edge

from the input layer and expands it by adding one edge in all possible ways as sep-

arate substructures. The expansion is unconstrained which leads to generation of

duplicates which must be identified and removed. Typically the cost of removing
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the duplicates is the same, whether it is done in the Mapper or the Reducer, but

identifying and removing them in the Mapper decreases the amount of data shuffled

(network cost) as those duplicates will not be sent to the Reducer. We remove the

duplicates generated in the mapper using a combiner. After expansion and duplicate

elimination, all the substructures are grouped in the reducer based on their vertex

id for combining intralayer substructures to generate interlayer substructures. We

use a Recursive (Combine-MLN) function, that checks for all the combinations and

combines the instances across layers having a common vertex id. The reducer will

emit all the k edge instances as values. The output of the first Map/Reduce job is

written on to the disk which is used as the input to the second Map/Reduce job.

In the intermediate Mapper, we generate canonical substructures from the canonical

instances to determine graph isomorphism which are sent from mappers to the re-

ducers, where all the instances from different mappers are grouped on their canonical

substructure form to determine the frequency of exact substructures or isomorphs.

A pruning metric like beam (or top-k) is then used to find the best substructures in

that iteration, which will be used as candidates for the subsequent iteration.
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Algorithm 2 First Map/Reduce Job for Substructure Discovery in HoMLN

Require: -

1: Class Mapper

2: function SETUP

3: Map = Load corresponding adjacency layer

4: end function

5: function MAP(key,value)

6: for each k-edge instance ks in value do:

7: expand ks to (ks+1) edge canonical instance

8: for each unique Vertex id in expanded instances do:

9: new key = unique vertex id

10: emit(new key, value = Expanded Instances) to combiner// to remove du-

plicates

11: end for

12: end for

13: end function

14: Class Reducer

15: function Combine-MLN(List of Layers Ls, i=Layer id to pick from each level,

s= size of substructure, Vertex id)

16: if s == 0:

17: return Null

18: if Ls has one layer:

19: return all s size substructure from Li

20: Merged-Instances = Global List to hold all combined substructures

21: Ls1 = Pop Layer Li from Ls to create new List of Layers
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22: for every size of substructure k← 0 to s:

23: Intermediate-Instance-List = Combine-MLN(Ls1, i+1, s-k, vid)

24: New-Instance-List = Local List to hold all s size substructure at each step

25: for all k size substructure S1 from Layer Li:

26: for all s-k size substructure S2 from Intermediate-Instance:

27: if S1 and S2 has same Vertex id:

28: Combine S1 and S2 to create New Substructure Snew

29: if last added instance in New-Instance-List not same as Snew:

30: add Snew to New-Instance-List

31: Merged-Instances = Add all instances from New-Instance-List

32: return Merged-Instances

33: function REDUCE(key, values) // key = vertex id, values = expanded instances

34: Ls = Create list of layers from Value List

35: k = Current size of Substructure in Value List

36: Merged List = List to hold all combined substructures

37: Call function Combine-MLN(Ls, 1, S=k, v) and return all instances to store

in Merged List

38: for each edge in Merged Lists:

39: emit (key = Null, value = Combined instances)//(Interlayer)

40: end for

41: for each edge in Value list:

42: emit (key = Null, value = k-edge instances) // Intralayer

43: end for

44: end function
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Expansion by Mapper: Algorithm 2 details our subgraph expansion routine

in the Mapper. Each layer is read as Mapper input ( one substructure instance at

a time), while the adjacency list for the layer is loaded using the setup function and

kept in memory. For the first iteration, the input key is the line no and the value

is one edge instance. Similarly in the k-th iteration, the value is a k edge canoni-

cal instance. Line 3 loads the corresponding adjacency list for that layer. (line 6-7)

expands each edge from the value by one edge and and (line 8-9) generates a new

key (vertex id) from the expanded instances. Line 10 emits the expanded instances

as values and vertex id as the key. As the expansion process is unconstrained we

generate duplicates, which we remove using a combiner.

Combining by the Reducer: Each Reducer receives values list grouped on

the Vertex id as the key. We generate a List of Layers, from the Value List at line 34

and use a Recursive utility, to combine all k-edge substructure to form a k-edge sub-

structure. The utility will pick layer Li for all s size substructure at each level and will

find other size substructure from remaining layers recursively. The base case here is

when we have only one layer left in list, in which case we return all substructures from

that layer (line 18 and 19) or the size of substructure is zero, in which case we return

empty list (line 16 and 17). Once the recursive call returns other size substructures

(line 23), we combine them with all s size substructures from the picked layer (25

to 31). Here combining will be done only if both substructure have common vertex

ids as key. The combined instances of all sizes will be then returned to parent call

(line 32) and hence, all k size merges from all layers will be returned to the root call

(line 37 ). All the Combined and IntraLayer substructures are then emitted to the

Intermediate Mapper (line 38-42) for generating Canonical substructure to determine
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graph isomorphism. The key is null and the values are all the substructures in the

HoMLN.
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Algorithm 3 Second Map/Reduce Job for Substructure Discovery in HoMLN

1: Class Mapper

2: function MAP(key,value) // k= line no, val= k-edge instances(Inter and Intra)

3: vMap = hashtable to hold unique vertex info

4: for each vertex id v in value do:

5: vMap.put(v,null)

6: end for

7: update vMap positions from the value

8: new key = generate Canonical substructures from value

9: value = Canonical instance

10: emit(new key, value)

11: end function

12: Class Reducer

13: function SETUP()

14: Beam Map = Null // To store best substructures

15: end function

16: function REDUCE(key,values)//k= substructures, val = Isomorphic Instances

17: C = Count(Instances in Values)

18: MDL = Calculate mdl of each key using count of Instances

19: Update Beam Map with MDL

20: end function

21: function Cleanup()

22: for each instance in Values do:

23: if instance has a single layer id: // Intra Layer

24: key = null

25: emit(null, Instance)

26: end for

27: end function

42



Algorithm 3 is our 2nd Map/Reduce job where we create Canonical substruc-

tures from the instances in the Mapper. Count their frequency and apply a metric to

restrict future expansion in the Reducer.

Identifying Isomorphs in the Mapper:Creating Canonical substructures from

instances requires a hash table to identify relative positioning of unique vertices (line

3). The Mapper receives all the instances as value and null as the key (line 2), We

create the Canonical substructure for the Canonical instances in values and make

that the key (line 4-8). Finally the mapper emits the canonical substructures as the

key and the corresponding instance as value.

Frequency Counting by the Reducer: The reducer receives instances across

mappers grouped on canonical substructure.We will use a notion of beam, which will

be specified by the user to store the best instances, line 14 allocates a beam of size k

as a hash map to hold MDL values and all the instances with that Value. Line 17-19

counts and finds the instances with top k MDL values to restrict the future expansion

to high quality substructures in next iteration. The reducers emits the instances form

each layer using the Layer id as values (line 22-25) to be used in the next iteration. .

5.4 Resource Utilization

As the goal of this thesis is to find interesting substructures in a Homogeneous

Multilayer Network with a decent response time. In the ideal case we would want

to process each layer on separate Mappers and Reducers to achieve best parallelism.

But not always the number of Mappers equals the number of Layers in an MLN.

Consider a scenario where we have a 60 Layer MLN, but only 10 processors (Mappers

Reducers) available in the cluster. So the input to our algorithm will be 60 Layer/

Map tasks, and they will be processed on the 10 available mappers. So, 10 Map
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tasks/Layers will be processed in parallel one at a time. Similarly the remaining 50

Map task will be processed in the same fashion. So on average, each Mapper will

process 6 Layers. This approach would give us the correct output as Hadoop allows

to process more Map tasks in a single Mapper one at a time, but this would ham-

per the response time, as each Mapper and Reducer will end up processing more data.

5.5 Input Parameters File

The input parameters file used in our implementation, defines our system and

sets the condition of its operation. It has all the details required for the execution of

our program. Following are the parameters used in the input parameters file.

• Input Path: Here we specify the HDFS path where the input graph is loaded.

• Graph Size: We specify the number of vertex and edges in the graph, this

information is mainly used for MDL calculation.

• Max size: This specifies the maximum size of the substructure we want to

generate, in general the number of iterations. In each iteration a substructure

grows by one edge.

• Metric: We state the pruning metric here, which can be “Minimum Description

Length” or “Frequency”.

• Beam Size: As we are interested in finding frequent pattern in a graph, this

parameter restricts the search space and specifies the number of frequent sub-

structure to be used in the next iteration.

• Top N substructure: As we are interested in finding substructures of all sizes

that best compresses the graph, it is imperative to keep a track of them re-
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gardless of the iteration. As every iteration generate frequent substructures of

respective sizes, this parameter states to keep number of top substructures after

all the iteration. For example, if the parameter states to keep top “5” substruc-

tures, then in the first iteration it will write the top 5 substructures with best

MDL/Frequency value in the file, and in the next iteration if any substructure

has better MDL/Frequency value then currently in the file, it will overwrite

them. So regardless of the iterations we run, the top N substructure file will

always have the best substructure that best compresses the graph.

• Analysis: As we run multiple jobs with different configurations and want to

keep the track of all the details of the job, this parameter specifies the path to

store the Analysis file for each job.

• No of Reducers: This parameter states how many reducers are to be used for

the job.

5.6 Controlling the Number of Mappers

Typically Map/Reduce is used for scalability problems, where the data is too

large to be stored in the memory of a single processor. The performance of the

MapReduce jobs depends on a lot of factors which needs to looked into detail as

we are interested in processing large data sets with a decent response time. The

relationship of MapReduce input split sizes and the input data is very important and

they can work together to help (or hurt) job execution time. The default input split

size is 128 MB which can be altered. So, for instance lets say we have a cluster with

5 processors which can be processed in parallel and the input data of 220 MB. If we

go by the default input split size provided by Map/Reduce it would divide your data

into 2 partitions which will be processed in parallel on 2 processors. But say you want

to utilize all of your resources 5 processors to decrease your response time. Then we
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can change the input split size to 45 MB, and it would create 5 Partitions (5 Map

tasks) which can be processed in parallel and it will decrease the response time.

On Comet we specify the number of processors used as nodes and each node has 2

processors, so if we want 10 Mappers/Reducers we specify 5 nodes. But the map

tasks should be same 10 in this case. If less than 10, then all the processors will not

be utilized. So we can alter the size of split size as discussed above to match the

number of processors.

5.6.1 Implementing Job Counters

We have used the built in counters and implemented few custom counters (user-

defined) in each component of our Map/Reduce program, to measure the progress or

the number of operations that occur within our Map/Reduce job. Counters in Hadoop

MapReduce are a useful channel for gathering statistics about the MapReduce job:

for quality control and to analyse the cost and space. Below is the list of all Job

counters used.

• Map Setup time: Setup method as the name indicates is used to setup the map

task and is used only once at the beginning of the task. All the logic needed to

run the task is initialized in this method. Implementing a counter for setup time

helps to analyse the setup cost for a Mapper/Reducer. As we have a pair of two

Map/Reduce jobs, we can analyse the setup time for each Mapper/Reducer.

The main cost of setup is incurred in the first Mapper, as we load the adjacency

list for a layer whereas the setup time for the second method is negligible as it

only requires to declare the data structures used in following Map task.

• Map time: The Map method is the most important method and is called once

for every key/value pair in the input to the mapper task. Implementing the

counter here will help to inspect the cost associated with our Map method. The
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Map time associated with our algorithm comprises of expanding substructures

in each layer and creating Canonical substructures from the all the instances.

As we increase the number of mappers for the same graph size, we shall observe

a decrease in the Map time as less data will be processed by each mapper. The

Map time is calculated by taking maximum of all Mappers Map time.

• Shuffle time: In the shuffle phase data from the mapper are grouped by the

key, split among reducers and sorted by the key. Every reducer obtains all

values associated with the same key. Shuffle and sort phase in Hadoop occur

simultaneously. We have implemented a counter here to examine the total time

taken by the shuffle phase to transmit the data from the Mapper to Reducer.

• Reduce time: The Reduce method is called for each < key, (listofvalues) >.

This counter details the total time take by our Reduce method. Reducer time

comprises of Combining substructures across layer, counting the isomorphic

instances and applying metric to restrict future expansion, using a counter here

is imperative as most of the work of our algorithm is carried out in the reduce

phase.

• Cleanup time: Cleanup is the method which is called only once at the end of

each task. This method is responsible for the cleanup of the task residues if

any.

The next chapter discusses the experimental analysis of our algorithm for cor-

rectness and scalability.
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CHAPTER 6

EXPERIMENTAL ANALYSIS

In this section we experimentally evaluate our algorithm. All the experiments

are performed using Java with Hadoop on Comet cluster at SDSC (San Diego Super-

computer Center). The Comet Cluster has 1944 nodes and each node has 24 cores

(built on two 12-core Intel Xeon E5 2.5 GHz processors) with 128 GB memory, and

320GB SSD for local scratch space.

6.1 Experimental Setup

We experiment on several real world and synthetic datasets to establish the

effectiveness, correctness, speedup with respect to different configurations of mappers

and reducers, and scalability of our approach. Table 6.1 shows the data sets we have

used for our experiments. We have used SUBGEN an synthetic graph generator for

a few of our experiments as it allows to embed small graphs with user defined fre-

quency in a single graph. Subgen also provides us with better control in generating

graphs of different sizes and characteristics using parameters.

6.2 Empirical Correctness

The correctness and efficiency of the algorithm is verified by running SUB-

DUE [6], a main memory approach and our algorithm on the same dataset with mul-

tiple layers. After running our algorithm and SUBDUE on a graph with 10KV 20KE,
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What For Dataset #Nodes #Edges
Correctness Synthetic (SUBGEN) 100KV 800KE

Multiple partitioning Synthetic (SUBGEN) 400KV 1.2ME
Scalability LiveJournal 3.9MV 34.8ME
Scalability Orkut 3.87MV 114.8ME

Varying Density Synthetic(SUBGEN) 2KV 1ME, 1.9ME, 2.9ME,3.9ME

Table 6.1: Data Sets Used in Experiments and their Sizes

we discovered the same set of substructures. But SUBDUE being a Main memory ap-

proach, failed to compile with increasing sizes of graphs of more than 100KV 800KE.

So to verify the correctness on large graphs we embed substructures with a user de-

fined frequency, and the goal is to find the same substructures.

Figure 6.1 shows the 5-edge embedded substructures with a frequency of 1000 in

a graph of size 100KV 800KE. We found the exact substructure after running our

algorithm with a frequency of 976, when we ignored the overlaps and a frequency

of 1000 after counting the overlaps which validated the correctness of our algorithm

empirically for this dataset.

Figure 6.1: 5-edge Embedded Substructure
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6.3 Multiple Partitioning Schemes

This set of experiments is performed using a synthetic dataset of size 400KV 1.2ME

with embedded substructures. We used two partitioning schemes that were discussed

earlier, to verify the correctness of our algorithm and to monitor the bearing of par-

titioning schemes on response time.

Layers Random Edge-Based
Layer1 399903 351360
Layer2 399730 478441
Layer3 400637 370469

Table 6.2: Edge Distribution

Table 6.2 shows the edge distribution for both the partitioning schemes, we see

that the distribution remains even for Random partitioning, but becomes skewed for

Edge based as their can be edge labels with higher frequency which goes into a single

layer making it uneven. So now lets have a look at the response time. Figure 6.2 shows

the total time taken by both the partitioning schemes. We don’t see a substantial

difference in the total response time, it more or less remains the same, so we inspect

the breakup analysis of the Map and Reduce time to understand it clearly.

As we see in Figure 6.3, the Map time for edge based partitioning is signifi-

cantly higher when compared to the Map time for random partitioning. The reason

being, as the edge distribution is skewed, the Mapper ends up processing more data

for edge based partitioning, contributing to more computation time. On the other

hand, response time for reducer doesn’t change as the data processed by each reducer

remains the same because all the substructures in the reducer are grouped based on

their Vertex id and edge labels have no effect on them.
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Figure 6.2: Total response time using different partitioning schemes

We found the same embedded substructure for both the partitioning schemes which

indicates that our algorithm doesn’t depends on the connectivity of the graph.

Figure 6.3: Map/Reduce time using multiple partitioning schemes

6.4 Scalability

Without altering the graph size, an increase in the number of processors is

typically beneficial for mining. So, this set of experiments were performed on Live-
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Journal [25] and Orkut [26] data to determine the speed up and effectiveness of our

algorithm as we increase the number of processors. We further divide this section

into 3 scenarios.

6.4.1 Same number of Mappers and Reducers as Layers

For this scenario, all the layers are processed in parallel with the same number

of Mappers and Reducers. Our results in Figure 6.4 shows a speed up of 37.4% when

we increase the increase the number of layers and mappers/reducers from 8 to 16 and

35.6% when we further increase them from 16 to 32. The reason for the speedup is,

as the same data set is partitioned into more layers and is processed by more num-

ber of processors, leading to smaller sized partitions and less computation in each

processor. This reduction in computation cost contributes to the speedup achieved.

We see that in Figure 6.5, that the amount of speed up achieved by the mapper is

more than the reducer when we double the processors for both, because the amount

of data processed in the 2nd reduce job, is not necessarily halved. As each reducer

emits the instances with local top-k MDL values to find the instances with global

top-k best MDL values, so as we double the reducers the mining time for the reducer

is not exactly halved. Moreover, as we double the number of Layers and reducers,

the data received by each reducer gets halved, but as the number of layers increase

the mining cost in the 1st reduce job also increases as the height of the tree grows

leading to more number of possible Interlayer combinations.

Our results, in Figure 6.4 shows that the total time taken by beam size 10 is

more as compared to beam size 6, because as we increase the beam, the number of

substructures carried in the each iteration increases, which can be seen in Table 6.3
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resulting in more data to be processed by each processor contributing to more com-

putation cost, hence more response time.

Figure 6.4: Speed up achieved on LiveJournal Data

Figure 6.5: Map and Reducer time for LiveJournal
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Iterations Beam 10 Beam 6
1 2836928 2836928
2 3929240 3172184
3 4593864 3628496
4 5249968 3849008
5 5346152 4004984
6 5716984 4128496

Table 6.3: No of substructures generated in each iteration

6.4.2 Effect on Response Time With change in Reducers

This experiment was performed on LiveJournal and Orkut dataset with 32

Layers. In this scenario, we keep the number of mappers same and change the number

of reducers to see the effect of reducers on response time.

Figure 6.6: Total Time with change in Reducers

Our results in Figure 6.6 shows the speed up of more than 37% for both Live-

Journal and Orkut when we increase the reducers from 8 to 16 and more than 32%

from 16 to 32. But after that the amount of speed up achieved starts to decrease.

Though, it does gives us a speedup of around 17% when we increase the reducers

from 32 to 40, but again decreases to 14% for 48 reducers. So giving more number
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Figure 6.7: Map/Reduce time with change in Reducers

of reducers does not always guarantee decent speedup, as law of diminishing returns

and adding additional factor (Reducers) will result in smaller decrease in response

time. Orkut takes more absolute time in general as it is has more than 3 times the

number of edges for almost the same number of vertices.

We see in Figure 6.7, that response time for the mappers remains constant for both

Orkut and LiveJournal beacause the same amount of data is processed by the map-

pers as they remain the same. But the reduce time changes for both the data sets

which corresponds to the change in total time as shown in Figure 6.6

6.4.3 Effect on Response time With change in Mappers

This experiment was performed on LiveJournal and Orkut dataset with 32

Layers. We keep the number of reducers same in this scenario but change the number

of mappers to inspect the effect of mappers on the response time.

Results in Figure 6.8 demonstrates that increasing the number of mappers

doesn’t contribute to much speedup, as most of the work is done by the reducer

in our algorithm. However if we just analyse the Map time for this experiment shown

in Figure 6.9 we see a significant speedup , but when combined together to calculate

overall time, the performance is not significant as the reducers remain the same 32.
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Figure 6.8: Total time with w.r.t change in Mappers

If we increase the number of mappers more than 32, it would not show any speed

up, as they would not utilized by the framework because our algorithm does not par-

titions individual layers. So the maximum number of mappers used should not be

more than the number of layers in an MLN.

Orkut takes more absolute time in general as it is has more than 3 times the

number of edges for almost the same number of vertices, which leads to more ex-

pansion in the mapper and Intralyer combining in the reducer contributing to more

mining time.

6.5 Effect of Graph Connectivity

Connectivity of graphs also influences the performance of mining algorithms.

We categorize graphs as dense to sparse, where the number of vertices are fixed but

the number of edges vary in the spectrum ranging from a completely connected graph
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Figure 6.9: Map/Reduce time with w.r.t change in Mappers

to a very sparsely connected line graph. We performed this experiment on 4 Layers

using 4 mappers and 4 reducers to see the effect of connectivity of graphs on response

time. Our results in Figure 6.10 shows that with dense graphs, where each vertex is

connected to more vertices on the average, the computation cost increases as there are

more expansions which leads to more map time and more combinations of intralayer

edges in the reducer contributing to more reduce time.

Figure 6.10: Effect of density on Response time
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CHAPTER 7

CONCLUSION AND FUTURE WORK

This thesis proposes a scalable substructure discovery in a Homogeneous Mul-

tilayer Network using the decoupling based strategy. We identified a set of problems

and addressed it as a part of this research. This thesis introduced generic Map/Re-

duce based algorithm for horizontal scalability of substructure discovery that works

over a HoMLN. The basic components of graph mining - subgraph generation, com-

bining substructures in each layer to generate substructures across layers, duplicate

elimination and counting of isomorphic substructures were incorporated into the al-

gorithms for the Map/Reduce paradigm. Experiments validated the benefits of using

Map/Reduce based substructure discovery to scale to large graphs with multiple lay-

ers.

Partitioned graph mining is a promising research field and provides exciting

future directions. Our decoupling approach can be extended to a Heterogeneous

MLN and can be modelled to work on a different distributed environment such as

Spark [27]. Partitioning the layers of MLN can be addressed further to accommodate

the increasing sizes of graphs.
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