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ABSTRACT

SIGNIFICANT INTERVAL AND EPISODE DISCOVERY

IN TIME-SERIES DATA

Publication No.

Ambika Srinivasan, M.S.

The University of Texas at Arlington, 2003

Supervising Professor: Sharma Chakravarthy

There is ongoing research on sequence mining of transactional data. However,
there are many applications where it is important to find significant intervals in which
some events occur with specified strength. We study approaches to convert point-based
data into intervals, thereby predicting the next occurrence of the event. We formulate
four approaches for significant interval discovery and enumerate their advantages and
disadvantages. We compare the performances of various approaches in terms of
computation time, number of passes, coverage and interval statistics like density,
interval-length and interval -confidence. We propose an approach to clustering using the
significant intervals produced. Furthermore, we use these intervals, which serve as

representative areas of the dataset as input to a Hybrid Apriori agorithm to mine for

V



sequential patterns. We present the two types of interval semantics that can be used with
sequential mining. We formulate an SQL-based Hybrid Apriori sequential algorithm
that accepts intervals as input. Finaly, we summarize the results and indicate the

applications and conditions for which the various approaches can be used.
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CHAPTER 1
INTRODUCTION

The rapid improvement in the size of storage technology with the associated
drop in the storage cost, and the increase in the computing power has made it feasible
for organizations to store unprecedented amounts of organizational data and process it.
The information and knowledge derived from it can be used for applications ranging
from business management to market analysis to engineering design. However,
discovering the hidden knowledge is not a straightforward task. To compete effectively
in today’s market, decision makers need to identify and utilize this information buried
in the collected data and take advantage of the high return opportunities in a timely
fashion.

The key here is the generation of previously unknown knowledge from huge
datasets. The process of mining is driven by the outcome requirements. Based on what
we want, a specific data mining technique is employed. The different data mining
techniques and their outcomes are briefly discussed below [1]:

Classification: This is a process of grouping items based on a classifying
attribute. A model is then built based on the values of other attributes to classify each
item to a particular class. A training dataset is typically used for validating and tuning
the model. The classification technique may be used, for example, to identify the most

probable consumers for a product, based on their spending patterns.



Clustering: The process of clustering tries to group the data set in such a way
that the data points in one cluster are more similar to one another while the data points
in different clusters are more dissimilar. A similarity measure needs to be defined and
the quality of the outcome, to a large extent, depends on the appropriateness of the
similarity measure for the data set. The technique of clustering, for example, can be
used to divide the market into distinct groups, so that each group can be targeted with a
different strategy.

The basic difference between classification and clustering is that in
classification, the classifying class is krown previously (also known as supervised),
whereas clustering does not assume any knowledge of clusters (unsupervised).

Prediction: The technique of prediction is based on continuous or discrete
valued attributes. Previous history of the attributes is used to build the model. This
technique is very commonly used for the prediction of sales of a product.

Deviation analysis. This technique compares current data with previousy
defined normal values to detect anomalies. Deviation analysis tools may be useful for
security applications, where it may warn the authorities of any sharp deviation in the
usage of resources by a particular user.

Association Rules: It is the process of identifying the dependency of one item(s)
with respect to the occurrence of other tem(s) in a data set. These models are often
referred to as Market/Basket Analysis when they are applied to retail industries to study

the buying patterns of customers. Here an attempt is made to identify a product “A”



with another product “B” to an extent that it can be said that whenever “A” is bought,
“B” is also bought with high confidence (the number of times B occurs when A occurs).

Sequential Mining: Sequential pattern mining is mining of frequently occurring
patterns related to time or other sequences. An example of sequentia pattern is * A
customer who bought Fellowship of the Rings DVD six months ago, is likely to buy the
Two Towers DVD within a month. Since many business transactions,
telecommunication records, weather data and production processes fall into the category
of time sequence data, sequential pattern mining is useful in the analysis of such data
for targeted marketing, customer retention and so on.

The work in the field of association and sequence rule mining has resulted in a
wide range of architectural alternatives for integrating mining process with the DBMS.

These aternatives are depicted in Figure 1.1 [ 2] and are described below.

| Mining
Cache Mine Hraertitinrd extendersiblades
function
= Integrated with
Loose Stored 5091 -based S0OL querny
Coupling Procedure approach [ engine
Mining as Mining as i -
application on application on Mining using Integrated
Client/app. server database semer SOL+ Extensions approach
Loose + Integration ¥ Tight

Figure 1.1: Architectural Alternatives

Loose Coupling or Cache based Mining: It is an example of the client/server

architecture. The mining kernel can be considered as the application server. Here the



data is first fetched from the database and fed to the mining-kernel, which mines and
pushes the results back to the database.

Sored procedures and user-defined functions: Here, mining logic is embedded
as an application on the database server. Applications can be executed either in the
same address space as the DBMS or a different one (fenced option in DB2). The
flexibility in programming the stored procedure out-weighs their development cost.

QL based approach: Here, for mining, queries are written in SQL. A mining-
aware optimizer may be used to optimize these complex, long running queries based on
the mining semantics. In this thesis, we use an SQL-base approach for sequence mining
based on intervals.

Integrated Approach: This is the tightest form of integration that has no
boundary between querying, OLAP, or mining. Mining operators or SQL (extended for
mining) is optimized by the underlying system without any hints from the user. The
long-term goal is to extend the current query optimizers to cover OLAP and mining
along with SQL queries.

The focus of this thesis is on the combination of prediction of significant
intervals in time-series data and use of the results further for sequential mining to
determine interesting patterns. Exploration of the large data set in various ways using a
number of parameters is taken into consideration in this work. . The applicability of the
approaches proposed for both time-series data and transactional data makes the

proposed approaches versatile.



1.1 Prediction

Data mining, typically makes use of statistical anaysis when it comes to
predicting the next value of a continuous variable rather than a categorical label.
Prediction of continuous values can be modeled by statistical techniques of regression
[6]. Many problems can be solved by linear regression and even nore by applying
transformations to the variables so that a nonlinear problem can be converted into a
linear one. Linear regression is the simplest form of regresson where the data is
modeled as a straight line. Bivariate linear regression models a random value Y, as a
linear function of another random value X, that is,

Y =a+bX

Where a and b are regression coefficients specifying the Y intercept and slope
of the line respectively. Many times, although the application cannot be modeled as a
straight line to predict the value of Y given X, it can be viewed as Y=F(X). We focus on
prediction of Y given X, which is a series of events changing with time. This can be
described as a time-series database. Sometimes, there are several other variables that
affect Y as it can have multiple values over a range of X. Multiple variables and the
classification of the variables given below can make regression overtly complicated.
There are four major characteristics that are used to categorize time-series data [6].

Long-term or trend movement: This indicates the general direction over which
the time-series graph is moving over along interval of time.

Cyclic movements or cyclic variations: These refer to the cycles, or long term

oscillations about a trend line or curve, which may or may not be periodic.



Seasonal movements or seasonal variations: These movements are due to the
events that recur annually. In other words, seasonal movements are the nearly identical
patterns that a time-series appears to follow during corresponding months of each year.

Irregular or Random movements: These characterize the sporadic motion of the
time-series due to random or chance events.

The common method of determining trend is to calculate the moving average,
also referred to as smoothing of time-series. The concept of seasona index is introduced
to show the relative values of the variables in each group. To form the index, the datais
divided into a set of partitions such as groups of months or groups of hours and the
variation of the variable is monitored over each group to identify recurring patterns.
However without any predefined knowledge, the above grouping is very arbitrary. An
interesting solution would be to identify the groups from the data and look for patterns.

1.2 Mining Sequential Patterns

The sequential associations or sequential patterns can be represented as
follows: when A occurs, B aso occurs within a certain time. The difference between
traditional association rules mining and sequence mining is that the time information is
included both in the rule and aso in the mining process in the form of constraints. In
general three attributes characterize the sequence data: object, timestamp, and event.
Hence, the corresponding input records consist of occurrences of events on an object at
a particular time. Depending on the data and the problem in hand, various definitions of

the objects and events can be used. As an example, an object can be a customer in a



book store and events are the books bought by the customer. As another example, an
object can be aday and the events a switch-alarm pair of telecommunications network.

The major task associated with this kind of data is to discover sequential
relationships or patterns present in these data. This can be very useful for prediction of
future events. Several approaches have been proposed to tackle the problem. However
the problems they assess, and the resulting solutions are very much problem dependent
and often not suitable for other types of sequential data. Chapter 2 discusses the mgjor
approaches proposed for sequential mining in the literature along with the problems
associated with them when used for our problem domain.

1.3 Focus of this Thesis

The predominant problem domain for this thesis is a smart home environment
where discovery of patterns and their automation is of prime interest. However, the
solution proposed by this thesis is not restricted to smart home environments alone but
can be used for other domains where the need is to extract useful segments from the
data based on user specified parameters. Some of the characteristics of a smart home are
that it is formed of several devices, which interact with each other to give an inhabitant
friendly, and reduced interaction environment. To accomplish this the smart home
reacts to the changes in inhabitant’s behavior by automating the operations of various
devices instead of waiting for the inhabitants to manually interact with them. Following
are some of the questions for which the answer is needed to accomplish the goals of a
smart home

When does device A turn on?



When does device A turn on Monday or between 9 and 10am on
Monday?

What are the properties associated with device A when it is turned on at
a specific time?

Given the time, can the system tell with a degree of certainty that the
device will be turned on at that time.

Is there any other device that triggers the operation of device A
(pattern)?

What are the different patterns in which multiple devices interact with
each other?

Of these, which are the most frequently occurring patterns?

What are the times during which the patterns occur?

How many times patterns occur during a given time interval and their

count?

The current work proposes to answer most if not al of the above questions

raised by smart home applications. In addition to intelligent environments, many

applications such as telephone logs, security logs and other time or numerical

applications want to know, ‘lllustrate intervals in terms of groups of time or activity

which best represents the data or ‘lllustrate intervas in terms of groups of time or

activity, which have the following characteristics . With telephone logs, periods of high

activity are useful information for making informed business decisions. Magazine

subscription logs can also be mined to determine the age groups that subscribe the most
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to the magazine. Security logs can aso be mined to extract intervals with certain
characteristics. These intervals can be compared to values associated with normal
conditions, to raise alerts when abnormal conditions are discovered. The characteristics
of an interva can be its density, length or the strength. Given the above general problem
domain, we divide our task into two phases: Identify the intervals which best represent
based on interval characteristics provided by the user and use the intervals to identify
frequently occurring patterns of different sizes and strengths. Four significant interval
discovery approaches (termed SID[1], SID[n1], SID[1,n1] and SID[n-2, nn1]) have
been formulated to discover intervals from the data. The user is provided with an
option of choosing the approach, which best satisfies his’her requirements. Following
the interval discovery, an algorithm for detecting patterns (termed Hybrid-Apriori, an
SQL-based agorithm) has been formulated to accept interval-based input from various
events to discover interactions between them.

The remainder of the thesisis organized as follows. Chapter 2 discusses related
work by providing a brief introduction to the various a gorithms proposed for sequential
mining. Chapter 3 outlines the architecture of the MavHome, a smart home being
researched at University of Texas at Arlington. The architecture, presented in this
thesis, primarily concentrates on the database issues. Chapter 4 provides an in-depth
discussion on the various interval discovery agorithms, their applications, their
formulation, advantages of each approach and finally their performance evaluation
based on several experiments. Chapter 5 discusses the interval-based sequential mining

algorithm, its features and performance evaluation. We conclude by enumerating the



salient points of the thesis and discussing additional work that can be performed to

improve its utility, efficiency and scalability in Chapter 6.
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CHAPTER 2

RELATED WORK
The following sections provide a survey of the existing algorithms. WINEPI [ 3],
MINEPI [3], GSP [4] are described in detail in sections 2.2, 2.3 and Section 2.4
provides a brief overview of severa other algorithms, which are related to the current
domain. Finally, we provide a brief introduction to our proposed solution in section 2.5.

2.1 Introduction
We discuss several approaches proposed to predict the occurrences of each
event as well as algorithms, which discover interactions between multiple events. We
provide a brief introduction to the prediction of single events since they primarily use
statistical techniques and more information on sequential mining, which uses data
mining techniques. A lot of work has also been done on prediction, from Markov's mi"
order model to using statistical techniques in time series analysis. Markov’'s model [5]
predicts which event will occur next, or when an event occurs using probabilities. This
model is primarily used for pre-fetching of pages in computer architecture and other
applications (e.g., speech recognition) from an input sequence, the next event is
predicted using probability distribution functions. Time series analysis [6, 7] describes
various techniques such as exponential smoothing, regression analysis, Box-Jenkins
methodology to predict the value of Y (response variable) given X (predictor variable).

Exponential smoothing is used to detect existing trends in the data such as an upward

11



trend observed in stock market prices over a period of time. Factors or components are
added to the equation to take care of seasonal variations. However our approach of
finding tight intervals does not involve any upward or downward trends, only patterns.
Moreover the analysis can be used to predict intervals within the time hierarchy
specified by the user, and does not determine te best hierarchy that fits the data.
Regression analysis is the most commonly used approach to identify trends. The factors
on which the predicted Y (t) depends are used to design a regression model (Linear or
quadratic or complex). Many a times the response and the predictor variable have a
relationship that can be modeled by adding polynomial terms to the basic linear models.
Sometimes by applying transformations to the variables, we can convert the non linear
model to a linear one and other times models are intractably non-linear and cannot be
converted to a linear model. The present thesis concentrates on solving the prediction
question using data mining techniques like sequential mining as compared to statistical
techniques. Universal formulation of sequential patterns is discussed in detail in section
5.1. A quick introduction to the constraints associated with patterns is described below.
They give a better insight on the techniques used by the various algorithms for support
counting. Support for a pattern refers to its number of occurrences within the dataset.
The input parameter minimum-support ensures that all the discovered patterns have
their support greater than the minimum-support. All algorithms use different techniques
for support counting so as to make it as efficient and scalable as possible. Sequential

patterns are associated with a set of timing constraints, which can be trandated into:
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Maximum Span (ms): The maximum alowed time difference between latest
and earliest occurrences of events in the entire sequence,

Event-set Window size (ws): The maximum allowed time difference between
latest and earliest occurrences of eventsin an event-set,

Maximum Gap (xg): The maximum allowed time difference between the latest
occurrence of an event in an event-set and the earliest occurrence of an event in its
immediately preceding event-set, and

Minimum Gap (ng): The minimum required time difference between the earliest
occurrence of an event in an event-set and the latest occurrence of an event in its
immediately preceding event-set.

The major differences between the traditional agorithms are found in the
approach taken in the candidates generation and counting phase. The standard modes of
sequence counting are,

COBJ: One occurrence per object

CWIN: One occurrence per span window

CWINMIN: Number of minimal windows of occurrence

CDIST_O: Distinct occurrences with possibility of event timestamp overlap

CDIST: Distinct occurrences with no event-timestamp overlap allowed.

More information on the universal formulation of sequences can be found in [8].
The remainder of this chapter discusses the significant sequential mining techniques

starting with the algorithms proposed by [3].
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2.2 WinEpi and MinEpi Approaches

WinEpi [3] is an agorithm, designed for discovering serial, parallel or
composite sequences. Serial sequences require a tempora order of events whereas
parallel sequences do not. Composite sequences are generated from the combination of
parallel and serial sequences. In addition to the above, events of the sequences must be
close to each other, which is determined by the window parameter. A time window is
dlid over the input data and only the sequences within the window are considered. The
support for the sequence is determined by counting the number of windows in which it
occurred. Referring to the timing constraints described above, the algorithm finds all
sequences that satisfy the time constraints ms and whose support exceeds a user-defined
minimum min_sup, counted with the CWIN method. The algorithm makes multiple
passes over the data. The first pass determines the support for all individual events. In
other words, for each event the number of windows containing the event is counted.
Each subsequent pass k starts with generating the k-event long candidate sequences Ci
from the set of frequent sequences of length k-1 found in the previous pass. This
approach is based on the subset property of apriori principle that states that a sequence
cannot be frequent unless its subsequences are also frequent. The algorithm terminates
when no frequent sequences are generated at the end of the pass. WinEpi uses set of
counters and sequence length for support counting of parallel sequences and finite state
automata for serial.

An aternate way of discovering the frequent sequences is a method based on

their minimal occurrences. In this approach the exact occurrences of the sequences are
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considered. A minimal occurrence of a sequence is determined as having an occurrence
in awindow w=[ts,te], but not in any of its sub-windows. For each frequent sequence s,
the locations of their minimal occurrences are stored, resulting in a set of minimal
occurrences denoted by mo(s)={[ts, te] | [ts, te] is a minima occurrence of s}. The
support for a sequence is determined by the number of its minimal occurrences |mo(s)|.
The approach defines rules of the form:

s [wi]-> gwo], where s’ is a subsequence of s and wy and w, are windows. The
interpretation of the rule is that if s has a minimal occurrence at interval [ts, te] which
is shorter than wy, then s occurs within interval [ts, te'] shorter than w,. The approach is
similar to the universal formulation with w, corresponding to ms and an additional
constraint wj for subsequence length, with CWINMIN as the support counting
technique. The confidence and frequency of the discovered rules with alarge number of
window widths are obtained in a single run. MinEpi uses the same agorithm for
candidate generation as WinEpi with a different support counting technique. In the first
round of the main algorithm mo(s) is computed for al sequences of length one. In the
subsequent rounds the minimal occurrences of s are located by first selecting its two
suitable subsequences 5 and $ and then performing a temporal join on their minimal
occurrences. Frequent rules and patterns can be enumerated by looking at all the
frequent sequences and then its subsequences. For the above agorithm, window is an
extremely essential parameter since only a window’s worth of sequences are

discovered. Moreover, the data structures used for this algorithm can exceed the size of
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the database in the initial passes. Interval based mining, on the other hand, allows the
use of windows in two ways:

It allows events, which start less than window units away from the start time of
the sequence to join an existing sequence irrespective of the event’s finish time.

It aso alows events with start and end within window units from the start time
of the sequence join an existing sequence, which is more in tune with the traditional
approach

In the first case, the user sets the window parameter based on the domain
requirements. In order to consider an event as a candidate to join the sequence, the user
needs to consider only the maximum span (ms) or the maximum time difference within
which an event has to start. For example, if an event occurs within 60 minutes of the
sequences, it can be considered to merge with it. This results in the generation of
sequences with intervals lengths greater than the window parameter. The second
alternative considers only those events, which complete within window units of the start
of the sequence as candidates for the sequence. This approach is more in line with the
traditional approach that uses points instead of intervals.

23 GSP

The GSP (Generalized Sequential Patterns) by [4] is designed for transactional
data where each sequence is a list of transactions ordered by transaction time and each
transaction is a set of items. It extends their previous work [9] by enabling specification
of the maximum time difference between the earliest and latest event in an element as

well as the minimum and maximum gaps between adjacent elements of the sequential
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patterns. Thus the timing constraints included are ws, xg and ng. Support is counted
using COBJ method. The agorithm works the same way as WinEpi described in the
previous section. The difference is in the way the candidates are generated and their
support counted. GSP introduces the notion of contiguous subsequences. The sequence
c isasubsequence of sif any of the following holds:

c isderived from s by dropping an event from itsfirst or last event-set.

c is derived from s by dropping an event from any of its event-sets that

have at least 2 elements.

c is a contiguous subsequence of ¢’, which is a contiguous subsequence

of s.

The determination of the support of the candidates is done by reading one data
sequence at a time and incrementing the support count of the candidates contained in
the data sequence. Given a set of candidate sequences C and a data sequence d, al
sequences in C that are subsequences of d are found. Our domain considers datato be a
series of events with timestamps with frequert patterns discovered between various
events, in contrast to GSP, which discovers sequentia relationships between items
within a set of transactions.

2.4 Othe Algorithms

CSpade [10] has the same application domain as GSP but involves more
constraints that are versatile. CSpade is an extension of the earlier Spade [11] algorithm,
which efficiently integrates constraint into the algorithm. The key features of Spade are

the use of vertical layout and idlists, which include the dbject timestamp tuples of the
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events. Equivalence classes partition the data set into several classes, which are
processed independently. Problem decomposition using equivalence classes is
decoupled from pattern search. Depthfirst search is used for enumerating the frequent
subsequences within each equivalence class. Our approach also considers a vertical
database layout similar to that of Spade, partitions the database on the number of events
and identifies intervals of occurrences based on user specified ‘measure’ independently.

Cyclic association rules[12] attempt to find rules, which are very prominent in a
segment of data but are lost when the entire dataset is considered for mining.
Partitioning the data correctly plays acrucia role in the discovery of these hidden rules.
In addition to the mining techniques, many mathematical and statistical models [6, 7]
also attempt to predict or discover the intervals by formulating an equation, which best
describes the data. However these models have the drawback that they predict one
answer based on historical data. One answer may not be adequate in severa situations.
In order to get multiple answers the data needs to be partitioned thereby predicting the
best answer for each partition. This however would introduce some arbitrariness in the
choice of best partition in the absence of appropriate guidelines.

[13] uses data cubes and Apriori mining techniques for mining segment-wise
periodicity with respect to a fixed length period. In [14] MDL (minimum description
length) principle, instead of support, is used to find candidate item-sets. The merit of
this approach lies in the application of the periodicity of the event to prune unwanted
sequences. This approach has some similarity to the first approach of [3] in the use of a

dliding window defined by the user to find frequent episodes. Defining the periodicity,
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however, can be an error prone task. Asfor [13], the algorithm discovers rules based on
different measures for each time partition. Our primary interest is to find partitions
which best describe the nature of the data. One of the distinct disadvantages of using
traditional k-means[15, 16] or density based clustering algorithms [17, 18] isthe
determination of input parameters such as k or threshold density. Determination of the
values of these input parameters either requires proficient domain knowledge or
sufficient time for re-running algorithms with different inputs. Even though the primary
aim of the present study is not cluster identification, to decide a better value for k and
the threshold density, the number of clustersidentified at the end of interval discovery
algorithm aong with their density and length can be used as input to the traditional
clustering agorithms.

2.5 Conclusion
It is evident that number of algorithms have been proposed for solving the problem of
frequent pattern discovery. Approaches that work for one domain do not necessarily
form the best solution for another. The focus of our approach lies between clustering
and sequential mining since both kinds of information are required to discover frequent
patterns and answer queries related to intelligent environments. As mentioned above,
our approach has enormous potential in intelligent environments where the key is to
continuously learn from the surroundings and automate the inhabitant’s activities. The
MavHome (Managing An Intelligent and Versatile Home) project is a multi-
disciplinary research project at the University of Texas at Arlington (UTA) focused on

the creation of an intelligent and versatile home environment [19]. Finding frequent
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patterns enables us to automate device usage and reduce human interaction. The
MavHome project focuses on the creation of a home, which acts as arational agent. For
finding patterns, the algorithm uses the intervals derived from various devices based on
a user-defined confidence, density or interval length to predict the time of operation of
each device. This information is used to answer user queries as well as to find
sequential patterns. Representative intervals can be classified as the smallest intervals
with highest density satisfying the desired interval-confidence. The following chapter
discusses the MavHome architecture with a detailed description on its data collection
process, data stream management system and prediction agorithms which form the

heart of its database architecture.
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CHAPTERS3
MAVHOME DATABASE ARCHITECTURE

This chapter gives a brief introduction on the requirements of smart homes
followed by a quick overall view of MavHome architecture. The discussion continues
with more emphasis on the database aspects of MavHome architecture. Section 3.1
gives an overall design of MavHome and its data collection process. Section 3.2
provides an in depth discussion on the implementation of the data collection process.
Data Stream architecture and prediction driven sequential mining form the heart of
MavHome on the database front. Section 3.3 highlights the needs and features provided
by data streaming and section 3.4 gives a quick overview of prediction and sequential
mining. The current chapter acts as a preview of prediction and sequential mining, and
an in-depth discussion is carried out in chapters 4 and 5.

3.1 MavHome Architecture

Smart Homes link computers to everyday tasks and environments that have
been traditionally considered as outside the purview of automation. Important features
of such environments are that they possess a degree of autonomy and adapt themselves
to changing conditions. The smart home assumes the control of devices and relieves the
inhabitant of interacting with it. A smart home naturally requires location/context aware
computing, alowing the environment to process information as if computational

devices are everywhere. The MavHome Smart Home project is a multi-disciplinary
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research project at the University of Texas at Arlington (UTA) focused on the creation
of an intelligent and versatile home environment. The goa is to create a home that acts
as arational agent, perceiving the state of the home through sensors and acting upon the
environment through effectors [19]. The agent acts in a way to maximize its godl, i.e.,
maximizes comfort and productivity of its inhabitants, minimizes cost, and ensures
security. Some of the concepts have been taken from
(http://mavhome.uta.edu/files/description/). More information on the overall
architecture can be found in [19].

MavHome operations can be characterized by the following scenario. At
6:45am, MavHome turns up the heat because it has learned that the home needs 15
minutes to warm to optimal temperature for waking. The alarm goes off at 7:00, which
signals the bedroom light to go on as well as the coffee maker in the kitchen. Bob steps
into the bathroom and turns on the light. MavHome records this interaction, displays the
morning news on the bathroom video screen, and turns on the shower. While Bob is
shaving MavHome senses that Bob is two pounds over his ideal weight and aljusts
Bob's suggested menu. When Bob finishes grooming, the bathroom light turns off while
the kitchen light and menu/schedule display turns on, and the news program moves to
the kitchen screen. During breakfast, Bob notices that the floor is dirty and requests the
janitor robot to clean the house. When Bob leaves for work, MavHome secures the
home, and starts the lawn sprinklers despite knowing the 70% predicted chance of rain.

Later that morning, a rainstorm hits the area that further waters the lawn. Due to

a nearby lightning strike, the VCR experiences a power surge and breaks down while
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taping Bob's favorite show. MavHome places a repair request and informs Bob at work
of the event. Because the refrigerator is low on milk and cheese, MavHome places a
grocery order to arrive just before Bob comes home. When Bob arrives home, his
grocery order has arrived and the hot tub is waiting for him.

A number of capabilities are required for this scenario to occur. Some of these
capabilities include active databases, prediction agorithms, mobility predictions,
multimedia capabilities and many more. Active databases allow a house to be able to
record inhabitant interaction and trigger sequences of events such as the bedroom light /
coffee maker sequence. Machine karning alows for efficiently processing the data
generated by the various sensors located around the house and taking immediate
actions, Suite of prediction agorithms succeed in predicting inhabitant movement
patterns and typical activities, and use that information in automating house decisions
and optimizing inhabitant comfort, security, and productivity. For MavHome to track
Bob's movements in between rooms and transmit his news program to him as well as
to find him away from the home, multimedia and mobile computing capabilities need to
be present. As can be observed from the scenario, MavHome automates the control of
numerous devices within the home. To scale to this size problem, the MavHome agent
needs to be decomposed into lower-level agents responsible for subtasks within the
home, including robot and sensor agents, and this organization should be dynamically
composable. Finally, these capabilities must be organized into an architecture that
seamlessly connects these components while allowing improvement in any of the

underlying technologies.
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3.1.1 Data Collection Architecture for MavHome

! Sensot % :I

b 4
COFRE 4 Interface

b 4
Stream
Filter
k
-
\._\_\_\_\_'___,_.-)
Fredichon [« Transacto -
Y n
—
r"_'_'_'—\_\_\_""\.
[
Confiz Inferred -
File Tahblas
—
Diatab ase
v
Trigger events < | ECA Fules & Triggers |<—'

Figure 3.1: Database Architecture for MavHome

The Figure 3.1 illustrates the different components of the database architecture.
MavHome project entails processing stream data in real-time from a large number of
sensors (thermostat, lights, motion detectors, video etc.) and predicting and actuating
agents in addition to storing the data in a conventiond DBMS for querying and
analysis. The various components in the above architecture are discussed below in
detail.

Sensors monitor the environment (e.g., lawn moisture level) and, if necessary,
transmit the information through the CORBA interface to the database. CORBA forms
the intermediate layer through which communication is performed between the database
and the devices. The database agent in MavHome registers itself with all the devices

through a callback interface wherein an instance of the database object is given to each
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device. Whenever a state change in a device occurs, CORBA invokes the database
object with the information on the state change, which automatically inserts the values
into the database. If all of the data from the sensors is not required to be stored in the
database, a filtering operation can be performed at this level. This is very useful for
devices such as temperature sensors, where temperature changes only above a threshold
need to be recorded. However in the current implementation, filtering is not performed.
Stream refers to the Data Stream Management System, which provides for the
processing of queries on the stream instead of on the database. Detailed discussion on
the DSMS architecture will be provided in the later section.

The database consists of two sets of tables one for transactional data and one for
inferred data. The transactional tables record the day-to-day information on the change
of state in each device and a set of inferred tables stores the results of the prediction
algorithm. Prediction results refer to the set of algorithms that run on the stored data and
discover the tightest intervals of state change associated with each device. In addition to
the interval discovery, the algorithm extracts any frequently occurring patterns with
different periodicities. A configuration file is used to input parameters to the prediction
algorithms. More details on the design and implementation of these algorithms will be
given in Chapters 4 and 5. A traditional database, as a passive repository to collect
information, can store information but cannot react or provide assistance to various
agents. The repository not only needs to provide the functionality of a traditional
DBMS, but also should have capabilities to react to and in some situations proactively

predict the trends for the immediate future and take appropriate actions. A combination
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of collected information and current events need to be used for continuous monitoring
of the house and its environment to initiate appropriate actions (triggering agents,
initiating diagnostics and inferences, providing appropriate data for mining, periodic
checking, etc.) in atimely manner. We use the concept of an active database, Sentinel in
this case along with the evert specification language Snoop and the ECA (even
conditionaction) paradigm [20-23]. Currently it is possible to specify fairly complex
ECA rules to invoke various computations (agents) based on how the information
repository is updated. In summary the proposed architecture provides 3 important
functionalities.

Data Collection and Storage

Data Stream Management System

Prediction agorithms

Design and implementation of data collection followed by a brief overview of
the current DSM S architecture and Prediction agorithms is discussed below.

3.2 Design and |mplementation of Data Collection and Storage

Data collection in MavHome consists of 2 steps. The first step includes
communication with the CORBA interface and registration with all the devices. The
second step comprises of the invocation of the callback object, which enters the device
information into the database. The detailed description of the two steps is given below.
3.2.1 CORBA Interface

The MavHome communication layer consists of a nameservice to which all the

room servers subscribe. Roomservers are the point of contact for all devices present in a
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room. To register with a device, the communication layer provides a set of methods
which allow an outside source to query the roomserver on te number of devices,
device characteristics and their registration. The database being a repository of
knowledge, registers itself with all the devices. Currently since all the roomservers are
static, the collection program, invokes each roomserver in sequence. The
X10L ocationClientObject class connects to a roomserver given its name. Initially it gets
the number of devices associated with the room by invoking the getNumberOf Devices()
method. For each device in the room, the process then invokes the getDevicelnfo()
method, to get the device characteristics such as device id, name, type, location and
position. It then cals the subscribe() method and passes it a reference of
X10Location_cb_impl. X10Location_cb impl is the class associated with the callback
object, which contains methods to update the database. The successful completion of
registration ensures communication of any change in state of a device to the database.
The man classes used for the above ae X10Location_cb impl,
X10LocationClientObject and MavHomeDAL. MavHomeDAL class consists of all
methods for inserting/updating the tables in the database.
3.2.2 Callback and Database Design Features

X10Location_cb_impl is responsible for updating the database with the current
change in the device's status. Currently the information collected on all the devices is
stored in Oracle RDBMS. The database has been divided into 2 sets of tables.

Static Tables

Dynamic Tables
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Static tables contain information on the devices along with their respective
characteristics, which does not change frequently. The tables are updated only when a
new device is added to MavHome, or the location of a previous device is changed.
Dynamic tables are the set of transactional tables, which record the periodic changes
occurring to the devices. These also include the tables required to store multimedia
information. Currently the set of static tables include tbdevcice, tbdevicedescription and
tbroom. Thdevice enumerates the different device types available with a brief

description on the device type. Currently the set of device types available are illustrated

in Table3.1
Table 3.1: Different Device Typesin MavHome
TXTDEVICETYPE TXTDEVICEDESCRIPTION
X10 LAMP Lamp
X10 MOTION M otion detector
X10 SWITCH Light switch
X10 FOB Light switch
X10 GENERIC Appliance
X10 CAMERA Camera
X10 APPLIANCE Any appliance

Tbhroom consists of information on the various rooms and their position and
location as room _id and description. Thdevicedescription contains the information on
all devices including their id, name, type, room id, position and location. Dynamic
tables include tbtransload, which contains deviceid, status, property value, timestamp,
command source. Property value refers to any value associated with the device's state
change. As an example, if the light is turned on and its intensity is set at 50, the

property value of the lamp=50. CommandSource contains information on event that
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triggered the state change. This event can be classified as manual, Heyu (through the
web interface) or through RF_Remote(centralized switch). Manual refers to the
situation when the user physically operatives the device to change its state. Heyu refers
to the situation wherein the user controls the device using the web interface and
RF_Remote refers to the operation of the device through a central switch (one for each
room). All communication with database is conducted through the Mavhomedal object.
Insertintotbdevicedescription() inserts the characteristics of the devices and
insertintotbtransload() inserts the device's state change.

3.3 Data Stream Management System

Research on traditional database management systems (DBMSs) has been
concentrated on the data that has been collected and stored. A wide variety of
applications — network management, finance system, and sensor-based system (smart
homes) — generate real time data streams and their processing requirements are very
different from the traditional applications. Some of the common characteristics of these
applications are summarized below:

The data processed by these applications arrive in the form of a
continuous stream, generated by sensors or embedded agents. Also the
size of the data in such a continuous stream is unbounded.

These applications mainly focus on the most recent data, which requires
storing a predefined window-size of information for processing the data.
These applications raise important events (e.g., congestion, alarm

conditions) that are detected by various continuous queries. This entails
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that the data processing system should fire pre-defined actions
immediately once an event of interest is detected.

Some applications aso have quality of service (Q0S) requirements in order to
respond to the events in a timely manner. As MavHome can be characterized by the
above features, DSMS is a better alternative to atraditional RDBMS to respond quickly
to events and answer queries continuoudly. It is clear that a traditional database
management system is designed to process stored data efficiently. Furthermore, it
assumes that the data is stored on a storage device that can be accessed as many times
as needed, and QoS requirements are not considered at all. A number of architectures
have been proposed to support the new requirements: the DSMS system by the database
group at Stanford [24], the Fjord system by Berkeley [25], the Aurora system [26], and
the NIAGARA system at university Wisconsin [27], to name a few here. A common
characteristic of these architectures is that they associate a queue with each operator to
support continuous queries over data streams. Hence a Data Stream Management
System needs to be designed and developed for the above characteristics. Some of the
important characteristics of DSMS are:

1. DSMS handles continuous streams of data wherein data is processed on
the fly and results are generated. It does not store raw data on the disk
but discards or archives the data elements once processed. Thus the
resource limitation problem of storing each and every piece of

information with large continuous streams is avoided.
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2. DSMS provides anew set of operators, which can operate on continuous
streams without blocking. Traditiona Join and other Aggregate
operators, which are difficult to use with streams, are modified to
efficiently handle streaming data. They operate on windows, which
define the boundaries for the continuous streams. Continuous operations
are supported by moving the windows and changing their size. The
results are evaluated on a windows worth of data and then the next

window is considered for further evaluation.

3. Whenever the arrival rate of data in the stream exceeds the data
processing rate, techniques such as sampling and histograms may have to
be used in order to produce approximate results instead of losing data

due to resource limitations (e.g., memory buffers)

4. DSMS succeeds in providing real time response to queries. Queries
submitted to the system are run continuously against streaming data
Thus output is produced continuoudy and incrementaly at the end of
every window. Updates of routing table, network security, monitoring
traffic are some of the other applications that require real time response

of DSMS.
DSMS aso supports different types of continuous/streaming queries.
Classification of streaming queries along with the different types of queries supported
by the current DSMS architecture is provided below. Streaming queries are broadly

classified into:
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Predefined Queries
Ad hoc Queries

Predefined queries. These are the queries that are made available to the system
before the arrival of data relevant to it.

Ad hoc Queries. These queries are submitted to the system when the data
stream has aready begun. Hence for evaluating the queries requiring past information,
the system needs to support some amount of storage. Since Ad hoc queries are not
known beforehand, query optimization as well as finding common sub-expressions adds
complexity to the system.

Predefined and Ad hoc Queries are further classified into:

One-Time queries
Continuous queries

One-Time Queries. These queries are evaluated only once over a given window.
Once the query is evaluated it is removed from the system. It generates output once at
the end of the window.

Continuous queries. These queries are evaluated continuously as the data
streams arrive. Results are produced incrementally and continuously at the end of every
new window. Most queries in streaming applications are continuous. Results can be
stored and updated as streaming data arrives or can be streamed.

Figure 3.2 illustrates the various components of the current DSMS architecture. A brief

overview of query processing is explained below.
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Query Input: The user submits a query either as text (SQL query) or as GUI
(could be box and arrow). This module enters the query created by the user into the
system and registers the query with the module responsible for active queries.

Satic Optimizer/ Alternate Plan Generator: Once the user submits a query, a
static plan is generated. A plan is nothing but a partially ordered tree that decides the
order in which operators are instantiated and executed. Once a plan is generated, the
alternate plangenerator generates all possible alternate equivalent plans that ensures the
same outpuit.

Processing Graph instantiates operators and their associated queues for
evaluating queries. This is a forest of operators that constitute a global plan. A list of
root operators and a list of leaf operators are maintained that help in graph traversal so

asto instantiate operators in the correct order.
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Figure 3.2: MavHome DSM S Architecture
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Global Data Structure: This data structure keeps run time information such as
priorities, state, number of output queues associated, parentlist, childlist and windowing
information about active operators.

Global Buffer Manager is used for dynamic allocation and de-allocation of
buffers. It works on various buffering policies that are implemented for the efficient
management of memory. This module decides when to swap pages from disk or which
operators to be given more memory over others based on priority.

Run-Time Optimizer performs run time optimization based on the quality of
service observed. To ensure QoS, optimizer may ask scheduler to increase the priority
of query, to alocate more buffers to respective operators or to select a better alternate
plan from the sequence of plans available. Run time optimizer uses all these parameters
intelligently to improve QoS.

Scheduler is used to schedule operators depending on the order defined by the
global graph and the priorities assigned to the operators.

The above section provided a brief overview of the need for DSMS as well as its
current architecture in MavHome. Further details on the design and implementation of
DSMS can be obtained from [29] thesis.

3.4 Interval Discovery and Seqguential Mining for MavHome

The importances of an interval-based representation for certain domains as well
as the ways in which the interval information can be used for knowledge discovery are
discussed herein. With time-series or numerical data, wherein the data is a series of

events occurring at a point, intervals are a better aternative to timestamps. An interval
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represents an area of activity and provides a more accurate and meaningful picture of
the data set. Converting time stamped data into intervals results in coal escing the points
and creating boundaries between them. The boundaries signify the start and end points
within which the events occur. From a time-series data, interesting intervals can be
extracted that satisfy certain properties, or clusters can be formed around these intervals
to provide an overal view of the dataset with its distinctive areas. Again, the
formulation of clusters can be based on overlapping or digoint intervals. One of the
distinct disadvantages of using traditional k-means [16,15] or density based clustering
algorithms [17, 18] is the determination of input parameters such as k or threshold
density. Determination of the values of these input parameters either requires proficient
domain knowledge or sufficient time for re-running algorithms with different inputs.
The primary aim of the interval discovery agorithm is not cluster identification.
However, in order to decide on a better value for k and the threshold density, the
number of clusters identified at the end of interval discovery along with their density
and length can be used as input to the traditional clustering algorithms. The intervals
can also be used as input to a sequential mining algorithm equipped to deal with interval
based input. This results in a smaller dataset as input to sequential mining, as the
interval discovery eliminates noise and low support points. Instead of generating
candidate item sets and pruning them based on their support, eiminating them from
participating in the pattern discovery saves time, computation and achieves scalability.
It can be argued that the effort saved during support counting and pruning is

compensated by the extra computation performed to discover intervals. However
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interval discovery, in its own right, extracts some valuable characteristics (outlined
above) of the data set as compared to mere support counting and pruning in the initial
passes of atraditional sequential mining algorithm.

As mentioned before, for applications where intervals provide better semantics,
the algorithms described in this thesis can be used \ery effectively. As an example, in a
smart home that has X number of devices, best intervals for each device can be
discovered first. They can then be combined using an interval based sequential mining
algorithm to discover interactions between devices. The interval discovery approach
also provides a natural way to partition the problem and is amenable to parallel
processing. We strongly believe that representing events with intervals has several
advantages. Firstly, it provides an opportunity to explore and identify significant
intervals, and in the process provides a better understanding of the underlying data.
Secondly, it provides nuggets of information about the data that can be used for
clustering the data by traditional algorithms (that require input parameters such as the
number of clusters, density, etc.). Finaly, it reduces the size of the data used for
discovering sequential patterns. In summary, there are several advantages to extending
the traditional mining agorithms to work with intervals instead of points. However,
converting the existing agorithms in a naive manner to achieve the above may not
make use of interesting interval-based characteristics to improve the output quality and
efficiency. The problem of discovering tight intervals and frequent patterns (derived
from MavHome) can be described as follows. Given a history of event occurrences

(single or multiple) over a period of time, how can one predict the best (shortest or a
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bounded interval with some notion of confidence) interval in which the event occurred?
Initialy, we look at the problem with a single event and then extend them to multiple
events and predict the occurrences of combination of event patterns (or episodes) on
sequence data.

To illustrate the problem consider Figure 3.3, which shows events of a lamp
being turned on (each day) over a 30-day period (time on x-axis and number of
occurrences on yaxis). It is of interest to predict when MavHome should turn on the
lamp each day to capture the inhabitant’s behavior. This necessitates finding intervals
with “good” confidence and providing mechanisms to explore and analyze the intervals
using different values of support, confidence etc. Figure 3.4 shows our initial approach,
which identifies four intervals as “interesting” that satisfy a user-defined confidence of
80% (the device was on 24 days out of 30). The x —axis represents the time of
occurrence of the event and the y-axis represents the number of times the event
occurred at a particular time referred to as strength. Cluster B has more than one
significant interval in which the device was turned on more than once with 80%
confidence from [1:07-1:47]. A suite of interval discovery algorithms have been
formulated to identify intervals for al devices in MavHome given the domain
requirements and input parameters.

More information on these agorithms will be provided in Chapter 4. After
extracting such intervals from all the devices, they are used as input to a sequential
mining algorithm to discover frequent patterns and sequences along with their time of

occurrence.
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Figure 3.3: Sample of MavHome Data

This is accomplished by the interval-based sequential mining algorithm
discussed in Chapter 5. The above agorithms give us the information needed to

automate device operations thereby reducing inhabitant interactions.

Lamp Af - ON
25 g
Cluster B
20~
E15 -
10 A
5 |
o T T T T T T T T T T T T T T T T T T T T T T T T g
o:oo 04 1:00 1:15 1:26 1:47 245 305 310 340 530 540 600
Time
Figure 3.4: Identification of Intervals and Clusters from Figure 3.3
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CHAPTER 4
SIGNIFICANT INTERVAL DISCOVERY

In chapter 2 we discussed the various approaches proposed in the literature and
their drawbacks with respect to MavHome requirements and other related applications.
In this chepter we revisit our goal and discuss our proposed solution with its
performance results. Domain related modifications to the approach could be easily
integrated with the main agorithm to get improved performance. Several approaches to
the problem are described in this section along with their significant differences.
Section 4.1 discusses the conversion of point-based data into intervals and the various
properties associated with an interval. Section 4.2, 4.3, 4.4 respectively deal with
different approaches such as Naive, significant interval discovery and modified
significant interval discovery along with their advantages and disadvantages. Section
4.5 describes the implementation of the approaches and their performance results and
comparison with each other.

4.1 Interval Discovery

Not many data mining algorithms discuss the formation of intervals on time
series data based on the interaction of events. The data collected from MavHome
exhibits the interactions between the inhabitant and the devices. This results in large
amount of information stored over a period of time for each device, with data value at

every point in the time scale. The primary aim is to coalesce the points and convert
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them to intervals. Start and end times associated with an event signifies the occurrence
of the event within it with certain characteristics of the interval such as its strength,
length and density. With large numerical and time series data, events occur with a high
degree of certainty not at specific points but within tight intervals (sets of points).
Therefore intervals give us more information on the total strength of the device activity
during a period as compared to points. Based on this observation, the data related to
each device is mined separately to identify the intervals with maximum strength.
MavHome can greatly benefit from an agorithm that can infer the usage
patterns of each device as well as interactions between different devices. MavHome
consists of numerous sensors deployed around the house that monitor different
activities. The devices include lamps, thermostats, computers, coffee machine, TV,
blinds, lawn mower, garage door opener and refrigerator to name a few. Every change
in the state of a device is recorded in the database. Abstractly such data can be viewed
as a collection of events, where each event has an associated time of occurrence.
Multiple events can occur at the same time, which means different events can have the
same timestamp. Discovery of the frequent sequences and automation of the home
using discovered sequences could reduce the interaction between the inhabitant and the
home. The crux of the study is to find, when each device is turned on and off and to
determine the interaction between the devices (such as the causality of their usage),
using the intervals. This gives the answer to the exact time of occurrences of each

devicelevent as well as of the frequent patterns (sets of devices).
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Even though interval discovery can be used with various applications as
described in Chapter 1, the MavHome scenario is used for further discussion with

typical examples.

Table 4.1: Sample of MavHome Input Data
Device | Status | Time Support
Id Stamp
A5 ON 08:30 10
A5 ON 08:31 14
A5 ON 08:32 6
A5 ON 09:40 2
A5 ON 09:41 10
A5 ON 09:50 15
A5 ON 10:00 20
A5 OFF | 10:.01 10
A5 OFF | 10:02 15
A5 OFF | 10.04 15
A5 OFF | 10:40 2
A5 OFF | 10:50 3

The sample data in Table 4.1 gives us the information about the device, its
status whether it was ON or OFF, the times of occurrences and the strength at those
occurrences. In simpler terms, it can be seen from Table 4.1, device A5 was turned ON
10 times at 08:30 during the period of X days for which the data is being mined. A
cursory glance at the sample data will suggest that instead of working with all the
points, for sequential mining, or prediction, working with the high-density areas alone,
will result in a faster and efficient application. For example, intervals 08:30 to 08:32
and 09:41 to 10:04 indicate the tight periods of high activity. On the other hand points
such as 10:50 or 10:40 not having much support, do not form meaningful intervals with
their neighbors. Thisimplies that they need not participate in the discovery of sequential
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patterns, as they would be pruned during the initial passes. In addition to sequentia
mining, the tight intervals can be used for prediction of the next occurrence of the event.
In the above example only the times of their occurrence are considered, implicitly
including only the daily events in the database. However that is not a restriction and
week type or week number can be included to indicate the week of occurrence, thereby
forming the input for discovering weekly events. Week type is whether the day was a
weekday or a weekend and week number refers to the day of the week. Various levels
of periodicity can be used to discover the highly active intervals within that periodicity.
As we zoom out, that is move from daily to weekly to monthly, additional information
is discovered, which could not be inferred at the lower level.

For example, with daily periodicity, the days or week information isignored and
the number of times the device was operated at a particular time is considered. At the
weekly periodicity, an additional attribute could be used to indicate whether the day isa
weekday or weekend, the time when it was operated and the number of times it was
operated at that time on the weekday. As an output the time intervals on a weekday
during which the device was turned on can be provided. The same can be found on a
week level by dividing the week into specific weekdays (Monday, Tuesday, Wednesday
and so on). The output reveals the best intervals on Monday the device was turned on.
This feature plays an important role in discovering events which are weekly in nature. If
the lawn mower is operated every Sunday at 11:00 am, this information could be

captured only if the algorithm was run with a periodicity of week type or weekday.
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The intervals obtained at one periodicity for different devices can be used to
form sequentia patterns. A daily event will have an interval in its weekday/weekend
and weekdays counterpart. However a weekly event, which occurs only on Monday,
will be discovered only when the algorithm is run on a weekday basis. In the following
sections, the design and implementation of the algorithm will be described in detail. In
addition to using the algorithms with different periodicities, there are two options as one
moves to higher levels of periodicity: to deal with the data at the respective periodicity
or discover the time intervals in terms of hours and minutes at that periodicity. In the
former, intervals of weeks with most activity are discovered. In the latter, for events,
which occur only once or twice a week, the agorithm outputs the time intervals in
which they occurred in each day of the week. The former can be used by applications,
which do not need data in the granularity of time but of weeks or any other periodicity
of interest. By running the algorithm with different periodicities, intervals of
occurrence for each device with that periodicity is obtained, which in turn is used to
predict the next occurrence of the event as well as to discover sequentia patterns
between devices with the given periodicity.

Table 4.2 describes the MavHome data when mined for weekly periodicity. The
same algorithm is run on different partitions to obtain the intervals particular to that
partition. Intelligence can also be built into the application so that, the algorithm can run
on various levels of periodicity automatically to discover various patterns depending on

the domain.
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Table 4.3 gives the input format used with numerical domains to mine for the set
of tightest intervals satisfying user constraints. There are several approaches that can be
used to obtain intervals from a data set.

Even though clustering is an option that comes to mind, it is difficult for a user
to ascertain before hand the input parameters usually needed for a clustering agorithm.
Several parameters such as number of clusters, density etc. are required as inputs to
various clustering algorithms. The present approach aims to find intervals with more
meaningful parameters given as input from the user such as interval-confidence, length,
and density of the interval. In addition to the discovery of intervals, characteristics of
these intervals can be used to make a better decision on the input parameters needed for

some of the traditional clustering algorithms.

Table 4.2: Input Format to discover weekly
events with output at time granularity
Device Id | Status | Weekday | TimeStamp | Support

A5 ON | Monday 08:30 10

A5 ON | Monday 08:31 14

A5 ON | Monday 08:32 6

A5 ON | Monday 09:40 2

A5 ON | Monday 09:41 10

A5 ON | Monday 09:50 15

Table4.3: Input Format to discover weekly events with output at
granularity of week

Device Id Status | Week | Support
A5 ON 1 10
A5 ON 4 14
A5 ON 5 6
A5 ON 10 2
A5 ON 12 10
A5 ON 14 15




4.1.1 Interval Definitions

Traditional time-series or numerical data sequences can be represented with an
event timestamp model. Event e is associated with a set of timestamps {T1, To .. T, }
which describe its occurrence over a period of time. The notion of periodicity (such as
daily, weekly, monthly, etc.) is used to group the event occurrences. For each event, the
number of occurrence at each point can be obtained by grouping on the timestamp (or
periodicity attribute). Timestamp considered can be as specific as using date-hours-
minutes-seconds or as genera as a weekday (e.g., Monday). In either case grouping on
the timestamp provides the number of times a particular event occurred at that time.
Thus the data can be represented as < e {T1, O}, {T2, O},...{Tn, O}> where Ti
represents the timestamp associated with the event e and Oi represents the number of
its occurrences for the event e. Oi isreferred to as the strength of the event eat Ti.

A point can be represented as an interval with the same start and end point.
Strength at the point thus reflects the strength of the interval. When the interval consists
of severa points, strength of the interval is the sum of the strength of the points that
form the interval. In addition to strength the notion of Interval-Confidence is
introduced, which gives the average number of occurrences within an interval over a
period of time. Therefore interval-confidence can be represented as a ratio of the
strength and the maximum number of occurrences needed for the event to become a
certainty. If interval-confidence >= 1, the event is considered certain to occur within the
interval. Interval-confidence is always > 0, since an interval cannot exist without at |east

one occurrence in the history. Any interval-confidence between O and 1 provides a
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degree of certainty with which the event occurs within the interval. For time-series data,
the maximum number of occurrences needed for the Interval-Confidence to be 1 can be
defined as the number of units (e.g., days, weeks, etc.) worth of data being mined. For a
numerical domain, it can be defined as the total number of occurrences observed over
the entire dataset. This results in the interval-confidence being the ratio of its strength to
the strength of the entire dataset.

Intervals are represented as [T1, T2, s, |, d, c] where T1 and T2 represent the
start and end of an interval, s represents the strength of the interval, | denotes the length
of theinterval (T2-T1), d indicates the density and ic represents the interval-confidence.
Let N be the number of units (days, weeks, months, etc.) of the time-series data. For
numerical domain, let Sbe the sum of the strengths at all the pointsin the dataset.

Length (I): T2-T1
Density (d): g/l
Interval-Confidence (ic): §/N (for time-series data)

: §/S(for numerical data)

Density is a characteristic associated with intervals with lengths >=1.Strength of
an interval, denoted by s, is defined as the number of times an event occurred within the
interval. For example, if the device was turned on 20 times within

[10:00-10:15] then s has the value 20, or

if age group of 20 bought 100 items, s is 100 for the interval [20-20]. If in 30

days of data, the device was turned on 20 times within
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[10:00-10:15] then ic=.66 [20/30] to identify a daily event and when identifying
weekly events, ic=s/number of weeks.

As an example of a numerical domain, a magazine subscription company
interested in finding age groups with interval-confidence >=40% will discover either the
best age groyp with the most orders or the top 2 age groups with confidence > 0.4 and
<= 0.5 (maximum interval-confidence of 2 intervals which together span the entire
dataset is 0.5)

4.2 Significant Interval Discovery Algorithm (SID)

The significant interval discovery algorithm proposed in this study can be

partitioned into 3 phases:
Preprocessing (one time processing)
Interval Formation (Iterative process)

Cluster Formation (one time processing)

Table4.4: Input Datasetin a Vertical format
Device Status Time of Strength
occurrence
LivRmLampl On 10:00 4
LivRmLampl On 10:01 7
LivRmLampl On 10:03 10
LivRmLampl On 11.04 8

Preprocessing converts the input dataset to a format suitable for the interva

formation algorithm. It uses any domain specific parameters, if provided to form the
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first level intervals from the point based data. For MavHome, every state change of a

device is recorded in the database. The table therefore contains the device name, its

status (On/Off), and timestamp of the state change. The preprocessing step converts this

stream of data, into a vertical layout format as shown in Table 4.4. Strength at a point

refers to number of times the device was changed to the mentioned status at that point.

Table 4.4 gives the information about the Living Room Lampl, the points at which it

was turned ‘On’ and the number of times (over the entire dataset) it was turned ‘On’ at

that point.

These set of points are converted into the first level intervals as shown in Table

4.5. Assuming the above data was collected over 30 days, interval-confidence =

Strength/30 and density= Strength /Length.

Table4.5: First Leve intervals from Table 4.4

Device Status | Start End Strength | Density | Length | Interval-
Time Time Confidence
LivRmLampl | On 10:00 10:01 11 11 1 0.3667
LivRmLampl | On 10:01 10:03 17 8.5 2 0.5667
LivRmLampl | On 10:03 11:04 18 0.3 61 0.6

The interval formation phase uses the first level intervals as input and follows

an iterative process to generate the tightest intervals satisfying the user input, referred to

as significant intervals. Cluster Formation uses the sgnificant intervals to identify any

clusters of high activity in the dataset. If the above algorithm is unable to discover any
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clusters, the output of this phase is the significant intervals discovered in the second
step. Before discussing the details of the three phases, the parameters used by the
algorithm are described.
4.2.1 Configuration File

The interval discovery algorithm accepts a number of parameters from the user
(from a configuration file) to compute the set of significant intervals and clusters. The
input parameters accepted by the algorithm are:

Minimum Strength

Window

Measure

Measure Vaue

Period

Interval Semantics

Sequential Window

Number of Threads

Approach

Minimum Strength and Window are parameters used in the preprocessing phase
to prevent the formation of certain first level intervals from the point-based data. They
are domain specific and optional; they make the process more efficient and accurate
when provided. Minimum Strength ensures that only intervals with strength greater than
specified value (threshold) form an interval. When dealing with data over a long period

of time, the user can specify Minimum Strength=4, which prevents any first level
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intervals with Strength < 4 to be formed. In the above example, minimum Strength of
11 eliminates [10:00-10:01] interval from being created and thereby any of its supersets.
This parameter helps to identify noise and prevents certain points from participating in
further passes. Window specifies the maximum length of a first level interval. Thisis
another optional parameter, which ensures that points in different periods of interest do
not combine to form an interval. For the above example, Window=30 prevents [10:03-
11:04] from being created. All the intervals created in the preprocessing step are
candidates for expansion in the following steps until a threshold condition is met.
Window parameter prevents the formation of meaningless intervals.

Measure is an option by which the users can specify the field on the basis of
which the interval selection is performed. The choices are interval-confidence, interval
length, density and a combination of interval-confidence and interval length. Depending
on the Measure chosen, its value is provided in Measure Value. If the Measure is
specified as interval-confidence and Measure Value is 0.8, the algorithm discovers the
smallest intervals in which LivRmLampl was turned on at least 23 out of 30 days or 3
out of 4 weeks. However, when the user is interested in discovering intervals of a
specified length, the Measure can be set to the interval length with Measure Value
giving the maximum length of an interval.

The above two Measures can be combined to discover intervals above the
threshold interval-confidence and within the interval length specified. To improve the
efficiency of the algorithm, the user can set the Thread parameter, which indicates an

upper bound on the number of threads spawned by the algorithm. Period and interval
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semantics are parameters used by the sequentia mining algorithm. Period signifies
discovering patterns within the specified periodicity (Daily, Weekly, etc). When mining
for weekly events, the maximum number of occurrences needed for interval-confidence
are the number of weeks worth of data. Based on the nature of the dataset (i.e. time-
series or numerical), weekly periodicity results in a different output. With time-series,
the agorithm discovers, the time-intervals for each event per weekday (Monday,
Tuesday, etc). For Numerical data on the other hand, group of weeks are clustered to
extract tightest intervals with required characteristics. The above is the same for any
other periodicity such as monthly, yearly etc. More information on interval semantics is
provided in the sequential mining section, which in a nutshell describes the pining
criteria for events. Sequential Window refers to the window to be used for sequential
mining. Depending on the interval Semantics chosen, the frequent sequences output
may or may not be equal to the window size, as will be discussed later. None of the
above parameters are necessary for the termination of the algorithm. However their
specification helps in the generation of meaningful intervals. For example, if no
Measure is specified, the algorithm will discover larger intervals, which in some cases
can span the entire dataset. Approach refers to the interval discovery algorithm selected
by the user. The user has four choices Naive, SID[n1], SID[1] and SID[n2], which are
discussed in detail in the remaining sections of this chapter. Based on the nature of the
dataset, a suitable approach can be chosen to derive the output in terms of the number of

intervals generated or length of the intervals generated.
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4.2.2 Naive Approach
The Naive approach of identifying intervals based on a user-specified measure
is discussed below. It can be viewed as an exhaustive approach in which every point can
potentially combine with every other point in an iterative fashion until the threshold
value is reached. All possible candidate intervals are generated before selecting the
smallest interval satisfying the user input. The agorithm is given below.
/1 The first level intervals generated fromthe
preprocessi ng step
Store the first level intervals in intervallnput
/| | Base case for interval Qutput
Store the first level intervals in interval Qutput
/'lincreasedl nterval Qutput identifies the intervals
generated in the | ast pass
For each el enent in interval Qut put
If ( Interval.neasure_value <
Confi gurationFil e. neasure_val ue)
Join with adjacent interval fromintervall nput
to forma |longer interva
Store the new interval in increasedl nterval Qutput
If no newintervals are forned in

i ncreasedl nt er val Qut put

/linterval discovery term nates
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Br eak
El se
Repl ace interval Qutput with

i ncr easedl nt er val Qut put

In the first pass of the abowe agorithm, every 3 points combine to form an
interval. That is, the first level interval (made of 2 points) is lengthened by the addition
of its closest point. Along similar lines, the third pass results in the combination of
every 4 points to form an interval. From Table 4.5 the intervals formed using Naive

approach in the first pass are shown in Table 4.6

Table 4.6: Intervals generated in the first pass by Naive Approach

Device Status | Start End Time | Strength | Density | Length | Interval-
Time Confidence

LivRmLampl On 10:00 10:03 21 7 3 0.7

LivRmLampl On 10:01 11:04 25 04 63 0.8

The Naive approach performs a total of O(r?) combinations by merging each
interval with al possible intervals until the user-defined measure is reached. It grows
the intervals generated by the last pass with the first level interval set to form new
intervals. From Table 4.6 the interval created in the next pass would be [10:00-11:04].

This approach is computationally expensive for large datasets. Furthermore, it
does not help in reducing the number of intervals, especialy when the number of

intervals generated & large (n-1 intervals from n data points). However for smaller
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datasets, with distinct intervals and well-defined input parameters, the Naive approach
can be used to generate al possible intervals satisfying the threshold measure (defined
in the configuration file). This forms the complete input set for sequential mining,
which discovers al possible interactions between events. The naive approach aways
combines intervals of the nth pass with the intervals from the first level.

4.2.3 SD[n-1] Approach

The next approach — SID[n1] Significant Interval Discovery) approach —
reduces the number of passes and the number of intermediate intervals generated by
utilizing interval characteristics. SID uses a divide and conquer method for generating
new intervals in the nth pass by using only the n-1"" (or current) pass. Furthermore,
instead of blindly growing the interval generated in the previous pass (as in the naive
approach), it makes use of density and interval-confidence of the current and adjoining
intervals to ascertain whether a merge should be made. Since interval-confidence = s/N
or /S and its denominator is a constant, an increase in the numerator will always
increase the interval-confidence value. Therefore it can be stated that interval-
confidence is a monaotonically increasing function.

Lemmal: If aninterva s has interval-confidenceic then all of its supersetsi.e.,
{"alal S and astarttime <= sstarttime and a.endtime >= s.endtime } will have
confidence >= ic.

The above lemma follows directly from the definition of interval-confidence.

In addition to interval-confidence, density of an interval relates its total strength

with its length. High-density points indicate sudden burst in activity and merging them
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with the lower density counterparts has a smoothing effect over the new interval.
Merging intervals using density helps to eliminate the local maxima in favor of the
global maxima around high-density points. When an interval reaches the threshold
measure level, it is added to the output set. This interval does not participate in further
merges because any further merging will only result in greater interval-confidence or
length than required thereby forming an extrafit, as indicated in Lemma 1. If no new
intervals are generated in the subsequent pass, the interval- merging phase terminates.
SID uses the following condition in the algorithm to prevent all possible candidate
generation.
For each el enent in interval Qut put
[f ( Interval.nmeasure <
ConfigurationFil e. neasure)
If interval.density <=
Adj acent I nterval .density or
i nterval . confidence <=
Adj acent I nterval . confi dence
Join with adjacent interval from
interval Input to forma | onger
i nterval
Store the new interval in

i ncreasedl nt er val Qut put
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Following are the four cases, which occur when two intervals try to merge with each
other:

Case 1;[T1,T2,cl] —[T2,T3,c2]:d2>=dl & c2>=cl

Case2T1,T2,cl] —[T2,T3,c2]:d2>=dl & c2<=cl

Case3:[T1,T2,¢cl] —[T2, T3, c2: d2<=dl & c2>=cl

Case4T1,T2,cl] —[T2,T3,c2]:d2<=dl1 & c2<=cl

Figure 4.1 represents the four cases graphically. The dashed lines are the
adjacent intervals, which merge to form the interval represented by the solid line. The x-
axis represents the time and the yaxis represents the density. The nature of interval-
confidence is same as strength, which is indicated by the area within the interval
(density * interval-length). A uniform distribution is used to illustrate an interval
because the SID algorithm uses density, interval-confidence and length alone to decide
whether an interval merges further. The density of the interval is assumed to be the
mean of that interval’s uniform distribution. After every merge the above- mentioned
characteristics are re-calculated so as to alow for future merges.

The first and third cases have the adjoining intervals with greater mass as
compared to the first interval, and merging the 2" interval with the ¥ results in [T1,
T3, c3] with increased interval-confidence. Case 2 indicates a particular scenario in
which the adjoining interval is of smaller mass but exhibits a sudden burst in activity,
causing an increase in density.

The second interval forms the loca maxima around the region, which is

smoothed by its merge with the first. Case 4 indicates a natural end of an interval, since

56



compared to it; the adjoining interval acts as noise and can be ignored. As the number
of passes increase, the number of merges that form new intervals start decreasing. It can

also be seen that the total number of merges for the algorithm is proportional to n log n.

Case 1: Density 1 < Density 2 and Case 2: Density 1 < Density 2 and
Interval Confidence 1 < Interval Confidence 2 Interval Confidence 1 > Interval Confidence 2
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Figure 4.1: Different Cases for Interval Merges

In every pass, two intervals merge to form alarger interval. In the next pass, it is
the larger interval, which is a candidate for further increase. This causes the size of the
interval to grow at an exponentia rate with the number of prospective merges reducing
in an exponential rate. Due to this property, SID[n1] produces longer intervals as
compared to Naive. The amount by which SID[n1] extends the output interval for the
same measure level as Naive, is referred as extra-fit. Since intervals are checked before
they continue to merge, the extra-fit produced by SID[rn1] can never exceed twice the
optimal length (as produced by Naive) of the interval. This is because interval
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characteristic needs to be below threshold for a merge to happen. In the worst-case, an
interval just before reaching its optimal length can merges with its adjacent interval that
has aready reached the threshold value, thereby resulting in an extra fit. Even then the
extra-fit is not more than twice its optimal length because the interval merged before its
threshold was reached. The aim of the algorithm is to form the best interval from each
point without enumerating al possible intervals from it.

Moreover the algorithm is flexible enough to stop the interval growth at a point
especially when the point looks uninteresting and signifies noise. When experimenting
with large data sets, SID[n1] is faster, accurate and produces fewer intervals as
compared to Naive. Despite the smaller amount of intervals, SID[n1]’s results are
comparable to Naive with large datasets as there always exists more than one significant
interva in a high-density area. For example, if 10:00 to 11:00 represents a general area
of high activity with 10 significant intervals with interval-confidence=0.8, Naive
enumerates the 10 tightest intervals whereas SID[n1] enumerates 3 with interval-
confidence=0.9. Therefore SID[n1] maintains the same coverage provided by Naive in
addition to reducing the number of intervals generated. Coverage can be defined as the
set of all distinct points included within the significant intervals produced by Naive.
This is very beneficial when the data set has to be mined for sequentia patterns. The
disadvantage could be as follows: if there exists only one interval around a range of
points and SID’s four cases (Figure 4.1) are unable to form aninterval around them, the
range might be missed. If SID[n1] is used with smaller datasets, the conditions

mentioned above can be relaxed to correct the above error. Instead of the
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If Interval.density <= AdjacentInterval .density
or Interval.confidence<=AdjacentInterval .confidence
Merge the interval
One can use,
If Interval.density <=w; * Adjacentinterval.density
or Interval.confidence<= wo* Adjacentinterval.confidence
Merge the interval
Where wl and w2 are weights that need to be determined.

4.3 Alternative Sid Algorithms

The naive and the SID[n1] approaches can be viewed as approaches that
represent the end points of the spectrum. The Naive approach combines intervals from
each pass with the input intervals and hence can generate the tightest intervals that
satisfy the user-specified measure. On the other hand, the SID[n-1] approach combines
the intervals from each of pass with only itself to from the intervals in the next pass. As
a result, the intervals generated may be dightly larger than the ones generated by the
naive approach. In order to reduce the extrafit of the SID approach, two more
approaches are proposed that cover points in the spectrum formed by the naive and the
SID [n-1] approach.

In many situations, the application demands the discovery of al possible
intervals with minimum extra-fit. The Naive method accomplishes this task but at the
cost of high computationa time. Fortunately, SID can be modified to increase the

number of intervals produced and reduce the extra-fit without listing all possible
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intervals in more than one-way. This can be viewed as an option to the user to explore
the data set in different ways so as to understand the domain characteristics and
determine the input parameters. The user can decide, based on the required accuracy on
one of the following approaches:

The naive approach to explore the intervals exhaustively (SID[1])

The SID[n1] approach to explore the intervals minimally

The SID[1, n1] approach to produce most of the intervals produced by Naive

and reduce the extra-fit as compared to SID[n+1]

The SID[n-2, n1] approach to produce improved coverage and reduced extra-

fit compared to SID[n-1]

The value(s) in the parenthesis indicate(s) the intervals from the passes used for
merging to form the intervals of the nth pass. Based on this convention, the naive
approach can be expressed as SID[1] as the first level intervals are always used to
merge with the (n-1)'" pass intervals. SID[1, n-1] uses intervals from first pass to merge
with the intervals in the n-1™ pass with priority given to intervals from the 1% pass while
merging.

4.3.1 9D[ 1, n-1] Approach

For the SID[1, n-1] approach, the SID[n-1] agorithm can be used with the
same merging criteria (Figure 4.1) with minor modifications. SID[n-1] uses the current
pass aone to create the next pass intervals. In this algorithm, the current pass [n+1] as
well as the first pass [1] intervals are used for merging purposes. The four merging

criteria cited in Figure 4.1 are used with higher priority given to the first pass over the
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last pass intervals. The reasoning behind using first pass and its higher priority is, after
reaching a certain measure level; the interval grows incremertally when merged with
the first pass. In the initial passes the intervals grow faster since adjacent points may not
always have the satisfying conditions to grow. However after a few passes, the intervals
try to merge with the first level interval as compared to the last pass. Owing to this, the

growth is curtailed, extra-fit is reduced and intervals produced increase as compared to

SID[n1].
Table4.7: First Level Intervals
Start Interval End Interval Strength Interval- Density
Confidence

1 3 5 4 25

3 4 5 4 5

4 8 10 .5 2.5

8 9 10 .5 10

9 12 15 .75 5

Table 4.7 represents the first leve intervals produced from point data for 20
days. From Table 4.9 it can be seen that because of first pass intervals, the extra-fit by
SID[1, n1] reduces thereby increasing the number of intervals produced with
confidence >=1. First iteration of interval- merge results in the formation of {[1-4], [3-

8], [4-9]} for al approaches.

Table 4.8: After 2" Pass of SID[n-1]

Start Interval End Interval Strength Interval- Density
Confidence

1 9 30 15 3.3

3 12 40 2 2.5

4 12 35 1.75 2.1

8 12 25 1.25 3.5
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SID[n1] as seen from Table 4.8 produces {(1-9), (8-12)} as output. Intervals

{(3-12), (4-12)} are eliminated because its subset (8-12) itself is above the threshold

value (Lemma 1).
Table4.9: After 2" Pass of SID[1, n+1]
Start Interval End Interval Strength Interval- Density
Confidence
1 8 20 1 2.8
3 9 25 125 4.1
4 12 35 175 2.1
8 12 25 125 3.5

SID[1, n1], on the other hand, produces {(1-8), (3-9), and (8-12)} as output.
Interval (4-12) is eliminated in favor of (8-12). Naive approach with no extra-fit would
produce {(1-8), (4-9), and (8-12)} with (3-9) eliminated in favor of (4-9). SID[1, n1]
results in increased number of intervals with reduced extra-fit. A salient point to note is
that in either case, the coverage is complete with every interval produced by naive is
encompassed by SID[n1] and SID[1, n-1].

4.3.2 9D[n-2, n-3] Approach

SID[n2, n1] replaces the use of the first passin SID[1, n-1] by the penultimate
pass. This does increase the number of intervals greatly as compared to SID[n+1] but
reduces the extra-fit and increases the coverage produced. This can be explained along
the same lines as SID[1, n1], since the interval growth is not completely exponential.
The smaller interval of the penultimate pass is used to merge producing a better-fit
interval instead of the corresponding larger last pass alone, which has the greatest length
intervals. Figure 4.2 represents a subset from 9:30 to 14:40 over 30 days of data, mined

for the discovery of intervals with interval-confidence >=0.8 with window=60. The
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figure illustrates the difference in the intervals created and shows only one interval per
area. Over the high density area of 9:55 to 10:11,

Naive discovered: {9:55-10:06, 10:00-10:07, 10:02-10:08, 10:05-10:10, 10:07-
10:11}

SID[n1] discovered: {9:55-10:10, 10:04-10:11}

SID[n2, n-1] discovered: {9:55-10:06, 10:00-10:08, 10:02-10:10, 10:03-10:11}

SID[1, n1] discovered: {9:55-10:06, 10:00-10:07, 10:02-10:08, 10:03-

10:09,10:07-10:11}
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Figure 4.2: Comparison of Intervals with SID Variants

The following conclusions could be derived from the above: Naive with ©§
combinations and larger number of passes produces all possible user-defined intervals
from the dataset. It uses the latest and the first pass of intervals as input. SID[n+1] with

n log n combinations uses the recently created intervals alone to generate the next set of
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intervals. SID[1, n-1] increases the number of intervals substantially and uses the
intervals in the first and the last pass as input. Findly, SID[n2, n1] reduces the extra
fit by using the last 2 passes alone as input. Both SID[1, n1] and SID[n-2, n1] give
higher priority to a smaller length interval during merges.

4.4 |Implementation of SID and Cluster Algorithm

The implementation of interval discovery can be broken into two parts:
identification of intervals (SID approach) and identification of clusters from the
intervals discovered (cluster identification).

4.4.1 Implementation of SD

The implementation of the interval discovery agorithm consists of the
following main classes:

InputStruc

InputMavhome

OutputStruc

I nputFormat

Incrementlnterval

Semaphore

Sync

InputStruc gives the method and attributes associated with the input object. This
is a standard object, which can be used with any type of application. It is made of date,
which signifies the field, to be converted into intervals and support that gives the
strength at that field. Field can be either time-series or numerical data. |nputMavhome
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class provides information related to the MavHome application that is not given by
InputStruc. Whereas InputStruc is the general structure of an input object,
InputMavhome is an object that provides domain specific information. When the
algorithm is to be used with a different application, the inputMavHome class can be
replaced with the attributes associated with the specific domain.

OutputStruc refers to an interval class and is associated with the following
attributes:

Start time
End time
Total Supp
Time Diff
Density

Interval-Confidence

It is also associated with an important function supersetOf ( outputStruc,Vector).
The function returns an integer value depending on whether the object is a
subset/superset of the object passed as an input parameter to the function. Vector object
is filled with the start and end times of itself and the object passed as a parameter
converted to minutes format in case of time series data. This information is useful in
determining the nature of the overlap in case of overlap during cluster identification
phase.

InputFormat class reads the configuration file, identifies the input parameters

and spawns objects of type Incrementinterval for each event. At the end of the last

thread, it starts the sequential mining phase by invoking the Maximal Sequence object.
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To control the number of threads generated classes Semaphore and Sync are used. More
details on the Maximal Sequence object will be provided in the next chapter.

Incrementinterval forms the heart of the interval discovery agorithm, which
accepts as input the vector of points and support associated with an event and all the
parameters given in the configuration file. Point data is converted into intervals by
joining adjacent points in FindCombinations(). Depending on the approach chosen,
intervals are formed in an iterative manner. From the set of intervals created in the last
pass, only those satisfying the threshold measure form the set of significant intervals.
Since in every pass, an interva is extended with the same start point, its position in the
vector remains unchanged. This property can be used while implementing SID[1,n-1]
and SID[n-2, n1] and the search to find the adjacent interval in a vector is done once.
Otherwise the time spent for this search can become significant with large datasets.
Once the position of the adjacent interval is found, the vector of the previous pass in
SID[1, n1] and SID[n-2, n-1] can be indexed by the same position and a second search
can be avoided.
4.4.2 Implementation of Cluster Algorithm

The design and implementation of cluster identification module requires an
algorithm that produces a set of cluster intervals generated from the significant
intervals. The current implementation generates clusters between 2 adjoining significant
intervals. For example, if £3 and 38 are the 2 significant intervals discovered, the
algorithm generates a cluster of 1-8. Flexibility can be added to the cluster identification

step by allowing intervals within x units of each other to form a cluster.
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Also the cluster implementation can be modified to create overlapping or
digoint clusters. The data structure used to find a cluster has the following 3 attributes
associated with it:

Name: A unique identification of the cluster

Head: The superset interval of the cluster. All the intervals associated with the
cluster form subsets of thisinterval.

Cluster-Intervals: All the intervals including the head form the cluster. From this
set, a subset of tightest intervals representative of the cluster can be obtained.

Head values of al the clusters identified as output are representative of the
clusters within the dataset.

The psuedocode for finding clusters from the significant intervalsis as follows:
Identify the intervals from increasedi nterval Qut put whose
measure >= user_specified nmeasure
For each interval (1) in the finalset

For all Heads (H) of the existing cluster ( C)

If (I is a subset of H)
I T C

Else if (I is a superset of H)
C.Head T C
C. Head = |

El se

Forma new cluster Cwith C Head = |
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C. Nane = ‘Custer '’

The above results in a set of clusters, which are overlapping in reture. Ordering
criteria can be used in the form of length of the cluster, its density, interval-confidence
and number of nonoverlapping representatives with their measures above the
threshold. After this step only the points with sufficient support either in terms of

interval-confidence or length are chosen for sequential mining. This is the main

+Max( C_Nane) +1;

advantage of SID [n1] and its variants over the traditional approach.

Over the same data used for Figure 4.2 (30 days over 9:30-14:30), cluster
identification algorithm with SID[n1] produced the clusters shown in Figure 4.3. The

current implementation of the algorithm illustrates overlapping cluster, which can be

modified to produce digoint clusters alone.
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Figure 4.3: Identification of Clusters

In addition, the algorithm can be run on a representative data set and the number

of clusters obtained by the algorithm can be fed to a traditional clustering algorithm
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such as k-means [1], [2] to get improved results. Similarly, the average density of the
intervals produced can be fed to a density-based clustering algorithm such as
(DBSCAN) [3], [4] to improve results.

45 Experiment Results

A number of experiments were performed with the MavHome data to verify the
correctness and scalability of SID and its variants with respect to the Naive approach.
Experiments were also performed in order to observe the effect of parallelization on
response time. In the MavHome scenario, data collected for all devices is partitioned
into events for each device and the intervals of occurrences are discovered for each
device independently. This can be done for most of the data sets even if the data is
collected as a single set. Since the present focus is not on the interaction between
different events, each event can run as an independent thread. The user can input a
parameter, which controls the number of threads generated. A number of experiments
have been performed with the data collected from MavHome ranging from 1-3 months.
Severa experiments were conducted on the same dataset, comparing both the Naive and
SID approaches on the time taken, passes needed and more importantly intervals missed
by SD[n1], SID[1, n1] and SID[n2, n-1] as compared to Naive. The time recorded
for all the experiments was calculated as an average of four runs.

It was found that by increasing the number of threads, and thereby introducing
parallel computation, the time taken to discover the intervals reduced, as can be seen
from Figure 4.4. The time taken was averaged over four runs for each dataset. The

dataset ranged from 46000 records in 1 month to 140,000 records for 2 months and
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201,000 records in 3 months. The x-axis indicates the number of threads used. The
experiments suggest a significant improvement with increase in the number of threads.
However, as the data set size increases, beyond a number of threads, the improvement
does not continue which was observed for the 3month data for 15 threads. Another
observation is that the time taken by SID did not increase dramatically from 1 to 3
months, suggesting that with large data sets, the convergence is faster than small data
sets. This aso means that the computation time does not increase proportiona to the
data size (can be inferred from 1 thread response time for the three data sets).

It is important to understand the effect of SID alternatives on the number of
passes. As seen from Figure 4.5 the number of passes taken by the Naive approach for 3
months of data is much more than that taken by SID[n1] or SID[1, nr1]. The largest
improvement is from 75 passes to 12 (for D5-ON) and the smallest improvement is
from 32 to 9 (for F5-ON). The largest improvement is 600% and the smallest is 300+
%. Even among the SID aternatives (not including the naive), there is significant
reduction in the number of passes. The reason SID[n2, n-1] has not been shown in the
graph isthat it always lies between SID[1, n-1] and SID[n+1] in the number of passes.

In order to compare the coverage produced by SID[n1], the intervals produced
by the Naive algorithm whose start times were not included within the start and end
times of at least one interval produced by SID[n-1] were counted. The same calculation
was performed with the end times produced by the Naive algorithm to verify the
presence of at least one interval in SID[n1], which encompassed it. The number of

points missed by SID[n1] was less than 2% of the intervals generated by the Naive
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approach. Given the substantial reduction in the number of passes and the insignificant
missed percentage in the coverage of the alternatives, there is no advantage to use the

naive approach for most of the data sets.
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Figure 4.4: Response time of SID[n1] for 1-3 months with daily periodicity

In addition to the number of passes, the number of intervals produced by the
SID alternatives is aso of interest. It was observed that SID[n-1] produced about 1/3
the intervals produced by Naive and SID[1, n1] about 2/3 as can be seen from Figure
4.6. There is not only a significant reduction in the number of passes, but aso in the
number of intervals generated. The reduction in the intervals by 33% and 66% with the
use of SID[1, n1] and SID[1] approaches respectively without sacrificing the coverage
implies that these alternatives could be considered as useful substitutes to improve

upon the performance of the naive approach.
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Figure 4.5:Comparison of the number of passes between SID Approaches and Naive

The Graph shown in Figure 4.7 enumerates the percentage deviation in the
interval length of the significant intervals between Naive and various SID approaches.

Percentage Deviation = Avg( (Sid[i].endtime-Naive.endtime)/Naive.Starttime-
Naive.endtime)

when Sid[i].starttime=Naive.starttime and i is the SID alternative

Percentage deviation indicates the amount of extra-fit produced by SID and its
variants as compared to Naive. The first nonth gave an average of 14.5% whereas for
the 3 months it reduced to 5.43 % when SID[n-1] was used. This shows that with larger
datasets, SID[n-1] improved on performance as well as accuracy. From the graph we
can infer that the percentage deviation not only improves with SID alternatives, but

converges to the naive approach when the data size increases.
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The effect of domain specific parameters such as minimum support and
window on the number of intervals has also been studied. Table 4.10 shows that
reduction of the window parameter or specifying minimum constraint reduces the
number of intervals discovered and changes interval characteristics. We can observe
from Table 4.10 that window made a greater impact on the June dataset as compared to
August. Thisis because in August, enough data had been accumulated with interactions
at every point, because of which window value of 10 did not make much of an impact.
Minimum Support however made a comparable difference in intervals irrespective of
the sizes of the dataset.

This parameter reduced the number of valid intervals that were formed in the

first pass due to the strength criteria and caused a rippling effect. Since these parameters

73




have a great impact on the intervals discovered, they should be set after careful
consideration. The results in Table 4.10 was observed by running the algorithm with 1-3
months of data with the following parameters, Measure of 2 and interval-confidence as

0.8.

Table 4.10: Impact of Minimum Support and Window on #of
intervals discovered
Parameters Month #of intervals
Window=10 June 3310
Window=60 3621
Minimum Support=3 2361
Window 60 July 5235
Window=10 5079
Minimum Support=4 4144
Window 60 Aug 5152
Window=10 5101
Minimum Support=5 4422

Naive and SID variants produce a set of intervals for each event. It was of great
interest to verify the one interval chosen by all approaches in a given range with the
same ordering criteria applied over the set. This would be very useful in situations
where the next occurrence of a device was to be automated.

The experiment was performed with June data for daily events and all
approaches were run with the same configuration file before posing the question. As can
be seen from Table 4.11, since there was more than one interval around 9:30 to 10:00,

all approaches gave similar answers.
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Table 4.11: Comparison of best intervals by all approaches over 09:00-10:00 for B5 -

ON
SID[]] SID[1, n1] SID [n2, n-1] SID[n1]
09:53-10:00 09:53-10:00 09:58-10:04 09:53-10:00

The ordering criteria used by all approaches was to pick the interval with
highest density followed by smallest interval length and lastly highest confidence in

caseof atie.

Table4.12: Comparison of best intervals by all approaches over 09:00-11:00 for B5 —

ON
SID[1] SID[L, 1] SID [+2, 1] SID[ 1]
10:48-10:54 10:49-10:55 10:49-10:55 10:49-10:55

Even as the range over which the question was posed increased, the answer

produced by different approaches did not differ by much.
4.6 Conclusion

In conclusion, the performance of SID[n-1] is significantly better for large data
sets and is comparable in accuracy (deviation and coverage) to that of the Naive
approach. If one wants to reduce the deviation further, one of the other two aternatives
(SID[1, n1] or SID[n-2, n1]) can be used. Our experiments indicate that the Naive
approach is not needed for the data sets. The interest in the naive approach isto use it as
a reference for benchmarking the performance and accuracy of other SID approaches.

Of course, for smaller data sets, the naive approach may still be acceptable from the
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performance and accuracy point of view. Of the others, SID[n-1] is good for most of the
data sets as it reduces the number of passes dramatically and the number of intervals by
amost 66%. As this serves as input to the clustering and sequence mining algorithms,
computation time of clustering and sequential mining will also reduce proportionally.
Moreover the processing time does not increase much with SID variants (SID[1,n-1]
and SID[n-2. n1]) due to the inherent indexing property available to the algorithm for
reducing extra-fit. Finaly, it could be concluded that the algorithm finds the best
intervals that can be formed from each point. Many of these intervals are weeded out
due to the fact that a smaller interval is found, starting at a later point but ending at or
before the previous interval. Many other domain specific constraints can also be added
to the algorithm to reduce the number of intervals selected from the final pass. As an
example, when two significant intervals start within x units of each other, the less
denser or the larger interval among the two can be eliminated. These conditions can be
added seamlessly in the algorithm after the final phase either in the main memory side
or on the database side. On the main memory side, the final output can be sorted based
on the start times and density in a vector. Binary search can be used to find ad
eliminate the intervals which fall within x units of the each other in the vector. On the
database front, a stored procedure can be written to order the intervals based on density
and select only those records with the maximum density among the records within x
units of its start time. Finally as compared to previous approaches, our approach allows
the user the option to input domain specific constraints or run the algorithm with no

domain knowledge. In addition to the significant intervals, the algorithm also provides
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certain statistics on the data, which can be used as input to other traditional agorithms
such as DBSCAN, K-means, etc. In interval discovery phase, each event was
considered in isolation. The next step would be to consider the events together and
discover frequently occurring patterns among them. This problem is addressed in the

next chapter since most of the current algorithms do not deal with interval-based input.
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CHAPTERS
HYBRID-APRIORI SEQUENCE MINING

This chapter forms the second phase of the algorithm, which takes the
significant intervals as input and discovers frequent sequences from the data set. Section
5.1 describes the general representation of a sequence defining some of the commonly
used terms. Section 5.2 explains hybrid-apriori agorithm, support counting in hybrid-
apriori and how and why it differs from the traditional approach. Discovery of maximal
and frequent sequences are explained in Section 5.3 followed by performance
evaluation in section 5.4. Log files are maintained for interval discovery as well as
sequence mining are described in Section 5.5.

5.1 Seguence Definitions

A general sequential pattern can be expressed as a Directed Acyclic Graph
(DAG). This graph is formed of nodes and directed edges where the former represents
events or event-sets and the latter represents the order of their occurrence. During the
pattern discovery process, edges are added by introducing nodes dynamically or shrunk
by collapsing one of its incident nodes into another. In our approach nodes and edges
are added in succession upon their discovery extending the graph. For the universa
formulation of sequences some of the concepts and figures are adopted from [8]. Edges
can be associated with a set of constraints called edge or timing constraints, which can

be trandated into:
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1. Maximum Span (ms): The maximum allowed time difference between latest and
earliest occurrences of eventsin the entire sequence,

2. Event-set Window size (ws): The maximum allowed time difference between
latest and earliest occurrences of eventsin an event-set,

3. Maximum Gap (xg): The maximum allowed time difference between the latest
occurrence of an event in an event-set and the earliest occurrence of an event in
itsimmediately preceding event-set, and

4. Minimum Gap (ng): The minimum required time difference between the earliest
occurrence of an event in an event-set and the latest occurrence of an event in its
immediately preceding event-set.

An example of the discovered pattern <(A) (C, B) (D) (F, E.G)> is shown in the Figure
5.1. Hybrid-Apriori uses CDIST_O (described in Introduction) as support counting for
interval-based sequential mining. CDIST_O considers the maximum number of all
possible distinct occurrences of a sequence over al objects; that is, the number of al
distinct timestamps present in the data for each object. The primary difference between
the approach presented in this study (Hybrid-Apriori) for interval based sequential
mining and traditional mining algorithms, lies in the use of time-intervals instead of
timestamps. As an ordering criterion among fquences, intervals with the maximum
interval-confidence are chosen between sequences with the same interval boundaries.
Similarly, among sequences with the same start point and interval-confidence, the

sequence with the earliest end point is chosen.
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Thus, in Hybrid-Apriori, more importance is placed on sequences with

greater interval-confidence and smaller lengths, thereby extracting the tightest

sequential pattern.
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Figure 5.1: Timing Constraints

5.2 Characteristics of Traditional and Interval-Based Sequential Mining

This section outlines the differences between the traditional Apriori approaches
used in traditional sequential mining techniques with the interval-based Apriori
approach.

5.2.1 Apriori based Sequence Mining

Traditional mining algorithms primarily follow a standard sequence. From the
entire dataset, given a window, all possible candidate item sets are identified. An
efficient support counting method is used to prune the candidate sets with support
below minimum support, and the remaining forms the frequent item sets. Pruning is

based on the subset property to find the final frequent item sets for the current pass. The
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current set of frequent items is used as the seed to form the frequent items of the next
pass. This process continues as long as frequent item sets are generated in the following
passes. In the Apriori approach, candidate and frequent item sets are represented as
relations containing a set of attributes, each representing an item. In the k™ pass, the set
of candidate itemsets G is generated from the frequent itemsets R, (generated in the

(k-1) " pass) as shown below:

| nsert into G

Sel ect l.item, ...,li.item.q1, lo.item-1

From Frie-1 11, Fr1 12

VWher e l,.item = Ils. item and
l1.itemyg.o = lo.item.> and

li.itemg < loitem.q

(skip 1tern, o)
I .iterm; = L, item,

I itetry, = L 1terny, o
(skip item ) Ig.aterry, ; = §oaterng,
1

I).itemy = Litery \
Fo. L

Il.itEInk_]_ = Ig.itemk_g -

Iy itetry, 1 = I3 iterny, /_
I,.itetn,; = I.itetn, D \<|
I, iterry, , = L iterny, I%
I.atermy, ; < Ig'lteV\ Fralz

Flt:-l I1 Fk-l 12

L

Figure 5.2: Candidate Generations for Any k

The number of candidate itemsets generated in each pass, by the above step is

reduced by pruning out all itemsetsc Cy where some (k-1)-subsets (itemsets of length

k-1) of carenot in F.1. Thisis based on the subset property that in order for an itemset
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to be a frequent item, all subsets of that itemset have to be frequent. The tree diagram
for this process is shown below in Figure 5.2.
5.2.2 Hybrid-Apriori based Sequence Mining

Hybrid-Apriori algorithm follows a smilar sequence eliminating some of the
steps on the way because of the presence of the SID intervals instead of the entire
dataset of information. Application of a SID algorithm resulted in partitioning the
dataset and extracting only the intervals with sufficient interval-confidence. Therefore
the points, which would have been eliminated in the support counting phase, have
already been eliminated before the start of sequential mining. Since the intervals for
each event was found independently without using the sequentia information, a
statistical independence is assumed between events in the discovered patterns. They act
as potential candidates including both positive and negative causality patterns. This
approach has an advantage over the traditional mining approaches in its efficiency and
lack of storage requirements. The actual causality can be found by using the potentia
patterns over the stream of future data, thereby eliminating the need to store the past
data. In this process the validity, pattern-confidence and number of occurrences of the
potential candidates can be extracted. On the other hand, if the application requires
identifying the set of actual patterns in the data beforehand, making one pass over the
input data can help eliminate patterns with events, which were discovered due to
tempora proximity and not actual occurrence. Even with this extra computation, the
hybrid-apriori is efficient as the approach makes use of partitioning, parallelization and

makes only one pass over the entire dataset. Pattern-confidence replaces support
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counting in the hybrid-apriori agorithm, which represents the average number of
occurrences of the sequence within the interval. The pattern-confidence of a sequence
within an interval is the product of the interval-confidence of its events within the same
interval thereby assuming the events to be independent of each other. With frequently
occurring patterns, pattern-confidence underestimates the actual probability of the
events occurring together but retains its significance or order relative to the other
patterns discovered. If interval-confidence >= 1, the event is considered certain to occur
within the interval. Interval-confidence is aways > 0O, since an interval cannot exist
without at least one occurrence in the history. Any interval-confidence between 0 and 1
provides a degree of certainty with which the event occurs within the interval. Therefore
it can be said that events with interval-confidence >1 can be treated as certain events
and can have their value as 1. The amount of over-occurrence within the interval is
immaterial because pattern discovery relies on whether its events are certain to occur
within the interval and if not their degree of certainty. For the events with interval-
confidence between 0 and 1, the value gives the average number of occurrences within
an interval over a period of time and therefore remains unchanged. The greater the
interval-confidence, the greater is the chance of the event occurring within the interval.
For example, when event A occurs within an interval (3-8) with interval-confidence of
0.9 and event B within (5-9) with interval-confidence of 0.8, the pattern-confidence of
the occurrence of event AB within (3-9) is 0.72 (since both A and B are independent
events). Instead of using K- copies of F1 for support counting, the confidence of an

event set can be found by atwo-way join of F.1 and F 1. Asthe base case,
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when k=2,

F ».pattern-confidence= F;.item1.confidence * F;.item1* confidence,

where F.item1<F;.iteml

For K>2

F k =F 1. pattern-confidence* F1.iteml.interval-confidence

where Fi.iteml < last item of F.1 and Fy.iteml.start-time and end-time is
between start and end time of Fy.;.

The second property of WINDOW constraint automatically holds the subset
property true because of which the pruning based on the subset property is not explicitly
performed. As an example;

Let A (1,10), B (2,5), C(7,15), D(17,25) form the significant intervals generated
from the SID[n-1] agorithm. The figures in the parenthesis indicate the intervals
discovered for the events. Assuming a window of 10 units (maximum difference
between start points of events), the first pass forms,

AB(1,10), AC(1,15), BC(2,15),CD(7,25)

The 39 pass discovers ABC(1,15). Firstly if all subsets are above threshold
pattern-confidence, ABC generated in the 3" pass implies because of the window
property that all of its subsets occur in the second pass. To explain it further A
combined with B because B started within 10 units of start of A. A aso combined with
C because C started within 10 units of start of A. This automatically implies that B
combines with C since B started after A. ABC was discovered in the 39 pass, because

AB and AC were found in the second pass. Secondly if we assume that the pattern
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confidence of sequence BC is below threshold, the pattern-confidence of the subset
ABC automatically goes below threshold and can be pruned out automatically.
5.2.2.1. Interval Semantics

Given awindow parameter, interval based mining provides two types of interval
semantics which can be used to generate k-item set from the k-1 items. Most of the
traditional sequential mining techniques deal with events that occur at a specific point
of time. If the data point lies within window units of the start of the sequence, it is
included in the generation of the maximal sequence. Dealing with an interval instead of
apoint results in two cases,

1) if the interva starts within window units of the start of the sequence,

it can be included to form a maximal sequence

2) if the interval starts and ends within window units of the start of the

sequence, it isincluded to form a maximal sequence.

Different domains require different semantics. Semantics-start (termed as
semantics-s) generates all possible combinations of events, which occur within window
units of its start time. Semantics-end (termed as semantics-€) on the other hand
generates combinations with events, which complete within the window units of its start
time. This automatically implies that events which occur with an interval greater than
the window do not participate in the generation of maximal sequences of semantics-end.
Using semantics-s results in many more sequences as compared to semantics-e as the
latter is a subset of the former. With MavHome data, closely related interactions have

more dependence on each other. Therefore semantics-e gives an agent more information
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on the frequently occurring patterns. An agent can use the first event as the start
indicator based on which the entire sequence can be automated.

5.3 Generation of Maximal Sequences

The agorithm is iterative in nature and generates greater bength sequences in
each subsequent pass. The terminating condition is either a stop level, which can be
explicitly specified by the user or implicit when no more sequences are generated. The

pseudo code of the algorithm is as follows:

1) Create table FKIJON as
Select * fromFl1
2) Insert into FKJON
Sel ect itendl,starttinme+l, endti ne+l, pattern-
confi dence
From F1
3) For ( k=2; Al Done !=1; k++)
{
4)// Create all possible conbinations based on a
specific interval semantic
create tabl e MAXCONF as
select a.itenl,a.iten?, .a.itenk-1,b.itenk-1,
| east (a.starttine,b.starttine),
greatest(a.endtine, b. endtinme), b. pattern-
confi dence
From F[ k-1] a* JON FKION b
where a.iteml= b.iteml and ...
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a.item.o=b.item., and a.item¢ <b.item and
b.starttine < a.start time + W ndow
5) //For the sane interval, extract the interval with
maxi mum confi dence
create table MaxConf1l as
select item,. . . item, starttime, endtine,
max( pattern-confi dence)
from MAXCONF
group by item, .item, starttinme, endtine
6)//For the same start tinme pick the end tinme
associ ated w th maxi num confi dence
create table M NENDTI MVE as
sel ect Item, . i tem, starttine,
m n(endtinme) as endtine, pattern-confidence
from MAXCONF
group by item,.. item, starttinme, pattern-
confi dence
7)/ 1 FM NENDTI ME table contains patterns w th maxi num
Pattern-confidence and the end tinme associated wth
it
create tabl e FM NENDTI ME as
sel ect 2. item, . , [2.1tem,
|2.dtstarttine, I1.dtendtine, |2.confidence

from
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(select itemy, .., item, starttine,
max(pattern_confi dence) as confi dence
from M NENDTI ME

group by item, ...item, starttinme) 12
join

MaxConfl 11 on I1l.iteml=l2.itenml and
and I1l.item = 2. item and |1. pattern-
confi dence=l 2. pattern-confidence and

l1.starttinme=l2.starttine

8)//From a start point identify the smallest interva

associ ated with the maxi num confi dence

9)

create table Fy as
sel ect item, .., I tem, starttime,
m n(endtinme) , avg(pattern-confidence)
from FM NENDTI ME
group by item, ., item, starttine
[/ Updates the pattern-confidence of the new FK
sequence
Update Fk pattern-confidence=
pattern-confidence *
(sel ect max(confidence) fromF1
where Fk.itenk-1=Fl.itenl
and Fl.starttine>=Fk.starttinme

and F1l.endtinme <=FK endtine)
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10) Elimnate Psuedo duplicates (will be explained
bel ow)

11) Create FKIJIO N from F (sane as above)

12) K-.1Tenps = ldentify the sequences in Fi1 which

are not subsets of any sequence in K

13) Fregltensk= select item, .., iteng #occurences
from K

group by item, .item

The agorithm uses the significant intervals produced by the SID algorithm asits
collection of 1-item frequent sets (F1 table). 1-item sets combine to form 2item sets
that in turn combine to form 3-item sets and so on until the terminating condition is met.

Two F.1 sequences combine in the K" pass to form a k-length sequence if the
following conditions are met:

first k-2 items are the same
aitemy.; < b.itemy1
b.itemy_1 occurs before a.itemy.1.startime + window.

The elements are arranged in a chronological order identified by id to ensure
that events merge with other events that succeed them and the sequence grows in one
direction only. All intervals produced by SID and its variants are associated with the
default date of first of the current month along with the start and end times representing

the tight boundaries. Because of the same date and the fact that time-series data have an
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inherent wrap around property, the chronological order cannot be ascertained directly.
An adjustment has to be made to convert this data into a format in which a definite
order can be established. As an example assume an event with 23:00-23:30 can form a
valid interval with another event at 00:00-00:20 or 23:20-00:00. Since an interval can
have only one date, 23:30-00:00 has to be represented a little differently as it spans two
days. Unless this is represented properly, max, min, least and greatest operators cannot
be used on the data accurately. To accomplish the above FKJOIN is created, which is a
copy of k.1 with some additiona records. The intervals, which start before window
units of the smallest starting point of an interval from K., are added to FKJOIN with
their start and end dates incremented by 1. Using the above example if window is
defined as 60 units, interval 00:00-00:20 will occur twice in FKJOIN, once with the
same date as interval 23:00-23:30 and once with its date incremented by 1. Therefore in
the k™ pass, interval 23:00-23:30 can merge with 00:00-00:30 of the next day to form a
valid sequence with interval 23:00-00:30.

i nsert into FKIJON (select iteml, dtstarttine+l,

dt endti me+1

from Fk wher e

to_date(to_char(dtstarttinme,  hh24: m "), hh24: m") <=

to_date(' hh:mm ,'hh24:m "))

where *hh’ is the hour and ‘mm’ minutes associated with the window.
From the above algorithm, it is possible to identify the various aspects of

interval based sequential approach, which differs from the traditional Apriori-K-way
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join approach. The differences are: the use of pattern-confidence is used for support
counting, lack of subset-based pruning, the different types of interval semantics
available and to defer the usage of causality between the events to the end. In order to
identify all possible frequent items sets at the end of the agorithm, two data structures
are used: al frequent item sets from the last pass (Fx) and the frequent item sets from
the prior passes, which could not join any further to form larger sequences. The latter
items sets are stored in .. TEMPS (Line 11) relation, partitioned on the length of the
item set. The SQL formulation for the above is given on line 11 of the algorithm.

Line 4 generates all possible combinations of events by choosing events within
the same block along with an added condition such that the new event added to the
sequence has its start time within window units of the start time of the first interval. The
new interval generated has the same start time as that of the starting interval. The end
time however is the greater of the end times of the intervals being merged. For example
when event A (3-5) merges with B (4-9), the sequence AB (3-9) is formed. In spite of
the fact that SID reduces the number of frequent intervals generated, there might be
more than one interval that covers a single area of high activity. These intervals form
almost subsets of each other, differing from each other by a very small margin. As an
example within an area of 10:00-10:15 , SID[n1] might output {10:00-10:13,
10:01,10:14, 10:03-10:15} as the set of significant intervals. Line 4 creates duplicates
when the above intervals are merged with another sequence. They are eliminated by
keeping the sequence with the greatest confidence for the same event sets, start time and

end time. These sequences are stored in MAXCONFL1 (Line 5). As an example, when
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A(1-8) joins with B (2-5) and B (5-8), two sequences namely AB (1-8) and AB (1-8)
are created which may or may not be duplicates based on the confidence. The join
performed on Line 4 aso results in several rows with the same start time but varying
end times. For example, when (1-6) joins with B (2-5) and B (5-8), two sequences are
created viz. AB (1-6) and AB (1-8). During such a situation, the sequence with the
maximum confidence is chosen because this sequence has greater probability of being
involved in further passes. The SQL formulation for the aboveisgiveninLine7. Line 8
picks the smallest length sequence with the greatest confidence within a particular event
set and creates the sequences associated with the next passi.e. Fx and line 9 updates the
confidences of the newly formed intervals.

For example, when an event [ABC interval: (3-8), pattern-confidence: 9] merges
with another [ABD interval: (4-8), pattern-confidence: 8], the pattern-confidence of the
newly formed sequence [ABCD interva: (3-8) c: 8] isinitially the same as that of the
latter sequence. Line 9 updates it correctly by ABCD.pc= 0.8* C.ic where 0.8 gives us
the pattern-confidence of A, B and D events together.

Line 11 creates FKJOIN for the subsequent pass, which is used to find frequent
item sets for the next pass. Line 12 identifies the sequences in the prior pass, which
failed to enter the frequent itemset of the current pass and stores them in Fc.itemps. In
order to identify the set of sequences, which did not enter the next pass, the following

measures are taken:
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1) Get al sequences from Fk-1 whose iteml.itemk-1 are the same as
iteml...itemk-2 of F that is identify al subsequences such as ABC, ABD in F; which
were responsible for ABCD in Fy

2) Delete the above sequences from the list of probable candidates in
FkTemp[k-1].

3) Perform the above operation for F.i.item1=F.item to delete any remaining
subsets which start with the same event as .1, In order to remove the subset, i.e. the
sequence R of R such that F.1 iteml= F .item2 and F.1. item2= F .item3 ad F.1
itemk-1= K .itemk, the one-step computation given below is executed. As an example
for a sequence ABCDE, subset BCDE is eliminated by the one-step Cartesian product
given below. Currently in addition to the above subsets, all subsets with the same item1
are also removed by the below statement. Performing a Cartesian product at this stage
or a corresponding join, does not affect performance since most of the sequences have
been eliminated.

The reason for the step-wise operation is that very few sequences are left behind
in each pass and al subsets of k-length sequence within an interval have to be
eliminated. The above method is more efficient compared to a one-step computation
given below as it performs a Cartesian product:
insert into FKTEMPS 23

sel ect [1.itent, I1.iteng, l1.itenB,

I1.dtstarttine, 1. dtendtine, | 1. confidence

fromF 23 11 where NOT EXI STS
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( SELECT * FROM F_24 1|2
VWHERE
[l.iterl in ( 2. iteml, 2. iten2, [2.itenB,
12.item) AND
[1.iten2 in ( 12 iteml, [2.iten2, 12.itenB,
[2.1temd)
AND 11.itenB in ( 2. item, |2.itent,
[2.itenB, 12.iteml)
AND |1l.dtstarttine BETWEEN |[|2.dtstarttine
AND | 2. dt ENDt i me
AND | 1.dtendtime BETWEEN | 2. dtstarttime AND

| 2. dt ENDt i me)

In addition to the frequent sequences occurring at specific points, the
identification of sequences with maximum interactions between devices is aso
achievable. This implies that there may be several instances of a specific pattern, each
occurring at different time intervals. Line 13 identifies al such patterns and their
number of occurrences. This information is as valuable as the exact occurrences of each
pattern, as the start event of the high frequency patterns can be used as triggers to
automate the sequence. The remainder of the section discusses the formation and
elimination of pseudo-duplicates of line 10. Due to the use of least and greatest

functions, pseudo-duplicates, as given below, can be generated:
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Table5.1: Sample Input for formation of Pseudo-duplicates

ID Iteml Item?2 Start time End time
1 A B 1 5
2 A C 2 5
3 A B 1 4
Table 5.2: Pseudo-Duplicates
ID [teml Item?2 Item3 Start time End time
1 A B C 1 5
2 A C B 1 5

Let Table 5.1 represent a set of sequences created in F2. F3 produced from F2 in
Table 5.2 consists of two patterns that represent the same interval with the same set of
events with the order of items interchanged. These are therefore classified as pseudo-
duplicates as only one of them needs to be retained. Since al characteristics except for
the order of occurrence of the items are same, any one of the patterns can be retained
from this set. Thisis achieved in two steps:
The Fx tableis converted into a vertical format of Id and Item
K-copies of this table are joined in a specific order to produce al items
in the same order
For the above example the following sgl statements eliminate all pseudo-
duplicates. Let us assume items contains the items and Id of F_23.
create table single itens as
select id,itemfromitens order by itemid
//Form 3-item sets in ascendi ng order

create table order _itens as
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(select 11.1d,I1l.item as itenl , 12.item as iteng,

I3.itemas itenB

from single_itens 11 join single_itenms 12 on
l1.id=l2.id
join single_items 13 on 13.id =12.id

where Ill.item< |12.item and I2.item< |3.item

/1 Get the corresponding start and endtimes associated with

each pattern

create table FreqTenps as

select |12.*, dtstarttine, dtendtinme, confidence

fromF 23 11 join order _itens 12 on I1l.id=l2.id

drop table F_23

/|l Create F_23 again, w thout any duplicates.

create table F 23 as

select rommumas ID, X *

from
(sel ect I tend, itenk, I tenSB,
dtstarttine, dt endti ne, max( confi dence)
confi dence

from FregTenps
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group by itemt, iten?, i tenB,
dtstarttine, dtendtine or der by
dtstarttinme,dtendtine) X

Depending on the interval semantics chosen, the SQL query has following
selection condition added to its already existing selection conditions.

b.endtime < = astarttime + window

Classifying the sequences as parallel and serial can be done after the discovery
of all frequent item sets. The pattern start and end times can be used to join with F1
intervals to identify the relative order of the events within the sequence. This allows for
the discovery of parallel and serial episodes in one pass, instead of maintaining two
algorithms for their discovery [3].

As a quick note on implementation, MaximalSequencejava and
GeneraModulejava form the heart of hybrid-apriori. Maximal Sequence is the class,
which executes the above steps in an iterative manner. GeneralModule class provides
the sgl statements needed in each pass in order to dynamically run the algorithm for any
number of iterations.

5.4 Experiment Results

The results produced by the hybrid apriori algorithm presented in this thesis is
compared with Episode Discovery [ED] agorithm [19] to verify and evaluate the
sequences generated. ED algorithm has the ability to discover events with different
periodicity. Candidate sets in E