

SIGNIFICANT INTERVAL AND EPISODE DISCOVERY

IN TIME-SERIES DATA

The members of the Committee approve the master’s
thesis of Ambika Srinivasan

Sharma Chakravarthy
Supervising Professor ______________________________________

Leonidas Fegaras ______________________________________

Manfred Huber ______________________________________

SIGNIFICANT INTERVAL AND EPISODE DISCOVERY

IN TIME-SERIES DATA

by

AMBIKA SRINIVASAN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

DECEMBER 2003

TO MY HUSBAND, PARENTS, FAMILY AND FRIENDS

 iv

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dr. Sharma Chakravarthy,

for giving me an opportunity to work on this challenging topic and providing me ample

guidance and support through the course of this research.

I would like to thank Dr. Manfred Huber and Dr. Leonidas Fegaras for serving

on my committee.

I am grateful to Raman Adaikkalavan, Stephen Lobo, HimaValli Kona, Anoop

Sanka for their invaluable help and advice during the implementation of this work. I

would like to thank all my friends in the ITLAB for their support and encouragement.

I would like to acknowledge the support by the Office of Naval Research, the

SPAWAR System Center-San Diego & by the Rome Laboratory (grant F30602-01-

0543), and the NSF (grants IIS-012370 and IIS-0097517) for this research work.

I would also like to thank my husband, parents and family members for their

endless love and constant support throughout my academic career.

October 21, 2003

 v

ABSTRACT

SIGNIFICANT INTERVAL AND EPISODE DISCOVERY

IN TIME-SERIES DATA

Publication No. ______

Ambika Srinivasan, M.S.

The University of Texas at Arlington, 2003

Supervising Professor: Sharma Chakravarthy

There is ongoing research on sequence mining of transactional data. However,

there are many applications where it is important to find significant intervals in which

some events occur with specified strength. We study approaches to convert point-based

data into intervals, thereby predicting the next occurrence of the event. We formulate

four approaches for significant interval discovery and enumerate their advantages and

disadvantages. We compare the performances of various approaches in terms of

computation time, number of passes, coverage and interval statistics like density,

interval-length and interval-confidence. We propose an approach to clustering using the

significant intervals produced. Furthermore, we use these intervals, which serve as

representative areas of the dataset as input to a Hybrid Apriori algorithm to mine for

 vi

sequential patterns. We present the two types of interval semantics that can be used with

sequential mining. We formulate an SQL-based Hybrid Apriori sequential algorithm

that accepts intervals as input. Finally, we summarize the results and indicate the

applications and conditions for which the various approaches can be used.

 vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS..iv

ABSTRACT ..v

LIST OF ILLUSTRATIONS...x

LIST OF TABLES.. xii

Chapter

 1. INTRODUCTION ... 1

 1.1 Prediction.. 5

 1.2 Mining Sequential Patterns ... 6

 1.3 Focus of this Thesis .. 7

 2. RELATED WORK .. 11

 2.1 Introduction... 11

 2.2 WinEpi and MinEpi Approaches .. 14

 2.3 GSP ... 16

 2.4 Other Algorithms .. 17

 2.5 Conclusion.. 19

 3. MAVHOME DATABASE ARCHITECTURE .. 21

 3.1 MavHome Architecture .. 21

 3.1.1 Data Collection Architecture for MavHome .. 24

 3.2 Design and Implementation of Data Collection and Storage 26

 viii

 3.2.1 CORBA Interface ... 26

 3.2.2 Callback and Database Design Features ... 27

 3.3 Data Stream Management System.. 29

 3.4 Interval Discovery and Sequential Mining for MavHome 34

 4. SIGNIFICANT INTERVAL DISCOVERY ... 39

 4.1 Interval Discovery .. 39

 4.1.1 Interval Definitions ... 45

 4.2 Significant Interval Discovery Algorithm (SID) .. 47

 4.2.1 Configuration File... 49

 4.2.2 Naïve Approach.. 52

 4.2.3 SID[n-1] Approach... 54

 4.3 Alternative Sid Algorithms ... 59

 4.3.1 SID[1, n-1] Approach... 60

 4.3.2 SID[n-2, n-3] Approach.. 62

 4.4 Implementation of SID and Cluster Algorithm .. 64

 4.4.1 Implementation of SID ... 64

 4.4.2 Implementation of Cluster Algorithm .. 66

 4.5 Experiment Results ... 69

 4.6 Conclusion.. 75

 5. HYBRID-APRIORI SEQUENCE MINING... 78

 5.1 Sequence Definitions .. 78

 5.2 Characteristics of Traditional and Interval-Based Sequential Mining 80

 ix

 5.2.1 Apriori based Sequence Mining ... 80

 5.2.2 Hybrid-Apriori based Sequence Mining... 82

 5.3 Generation of Maximal Sequences ... 86

 5.4 Experiment Results ... 97

 5.5 Writing Log File ... 103

 5.6 Conclusions ... 113

 6. CONCLUSION AND FUTURE WORK .. 115

 REFERENCES .. 118

 BIOGRAPHICAL INFORMATION... 122

 x

LIST OF ILLUSTRATIONS

Figure Page

 1.1 Architectural Alternatives.. 3

 3.1 Database Architecture for MavHome.. 24

 3.2 MavHome DSMS Architecture ... 33

 3.3 Sample of MavHome Data .. 38

 3.4 Identification of Intervals and Clusters from Figure 3.3 38

 4.1 Different Cases for Interval Merges .. 57

 4.2 Comparison of Intervals with SID Variants .. 63

 4.3 Identification of Clusters ... 68

 4.4 Response time of SID[n-1] for 1-3 months with daily periodicity..................... 71

 4.5 Comparison of the number of passes between SID Approaches and Naïve 72

 4.6 Comparison of Intervals produced by all approaches to Naïve method 73

 4.7 Percentage Deviation of SID variants Vs naive .. 73

 5.1 Timing Constraints .. 80

 5.2 Candidate Generations for Any k .. 81

 5.3 Patterns generated in each pass using semantics-e (weekly) 100

 5.4 Patterns generated by Semantics-s (weekly) ... 100

 5.5 Pattern- lengths by semantics 1 & 2 in march (weekly) 101

 5.6 Pattern- lengths by semantics 1 & 2 for 6-month synthetic data (weekly)........ 101

 xi

 5.7 Time taken for hybrid-apriori from 1-3 months with daily periodicity............. 102

 5.8 Number of patterns produced for 1-3 months with daily periodicity................ 102

 xii

LIST OF TABLES

Table Page

 3.1 Different Device Types in MavHome ... 28

 4.1 Sample of MavHome Input Data ... 41

 4.2 Input Format to discover weekly events with output at time granula rity............ 44

 4.3 Input Format to discover weekly events with output at granularity of week 44

 4.4 Input Data set in a Vertical format .. 47

 4.5 First Level intervals from Table 4.4 .. 48

 4.6 Intervals generated in the first pass by Naïve Approach..................................... 53

 4.7 First Level Intervals .. 61

 4.8 After 2nd Pass of SID[n-1] ... 61

 4.9 After 2nd Pass of SID[1, n-1] ... 62

 4.11 Impact of Minimum Support and Window on #of intervals discovered 74

 4.12 Comparison of best intervals by all approaches over 09:00-10:00 for B5 -ON 75

 4.13 Comparison of best intervals by all approaches over 09:00-11:00 for B5 –ON 75

 5.1 Sample Input for formation of Pseudo-duplicates ... 95

 5.2 Pseudo-Duplicates ... 95

 1

1. CHAPTER 1

INTRODUCTION

The rapid improvement in the size of storage technology with the associated

drop in the storage cost, and the increase in the computing power has made it feasible

for organizations to store unprecedented amounts of organizational data and process it.

The information and knowledge derived from it can be used for applications ranging

from business management to market analysis to engineering design. However,

discovering the hidden knowledge is not a straightforward task. To compete effectively

in today’s market, decision makers need to identify and utilize this information buried

in the collected data and take advantage of the high return opportunities in a timely

fashion.

The key here is the generation of previously unknown knowledge from huge

datasets. The process of mining is driven by the outcome requirements. Based on what

we want, a specific data mining technique is employed. The different data mining

techniques and their outcomes are briefly discussed below [1]:

Classification: This is a process of grouping items based on a classifying

attribute. A model is then built based on the values of other attributes to classify each

item to a particular class. A training dataset is typically used for validating and tuning

the model. The classification technique may be used, for example, to identify the most

probable consumers for a product, based on their spending patterns.

 2

Clustering: The process of clustering tries to group the data set in such a way

that the data points in one cluster are more similar to one another while the data points

in different clusters are more dissimilar. A similarity measure needs to be defined and

the quality of the outcome, to a large extent, depends on the appropriateness of the

similarity measure for the data set. The technique of clustering, for example, can be

used to divide the market into distinct groups, so that each group can be targeted with a

different strategy.

The basic difference between classification and clustering is that in

classification, the classifying class is known previously (also known as supervised),

whereas clustering does not assume any knowledge of clusters (unsupervised).

Prediction: The technique of prediction is based on continuous or discrete

valued attributes. Previous history of the attributes is used to build the model. This

technique is very commonly used for the prediction of sales of a product.

Deviation analysis: This technique compares current data with previously

defined normal values to detect anomalies. Deviation analysis tools may be useful for

security applications, where it may warn the authorities of any sharp deviation in the

usage of resources by a particular user.

Association Rules: It is the process of identifying the dependency of one item(s)

with respect to the occurrence of other item(s) in a data set. These models are often

referred to as Market/Basket Analysis when they are applied to retail industries to study

the buying patterns of customers. Here an attempt is made to identify a product “A”

 3

with another product “B” to an extent that it can be said that whenever “A” is bought,

“B” is also bought with high confidence (the number of times B occurs when A occurs).

Sequential Mining: Sequential pattern mining is mining of frequently occurring

patterns related to time or other sequences. An example of sequential pattern is ‘ A

customer who bought Fellowship of the Rings DVD six months ago, is likely to buy the

Two Towers DVD within a month. Since many business transactions,

telecommunication records, weather data and production processes fall into the category

of time sequence data, sequential pattern mining is useful in the analysis of such data

for targeted marketing, customer retention and so on.

The work in the field of association and sequence rule mining has resulted in a

wide range of architectural alternatives for integrating mining process with the DBMS.

These alternatives are depicted in Figure 1.1 [2] and are described below.

Figure 1.1: Architectural Alternatives

Loose Coupling or Cache based Mining: It is an example of the client/server

architecture. The mining kernel can be considered as the application server. Here the

 4

data is first fetched from the database and fed to the mining-kernel, which mines and

pushes the results back to the database.

Stored procedures and user-defined functions: Here, mining logic is embedded

as an application on the database server. Applications can be executed either in the

same address space as the DBMS or a different one (fenced option in DB2). The

flexibility in programming the stored procedure out-weighs their development cost.

SQL based approach: Here, for mining, queries are written in SQL. A mining-

aware optimizer may be used to optimize these complex, long running queries based on

the mining semantics. In this thesis, we use an SQL-base approach for sequence mining

based on intervals.

Integrated Approach: This is the tightest form of integration that has no

boundary between querying, OLAP, or mining. Mining operators or SQL (extended for

mining) is optimized by the underlying system without any hints from the user. The

long-term goal is to extend the current query optimizers to cover OLAP and mining

along with SQL queries.

The focus of this thesis is on the combination of prediction of significant

intervals in time-series data and use of the results further for sequential mining to

determine interesting patterns. Exploration of the large data set in various ways using a

number of parameters is taken into consideration in this work. . The applicability of the

approaches proposed for both time-series data and transactional data makes the

proposed approaches versatile.

 5

1.1 Prediction

Data mining, typically makes use of statistical analysis when it comes to

predicting the next value of a continuous variable rather than a categorical label.

Prediction of continuous values can be modeled by statistical techniques of regression

[6]. Many problems can be solved by linear regression and even more by applying

transformations to the variables so that a non- linear problem can be converted into a

linear one. Linear regression is the simplest form of regression where the data is

modeled as a straight line. Bivariate linear regression models a random value Y, as a

linear function of another random value X, that is,

 Y = a + bX

Where a and b are regression coefficients specifying the Y intercept and slope

of the line respectively. Many times, although the application cannot be modeled as a

straight line to predict the value of Y given X, it can be viewed as Y=F(X). We focus on

prediction of Y given X, which is a series of events changing with time. This can be

described as a time-series database. Sometimes, there are several other variables that

affect Y as it can have multiple values over a range of X. Multiple variables and the

classification of the variables given below can make regression overtly complicated.

There are four major characteristics that are used to categorize time-series data [6].

Long-term or trend movement: This indicates the general direction over which

the time-series graph is moving over a long interval of time.

Cyclic movements or cyclic variations: These refer to the cycles, or long term

oscillations about a trend line or curve, which may or may not be periodic.

 6

Seasonal movements or seasonal variations: These movements are due to the

events that recur annually. In other words, seasonal movements are the nearly identical

patterns that a time-series appears to follow during corresponding months of each year.

Irregular or Random movements: These characterize the sporadic motion of the

time-series due to random or chance events.

The common method of determining trend is to calculate the moving average,

also referred to as smoothing of time-series. The concept of seasonal index is introduced

to show the relative values of the variables in each group. To form the index, the data is

divided into a set of partitions such as groups of months or groups of hours and the

variation of the variable is monitored over each group to identify recurring patterns.

However without any predefined knowledge, the above grouping is very arbitrary. An

interesting solution would be to identify the groups from the data and look for patterns.

1.2 Mining Sequential Patterns

 The sequential associations or sequential patterns can be represented as

follows: when A occurs, B also occurs within a certain time. The difference between

traditional association rules mining and sequence mining is that the time information is

included both in the rule and also in the mining process in the form of constraints. In

general three attributes characterize the sequence data: object, timestamp, and event.

Hence, the corresponding input records consist of occurrences of events on an object at

a particular time. Depending on the data and the problem in hand, various definitions of

the objects and events can be used. As an example, an object can be a customer in a

 7

book store and events are the books bought by the customer. As another example, an

object can be a day and the events a switch-alarm pair of telecommunications network.

The major task associated with this kind of data is to discover sequential

relationships or patterns present in these data. This can be very useful for prediction of

future events. Several approaches have been proposed to tackle the problem. However

the problems they assess, and the resulting solutions are very much problem dependent

and often not suitable for other types of sequential data. Chapter 2 discusses the major

approaches proposed for sequential mining in the literature along with the problems

associated with them when used for our problem domain.

1.3 Focus of this Thesis

The predominant problem domain for this thesis is a smart home environment

where discovery of patterns and their automation is of prime interest. However, the

solution proposed by this thesis is not restricted to smart home environments alone but

can be used for other domains where the need is to extract useful segments from the

data based on user specified parameters. Some of the characteristics of a smart home are

that it is formed of several devices, which interact with each other to give an inhabitant

friendly, and reduced interaction environment. To accomplish this the smart home

reacts to the changes in inhabitant’s behavior by automating the operations of various

devices instead of waiting for the inhabitants to manually interact with them. Following

are some of the questions for which the answer is needed to accomplish the goals of a

smart home

• When does device A turn on?

 8

• When does device A turn on Monday or between 9 and 10am on

Monday?

• What are the properties associated with device A when it is turned on at

a specific time?

• Given the time, can the system tell with a degree of certainty that the

device will be turned on at that time.

• Is there any other device that triggers the operation of device A

(pattern)?

• What are the different patterns in which multiple devices interact with

each other?

• Of these, which are the most frequently occurring patterns?

• What are the times during which the patterns occur?

• How many times patterns occur during a given time interval and their

count?

The current work proposes to answer most if not all of the above questions

raised by smart home applications. In addition to intelligent environments, many

applications such as telephone logs, security logs and other time or numerical

applications want to know, ‘Illustrate intervals in terms of groups of time or activity

which best represents the data’ or ‘Illustrate intervals in terms of groups of time or

activity, which have the following characteristics’. With telephone logs, periods of high

activity are useful information for making informed business decisions. Magazine

subscription logs can also be mined to determine the age groups that subscribe the most

 9

to the magazine. Security logs can also be mined to extract intervals with certain

characteristics. These intervals can be compared to values associated with normal

conditions, to raise alerts when abnormal conditions are discovered. The characteristics

of an interval can be its density, length or the strength. Given the above general problem

domain, we divide our task into two phases: Identify the intervals which best represent

based on interval characteristics provided by the user and use the intervals to identify

frequently occurring patterns of different sizes and strengths. Four significant interval

discovery approaches (termed SID[1], SID[n-1], SID[1,n-1] and SID[n-2, n-1]) have

been formulated to discover intervals from the data. The user is provided with an

option of choosing the approach, which best satisfies his/her requirements. Following

the interval discovery, an algorithm for detecting patterns (termed Hybrid-Apriori, an

SQL-based algorithm) has been formulated to accept interval-based input from various

events to discover interactions between them.

 The remainder of the thesis is organized as follows: Chapter 2 discusses related

work by providing a brief introduction to the various algorithms proposed for sequential

mining. Chapter 3 outlines the architecture of the MavHome, a smart home being

researched at University of Texas at Arlington. The architecture, presented in this

thesis, primarily concentrates on the database issues. Chapter 4 provides an in-depth

discussion on the various interval discovery algorithms, their applications, their

formulation, advantages of each approach and finally their performance evaluation

based on several experiments. Chapter 5 discusses the interval-based sequential mining

algorithm, its features and performance evaluation. We conclude by enumerating the

 10

salient points of the thesis and discussing additional work that can be performed to

improve its utility, efficiency and scalability in Chapter 6.

 11

2. CHAPTER 2

RELATED WORK

The following sections provide a survey of the existing algorithms. WINEPI [3],

MINEPI [3], GSP [4] are described in detail in sections 2.2, 2.3 and Section 2.4

provides a brief overview of several other algorithms, which are related to the current

domain. Finally, we provide a brief introduction to our proposed solution in section 2.5.

2.1 Introduction

We discuss several approaches proposed to predict the occurrences of each

event as well as algorithms, which discover interactions between multiple events. We

provide a brief introduction to the prediction of single events since they primarily use

statistical techniques and more information on sequential mining, which uses data

mining techniques. A lot of work has also been done on prediction, from Markov’s mth

order model to using statistical techniques in time series analysis. Markov’s model [5]

predicts which event will occur next, or when an event occurs using probabilities. This

model is primarily used for pre-fetching of pages in computer architecture and other

applications (e.g., speech recognition) from an input sequence, the next event is

predicted using probability distribution functions. Time series analysis [6, 7] describes

various techniques such as exponential smoothing, regression analysis, Box-Jenkins

methodology to predict the value of Y (response variable) given X (predictor variable).

Exponential smoothing is used to detect existing trends in the data such as an upward

 12

trend observed in stock market prices over a period of time. Factors or components are

added to the equation to take care of seasonal variations. However our approach of

finding tight intervals does not involve any upward or downward trends, only patterns.

Moreover the analysis can be used to predict intervals within the time hierarchy

specified by the user, and does not determine the best hierarchy that fits the data.

Regression analysis is the most commonly used approach to identify trends. The factors

on which the predicted Y(t) depends are used to design a regression model (Linear or

quadratic or complex). Many a times the response and the predictor variable have a

relationship that can be modeled by adding polynomial terms to the basic linear models.

Sometimes by applying transformations to the variables, we can convert the non- linear

model to a linear one and other times models are intractably non- linear and cannot be

converted to a linear model. The present thesis concentrates on solving the prediction

question using data mining techniques like sequential mining as compared to statistical

techniques. Universal formulation of sequential patterns is discussed in detail in section

5.1. A quick introduction to the constraints associated with patterns is described below.

They give a better insight on the techniques used by the various algorithms for support

counting. Support for a pattern refers to its number of occurrences within the dataset.

The input parameter minimum-support ensures that all the discovered patterns have

their support greater than the minimum-support. All algorithms use different techniques

for support counting so as to make it as efficient and scalable as possible. Sequential

patterns are associated with a set of timing constraints, which can be translated into:

 13

 Maximum Span (ms): The maximum allowed time difference between latest

and earliest occurrences of events in the entire sequence,

Event-set Window size (ws): The maximum allowed time difference between

latest and earliest occurrences of events in an event-set,

Maximum Gap (xg): The maximum allowed time difference between the latest

occurrence of an event in an event-set and the earliest occurrence of an event in its

immediately preceding event-set, and

Minimum Gap (ng): The minimum required time difference between the earliest

occurrence of an event in an event-set and the latest occurrence of an event in its

immediately preceding event-set.

The major differences between the traditional algorithms are found in the

approach taken in the candidates generation and counting phase. The standard modes of

sequence counting are,

COBJ: One occurrence per object

CWIN: One occurrence per span window

CWINMIN: Number of minimal windows of occurrence

CDIST_O: Distinct occurrences with possibility of event timestamp overlap

CDIST: Distinct occurrences with no event-timestamp overlap allowed.

More information on the universal formulation of sequences can be found in [8].

The remainder of this chapter discusses the significant sequential mining techniques

starting with the algorithms proposed by [3].

 14

2.2 WinEpi and MinEpi Approaches

WinEpi [3] is an algorithm, designed for discovering serial, parallel or

composite sequences. Serial sequences require a temporal order of events whereas

parallel sequences do not. Composite sequences are generated from the combination of

parallel and serial sequences. In addition to the above, events of the sequences must be

close to each other, which is determined by the window parameter. A time window is

slid over the input data and only the sequences within the window are considered. The

support for the sequence is determined by counting the number of windows in which it

occurred. Referring to the timing constraints described above, the algorithm finds all

sequences that satisfy the time constraints ms and whose support exceeds a user-defined

minimum min_sup, counted with the CWIN method. The algorithm makes multiple

passes over the data. The first pass determines the support for all individual events. In

other words, for each event the number of windows containing the event is counted.

Each subsequent pass k starts with generating the k-event long candidate sequences Ck

from the set of frequent sequences of length k-1 found in the previous pass. This

approach is based on the subset property of apriori principle that states that a sequence

cannot be frequent unless its subsequences are also frequent. The algorithm terminates

when no frequent sequences are generated at the end of the pass. WinEpi uses set of

counters and sequence length for support counting of parallel sequences and finite state

automata for serial.

An alternate way of discovering the frequent sequences is a method based on

their minimal occurrences. In this approach the exact occurrences of the sequences are

 15

considered. A minimal occurrence of a sequence is determined as having an occurrence

in a window w=[ts,te], but not in any of its sub-windows. For each frequent sequence s,

the locations of their minimal occurrences are stored, resulting in a set of minimal

occurrences denoted by mo(s)={[ts, te] | [ts, te] is a minimal occurrence of s}. The

support for a sequence is determined by the number of its minimal occurrences |mo(s)|.

The approach defines rules of the form:

s’[w1]-> s[w2], where s’ is a subsequence of s and w1 and w2 are windows. The

interpretation of the rule is that if s’ has a minimal occurrence at interval [ts, te] which

is shorter than w1, then s occurs within interval [ts, te’] shorter than w2. The approach is

similar to the universal formulation with w2 corresponding to ms and an additional

constraint w1 for subsequence length, with CWINMIN as the support counting

technique. The confidence and frequency of the discovered rules with a large number of

window widths are obtained in a single run. MinEpi uses the same algorithm for

candidate generation as WinEpi with a different support counting technique. In the first

round of the main algorithm mo(s) is computed for all sequences of length one. In the

subsequent rounds the minimal occurrences of s are located by first selecting its two

suitable subsequences s1 and s2 and then performing a temporal join on their minimal

occurrences. Frequent rules and patterns can be enumerated by looking at all the

frequent sequences and then its subsequences. For the above algorithm, window is an

extremely essential parameter since only a window’s worth of sequences are

discovered. Moreover, the data structures used for this algorithm can exceed the size of

 16

the database in the initial passes. Interval based mining, on the other hand, allows the

use of windows in two ways:

It allows events, which start less than window units away from the start time of

the sequence to join an existing sequence irrespective of the event’s finish time.

It also allows events with start and end within window units from the start time

of the sequence join an existing sequence, which is more in tune with the traditional

approach

In the first case, the user sets the window parameter based on the domain

requirements. In order to consider an event as a candidate to join the sequence, the user

needs to consider only the maximum span (ms) or the maximum time difference within

which an event has to start. For example, if an event occurs within 60 minutes of the

sequences, it can be considered to merge with it. This results in the generation of

sequences with intervals lengths greater than the window parameter. The second

alternative considers only those events, which complete within window units of the start

of the sequence as candidates for the sequence. This approach is more in line with the

traditional approach that uses points instead of intervals.

2.3 GSP

The GSP (Generalized Sequential Patterns) by [4] is designed for transactional

data where each sequence is a list of transactions ordered by transaction time and each

transaction is a set of items. It extends their previous work [9] by enabling specification

of the maximum time difference between the earliest and latest event in an element as

well as the minimum and maximum gaps between adjacent elements of the sequential

 17

patterns. Thus the timing constraints included are ws, xg and ng. Support is counted

using COBJ method. The algorithm works the same way as WinEpi described in the

previous section. The difference is in the way the candidates are generated and their

support counted. GSP introduces the notion of contiguous subsequences. The sequence

c is a subsequence of s if any of the following holds:

• c is derived from s by dropping an event from its first or last event-set.

• c is derived from s by dropping an event from any of its event-sets that

have at least 2 elements.

• c is a contiguous subsequence of c’, which is a contiguous subsequence

of s.

The determination of the support of the candidates is done by reading one data

sequence at a time and incrementing the support count of the candidates contained in

the data sequence. Given a set of candidate sequences C and a data sequence d, all

sequences in C that are subsequences of d are found. Our domain considers data to be a

series of events with timestamps with frequent patterns discovered between various

events, in contrast to GSP, which discovers sequential relationships between items

within a set of transactions.

2.4 Other Algorithms

CSpade [10] has the same application domain as GSP but involves more

constraints that are versatile. CSpade is an extension of the earlier Spade [11] algorithm,

which efficiently integrates constraint into the algorithm. The key features of Spade are

the use of vertical layout and idlists, which include the object timestamp tuples of the

 18

events. Equivalence classes partition the data set into several classes, which are

processed independently. Problem decomposition using equivalence classes is

decoupled from pattern search. Depth-first search is used for enumerating the frequent

subsequences within each equivalence class. Our approach also considers a vertical

database layout similar to that of Spade, partitions the database on the number of events

and identifies intervals of occurrences based on user specified ‘measure’ independently.

Cyclic association rules [12] attempt to find rules, which are very prominent in a

segment of data but are lost when the entire dataset is considered for mining.

Partitioning the data correctly plays a crucial role in the discovery of these hidden rules.

In addition to the mining techniques, many mathematical and statistical models [6, 7]

also attempt to predict or discover the intervals by formulating an equation, which best

describes the data. However these models have the drawback that they predict one

answer based on historical data. One answer may not be adequate in several situations.

In order to get multiple answers the data needs to be partitioned thereby predicting the

best answer for each partition. This however would introduce some arbitrariness in the

choice of best partition in the absence of appropriate guidelines.

 [13] uses data cubes and Apriori mining techniques for mining segment-wise

periodicity with respect to a fixed length period. In [14] MDL (minimum description

length) principle, instead of support, is used to find candidate item-sets. The merit of

this approach lies in the application of the periodicity of the event to prune unwanted

sequences. This approach has some similarity to the first approach of [3] in the use of a

sliding window defined by the user to find frequent episodes. Defining the periodicity,

 19

however, can be an error prone task. As for [13], the algorithm discovers rules based on

different measures for each time partition. Our primary interest is to find partitions

which best describe the nature of the data. One of the distinct disadvantages of using

traditional k-means [15, 16] or density based clustering algorithms [17, 18] is the

determination of input parameters such as k or threshold density. Determination of the

values of these input parameters either requires proficient domain knowledge or

sufficient time for re-running algorithms with different inputs. Even though the primary

aim of the present study is not cluster identification, to decide a better value for k and

the threshold density, the number of clusters identified at the end of interval discovery

algorithm along with their density and length can be used as input to the traditional

clustering algorithms.

2.5 Conclusion

It is evident that number of algorithms have been proposed for solving the problem of

frequent pattern discovery. Approaches that work for one domain do not necessarily

form the best solution for another. The focus of our approach lies between clustering

and sequential mining since both kinds of information are required to discover frequent

patterns and answer queries related to intelligent environments. As mentioned above,

our approach has enormous potential in intelligent environments where the key is to

continuously learn from the surroundings and automate the inhabitant’s activities. The

MavHome (Managing An Intelligent and Versatile Home) project is a multi-

disciplinary research project at the University of Texas at Arlington (UTA) focused on

the creation of an intelligent and versatile home environment [19]. Finding frequent

 20

patterns enables us to automate device usage and reduce human interaction. The

MavHome project focuses on the creation of a home, which acts as a rational agent. For

finding patterns, the algorithm uses the intervals derived from various devices based on

a user-defined confidence, density or interval length to predict the time of operation of

each device. This information is used to answer user queries as well as to find

sequential patterns. Representative intervals can be classified as the smallest intervals

with highest density satisfying the desired interval-confidence. The following chapter

discusses the MavHome architecture with a detailed description on its data collection

process, data stream management system and prediction algorithms which form the

heart of its database architecture.

 21

3. CHAPTER 3

MAVHOME DATABASE ARCHITECTURE

This chapter gives a brief introduction on the requirements of smart homes

followed by a quick overall view of MavHome architecture. The discussion continues

with more emphasis on the database aspects of MavHome architecture. Section 3.1

gives an overall design of MavHome and its data collection process. Section 3.2

provides an in depth discussion on the implementation of the data collection process.

Data Stream architecture and prediction driven sequential mining form the heart of

MavHome on the database front. Section 3.3 highlights the needs and features provided

by data streaming and section 3.4 gives a quick overview of prediction and sequential

mining. The current chapter acts as a preview of prediction and sequential mining, and

an in-depth discussion is carried out in chapters 4 and 5.

3.1 MavHome Architecture

Smart Homes link computers to everyday tasks and environments that have

been traditionally considered as outside the purview of automation. Important features

of such environments are that they possess a degree of autonomy and adapt themselves

to changing conditions. The smart home assumes the control of devices and relieves the

inhabitant of interacting with it. A smart home naturally requires location/context aware

computing, allowing the environment to process information as if computational

devices are everywhere. The MavHome Smart Home project is a multi-disciplinary

 22

research project at the University of Texas at Arlington (UTA) focused on the creation

of an intelligent and versatile home environment. The goal is to create a home that acts

as a rational agent, perceiving the state of the home through sensors and acting upon the

environment through effectors [19]. The agent acts in a way to maximize its goal, i.e.,

maximizes comfort and productivity of its inhabitants, minimizes cost, and ensures

security. Some of the concepts have been taken from

(http://mavhome.uta.edu/files/description/). More information on the overall

architecture can be found in [19].

MavHome operations can be characterized by the following scenario. At

6:45am, MavHome turns up the heat because it has learned that the home needs 15

minutes to warm to optimal temperature for waking. The alarm goes off at 7:00, which

signals the bedroom light to go on as well as the coffee maker in the kitchen. Bob steps

into the bathroom and turns on the light. MavHome records this interaction, displays the

morning news on the bathroom video screen, and turns on the shower. While Bob is

shaving MavHome senses that Bob is two pounds over his ideal weight and adjusts

Bob's suggested menu. When Bob finishes grooming, the bathroom light turns off while

the kitchen light and menu/schedule display turns on, and the news program moves to

the kitchen screen. During breakfast, Bob notices that the floor is dirty and requests the

janitor robot to clean the house. When Bob leaves for work, MavHome secures the

home, and starts the lawn sprinklers despite knowing the 70% predicted chance of rain.

Later that morning, a rainstorm hits the area that further waters the lawn. Due to

a nearby lightning strike, the VCR experiences a power surge and breaks down while

 23

taping Bob's favorite show. MavHome places a repair request and informs Bob at work

of the event. Because the refrigerator is low on milk and cheese, MavHome places a

grocery order to arrive just before Bob comes home. When Bob arrives home, his

grocery order has arrived and the hot tub is waiting for him.

A number of capabilities are required for this scenario to occur. Some of these

capabilities include active databases, prediction algorithms, mobility predictions,

multimedia capabilities and many more. Active databases allow a house to be able to

record inhabitant interaction and trigger sequences of events such as the bedroom light /

coffee maker sequence. Machine learning allows for efficiently processing the data

generated by the various sensors located around the house and taking immediate

actions. Suite of prediction algorithms succeed in predicting inhabitant movement

patterns and typical activities, and use that information in automating house decisions

and optimizing inhabitant comfort, security, and productivity. For MavHome to track

Bob's movements in between rooms and transmit his news program to him as well as

to find him away from the home, multimedia and mobile computing capabilities need to

be present. As can be observed from the scenario, MavHome automates the control of

numerous devices within the home. To scale to this size problem, the MavHome agent

needs to be decomposed into lower-level agents responsible for subtasks within the

home, including robot and sensor agents, and this organization should be dynamically

composable. Finally, these capabilities must be organized into an architecture that

seamlessly connects these components while allowing improvement in any of the

underlying technologies.

 24

3.1.1 Data Collection Architecture for MavHome

Figure 3.1: Database Architecture for MavHome

The Figure 3.1 illustrates the different components of the database architecture.

MavHome project entails processing stream data in real-time from a large number of

sensors (thermostat, lights, motion detectors, video etc.) and predicting and actuating

agents in addition to storing the data in a conventional DBMS for querying and

analysis. The various components in the above architecture are discussed below in

detail.

Sensors monitor the environment (e.g., lawn moisture level) and, if necessary,

transmit the information through the CORBA interface to the database. CORBA forms

the intermediate layer through which communication is performed between the database

and the devices. The database agent in MavHome registers itself with all the devices

through a callback interface wherein an instance of the database object is given to each

Trigger events

 25

device. Whenever a state change in a device occurs, CORBA invokes the database

object with the information on the state change, which automatically inserts the values

into the database. If all of the data from the sensors is not required to be stored in the

database, a filtering operation can be performed at this level. This is very useful for

devices such as temperature sensors, where temperature changes only above a threshold

need to be recorded. However in the current implementation, filtering is not performed.

Stream refers to the Data Stream Management System, which provides for the

processing of queries on the stream instead of on the database. Detailed discussion on

the DSMS architecture will be provided in the later section.

The database consists of two sets of tables one for transactional data and one for

inferred data. The transactional tables record the day-to-day information on the change

of state in each device and a set of inferred tables stores the results of the prediction

algorithm. Prediction results refer to the set of algorithms that run on the stored data and

discover the tightest intervals of state change associated with each device. In addition to

the interval discovery, the algorithm extracts any frequently occurring patterns with

different periodicities. A configuration file is used to input parameters to the prediction

algorithms. More details on the design and implementation of these algorithms will be

given in Chapters 4 and 5. A traditiona l database, as a passive repository to collect

information, can store information but cannot react or provide assistance to various

agents. The repository not only needs to provide the functionality of a traditional

DBMS, but also should have capabilities to react to and in some situations proactively

predict the trends for the immediate future and take appropriate actions. A combination

 26

of collected information and current events need to be used for continuous monitoring

of the house and its environment to initiate appropriate actions (triggering agents,

initiating diagnostics and inferences, providing appropriate data for mining, periodic

checking, etc.) in a timely manner. We use the concept of an active database, Sentinel in

this case along with the event specification language Snoop and the ECA (even-

condition-action) paradigm [20-23]. Currently it is possible to specify fairly complex

ECA rules to invoke various computations (agents) based on how the information

repository is updated. In summary the proposed architecture provides 3 important

functionalities.

Data Collection and Storage

Data Stream Management System

Prediction algorithms

Design and implementation of data collection followed by a brief overview of

the current DSMS architecture and Prediction algorithms is discussed below.

3.2 Design and Implementation of Data Collection and Storage

Data collection in MavHome consists of 2 steps. The first step includes

communication with the CORBA interface and registration with all the devices. The

second step comprises of the invocation of the callback object, which enters the device

information into the database. The detailed description of the two steps is given below.

3.2.1 CORBA Interface

The MavHome communication layer consists of a nameservice to which all the

room servers subscribe. Roomservers are the point of contact for all devices present in a

 27

room. To register with a device, the communication layer provides a set of methods

which allow an outside source to query the roomserver on the number of devices,

device characteristics and their registration. The database being a repository of

knowledge, registers itself with all the devices. Currently since all the roomservers are

static, the collection program, invokes each roomserver in sequence. The

X10LocationClientObject class connects to a roomserver given its name. Initially it gets

the number of devices associated with the room by invoking the getNumberOfDevices()

method. For each device in the room, the process then invokes the getDeviceInfo()

method, to get the device characteristics such as device id, name, type, location and

position. It then calls the subscribe() method and passes it a reference of

X10Location_cb_impl. X10Location_cb_impl is the class associated with the callback

object, which contains methods to update the database. The successful completion of

registration ensures communication of any change in state of a device to the database.

The main classes used for the above are X10Location_cb_impl,

X10LocationClientObject and MavHomeDAL. MavHomeDAL class consists of all

methods for inserting/updating the tables in the database.

3.2.2 Callback and Database Design Features

X10Location_cb_impl is responsible for updating the database with the current

change in the device’s status. Currently the information collected on all the devices is

stored in Oracle RDBMS. The database has been divided into 2 sets of tables.

Static Tables

Dynamic Tables

 28

Static tables contain information on the devices along with their respective

characteristics, which does not change frequently. The tables are updated only when a

new device is added to MavHome, or the location of a previous device is changed.

Dynamic tables are the set of transactional tables, which record the periodic changes

occurring to the devices. These also include the tables required to store multimedia

information. Currently the set of static tables include tbdevcice, tbdevicedescription and

tbroom. Tbdevice enumerates the different device types available with a brief

description on the device type. Currently the set of device types available are illustrated

in Table 3.1

Table 3.1: Different Device Types in MavHome

TXTDEVICETYPE TXTDEVICEDESCRIPTION

X10_LAMP Lamp
X10_MOTION Motion detector
X10_SWITCH Light switch
X10_FOB Light switch
X10_GENERIC Appliance
X10_CAMERA Camera
X10_ APPLIANCE Any appliance

Tbroom consists of information on the various rooms and their position and

location as room_id and description. Tbdevicedescription contains the information on

all devices including their id, name, type, room id, position and location. Dynamic

tables include tbtransload, which contains deviceid, status, property value, timestamp,

command source. Property value refers to any value associated with the device’s state

change. As an example, if the light is turned on and its intensity is set at 50, the

property value of the lamp=50. CommandSource contains information on event that

 29

triggered the state change. This event can be classified as manual, Heyu (through the

web interface) or through RF_Remote(centralized switch). Manual refers to the

situation when the user physically operatives the device to change its state. Heyu refers

to the situation wherein the user controls the device using the web interface and

RF_Remote refers to the operation of the device through a central switch (one for each

room). All communication with database is conducted through the Mavhomedal object.

Insertintotbdevicedescription() inserts the characteristics of the devices and

insertintotbtransload() inserts the device’s state change.

3.3 Data Stream Management System

Research on traditional database management systems (DBMSs) has been

concentrated on the data that has been collected and stored. A wide variety of

applications – network management, finance system, and sensor-based system (smart

homes) – generate real time data streams and their processing requirements are very

different from the traditional applications. Some of the common characteristics of these

applications are summarized below:

• The data processed by these applications arrive in the form of a

continuous stream, generated by sensors or embedded agents. Also the

size of the data in such a continuous stream is unbounded.

• These applications mainly focus on the most recent data, which requires

storing a predefined window-size of information for processing the data.

• These applications raise important events (e.g., congestion, alarm

conditions) that are detected by various continuous queries. This entails

 30

that the data processing system should fire pre-defined actions

immediately once an event of interest is detected.

Some applications also have quality of service (QoS) requirements in order to

respond to the events in a timely manner. As MavHome can be characterized by the

above features, DSMS is a better alternative to a traditional RDBMS to respond quickly

to events and answer queries continuously. It is clear that a traditional database

management system is designed to process stored data efficiently. Furthermore, it

assumes that the data is stored on a storage device that can be accessed as many times

as needed, and QoS requirements are not considered at all. A number of architectures

have been proposed to support the new requirements: the DSMS system by the database

group at Stanford [24], the Fjord system by Berkeley [25], the Aurora system [26], and

the NIAGARA system at university Wisconsin [27], to name a few here. A common

characteristic of these architectures is that they associate a queue with each operator to

support continuous queries over data streams. Hence a Data Stream Management

System needs to be designed and developed for the above characteristics. Some of the

important characteristics of DSMS are:

1. DSMS handles continuous streams of data wherein data is processed on

the fly and results are generated. It does not store raw data on the disk

but discards or archives the data elements once processed. Thus the

resource limitation problem of storing each and every piece of

information with large continuous streams is avoided.

 31

2. DSMS provides a new set of operators, which can operate on continuous

streams without blocking. Traditional Join and other Aggregate

operators, which are difficult to use with streams, are modified to

efficiently handle streaming data. They operate on windows, which

define the boundaries for the continuous streams. Continuous operations

are supported by moving the windows and changing their size. The

results are evaluated on a windows worth of data and then the next

window is considered for further evaluation.

3. Whenever the arrival rate of data in the stream exceeds the data

processing rate, techniques such as sampling and histograms may have to

be used in order to produce approximate results instead of losing data

due to resource limitations (e.g., memory buffers)

4. DSMS succeeds in providing real time response to queries. Queries

submitted to the system are run continuously against streaming data.

Thus output is produced continuously and incrementally at the end of

every window. Updates of routing table, network security, monitoring

traffic are some of the other applications that require real time response

of DSMS.

DSMS also supports different types of continuous/streaming queries.

Classification of streaming queries along with the different types of queries supported

by the current DSMS architecture is provided below. Streaming queries are broadly

classified into:

 32

• Predefined Queries

• Ad hoc Queries

Predefined queries: These are the queries that are made available to the system

before the arrival of data relevant to it.

Ad hoc Queries: These queries are submitted to the system when the data

stream has already begun. Hence for evaluating the queries requiring past information,

the system needs to support some amount of storage. Since Ad hoc queries are not

known beforehand, query optimization as well as finding common sub-expressions adds

complexity to the system.

Predefined and Ad hoc Queries are further classified into:

• One-Time queries

• Continuous queries

One-Time Queries: These queries are evaluated only once over a given window.

Once the query is evaluated it is removed from the system. It generates output once at

the end of the window.

Continuous queries: These queries are evaluated continuously as the data

streams arrive. Results are produced incrementally and continuously at the end of every

new window. Most queries in streaming applications are continuous. Results can be

stored and updated as streaming data arrives or can be streamed.

Figure 3.2 illustrates the various components of the current DSMS architecture. A brief

overview of query processing is explained below.

 33

Query Input: The user submits a query either as text (SQL query) or as GUI

(could be box and arrow). This module enters the query created by the user into the

system and registers the query with the module responsible for active queries.

Static Optimizer/ Alternate Plan Generator: Once the user submits a query, a

static plan is generated. A plan is nothing but a partially ordered tree that decides the

order in which operators are instantiated and executed. Once a plan is generated, the

alternate plan generator generates all possible alternate equivalent plans that ensures the

same output.

Processing Graph instantiates operators and their associated queues for

evaluating queries. This is a forest of operators that constitute a global plan. A list of

root operators and a list of leaf operators are maintained that help in graph traversal so

as to instantiate operators in the correct order.

Figure 3.2: MavHome DSMS Architecture

 34

Global Data Structure: This data structure keeps run time information such as

priorities, state, number of output queues associated, parentlist, childlist and windowing

information about active operators.

 Global Buffer Manager is used for dynamic allocation and de-allocation of

buffers. It works on various buffering policies that are implemented for the efficient

management of memory. This module decides when to swap pages from disk or which

operators to be given more memory over others based on priority.

Run-Time Optimizer performs run time optimization based on the quality of

service observed. To ensure QoS, optimizer may ask scheduler to increase the priority

of query, to allocate more buffers to respective operators or to select a better alternate

plan from the sequence of plans available. Run time optimizer uses all these parameters

intelligently to improve QoS.

Scheduler is used to schedule operators depending on the order defined by the

global graph and the priorities assigned to the operators.

The above section provided a brief overview of the need for DSMS as well as its

current architecture in MavHome. Further details on the design and implementation of

DSMS can be obtained from [29] thesis.

3.4 Interval Discovery and Sequential Mining for MavHome

The importances of an interval-based representation for certain domains as well

as the ways in which the interval information can be used for knowledge discovery are

discussed herein. With time-series or numerical data, wherein the data is a series of

events occurring at a point, intervals are a better alternative to timestamps. An interval

 35

represents an area of activity and provides a more accurate and meaningful picture of

the data set. Converting time stamped data into intervals results in coalescing the points

and creating boundaries between them. The boundaries signify the start and end points

within which the events occur. From a time-series data, interesting intervals can be

extracted that satisfy certain properties, or clusters can be formed around these intervals

to provide an overall view of the dataset with its distinctive areas. Again, the

formulation of clusters can be based on overlapping or disjoint intervals. One of the

distinct disadvantages of using traditional k-means [16,15] or density based clustering

algorithms [17, 18] is the determination of input parameters such as k or threshold

density. Determination of the values of these input parameters either requires proficient

domain knowledge or sufficient time for re-running algorithms with different inputs.

The primary aim of the interval discovery algorithm is not cluster identification.

However, in order to decide on a better value for k and the threshold density, the

number of clusters identified at the end of interval discovery along with their density

and length can be used as input to the traditional clustering algorithms. The intervals

can also be used as input to a sequential mining algorithm equipped to deal with interval

based input. This results in a smaller dataset as input to sequential mining, as the

interval discovery eliminates noise and low support points. Instead of generating

candidate item sets and pruning them based on their support, eliminating them from

participating in the pattern discovery saves time, computation and achieves scalability.

It can be argued that the effort saved during support counting and pruning is

compensated by the extra computation performed to discover intervals. However

 36

interval discovery, in its own right, extracts some valuable characteristics (outlined

above) of the data set as compared to mere support counting and pruning in the initial

passes of a traditional sequential mining algorithm.

As mentioned before, for applications where intervals provide better semantics,

the algorithms described in this thesis can be used very effectively. As an example, in a

smart home that has X number of devices, best intervals for each device can be

discovered first. They can then be combined using an interval based sequential mining

algorithm to discover interactions between devices. The interval discovery approach

also provides a natural way to partition the problem and is amenable to parallel

processing. We strongly believe that representing events with intervals has several

advantages: Firstly, it provides an opportunity to explore and identify significant

intervals, and in the process provides a better understanding of the underlying data.

Secondly, it provides nuggets of information about the data that can be used for

clustering the data by traditional algorithms (that require input parameters such as the

number of clusters, density, etc.). Finally, it reduces the size of the data used for

discovering sequential patterns. In summary, there are several advantages to extending

the traditional mining algorithms to work with intervals instead of points. However,

converting the existing algorithms in a naive manner to achieve the above may not

make use of interesting interval-based characteristics to improve the output quality and

efficiency. The problem of discovering tight intervals and frequent patterns (derived

from MavHome) can be described as follows. Given a history of event occurrences

(single or multiple) over a period of time, how can one predict the best (shortest or a

 37

bounded interval with some notion of confidence) interval in which the event occurred?

Initially, we look at the problem with a single event and then extend them to multiple

events and predict the occurrences of combination of event patterns (or episodes) on

sequence data.

To illustrate the problem consider Figure 3.3, which shows events of a lamp

being turned on (each day) over a 30-day period (time on x-axis and number of

occurrences on y-axis). It is of interest to predict when MavHome should turn on the

lamp each day to capture the inhabitant’s behavior. This necessitates finding intervals

with “good” confidence and providing mechanisms to explore and analyze the intervals

using different values of support, confidence etc. Figure 3.4 shows our initial approach,

which identifies four intervals as “interesting” that satisfy a user-defined confidence of

80% (the device was on 24 days out of 30). The x –axis represents the time of

occurrence of the event and the y-axis represents the number of times the event

occurred at a particular time referred to as strength. Cluster B has more than one

significant interval in which the device was turned on more than once with 80%

confidence from [1:07-1:47]. A suite of interval discovery algorithms have been

formulated to identify intervals for all devices in MavHome given the domain

requirements and input parameters.

More information on these algorithms will be provided in Chapter 4. After

extracting such intervals from all the devices, they are used as input to a sequential

mining algorithm to discover frequent patterns and sequences along with their time of

occurrence.

 38

Figure 3.3: Sample of MavHome Data

This is accomplished by the interval-based sequential mining algorithm

discussed in Chapter 5. The above algorithms give us the information needed to

automate device operations thereby reducing inhabitant interactions.

Figure 3.4: Identification of Intervals and Clusters from Figure 3.3

 39

4. CHAPTER 4

SIGNIFICANT INTERVAL DISCOVERY

In chapter 2 we discussed the various approaches proposed in the literature and

their drawbacks with respect to MavHome requirements and other related applications.

In this chapter we revisit our goal and discuss our proposed solution with its

performance results. Domain related modifications to the approach could be easily

integrated with the main algorithm to get improved performance. Several approaches to

the problem are described in this section along with their significant differences.

Section 4.1 discusses the conversion of point-based data into intervals and the various

properties associated with an interval. Section 4.2, 4.3, 4.4 respectively deal with

different approaches such as Naïve, significant interval discovery and modified

significant interval discovery along with their advantages and disadvantages. Section

4.5 describes the implementation of the approaches and their performance results and

comparison with each other.

4.1 Interval Discovery

Not many data mining algorithms discuss the formation of intervals on time

series data based on the interaction of events. The data collected from MavHome

exhibits the interactions between the inhabitant and the devices. This results in large

amount of information stored over a period of time for each device, with data value at

every point in the time scale. The primary aim is to coalesce the points and convert

 40

them to intervals. Start and end times associated with an event signifies the occurrence

of the event within it with certain characteristics of the interval such as its strength,

length and density. With large numerical and time series data, events occur with a high

degree of certainty not at specific points but within tight intervals (sets of points).

Therefore intervals give us more information on the total strength of the device activity

during a period as compared to points. Based on this observation, the data related to

each device is mined separately to identify the intervals with maximum strength.

MavHome can greatly benefit from an algorithm that can infer the usage

patterns of each device as well as interactions between different devices. MavHome

consists of numerous sensors deployed around the house that monitor different

activities. The devices include lamps, thermostats, computers, coffee machine, TV,

blinds, lawn mower, garage door opener and refrigerator to name a few. Every change

in the state of a device is recorded in the database. Abstractly such data can be viewed

as a collection of events, where each event has an associated time of occurrence.

Multiple events can occur at the same time, which means different events can have the

same timestamp. Discovery of the frequent sequences and automation of the home

using discovered sequences could reduce the interaction between the inhabitant and the

home. The crux of the study is to find, when each device is turned on and off and to

determine the interaction between the devices (such as the causality of their usage),

using the intervals. This gives the answer to the exact time of occurrences of each

device/event as well as of the frequent patterns (sets of devices).

 41

Even though interval discovery can be used with various applications as

described in Chapter 1, the MavHome scenario is used for further discussion with

typical examples.

Table 4.1: Sample of MavHome Input Data
Device
Id

Status Time
Stamp

Support

A5 ON 08:30 10
A5 ON 08:31 14
A5 ON 08:32 6
A5 ON 09:40 2
A5 ON 09:41 10
A5 ON 09:50 15
A5 ON 10:00 20
A5 OFF 10:01 10
A5 OFF 10:02 15
A5 OFF 10:04 15
A5 OFF 10:40 2
A5 OFF 10:50 3

The sample data in Table 4.1 gives us the information about the device, its

status whether it was ON or OFF, the times of occurrences and the strength at those

occurrences. In simpler terms, it can be seen from Table 4.1, device A5 was turned ON

10 times at 08:30 during the period of X days for which the data is being mined. A

cursory glance at the sample data will suggest that instead of working with all the

points, for sequential mining, or prediction, working with the high-density areas alone,

will result in a faster and efficient application. For example, intervals 08:30 to 08:32

and 09:41 to 10:04 indicate the tight periods of high activity. On the other hand points

such as 10:50 or 10:40 not having much support, do not form meaningful intervals with

their neighbors. This implies that they need not participate in the discovery of sequential

 42

patterns, as they would be pruned during the initial passes. In addition to sequential

mining, the tight intervals can be used for prediction of the next occurrence of the event.

In the above example only the times of their occurrence are considered, implicitly

including only the daily events in the database. However that is not a restriction and

week type or week number can be included to indicate the week of occurrence, thereby

forming the input for discovering weekly events. Week type is whether the day was a

weekday or a weekend and week number refers to the day of the week. Various levels

of periodicity can be used to discover the highly active intervals within that periodicity.

As we zoom out, that is move from daily to weekly to monthly, additional information

is discovered, which could not be inferred at the lower level.

For example, with daily periodicity, the days or week information is ignored and

the number of times the device was operated at a particular time is considered. At the

weekly periodicity, an additional attribute could be used to indicate whether the day is a

weekday or weekend, the time when it was operated and the number of times it was

operated at that time on the weekday. As an output the time intervals on a weekday

during which the device was turned on can be provided. The same can be found on a

week level by dividing the week into specific weekdays (Monday, Tuesday, Wednesday

and so on). The output reveals the best intervals on Monday the device was turned on.

This feature plays an important role in discovering events which are weekly in nature. If

the lawn mower is operated every Sunday at 11:00 am, this information could be

captured only if the algorithm was run with a periodicity of week type or weekday.

 43

The intervals obtained at one periodicity for different devices can be used to

form sequent ial patterns. A daily event will have an interval in its weekday/weekend

and weekdays counterpart. However a weekly event, which occurs only on Monday,

will be discovered only when the algorithm is run on a weekday basis. In the following

sections, the design and implementation of the algorithm will be described in detail. In

addition to using the algorithms with different periodicities, there are two options as one

moves to higher levels of periodicity: to deal with the data at the respective periodicity

or discover the time intervals in terms of hours and minutes at that periodicity. In the

former, intervals of weeks with most activity are discovered. In the latter, for events,

which occur only once or twice a week, the algorithm outputs the time intervals in

which they occurred in each day of the week. The former can be used by applications,

which do not need data in the granularity of time but of weeks or any other periodicity

of interest. By running the algorithm with different periodicities, intervals of

occurrence for each device with that periodicity is obtained, which in turn is used to

predict the next occurrence of the event as well as to discover sequential patterns

between devices with the given periodicity.

Table 4.2 describes the MavHome data when mined for weekly periodicity. The

same algorithm is run on different partitions to obtain the intervals particular to that

partition. Intelligence can also be built into the application so that, the algorithm can run

on various levels of periodicity automatically to discover various patterns depending on

the domain.

 44

 Table 4.3 gives the input format used with numerical domains to mine for the set

of tightest intervals satisfying user constraints. There are several approaches that can be

used to obtain intervals from a data set.

 Even though clustering is an option that comes to mind, it is difficult for a user

to ascertain before hand the input parameters usually needed for a clustering algorithm.

Several parameters such as number of clusters, density etc. are required as inputs to

various clustering algorithms. The present approach aims to find intervals with more

meaningful parameters given as input from the user such as interval-confidence, length,

and density of the interval. In addition to the discovery of intervals, characteristics of

these intervals can be used to make a better decision on the input parameters needed for

some of the traditional clustering algorithms.

Table 4.2: Input Format to discover weekly
events with output at time granularity

Device Id Status Weekday TimeStamp Support
A5 ON Monday 08:30 10
A5 ON Monday 08:31 14
A5 ON Monday 08:32 6
A5 ON Monday 09:40 2
A5 ON Monday 09:41 10
A5 ON Monday 09:50 15

Table 4.3: Input Format to discover weekly events with output at
granularity of week

Device Id Status Week Support
A5 ON 1 10
A5 ON 4 14
A5 ON 5 6
A5 ON 10 2
A5 ON 12 10
A5 ON 14 15

 45

4.1.1 Interval Definitions

Traditional time-series or numerical data sequences can be represented with an

event timestamp model. Event e is associated with a set of timestamps {T1, T2 ,…Tn }

which describe its occurrence over a period of time. The notion of periodicity (such as

daily, weekly, monthly, etc.) is used to group the event occurrences. For each event, the

number of occurrence at each point can be obtained by grouping on the timestamp (or

periodicity attribute). Timestamp considered can be as specific as using date-hours-

minutes-seconds or as general as a weekday (e.g., Monday). In either case grouping on

the timestamp provides the number of times a particular event occurred at that time.

Thus the data can be represented as < e {T1 , O1}, {T2, O2},….{Tn, On}> where Ti

represents the timestamp associated with the event e and Oi represents the number of

its occurrences for the event e. Oi is referred to as the strength of the event e at Ti.

A point can be represented as an interval with the same start and end point.

Strength at the point thus reflects the strength of the interval. When the interval consists

of several points, strength of the interval is the sum of the strength of the points that

form the interval. In addition to strength, the notion of Interval-Confidence is

introduced, which gives the average number of occurrences within an interval over a

period of time. Therefore interval-confidence can be represented as a ratio of the

strength and the maximum number of occurrences needed for the event to become a

certainty. If interval-confidence >= 1, the event is considered certain to occur within the

interval. Interval-confidence is always > 0, since an interval cannot exist without at least

one occurrence in the history. Any interval-confidence between 0 and 1 provides a

 46

degree of certainty with which the event occurs within the interval. For time-series data,

the maximum number of occurrences needed for the Interval-Confidence to be 1 can be

defined as the number of units (e.g., days, weeks, etc.) worth of data being mined. For a

numerical domain, it can be defined as the total number of occurrences observed over

the entire dataset. This results in the interval-confidence being the ratio of its strength to

the strength of the entire dataset.

Intervals are represented as [T1, T2, s, l, d, c] where T1 and T2 represent the

start and end of an interval, s represents the strength of the interval, l denotes the length

of the interval (T2-T1), d indicates the density and ic represents the interval-confidence.

Let N be the number of units (days, weeks, months, etc.) of the time-series data. For

numerical domain, let S be the sum of the strengths at all the points in the dataset.

 Length (l): T2-T1

 Density (d): s/l

 Interval-Confidence (ic): s/N (for time-series data)

: s/S (for numerical data)

Density is a characteristic associated with intervals with lengths >=1.Strength of

an interval, denoted by s, is defined as the number of times an event occurred within the

interval. For example, if the device was turned on 20 times within

[10:00-10:15] then s has the value 20, or

if age group of 20 bought 100 items, s is 100 for the interval [20-20]. If in 30

days of data, the device was turned on 20 times within

 47

[10:00-10:15] then ic=.66 [20/30] to identify a daily event and when identifying

weekly events, ic=s/number of weeks.

 As an example of a numerical domain, a magazine subscription company

interested in finding age groups with interval-confidence >=40% will discover either the

best age group with the most orders or the top 2 age groups with confidence > 0.4 and

<= 0.5 (maximum interval-confidence of 2 intervals which together span the entire

dataset is 0.5)

4.2 Significant Interval Discovery Algorithm (SID)

The significant interval discovery algorithm proposed in this study can be

partitioned into 3 phases:

• Preprocessing (one time processing)

• Interval Formation (Iterative process)

• Cluster Formation (one time processing)

Table 4.4: Input Data set in a Vertical format

Device Status Time of

occurrence

Strength

LivRmLamp1 On 10:00 4

LivRmLamp1 On 10:01 7

LivRmLamp1 On 10:03 10

LivRmLamp1 On 11:04 8

Preprocessing converts the input dataset to a format suitable for the interval

formation algorithm. It uses any domain specific parameters, if provided to form the

 48

first level intervals from the point based data. For MavHome, every state change of a

device is recorded in the database. The table therefore contains the device name, its

status (On/Off), and timestamp of the state change. The preprocessing step converts this

stream of data, into a vertical layout format as shown in Table 4.4. Strength at a point

refers to number of times the device was changed to the mentioned status at that point.

Table 4.4 gives the information about the Living Room Lamp1, the points at which it

was turned ‘On’ and the number of times (over the entire dataset) it was turned ‘On’ at

that point.

These set of points are converted into the first level intervals as shown in Table

4.5. Assuming the above data was collected over 30 days, interval-confidence =

Strength/30 and density= Strength /Length.

Table 4.5: First Level intervals from Table 4.4

Device Status Start

Time

End

Time

Strength Density Length Interval-

Confidence

LivRmLamp1 On 10:00 10:01 11 11 1 0.3667

LivRmLamp1 On 10:01 10:03 17 8.5 2 0.5667

LivRmLamp1 On 10:03 11:04 18 0.3 61 0.6

The interval formation phase uses the first level intervals as input and follows

an iterative process to generate the tightest intervals satisfying the user input, referred to

as significant intervals. Cluster Formation uses the significant intervals to identify any

clusters of high activity in the dataset. If the above algorithm is unable to discover any

 49

clusters, the output of this phase is the significant intervals discovered in the second

step. Before discussing the details of the three phases, the parameters used by the

algorithm are described.

4.2.1 Configuration File

The interval discovery algorithm accepts a number of parameters from the user

(from a configuration file) to compute the set of significant intervals and clusters. The

input parameters accepted by the algorithm are:

• Minimum Strength

• Window

• Measure

• Measure Value

• Period

• Interval Semantics

• Sequential Window

• Number of Threads

• Approach

Minimum Strength and Window are parameters used in the preprocessing phase

to prevent the formation of certain first level intervals from the point-based data. They

are domain specific and optional; they make the process more efficient and accurate

when provided. Minimum Strength ensures that only intervals with strength greater than

specified value (threshold) form an interval. When dealing with data over a long period

of time, the user can specify Minimum Strength=4, which prevents any first level

 50

intervals with Strength < 4 to be formed. In the above example, minimum Strength of

11 eliminates [10:00-10:01] interval from being created and thereby any of its supersets.

This parameter helps to identify noise and prevents certain points from participating in

further passes. Window specifies the maximum length of a first level interval. This is

another optional parameter, which ensures that points in different periods of interest do

not combine to form an interval. For the above example, Window=30 prevents [10:03-

11:04] from being created. All the intervals created in the preprocessing step are

candidates for expansion in the following steps until a threshold condition is met.

Window parameter prevents the formation of meaningless intervals.

Measure is an option by which the users can specify the field on the basis of

which the interval selection is performed. The choices are interval-confidence, interval

length, density and a combination of interval-confidence and interval length. Depending

on the Measure chosen, its value is provided in Measure Value. If the Measure is

specified as interval-confidence and Measure Value is 0.8, the algorithm discovers the

smallest intervals in which LivRmLamp1 was turned on at least 23 out of 30 days or 3

out of 4 weeks. However, when the user is interested in discovering intervals of a

specified length, the Measure can be set to the interval length with Measure Value

giving the maximum length of an interval.

The above two Measures can be combined to discover intervals above the

threshold interval-confidence and within the interval length specified. To improve the

efficiency of the algorithm, the user can set the Thread parameter, which indicates an

upper bound on the number of threads spawned by the algorithm. Period and interval

 51

semantics are parameters used by the sequential mining algorithm. Period signifies

discovering patterns within the specified periodicity (Daily, Weekly, etc). When mining

for weekly events, the maximum number of occurrences needed for interval-confidence

are the number of weeks worth of data. Based on the nature of the dataset (i.e. time-

series or numerical), weekly periodicity results in a different output. With time-series,

the algorithm discovers, the time- intervals for each event per weekday (Monday,

Tuesday, etc). For Numerical data on the other hand, group of weeks are clustered to

extract tightest intervals with required characteristics. The above is the same for any

other periodicity such as monthly, yearly etc. More information on interval semantics is

provided in the sequential mining section, which in a nutshell describes the joining

criteria for events. Sequential Window refers to the window to be used for sequential

mining. Depending on the interval Semantics chosen, the frequent sequences output

may or may not be equal to the window size, as will be discussed later. None of the

above parameters are necessary for the termination of the algorithm. However their

specification helps in the generation of meaningful intervals. For example, if no

Measure is specified, the algorithm will discover larger intervals, which in some cases

can span the entire dataset. Approach refers to the interval discovery algorithm selected

by the user. The user has four choices Naïve, SID[n-1], SID[1] and SID[n-2], which are

discussed in detail in the remaining sections of this chapter. Based on the nature of the

dataset, a suitable approach can be chosen to derive the output in terms of the number of

intervals generated or length of the intervals generated.

 52

4.2.2 Naïve Approach

The Naïve approach of identifying intervals based on a user-specified measure

is discussed below. It can be viewed as an exhaustive approach in which every point can

potentially combine with every other point in an iterative fashion until the threshold

value is reached. All possible candidate intervals are generated before selecting the

smallest interval satisfying the user input. The algorithm is given below.

//The first level intervals generated from the

preprocessing step

Store the first level intervals in intervalInput

//Base case for intervalOutput

Store the first level intervals in intervalOutput

//increasedIntervalOutput identifies the intervals

generated in the last pass

For each element in intervalOutput

If (Interval.measure_value <

ConfigurationFile.measure_value)

Join with adjacent interval from intervalInput

to form a longer interval

Store the new interval in increasedIntervalOutput

If no new intervals are formed in

increasedIntervalOutput

//interval discovery terminates

 53

Break

Else

Replace intervalOutput with

increasedIntervalOutput

In the first pass of the above algorithm, every 3 points combine to form an

interval. That is, the first level interval (made of 2 points) is lengthened by the addition

of its closest point. Along similar lines, the third pass results in the combination of

every 4 points to form an interval. From Table 4.5 the intervals formed using Naïve

approach in the first pass are shown in Table 4.6

Table 4.6: Intervals generated in the first pass by Naïve Approach

Device Status Start

Time

End Time Strength Density Length Interval-

Confidence

LivRmLamp1 On 10:00 10:03 21 7 3 0.7

LivRmLamp1 On 10:01 11:04 25 0.4 63 0.8

The Naïve approach performs a total of O(n2) combinations by merging each

interval with all possible intervals until the user-defined measure is reached. It grows

the intervals generated by the last pass with the first level interval set to form new

intervals. From Table 4.6 the interval created in the next pass would be [10:00-11:04].

This approach is computationally expensive for large datasets. Furthermore, it

does not help in reducing the number of intervals, especially when the number of

intervals generated is large (n-1 intervals from n data points). However for smaller

 54

datasets, with distinct intervals and well-defined input parameters, the Naïve approach

can be used to generate all possible intervals satisfying the threshold measure (defined

in the configuration file). This forms the complete input set for sequential mining,

which discovers all possible interactions between events. The naïve approach always

combines intervals of the nth pass with the intervals from the first level.

4.2.3 SID[n-1] Approach

The next approach – SID[n-1] (Significant Interval D iscovery) approach –

reduces the number of passes and the number of intermediate intervals generated by

utilizing interval characteristics. SID uses a divide and conquer method for generating

new intervals in the nth pass by using only the n-1th (or current) pass. Furthermore,

instead of blindly growing the interval generated in the previous pass (as in the naïve

approach), it makes use of density and interval-confidence of the current and adjoining

intervals to ascertain whether a merge should be made. Since interval-confidence = s/N

or s/S and its denominator is a constant, an increase in the numerator will always

increase the interval-confidence value. Therefore it can be stated that interval-

confidence is a monotonically increasing function.

Lemma1: If an interval s has interval-confidence ic then all of its supersets i.e.,

{∀a | a ∈ S and a.starttime <= s.starttime and a.endtime >= s.endtime } will have

confidence >= ic.

The above lemma follows directly from the definition of interval-confidence.

In addition to interval-confidence, density of an interval relates its total strength

with its length. High-density points indicate sudden burst in activity and merging them

 55

with the lower density counterparts has a smoothing effect over the new interval.

Merging intervals using density helps to eliminate the local maxima in favor of the

global maxima around high-density points. When an interval reaches the threshold

measure level, it is added to the output set. This interval does not participate in further

merges because any further merging will only result in greater interval-confidence or

length than required thereby forming an extra-fit, as indicated in Lemma 1. If no new

intervals are generated in the subsequent pass, the interval-merging phase terminates.

SID uses the following condition in the algorithm to prevent all possible candidate

generation.

For each element in intervalOutput

If (Interval.measure <

ConfigurationFile.measure)

If interval.density <=

AdjacentInterval.density or

interval.confidence <=

AdjacentInterval.confidence

Join with adjacent interval from

intervalInput to form a longer

interval

Store the new interval in

increasedIntervalOutput

 56

Following are the four cases, which occur when two intervals try to merge with each

other:

Case 1:[T1, T2, c1] – [T2, T3, c2]: d2 >= d1 & c2 >= c1

Case 2:[T1, T2, c1] – [T2, T3, c2]: d2 >= d1 & c2 <= c1

Case 3:[T1, T2, c1] – [T2, T3, c2]: d2 <= d1 & c2 >= c1

Case 4:[T1, T2, c1] – [T2, T3, c2]: d2 <= d1 & c2 <= c1

Figure 4.1 represents the four cases graphically. The dashed lines are the

adjacent intervals, which merge to form the interval represented by the solid line. The x-

axis represents the time and the y-axis represents the density. The nature of interval-

confidence is same as strength, which is indicated by the area within the interval

(density * interval- length). A uniform distribution is used to illustrate an interval

because the SID algorithm uses density, interval-confidence and length alone to decide

whether an interval merges further. The density of the interval is assumed to be the

mean of that interval’s uniform distribution. After every merge the above-mentioned

characteristics are re-calculated so as to allow for future merges.

The first and third cases have the adjoining intervals with greater mass as

compared to the first interval, and merging the 2nd interval with the 1st results in [T1,

T3, c3] with increased interval-confidence. Case 2 indicates a particular scenario in

which the adjoining interval is of smaller mass but exhibits a sudden burst in activity,

causing an increase in density.

The second interval forms the local maxima around the region, which is

smoothed by its merge with the first. Case 4 indicates a natural end of an interval, since

 57

compared to it; the adjoining interval acts as noise and can be ignored. As the number

of passes increase, the number of merges that form new intervals start decreasing. It can

also be seen that the total number of merges for the algorithm is proportional to n log n.

Figure 4.1: Different Cases for Interval Merges

In every pass, two intervals merge to form a larger interval. In the next pass, it is

the larger interval, which is a candidate for further increase. This causes the size of the

interval to grow at an exponential rate with the number of prospective merges reducing

in an exponential rate. Due to this property, SID[n-1] produces longer intervals as

compared to Naive. The amount by which SID[n-1] extends the output interval for the

same measure level as Naïve, is referred as extra-fit. Since intervals are checked before

they continue to merge, the extra-fit produced by SID[n-1] can never exceed twice the

optimal length (as produced by Naive) of the interval. This is because interval

 58

characteristic needs to be below threshold for a merge to happen. In the worst-case, an

interval just before reaching its optimal length can merges with its adjacent interval that

has already reached the threshold value, thereby resulting in an extra-fit. Even then the

extra-fit is not more than twice its optimal length because the interval merged before its

threshold was reached. The aim of the algorithm is to form the best interval from each

point without enumerating all possible intervals from it.

Moreover the algorithm is flexible enough to stop the interval growth at a point

especially when the point looks uninteresting and signifies noise. When experimenting

with large data sets, SID[n-1] is faster, accurate and produces fewer intervals as

compared to Naïve. Despite the smaller amount of intervals, SID[n-1]’s results are

comparable to Naïve with large datasets as there always exists more than one significant

interval in a high-density area. For example, if 10:00 to 11:00 represents a general area

of high activity with 10 significant intervals with interval-confidence=0.8, Naïve

enumerates the 10 tightest intervals whereas SID[n-1] enumerates 3 with interval-

confidence=0.9. Therefore SID[n-1] maintains the same coverage provided by Naïve in

addition to reducing the number of intervals generated. Coverage can be defined as the

set of all distinct points included within the significant intervals produced by Naïve.

This is very beneficial when the data set has to be mined for sequential patterns. The

disadvantage could be as follows: if there exists only one interval around a range of

points and SID’s four cases (Figure 4.1) are unable to form an interval around them, the

range might be missed. If SID[n-1] is used with smaller datasets, the conditions

mentioned above can be relaxed to correct the above error. Instead of the

 59

If Interval.density <= AdjacentInterval.density

 or Interval.confidence<=AdjacentInterval.confidence

 Merge the interval

One can use,

If Interval.density <= w1 * AdjacentInterval.density

 or Interval.confidence<= w2* AdjacentInterval.confidence

 Merge the interval

Where w1 and w2 are weights that need to be determined.

4.3 Alternative Sid Algorithms

The naïve and the SID[n-1] approaches can be viewed as approaches that

represent the end points of the spectrum. The Naïve approach combines intervals from

each pass with the input intervals and hence can generate the tightest intervals that

satisfy the user-specified measure. On the other hand, the SID[n-1] approach combines

the intervals from each of pass with only itself to from the intervals in the next pass. As

a result, the intervals generated may be slightly larger than the ones generated by the

naïve approach. In order to reduce the extra-fit of the SID approach, two more

approaches are proposed that cover points in the spectrum formed by the naïve and the

SID [n-1] approach.

In many situations, the application demands the discovery of all possible

intervals with minimum extra-fit. The Naïve method accomplishes this task but at the

cost of high computational time. Fortunately, SID can be modified to increase the

number of intervals produced and reduce the extra-fit without listing all possible

 60

intervals in more than one-way. This can be viewed as an option to the user to explore

the data set in different ways so as to understand the domain characteristics and

determine the input parameters. The user can decide, based on the required accuracy on

one of the following approaches:

• The naïve approach to explore the intervals exhaustively (SID[1])

• The SID[n-1] approach to explore the intervals minimally

• The SID[1, n-1] approach to produce most of the intervals produced by Naïve

and reduce the extra-fit as compared to SID[n-1]

• The SID[n-2, n-1] approach to produce improved coverage and reduced extra-

fit compared to SID[n-1]

The value(s) in the parenthesis indicate(s) the intervals from the passes used for

merging to form the intervals of the nth pass. Based on this convention, the naïve

approach can be expressed as SID[1] as the first level intervals are always used to

merge with the (n-1)th pass intervals. SID[1, n-1] uses intervals from first pass to merge

with the intervals in the n-1th pass with priority given to intervals from the 1st pass while

merging.

4.3.1 SID[1, n-1] Approach

For the SID[1, n-1] approach, the SID[n-1] algorithm can be used with the

same merging criteria (Figure 4.1) with minor modifications. SID[n-1] uses the current

pass alone to create the next pass intervals. In this algorithm, the current pass [n-1] as

well as the first pass [1] intervals are used for merging purposes. The four merging

criteria cited in Figure 4.1 are used with higher priority given to the first pass over the

 61

last pass intervals. The reasoning behind using first pass and its higher priority is, after

reaching a certain measure level; the interval grows incrementally when merged with

the first pass. In the initial passes the intervals grow faster since adjacent points may not

always have the satisfying conditions to grow. However after a few passes, the intervals

try to merge with the first level interval as compared to the last pass. Owing to this, the

growth is curtailed, extra-fit is reduced and intervals produced increase as compared to

SID[n-1].

Table 4.7: First Level Intervals
Start Interval End Interval Strength Interval-

Confidence
Density

1 3 5 .4 2.5
3 4 5 .4 5
4 8 10 .5 2.5
8 9 10 .5 10
9 12 15 .75 5

Table 4.7 represents the first level intervals produced from point data for 20

days. From Table 4.9 it can be seen that because of first pass intervals, the extra-fit by

SID[1, n-1] reduces thereby increasing the number of intervals produced with

confidence >=1. First iteration of interval-merge results in the formation of {[1-4], [3-

8], [4-9]} for all approaches.

Table 4.8: After 2nd Pass of SID[n-1]
Start Interval End Interval Strength Interval-

Confidence
Density

1 9 30 1.5 3.3
3 12 40 2 2.5
4 12 35 1.75 2.1
8 12 25 1.25 3.5

 62

SID[n-1] as seen from Table 4.8 produces {(1-9), (8-12)} as output. Intervals

{(3-12), (4-12)} are eliminated because its subset (8-12) itself is above the threshold

value (Lemma 1).

Table 4.9: After 2nd Pass of SID[1, n-1]
Start Interval End Interval Strength Interval-

Confidence
Density

1 8 20 1 2.8
3 9 25 1.25 4.1
4 12 35 1.75 2.1
8 12 25 1.25 3.5

SID[1, n-1], on the other hand, produces {(1-8), (3-9), and (8-12)} as output.

Interval (4-12) is eliminated in favor of (8-12). Naïve approach with no extra-fit would

produce {(1-8), (4-9), and (8-12)} with (3-9) eliminated in favor of (4-9). SID[1, n-1]

results in increased number of intervals with reduced extra-fit. A salient point to note is

that in either case, the coverage is complete with every interval produced by naive is

encompassed by SID[n-1] and SID[1, n-1].

4.3.2 SID[n-2, n-3] Approach

SID[n-2, n-1] replaces the use of the first pass in SID[1, n-1] by the penultimate

pass. This does increase the number of intervals greatly as compared to SID[n-1] but

reduces the extra-fit and increases the coverage produced. This can be explained along

the same lines as SID[1, n-1], since the interval growth is not completely exponential.

The smaller interval of the penultimate pass is used to merge producing a better- fit

interval instead of the corresponding larger last pass alone, which has the greatest length

intervals. Figure 4.2 represents a subset from 9:30 to 14:40 over 30 days of data, mined

for the discovery of intervals with interval-confidence >=0.8 with window=60. The

 63

figure illustrates the difference in the intervals created and shows only one interval per

area. Over the high density area of 9:55 to 10:11,

Naïve discovered: {9:55-10:06, 10:00-10:07, 10:02-10:08, 10:05-10:10, 10:07-

10:11}

SID[n-1] discovered: {9:55-10:10, 10:04-10:11}

SID[n-2, n-1] discovered: {9:55-10:06, 10:00-10:08, 10:02-10:10, 10:03-10:11}

SID[1, n-1] discovered: {9:55-10:06, 10:00-10:07, 10:02-10:08, 10:03-

10:09,10:07-10:11}

0

1

2

3

4

5

6

7

09
:3

6

10
:1

2

10
:4

8

11
:2

4

12
:0

0

12
:3

6

13
:1

2

13
:4

8

14
:2

4

Time

S
tr

en
g

th

Naïve, SID[1, n-1], SID[n-1, n-2]
[09:55 - 10:06]

SID[n-1]
[09:55 - 10:10]

Naïve, SID[1, n-1]
[13:02 - 13:08]

SID[n-1]: [13:01 - 13:10]
SID[n-1, n-2]: [13:02 - 13:10]

Figure 4.2: Comparison of Intervals with SID Variants

The following conclusions could be derived from the above: Naïve with n2

combinations and larger number of passes produces all possible user-defined intervals

from the dataset. It uses the latest and the first pass of intervals as input. SID[n-1] with

n log n combinations uses the recently created intervals alone to generate the next set of

 64

intervals. SID[1, n-1] increases the number of intervals substantially and uses the

intervals in the first and the last pass as input. Finally, SID[n-2, n-1] reduces the extra-

fit by using the last 2 passes alone as input. Both SID[1, n-1] and SID[n-2, n-1] give

higher priority to a smaller length interval during merges.

4.4 Implementation of SID and Cluster Algorithm

The implementation of interval discovery can be broken into two parts:

identification of intervals (SID approach) and identification of clusters from the

intervals discovered (cluster identification).

4.4.1 Implementation of SID

The implementation of the interval discovery algorithm consists of the

following main classes:

• InputStruc

• InputMavhome

• OutputStruc

• InputFormat

• IncrementInterval

• Semaphore

• Sync

InputStruc gives the method and attributes associated with the input object. This

is a standard object, which can be used with any type of application. It is made of date,

which signifies the field, to be converted into intervals and support that gives the

strength at that field. Field can be either time-series or numerical data. InputMavhome

 65

class provides information related to the MavHome application that is not given by

InputStruc. Whereas InputStruc is the general structure of an input object,

InputMavhome is an object that provides domain specific information. When the

algorithm is to be used with a different application, the inputMavHome class can be

replaced with the attributes associated with the specific domain.

OutputStruc refers to an interval class and is associated with the following

attributes:

• Start time

• End time

• Total Supp

• Time Diff

• Density

• Interval-Confidence

It is also associated with an important function supersetOf (outputStruc,Vector).

The function returns an integer value depending on whether the object is a

subset/superset of the object passed as an input parameter to the function. Vector object

is filled with the start and end times of itself and the object passed as a parameter

converted to minutes format in case of time series data. This information is useful in

determining the nature of the overlap in case of overlap during cluster identification

phase.

InputFormat class reads the configuration file, identifies the input parameters

and spawns objects of type IncrementInterval for each event. At the end of the last

thread, it starts the sequential mining phase by invoking the MaximalSequence object.

 66

To control the number of threads generated classes Semaphore and Sync are used. More

details on the MaximalSequence object will be provided in the next chapter.

IncrementInterval forms the heart of the interval discovery algorithm, which

accepts as input the vector of points and support associated with an event and all the

parameters given in the configuration file. Point data is converted into intervals by

joining adjacent points in FindCombinations(). Depending on the approach chosen,

intervals are formed in an iterative manner. From the set of intervals created in the last

pass, only those satisfying the threshold measure form the set of significant intervals.

Since in every pass, an interval is extended with the same start point, its position in the

vector remains unchanged. This property can be used while implementing SID[1,n-1]

and SID[n-2, n-1] and the search to find the adjacent interval in a vector is done once.

Otherwise the time spent for this search can become significant with large datasets.

Once the position of the adjacent interval is found, the vector of the previous pass in

SID[1, n-1] and SID[n-2, n-1] can be indexed by the same position and a second search

can be avoided.

4.4.2 Implementation of Cluster Algorithm

The design and implementation of cluster identification module requires an

algorithm that produces a set of cluster intervals generated from the significant

intervals. The current implementation generates clusters between 2 adjoining significant

intervals. For example, if 1-3 and 3-8 are the 2 significant intervals discovered, the

algorithm generates a cluster of 1-8. Flexibility can be added to the cluster identification

step by allowing intervals within x units of each other to form a cluster.

 67

Also the cluster implementation can be modified to create overlapping or

disjoint clusters. The data structure used to find a cluster has the following 3 attributes

associated with it:

Name: A unique identification of the cluster

Head: The superset interval of the cluster. All the intervals associated with the

cluster form subsets of this interval.

Cluster-Intervals: All the intervals including the head form the cluster. From this

set, a subset of tightest intervals representative of the cluster can be obtained.

Head values of all the clusters identified as output are representative of the

clusters within the dataset.

The psuedocode for finding clusters from the significant intervals is as follows:

Identify the intervals from increasedintervalOutput whose

measure >= user_specified measure

For each interval (I) in the finalset

 For all Heads (H) of the existing cluster (C)

 If (I is a subset of H)

 I ∈ C

 Else if (I is a superset of H)

 C.Head ∈ C

 C.Head = I

 Else

 Form a new cluster C with C.Head = I

 68

 C.Name = ‘Cluster ’ +Max(C_Name)+1;

The above results in a set of clusters, which are overlapping in nature. Ordering

criteria can be used in the form of length of the cluster, its density, interval-confidence

and number of non-overlapping representatives with their measures above the

threshold. After this step only the points with sufficient support eithe r in terms of

interval-confidence or length are chosen for sequential mining. This is the main

advantage of SID [n-1] and its variants over the traditional approach.

Over the same data used for Figure 4.2 (30 days over 9:30–14:30), cluster

identification algorithm with SID[n-1] produced the clusters shown in Figure 4.3. The

current implementation of the algorithm illustrates overlapping cluster, which can be

modified to produce disjoint clusters alone.

0

1

2

3

4

5

6

7

09
:3

6

10
:1

2

10
:4

8

11
:2

4

12
:0

0

12
:3

6

13
:1

2

13
:4

8

14
:2

4

Time

S
tr

en
g

th [09:55 - 10:10]
[10:04 - 10:11]

[13:07 - 13:14]

[13:01 - 13:10]

Figure 4.3: Identification of Clusters

In addition, the algorithm can be run on a representative data set and the number

of clusters obtained by the algorithm can be fed to a traditional clustering algorithm

 69

such as k-means [1], [2] to get improved results. Similarly, the average density of the

intervals produced can be fed to a density-based clustering algorithm such as

(DBSCAN) [3], [4] to improve results.

4.5 Experiment Results

A number of experiments were performed with the MavHome data to verify the

correctness and scalability of SID and its variants with respect to the Naïve approach.

Experiments were also performed in order to observe the effect of parallelization on

response time. In the MavHome scenario, data collected for all devices is partitioned

into events for each device and the intervals of occurrences are discovered for each

device independently. This can be done for most of the data sets even if the data is

collected as a single set. Since the present focus is not on the interaction between

different events, each event can run as an independent thread. The user can input a

parameter, which controls the number of threads generated. A number of experiments

have been performed with the data collected from MavHome ranging from 1-3 months.

Several experiments were conducted on the same dataset, comparing both the Naïve and

SID approaches on the time taken, passes needed and more importantly intervals missed

by SID[n-1], SID[1, n-1] and SID[n-2, n-1] as compared to Naive. The time recorded

for all the experiments was calculated as an average of four runs.

It was found that by increasing the number of threads, and thereby introducing

parallel computation, the time taken to discover the intervals reduced, as can be seen

from Figure 4.4. The time taken was averaged over four runs for each dataset. The

dataset ranged from 46000 records in 1 month to 140,000 records for 2 months and

 70

201,000 records in 3 months. The x-axis indicates the number of threads used. The

experiments suggest a significant improvement with increase in the number of threads.

However, as the data set size increases, beyond a number of threads, the improvement

does not continue which was observed for the 3-month data for 15 threads. Another

observation is that the time taken by SID did not increase dramatically from 1 to 3

months, suggesting that with large data sets, the convergence is faster than small data

sets. This also means that the computation time does not increase proportional to the

data size (can be inferred from 1 thread response time for the three data sets).

It is important to understand the effect of SID alternatives on the number of

passes. As seen from Figure 4.5 the number of passes taken by the Naïve approach for 3

months of data is much more than that taken by SID[n-1] or SID[1, n-1]. The largest

improvement is from 75 passes to 12 (for D5-ON) and the smallest improvement is

from 32 to 9 (for F5-ON). The largest improvement is 600% and the smallest is 300+

%. Even among the SID alternatives (not including the naïve), there is significant

reduction in the number of passes. The reason SID[n-2, n-1] has not been shown in the

graph is that it always lies between SID[1, n-1] and SID[n-1] in the number of passes.

In order to compare the coverage produced by SID[n-1], the intervals produced

by the Naïve algorithm whose start times were not included within the start and end

times of at least one interval produced by SID[n-1] were counted. The same calculation

was performed with the end times produced by the Naïve algorithm to verify the

presence of at least one interval in SID[n-1], which encompassed it. The number of

points missed by SID[n-1] was less than 2% of the intervals generated by the Naïve

 71

approach. Given the substantial reduction in the number of passes and the insignificant

missed percentage in the coverage of the alternatives, there is no advantage to use the

naïve approach for most of the data sets.

0

5

10

15

20

25

30

35

40

1 5 10 1 5 10 15 1 5 10 15

Number of Threads

R
u

n
 T

im
e

(m
in

u
te

s)

1 month 2 months 3 months

Figure 4.4: Response time of SID[n-1] for 1-3 months with daily periodicity

In addition to the number of passes, the number of intervals produced by the

SID alternatives is also of interest. It was observed that SID[n-1] produced about 1/3

the intervals produced by Naïve and SID[1, n-1] about 2/3 as can be seen from Figure

4.6. There is not only a significant reduction in the number of passes, but also in the

number of intervals generated. The reduction in the intervals by 33% and 66% with the

use of SID[1, n-1] and SID[1] approaches respectively without sacrificing the coverage

implies that these alternatives could be considered as useful substitutes to improve

upon the performance of the naïve approach.

 72

0
10
20
30
40
50
60
70
80

A
5-

O
N

B
5-

O
N

C
5-

O
N

D
5-

O
N

E
5-

O
N

F
5-

O
N

G
5-

O
N

H
5-

O
N

I5
-O

N

J5
-O

N

F
12

-O
N

F
14

-O
F

F

F
16

-O
F

F

Events

N
u

m
b

er
 o

f P
as

se
s

Naïve SID[1, n-1] SID[n-1]

Figure 4.5:Comparison of the number of passes between SID Approaches and Naïve

The Graph shown in Figure 4.7 enumerates the percentage deviation in the

interval length of the significant intervals between Naïve and various SID approaches.

Percentage Deviation = Avg((Sid[i].endtime-Naïve.endtime)/Naïve.Starttime-

Naïve.endtime)

when Sid[i].starttime=Naïve.starttime and i is the SID alternative

Percentage deviation indicates the amount of extra-fit produced by SID and its

variants as compared to Naïve. The first month gave an average of 14.5% whereas for

the 3 months it reduced to 5.43 % when SID[n-1] was used. This shows that with larger

datasets, SID[n-1] improved on performance as well as accuracy. From the graph we

can infer that the percentage deviation not only improves with SID alternatives, but

converges to the naïve approach when the data size increases.

 73

0%

10%

20%

30%

40%
50%

60%

70%

80%

90%

100%

June Totals July Totals August Totals

Month

In
te

rv
al

s
P

ro
d

u
ce

d

SID[n-1] SID[n-2, n-1] SID[1, n-1]

0

2

4

6

8

10

12

14

16

S
ID

[n
-1

]

S
ID

[n
-2

, n
-1

]

S
ID

[1
, n

-1
]

S
ID

[n
-1

]

S
ID

[n
-2

, n
-1

]

S
ID

[1
, n

-1
]

S
ID

[n
-1

]

S
ID

[n
-2

, n
-1

]

S
ID

[1
, n

-1
]

1-month 2-month 3-month

Approaches and Months

%
 D

ev
ia

ti
o

n

Figure 4.6:Comparison of Intervals
produced by all approaches to Naïve method

Figure 4.7:Percentage Deviation of SID
variants Vs naive

The effect of domain specific parameters such as minimum support and

window on the number of intervals has also been studied. Table 4.10 shows that

reduction of the window parameter or specifying minimum constraint reduces the

number of intervals discovered and changes interval characteristics. We can observe

from Table 4.10 that window made a greater impact on the June dataset as compared to

August. This is because in August, enough data had been accumulated with interactions

at every point, because of which window value of 10 did not make much of an impact.

Minimum Support however made a comparable difference in intervals irrespective of

the sizes of the dataset.

This parameter reduced the number of valid intervals that were formed in the

first pass due to the strength criteria and caused a rippling effect. Since these parameters

 74

have a great impact on the intervals discovered, they should be set after careful

consideration. The results in Table 4.10 was observed by running the algorithm with 1-3

months of data with the following parameters, Measure of 2 and interval-confidence as

0.8.

Table 4.10: Impact of Minimum Support and Window on #of
intervals discovered

Parameters Month #of intervals

Window=10 3310

Window=60 3621

Minimum Support=3

June

2361

Window 60 5235

Window=10 5079

Minimum Support=4

July

4144

Window 60 5152

Window=10 5101

Minimum Support=5

Aug

4422

Naïve and SID variants produce a set of intervals for each event. It was of great

interest to verify the one interval chosen by all approaches in a given range with the

same ordering criteria applied over the set. This would be very useful in situations

where the next occurrence of a device was to be automated.

The experiment was performed with June data for daily events and all

approaches were run with the same configuration file before posing the question. As can

be seen from Table 4.11, since there was more than one interval around 9:30 to 10:00,

all approaches gave similar answers.

 75

Table 4.11: Comparison of best intervals by all approaches over 09:00-10:00 for B5 -
ON

SID[1] SID[1, n-1] SID [n-2, n-1] SID[n-1]

09:53-10:00 09:53-10:00 09:58-10:04 09:53-10:00

The ordering criteria used by all approaches was to pick the interval with

highest density followed by smallest interval length and lastly highest confidence in

case of a tie.

Table 4.12: Comparison of best intervals by all approaches over 09:00-11:00 for B5 –
ON

SID[1] SID[1, n-1] SID [n-2, n-1] SID[n-1]

10:48-10:54 10:49-10:55 10:49-10:55 10:49-10:55

Even as the range over which the question was posed increased, the answer

produced by different approaches did not differ by much.

4.6 Conclusion

In conclusion, the performance of SID[n-1] is significantly better for large data

sets and is comparable in accuracy (deviation and coverage) to that of the Naïve

approach. If one wants to reduce the deviation further, one of the other two alternatives

(SID[1, n-1] or SID[n-2, n-1]) can be used. Our experiments indicate that the Naïve

approach is not needed for the data sets. The interest in the naïve approach is to use it as

a reference for benchmarking the performance and accuracy of other SID approaches.

Of course, for smaller data sets, the naïve approach may still be acceptable from the

 76

performance and accuracy point of view. Of the others, SID[n-1] is good for most of the

data sets as it reduces the number of passes dramatically and the number of intervals by

almost 66%. As this serves as input to the clustering and sequence mining algorithms,

computation time of clustering and sequential mining will also reduce proportionally.

Moreover the processing time does not increase much with SID variants (SID[1,n-1]

and SID[n-2. n-1]) due to the inherent indexing property available to the algorithm for

reducing extra-fit. Finally, it could be concluded that the algorithm finds the best

intervals that can be formed from each point. Many of these intervals are weeded out

due to the fact that a smaller interval is found, starting at a later point but ending at or

before the previous interval. Many other domain specific constraints can also be added

to the algorithm to reduce the number of intervals selected from the final pass. As an

example, when two significant intervals start within x units of each other, the less

denser or the larger interval among the two can be eliminated. These conditions can be

added seamlessly in the algorithm after the final phase either in the main memory side

or on the database side. On the main memory side, the final output can be sorted based

on the start times and density in a vector. Binary search can be used to find and

eliminate the intervals which fall within x units of the each other in the vector. On the

database front, a stored procedure can be written to order the intervals based on density

and select only those records with the maximum density among the records within x

units of its start time. Finally as compared to previous approaches, our approach allows

the user the option to input domain specific constraints or run the algorithm with no

domain knowledge. In addition to the significant intervals, the algorithm also provides

 77

certain statistics on the data, which can be used as input to other traditional algorithms

such as DBSCAN, K-means, etc. In interval discovery phase, each event was

considered in isolation. The next step would be to consider the events together and

discover frequently occurring patterns among them. This problem is addressed in the

next chapter since most of the current algorithms do not deal with interval-based input.

 78

5. CHAPTER 5

HYBRID-APRIORI SEQUENCE MINING

This chapter forms the second phase of the algorithm, which takes the

significant intervals as input and discovers frequent sequences from the data set. Section

5.1 describes the general representation of a sequence defining some of the commonly

used terms. Section 5.2 explains hybrid-apriori algorithm, support counting in hybrid-

apriori and how and why it differs from the traditional approach. Discovery of maximal

and frequent sequences are explained in Section 5.3 followed by performance

evaluation in section 5.4. Log files are maintained for interval discovery as well as

sequence mining are described in Section 5.5.

5.1 Sequence Definitions

A general sequential pattern can be expressed as a Directed Acyclic Graph

(DAG). This graph is formed of nodes and directed edges where the former represents

events or event-sets and the latter represents the order of their occurrence. During the

pattern discovery process, edges are added by introducing nodes dynamically or shrunk

by collapsing one of its incident nodes into another. In our approach nodes and edges

are added in succession upon their discovery extending the graph. For the universal

formulation of sequences some of the concepts and figures are adopted from [8]. Edges

can be associated with a set of constraints called edge or timing constraints, which can

be translated into:

 79

1. Maximum Span (ms): The maximum allowed time difference between latest and

earliest occurrences of events in the entire sequence,

2. Event-set Window size (ws): The maximum allowed time difference between

latest and earliest occurrences of events in an event-set,

3. Maximum Gap (xg): The maximum allowed time difference between the latest

occurrence of an event in an event-set and the earliest occurrence of an event in

its immediately preceding event-set, and

4. Minimum Gap (ng): The minimum required time difference between the earliest

occurrence of an event in an event-set and the latest occurrence of an event in its

immediately preceding event-set.

An example of the discovered pattern <(A) (C, B) (D) (F, E.G)> is shown in the Figure

5.1. Hybrid-Apriori uses CDIST_O (described in Introduction) as support counting for

interval-based sequential mining. CDIST_O considers the maximum number of all

possible distinct occurrences of a sequence over all objects; that is, the number of all

distinct timestamps present in the data for each object. The primary difference between

the approach presented in this study (Hybrid-Apriori) for interval based sequential

mining and traditional mining algorithms, lies in the use of time-intervals instead of

timestamps. As an ordering criterion among sequences, intervals with the maximum

interval-confidence are chosen between sequences with the same interval boundaries.

Similarly, among sequences with the same start point and interval-confidence, the

sequence with the earliest end point is chosen.

 80

 Thus, in Hybrid-Apriori, more importance is placed on sequences with

greater interval-confidence and smaller lengths, thereby extracting the tightest

sequential pattern.

Figure 5.1: Timing Constraints

5.2 Characteristics of Traditional and Interval-Based Sequential Mining

This section outlines the differences between the traditional Apriori approaches

used in traditional sequential mining techniques with the interval-based Apriori

approach.

5.2.1 Apriori based Sequence Mining

Traditional mining algorithms primarily follow a standard sequence. From the

entire dataset, given a window, all possible candidate item sets are identified. An

efficient support counting method is used to prune the candidate sets with support

below minimum support, and the remaining forms the frequent item sets. Pruning is

based on the subset property to find the final frequent item sets for the current pass. The

 81

current set of frequent items is used as the seed to form the frequent items of the next

pass. This process continues as long as frequent item sets are generated in the following

passes. In the Apriori approach, candidate and frequent item sets are represented as

relations containing a set of attributes, each representing an item. In the kth pass, the set

of candidate itemsets Ck is generated from the frequent itemsets Fk-1 (generated in the

(k-1) th pass) as shown below:

Insert into Ck
Select I1.item1, … ,I1.itemk-1, I2.itemk-1
From Fk-1 I1, Fk-1 I2
Where I1.item1 = I2.item1 and

 :
I1.item k-2 = I2.itemk-2 and
I1.item k-1 < I2.itemk-1

Figure 5.2: Candidate Generations for Any k

The number of candidate itemsets generated in each pass, by the above step is

reduced by pruning out all itemsets c ∈ Ck where some (k-1)-subsets (itemsets of length

k-1) of c are not in Fk-1. This is based on the subset property that in order for an itemset

 82

to be a frequent item, all subsets of that itemset have to be frequent. The tree diagram

for this process is shown below in Figure 5.2.

5.2.2 Hybrid-Apriori based Sequence Mining

Hybrid-Apriori algorithm follows a similar sequence eliminating some of the

steps on the way because of the presence of the SID intervals instead of the entire

dataset of information. Application of a SID algorithm resulted in partitioning the

dataset and extracting only the intervals with sufficient interval-confidence. Therefore

the points, which would have been eliminated in the support counting phase, have

already been eliminated before the start of sequential mining. Since the intervals for

each event was found independently without using the sequential information, a

statistical independence is assumed between events in the discovered patterns. They act

as potential candidates including both positive and negative causality patterns. This

approach has an advantage over the traditional mining approaches in its efficiency and

lack of storage requirements. The actual causality can be found by using the potential

patterns over the stream of future data, thereby eliminating the need to store the past

data. In this process the validity, pattern-confidence and number of occurrences of the

potential candidates can be extracted. On the other hand, if the application requires

identifying the set of actual patterns in the data beforehand, making one pass over the

input data can help eliminate patterns with events, which were discovered due to

temporal proximity and not actual occurrence. Even with this extra computation, the

hybrid-apriori is efficient as the approach makes use of partitioning, parallelization and

makes only one pass over the entire dataset. Pattern-confidence replaces support

 83

counting in the hybrid-apriori algorithm, which represents the average number of

occurrences of the sequence within the interval. The pattern-confidence of a sequence

within an interval is the product of the interval-confidence of its events within the same

interval thereby assuming the events to be independent of each other. With frequently

occurring patterns, pattern-confidence underestimates the actual probability of the

events occurring together but retains its significance or order relative to the other

patterns discovered. If interval-confidence >= 1, the event is considered certain to occur

within the interval. Interval-confidence is always > 0, since an interval cannot exist

without at least one occurrence in the history. Any interval-confidence between 0 and 1

provides a degree of certainty with which the event occurs within the interval. Therefore

it can be said that events with interval-confidence >1 can be treated as certain events

and can have their value as 1. The amount of over-occurrence within the interval is

immaterial because pattern discovery relies on whether its events are certain to occur

within the interval and if not their degree of certainty. For the events with interval-

confidence between 0 and 1, the value gives the average number of occurrences within

an interval over a period of time and therefore remains unchanged. The greater the

interval-confidence, the greater is the chance of the event occurring within the interval.

For example, when event A occurs within an interval (3-8) with interval-confidence of

0.9 and event B within (5-9) with interval-confidence of 0.8, the pattern-confidence of

the occurrence of event AB within (3-9) is 0.72 (since both A and B are independent

events). Instead of using K- copies of F1 for support counting, the confidence of an

event set can be found by a two-way join of Fk-1 and F 1. As the base case,

 84

when k=2,

F 2.pattern-confidence= F1.item1.confidence * F1.item1*confidence,

 where F1.item1<F1.item1

For K>2

F k =F k-1. pattern-confidence*F1.item1.interval-confidence

where F1.item1 < last item of Fk-1 and F1.item1.start-time and end-time is

between start and end time of Fk-1.

The second property of WINDOW constraint automatically holds the subset

property true because of which the pruning based on the subset property is not explicitly

performed. As an example;

Let A (1,10), B (2,5), C(7,15), D(17,25) form the significant intervals generated

from the SID[n-1] algorithm. The figures in the parenthesis indicate the intervals

discovered for the events. Assuming a window of 10 units (maximum difference

between start points of events), the first pass forms,

AB(1,10), AC(1,15), BC(2,15),CD(7,25)

The 3rd pass discovers ABC(1,15). Firstly if all subsets are above threshold

pattern-confidence, ABC generated in the 3rd pass implies because of the window

property that all of its subsets occur in the second pass. To explain it further A

combined with B because B started within 10 units of start of A. A also combined with

C because C started within 10 units of start of A. This automatically implies that B

combines with C since B started after A. ABC was discovered in the 3rd pass, because

AB and AC were found in the second pass. Secondly if we assume that the pattern-

 85

confidence of sequence BC is below threshold, the pattern-confidence of the subset

ABC automatically goes below threshold and can be pruned out automatically.

5.2.2.1. Interval Semantics

Given a window parameter, interval based mining provides two types of interval

semantics which can be used to generate k- item set from the k-1 items. Most of the

traditional sequential mining techniques deal with events that occur at a specific point

of time. If the data point lies within window units of the start of the sequence, it is

included in the generation of the maximal sequence. Dealing with an interval instead of

a point results in two cases,

1) if the interval starts within window units of the start of the sequence,

it can be included to form a maximal sequence

2) if the interval starts and ends within window units of the start of the

sequence, it is included to form a maximal sequence.

Different domains require different semantics. Semantics-start (termed as

semantics-s) generates all possible combinations of events, which occur within window

units of its start time. Semantics-end (termed as semantics-e) on the other hand

generates combinations with events, which complete within the window units of its start

time. This automatically implies that events which occur with an interval greater than

the window do not participate in the generation of maximal sequences of semantics-end.

Using semantics-s results in many more sequences as compared to semantics-e as the

latter is a subset of the former. With MavHome data, closely related interactions have

more dependence on each other. Therefore semantics-e gives an agent more information

 86

on the frequently occurring patterns. An agent can use the first event as the start

indicator based on which the entire sequence can be automated.

5.3 Generation of Maximal Sequences

The algorithm is iterative in nature and generates greater length sequences in

each subsequent pass. The terminating condition is either a stop level, which can be

explicitly specified by the user or implicit when no more sequences are generated. The

pseudo code of the algorithm is as follows:

1) Create table FKJOIN as

Select * from F1

 2) Insert into FKJOIN

Select item1,starttime+1,endtime+1,pattern-

confidence

 From F1

3) For (k=2; All Done !=1; k++)

{

4)//Create all possible combinations based on a

specific interval semantic

create table MAXCONF as

select a.item1,a.item2,…a.itemk-1,b.itemk-1,

least(a.starttime,b.starttime),

greatest(a.endtime,b.endtime), b.pattern-

confidence

From F[k-1] a* JOIN FKJOIN b

where a.item1= b.item1 and ….

 87

a.itemk-2=b.itemk-2 and a.itemk <b.itemk and

b.starttime < a.start time + Window

5) //For the same interval, extract the interval with

maximum confidence

create table MaxConf1 as

select item1,. . . itemk, starttime, endtime,

max(pattern-confidence)

 from MAXCONF

group by item1, …itemk, starttime, endtime

6)//For the same start time pick the end time

associated with maximum confidence

create table MINENDTIME as

select item1, … itemk, starttime,

min(endtime) as endtime, pattern-confidence

from MAXCONF

group by item1,.. itemk, starttime, pattern-

confidence

7)//FMINENDTIME table contains patterns with maximum

Pattern-confidence and the end time associated with

it

 create table FMINENDTIME as

select I2.item1, … , I2.itemk,

I2.dtstarttime, I1.dtendtime, I2.confidence

from

 88

(select item1, …, itemk, starttime,

max(pattern_confidence) as confidence

from MINENDTIME

group by item1,… itemk, starttime) I2

join

MaxConf1 I1 on I1.item1=I2.item1 and …

and I1.itemk = I2.itemk and I1.pattern-

confidence=I2.pattern-confidence and

I1.starttime=I2.starttime

8)//From a start point identify the smallest interval

associated with the maximum confidence

create table Fk as

select item1,…, itemk, starttime,

min(endtime) , avg(pattern-confidence)

from FMINENDTIME

group by item1, …, itemk, starttime

9) //Updates the pattern-confidence of the new FK

 sequence

Update Fk pattern-confidence=

pattern-confidence *

(select max(confidence) from F1

where Fk.itemk-1=F1.item1

and F1.starttime>=Fk.starttime

and F1.endtime <=FK.endtime)

 89

10) Eliminate Psuedo duplicates (will be explained

below)

11) Create FKJOIN from Fk (same as above)

12) Fk-1Temps = Identify the sequences in Fk-1 which

are not subsets of any sequence in Fk

13) FreqItemsk= select item1,…, itemk, #occurences

 from Fk

 group by item1,…itemk

}

The algorithm uses the significant intervals produced by the SID algorithm as its

collection of 1- item frequent sets (F1 table). 1- item sets combine to form 2- item sets

that in turn combine to form 3- item sets and so on until the terminating condition is met.

Two Fk-1 sequences combine in the kth pass to form a k- length sequence if the

following conditions are met:

• first k-2 items are the same

• a.item k-1 < b.item k-1

• b.item k-1 occurs before a.item k-1.startime + window.

The elements are arranged in a chronological order identified by id to ensure

that events merge with other events that succeed them and the sequence grows in one

direction only. All intervals produced by SID and its variants are associated with the

default date of first of the current month along with the start and end times representing

the tight boundaries. Because of the same date and the fact that time-series data have an

 90

inherent wrap around property, the chronological order cannot be ascertained directly.

An adjustment has to be made to convert this data into a format in which a definite

order can be established. As an example assume an event with 23:00-23:30 can form a

valid interval with another event at 00:00-00:20 or 23:20-00:00. Since an interval can

have only one date, 23:30-00:00 has to be represented a little differently as it spans two

days. Unless this is represented properly, max, min, least and greatest operators cannot

be used on the data accurately. To accomplish the above FKJOIN is created, which is a

copy of Fk-1 with some additional records. The intervals, which start before window

units of the smallest starting point of an interval from Fk-1 are added to FKJOIN with

their start and end dates incremented by 1. Using the above example if window is

defined as 60 units, interval 00:00-00:20 will occur twice in FKJOIN, once with the

same date as interval 23:00-23:30 and once with its date incremented by 1. Therefore in

the kth pass, interval 23:00-23:30 can merge with 00:00-00:30 of the next day to form a

valid sequence with interval 23:00-00:30.

insert into FKJOIN (select item1, dtstarttime+1,

dtendtime+1

from Fk where

to_date(to_char(dtstarttime,'hh24:mi'),'hh24:mi') <=

to_date('hh:mm','hh24:mi'))

where ‘hh’ is the hour and ‘mm’ minutes associated with the window.

From the above algorithm, it is possible to identify the various aspects of

interval based sequential approach, which differs from the traditional Apriori-K-way

 91

join approach. The differences are: the use of pattern-confidence is used for support

counting, lack of subset-based pruning, the different types of interval semantics

available and to defer the usage of causality between the events to the end. In order to

identify all possible frequent items sets at the end of the algorithm, two data structures

are used: all frequent item sets from the last pass (Fk) and the frequent item sets from

the prior passes, which could not join any further to form larger sequences. The latter

items sets are stored in Fk-1TEMPS (Line 11) relation, partitioned on the length of the

item set. The SQL formulation for the above is given on line 11 of the algorithm.

Line 4 generates all possible combinations of events by choosing events within

the same block along with an added condition such that the new event added to the

sequence has its start time within window units of the start time of the first interval. The

new interval generated has the same start time as that of the starting interval. The end

time however is the greater of the end times of the intervals being merged. For example

when event A (3-5) merges with B (4-9), the sequence AB (3-9) is formed. In spite of

the fact that SID reduces the number of frequent intervals generated, there might be

more than one interval that covers a single area of high activity. These intervals form

almost subsets of each other, differing from each other by a very small margin. As an

example within an area of 10:00-10:15 , SID[n-1] might output {10:00-10:13,

10:01,10:14, 10:03-10:15} as the set of significant intervals. Line 4 creates duplicates

when the above intervals are merged with another sequence. They are eliminated by

keeping the sequence with the greatest confidence for the same event sets, start time and

end time. These sequences are stored in MAXCONF1 (Line 5). As an example, when

 92

A(1-8) joins with B (2-5) and B (5-8), two sequences namely AB (1-8) and AB (1-8)

are created which may or may not be duplicates based on the confidence. The join

performed on Line 4 also results in several rows with the same start time but varying

end times. For example, when (1-6) joins with B (2-5) and B (5-8), two sequences are

created viz. AB (1-6) and AB (1-8). During such a situation, the sequence with the

maximum confidence is chosen because this sequence has greater probability of being

involved in further passes. The SQL formulation for the above is given in Line 7. Line 8

picks the smallest length sequence with the greatest confidence within a particular event

set and creates the sequences associated with the next pass i.e. Fk and line 9 updates the

confidences of the newly formed intervals.

For example, when an event [ABC interval: (3-8), pattern-confidence: 9] merges

with another [ABD interval: (4-8), pattern-confidence: 8], the pattern-confidence of the

newly formed sequence [ABCD interval: (3-8) c: 8] is initially the same as that of the

latter sequence. Line 9 updates it correctly by ABCD.pc= 0.8* C.ic where 0.8 gives us

the pattern-confidence of A, B and D events together.

Line 11 creates FKJOIN for the subsequent pass, which is used to find frequent

item sets for the next pass. Line 12 identifies the sequences in the prior pass, which

failed to enter the frequent itemset of the current pass and stores them in Fk-1temps. In

order to identify the set of sequences, which did not enter the next pass, the following

measures are taken:

 93

1) Get all sequences from Fk-1 whose item1..itemk-1 are the same as

item1…itemk-2 of Fk that is identify all subsequences such as ABC, ABD in F3 which

were responsible for ABCD in F4

2) Delete the above sequences from the list of probable candidates in

FkTemp[k-1].

3) Perform the above operation for Fk-1.item1=Fk.item to delete any remaining

subsets which start with the same event as Fk-1. In order to remove the subset, i.e. the

sequence Fk-1 of Fk such that Fk-1. item1= Fk .item2 and Fk-1. item2= Fk .item3 and Fk-1.

itemk-1= Fk .itemk, the one-step computation given below is executed. As an example

for a sequence ABCDE, subset BCDE is eliminated by the one-step Cartesian product

given below. Currently in addition to the above subsets, all subsets with the same item1

are also removed by the below statement. Performing a Cartesian product at this stage

or a corresponding join, does not affect performance since most of the sequences have

been eliminated.

The reason for the step-wise operation is that very few sequences are left behind

in each pass and all subsets of k- length sequence within an interval have to be

eliminated. The above method is more efficient compared to a one-step computation

given below as it performs a Cartesian product:

insert into FKTEMPS_23

select I1.item1, I1.item2, I1.item3,

I1.dtstarttime,I1.dtendtime,I1.confidence

from F_23 I1 where NOT EXISTS

 94

(SELECT * FROM F_24 I2

WHERE

I1.item1 in (I2.item1, I2.item2, I2.item3,

I2.item4) AND

I1.item2 in (I2.item1, I2.item2, I2.item3,

I2.item4)

AND I1.item3 in (I2.item1, I2.item2,

I2.item3, I2.item4)

AND I1.dtstarttime BETWEEN I2.dtstarttime

AND I2.dtENDtime

AND I1.dtendtime BETWEEN I2.dtstarttime AND

I2.dtENDtime)

In addition to the frequent sequences occurring at specific points, the

ident ification of sequences with maximum interactions between devices is also

achievable. This implies that there may be several instances of a specific pattern, each

occurring at different time intervals. Line 13 identifies all such patterns and their

number of occurrences. This information is as valuable as the exact occurrences of each

pattern, as the start event of the high frequency patterns can be used as triggers to

automate the sequence. The remainder of the section discusses the formation and

elimination of pseudo-duplicates of line 10. Due to the use of least and greatest

functions, pseudo-duplicates, as given below, can be generated:

 95

Table 5.1: Sample Input for formation of Pseudo-duplicates
ID Item1 Item2 Start time End time
1 A B 1 5
2 A C 2 5
3 A B 1 4

Table 5.2: Pseudo-Duplicates
ID Item1 Item2 Item3 Start time End time
1 A B C 1 5
2 A C B 1 5

Let Table 5.1 represent a set of sequences created in F2. F3 produced from F2 in

Table 5.2 consists of two patterns that represent the same interval with the same set of

events with the order of items interchanged. These are therefore classified as pseudo-

duplicates as only one of them needs to be retained. Since all characteristics except for

the order of occurrence of the items are same, any one of the patterns can be retained

from this set. This is achieved in two steps:

• The FK table is converted into a vertical format of Id and Item

• K-copies of this table are joined in a specific order to produce all items

in the same order

For the above example the following sql statements eliminate all pseudo-

duplicates. Let us assume items contains the items and Id of F_23.

create table single_items as

select id,item from items order by item,id

//Form 3-item sets in ascending order

create table order_items as

 96

(select I1.Id,I1.item as item1 , I2.item as item2,

I3.item as item3

from single_items I1 join single_items I2 on

I1.id=I2.id

join single_items I3 on I3.id = I2.id

where I1.item < I2.item and I2.item < I3.item)

//Get the corresponding start and endtimes associated with

each pattern

create table FreqTemps as

select I2.*,dtstarttime, dtendtime, confidence

from F_23 I1 join order_items I2 on I1.id=I2.id

drop table F_23

//Create F_23 again, without any duplicates.

create table F_23 as

select rownum as ID, X.*

from

(select item1, item2, item3,

dtstarttime,dtendtime, max(confidence)

confidence

from FreqTemps

 97

group by item1, item2, item3,

dtstarttime,dtendtime order by

dtstarttime,dtendtime) X

Depending on the interval semantics chosen, the SQL query has following

selection condition added to its already existing selection conditions.

b.endtime < = a.starttime + window

Classifying the sequences as parallel and serial can be done after the discovery

of all frequent item sets. The pattern start and end times can be used to join with F1

intervals to identify the relative order of the events within the sequence. This allows for

the discovery of parallel and serial episodes in one pass, instead of maintaining two

algorithms for their discovery [3].

As a quick note on implementation, MaximalSequence.java and

GeneraModule.java form the heart of hybrid-apriori. MaximalSequence is the class,

which executes the above steps in an iterative manner. GeneralModule class provides

the sql statements needed in each pass in order to dynamically run the algorithm for any

number of iterations.

5.4 Experiment Results

The results produced by the hybrid apriori algorithm presented in this thesis is

compared with Episode Discovery [ED] algorithm [19] to verify and evaluate the

sequences generated. ED algorithm has the ability to discover events with different

periodicity. Candidate sets in Ed are represented as a combination of sets of events, sets

of episodes and a significance value. I=<{e1,e2,e3..ej},{P1,P2..Pk},V>, where each event

 98

ej has an occurrence in each episode Pk. V is the significance value of the candidate item

set with respect to the frequency, length and regularity of the episode. ED was run with

a fixed window of 15 units and an added parameter of number of occurrences within the

window (window width) of 5. In order to simulate a window best, hybrid-apriori was

run with a measure of 4 ensuring significant intervals of length <= interval length

specified are produced when mined for patterns with semantics-e. Semantics-e performs

better for comparison with ED, because it prevents the pattern- length from outgrowing

the window, thereby producing comparable episodes with respect to Ed. Since pattern

discovery can be split into two independent parts, SID/hybrid-apriori can be

independently re-run with modified parameters. Data collection during the month of

March for MavHome was used to identify all possible patterns and interactions between

device operations. ED did not discover any daily patterns but discovered 7 weekly

patterns with a total of 40 occurrences among the 7 patterns. SID with a measure of 4,

interval-confidence=0.7, interval- length =15 and interval semantics-e also did not

produce any daily patterns. SID[1]/Naïve discovered 50 significant intervals when run

with a weekly periodicity. Furthermore comparison of intervals produced with different

approaches on March data did not reveal any difference in the intervals produced.

However with small datasets SID[1]/Naïve is the most suitable approach since it is

imperative that all the intervals are enumerated. The pattern discovery algorithm

discovered 7 patterns and 23 occurrences missing two patterns discovered by Ed. The

differences between hybrid-apriori approach and ED were due to differences in the

input parameters and the inability to form an exact match of the input parameters.

 99

SID[1] allowed an event to form a significant interval only if it occurred in at least 3

weeks of march. ED on the other hand allowed events that occurred twice a month to

form a part of the pattern. Reducing the threshold interval-confidence of SID[1]

increased the number of significant intervals to 146 and identified the patterns

discovered by ED. They however had very low pattern-confidence since all the events

forming the sequence had around 0.5 of interval-confidence to start with. Mining on the

same dataset using semantics-s (semantics 1) produced greater number of patterns and

increased the pattern length correspondingly. Figure 5.3 below illustrates the number of

intervals generated in each pas as well as the final output intervals from each pass using

semantics-e. Figure 5.4 on the other hand compares the number of output intervals and

intervals generated in each pass using semantics-s. Fk where k is the last pass and all

Fktemps from Fktempsk-1 to Fktemps1 form the output where as F1 to Fk form the total

number of intervals generated in each pass. It can be seen that semantics-e produced

more number of 2-length patterns, which failed to grow to 3- length as compared to

patterns produced by semant ics-s. As seen in Figure 5.4 and Figure 5.3, semantics-s

generated large number of patterns, but increased the pattern- length correspondingly.

A six-month synthetic data with predefined number of daily and weekly patterns

was used to further compare the two algorithms. Ed produced 9 daily and 4 weekly

events with a total of 41 occurrences. SID[n-1] with Hybrid Apriori and semantics-e

produced 8 daily events but missed two events due to the strict merge criteria (Figure

4.1) described in chapter 4. SID[n-1] however when run with weights of 0.9 produced

 100

intervals for all events which when mined for patterns, extracted all the all the patterns

defined in the dataset.

The events were missed because the number of points for the event missed were

very few, allowing for the existence of only one interval in that area. However as seen

in Chapter 4, with large datasets, SID[n-1] performs as well as Naïve with regards to

coverage.

50

35

64

18

6

0
10

20
30
40

50
60

1 2 3 4 5

Pass Number

C
an

d
id

at
e

In
te

rv
al

s

0

5

10

15

20

O
u

tp
u

t
In

te
rv

al
s

Candidates Semantics E
Output Semantics E

50

78

59

19

1

5

9

2

14

10

20

40

60

80

100

1 2 3 4 5

Pass Number

C
an

d
id

at
e

In
te

rv
al

s

0

5

10

15

O
u

tp
u

t
In

te
rv

al
s

Candidates Semantics S
Output Semantics S

Figure 5.3: Patterns generated in each
pass using semantics-e (weekly)

Figure 5.4: Patterns generated by Semantics-s
(weekly)

Weekly episodes discovered by SID[n-1] in its strict form with weights=1

included all the daily episodes in addition to two events discovered which were purely

weekly. Running SID[n-1] with weights=0.9 produced 2 weekly events missed from

before. The algorithm was run on the dataset with both the semantics to compare on the

number of intervals as well as the interval length when run with measure=4, interval-

length=15 and interval-confidence=0.7. As seen with the MARCH dataset, semantics-s

produced much more information and greater length patterns as compared to semantics-

 101

e. Figure 5.6 illustrates the comparison in pattern- length between the two semantics

when run with six-month dataset on a weekly periodicity.

In addition, the pattern-discovery algorithm was run with semantics-s and

SID[n-1] approach was run with a measure type of 2 and interval confidence =0.7 alone

with no restriction on the interval length. This resulted in greater number of intervals as

compared to running with measure of 4 and an added constraint of interval- length=15.

0

5

10

15

20

25

30

F1 F2 F3 F4 F5

Pass

P
at

te
rn

-l
en

g
th

Semantics-s Semantics-e

0

10

20

30

40

F1 F2 F3 F4 F5 F6 F7

Pass

P
at

te
rn

-L
en

g
th

Sematics-s Semantics-e

Figure 5.5: Pattern-lengths by semantics 1 &
2 in march (weekly)

Figure 5.6: Pattern lengths by semantics 1 & 2
for 6-month synthetic data (weekly)

The number of patterns occurrences discovered with semantics-s (semantics 1)

was 422 with a maximum length of 9 item-sets, whereas as seen from Figure 5.6

semantics-e and semantics-s with measure=4 produced maximum of 81 different

patterns occurrences with the maximum length of 7- item set. We can thus conclude that

the choice of interval semantics depends on the amount of domain knowledge available

as well as the number of significant intervals generated. It can be inferred from above

that when dealing with large number of intervals, semantics-s produces more number of

 102

patterns as compared to semantics-e. Moreover on account of lack of any restriction on

the end time, the pattern length increases as well. For such a scenario, mining for

patterns using semantics-e produces better results as can be seen with the synthetic six-

month and MARCH dataset.

In order to compare the time taken and the number of patterns discovered from

the 3 months of MavHome data, we ran the dataset through SID[n-1] with the following

parameters: Measure=4, interval-confidence=0.9 and interval- length=15 Period=Daily.

Response time was measured as the time taken over an average of four runs over the

same dataset with the same parameters. All the experiments were run with the algorithm

producing a maximum of 10- item-length patterns. Figure 5.7 illustrates the time taken

during the pattern-discovery alone between the 1-3 months of dataset used.

0

20

40

60

80

100

120

140

1 2 3Months

T
im

e
T

ak
en

Months 1 2 3
of Rows 46000 140000 201000
INPUT 2181 3686 3526
F1 33 28 14
F2 56 35 25
F3 66 32 44
F4 97 46 46
F5 107 23 64
F6 123 56 55
F7 121 95 103
F8 89 111 151
F9 43 169 119
F10 7 9710 15853

Figure 5.7: Time taken for hybrid-apriori
from 1-3 months with daily periodicity

Figure 5.8: Number of patterns produced
for 1-3 months with daily periodicity

Figure 5.8 enumerates the number of output intervals produced in each pass i.e.

FkTemps1, FkTemps2,..,F_10. For the month of June, the intervals were fewer in

number and the dataset could be clustered into distinct regions. This was the reason for

 103

the small amount of time taken and the number of intervals generated in each pass was

few. The maximum size of the intermediate pass was 20324. When mined for 2 months,

the number of intervals generated increased as seen from INPUT row of Figure 5.8.

Moreover the number of distinct overall clusters reduced, thereby increasing the number

of merges that can be performed in each pass. The maximum size of the intermediate

pass was 173711, almost 10 times as that of June data. By three months, the data

consistency improved a touch, thereby producing slightly fewer intervals and taking

similar time as compared to the two-month run.

5.5 Writing Log File

Data mining is a time-consuming process and at times it happens that for certain

mining configurations, mining a given dataset may take 10 to 15 hrs or even more. In

order to compare the performances of SID approaches and the sequential mining

algorithm described above, after a given time limit, if the algorithm does not complete,

the mining process has to be killed. Also for the purpose of studying these algorithms, it

is necessary to know of their progress in terms of the number of iterations completed,

cardinality of the intermediate results etc. Hence it is very important to collect the time

taken at each step of the algorithm and produce a log file containing pertinent

information. This log file can then be processed to generate the useful information such

as the number of passes completed, time taken for each pass, intermediate relations

generated and cardinality of each of them, even if the mining process is killed before it

completes. The algorithm generates two log files for interval discovery and one for the

sequential mining.

 104

Ouput_interval log and event_name+’periodicity’ log, are written at the end of

interval discovery process. Output_Interval log contains the time stamp of when a

particular step of each event in the approach started and completed. Event_name log

contains the time taken for each pass along with the results generated in each pass,

which is specific for each event. Contents of the Output_Interval log file are given

below.

Window :60

Measure :4

Interval-Confidence :0.8

Interval-Length :15

NumDays:182

Interval Semantics :1

Maximum Number of threads 10

Approach used :1

The Program started at Tue Sep 30 12:44:12 CDT 2003

Period :Daily

Finished batch for BathRm2Light and Off and of size 126

The Program started at Tue Sep 30 12:44:13 CDT 2003 for BathRm2LightOff

End of Find combinations and Start of Repeat Combinations at Tue Sep 30

12:44:13

 CDT 2003 for BathRm2LightOff

Started All Combinations Approach for BathRm2LightOff

Finished Repeat Combinations for BathRm2LightOff with 16 passes at Tue Sep

30 12

 105

:44:14 CDT 2003

Finished Identify Clusters for BathRm2LightOff at Tue Sep 30 12:44:14 CDT

2003
The above example illustrates the messages output for one event BathRm2Light

Off. All events have a similar set of messages associated with their execution. This

gives an overall summary of information on the intervals produced for each device. To

get detailed information on the time taken for each pass and the number of intervals

created in each pass, the event_name+periodicity log can be viewed. For the

BathRm2Light Off, the file BathRm2LightOff.out for daily periodicity or

BathRm2LightOff_Monday or BathRm2LightOff_Tuesday etc for weekly periodicity is

created. We now take a look at BathRm2LightOff.out.

Numdays is: 182

Interval-confidence is: 0.8

Interval length :15

Measure: 4

Window is: 60

Type: T

Approach: 1

Complete Debug: 0

The set of points :

00:19 1

01:09 2

01:10 1

01:11 2

 106

01:12 5

01:13 8

…

End of Find combinations and Start of Repeat Combinations 1 pass at Tue Sep

30 1

2:44:13 CDT 2003

Start of Repeat Combinations2 pass at Tue Sep 30 12:44:13 CDT 2003

Start of Repeat Combinations3 pass at Tue Sep 30 12:44:13 CDT 2003

…

Start of Repeat Combinations15 pass at Tue Sep 30 12:44:14 CDT 2003

End of Repeat Combinations is at Tue Sep 30 12:44:14 CDT 2003

The Significant intervals found before forming clusters are

//Set of Significant intervals created

19:52 20:04 12.750 12 153 0.841

19:51 20:03 12.667 12 152 0.835

19:50 20:02 12.667 12 152 0.835

Time Taken to find all Clusters is 1 Seconds

End of Identify Clusters is at Tue Sep 30 12:44:14 CDT 2003

The Cluster intervals found are

19:50 20:02 12.667 12 152 0.835

19:51 20:03 12.667 12 152 0.835

19:52 20:04 12.750 12 153 0.841

 107

End of Repeat Program is at Tue Sep 30 12:44:18 CDT 2003

Depending on the debug parameter set in configuration file, the amount of

information logged changes. When debug is set to ‘no’, the intervals created in each

pass of repeat combinations phase or the cluster groups are not printed as shown above.

Only the final set of significant and cluster intervals are printed in full.

To see the results at the end of every step the debug switch has to be set to ‘yes’

in the configuration file.

Maxseq.out is the log file associated with generation of maximal sequences.

This log file prints the SQL steps completed and ends with the cardinality of each

relation created during the process. Depending on the interval semantics chosen,

standard table names are associated with each pass. The convention for naming the

tables is as follows:

Frequent items set created at each pass are stored in F_iK where i represents the

interval semantics chosen. As an example, with interval semantics=2 (semantics-e), the

frequent 2- item sets are stored in F_22 and frequent 5- item sets are stored in F_25. All

frequent k- item sets which did not merge further to form k+1 item sets are stored in

Fktemps_ik where i represents the interval semantics. As an example, using interval

semantics-e (semantics 2), all frequent 2- item sets that did not extend further to form 3-

item sets are stored in Fktemps_22. The frequent k- item sets, which always occur

together irrespective of the time, are stored in FreqItems_ik, using the same notation as

above. Sample of Maxseq.out logfile is given below:

Completed: DROP TABLE F_21

 108

Completed: DROP TABLE F_22

Completed: DROP TABLE F_23

Completed: DROP TABLE F_24

Completed: DROP TABLE FKTEMPS_23

Completed: DROP TABLE FKTEMPS_24

Completed: DROP TABLE FREQITEMS_22

Completed: DROP TABLE FREQITEMS_23

Completed: DROP TABLE FREQITEMS_24

Completed: create table F_21(ID int, item1 varchar(20), dtstarttime date, dtendTime

date, confidence float)

Completed: insert into F_21 select rownum as ID, X.* from (select

txtdeviceId||txtStatus as item1 ,dtstarttime, dtendtime, numconfidence from

TBSIGINTERVAL order by dtstarttime) X

Completed: commit

Completed: update F_21 set confidence=1 where confidence >1

Completed: delete from F_21 where (dtendtime-dtstarttime)*1440 > 15

Completed: drop table FKJOIN

Completed: create table FKJOIN as (select * from F_21)

Completed: insert into FKJOIN (select ID, item1, dtstarttime+1, dtendtime+1,

confidence from F_21 where to_date(to_char(dtstarttime,'hh24:mi'),'hh24:mi') <=

to_date('0:15','hh24:mi'))

Completed: drop table F_21ALL

 109

Completed: create table F_21ALL as select * from FKJOIN

Next Pass Fri Sep 19 10:43:30 CDT 2003

Completed:

create table TEMP(item1 varchar(20) not null, item2 varchar(20) not null,

dtstarttime date not null , dtendtime date not null, confidence float, primary

key(item1 , item2, dtstarttime, dtendtime,confidence))

Completed:

insert into TEMP select distinct I1.item1, I2.item1,

least(I1.dtstarttime,I2.dtstarttime) , greatest(I1.dtendtime,

I2.dtendtime),I2.confidence from F_21 I1, FKJOIN I2 where I1.ID < I2.ID and

I1.item1 <> I2.item1 AND I2.dtstarttime >= I1.dtstarttime AND I2.dtendtime

<= I1.dtstarttime +15/1440

Completed:

 drop table TEMP1

Completed:

create table temp1 as select item1, item2 ,dtstarttime,dtendtime,max(confidence)

as confidence from temp group by item1, item2, dtstarttime,dtendtime

Completed:

drop table MINENDTIME

Completed:

create table MINENDTIME as select item1, item2 ,dtstarttime,min(dtendtime)

as endtime,confidence from TEMP group by item1, item2,dtstarttime,confidence

 110

Completed:

create table TEMP2 as select I2.item1, I2.item2, I2.dtstarttime,

I1.dtendtime,I2.confidence from (select item1, item2,

dtstarttime,max(confidence) as confidence from MINENDTIME group by

item1, item2, dtstarttime) I2 join Temp1 I1 on I1.item1=I2.item1 and I1.item2 =

I2.item2 and I1.confidence=I2.confidence and I1.dtstarttime=I2.dtstarttime

Completed:

create table F_22 as select rownum as ID, X.* from (select item1, item2,

dtstarttime, min(dtendtime) dtendtime,avg(confidence) confidence from TEMP2

group by item1, item2, dtstarttime order by dtstarttime) X

Completed:

update F_22 I2 set I2.confidence=I2.confidence * (select max(I1.confidence)

from F_21ALL I1 where I1.item1=I2.item1 and I1.dtstarttime >= I2.dtstarttime

and I1.dtendtime<= I2.dtendtime)

Completed:

create table items (Id int, item varchar(30))

Completed:

insert into items(Id,item) select id,item1 as item from F_22

Completed:

 insert into items(Id,item) select id,item2 as item from F_22

Completed:

 create table single_items as select id,item from items order by item,id

 111

Completed:

create table order_items as (select I1.Id,I1.item as item1 , I2.item as item2 from

single_items I1 join single_items I2 on I1.id=I2.id where I1.item < I2.item)

Completed:

 delete from order_items where item1=item2

Completed:

create table FreqTemps as select I2.*,dtstarttime,dtendtime,confidence from

F_22 I1 join order_items I2 on I1.id=I2.id

Completed:

drop table F_22

Completed:

create table F_22 as select rownum as ID, X.* from(select item1, item2,

dtstarttime,dtendtime, max(confidence) confidence from FreqTemps group by

item1, item2, dtstarttime,dtendtime order by dtstarttime,dtendtime) X

Completed:

drop table FKJOIN

Completed:

create table FKJOIN as (select * from F_22)

Completed:

insert into FKJOIN (select ID,item1, item2, dtstarttime+1,

dtendtime+1,confidence from F_22 where

to_date(to_char(dtstarttime,'hh24:mi'),'hh24:mi') <= to_date('0:15','hh24:mi'))

 112

Completed:

create table FREQITEMS_22(item1 varchar(20) not null, item2 varchar(20) not

null, Count int, primary key(item1, item2))

Completed:

insert into FREQITEMS_22(select item1, item2, count(*) as Count from F_22

group by item1, item2)

Next Pass Fri Sep 19 10:43:35 CDT 2003

…

The Program started at Fri Sep 19 10:43:33 CDT 2003

, F_21:50

, FKJOIN :50

, 2 pass ended at Fri Sep 19 10:43:35 CDT 2003

, FKJOIN :55

, F_22:55

, FKTEMPS_21:0

, FREQITEMS_21:0

, 3 pass ended at Fri Sep 19 10:43:36 CDT 2003

, FKJOIN :19

, F_23:19

, FKTEMPS_22:10

, FREQITEMS_22:1

, 4 pass ended at Fri Sep 19 10:43:37 CDT 2003

 113

, FKJOIN :3

, F_24:3

, FKTEMPS_23:6

, FREQITEMS_23:6

Finally a vector storing the time taken for each pass and the cardinality of each

relation created by the program is printed.

5.6 Conclusions

From the above it can be concluded that the efficiency and scalability of the

hybrid-apriori algorithm depends heavily on SID and its variants. Better the quality of

the intervals produced by SID, better is the pattern-discovery. Since the output

generated between the two semantics greatly differs in quantity, semantics-s can be

used to run with representative data sets so as to gather more information on the average

pattern- length, size and so on. The process can then be run with semantics-e on the

actual dataset, by setting parameters such as stop- level and window-length

appropriately. It can be summarized that in addition to the output patterns and their time

of occurrences, the above algorithm also produce the frequently occurring patterns

irrespective of their time of occurrence from FreqItems relation. As an example,

LivRmLamp1On, ComputerOn are the most frequent 2-item patterns, occurring several

times in a day in the six-month dataset. In addition, the number of occurrences of each

pattern within the interval can be estimated by finding its maximum and minimum

number of occurrences. Taking the minimum of the occurrences of each of its event

within the interval from Tbsiginterval (set of significant intervals) gives an upper

 114

bound on number of occurrences of the pattern. The lower bound on the number of

occurrences of a pattern AB within a time interval can be obtained as :

0 if the pattern-confidence of A or B <0.5

pc(A)+pc(B)-1 if pattern-confidence of A and B >0.5

For patterns with k-length >2, the approach can be recursively performed by taking the

minimum of the number of occurrences of its ‘k’ k-1 length subsequences if the pattern-

confidence of all its events is greater than 0.5.

 Current implementation of the hybrid-apriori retains only those frequent

patterns (FreqItemsk) from each pass, which do not have an instance in the following

pass. However this can be modified to obtain the most frequent 2- item pattern, 3- item

pattern and so on irrespective of the further growth. The most frequently occurring

patterns in each pass can be arranged as per their relative order of occurrence to act as

triggers for automating device interactions. Currently this is not performed because the

emphasis is more on extending the frequent patterns to their maximum length.

 115

6. CHAPTER 6

CONCLUSION AND FUTURE WORK

With large numerical and time series data, events occur with a high degree of

certainty not at specific points but within tight intervals (set of points). This implies a

need for the discovery of such intervals, which are representative of points of

occurrence of events, based on no, little or reasonable knowledge of the dataset. The

SID algorithmic variants proposed in this thesis succeed in discovering the set of

tightest intervals based on user input for each event. A suite of algorithms has been

formulated from which the best approach satisfying the input and output requirements

of the dataset can be chosen. The intervals discovered are used to identify clusters of

interest. Our work presents a different and novel approach towards discovery of

intervals and clusters. The biggest drawback to traditional clustering algorithms has

been the input parameters, which are difficult to set due to lack of knowledge on the

nature of the dataset. The number of clusters generated as output from our work can be

used as an upper bound and its characteristics such as length and density can be used as

input to traditional clustering algorithms for improved results. Currently the

implementation identifies overlapping clusters thereby providing a maximum limit on

the number of clusters present in the data set. This set of clusters can be further changed

on domain requirements to be disjoint in nature. The algorithms are easily extensible to

domain specific features. Identification of disjoint or overlapping clusters, use of Naïve

 116

or SID variants, patterns with different periodicities, reduction in response times based

on system characteristics are all parameters, which can be modified as required. The

approach is flexible enough to work with none, few and several domain-specific inputs

provided by the user. The algorithms provide a rich set of tools to explore and

understand the data set.

The SQL formulation of the interval-based sequential mining proposed in this

thesis does not depend on the window parameter as heavily as traditional approaches.

The patterns discovered using semantics-s identifies all sequences within window units

irrespective of the lengths of the event sets, thereby discovering patterns with lengths

greater than a given window size. In addition to patterns and their occurrences, the

algorithm identifies the set of potential sequences/subsequences that can occur as a

group irrespective of the time of occurrence. Identification of the sequences that

actually occur as a group can be performed by looking either at the past or future data.

Identification of parallel and serial episodes is performed together by determining the

complete set of frequent episodes followed by evaluating the relative order of the

event/event-set within every sequence. Joining the set of frequent sequences with the

set of significant intervals can discover the relative order within a sequence. Bounds on

the number of occurrences of each pattern within an interval can also be found.

Efficiency in terms of response time and reduction in the amount of storage needed to

discover patterns are the advantages of the proposed approach.

As can be seen from the Hybrid-Apriori experiments, the scalability of the

algorithm depends heavily on the intervals created using SID approaches. Currently if

 117

there exists 10 tight intervals within a region, Naïve enumerates all of them where as

SID[n-1] enumerates around three. Reducing this to one, thereby identifying the best

interval in the region, taking into account intervals produced for other devices so as not

to lose a frequent pattern, can be an excellent extension to this work.

In addition to the above, SID[n-1] and its alternatives can also be implemented

as a pure SQL based algorithm to improve scalability and efficiency. Incremental

versions of the interval and pattern discovery algorithms will provide better scalability

with large and continuous data (data streams). Currently the algorithm when run on the

higher level of periodicity discovers the patterns with lower level periodicities

automatically. As an example, when run with weekly periodicity, the algorithm

discovers daily patterns as well. An additional layer can be added to this, so as to

seamlessly drill down and retrieve patterns with all periodicities when run at the highest

level.

118

7. REFERENCES

1. Thuraisingham, B., A Primer for Understanding and Applying Data Mining.

IEEE, 2000. Vol. 2, No.1: p. 28-31.

2. Thomas, S., Architectures and optimizations for integrating Data Mining

algorithms with Database Systems, in CSE. 1998, University of Florida:

Gainesville.

3. Mannila, H., H. Toivonen, and I. Verkamo. Discovering Frequent Episodes in

Sequences. in Proc of the 1st Intl. Conference on Knowledge Discovery and

Data Mining. 1995. Montreal, Canada.

4. Srikant, R. and R. Agrawal. Mining Sequential Patterns:Generalizations and

Performance Improvements. in In 5th Intl. Conf. Extending Database

Technology. 1995. Avignon, France: IBM.

5. Bell, T.C., J.C. Cleary, and I.H. Witten, eds. Text Compression. Advance

Reference. 1990, Prentice Hall.

6. Bruce L Bowerman, R.T.O.C., Time Series Forecasting. Second Edition ed.

1990: PWS Publishers. 25-120.

7. Gilchrist, W., Statistical Forecasting. 1976: John Wiley and Sons. 115-148,77-

90.

119

8. Joshi, M., G. Karypis, and V. Kumar, A Universal Formulation of Sequential

Patterns. 1999, Department of Computer Science, University of Minnesota:

Minnesota. p. 20.

9. Agarawal, R. and R. Srikant. Mining Sequential Patterns. in Proc. of 11th Int'l

Conference on Data Engineering. 1995. Taipei, Taiwan.

10. Zaki, M.J., SPADE:An Effecient Algorithm for Mining Frequent Sequences.

Machine Learning Journal,special issue on Unsupervised Learning (Doug

Fisher, ed.), 2001. 42 No.1/2: p. 31-60.

11. Zaki, M.J. Sequence Mining in Categorical Domains: Incorporating

Constraints. in 9th Int'l Conference on Information and Knowledge

Management. 2000. Washington DC.

12. B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic Association Rules. in

Proceedings of the IEEE International Conference on Data Engineering. 1998.

Orlando, FL.

13. Han, J., W. Gong, and Y. Yin. Segment-Wise Periodic Patterns in Time Related

Database. in Proc 1998 Int'l Conference on Knowledge Discovery and Data

Mining. 1998. New York City: AAAI Press.

14. Das, S.K., et al., The Role of Prediction Algorithms in the MavHome Smart

Home Architecture, in IEEE Wireless Communications Communications Special

Issue on Smart Homes. 2002. p. 77-84.

120

15. Kanungo, T., et al., An Efficient k-Means Clustering Algorithm: Analysis and

Implementation, in IEEE TRANSACTIONS ON PATTERN ANALYSIS AND

MACHINE INTELLIGENCE. 2002. p. 881-892.

16. Han, R.N.a.J., Clarans: A method for clustering objects for spatial data mining,

in IEEE Transactions on Knowledge and Data Engineering. 2002. p. 1003--

1016.

17. A. Hinneburg and D. A. Keim. An Efficient Approach to Clustering in Large

Multimedia Databases with Noise. in Proc. 4rd Int. Conf. on Knowledge

Discovery and Data Mining. 1998. New York.

18. Ester, M., et al. A Density-Based Algorithm for Discovering Clusters in Large

Spatial Databases with Noise. in In Proceeding of the 2nd International

Conference on Knowledge Discovery and Data Mining. 1996. Portland, OR.

19. D. J. Cook, M.Y., E. Heierman, K. Gopalratnam, S. Rao, A. Litvin, and F.

Khawaja. MavHome: An Agent-Based Smart Home. in to appear in Proceedings

of the Conference on Pervasive Computing. 2003.

20. Anwar, E., L. Maugis, and S. Chakravarthy, A New Perspective on Rule Support

for Object-Oriented Databases, in 1993 ACM SIGMOD Conf. on Management

of Data. 1993: Washington D.C. p. 99-108.

21. Chakravarthy, S., et al. ECA Rule Integration into an OODBMS: Architecture

and Implementation. in ICDE. 1995.

121

22. Chakravarthy, S., Early Active Databases: {A} Capsule Summary. 1995. 7(6): p.

1008--1011.

23. Chakravarthy, A. and E. Anwar, {Exploiting Active Database Paradigm For

Supporting Flexible Transaction Models}. 1995, University of Florida Computer

and Information Science and Engineering Department.

24. Datar, B.M., R. Motwani, and J. Widom. Models and issues in data stream

systems. in In Proc. of the 2002 ACM Symp. on Principles of Database Systems.

2002.

25. Madden, S. and M.J. Franklin. Fjording the Stream: An Architecture for Queries

over Streaming Sensor Data. in In Proceedings of the 18th International

Conference on Data Engineering (ICDE). 2002. San Jose, CA.

26. Carney, D., et al. Monitoring Streams. in Monitoring Streams - A New Class of

Data Management Applications. 2002. Hong Kong, China.

27. Chen, J., et al. NiagraCQ: A scalable continuous query system for internet

databases. in In Proc. of the 2000 ACM SIGMOD Intl. Conf. on Management of

Data. 2000. Dallas, Texas.

28. Randy, H.K., et al., A Project on High Performance {I/O} Subsystems.

Computer Architecture News, 1989. 17(5): p. 24--31.

29. Sonune, Satyajeet, Data Stream Management System, Thesis, University of

Texas at Arlington, 2003

122

BIOGRAPHICAL INFORMATION

Ambika Srinivasan was born on May 28, 1977 in Mumbai, India. She received

her Bachelor of Engineering degree in Electrical Engineering from University of

Bombay, Maharashtra, India in September 1998. She worked for Tata Consultancy

Systems from August 1998 to May 2001 as a software analyst. In the Fall 2001, she

started her graduate studies in Computer Science and Engineering at The University of

Texas, Arlington. She received her Master of Science in Computer Science and

Engineering from The University of Texas at Arlington in December 2003. In her

graduating semester, she started working for a company specializing in creating sales

forecast and prediction related models for the retail industry. Her research interests

include Decision Support Systems, Prediction Algorithms, Data Mining and Business

Intelligence.

