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ABSTRACT 

 

DESIGN AND IMPLEMENTATION OF STREAM OPERATORS, QUERY 

INSTANTIATOR AND STREAM BUFFER MANAGER 

 

Publication No. ______ 

 

Altaf Gilani, M. S. 

 

The University of Texas at Arlington, 2003 

 

Supervising Professor:  Dr. Sharma Chakravarthy  

Data intensive applications like Network monitoring, financial applications, 

sensor-based applications etc are emerging. They have a continuous, unpredictable and 

unbounded flow of data, referred as streams.  

This thesis describes the query processing architecture for stream-based 

applications. Generic representation of window parameters in a query is explored. 

Design and implementation issues of SELECT, PROJECT and JOIN are also covered. 

An effective buffer management scheme is provided such that more than one 

operator can share a buffer. Buffer provides means for stream database to work in low 

main memory environment by making use of primary as well as secondary storage 

memory. Design and implementation of Buffer management is covered in this thesis.
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Server provides a platform for integration of various components of its 

architecture. Instantiation of query plan is one of the responsibilities of the server. This 

thesis covers the design and implementation of Server. 
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Chapter 1  

INTRODUCTION 

Applications have started demanding responses with a pre-defined quality of 

service requirements. Traditional DBMS’s do not deal with QoS requirements. 

Pervasive computing has resulted in many sources of sensor data (e.g., RF tags) from 

which data arrives in the form of streams. Streaming can arrive at a variable or constant 

rate depending upon the source characteristics. Monitoring applications are typical users 

of streaming data. Consider a monitoring application that keeps track of items of 

interest such as overhead transparency projectors and laptop computers, using electronic 

property stickers attached to the objects. Here the data generating sources are sensors 

mounted in the ceiling and the GPS system. Now a security administrator would be 

interested in getting notified if any item is out of place. Also the last noted location of 

the item would be of interest [1]. Another application area could be a stock ticker 

application where a typical user might want to monitor a series of stocks in a given 

range of values. MavHome [2] is a project with a number of sensors that act together in 

maximizing a metric for a home/environment based on inhabitants use of the devices. 

MavHome generates streaming data that needs to be processed for prediction and other 

needs. All the devices in the MavHome system are constantly generating stream data. 

Monitoring abnormal behaviors in devices such as thermostat would be of interest. 
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Checking for the arrival of a particular person and then personalizing the home based on 

his/her requirements is another example. 

These are a few examples of stream-based applications. Others include security, 

telecommunications data management, manufacturing, sensor networks, web 

applications, stock and sports ticker and military based applications (like monitoring 

soldiers in a battle field).  

Stream applications have their own characteristics, which makes them different 

from the traditional data oriented applications. Below, we enumerate the salient 

characteristics of a stream-based application: 

• Streaming data are not the results of transaction processing typically done by 

humans. These are generated from a variety of sources like sensors, GPS, web 

servers or some other programs.  

• Streaming source generates continuous data and has no limit on the amount of 

data generated by streams.  

• Arrival rate of streams can be variable. It can be irregular and bursty.  

• Data can be lost or garbled. 

In order to provide a timely response to events, some of the applications have a 

predefined quality of service requirement (QoS). The query requirements of these 

applications are somewhat different from traditional queries of DBMS.  Queries are 

classified based on how they are submitted and the life span of the query. Queries can 

be Adhoc or Predefined (how they are submitted) or can be One time or Continuous 

(life span) [3]. Adhoc queries are submitted on the fly. The nature of adhoc queries adds 
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a new dimension to the optimization of the system as a whole. In contrast Predefined 

queries are known to the system and hence it is possible to generate an optimized plan 

for all queries in the system. On the other hand, One Time queries have a short life span. 

It operates on a limited number of tuples that is defined in the query. Comparatively 

Continuous queries are long running. These queries are evaluated continuously as the 

data streams arrive. Output is produced incrementally and continuously at the end of 

every window. Majority of the streaming queries are continuous. Predefined and Adhoc 

queries can be One Time or Continuous.  

Traditional DBMS were not designed to support the requirements of stream-

based applications. They were designed to satisfy to the needs of business data 

processing applications. Some of the reasons that make DBMS not applicable for 

Stream data applications are: 

• DBMS uses a store and query approach. It will be very difficult to store each 

and every streaming data into the system. This process is time consuming. 

• It cannot give a real time response to streaming queries, which is an important 

requirement for streaming applications. 

• Some of the operators of DBMS are blocking in nature. For example Join and 

Aggregate operations require the entire data to produce output. This is not 

possible in a stream-based application. 

• DBMS has no provision for supporting quality of service (QoS) requirements of 

the user.  
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• Query optimization and scheduling strategies of DBMSs were not designed for 

optimality but to avoid naïve and inefficient strategies. 

• Trigger support in DBMSs cannot scale to large number of triggers. 

• DBMSs assume data elements to be synchronized but most of the stream-

oriented applications are asynchronous in nature.  

• DBMS tends to produce exact answers. But stream data can be lost or garbled 

there by producing approximate answers. 

This lack of support from DBMS for stream-oriented applications prompts us 

design a system, which supports these requirements. This system is referred to as Data 

Stream Management System (DSMS) in the literature. Some of the requirements of a 

DSMS are: 

• DSMS should not store streaming data on secondary storage.  

• Main memory is the primary storage used in a DSMS. 

• It should support asynchronous nature of stream.  

• It should have a language to specify long running and window based queries. 

• Quality of Service (QoS) requirements of streaming applications should be 

supported. QoS should drive optimization and scheduling techniques and not I/O 

as in traditional DBMSs. 

• DSMS should output continuously and incrementally. 

• New set of operators must be defined that are non-blocking. Join and 

Aggregates operators should support the window based query requirement. 

The primary advantages of this system are: 



 

5 

1. System can operator in a low main memory environment. This is 

because buffers support both main memory and secondary memory 

operations. Users sees buffer as a structure for storing tuples and does 

not know which tuple will go in main memory or secondary memory.  

2. System provides accurate results, as there is no data loss. This is 

because use is just not restricted to main memory for storage. 

3. The window representation proposed is a generic window 

representation. It can be added as part of standard SQL statement. It 

can represent physical as well as logical windows. Also it can 

represent snapshot, landmark and sliding window queries both in 

forward and reverse direction. 

4. None of the papers referred in the thesis provides exact 

implementation details of the stream database system. This thesis 

tries provides a platform to build a complete stream management 

system. 

5. It shows that exploiting the overlapping nature of windows in case of 

long running queries (sliding window) can be prove efficient compare 

to the standard approach of processing a window from start to end. 

This is show by designing and implementing two variations of Hash 

Join one with recompute and other variation being reuse. 

6. System is designed such that it can operate without a scheduler. It 

schedulers an operator when data is available and suspends it when 
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there are no tuples. The rest of scheduling is kept at the discretion of 

the base operating system. This is referred to as flow based 

scheduling in this literature. 

 

Some of the limitations of the system are. 

1. It does not support historical queries. Hence we cannot specify query 

windows in reverse direction. 

2. Optimizer is proposed in the architecture but it is not designed and 

implemented.  

3. Alternate Plan Generator needs to implement to support global query 

optimization. 

4. This system is prone to failure and has no capability to recover to the 

point where the system had failed. 
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Chapter 2  

RELATED WORK 

This chapter discusses related work. Some of the systems are only for Data 

Stream Management (e.g. Aurora [1]) where as others are based on specific applications 

(e.g. Cougar[5].)  

2.1 Aurora 

Aurora’s prime functionality is to process streams based on the configuration set 

by the application administrator. Aurora is a data flow system and uses the primitive 

box and arrow representation. Tuples flows from source to the destination through the 

operational boxes. Aurora’s query algebra supports seven primitive operations, some of 

the important ones being select, aggregate, split, union and resample. This architecture 

supports continuous queries for real-time processing, views, and ad-hoc queries.  It 

maintains historical storage in order to support adhoc queries. All these query types are 

supported using the same set of operational blocks. Quality of Service is associated with 

the output. It is specified in terms of a two-dimensional graph that specifies the output 

in terms of several performance-related and quality-related services. It is the QoS that 

determines how resources are allocated to the processing elements along the path of 

query operation.   
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Input in Aurora is through a GUI. Input begins at the top of the hierarchy and 

makes use of the zoom capability to further assist in the design. Users can then query 

the system. Facilities for debugging and single stepping are also provided.  

Aurora has dynamic optimization policies, which changes the data flow 

computation graph (or network) at run time to improve the performance. Optimization 

is based on the types of queries running in the system. It does not optimize the whole 

network at once. But does it in parts by considering a portion of the network at a time. 

Aurora has a Storage Management module, which takes care of storing all the 

required tuples for its operation. It is also responsible for queue management.  

Scheduler is designed to cater to the needs of a large-scale system with real time 

response requirements. Scheduler deals with operators unlike Eddies [4] that deals with 

tuples for scheduling.  

2.2 Streams 

Streams (STanford StREam DatA Manager) [3] is a prototype implementation 

of a complete Data Stream Management System being developed at Stanford. A 

modified version of SQL has been chosen for the query interface. It allows the user to 

specify sliding window queries in SQL with an explicit referral to timestamps. It 

assumes that with explicit timestamp, tuples will be delivered in an increasing order. It 

supports logical and physical windows. Logical windows are expressed in terms of 

tuples and physical windows are expressed in terms of timestamp. STREAMS support 

continuous queries but have not addressed the issue of ad-hoc queries. The system 

generates a query execution plan on the registration of a query that is run continuously. 
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Query execution plan is nothing but  a set of operators connected by queues. Operators 

make used of synopsis (an internal data structure) to store intermediate results. System 

memory is distributed dynamically among the synopsis, queues in query plans along 

with buffers handling streams coming over the network, and a cache for disk-resident 

data.  

Operators in STREAMS adhere to the update and computeAnswer model where 

in an operator reads data from its input queue, updates the synopsis structures and 

writes results to its output queues. Operators are adaptive and take care of the 

dynamically changing stream characteristics such as stream flow rates, and the number 

of concurrently running queries. Operators can produce approximate answers based on 

the available memory.  

STREAMS has a central scheduler that has the responsibility for scheduling 

operators. The scheduler dynamically determines time quantum of execution for each 

operator. Period of execution may be based on time, or on number of tuples consumed 

or produced. Different scheduling policies are being experimented. 

A comprehensive DSMS interface is being developed that will facilitate the 

users and administrators to visually monitor the execution of continuous queries, 

including memory usage and accuracy of output. It also plans to provide the system 

administrator the capability to modify system parameters such as memory allocation 

and scheduling policies. 
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2.3 The COUGAR Sensor Database System 

COUGAR is specifically targeted to meet the requirements of sensor-based 

applications. This system is designed considering the characteristics of sensor and their 

applications. Some of the major challenges facing the COUGAR system are account for 

the failures of sensor and its communication, uncertainty of sensor data and distributed 

execution of query without global knowledge of the sensor network. COUGAR focuses 

on a distributed approach toward query processing where in the workload determines 

the data that needs to be extracted from the sensors. COUGAR is based on the Cornell 

PREDATOR object relational database system.  

 Sensor data is considered as a combination of stored data and sensor data. 

Stored data are represented as relations and sensor data are represented as time series 

based on a sequence model. Long running sensor queries are supported by this system. 

Sensor queries are defined as an acyclic graph of sequence and relational operators.  

In COUGAR, signal-processing functions are represented as an Abstract Data 

Type (ADT) functions. Sensor ADT’s are defined for sensors of the same type (e.g. 

temperature sensor, seismic sensor etc). Public interface to an ADT corresponds to the 

signal processing function supported by a type of sensor. Sensor queries are SQL like 

queries with a little modification where in ADT can be included in the SELECT or 

WHERE clause of the query. Query processing takes place on a database front end 

where as the signal-processing functions are executed on the sensor nodes involved in 

the query. On each sensor a lightweight query execution engine is responsible for 

executing signal processing functions and sending data back to the font end. 
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COUGAR assumes that there are no modifications to the stored data during 

query execution that is made sure using Two Phase locking.  Virtual Relations are 

introduced in order to overcome the disadvantages of ADT. 

2.4 Fjord: Architecture for Queries Over Streaming Senor  

Fjord [6] is sensor data processing architecture for data intensive sensor-based 

applications. It provides a low-level database engine support required for sensor centric 

data-intensive systems. The main focus of the system is to provide an efficient, adaptive 

and power sensitive infrastructure. This system supports the Berkley Highway lab to 

monitor traffic conditions with the help of sensors that are deployed on Bay Areas 

freeways. 

Fjord’s operators export an iterator like interface and are connected together via 

local piper or wide area queues. It provides support for integrating streaming data that is 

pushed into the system with disk-based data that is pulled into the system. 

Each machine involved in the query runs a single controller in its own thread. 

Controller accepts message to instantiate operators, connect local operators via queues 

to other operators that may be running locally or remotely. Queues also export an 

iterator like interface irrespective of whether the operators are local or remote. This way 

it makes the operator ignorant of the nature of their connection to remote machine. Each 

query has its own thread, which is multiplexed between local operators via procedure 

calls in case of a pull base architecture or via a special scheduler that also control the 

input and output of data through the operators.  
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Operators are the primary functional unit of the system. Each operator owns a 

set of input and output queues. It reads data from the input queue, performs the required 

operations and directs them to the output queue. No processing takes place in the 

queues. Stale data are discarded from queues based on the requirements of the 

applications. It supports non-blocking operators such as selection and projection and 

blocking operators such as join and aggregate.  A main memory symmetric hash join 

has been implemented which maintains a hash table for each relation. Window based 

operations are supported for blocking operators. Considering the nature of streams, 

Fjord provides an optimization by combining multiple queries in a single Fjord. This 

way a significant amount of computation and memory can be shared there by improving 

the overall performance of the system. 

Sensory proxy is a prime component of this architecture. It acts as an interface 

between the system and the sensors over which the user will poise the queries. It shields 

the sensor from having to deliver data to hundreds of interested users. It adjusts the 

sampling rate of the sensor based on the current condition of the system there by 

preserving the battery life of the sensor, which is one of its prime advantages. It can also 

direct the sensors (smart sensors) to aggregate samples in a predefined way there-by 

reducing the data communication. 

2.5 PSOUP 

PSOUP [7] adheres to the needs of a different class of streaming applications 

where in adhoc queries and intermittent connectivity also requires the processing of data 

that arrives prior to query submission or during the period of disconnection. Data 
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recharging and monitoring applications are the primary targets of this system. PSoup 

builds on adaptive query-processing techniques developed in the Telegraph project [8] 

at UC Berkeley. It combines the processing of ad-hoc and continuous queries by 

treating data and queries in a symmetric fashion there-by allowing new queries to be 

applied to old data and new data to be applied to old queries. In order to support 

disconnected operation and to improved data throughput and query response time, 

PSOUP partially pre-computes and materializes results. 

User interaction with the system begins by submitting a query. On registration, 

PSOUP returns a handle to the user, which can be used for further communication of 

results. Queries are specified in the form of SELECT-FROM-WHERE clause. It also 

has provision to specify a window using the BEGIN and END clause. System is flexible 

to adapt to logical windows (windows specified in terms of number of tuples). System 

can be easily extended to support different sized windows for each stream. 

Query and data are stored in structures called State Modules (SteMs). There is 

one Query SteM for all the queries in the system and on Data SteM for each data 

stream. PSOUP supports both historical and ad-hoc queries. For historical queries, 

whenever a query is registered to the system it is entered into the Query SteM and then 

probed to the Data SteM. For continuous queries, on the arrival of a new data item, it is 

inserted into the Data SteM and is used to probe the Query SteM. Results of probing are 

stored in a Result Structure. User queries are answered from this data structure. It is this 

data structure that allows supporting the period of disconnection with the system. 
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A generalized symmetric join that accepts more than two streams, is used for 

joining queries multiple data streams.  

2.6 NiagaraCQ  

NiagaraCQ [9] is a system that mainly focuses on supporting continuous query 

processing over multiple, distributed XML files. It is mainly for web-based users as 

they can scale to a very large number. It is the continuous query sub-system of the 

Niagara project, which is a net data management system being developed at University 

of Wiscons in and Oregon Graduate Institute. It takes advantage of the fact many web 

based queries share similar structures. Groping similar structures can save on the 

computation cost, memory cost and I/O cost. Moreover grouping of selection predicates 

can eliminate a large number of unnecessary query invocations.  

 NiagaraCQ uses a novel approach of group optimization. It uses an incremental 

group optimization strategy with dynamic re-grouping. When a new query arrives, the 

existing groups are considered as possible  optimization choices instead of re-grouping 

all the queries in the system. The new query is merged into existing groups whose 

signature match that of the query. Another advantage of this system is that it uses a 

query split scheme that requires very little modification to a general-purpose query 

engine. After the signature of a new query is matched, the sub-plan corresponding to the 

signature is replaced with a scan of the output file produced by the matching group. 

This optimization process then continues with the remainder of the query tree in a 

bottom-up fashion until the entire query has been analyzed. NiagaraCQ also supports 

grouping of change-based and time-based queries in a uniform manner.  
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NiagaraCQ defines a simple language for creating and removing continuous 

queries. Continuous queries can be written by combining XML-base queries with 

timing clause. These queries are deleted from the system on the expiration of the time 

specified in the query. Since it is a large-scale system, not all the information required 

by the system can fit in main memory. Hence caching is used to obtain good 

performance with a limited amount of memory. It caches query plans, system data 

structures and data file to improve performance. 

 NiagaraCQ is developed using Java (JDK1.2) and a validating XML Parser 

from IBM. Main components of the system are 

• A continuous query manager that provides a query- interface to submit the query 

and later executes the given query. 

• An optimizer to perform group query optimization. 

• An event detector to detect time event and changes of data sources. 
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Chapter 3  

STREAM DATABASE ARCHITECTURE 

Data Stream Management System (DSMS) being developed for processing 

queries from MavHome, provides a query execution platform for streaming based 

application. This is a complete system where in a query, submitted by the user, is 

processed at the server and the output is returned back to the user. It is a client server 

architecture. Following are the important modules of DSMS. 

 
Figure 3.1 DSMS Architecture 
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3.1 Client (User Input) 

DSMS provides a predefined set of services to its users.  It is command driven 

and protocol oriented. The Server listens to particular port for a command input from 

the client. Each command is associated with a protocol that defines the communication 

between the client and the server for the service to be successfully offered. Protocol 

clearly specifies the input it expects from the client, the function it is going to perform 

using the given input and the output that will be sent to the client. Client needs to be 

well aware of the protocol in order to obtain the desired service from the DSMS server. 

In general a client should provide the following functionality. 

• Provide an interface (preferably a GUI) from which user can choose one of the 

services offered by DSMS. 

• Based on the service chosen, it should provide an interface to collect the 

required input from the user.  

• Covert the input from the user into a form specified in the DSMS protocol. 

• Communicate with the server by sending the command for the service chosen 

and later follow it with the input constructed for the command. 

• Wait for a response from the server. Present the collected response in a user 

understandable fashion. 

Client can be one of the following types: 

• It can be a GUI based client developed using Java swing or Java AWT. 

• It can be a web-based client that uses Java technology. 



 

18 

• It can be a non-GUI based client where input comes from a predefined source 

such as a file. This can be used for experimental purpose. 

3.2 Operators 

Operators are the basic building blocks of DSMS. Each operator is an 

independent running unit. Operators work in close association with buffers. Query is 

modeled as a tree of operator connected using buffers. Operator pulls data from input 

buffers, processes the data and pushed the generated data on to the output buffers. The 

smallest schedulable entity in a DSMS is the operator. To support this property, 

operators need a mechanism that allows it to be controlled from external sources 

(mainly the scheduler). It supports operations such as start, stop, suspend and resume 

which allows a fine-grained control over its execution. During its life span, operators 

can be in one of the following four states viz. ready to run, running, suspended or stop. 

Each operator has at least (e.g. select, project etc) one input queue and atmost 

two input queues (e.g. join). It can have more than one output queues as queues may be 

shared among operators in a query tree. Operators can have a priority associated with it. 

Priorities can-be user defined or generated by the system over the life span of the 

operator. It helps the system take decisions for fair resource allocation between 

queries/operators. 

 Operators are divided into two categories based on the way they process tuples. 

1. Window-Based Operators: These are the operators that require certain amount of 

data before it can generate its output. Hence these operators operate on a 



 

19 

window worth of data and produce their output. Join and aggregate are examples 

of window-based operators. 

2. Non-window Based Operators: These are the operators, which work on a single 

tuple at a time. They don’t need to wait for other tuples. Select, project and split 

are examples of non-window based operators.  

Following are the operators implemented in DSMS: 

• Select (Filter): Select does a conditional filtering of tuples. It picks up a tuple 

from the input buffer, evaluates the condition and sends the satisfying tuples to 

the output buffer. 

• Project: Project brings out the desired attributes from a given tuple. 

• Join: It is a binary join where- in it combines a set of stream based on some pre-

specified condition. 

• Aggregate: It performs functions such as max, min, count, average on a window 

worth of data. 

3.3 Buffer 

Buffers are the temporary storage that is being extensively used in DSMS. They 

are the bridge, which connects the operators to make the query tree. Data flows from the 

stream into the buffers, this act as an input to the operators, which produces new data 

that are again output to some buffer. Hence buffers are very important resource that 

affects the overall performance of the system as a whole. Buffers are categorized into 

two types based on how they make use of main memory, which is a very costly resource 

in this system. 
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UnBounded Buffer:  Entire storage space of unbounded buffer comes from main 

memory. These buffers are very fast operating one and should be used intelligently as 

improper usage of this may affect the overall performance of the system. 

Bounded Buffer: Bounded buffers have a predefined size up to, which the data 

will be stored in main memory. If data exceeds beyond the specified size, it will be 

stored in secondary storage. This whole operation of storing data in secondary memory 

is transparent to the user. Buffer management policy ensures minimum access/usage of 

secondary memory.  

Operators are the primary users of buffers. More than one operator can be 

reading from a buffer at the same. But only one operator writes to a buffer at one time. 

Hence appropriate locking must be ensured to preserve the integrity of data in buffers. 

Also the process of purging (process of removing tuples from the buffer) is made more 

complex as there can be more than one consumer of buffer data. Purging logic should 

make sure that a tuple is removed from the buffer only if all the operators consuming 

tuples from the buffer have read it.  

3.4 Streams 

Streams are the primary data source of DSMS. Raw data (tuples) are fed 

through the streams. They are not a predictable source of data. It can have a constant 

flow or may be bursty in nature.  

 Each stream has to be well defined. It should clearly specify all the attributes 

that are part of the streams, their data types and their position in the stream. Definition 

of streams differs from application to application. It is the responsibility of the 
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administrator to define streams before data is sent to the system and queries are defined 

over it. Stream definitions are stored throughout the lifetime of the system. These are 

used for query building, condition evaluation in operators etc.  

 Data from streams are collected into buffers and then used by the query 

operators to generate results for the query. Buffer size of the base streams should be 

considerably large. Unbounded main memory buffers are good the performance of 

DSMS.  

3.5 Scheduler 

  Scheduler is one of the central components of DSMS that controls the 

execution of operators. Scheduler is executed as a high priority thread running in the 

system and is started with the Server. It maintains a ready queue, which is a list of 

operators that are in ready to run state. Based on the scheduling policy, it picks up an 

operator from the ready queue and runs it for a time quantum. The length of the time 

quantum is based on the scheduling policy. One of the following conditions may occur 

during the running state of the operator. 

1. Operate may finish its execution. In this case, operator stops its execution 

and informs the scheduler about it. If the time quantum of the operator is not 

completed, scheduler releases the execution of the operator and removes the 

operator form the ready queue. 

2. Operator may not have enough data to process. In this case, buffer suspends 

the operator. Thereafter, operator informs the scheduler about it suspension, 

which in turn releases its execution and removes the operator from the ready 
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queue. Whenever some data is available in the buffer, buffer will bring the 

operator to ready-to-run state by adding it into the ready queue. 

3. Time quantum of the operator may get expired. In this  case, scheduler 

suspends the execution of the operator and puts the operator in ready to run 

state by adding it to the end of the ready queue. 

In order to ensure timely response and good performance of the overall system, 

scheduling policy needs to be chosen carefully. The following two policies are being 

used in the initial phase of DSMS. 

1. Round Robin: Here the ready queue is a simple FIFO queue. Scheduler picks up 

the top most operators from the ready queue and schedules for a fixed time 

quantum. Disadvantage of this policy is that queries with high priority will not 

get higher quantum of time. 

2. Weighted Round Robin: This policy aims at giving more time to operators with 

high priorities. Here operators are scheduled in a round robin fashion but the 

time quantum chosen is a function of the priority of the operator. Higher the 

priority higher is the time quanta. This policy avoids starvation as all operators 

are scheduled in a round robin fashion on a FIFO basis.  

3.6 Run Time Optimizer 

  DSMS is a real time stream management system. It is not only important to 

produce correct output but also to produce in an efficient manner keeping in mind the 

Quality of Service (QoS) specification of the user.  Also the systems state is constantly 

changing during its lifetime as number of queries may be added, delete or modified. 
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This dynamic nature of the system brings forth the need for a module that not only 

monitors the systems performance but also comes up with a plan that can produce an 

efficient output. Run Time Optimizer is a module to accomplish this. Its prime 

responsibilities are. 

1. Make sure that the QoS specification for queries provided by the users are met. 

For this it constantly monitors the output of each and every query and makes 

sure it is does not violate the value specified by the user. If so it should take 

measure to bring it back to an acceptable value. 

2. Monitor the performance of the system and optimize it as needed. 

For this it may take the help of Alternate Plan Generator to generate an alternate 

plan for a query that might not be efficient by itself but may prove to be efficient when 

combined with other queries in the system. In order to achieve its goal, it can 

dynamically increase or decrease the priorities of the operators. Run Time optimizer is 

currently not supported in the system. 

3.7 Alternate Plan Generator 

Initially user submits a query plan to the system. This is an executable plan but 

may not be the most efficient plan to run. Several equivalent plans may be available for 

this query.  In order to generate these plans, a separate module is required. This module 

is the Alternate Plan Generator.  

Alternate plan generator takes a base plan submitted by the user, and generates 

one or more plan that can generate the same output. It can then be merged with the 

existing plan with the system to conserve resources such as computation and memory. 
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This dynamic regrouping [10] is needed to satisfy the QoS requirements. Generated 

plans can be used for one of the following purposes. 

• Alternate plans can be used in order to obtain an initial optimal plan for the 

query. 

• Generated alternate plans can be used by the Run Time Optimizer to generate an 

overall efficient global plan. 

Alternate Plan Generator is another topic to be addressed in the future. 

3.8 Instantiator 

A plan object is tree of operator nodes. Each Operator node has enough 

information for the corresponding operator to be instantiated. Plan object is one that is 

initially submitted by the user or generated by the Alternate Plan Generator (using the 

initial plan). The role of Instantiator is to take a plan object and convert it into operator 

objects that can be scheduled. A complete cycle for query instantiation is as follows: 

• It takes in a plan object and traverses in a bottom up fashion so that the operators 

are instantiated in the order in which data flows (from leaf to the root). 

• It reads the information from the operator data node, identifies the operator, and 

converts the data into a form required by the operator and instantiates the 

operator. 

• It then adds the operator to the scheduler’s ready queue. 

3.9 Server 

DSMS server is a TCP Server that listens to a particular port. It provides a set of 

services to the client. Each service is associated with a command. Following the 
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command it executes the protocol for the service. The set of commands supported by 

the server is given below: 

• Execute a query. 

• Register a stream. 

• Send all streams to the client. 

• Send a particular stream to the client.  

Additional commands can be added to the server. Apart from supporting the 

above commands, server also takes care of starting all the major components of DSMS. 

It starts the scheduler as a high priority process. Alternate plan generator is instantiated. 

Run Time Optimizer is started as a separated thread. Server also maintains the data 

structure to store and retrieve stream definition. It is also a place to hold data structures 

that are used for various house keeping activities like experimental results, 

configuration data etc. 
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Chapter 4  

DESIGN 

4.1 Schema: 

  Stream Database supports more than one stream. Each stream feeds tuples into 

the system. Each stream has a set of attributes and data types. Stream information needs 

to be stored in the system during the processing of queries over those streams.  

Collectively the set of attributes and the data types, which represents a stream, is called 

a schema.  The concept of schema is analogous to the concept of tables in DBMSs. 

4.1.1 Requirements of schema for stream databases are: 

  A schema represents a stream in the system. Schema should be able to store the 

attribute name, its data type and its position in the tuple. This information set should be 

expandable for future purpose. System should be able to support large number of 

schemas. Schema can be either user given or system generated. System generated 

schema are used for storing temporary information, which is generated as a part of 

query. These types of schemas are referred as intermediate/temporary schema. 

  Details of schema should be accessible based on attribute’s name or its position. 

It should be easily accessible by all modules of a stream database, which is a prime 

requirement for operators. Operators such as SELECT, PROJECT and JOIN accesses 

the schema to bring the input into a form, which is efficient for processing. For 

example, the attribute name in the PROJECT operation are converted into a list of 
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positions using the schema so that the PROJECT operator can use the position 

information on the input tuples and extract the required field. 

  Consider an example of MavHome data. Here a stream is constantly generated 

that represents the activities of various devices in the room. In order to represent this 

stream, a schema needs to be created. Figure 4.1 shows the skeleton of the schema. 

 
Figure 4.1 Example of MavHome Transload Schema. 

 

4.1.2 Schema Design: 

  A dynamically growing list is recommended to store the schema information of 

a stream database since there is no limit on the number of schemas stored in the system. 

Each row in the list stores information for a schema, which can be expanded in the 

future. In order to support this expansion the schema information structure need to be 

dynamic in nature. Schema information can be accessed based on attribute’s name or its 

position. To support these access-mechanisms the schema attribute information is stored 

as a separate entity. Moreover, the total number of information stored for a schema 

attribute should be expandable for the future, so a structure that grows dynamically is 

needed. Hence all the information about an attribute of a schema such as attribute’s 
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name, position, data type, etc is stored in a separate structure. This way there would be 

N structures for each of the N attributes of the schema. 

  A separate structure should be maintained that provides access to attribute 

information based on attribute name. Similarly another structure is needed that will 

provide access to attribute information based on attribute’s position. Both of these 

structures should be accessible using the schema name. 

Figure 4.2 shows the representation of schema in terms of its structure described 

above. 

 
Figure 4.2 Schema Representation 

4.2 Buffer Management 

4.2.1 Requirements for Buffers and their Management:  

 The following are the requirements for a buffer in a DSMS. 

• DSMS should support operations in limited main memory environment.  
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• Buffer Management should be such that the use of secondary storage should be 

minimized, which helps in improving the overall efficiency of the system. 

• Buffer Management should be such that each buffer should support multiple 

operators. 

• Buffer should support flow based scheduling. (In this scheduling scheme, an 

operator suspends itself when it has processed all tuples from the input buffer. 

After that it is the responsibility of buffer to resume the operator when new 

tuple(s) arrive.) 

• It should provide an efficient purging mechanism for removing stale tuples from 

the main memory. 

• It should have a policy that decreases the overhead of purging secondary storage 

tuples. 

4.2.2 Buffer Design: 

  Buffers are the basic building blocks of a DSMS. They are the primary storage 

structure of DSMS. Buffers are used for storing tuples that flows from the streams 

(source) to the end user (destination) through a set of operators. Buffers are non-

processing components of a DSMS; i.e. the state of tuples is not changed while they are 

in buffers. Tuples flow in a “first in first out” (FIFO) fashion through the buffers. Hence 

buffers are implemented as FIFO queue.  

 Buffers are used for the following two purposes: 

1. Buffer acts as storage for the streams that are the primary sources of tuples. As 

shown in Figure 4.3, each stream is associated with a buffer. 
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2. In addition to streams, operators also use buffers. Operators read from a buffer, 

process the data and write the output tuples to a buffer.  

 
Figure 4.3 Buffer Usage in DSMS 

 

  One of the distinguishing features of a DSMS is that it provides exact answers 

and not approximate answers [11]. In order to achieve this feature, all tuples are 

considered, which means DSMS has to provide a mechanism for storing every tuple in 

limited memory environment. Based upon this requirement buffers are classified as 

follows:  

Infinite Main Memory Buffer:  In this case, all the tuples are stored in the main 

memory. These buffers are very fast in operations as compared to its counterpart. There 

is no limit on the amount of tuples that can be stored in these buffers. Hence, in a 

limited memory environment, these buffers should be carefully used. Stream Buffers 

are good candidates for main memory buffers as they control the process of feeding the 

tuples to the systems.  
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Limited Main Memory Buffer: Limited Main Memory buffers have a limit on the 

number of tuples that can be stored in main memory. If the number of tuples stored in 

main memory exceeds the specified limit, the remaining tuples needs to be stored on 

secondary storage. Tuple latency of limited main memory buffers can be very high as 

compared to its counterpart because of the use of secondary storage device. One of the 

vital requirements of this buffer is the choice of the number of tuples that can be stored 

in main memory (limit). Limit boundary should be chosen in such a way that the 

number of tuples stored in secondary memory is less. It is possible that no tuples land in 

the secondary storage thereby providing better performance. There are chances that less 

amount of tuples get stored in the secondary memory and these tuples are fetched into 

the main memory of the buffer while the consuming operator is in suspended state. This 

gives the consumer an illusion that it has an infinite main memory buffer.  

  Main memory and CPU time are the important resources in a DSMS. The use of 

main memory is directly related to the choice of buffer type and the selection of 

memory limit on secondary buffers. There are certain factors that need to be taken into 

account while selecting these buffer parameters. These factors are: 

• Input rate: Rate at which tuples are enqueued into the buffer. 

• Tuple consumption rate: Rate at which tuples are read from the buffer. Since 

buffers can have more than one consumer, the rate of the slowest consumer must 

be considered as the output rate, as tuples cannot be removed from the buffer 

until all consumers have read it. 
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  It is difficult to predict these parameters in streaming applications as the choice 

of buffer size and its type is made dynamically. The following are the two places at 

which these choices can be made. 

• Buffer type and its limit can be decided when buffers are created. Based upon 

the nature of streams, priorities assigned to operators, type of queries and current 

system conditions, a heuristics should be develop to predict the input rate and 

the tuple consumption rate of the queries.  

• As queries are added, removed or completed in the system the load on the 

system changes dynamically. Also, the QoS requirement forces the optimizer to 

change some parameters in the system in order to provide a desired level of QoS 

to the users. Because of these changes in the system, the input and output rate of 

operators gets changed. Hence, we need to reconsider the buffer parameters to 

provide an optimal solution. 

The above two responsibilities lies with a runtime optimizer, which is a future 

work to this project. 

4.2.3 Multiple Operators Reading from One Buffer: 

There are two alternatives for associating buffers with operators, which are as 

described below. 

One Operator per Buffer: Here only one operator is associated to read from a buffer. 

The advantages of this method are.  

• It does not require a complex logic for buffer management.  
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• Also, the average tuple latency will be less as a tuple stays for a minimum 

amount of time in the buffer. 

But the disadvantages are: 

• If many operators are reading the same data from different buffers, there will be 

considerable amount of main memory that will be wasted in duplicate tuples. 

The amount of memory wastage is directly proportional to the number of 

operators reading the same data. 

• Also, it requires a considerable amount of time to create the duplicate buffers. 

Multiple Operators per Buffer: To avoid the disadvantages of one operator per buffer, 

another scheme is considered, which supports multiple operators reading from the same 

buffer. 

 

4.2.4 Design of Multiple Operators Reading from a Buffer 

  Operators are the only consumers of tuples from the buffers. There can be more 

than one operators reading from a buffer but the consumption rate of each operator is 

different. In order to support these different rates of tuple consumption, buffer maintains 

a pointer (currentUnReadElement) for each operator associated with the buffer. This 

pointer points to the next tuple in the buffer that has not been read by the operator. 

Beyond this pointer, operator has read all elements from the buffer.  

  Initially each consumer operator has to register with the buffer. Buffer maintains 

a table, which contains the operators registered with the buffer and it s 

currentUnReadElement pointer. On registration currentUnReadElement for that 
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operator is initialized to zero. This pointer needs to be adjusted when elements are 

dequeued from the buffer. 

  A design alternative was to keep this pointer in the operator itself. In this case, 

during the process of purging tuples, buffer had to communicate with all the operators 

that were registered with the buffer to obtain the latest value of currentUnReadElement. 

Also, after purging logic, buffer would have had to send the amount of tuples that were 

purged back to all registered operators so that the value of currentUnReadElement can 

be adjusted appropriately. Furthermore, it needs to make sure that registered operators 

are not reading tuples from the buffer while the buffer is processing the purging logic. 

Therefore, to avoid all these possible communications between operators and the buffer, 

the currentUnReadElement was kept within the buffer. 

 
Figure 4.4 CurrentUnReadElement Pointer 

4.2.5 Purging Logic: 

  Purging logic is a complex process as more than one operator is registered with 

the buffer. Before dequeuing a tuple from the buffer, purging logic needs to make sure 

that the element is of no use to any of its consumers. In short, all operators have read the 

element. For this, the purging logic makes use of currentUnReadElement pointer of 
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each buffer. It finds out a point in the buffer until which all the operators have read from 

the start of the buffer. To do this it finds the lowest element from the table shown in 

figure 4.4. For example, 645 would be the point in the buffer until which all elements 

can be safely deleted. It then dequeues all elements to that point. 

  Another important decision is to determine when to call the purging logic. 

Purging logic is called whenever an operator reads a tuple using its 

currentUnReadElement pointer. Just peeking into the buffer does not require the calling 

of purging logic. 

 

4.2.6 Buffers Support for Scheduling: 

  Scheduling of operators is done with the help of a scheduler. Each operator is 

allowed to run for a specific time quantum. Once the time quantum is elapsed some 

other operator will replace it based on the scheduling policy. There is another policy 

called flow-based scheduling, which relies on the scheduling of the base operating 

system. In this policy, an operator is scheduled only if the input tuples are available for 

processing. Rest of the scheduling is kept at the discretion of the operating system. 

Hence in this scheme a query tree is instantiated in a bottom up fashion and operator are 

scheduled in the same order. The leaf operators, which get data first, are scheduled first. 

If data is not available, operators are suspended. 

  In all the policies of scheduling, if no input data is available, the operator 

suspends it-self. This is an intelligent way of saving costly CPU resources. But to 

support this policy, we need a mechanism through which the operator can be 
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rescheduled. This requires a communication between the operator and its input buffer.  

The process that is carried out in order to support this scheme is given below. 

• If no data is available in the input buffer, operator will suspend itself. The reason 

is the lack of tuples in the input buffer, therefore it informs the buffer of its 

suspension.  

• Buffer adds the operator to the suspension list. This is a list of operators that 

have been suspended because no data was available in the buffer.  

• When new tuples are enqueued in the main memory buffer, it processes the 

suspension list and one of the two things will be done based on the scheduling 

policy used. Buffer resumes the operator picked from the suspension list. This is 

done in case of flow based scheduling. For other scheduling policy, buffer puts 

the operator in ready to run state and the scheduler will schedule it based on the 

policy used.  

• Finally Buffer removes the operator from the suspension list.  

4.2.7 Buffer Management: 

   The objective of buffer management is to provide an illusion to the user that it 

has an infinite memory at its disposal. It is an easy task in case of infinite main memory 

buffer, which has a huge amount of main memory. The real problem comes with limited 

main memory buffers. For limited main memory, there is an upper limit on the number 

of tuples that can be stored in the main memory. If tuples exceed this limit, they are 

stored in secondary storage buffers. Producers and consumers of the buffers should be 

given an interface whereby they can store tuples in the buffer and retrieve the stored 
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tuples from the buffer. The information that the tuple is stored in or retrieved from main 

memory or secondary memory should be transparent from an operator’s viewpoint.  

Each buffer is associated with two secondary storage files. In traditional log 

based applications, if an application wants to read some data from the file, it has to first 

do a sequential scan on the file to reach the point where the object is stored. This can 

prove to be an unnecessary overhead of scanning through the file before reaching the 

actual data. This overhead is directly proportional to the file size.  

  To avoid sequential scan of log files, this design brings in a mechanism of 

indexing into the file and reading only the required object from the correct position. All 

the tuples in the buffer log file are stored as serialized byte. In order to get a particular 

tuple from the buffer log file, it would require the exact starting position of the byte 

stream for the tuple and the byte size of the tuple. This information is obtained at the 

time of writing the tuples into the buffer log files. Before writing into the log files, this 

information is stored in a main memory index table. As shown in the figure 4.5, each 

entry into the index table consists of a Sequence Number, the byte size of the tuple and 

its offset into the log file. For each buffer log file there is an associated index table. 

 
Figure 4.5 Index Table 
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4.2.7.1 Need for Two Log Files:  

  Lifetime of a buffer is associated with the lifetime of a query, an exception to it 

being stream buffers whose lifetime is equal to that of DSMS. For continuous long 

running queries buffer lifetime is very large. Hence more and more number of tuples 

gets accumulated in the buffer log file over the life cycle of the query. We should have a 

mechanism to purge these tuples; otherwise it will not allow new tuples to be brought 

into the buffer from secondary storage. One method of doing this is removing a tuple 

from the log file after it has been used. But this may prove to be very costly because of 

the following two reasons: 

1. The cost of purging individual tuple is high when secondary storage is involved.  

2. It also requires adjusting the offset of all the remaining tuples in the index table 

by the size of the tuple that was purged.  

The cost of the above two increases with number of tuples in the buffer thereby 

making the whole process inefficient.  

  In order to make the purging logic cost effective, the concept of two buffer- log 

files is introduced. Here we keep storing the tuples into the first buffer log files till a 

predefined limit is reached. Once that limit is reached, the tuples are stored in the other 

buffer log file. The buffer manager starts reading tuples from the first secondary storage 

log file as soon as enough memory is available in the main memory buffer. Then the 

buffer managers switches the reading process to the next log file the moment all tuples 

are read from the first file. After this the first file can be cleared quickly by reopening it 

into write mode. This way we can delete all tuples from the file with negligible cost. 
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Also, the corresponding index table needs to be cleared when the buffer log files are 

cleared.  

  A separate process is used for reading tuples back from the secondary storage 

file. This process is invoked when the main memory buffer is empty by x% (where x is 

a configuration parameter) of its allotted limit. This way we can minimize the 

interference of secondary storage and increase the overall efficiency of the system. The 

process of reading tuples from the file should initiate from the first file and then proceed 

to another. It should also take care of the process to switch the reading to another file 

when all tuples from the current file are read and still there is some place left in the 

main memory buffer. The whole process should be repeated until main memory is 

exhausted or there are no tuples left in the secondary memory.  

 Figure 4.6 depicts the buffer management policy used for DSMS. 

 
Figure 4.6 Buffer Management in DSMS 
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4.2.8 Operations on Buffer: The   operations performed on a t buffer are  

4.2.8.1 Enqueue:  

Enqueue provides an interface for the producers of the buffer to store tuples in 

the buffer. Producer of the tuple is not aware that the tuple is going to main memory or 

to the secondary memory. Enqueue compares the size of the buffer with its specified 

limit. If the limit of main memory is crossed, enqueue stores the tuple in the appropriate 

secondary storage log file. It also holds the responsibility of creating the log file only 

when it does not exist. Before storing the tuple in secondary storage, enqueue first 

places the tuple information in the index table. Then from the index table it knows the 

offset of the tuple in the file. Using this information, it stores the tuple in the appropriate 

log file. 

4.2.8.2 Dequeue:  

Dequeue removes a tuple from the main memory. It is primarily called by the 

purging logic. Another responsibility of dequeue is to start the process which reads 

tuples from secondary storage into the main memory buffer. It checks if the main 

memory buffer is x% empty (where x is a value read from DSMS configuration 

parameters) before starting the external memory read process.  Dequeue also adjusts the 

currentUnReadElement pointer of all registered operator after removing an element. 

4.3 Operators 

  Operators are the one of the key components for query execution for stream 

database. Traditional DBMS database operator works on the data set that is available 
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before execution of the operator. Here the flow of tuples is between operators. One 

operator passes on a tuple directly to another operator in the hierarchy. In short, the 

flow of tuples is synchronous. Also some of the operators such as JOIN and 

AGGREGRATE are blocking in nature. In this case, the entire set of data is expected 

before producing the output. Moreover the applications are such that the data set is 

available before hand for the operators to process. For example in order to compute a 

JOIN, all the tuples from both the tables are available for processing and this way the 

joining techniques had a different focus and scope for improvement. 

  Stream database has totally different set of characteristics, which does not suit 

the design of traditional DBMS operators. Moreover the design of traditional DBMS 

operators was done keeping in mind the query processing of business processing 

applications that had a store and query approach. Streaming applications require 

incremental and continuous delivery of output to the users. Moreover there is no limit 

on the number of tuples that are fed to the system. These properties require the 

operators to be non-blocking.  

  Tuples are asynchronous in nature but the operators can process tuples at a fixed 

rate. Hence there comes the requirement to convert the asynchronous streams to one 

that can be easily fed to the operators. Buffering tuples into stream buffers helps to 

convert asynchronous streams to synchronous one. Operators reads data from Stream 

buffers, processes it and outputs the data to the output buffers. A buffer provides a 

connecting bridge between two operators to route the tuples from the stream buffers to 

the end user.  
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4.3.1 Requirements of Stream Operators: 

• Operator should be a schedulable entity. Execution of operator can be controlled 

by external components such as Scheduler and Buffers. 

• Operators can read either from one or two input buffers. Operators like SELECT 

and PROJECT requires only one input buffer where as JOIN operator requires 

two input buffers. 

• Operators should be able to output the same tuple to more than one output 

buffer. This might be required when a single operator can server more than one 

query. This feature will come into play when common operators between 

queries are combined in global query optimization. 

• Operators should be able to support flow-based scheduling. In Flow based 

scheduling, an operator should start processing with the arrival of tuples in input 

buffers and suspend itself when all the tuples in the input buffer are processed. 

Hence there should be a provision in each operator to suspend its execution 

when all tuples have been read from the input buffers. 

• Operator should have the capability to stop its execution when the end query 

condition is reached. In this manner the entire query will be executed on it own. 

This way there is no need for the scheduler to monitor the stopping of the query. 

• Each operator should have the provision to support Quality Of Service (QoS) 

requirements specified by the user. 
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4.3.2 Operator Model: 

  An operator model is designed to meet the requirements of any stream operator. 

All operators should be in accordance with the operator model.  

 
Figure 4.7 Operator Model 

 
 

Each operator reads data from input buffers, processes it and outputs the 

generated tuples to the output buffers. Two important properties that each operator 

possesses are state and priority that are essential for scheduling [8] stream operators.  

1. State: State represents the current execution state of an operator. At any given 

time after instantiation, an operator can be in one of the following state: 

a. Ready To Run. 

b. Running. 

c. Suspended. 

d. Stopped. 

2. Priority:  Priority defines the precedence of execution of the operator. Priority is 

one of the ways of controlling the QoS requirements set by the user. Priorities 

range from zero to nine with zero being the lowest priority and nine being the 
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highest. If the user initially sets no priority, a default priority of five is given to 

the user. 

4.3.3 Operator State: 

  Lifetime of an operator spans across four execution states. The state of 

execution depends on the following parameters. 

1. Availability of tuples: Since operators supports flow-based scheduling, they can 

run only when tuples are available. If no tuples are available, an operator will 

suspended its execution and waits for tuples to arrive. On the arrival of tuples, 

buffer brings the operator into “running state” or “ready to run” state depending 

on the scheduling policy. 

2. Availability of CPU resources: CPU cycles are the primary resources for 

operator execution. If CPU cycles are available to an operator, it can be in 

running state. Based on the scheduling scheme or availability of input tuples, the 

CPU resources can be switched to other operators and bring the current operator 

to  “ready to run” or “suspended” state. 

3. Scheduling Policy: Scheduler is a component that controls the execution of an 

operator. State transition primarily depends on the scheduling policy in use. 

4. End Query: An operator is transitioned into the stop state when end query 

condition is reached. 

  Depending on these parameters, an operator can be in one of the above-

mentioned states of execution. Figure 4.8 shows the state transition diagram. 
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Figure 4.8 Operator State Transition Diagram 

 
 

1. Ready to Run: This state says that operator has enough input tuples to carry on 

its execution. It is waiting only for CPU resources. This state tells the scheduler 

that the operator is ready to run and is in contention for scheduling. Initially 

when the operator is instantiated, it starts in this state. During execution of an 

operator, if tuples are available and the time quantum assigned to the operator is 

expired, the scheduler brings the operator back to this state. 

2. Running: Based on the scheduling scheme, an operator will be chosen for 

execution if it is in ready to run state.  

3. Suspended: If tuples are not available to the operator, it will suspend itself and 

informs the buffer of its suspension. Later when tuples are available in the input 

buffer, it will either bring the operator in ready to run state or running state 

based on the scheduling policy. For flow-based scheduling it will be brought 

directly to running state and for all other policies it will be transitioned to ready 

to run state. 
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4. Stop: An operator is transitioned in the stop state when the operator processes all 

the tuples and the end query condition is reached. 

Buffers, Scheduler, Instantiator and the Operator itself are responsible for the state 

transition. 

4.3.4 Operator Priority: 

Controlling the execution of operators can easily influence the overall 

throughput of the system. Hence there is a need to provide a control over the execution 

of an operator. Priority plays a pivotal role in providing this control. Each operator has a 

priority that ranges from 0-9, the default being 5.    

  Priority can be set in one of the following manners: 

• Default Priority: If user does not have any specific QoS requirements, then the 

query Instantiator will instantiated the operator with a default priority of five. 

• User Specified: A user is allowed to specify certain level of QoS by specifying 

the priority level for a query. When that query is submitted for instantiation, all 

operators of the query are set according to the priority of the query. 

• System Generated: A priority can also be assigned/changed during the execution 

of an operator.  If one operator is being used by more than one query or if it is 

one of the slow moving operators, then to increase the efficiency of the system 

as a whole, the optimizer can change the priority of the operator. Again after 

monitoring the QoS output for the query, if the optimizer realizes the 

degradation in the query output quality, then it might change the priorities of 

some operators in the system such that the desired QoS for the query is obtained. 
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4.3.5 Operator Types:  

Basically there are two types of operators depending how they treat the 

incoming tuples. 

• Non-Window Based Operators:  Non-Window Based Operators can process one 

tuple at a time. It takes a tuple from the input buffers, processes it and then 

generates the output into the output buffers. These operators do not have to wait 

for a set of tuples to begin their execution. These are naturally non-blocking in 

nature. SELECT and PROJECT are examples of non-windowed operators. 

• Window Based Operators: Some operators like JOIN and AGGREGATE 

requires a set of tuples in order to begin their execution. In traditional DBMS’s 

these operators are blocking in nature. They have to wait for the entire set of 

data to be available before delivering the output to the user. However, the nature 

of streaming application and the requirement of streaming operators demands 

the operator to be non-blocking. Hence, a solution generally accepted for 

streaming data operators is to work on windows. A computational window 

defines a set of tuples based either on timestamp or the number of tuples on 

which the operator needs to execute. This way the operator does not block for 

the entire set of tuples before it starts to deliver the output. Output is completely 

delivered at the end of each window. 

4.3.6 Query Windows: 

Windows are classified as physical or logical based [14] on how windows are 

defined. 
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• Physical Window: Certain applications demand processing of tuples based on 

the actual life time, in terms of hours, minutes, days, months, etc. Hence the 

windows are distinguished based on physical time stamp. For example, Give me 

the daily count of the number of students entering for the month of January 

2003. Here the window length is of one day and the query’s lifetime spans over 

a period of one month. 

• Logical Window: Windows can also be classified in terms on number of tuples. 

Each window has a certain (user-defined) number of tuples on which the user 

needs the query output. For example, For every 1000 transactions generated 

from MavHome, find out the count for the transactions coming from Room A. 

Here the window is of 1000 tuples and the condition to be checked is for Room 

A and the output is aggregate using the count functions. This is a continuously 

running query as there is no end query condition. 

Both Physical and Logical windows can be further classified depending on how 

the window is moving to ge t the next window bounds. The classification is as follows: 

Snapshot Window: Snapshot is a single fixed window. Here the windows start and end 

points are fixed. These types of windows usually occur in one-time queries. On 

generating the output for that window, the query is removed from the system. For 

example, Count the number of people entered the lab from 9:00 am – 5:00 pm on Dec 

13 2003. 
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Figure 4.9 Snapshot Window 

 
Landmark Window: Landmark window has a fixed starting point and the end point is 

moving. If the end point moves in the forward direction, it is a forward landmark 

window.  On the other hand if the end point moves in the reverse direction, it is a 

reverse landmark window. Reverse landmark refers to historical data or data that has 

already been processed. Currently this system does not support queries that process 

historical data. Hence reverse landmark window is no currently supported. 

 
Figure 4.10 Forward and Reverse Landmark Window 

Figure 4.10 shows the forward and reverse landmark windows. The difference 

between the two can be seen from the direction in which the window is moving. For 

forward window, it refers to the current or the future tuples where as it refers to the past 

tuples in reverse landmark. An example of forward landmark query is: List the usage of 

the devices in Room A from 9:00 am – 5:00 pm on Dec 03 2003 every hour. In this 

query the initial window size is of one hour and for every hour the size of window is 
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increasing by an hour but in the forward direction. The last window is of the size 8 

hours. 

Sliding Window: Sliding window has both its ends moving in the same direction and by 

the same amount. Sliding window can be a forward sliding window or reverse sliding 

window based on the direction in which the window is moving. Again reverse sliding 

window refers to past data and forward window refers to current or future data. Sliding 

window can be further classified based on the starting point of the next window. 

Overlap Sliding Window: Here the starting point of the next window is less than the 

ending point of the current window. In this case, there are some tuples in the window 

that are overlapping in both the windows. Overlapping can be in forward or reverse 

direction as shown in figure 4.11. An example of forward sliding window query is: Give 

a count of the number of devices turned off over one hour interval between 10 am – 11 

am on Dec 15 2003 every 10 minutes. Here the window length is of one hour. The first 

window is starting at 10 am – 11 am and the next window is between 10:10 am – 11: 10 

am. Hence there is an overlap of 50 minutes between the two windows. 

 
Figure 4.11 Overlap Sliding Windows 
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Disjoint Sliding Window: Here there is no overlap of elements between the two 

adjacent windows. They are completely disjoint in nature. Starting point of the next 

window is greater than or equal to the ending point of the current window. As shown in 

the figure below, disjoint sliding windows can be forward or reverse sliding windows 

based on the direction in which the window is moving. An example for disjoint forward 

sliding window is: Display the average temperature of Room A every hour from 10pm 

to 10 am on Dec 15 2003. The first window length of one hour is between 10pm-11pm, 

next between 11-12pm and so on.  

 
Figure 4.12 Disjoint Sliding Windows. 

4.3.6.1 Window Representation: 

In order to represent stream-based queries, the representation should clearly handle all 

of the above window specifications. Normal SQL-based query language does not have 

the provision to support window-based operations. Hence an extension is needed in 

order to support window-based queries. Also, this representation should support both 

physical and logical windows. Furthermore, it should have the capability to support all 

kinds of moving window queries. 

The following four clauses are proposed for a generic window representation. 
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1. Begin Window: Begin Window defines the starting point for the first window. 

2. End Window: End Window defines the ending point for the first window. 

3. Hop Size (lower bound, upper bound): Hop Size represents the amount by which 

the window will be moving in either direction. It is the hop size that determines 

the type of query window. 

4. End Query: End Query defines the end query condition. 

  For physical window representation all of the above clauses are specified in 

terms of physical time stamp and for logical queries, these are specified in terms of 

number or tuples. For example, Display the average temperature of Room A every hour 

from 10 am to 1o pm on Dec 15 2003 is represented as  

 Begin Window = 10 am on Dec 15 2003. 

 End Window = 11 am on Dec 15 2003. 

 Hop Size = (1hr, 1hr). 

 End Query = 10 pm on Dec 15 2003. 

Or Display the count for the transaction generated for Room A for every 100 

transaction is represented as  

 Begin Window = 1st tuples 

 End Window = 100th tuple 

 Hop Size = (100,100) 

 End Query = infinity. 

We can control the different types of window movement by varying the hop 

size. Below given are the hop movements for different types of window. 
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Forward Only Window: Both the hop bound needs to be positive for this type of 

window. 

Reverse Only Window: Negative values in both the hop bound gives a reverse window. 

Landmark window: Here the lower bound is fixed and set to zero and the upper bound 

is a variable. A positive value of upper bound gives a forward only landmark query 

whereas negative va lue gives a reverse landmark window. 

Sliding Window: Here both the lower and upper bound are specified. If both the values 

are positive it is a forward only sliding window whereas negative values move the 

window in the reverse direction.  

 

4.3.7 Generic Operator: 

  Based on the requirements stated for the stream operators, it is evident that there 

are certain properties, data structures and methods common among all operators. Each 

operator is a schedulable entity. There is a lot of interaction between operators and 

various components of the stream database. Buffers, Scheduler as well as the optimizer 

need to communicate with the operators. Hence, it is necessary to present a common 

view for all operators rather then viewing them as SELECT, PROJECT and JOIN. If all 

other components view all operators as single Object Operator then the process of 

implementing this communication can be simplified. Moreover, new operators can be 

added in the future without changing other modules. All these requirements lead to 

combining the common attributes and functionality of operators into a common 
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(generic) operator. Actual operators such as SELECT, PROJECT and JOIN are 

inherited from the common operator.  

The following structures/methods are included in the common operators. 

• Priority. 

• State. 

• All operators can output tuples to one or more output queues. Hence the output 

queues can be made a part of the generic operator. Input queues cannot be 

included in the generic operator as there is only one case that includes two input 

queues. Only the join operator has two input queues and so it will be more 

logical to include the input queues in the actual operators. 

Generic operator should include methods that are useful to control the execution 

of the operator like start, stop, suspend, resume etc. 

 

4.3.8 SELECT: 

4.3.8.1 Requirements: 

  SELECT operator is similar to the FILTER (SELECT) operator of DBMS. The 

primary function of the select operator is to filter a given input stream based on the 

specified condition. It has one input queue, and can have more than one output queue. 

Before starting the operation, it assumes that the condition to be evaluated has been set 

by the query Instantiator based on user input. SELECT takes in a tuple from the input 

queue and checks whether it satisfies the given condition. If the condition evaluation is 

successful then the tuple is output to all the output queues associated with SELECT. If 
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condition evaluation fails then the tuple is discarded and the next tuple in the queue is 

processed. SELECT checks for the endQuery condition and stops its execution if the 

current tuple has passed the end query condition. 

4.3.8.2 Design: 

One of the major components of SELECT evaluation is the condition evaluator. 

The major issues while designing SELECT was whether to build a condition evaluator 

or to use some of the existing evaluators in the market. A lot of effort is required to 

build a flawless and efficient condition evaluator that can take in any valid condition 

and return whether the output is true or false. Hence a decision was made to use the 

existing condition evaluators available for free. FESI (Free Ecma Script Evaluator 

which is a powerful utility that can perform many functions in Java, and condition 

evaluation is one of them), a java-based tool that provides the functionality of condition 

evaluation was selected for the purpose of condition evaluation.  

  FESI’s condition evaluator works in the following way. 

• It takes in a condition that needs to be evaluated. 

• It also requires the operand values in order to evaluate the condition on the 

tuples. 

• It returns true or false on evaluating the condition. 

  Another design issue was to bring the condition to a form that can be evaluated 

by the condition evaluator. One of the initial requirements was to make sure that the 

condition string was not processed each time a tuple is evaluated. To achieve this 

operands are separated out from the condition string and their position is obtained from 
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the schema. Using the operand position information, the mapping of tuple value and its 

operands was done. Eventually, the condition evaluation is made simple and efficient. 

  A common design issue with all operators was to provide a support for flow-

based scheduling. If no tuples are available from the input buffer, the operation of the 

operator needs to be suspended. One way to support this was to ask the buffer to 

suspend an operator if no tuples are available in the buffer. However, this would have 

put unnecessary burden on the buffer and the operation would also have been time 

consuming, as there needs to be communication between buffers and the operator. To 

avoid this, the logic was incorporated in the operator itself. If no tuples were available 

to be read from the input buffer, the operator would suspend itself. Before suspending 

itself, it would inform the input buffer of its suspension. This way buffer knows that the 

operator got suspended, as there were not tuples available for the operator to process. In 

turn, buffer has logic to resume all suspended operators as soon as a new tuple is 

enqueued into the buffer. In this way flow based scheduling is supported, which 

improves the overall efficiency of the system. 
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Figure 4.13 SELECT Algorithm 

 
 

Algorithm for SELECT evaluation is given above. As mentioned in the 

requirement, it obtains a tuple from the input buffer and set the operand values to the 

condition evaluator and evaluates the condition. If the condition evaluates to true, the 

tuple is inserted into the output queue. 

If no tuples are available in the input buffer, SELECT informs the input buffer of this 

condition and suspends itself. 
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4.3.9 PROJECT: 

4.3.9.1 Requirements: 

Functionally, PROJECT is analogous to the PROJECT operation of a traditional 

DBMS.  It takes in a tuple and discards the specified fields in the form a new tuple. It 

has one input queue and may have one or more output queues. One of the inputs to 

project is the position of list of attributes that needs to be projected out from the tuple.  

4.3.9.2 Design: 

Project operator requires a list of field operands that needs to be projected. The 

actual operation is done using the position of operands in the tuples. User submits a list 

of operands that needs to be projected. This list can be converted to a position list by the 

query Instantiator or in the Project itself. Either of the two would have given correct 

output without affecting the performance. In our design it was decided to convert the 

operand list to position list at query Instantiator and pass only the position list to the 

project.  

Support for flow based scheduling is same as discussed in the SELECT operator. 

An important property of the PROJECT operator is that it is a contracting 

operator. This means that the input buffer schema will be contracted to form a new 

schema. Hence, the output of PROJECT produces a new schema. This schema 

information is input from the DSMS client during query instantiation. 

Algorithm for PROJECT is given below. Here the assumption is that the 

position list is already set before starting the project operation. If the tuples are available 

in the buffer, it pulls up one tuple and creates a new tuple by outputting the fields 
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specified in the position list. This new tuple is output to all the output queues associated 

with PROJECT. If no tuples are available, then PROJECT suspends itself but before 

that it informs the input buffer of its suspension. On receiving a tuple in the buffer, the 

buffer will resume the PROJECT operator. 

The algorithm for Project is as follows: 

 
Figure 4.14 PROJECT Algorithm 

 
4.3.10 Hash Join 

The processing requirement of a join operator is entirely different from non-

windowed operator discussed so far that works on single tuple at a time. Join, on the 

other hand, is considered a blocking operator that operates on multiple tuples on each of 

its input queues. An operator is said to be blocking if it cannot produce its first output 
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until it has the entire input set is available. In a conventional DBMS where inputs are 

clearly defined in terms of finite relations, computation does not involve much 

complexity. However, streams being indefinite and potentially unbounded in size, 

forces re-examination and modification of the design of traditional Join algorithm to 

operate on infinite streams. The design requirements explained below would justify the 

additional functionality, which needs to be supported for providing real time response to 

streamed queries.  

4.3.10.1 Design Requirements: 

• Non-blocking operation 

• Incremental and Continuous output 

• Timestamp Ordering 

• Duplicate Avoidance 

Non-blocking operation: Data streams are not stored on disk or memory rather 

they arrive online asynchronously. This nature of incoming stream makes the 

processing more difficult as the input bound is not clearly defined. In order to precisely 

define input boundaries for blocking operators, the concept of window is introduced. A 

“Join” operator considers all tuples falling in the window within its input bound. Once 

all tuples within the current window are processed, windows are moved to consider next 

set of continuous data. Also, there is a window class that provides functionality for 

creating and manipulating windows. Furthermore, it can provide window definition to 

any number of windowed operators. Moreover, simultaneous and/or independent 

movement of windows for each operator can also be controlled.   
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 Incremental and Continuous output: In the conventional Join operator, all elements 

from one relation are hashed prior to first tuple processing and the elements from other 

relations are then used to probe the already hashed tuples. Once all the computations are 

made, the entire result is produced at the output. This algorithm fails in processing 

continuous streams since it is blocking and does not produce continuous and 

incremental output. The stream operator in contrast produces output at regular intervals, 

not necessarily at the end of window. This incremental output increases efficiency of 

the system as the higher operators in a query tree whether windowed or non-windowed 

are not blocked and the end users are also kept updated of the results.  

Timestamp ordering:  A window-based operation requires its input as well as output to 

be timestamp ordered. Timestamp ordering allows this operator to detect window 

termination. “Join” reads every tuple and compares its timestamp (‘x’) with the 

timestamp associated with current end window (‘y’). If ‘x’ < =‘y’, the tuple is processed 

since it falls within the current window. If ‘y’ > ‘x’, it detects window termination since 

all tuples beyond the current tuples are guaranteed to fall outside the current window as 

they are assumed to be in the increasing order of timestamp.  Output tuples must also be 

timestamp ordered since higher operators in a query tree can be blocking operators. It is 

the responsibility of the operator to produce results not only in timestamp ordered but 

also incrementally and continuously to avoid blocking of higher operators. 

Duplicate avoidance: The “Join” operator has two input queues that are populated either 

by data streams or its children in a query tree. It has two hash tables, one corresponding 

to each of its input queue. Tuples are consumed for processing as soon as they enter the 
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input. These contrasts with the design of conventional DBMS join operators that do not 

start computation until entire input set is available. The join operation includes the task 

of reading one tuple at a time from its input queue, hashing it in its corresponding hash 

table based on the value of the joining attribute and probing the other hash table to find 

the tuples that fall in the desired window bound and satisfying the join condition. If two 

tuples named ‘x’ and ‘y’ are considered for processing at the same time then the output 

would be two ‘xy’ if they satisfy the joining criteria. In order to avoid duplicates in the 

result, every tuple is processed atomically. An atomic action ensures that the next tuple 

is not considered until current tuple is completely processed.  

4.3.10.2 Design Alternatives: 

  Two threads instead of single thread:  Initially this operator was designed using 

two threads that had inherent problem of duplicates, as the two threads were running 

independently and asynchronously. Left thread was consuming tuples from its left 

external buffers, hashing the tuple in its corresponding left hash table and probing the 

same tuple against the tuples present in the right hash table. The matched tuples were 

joined and produced at the output. The operators maintain these hash tables internally. 

Right thread works analogously on its corresponding external buffer and internal hash 

table simultaneously. The simultaneous processing of tuples increases parallelism and 

response time but does not guarantee correctness, as some of tuples in the output can be 

duplicated. Duplicates are produced when both the threads read tuples at the same time 

from their corresponding external buffer that satisfy join condition. Then the join 

operation would be carried out twice, once by the left thread followed by the right 
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thread generating duplicates. To overcome this problem, two threads were synchronized 

to allow atomic processing of tuples. Synchronization completely defeated the purpose 

of parallelism, as only one thread could be active at a time. Since correctness of the 

algorithm is more important than efficiency, this algorithm is implemented using a 

single thread. 

Avoid processing of tuples in timestamp ordering: Tuples are processed in order 

of their associated timestamp. This is essential to produce output in timestamp order. 

Assume two tuples ‘x’ and ‘y’ read from left and right external buffer respectively. If 

‘x’ < ‘y’, ‘x’ will be processed first else ‘y’ is processed. When the tuple being 

processed is joined with tuples in the internal hash table, resultant tuple would have 

timestamp m = max (x, y).  This algorithm ensures that all output is automatically 

sorted on ‘m’. If this timestamp ordering is not respected while reading from external 

buffers, tuples produced at the output may not be always sorted on timestamp  and the 

higher operators would produce incorrect results. The only alternative to produce the 

correct result is to sort the output before delivering them to higher operators that comes 

at the expense of running a sort algorithm. A major drawback of this approach is 

blocking operation, as higher operators cannot see their first input until all outputs are 

produced and sorted by previous windowed operator. Hence this alternative was also 

ruled out due the problems mentioned above. 
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4.3.10.3 Variations in Hash Join: 

 
Figure 4.15 Sliding Window Overlap 

 
   There are two variations in Hash Join based on whether common computations 

are exploited in overlapping windows. In the case of a disjoint window, there is no 

overlap region and hence all windows are computed independently. In overlap 

windows, as seen in   figure 4.15, the computation between WIS and W2E are common 

that can be re-used in the computation of the next window. Based on this concept, hash 

join are classified as: 

• Hash Join with temporary storage 

• Hash Join without temporary storage 

 
Hash Join with temporary storage:  

 In this variation, common computation between two successive windows is 

exploited. There is a temporary storage involved for storing the computation of current 

window that is used for the computation of next window and hence the name “Hash 
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Join with temporary storage”. The process of reusing result produced by the current 

window in the computation of next window is explained below. 

During the processing of the first window, tuples falling in the overlapped 

region are identified.  In figure 4.15, common computation involves processing tuples 

between W2S and W1E. Only those tuples that fall between W2S and W1E and satisfy 

the join condition are produced not only at the output but also replicated in a temporary 

storage. This process continues until the current window is completely processed. Prior 

to processing of next window, the results of temporary storage are placed in the output 

queue corresponding to the second window and hence the name “Join with temporary 

storage”. This avoids re-computation of tuples in overlapped region, which can be 

substantial if window size and overlap are large.   

 
Hash Join without temporary storage:  This variation does not preserve common 

computation as each window is computed independently. There is no temporary storage 

involved since the results of current window are not materialized for the next window. 

The performance difference in these two variations increases as the window size and 

overlap increases. This variation can be used when memory is critical since no 

temporary storage is involved. However, in stream processing where response time is 

critical, “Join with temporary storage” can surpass this variation. 

 
4.4 Query Instantiator 

Query Instantiator takes in a query as input from the user and brings it into an 

executable form. It is also responsible for starting the process of query execution. 
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4.4.1 Requirements of query Instantiator: 

• Design should clearly specify how query information should be submitted to 

stream database.  

• It should specify what all data should be accompanied as part of user input for 

the query. 

• It should indicate how would the server respond to the client when a request for 

query instantiation is submitted? 

• It should support flow-based scheduling. 

• It should instantiate operators from the information provided as part of query 

input. 

• Appropriate configuration parameters must be used while instantiating operators 

and buffers. 

• Identify operators that require stream as their input and associate appropriate 

stream buffers for the operators. 

• Create new buffers to store the output of operators. 

• Create a passage for flow of tuples from stream buffers to the root operator and 

then to the application/user by connecting proper buffers between operators. 

 

4.4.2 Design of Query Instantiator:  

This section describes various design issues, challenges and options considered 

while designing an Instantiator. 
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Query User Input: Query input defines the form in which query related data is submitted 

to the server for instantiation. There are two ways of submitting the query data. 

String based Input: One option is to define an SQL like interface to represent a query. 

For example, Display the average temperature of Room A every hour from 10 am to 10 

pm on Dec 15 2003. To represent this query the corresponding SQL like interface 

would be 

SELECT avg (temp) FROM roomStream  

WHERE BEGIN WINDOW = 10 am on Dec 15 2003 

     END WINDOW = 11 am on Dec 15 2003 

     HOP SIZE = (1hr, 1hr) 

      END QUERY = 10 pm on Dec 15 2003  

Validation logic needs to be implemented at the client side, which takes in the 

query and validates the syntax of the query. The validation logic also needs to check 

whether it refers to a correct stream or not and the fields specified in the query are as 

per the description of the schema of the stream specified in the query. To validate this 

the entire string had to be parsed once at the client side. Once it is submitted to the 

server, it needs to be again parsed and an initial plan needs to be created. From the plan 

the operators needs to be instantiated. This holds good for other commands such as 

create schema, view schema etc. 

Object based input: Here the user is presented with a GUI based interface where in the 

user is allowed to submit an initial plan of the query. GUI provides a set of schemas that 

are already defined on the server and are being fed with data. User selects the schemas 
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on which the query will be based. Then the interface provides a list of operators from 

which the user can select. Once the operator is selected, user is asked for a specific list 

of parameters for that object. For example, for the SELECT operator, user will be asked 

to enter the filter condition on the stream and for join user needs to specify the joining 

attribute and the join condition. For each operator user specifies the input source from 

which the operator would read the data. The input source could be a stream or it could 

be output from other operators. If a new schema is generated at the output of an 

operator then the new schema is sent to the server for creation. A new schema is created 

for operators such as join or project where the base input schema is either expanded in 

the case of join or contracted in the case of project. Thus a new schema definition is 

created, which higher operators in the tree can use. This way user specifies the entire 

query tree. The client interface then creates a query tree consisting of operator data 

nodes and is sent to the server for instantiation. For example, Display the common 

device usage between rooms A and B in the MavHome lab. The corresponding query 

tree for this query would be 
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Figure 4.16 Query Tree of Operator Data Node 

  

The query tree shown in figure 4.16 is a tree of operator data node. This tree is 

built by the client interface based on the input provided by the user. Now the question is 

how to represent the operator data node. 

4.4.2.1 Operator Data Node: 

The following are the requirements of the Operator Data Node. 

• There should be one representation that can hold sufficient data to instantiate 

any of the operators supported by the system. 

• It should clearly specify the type of operator it is representing. 

• It should specify the parameter for the operator that it represents. These 

parameters help the query Instantiator to set the properties of the operators. 

• It should specify the output stream name. This represents the output tuple that 

are generated from the operators. It is especially useful for operators that 
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generate an intermediate schema at their output. Also it informs the Instantiator 

the input source and schema for the next operator in the tree. 

• It should specify the input stream on which the operator will process. 

• It should specify the window parameters required for window-based operators 

like Join. 

Based on the above requirements, a generic representation of Operator Data Node 

was designed. The data node had the following elements. 

• Operator Type: This specifies the type of operator like SELECT, PROJECT, 

JOIN etc. 

• Stream One: A schema represents the buffer from which tuples are fed to the 

operator. Stream One specifies this schema. For operators like SELECT, 

PROJECT and AGGREGATE only one input stream is required. 

• Stream Two: For operators like JOIN, which executes on two input buffers, 

Stream Two provides the schema definition on the other buffer. This parameter 

is not defined for operators like SELECT, PROJECT and AGGREGATE. 

• Input Parameters: This specifies the input parameters for the operator in use. 

The value of input parameters varies from operator to operator. For SELECT it 

specifies the condition on which the filter operator is carried out on the input 

buffer. For JOIN it specifies the joining attribute on the two streams. For 

PROJECT it specifies the list of fields that needs to be output as part of project 

operation. For example, consider the query Display the common device usage 
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between rooms A and B in MavHome lab. The input parameter for the operators 

in this query would be: 

SELECT1: ROOMID = A 

SELECT2: ROOMID = B 

JOIN = DEVICEID, DEVICEID 

PROJECT = DEVICEID, ROOMID, TRANSDATETIME. 

• Window Parameters: This parameter becomes useful for operators that are 

window based. It specifies all the clauses required to represent a window. The 

following are the window parameters that are included. 

• Begin Window: Specifies the start of the window. 

• End Window: Specifies the end of first window. 

• Hop Size: Specifies the bound that needs to be added to begin and end window 

to obtain the next window. 

• End query: Specifies the time at which the query will be terminated. 

Figure 4.17 shows an example representation for the Operator Node. This node 

represents the SELECT operator in the query specified in Figure 4.16. 

 
Figure 4.17 Example of an Operator Data Node 
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4.4.3 Instantiator Support for Flow Based Scheduling: 

In flow-based scheduling operators are scheduled on the availability of data. If 

data is available, the operator is scheduled else its operation is suspended. In order to 

support flow based scheduling, Instantiator should make sure that the operators that are 

likely to receive data first are instantiated first. If an operator is receiving data from 

another operator then it should  be instantiated after the tuple-producing operator is 

instantiated. To meet the requirements of flow-based scheduling, operators are 

instantiated in a bottom up fashion. In this scheme the leaf operators that are reading 

data from the stream are instantiated first. The operators in the tree till the root operator 

follow these. Root operator is the last one to be instantiated as it is last operator in the 

chain to receive the tuples inputted from the base stream. 

Once the operators are instantiated, based on the scheduling scheme used, one of 

the following actions is taken. 

For a flow based scheduling scheme, operators are started as soon as they are 

instantiated. 

For Other scheduling schemes, operators are added to the ready queue of the 

scheduler. Later the operators are scheduled based on the scheduling scheme. Still the 

operators are added to the queue based on the sequence in which the data is flowing. 

4.4.4 Base Stream and Buffer List: 

Each stream feeds its tuples into a buffer. There can be more than one stream in 

the system each feeding tuple into a different buffer. There is a need to maintain 

information about the association between the streams and its buffers. This is done with 
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the help of StreamBuffer list. This list has two values, one is the stream name and the 

other is the associate buffer. 

 
Figure 4.18 Stream Buffer List 

 

Whenever a new stream is registered with the system, a buffer is associated with 

the stream. This information is stored into the Stream Buffer List, which is useful when 

associating stream buffers with operators. 

4.4.5 Operator Instantiation and buffer mapping: 

In order to instantiate operators, the query tree is traversed in a bottom up 

fashion. It picks up an operator data node, identifies the operator type and based on its 

type instantiates the operator. There are three aspects to operator instantiation. 

Creating the Operator Instance: Each operator data node has a field called 

OperatorType. This specifies the type of operator that the operator data node represents. 

Based on the operator data type, appropriate operator is instantiated. For example, if 

Operator Type is SELECT then an instance of SELECT operator is created. 

Associating Input Buffers: With this operation appropriate input buffers are associated 

with instantiated operators. Based on the position of the operator in the tree one of the 

two types of operators can be associated in the tree. 
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Stream Buffers: Stream buffers are associated with leaf operators in the query tree. 

StreamOne and StreamTwo data of operator data nodes are used for associating 

appropriate stream buffers to the operator. Instantiator reads these values from the data 

node and read the corresponding buffer information from the StreamBufferList. The 

obtained buffer is then associated as an input buffer to the operator. 

Operator Output Buffer: For non-leaf operators the output buffer of previous operator in 

the list becomes the input buffer of the current operator in the tree.  

Creating New Output Buffe rs: For each operator a new output buffer is created and is 

associated with that operator in the tree. Instantiator also stores the information of the 

newly created output buffer in some temporary storage so that when the next operator in 

the tree is instantiated, this operators acts as an input buffer to the newly instantiated 

operator. 

Input Parameters: Each operator wants the input parameters in a specified format. Some 

times the input supplied as part of operator data is good enough to pass it to the 

operator, but some of the operators may require modifying the input parameters to bring 

in to a form acceptable by the operator. Here is how the input parameters are supplied to 

each of the following operators. 

SELECT: The condition string read from the operator data node for SELECT operator 

is passed as it is to the instantiated SELECT operator. 

JOIN: Operator data node supplies the joining attribute as an input parameter. Since the 

join is a binary join, only two attributes are supplied one for left input stream and other 

for right input stream. These values are comma separated. But this form is not 
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acceptable by the JOIN operator. What join operator requires is the position of the 

joining attribute in schema for each of the streams. Hence it the mapping of attribute 

name to its position in the schema and supplying it as an input become the 

responsibility of the Instantiator. Instantiator does a look up in the schema using the 

attribute name and finds out its position and sets the appropriate position in the Join 

Operator. 

PROJECT: For project operator, operator data node supplies the list of attribute names 

as part of input parameters. But project operator accepts a list of position of attributes in 

the tuples that needs to be projected. Hence the Instantiator finds out the position of 

each of the given attribute name using the schema corresponding to the StreamOne in 

data node. It then provides the position list as part of the input to the project operator. 

Window Information: SELECT and PROJECT are interested in knowing the END 

QUERY information of the Window. JOIN is a window-based operator and hence it 

requires knowing all of the window information. Instantiator sets the required 

information for each of the operators. 
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Figure 4.19 Process of Instantiation 

 

Figure 4.19 shows the process of instantiation. Instantiator takes in a plan object, 

which is a tree of Operator Data Node. It traverses the tree in a bottom up fashion, 

instantiates the each operators, based on the position of the operator in the tree, 

associates appropriate buffers to the operators and schedules them for execution. As 

shown in figure 4.19, a query tree of operator node is converted into an instantiated 

query tree of actual operators connected through buffers. 

 

4.5 DSMS SERVER DESIGN 

4.5.1 Communication Model 

DSMS is implemented as a client-server architecture. Communication between 

the client and the server needs to be command driven and protocol oriented. A 

predefined set of commands tha t the client can invoke is available. Based on the users 
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requirements, client sends out a command to the server to execute a particular 

operation. Each command has a well-defined protocol that defines the communication 

between the client and the server. The protocol clearly specifies what data needs to be 

sent to the server, what operations are going to be carried out at the server and what the 

client should expect back from the server. Based on these requirements of 

communication, a socket-based server is proposed. The other choice available and 

considered was of Remote Method Invocation based server. This choice was ruled out, 

as the idea of distributed server is not considered. This system is analogous to any other 

commercial DBMS available in the market wherein the protocol for client server 

communication is well defined and any client can be used provided it follows the said 

protocol.  

Server implements a set of commands, which provides primitive control over 

user-generated schema and query. More commands can be added as required.  To 

invoke each of the above given commands, user first sends out a command identifier. 

For simplicity an integer command identifier is chosen. This helps the server to 

distinguish the command. After the command, comes the protocol which defines the 

input and output operations between the client and the server.  Following is the 

description of the operations of the command supported and its protocol. 

New Query: Using this command, user is able to submit a new query to the system. 

User submits the query in terms of an initial plan. Plan is nothing but a query tree 

consisting of operator data nodes. Each operator data node is a generic object, which 

encompasses the necessary information to instantiate the corresponding operator. This 
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plan is submitted to the Instantiator which instantiates each operator in the plan and 

connects them using buffers. Once the given query is instantiated, a query handle is 

given to the user. Server also updates the query data structures, which provides a 

repository for storing statistical information for each query that has been instantiated 

during the life span of the server. Using this handle, user can further control the query 

(e.g. stopping or modifying the query). 

Stop Query: User should be able to stop a long running query as desired. DSMS expects 

the client to send the handle (or ID) of the query that needs to be stopped. From the 

Query Data Structure, the server picks up the operators running for that query and stops 

each of the running operators. System, then updates the state of the query in the query 

data structure to be terminated.  

New Stream: With this command user is able to create a new schema with the server.  

Client takes the schema input from the user and converts it into a form given in the 

schema definition. This is what is sent as an input for the command. Server adds this 

schema to the DSMS schema table. It acknowledges to the client whether the given 

schema was successfully added or not. Proper error message is communicated to the 

user if the schema was not added successfully for e.g. client sends a schema whose 

name already exists in the system. For this case, server will return back to the client 

informing about the duplicate schema. 

Get All Streams: This command enables the user to pull the entire schema information 

from the server. Upon receiving this command, server sends the entire schema table (as 

described in the Schema definition) to the user. 
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Get a Stream: If user wants details about a particular schema, this command can be 

used. First, user sends the name of the schema whose information is required. Later, 

server follows by sending the schema information as defined in the Schema definition 

to the user. 

4.5.2 DSMS Client: 

DSMS Client is responsible for taking request from user and converting them 

into a form required by the server. Client should be fully aware of the commands being 

supported and the protocol that needs to follow for those commands. Client 

communicates with the server over the agreed socket number where the serve r is 

listening. Based on the user request it sends the command identifier.  For example, for a 

new query it would send an identifier “1” and then would covert the users request in to 

plan tree of operator data node and then sends the plan object to the Server and waits for 

a query handle to be returned. Client can be one of the following types. 

• GUI Based Client: A GUI based client can be constructed in the language in 

which DSMS is built.  For example, for a Java based DSMS the client could be 

built using Swing or AWT. The GUI should allow some of the basic operations 

user wants to perform like running a query, stopping a query, creating a schema, 

deleting a schema etc. 

• Non GUI Based Client: This type of client can be used for testing purpose where 

there is no GUI for the user. Hence the commands have to be hard coded in the 

program or can be read from an external storage as a file. 
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• Web Based Client: Here a web-based interface is provided to the user. Actual 

client side functionality resides at the web server. For this DSMS a web based 

client is proposed. Worldwide accessibility is the primary advantage of this 

method.  

4.5.3 Server Functionality 

Server as a whole is responsible for invoking and maintaining various 

components shown in the architecture of DSMS. These include the Scheduler, 

Operators, Buffer, Plan Generator and Run Time Optimizer. For effective operations of 

DSMS as a whole, server implements the following functionality. 

• Server maintains the schema for DSMS.  Schema manipulation (add, modify 

and deletion of schema) is done based on users request.  

• Associates buffers for each schema where the data of each schema will be 

streamed. It also provides a smooth reading of each stream into their appropriate 

buffer in a separate thread. 

• Provides a command-based interface where in the client can invoke command 

based on users request. 

• Invokes various components such as scheduler, buffer, run-time optimizer, etc 

and initializes different parameters of each components which are necessary for 

their normal operation. 

• Instantiates a query plan. 

  Components of server (Scheduler, Buffer, Operators, etc) need to be initialized 

based on the user input or configuration parameters set in the Configuration file. 
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Initially, server reads all the configuration parameters from the DSMS Server 

Configuration file and keeps them in memory. These parameters are then used 

throughout the life span of server and are also used by various components like 

Scheduler, Buffer, and Operators etc.  

  Scheduler is invoked as a separate thread. One of the important components of 

the scheduler is the ready queue, which is a list of operators that are ready and waiting 

to be scheduled. As part of new query instantiation, server initially populates the ready 

queue for scheduler. Based on the policy specified in the Configuration parameter, 

appropriate scheduling policy is chosen for operator scheduling. This is useful during 

experimentation early on. Later this can be replaced by some logic which will help us to 

select the scheduling policy depend ing on the type of queries, load of the system, 

system configuration etc.  

  Buffers can be bounded or unbounded and the size of buffers can be read from 

the configuration parameters. Later this can be replaced by a logic, which decides these 

parameters for buffers based on the query, its priority, current memory available and so 

on.  

  Run Time Optimizer can be implemented as a separate thread, which constantly 

monitors the QoS of the query and changes the overall plan to satisfy as many users as 

possible.  

  Plan generator can be a separate entity, which provides methods that take in a 

plan and provides set of plans that can be used in place of the original plan without 

changing the overall output of the system. Plan Generator can be used to initially 
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produce an optimized plan or can be used by Run Time Optimizer to improved the 

overall quality of the system.   
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Chapter 5  

IMPLEMENTATION 

5.1 Schema Implementation 

As explained in the design, the following four components needs to be 

implemented: 

• Schema Information List. 

• Attribute Name Structure. 

• Attribute Position Structure. 

• Attribute Information. 

The core information regarding a schema is stored in the Attribute Information 

structure. This structure needs to be a dynamically growing structure as there could be 

more information stored in the future. Hence, Attribute Information is implemented as a 

Vector as Vectors do not impose a limit on the number of elements they can store.  

Each schema has its own Attribute Name Structure that provides an easy access 

to the attributes of the schema based on its name. There is no limit on the number of 

attributes that can be stored in a schema. To support a quick retrieval of schema 

information based on attribute name, this data structure is implemented as Hashtable in 

Java. The key of the Hashtable is the attribute name and the value is the reference to the 

corresponding Attribute Information Vector. This way a quickly accessible and 

dynamically expandable Attribute Name Structure is implemented.
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The requirements of Attribute Position Structure are similar to that of Attribute Name 

Structure.  The only difference is that the attribute information needs to be accessed 

based on attribute position. Hence, Attribute Position Structure is also implemented as a 

Java Hashtable. Here the key is the position number and the value is the reference to the 

Attribute Information Vector. 

Schema Information List needs to store all information regarding a DSMS 

schema. Initially only Attribute Name Structure and Attribute Position Structure are 

included to provide easy access to schema attributes. But in the future additional 

elements can be stored. To support this requirement, Schema Information is stored in a 

Vector that has no limit on the number of elements it can store. Here the first element 

stored is the reference to Attribute Name Hashtable and the second element stored is the 

reference to Attribute Position Hashtable. Elements from number three onwards can be 

added in the future. 

There are no restrictions on the number of Schema that can be supported by the 

system. Hence to provide a quick and easy access to schema information, Schema 

Information List is implemented as a Java Hashtable with the key as Schema name and 

the value as the Schema information Vector. In order to access information regarding an 

attribute in the schema, we need to provide the Schema name and the attribute name or 

its position. Using the schema name, we can hash into the Schema List and get the 

Attribute Name or Position Structure and depending on the value of attribute name or 

position, we can access the attribute information associated with it. 
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Figure 5.1 Schema Implementation 

 

 

5.2 Buffer Implementation 

5.2.1 Implementation of Main Memory Buffer: 

  Buffers are used for storing tuples of data streams. The total number of attributes 

and their types are user defined and hence it is not predictable. This dynamic nature of 

tuples in the streams can be represented with a data structure that can store any number 

attributes of different data type. These requirements can be easily satisfied using a 

Vector data structure. 

  Buffer is a queue of stream tuples. Here tuples flow in and out in a First In First 

Out (FIFO) manner. Buffers can be unlimited in size and should be able to easily 

provide the Enqueue and Dequeue operations of a queue. Hence Buffer is implemented 
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as a separate class called Buffer. This class provides all the buffer management and 

storage functionalities required to implement a stream buffer.   

  Buffer stores the tuples in Vector data structure, which is unlimited in size. For 

limited main memory buffers, the limit is enforced in the enqueue operations, which is 

explained further in the literature. 

5.2.2 Implementation of Buffer Log Files 

  In addition to the cost of opening and closing a file, considerable overhead is 

incurred when reading or writing to a file. In addition, sequential access (typically used) 

is not appropriate as we are using the log files to bring tuples into the buffer. Concept of 

secondary storage buffer is different from the log files used in case of DBMS recovery. 

Here, the main emphasis is to minimize the file IO in writing to and reading from logs. 

We use an indexing mechanism for reading and writing into a log file. Java 

Serialization is used to persist the data values. The log files are written in append mode. 

All tuples that fall beyond the limit of main memory buffers are logged into the 

secondary storage file. 

5.2.2.1 Basics of Java Object Serialization. 

  Java object serialization provides the ability to write or read java objects to and 

from a byte stream. A mechanism is provided through which Java objects and 

primitives can be encoded into a byte stream suitable for streaming to a network or to a 

file-system. The Java Serialization API provides a set of functions for developers to 

handle object serialization. The API is not quite large and is easy to understand and use. 
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A java object needs to be serialized before it can be persisted. Object is marked 

serializable by implement ing the java.io.Serializable interface or by inheriting that 

implementation from its object hierarchy. Serializable interface has no methods, so the 

object itself need not implement any methods. Using this interface an indication is given 

to the Java virtual machine to use default serialization mechanism to serialize this 

object. ObjectInputStream and ObjectOutputStream are used for serialization and de-

serialization respectively. The writeObject method of ObjectOutputStream class is 

responsible for saving the state of the object. On the other hand, the ObjectInputStream 

class provides the readObject method that is responsible for restoring the object from 

the serialized byte stream. 

  The example that follows shows the process of writing an object of class Point 

into a file and then reading the same object using object serialization. WritePoint class 

serializes the Point object to a file. ObjectOutputStream wraps around the 

FileOutputStream and writes the Point object to a file called Points.sav. It formats the 

object as a stream of bytes and saves it in the Point.sav file. On the contrary ReadPoint 

class de-serializes the serialized Point object. It wraps an ObjectInputStream around 

FileInputStream and then reads the byte stream from Point.sav to reconstruct the Point 

object from it. The code sample is shown in Figure  
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Figure 5.2 Example Code for Object Serialization. 

Figure 5.2 shows a very concise and easy way to implement serialization. The 

same code can be used to persist a complex object as the serialization mechanism works 

by transitive reachability. Reachability means that all the objects reachable from this 

object will also be serialized. If the object passed to the writeObject method contains 

references to other objects, the passed object and the other objects reachable from it will 

also be serialized. Java Object Serialization handles cyclic graphs. Each object visited is 

marked. If a cycle exists and an object is visited again, the mechanism knows that this 
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object has already been serialized. Therefore, it only puts enough information into the 

serialized form so that the cycle can be rebuilt when the data is de-serialized. 

5.2.3 Reading and Writing into Log Files [13]: 

  In order to serialize an object into a file in append mode, the application needs to 

skip to the end of the file and then append the newly serialized object byte stream using 

the writeObject () method of ObjectOutputStream. But the process of skipping through 

serialized bytes in a file is not provided in ObjectOutputStream or in FileOutputStream. 

Similar is the case when reading an object back from the file. The readObject () method 

of ObjectInputStream class will throw a StreamCorruptedException because 

ObjectInputStream cannot demarcate the byte streams of objects of different type. It is 

not able to distinguish between the end of one object and the start of another. 

  To overcome these problems, a mechanism was devised in to handle the 

serialized byte stream. Here the serialization and de-serialization is handled at byte level 

and not at object level. This scheme calculates the size of the serialized object and using 

this information the application can easily distinguish between the objects. While 

serializing an object, the application should make note of the offset in the file and the 

size of object that is being written. This information should be used in the process of de-

serialization to retrieve the correct object. Here the application will skip the file pointer 

to the starting point of the object and will read the number of bytes specified for the 

object. 

  Objects ByteArrayInputStream and ByteArrayOutputStream used over 

RandomAccessFile provides a feasible solution to the above-mentioned problem. A 
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RandomAccessFile is a considered as an array of bytes. It provides a File Pointer that 

can be used to index into the array. A log file can be read from or written into at the 

same file. Hence it is opened in a read-write mode. In write mode bytes are appended at 

the end of file and the number of bytes that are written to it advances the file pointer. In 

order to read an object from a file, seek method is used to set the FilePointer to 

appropriate location and then appropriate number of bytes are read for the object. 

In order to find the size of serialized byte stream of an object 

ByteArrayOutputStream is used. Using this class the object is written into an output 

stream in which data is written into a byte array. It provides a size () method through 

which we can find the size of the object that is written into the memory. Similarly, 

ByteArrayInputStream is used to de-serialize the byte array read from the 

RandomAccessFile. The byte array obtained is passed to the ObjectInputStream that 

gives it a shape of an object that can be read using the readObject (). 
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Figure 5.3 Reading and Writing into Log File. 

 

Figure 5.3 shows the logRead and logWrite method that are used to read and 

write tuples into the secondary storage file. LogWrite method uses the technique 

described above to serialize the object into the bytes and append it to the end of the 

given file. On the other hand, LogRead skips through the file to the appropriate position 

and read the specified number of bytes, converts it into an object and returns it to the 

application. 

Two Log Files:  

Each buffer is associated with two log files. As explained in the design chapter it 

helps in purging of tuples in secondary storage. For each file the following information 

is maintained. 
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• RandomAccessFilePointer: Using this pointer all read and write operations are 

carried out. 

• TotalFileElements: This specifies the total number of tuples that file is holding 

at that point of time. 

• TotalReadFileElements: This specifies the total number of elements that has 

been read from the log file back to the main memory buffer. 

• FileName: This specifies the name of the file as stored on the disk. Filename is 

associated with currentTimeStamp when the buffer was created. When a buffer 

is created two timestamps are recorded and are assigned to each of the two log 

files. An extension of “.log” is appended to the file name. This way we can 

create unique file name for all buffers throughout the lifetime of DSMS. 

  All this information is packaged in BufferFileData class file. Each buffer holds 

two objects of this class file viz.  bfdForFileOne and bfdForFileTwo. These objects 

represent the two-log files that the buffer is supporting. Buffer needs to read tuples from 

or write tuples into one of the two log files. In order to support this, it maintains two 

other objects of BufferFileData viz bfdForReadFile and bfdForWriteFile. The former 

represents the file from which tuples needs to be read and the later represents the file 

into which the data needs to be written. Initially when the buffer is created both of them 

points to the first file. Changing of bfdForWriteFile from file one to file two in done in 

enqueue operation and that of bfdForReadFile is done in the process to read tuple from 

secondary storage. 
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5.2.4 Swapping the two Buffer File 

 
Figure 5.4 Code for Swapping Two Buffer Log Files in Enqueue 

 

  Figure 5.4 shows the code to swap two buffer log files. Initially bfrForWriteFile 

points to the first file. If the number of tuples in the main memory buffer exceeds the 

predefined capacity of the buffer, the tuple needs to be written to the secondary buffer. 

Initially, buffer creates the first log file and initializes the index table corresponding to 

it. Later it sets the bfdWriteToFile as the first file. Henceforth all tuples entering into 

the buffer will be written to the secondary buffer till all elements from the secondary 

buffer have been completely read into the main memory buffer. To provide an easy 
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purging of tuples in secondary storage, a limit is specified on the total number of tuples 

that can be stored in a file. If the file exceeds that limit, buffer creates a second file and 

starts writing into the second log file by pointing the bfdWriteToFile to the other file. 

Now tuples are enqueued into the other file till all elements have been read from the 

first file and the second file exceeds the specified limit. This way there could be more 

number of tuples stored in the log files than its specified limit. Hence there could be an 

uneven growth in the size of the two log files.  

  To enqueue a tuple in the secondary storage, first the tuples information is stored 

in the current write index table. Using the offset that index table provides, the tuple is 

written into the bfdWriteToFile using the logWrite method. 

 

5.2.5 Reading From Secondary Storage: 

  There is a separate thread to read data from the secondary buffer log files. This 

thread makes use of bfdForReadFile object and logRead method to bring a tuple  from 

the secondary storage log file to the main memory buffer. This thread is started from the 

dequeued method. It is started only if there are tuples stored in the secondary storage 

file. This is verified by checking if the totalElements of bfdForReadFile is greater than 

zero and totalReadElements is less than the totalElements stored in the file. 

The process to read from secondary storage continues until there is space left in the 

main memory and there are unread tuples from the secondary storage. Initially 

bfdForReadFile points to bfdForFileOne. The read process reads all the tuples from first 

file and enqueues it in the main memory buffer. During the reading process if all tuples 
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are read from first file and there are unread tuples from the other log file, and there is 

some space left in the main memory buffer then bfdForReadFile needs to be swapped to 

the other file. The swap process does the following things: 

• It sets the current bfdReadFile’s filepointer to null. 

• Resets the current read indextable. 

• Swaps the bfdReadForFile to point to the other log file. 

• Swap the current read indextable to the one corresponding to the other log file. 

 

 

Figure 5.5 Code for Reading from Secondary Memory 
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5.2.6 Experimental Evaluation: 

  All the experiments were performed on an unloaded machine with 2 Xeon 

processors, 2.4GHz, 2GB RAM and Red Hat Linux 8.0 as the operating system.  The 

data set for performance evaluation is obtained from the MavHome (A smart Home 

being developed at UTA for predicting the behavior of inhabitants) live feed collected 

over a period of time. The live feed is stored in our database and is used as a stream to 

this system. Before feeding the MavHome data to the streams, the source time stamp is 

modified such that its value is in an increasing order with the first tuple showing its 

value to be one and the nth tuple showing its value to be n. Tuples are generated with a 

poison distribution to simulate real time data.  

This experiment shows the effect of varying buffer size on the system. Query 

used in the experiment is “select txtDeviceID, txtStatus, txtPropertyValue from S1, S2 

where S1.txtPropertyValue=S2.txtPropertyValue and S1.txtStatus=On and 

S2.txtStatus=On.” 

This experiment was run on five Windows each consisting of 5000 tuples. The Buffer 

Size was changed from being unbounded to 35000, 30000, 25000, 20000, 18000, 

15000, 12000 and 10000 tuples per buffer. 
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Figure 5.6 Effect of Varying Buffer Size. 

 
 

Observation: 

  From the graph (Figure 5.6) it can be seen that unbounded buffer quickly 

produced the output. This is because all the tuples were main memory resident. As the 

buffer is contracted, more and more tuples are getting output into the secondary buffer. 

This induces a lot of I/O cost for reading and writing tuples. Hence the total tuple 

processing time of the query increases. Moreover a tuple starts staying for longer time 

in the queues because of IO read-write that increases the tuple latency.  

 

5.3 Query Window Implementation: 

 All window-based operators need to define the following four clauses. 

• Begin Window. 

• End Window. 



 

98 

• Hop Size (lower bound, upper bound). 

• End Query. 

These clauses are defined based on the user definition of the query. After 

defining these parameters, an operator using a window would require to get the current 

window definition, it would also require to check the bounds of the next window. Also, 

the operator would be interested in knowing whether the process of moving to the next 

window brings the end query condition or not. To accommodate all these parameters of 

a window and its operation, a separate window class is defined. The object of this class 

can be used in window-based operators to provide a controlled access to window and its 

parameters. 

The QueryWindow class has the following parameters: 

• lngBeginWindow. 

• lngEndWindow. 

• lngHopSize[]. 

• lngEndQuery. 

Long values are chosen for these parameters so that they can represent both 

physical window as a time stamp and logical window as number of tuples. Hop size is 

an array with the zeroth value being the lower bound and the first value being the upper 

bound. 

This class supports the following operation. 

• GetFirstWindow(): Returns the lower and upper bound of the first query 

window. 
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• GetNextWindow(): Returns the lower and upper bound of the next window from 

the current window. 

• IsQueryTerminating(): Returns true if the lower bound of the window falls 

beyond the end query specification. Other wise it returns a false value. 

5.4 Operators 

5.4.1 Select: 

SELECT is implemented by inheriting the generic operator. It stores the 

condition as a string that will be evaluated for filtering the data. It uses FESI as the 

condition evaluator. 

One of the challenges in implementing SELECT was to provide the operand 

values from the input tuples to FESI. We cannot directly supply the tuple value to FESI 

for evaluation. Also it does not make sense to set all the operands from the input tuple 

into FESI’s condition evaluator. Only the operands mentioned as a part of the condition 

needs to be evaluated. To read the operand value from the input tuple, we need to know 

the position of the operand in the tuples. The position of the operands in the tuples is 

stored in the schema. Hence an interface needs to be provided that can find the operands 

from the condition string and then find their position in the tuples. Using the position 

information, the corresponding values from the input tuples needs to be  set against the 

operands in the FESI’s condition evaluator. 

The following two functions help  retrieve the position of operands from the input 

string. 
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• findOperandsInConditionString: This method parses the condition string and 

separates out the operands from it. 

• findPositionOfOperands: It uses the operand list provided by 

findOperandsInConditionString function and finds out the position of each 

operand from the schema. This list of position is used by the SELECT for 

setting operand values in the condition evaluator. 

The conversion of condition string to a list of position using the above-

mentioned functions is done before the actual tuple evaluation is started. This is done 

when the condition string is submitted to the SELECT operator. 

5.4.1.1 SELECT Example: 

Consider the evaluation of the following condition string on the input string. 

Condition String: txtDeviceID = ‘M18’ and txtStatus = ‘On’. 

The schema for the input buffer is as described below. 

 

Attribute Name Position 

TxtTrandID 1 

TxtDeviceID 2 

TxtStatus 3 

TxtPropertyValue 4 

TxtCommandSource 5 

NumSourceTimeStamp 6 
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FindOperandsInConditionString: Given the condition string as an input, the output of 

this function is txtDeviceID, txtStatus. 

Given the operand list as input to findPositionOfOperands, the output given is 2 

and 3. 

 

 

Give this tuple for processing, the operands operand value map would be  

 TxtDeviceId = M18 

 TxtStatus =  On 

Evaluation: Output of evaluation would be true. 

5.4.2 Hash Join: 

  Hash join is implemented as a non-blocking operator that works on a window 

unit of data and produces results incrementally and continuously to process continuous 

queries. As explained in the design section, it is implemented using a single thread and 

processes each tuple atomically to avoid duplicates. It reads tuples from each of its 

external buffers, compare their timestamp and the one with lower timestamp is 

considered for processing. If the left tuple is being processed, it is inserted in the left 

hash table. It is then probed in the right internal hash table and matched with all the 

tuples falling in the window and satisfying the join predicate. The results are produced 

incrementally that are consumed by higher operators. It is this insertion and probing 

phase that is to be done atomically to avoid duplicates. Tuples read from right external 

10001010102 RF_Remote 10 On M18 1 
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buffers are processed analogously. It is important to understand the implementation 

issues prior to delving into implementation details. Following are the implementation 

issues for the “Hash Join” operator: 

• Window Generation 

• Maintaining internal hash tables 

• How timestamp ordering is maintained 

• Atomic action to avoid duplicates 

Window Generation: It is important to understand the concept of a window prior to the 

implementation specific details of join operator since the working of “Join” operator 

heavily depends on window processing. One of the requirements of stream operator is 

their ability to work on windows independently. Operators of the same query should be 

able to operate on different windows simultaneously. To facilitate this requirement, an 

object of “Query Window” is defined that deals with window creation and modification.

 Internal hash tables: “Join” operator has two external buffers associated with it 

that provides synchronized input to this operator. There are two internal hash tables 

maintained by this operator, one corresponding to each of the external buffers. These 

hash tables are used not only for computing hash join but also to avoid repetitive scan 

on external buffers. A single tuple processing involves insertion and probing phase. 

During insertion phase, the tuple is placed in the corresponding internal hash table upon 

which it is no longer needed in the external buffer for the following reasons: 

• The tuples in internal hash table participates in the join operation with new 

incoming tuples.  
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• It is the internal hash table that is scanned to find the match when a new tuple is 

probed against it.  

Since the responsibility of finding the matched tuple is delegated to internal hash 

table, repetitive scan on external buffers is  avoided. Internal hashtables not only 

reduces load on the external buffer but also allows the tuples that are read from external 

buffers to be removed to create space to accommodate new tuples coming either from 

data streams or child operators.  

Timestamp ordering: The significance of timestamp ordering is explained in the 

design section. It is needed to determine the end window bounds and produce correct 

results. Tuples generated by the data sources are time stamped as soon as they enter the 

system. Hence for the first windowed operator, all incoming tuples are timestamp 

ordered. Unless some measures are taken to maintain timestamp ordering in the output 

of current windowed operator, the output will not be timestamp ordered, which is 

essential for higher windowed operators as well.  To produce tuples in a timestamp 

order, each tuple is blocked at the input and is not considered for join until it finds a 

corresponding tuple from the opposite stream. When it is joined with tuples present in 

internal buffers, resultant tuples are generated with the timestamp of the higher of the 

two. All tuples in the output queue are guaranteed to be timestamp ordered. 

Duplicate tuple avoidance: The use of two threads to increase the parallelism of 

the entire “Join” operation was discarded  since it was resulting in duplicates at the 

output. The only way to avoid duplicates in the output is to process individual tuple 

atomically. The next tuple is not considered for processing until the insertion and 
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probing phase of the current tuple is completed. This avoids the possibility of 

processing two tuples simultaneously that arrive with the same timestamp in left and 

right external buffers. Synchronized operation resolves time conflicts and process single 

tuple at a time ensuring duplicate avoidance. 

 

5.4.2.1 Hash Join without temporary storage: 

  

 
Figure 5.7 Hash Join Without Temporary Storage 

 
    Figure 5.7 indicates that join has two external buffers and two internal hash 

tables. Operator reads from these external buffers, performs the needed join operation 

and outputs the result incrementally and continuously in its associated output queue. 

Windows are defined on the external buffers that mark the input bounds for the 

operator. It is assumed that window definitions are always the same for both the 

external buffers. These window bounds are defined using “Query Window” class 
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explained above. The APIs of this class are used to control window movement besides 

providing window information. The window slides only when all the elements from 

each of the external buffers are completely processed. Left window bounds are defined 

by LW1S and LW1E, which stands for “Left Window One Start” and “Left Window 

one End” respectively. Right window bounds are defined by RW1S and RW1E.   

Call purging logic: All the past tuples that are not relevant in current window 

processing are purged to create space in the external buffers. Since the operator knows 

LW1S, it compares the timestamp of the read tuple ‘t’ with LW1S.  If ‘t’ < LW1S, it is 

considered as a stale tuple. This process is repeated until the “join” operator finds the 

first tuple that falls in the current window bound. The position of this tuple is marked 

and stored as Highest Read Element (HRE). If multiple operators share the buffer, all 

HREs are compared and the one with the smallest value is declared Highest Common 

Read Element (HCRE). Thus all elements prior to HCRE can be safely discarded as 

they are already been read and utilized by all the operators sharing the buffer. 

Window Processing: Every buffer has a CurrentUnreadElementPointer (CUEP) for each 

operator that point to the current element to be read from the buffer for the respective 

operator. The value of CUEP is incremented each time a tuple is read by the “Join” 

operator. Consider a single tuple processing for the join operator. Tuples are read from 

each of the input queues with the left tuple (LT) timestamp as ‘x’ and the right tuple 

(RT) timestamp as ‘y’. If ‘x’ < ‘y’, ‘x’ is processed which involves probing LT into 

right hash table based on the value of joining attribute. Since ‘x’ corresponds to LT, it is 

hashed into the left internal hash table based on the value of the joining attribute.  It is 
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then joined with all tuples lying in the bucket (tuples having same attribute value called 

collision, map to the same location and are stored linearly at the probed location) of the 

probed location and the output is generated. During the join operation the resultant tuple 

has the common attribute removed from the right stream. The timestamp of the resultant 

tuple is the higher timestamp of the two tuples involved in join since this algorithm 

ensures ordering on higher timestamp. Since ‘x’ < ‘y’, CUEP of left external buffer is 

incremented by 1. This insertion and probing phase must be done atomically to avoid 

duplicates.  

Window movement:  In overlap windows, it is important to remember the start 

time of the next window while the current window is being processed. Since the 

window definition is known, the start time is marked as soon as the first tuple is 

encountered that falls in the next window. This position is saved as Start Next Window 

Pointer (SNWP). For disjoint windows, no modification is needed as they both point to 

the same location. In Hash Join without temporary storage, the internal hash tables are 

completely cleared since every window is computed independently. Since it does not 

reuse the computation the CUEP that points to LW1E is modified to point to SNWP to 

continue processing the next window from start. The common computation is not stored 

anywhere for utilizing in the next window computation; this shade is called “Hash Join 

Without Temporary Storage”. 
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5.4.2.2 Hash Join With temporary Storage:  

This variation exploits the common computation in the overlap window by 

reusing the results of current window computation in the next window. While the 

current window is processed, the common computation is identified and the results are 

stored in the temporary storage besides producing them as  output.  

 

 

 
Figure 5.8 Hash Join With temporary Storage 

 
 

This variation exploits the common computation in the overlap window by 

reusing the results of current window computation in the next window. While the 

current window is processed, the common computation is identified and the results are 

stored in the temporary storage besides producing them at output. Tuples falling beyond 

SNWP are considered to be a part of the overlapped area. The result accumulated in 
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temporary storage is copied as it is in the output queue corresponding to next window. 

Once the window is completely processed, internal hash tables are not completely 

cleared unlike the other variation, rather entire hash table is enumerated and only those 

tuples whose timestamp falls below LW2S are removed. Since the computation is being 

re-used, CUEP does not point to LW2S but points to LW1E and moves only in forward 

direction. Hence all tuples falling in the next window computation in the internal hash 

table are preserved. Purging logic is called at the end of each window computation that 

removes all elements marked up to HCRE to create space for incoming tuples generated 

either by data sources or child operators. Since the computation is re-used, it is more 

efficient with respect to response time but less efficient with respect to memory 

utilization since hash tables are never cleared besides involving temporary storage for 

storing common computation. 

5.4.2.3 Experimental Evaluation: 

The Experimental Set up is same as the one used in Buffer Experiments.  

1. Effect of Varying Data Rate on Hash Join. 

HashJoin Without Reuse is fed tuples with a variable data rate. The data rate 

used were 100, 150, 200, 400, 800, 1600, 3000, 5000, 8000 and flooding (Here the time 

gap between two tuples was almost zero. Hence it flooded the stream buffers with data). 

Some of the constant set of information across this experiment is as given below. 

Total Windows: 5 

Tuples per Window: 20000. 
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Data Set: MavHome Data Set with the time stamp modified to form an incremental 

value starting from one. Same data set as one used in buffer. 

Window Overlap = 10%. 

 
Figure 5.9 Total Tuple Processing Time 

 

 

 
Figure 5.10 Average Tuple Latency 

 



 

110 

 
Figure 5.11 Buffer Size 

 

Observation: 

  From the graph 5.9, it can be seen that initially when the data rate is very low at 

100 tuples/sec, the total query processing time is quite high. But as the data rate 

increases, the total query processing time decrease but this happens till some point and 

after that the total query processing time stabilizes to a constant value. This is because 

the amount of data input to the join is the same but the data rate has reached a value 

such that hash join will always get some tuples in the buffer and will never suspend. 

Here we see that the HashJoin is operating at its maximum processing capacity and 

because of that the total query processing time always remains the same. 

  From the  graphs 5.10 and 5.11, we can see that as the data rate increases, the 

average tuple latency increase and the Buffer Tuple count also increases. This is 

because more tuples are being input to the Join but it has a limited processing capability 

and so the amount of time a tuple spends in the queue increases thereby increasing the 

overall average tuple latency.  
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2. Comparison of Hash Join With and Without Temporary Storage (Reuse and Without 

Reuse). 

  Keeping a constant data rate, and running the experiment over the same number 

of windows having same number of tuples, average tuple latency, response time and 

Hashtable size are compared for Hash Join with and without temporary storage. To 

show the effect of reuse, window overlap was increased from 10%-75% of the current 

window. The data set is modified such that we have a uniform distribution of tuples. We 

have  the same number of tuples in each window and each window will generate the 

same number of output irrespective of the amount of overlap. This way we can compare 

the results between both the joins across windows with different overlaps. Here the 

window is kind of a logical window as the timestamp is incrementally ordered starting 

from one 

 

 
Figure 5.12 Total Tuple Processing Time (Join Comparison) 
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Figure 5.13 Average Tuple Latency (Join Comparison) 

 

 
Figure 5.14 Internal Memory Usage (Join Comparison) 

 
 
Observation: 

  Total Query Processing Time: There is no affect on the total query processing 

time for Hash Join Without Temporary Storage. This is because it has to read all the 
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tuples for all windows and process them irrespective of the amount of overlap. 

Moreover the data set is such that the number of tuples generated would be the same for 

all cases and so a constant response time is observed. For Hash Join With Temporary 

Storage the overlapping of windows is exploited by reusing the output tuples generated 

for the overlap region. Therefore we can see that the total query processing time 

decreases as the overlap is increasing. 

Average Tuple Latency (ATL): ATL of HashJoin With temporary storage is always 

lower that that of Without Temporary Storage. This is because tuples stay for longer 

time in queues for Hash Join Without Temporary as they needs to be recomputed for all 

windows irrespective of the overlap. On the other hand HJ With Temporary Storage 

overlapping tuples does not add to the overall tuple latency. 

Internal Hash Table Size: For HashJoin With Temporary storage the size of internal 

Hashtable increases as the overlap increases. This is because as the overlap increases, 

more and more number of tuples is stored in temporary storage. 

5.5 Instantiator 

5.5.1 Instantiator Implementation: 

  DSMS client provides an interface through which the user creates the initial plan 

for the DSMS query. Each query plan is constructed as a tree data structure. DSMS 

client sends out command number “2” in order to instantiate a query.  On receiving 

command “2”, server waits to receive a plan object as part of query instantiation 

protocol. DSMS client sends out the plan object created using the user input to the 

server, which then instantiates it and schedules the operators in the query tree.  
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5.5.1.1 Plan Object: 

Plan object is a tree data structure. The tree is created using the OperatorNode 

class.  

 
Figure 5.15 Operator Node Class 

 

Figure 5.15 shows the structure of Operator Node class. The operator node class 

has the following three properties. 

• OperatorData: This is the operator data node that stores the required information 

in order to create and instantiate an operator object. 

• NodeLeftChild: This points to an object of Operator Node class and represents 

the left child of the current object. 

• NodeRightChild: Again this points to an object of Operator Node class and 

represents the right child of the current object. 

Communication between client and server takes place over the socket. All 

communication between the client and the server is object based. Objects  converted 

into serialized bytes are sent over sockets between server and the client. Hence the 

OperatorNode object implements the serializable interface. This helps to send out the 

plan object from the client to the server. What client sends is the root object of the 
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OperatorNode to the Server. In turn this sends the entire query tree using the transitive 

reachability mechanism.  This means that all objects reachable from this object will also 

be serialized. The same process is repeated for the child OperatorNode till we reach the 

leaf nodes in the tree. Hence the entire tree is given as an input to the server just by 

outputting the OperatorNode representing the root. 

Figure 5.16 shows a plan object of the query: Display the common device usage 

between rooms A and B in MavHome lab. 

 
Figure 5.16 Plan Object for a Query 
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5.5.1.2 Operator Data Node: 

Operator Data Node is implemented as a separate class with the following 

parameters. 

strOperatorType:  It is a string that stores the type of operators e.g. SELECT, 

PROJECT, JOIN. 

strStreamOne, strStreamTwo: Left and Right Stream names are stored as a string. 

strInputParameters: As a string it can store the input parameters for any operator. For 

example,  the condition string for SELECT operator for a particular query is 

”deviceID=M8 and RoomId=R1” or for PROJECT the list of attributes to be projected 

could be “deviceId,RoomID,trandDateTiem”. 

lngBeginWindow, lngEndWindow, lngEndQuery: Windowing parameters are stored as 

a long value so that it can represent both physical as well as logical windows. For 

physical window, it can store the tuple time stamp and for logical window it can store 

the number of tuples. 

lngHopSize[]: Hope Size is implemented as a long array, which will store two values. 

The zero value will represent the lower bound and the first value will represent the 

upper bound for the hop of the window. 

 

5.5.1.3 StreamBufferList: 

  It is implemented as a Hashtable with the key as Stream Name and value of the 

object of Buffer in which the stream’s tuples are being fed. This is done to provide a 

quick mapping between Streams and its buffers. 



 

117 

5.5.1.4 Instantiation from Plan Object: 

  The process of instantiating operators from the plan object and linking them 

with buffers is implemented as a recursive algorithm. It takes in the OperatorNode and a 

Boolean value, which says whether it is a left child, or not. Initially the value of root 

node is passed and it is declared to be a left child even it does not have any parents. The 

query tree is traversed in a post order fashion. This is done so as to get a bottom up 

instantiation of operators there by supporting flow based scheduling.  

Once an Operator Node is extracted from the tree, it is checked to see if it is a 

leaf node. If so, then using the Stream names from the OperatorData, it will pick up the 

corresponding buffer from the StreamBufferList and pass it on to instantiate the 

operator. 

  For non- leaf nodes, the Left and Right input buffers are set while instantiating 

the operator. Based on whether the instantiated operator is a left or right child the 

corresponding output buffer of that operator is set to the left input buffer or the right 

input buffer of the parent operator in the tree. 

  All of the extracted information from the tree and its buffer mappings are passed 

to the extractOperatorNodeInfo function, which calls the appropriate operator 

instantiation routine based on the operator type to instantiate the operator. 

 

5.6 Server Implementation 

  DSMS is implemented as a TCP Server listening to port number nnnn. Client 

communication with the server is command driven and protocol oriented. DSMS 
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defines a list of functions (commands) that it supports. For each command, a protocol is 

defined that drives the client and server communication. All protocols clearly define 

what input the server is expecting from the client and what would be the server’s 

response. Communication between client and server is object based For example,  when 

a client sends a query tree object, the server instantiates it and returns a query handle 

which the client can use for further query control.  

DSMS server maintains different kinds of data structures used by several 

modules shown in the DSMS architecture. These data structures are updated at various 

events.  

5.6.1 Server Implementation 

DSMS server implementation model is based on the following two important 

classes. 

• TCPServer: TCPServer is an abstract class TCPServer that implements the 

generic functionality of client server communication. It mounts the DSMS 

server at a given port and listens for the clients to communicate. Once the client 

communication is detected, it creates a NetStream Object using the client socket. 

Thereafter it calls the service method. This method is an abstract method, which 

takes in an object of NetStream and implements the actual functionality of the 

server. Service is an abstract method, which needs to be implemented in the 

class extending TCPServer. 

• NetStream: NetStream provides functions for an object-based communication 

between the client and the server. It accepts a socket as its input. It wraps the 
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input and output streams of the given client socket using the Object input and 

output streams there by providing object based communication over the sockets. 

NetStream implements java.io.Serializable there by providing a serialized object 

base communication over the sockets.  

  Java object serialization provides the ability to write or read java objects to and 

from a byte stream. It allows Java objects and primitives to be encoded into a byte 

stream suitable for streaming to a network or to a file-system. The Java Serialization 

API provides a standard mechanism for developers to handle object serialization. The 

API is small and easy to use.  

5.6.2 DSMS Server Commands/Functionalities 

  DSMS Server extends the class TCPServer. Hence it needs to implement the 

service method of TCPServer. All the functionalities of DSMS are implemented in the 

service method. DSMS is a command-based server. Client sends a command to the 

server and then follows the protocol for that command. Integer based commands are 

used.  For e.g. to send a query to the server, client invokes the command number “1”. 

Each command corresponds to a functionality that DSMS server provides to the server. 

A limited set of commands is currently available in the system. But this can be extended 

as and when needed.  
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Chapter 6  

Conclusion and Future Work. 

 
This thesis explains the design of query processing architecture  for  streaming 

data. This architecture provides a model for representing a general-purpose stream 

database application. Different types of streaming queries are identified and a general-

purpose query representation is proposed. This representation covers all types of 

windows.  

A generic streaming operator is proposed which satisfies the query processing 

requirements of stream data. This provides a base model for implementing future 

operators. SELECT and PROJECT are designed and implemented to support streaming 

data. Two shades of Hash Based Joins are designed and implemented. One that exploits 

the overlapping nature of query windows by using a temporary storage and the other 

that treats all windows in the same manner. Experiments have shown that for 

overlapping windows, Hash Join With Temporary Storage is efficient over Hash Join 

Without Temporary Storage. 

Query Instantiator is designed and implemented that accepts a plan object 

generated by Stream database clients and instantiates the required operator to provide 

stream-based output to the end user.  

The DSMS Server is designed and implemented to  provide a platform for 

integrating various components of Stream Database Architecture.
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To completely implement the proposed architecture for stream database, an 

alternate plan generator and a runtime query optimizer needs to be designed and 

implemented. 

Alternate Plan Generator   accepts a user given plan and generates different equivalent 

plans for the same query. These alternate plans are considered by the  runtime query 

optimizer to generate an efficient global plan.  In addition, the runtime  query optimizer 

also  monitors the QoS to see if they are being satisfied and if not take some corrective 

action (change priorities, load shedding) to try and satisfy as many QoS requirements  

as possible. 

 The DSMS is a server-based architecture and is prone to system crash. Hence 

there arises a need for a Recovery System, which can bring the system back to the state 

at the time of crash. This is currently being investigated.  
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