
DESIGN AND IMPLEMENTATION OF STREAM OPERATORS, QUERY

INSTANTIATOR AND STREAM BUFFER MANAGER

The members of the Committee approve the master’s
thesis of Altaf Gilani

Sharma Chakravarthy
Supervising Professor ______________________________________

Alp Aslandogan ______________________________________

David Kung ______________________________________

DESIGN AND IMPLEMENTATION OF STREAM OPERATORS, QUERY

INSTANTIATOR AND STREAM BUFFER MANAGER

by

ALTAF GILANI

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2003

iii

To My Parents, Grand Parents, Brothers and Friends

iv

ACKNOWLEDGEMENTS

 I would like to thank my advisor, Dr. Sharma Chakravarthy, for his great

guidance and support, and for giving me an opportunity to work on this thesis. I am also

thankful to Dr. Alp Aslandogan and Dr. David Kung for serving on my committee.

 I would like to thank Satyajeet Sonune for his constant support and

encouragement throughout this thesis. I would like to thank Dustin for his valuable tips

during the implementation of this project.

 I would like to acknowledge the support by the Office of Naval Research, the

SPAWAR System Center-San Diego & by the Rome Laboratory (grant F30602-01-

0543), and the NSF (grants IIS-012370 and IIS-0097517) for this research work.

 I am thankful to my parents and my brothers for their constant support and

encouragement throughout my academic career without which I would not have reached

this position.

 December 03, 2003

 v

ABSTRACT

DESIGN AND IMPLEMENTATION OF STREAM OPERATORS, QUERY

INSTANTIATOR AND STREAM BUFFER MANAGER

Publication No. ______

Altaf Gilani, M. S.

The University of Texas at Arlington, 2003

Supervising Professor: Dr. Sharma Chakravarthy

Data intensive applications like Network monitoring, financial applications,

sensor-based applications etc are emerging. They have a continuous, unpredictable and

unbounded flow of data, referred as streams.

This thesis describes the query processing architecture for stream-based

applications. Generic representation of window parameters in a query is explored.

Design and implementation issues of SELECT, PROJECT and JOIN are also covered.

An effective buffer management scheme is provided such that more than one

operator can share a buffer. Buffer provides means for stream database to work in low

main memory environment by making use of primary as well as secondary storage

memory. Design and implementation of Buffer management is covered in this thesis.

 vi

Server provides a platform for integration of various components of its

architecture. Instantiation of query plan is one of the responsibilities of the server. This

thesis covers the design and implementation of Server.

 vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS……. ... iv

ABSTRACT…………………… .. v

LIST OF ILLUSTRATIONS…… .. xiii

Chapter

 1. INTRODUCTION……….. 1

 2. RELATED WORK………. ... 7

 2.1 Aurora………………. .. 7

 2.2 Streams…………….. ... 8

 2.3 The COUGAR Sensor Database System.. 10

 2.4 Fjord: Architecture for Queries Over Streaming Senor...................... 11

 2.5 PSOUP……………….. 12

 2.6 NiagaraCQ…………. ... 14

 3. STREAM DATABASE ARCHITECTURE.. 16

 3.1 Client (User Input)…….. .. 17

 3.2 Operators……………... 18

 3.3 Buffer……………….. 19

 3.4 Streams…………….. ... 20

 3.5 Scheduler…………… .. 21

 viii

 3.6 Run Time Optimizer... .. 22

 3.7 Alternate Plan Generator .. 23

 3.8 Instantiator…………. ... 24

 3.9 Server……………….. 24

 4. DESIGN……………………. .. 26

 4.1 Schema………………….. 26

 4.1.1 Requirements of schema for stream databases are:.................. 26

 4.1.2 Schema Design: .. 27

 4.2 Buffer Management…… .. 28

 4.2.1 Requirements for Buffer and Buffer Management:.................. 28

 4.2.2 Buffer Design: .. 29

 4.2.3 Multiple Operators Reading from One Buffer: 32

 4.2.4 Design of Multiple Operators Reading from a Buffer.............. 33

 4.2.5 Purging Logic:.. 34

 4.2.6 Buffers Support for Scheduling:... 35

 4.2.7 Buffer Management:... 36

 4.2.7.1 Need of Two Buffer Log File:............................ 38

 4.2.8 Operations on Buffer:... 40

 4.2.8.1 Enqueue:... 40

 4.2.8.2 Dequeue:... 40

 ix

 4.3 Operators………………... 40

 4.3.1 Requirements of Stream Operators: ... 42

 4.3.2 Operator Model: ... 43

 4.3.3 Operator State:.. 44

 4.3.4 Operator Priority:.. 46

 4.3.5 Operator Types:.. 47

 4.3.6 Query Windows :.. 47

 4.3.6.1 Window Representation: 51

 4.3.7 Generic Operator:... 53

 4.3.8 SELECT….. ... 54

 4.3.8.1 Requirements:... 54

 4.3.8.2 Design: ... 55

 4.3.9 PROJECT… ... 58

 4.3.9.1 Requirements:... 58

 4.3.9.2 Design: ... 58

 4.3.10 Hash Join.. .. 59

 4.3.10.1 Design Requirements: 60

 4.3.10.2 Design Alternatives:... 62

 4.3.10.3 Variations in Hash Join: 64

 4.4 Query Instantiator……… ... 65

 x

 4.4.1 Requirements of query Instantiator:... 66

 4.4.2 Design of Query Instantiator:... 66

 4.4.2.1 Operator Data Node: .. 69

 4.4.3 Instantiator Support for Flow Based Scheduling: 72

 4.4.4 Base Stream and Buffer List: ... 72

 4.4.5 Operator Instantiation and buffer mapping: 73

 4.5 DSMS SERVER DESIGN ... 76

 4.5.1 Communication Model... 76

 4.5.2 DSMS Client: ... 79

 4.5.3 Server Functionality ... 80

 5. IMPLEMENTATION…….. 83

 5.1 Schema Implementation. .. 83

 5.2 Buffer Implementation….. 85

 5.2.1 Implementation of Main Memory Buffer:................................ 85

 5.2.2 Implementation of Buffer Log Files ... 86

 5.2.2.1 Basics of Java Object Serialization. 86

 5.2.3 Reading and Writing into Log Files ... 89

 5.2.4 Swapping the two Buffer File... 93

 5.2.5 Reading From Secondary Storage:... 94

 5.2.6 Experimental Evaluation: ... 96

 xi

 5.3 Query Window Implementation: .. 97

 5.4 Operators………………... 99

 5.4.1 Select……… .. 99

 5.4.1.1 SELECT Example:... 100

 5.4.2 Hash Join… .. 101

 5.4.2.1 Hash Join without temporary storage:................ 104

 5.4.2.2 Hash Join With temporary Storage: 107

 5.4.2.3 Experimental Evaluation:................................... 108

 5.5 Instantiator…………. ... 113

 5.5.1 Instantiator Implementation: .. 113

 5.5.1.1 Plan Object:.. 114

 5.5.1.2 Operator Data Node: .. 116

 5.5.1.3 StreamBufferList:... 116

 5.5.1.4 Instantiation from Plan Object: 117

 5.6 Server Implementation….. 117

 5.6.1 Server Implementation ... 118

 5.6.2 DSMS Server Commands/Functionalities................................ 119

 6. Conclusion and Future Work. .. 120

 REFERENCES……………... 122

 xii

 BIOGRAPHICAL INFORMATION... 123

 xiii

LIST OF ILLUSTRATIONS

Figure Page

3.1 DSMS Architecture ...16

4.1 Example of Mavhome Transload Schema...27

4.2 Schema Representation ...28

4.3 Buffer Usage in DSMS..30

4.4 CurrentUnReadElement Pointer ..34

4.5 Index Table ..37

4.6 Buffer Management in DSMS...39

4.7 Operator Model ...43

4.8 Operator State Transition Diagram ...45

4.9 Snapshot Window..49

4.10 Forward and Reverse Landmark Window...49

4.11 Overlap Sliding Windows ...50

4.12 Disjoint Sliding Windows. ..51

4.13 SELECT Algorithm...57

4.14 PROJECT Algorithm...59

4.15 Sliding Window Overlap ...64

4.16 Query Tree of Operator Data Node ...69

4.17 Example of an Operator Data Node ..71

 xiv

4.18 Stream Buffer List ...73

4.19 Process of Instantiation..76

5.1 Schema Implementation..85

5.2 Example Code for Object Serialization. ..88

5.3 Reading and Writing into Log File..91

5.4 Code for Swapping Two Buffer Log Files in Enqueue ...93

5.5 Code for Reading from Secondary Memory...95

5.6 Effect of Varying Buffer Size..97

5.7 Hash Join Without Temporary Storage ...104

5.8 Hash Join With temporary Storage ..107

5.9 Total Tuple Processing Time...109

5.10 Average Tuple Latency ...109

5.11 Buffer Size ...110

5.12 Total Tuple Processing Time (Join Comparison) ..111

5.13 Average Tuple Latency (Join Comparison) ..112

5.14 Internal Memory Usage (Join Comparison) ..112

5.15 Operator Node Class..114

5.16 Plan Object for a Query...115

1

Chapter 1

INTRODUCTION

Applications have started demanding responses with a pre-defined quality of

service requirements. Traditional DBMS’s do not deal with QoS requirements.

Pervasive computing has resulted in many sources of sensor data (e.g., RF tags) from

which data arrives in the form of streams. Streaming can arrive at a variable or constant

rate depending upon the source characteristics. Monitoring applications are typical users

of streaming data. Consider a monitoring application that keeps track of items of

interest such as overhead transparency projectors and laptop computers, using electronic

property stickers attached to the objects. Here the data generating sources are sensors

mounted in the ceiling and the GPS system. Now a security administrator would be

interested in getting notified if any item is out of place. Also the last noted location of

the item would be of interest [1]. Another application area could be a stock ticker

application where a typical user might want to monitor a series of stocks in a given

range of values. MavHome [2] is a project with a number of sensors that act together in

maximizing a metric for a home/environment based on inhabitants use of the devices.

MavHome generates streaming data that needs to be processed for prediction and other

needs. All the devices in the MavHome system are constantly generating stream data.

Monitoring abnormal behaviors in devices such as thermostat would be of interest.

2

Checking for the arrival of a particular person and then personalizing the home based on

his/her requirements is another example.

These are a few examples of stream-based applications. Others include security,

telecommunications data management, manufacturing, sensor networks, web

applications, stock and sports ticker and military based applications (like monitoring

soldiers in a battle field).

Stream applications have their own characteristics, which makes them different

from the traditional data oriented applications. Below, we enumerate the salient

characteristics of a stream-based application:

• Streaming data are not the results of transaction processing typically done by

humans. These are generated from a variety of sources like sensors, GPS, web

servers or some other programs.

• Streaming source generates continuous data and has no limit on the amount of

data generated by streams.

• Arrival rate of streams can be variable. It can be irregular and bursty.

• Data can be lost or garbled.

In order to provide a timely response to events, some of the applications have a

predefined quality of service requirement (QoS). The query requirements of these

applications are somewhat different from traditional queries of DBMS. Queries are

classified based on how they are submitted and the life span of the query. Queries can

be Adhoc or Predefined (how they are submitted) or can be One time or Continuous

(life span) [3]. Adhoc queries are submitted on the fly. The nature of adhoc queries adds

3

a new dimension to the optimization of the system as a whole. In contrast Predefined

queries are known to the system and hence it is possible to generate an optimized plan

for all queries in the system. On the other hand, One Time queries have a short life span.

It operates on a limited number of tuples that is defined in the query. Comparatively

Continuous queries are long running. These queries are evaluated continuously as the

data streams arrive. Output is produced incrementally and continuously at the end of

every window. Majority of the streaming queries are continuous. Predefined and Adhoc

queries can be One Time or Continuous.

Traditional DBMS were not designed to support the requirements of stream-

based applications. They were designed to satisfy to the needs of business data

processing applications. Some of the reasons that make DBMS not applicable for

Stream data applications are:

• DBMS uses a store and query approach. It will be very difficult to store each

and every streaming data into the system. This process is time consuming.

• It cannot give a real time response to streaming queries, which is an important

requirement for streaming applications.

• Some of the operators of DBMS are blocking in nature. For example Join and

Aggregate operations require the entire data to produce output. This is not

possible in a stream-based application.

• DBMS has no provision for supporting quality of service (QoS) requirements of

the user.

4

• Query optimization and scheduling strategies of DBMSs were not designed for

optimality but to avoid naïve and inefficient strategies.

• Trigger support in DBMSs cannot scale to large number of triggers.

• DBMSs assume data elements to be synchronized but most of the stream-

oriented applications are asynchronous in nature.

• DBMS tends to produce exact answers. But stream data can be lost or garbled

there by producing approximate answers.

This lack of support from DBMS for stream-oriented applications prompts us

design a system, which supports these requirements. This system is referred to as Data

Stream Management System (DSMS) in the literature. Some of the requirements of a

DSMS are:

• DSMS should not store streaming data on secondary storage.

• Main memory is the primary storage used in a DSMS.

• It should support asynchronous nature of stream.

• It should have a language to specify long running and window based queries.

• Quality of Service (QoS) requirements of streaming applications should be

supported. QoS should drive optimization and scheduling techniques and not I/O

as in traditional DBMSs.

• DSMS should output continuously and incrementally.

• New set of operators must be defined that are non-blocking. Join and

Aggregates operators should support the window based query requirement.

The primary advantages of this system are:

5

1. System can operator in a low main memory environment. This is

because buffers support both main memory and secondary memory

operations. Users sees buffer as a structure for storing tuples and does

not know which tuple will go in main memory or secondary memory.

2. System provides accurate results, as there is no data loss. This is

because use is just not restricted to main memory for storage.

3. The window representation proposed is a generic window

representation. It can be added as part of standard SQL statement. It

can represent physical as well as logical windows. Also it can

represent snapshot, landmark and sliding window queries both in

forward and reverse direction.

4. None of the papers referred in the thesis provides exact

implementation details of the stream database system. This thesis

tries provides a platform to build a complete stream management

system.

5. It shows that exploiting the overlapping nature of windows in case of

long running queries (sliding window) can be prove efficient compare

to the standard approach of processing a window from start to end.

This is show by designing and implementing two variations of Hash

Join one with recompute and other variation being reuse.

6. System is designed such that it can operate without a scheduler. It

schedulers an operator when data is available and suspends it when

6

there are no tuples. The rest of scheduling is kept at the discretion of

the base operating system. This is referred to as flow based

scheduling in this literature.

Some of the limitations of the system are.

1. It does not support historical queries. Hence we cannot specify query

windows in reverse direction.

2. Optimizer is proposed in the architecture but it is not designed and

implemented.

3. Alternate Plan Generator needs to implement to support global query

optimization.

4. This system is prone to failure and has no capability to recover to the

point where the system had failed.

7

Chapter 2

RELATED WORK

This chapter discusses related work. Some of the systems are only for Data

Stream Management (e.g. Aurora [1]) where as others are based on specific applications

(e.g. Cougar[5].)

2.1 Aurora

Aurora’s prime functionality is to process streams based on the configuration set

by the application administrator. Aurora is a data flow system and uses the primitive

box and arrow representation. Tuples flows from source to the destination through the

operational boxes. Aurora’s query algebra supports seven primitive operations, some of

the important ones being select, aggregate, split, union and resample. This architecture

supports continuous queries for real-time processing, views, and ad-hoc queries. It

maintains historical storage in order to support adhoc queries. All these query types are

supported using the same set of operational blocks. Quality of Service is associated with

the output. It is specified in terms of a two-dimensional graph that specifies the output

in terms of several performance-related and quality-related services. It is the QoS that

determines how resources are allocated to the processing elements along the path of

query operation.

8

Input in Aurora is through a GUI. Input begins at the top of the hierarchy and

makes use of the zoom capability to further assist in the design. Users can then query

the system. Facilities for debugging and single stepping are also provided.

Aurora has dynamic optimization policies, which changes the data flow

computation graph (or network) at run time to improve the performance. Optimization

is based on the types of queries running in the system. It does not optimize the whole

network at once. But does it in parts by considering a portion of the network at a time.

Aurora has a Storage Management module, which takes care of storing all the

required tuples for its operation. It is also responsible for queue management.

Scheduler is designed to cater to the needs of a large-scale system with real time

response requirements. Scheduler deals with operators unlike Eddies [4] that deals with

tuples for scheduling.

2.2 Streams

Streams (STanford StREam DatA Manager) [3] is a prototype implementation

of a complete Data Stream Management System being developed at Stanford. A

modified version of SQL has been chosen for the query interface. It allows the user to

specify sliding window queries in SQL with an explicit referral to timestamps. It

assumes that with explicit timestamp, tuples will be delivered in an increasing order. It

supports logical and physical windows. Logical windows are expressed in terms of

tuples and physical windows are expressed in terms of timestamp. STREAMS support

continuous queries but have not addressed the issue of ad-hoc queries. The system

generates a query execution plan on the registration of a query that is run continuously.

9

Query execution plan is nothing but a set of operators connected by queues. Operators

make used of synopsis (an internal data structure) to store intermediate results. System

memory is distributed dynamically among the synopsis, queues in query plans along

with buffers handling streams coming over the network, and a cache for disk-resident

data.

Operators in STREAMS adhere to the update and computeAnswer model where

in an operator reads data from its input queue, updates the synopsis structures and

writes results to its output queues. Operators are adaptive and take care of the

dynamically changing stream characteristics such as stream flow rates, and the number

of concurrently running queries. Operators can produce approximate answers based on

the available memory.

STREAMS has a central scheduler that has the responsibility for scheduling

operators. The scheduler dynamically determines time quantum of execution for each

operator. Period of execution may be based on time, or on number of tuples consumed

or produced. Different scheduling policies are being experimented.

A comprehensive DSMS interface is being developed that will facilitate the

users and administrators to visually monitor the execution of continuous queries,

including memory usage and accuracy of output. It also plans to provide the system

administrator the capability to modify system parameters such as memory allocation

and scheduling policies.

10

2.3 The COUGAR Sensor Database System

COUGAR is specifically targeted to meet the requirements of sensor-based

applications. This system is designed considering the characteristics of sensor and their

applications. Some of the major challenges facing the COUGAR system are account for

the failures of sensor and its communication, uncertainty of sensor data and distributed

execution of query without global knowledge of the sensor network. COUGAR focuses

on a distributed approach toward query processing where in the workload determines

the data that needs to be extracted from the sensors. COUGAR is based on the Cornell

PREDATOR object relational database system.

 Sensor data is considered as a combination of stored data and sensor data.

Stored data are represented as relations and sensor data are represented as time series

based on a sequence model. Long running sensor queries are supported by this system.

Sensor queries are defined as an acyclic graph of sequence and relational operators.

In COUGAR, signal-processing functions are represented as an Abstract Data

Type (ADT) functions. Sensor ADT’s are defined for sensors of the same type (e.g.

temperature sensor, seismic sensor etc). Public interface to an ADT corresponds to the

signal processing function supported by a type of sensor. Sensor queries are SQL like

queries with a little modification where in ADT can be included in the SELECT or

WHERE clause of the query. Query processing takes place on a database front end

where as the signal-processing functions are executed on the sensor nodes involved in

the query. On each sensor a lightweight query execution engine is responsible for

executing signal processing functions and sending data back to the font end.

11

COUGAR assumes that there are no modifications to the stored data during

query execution that is made sure using Two Phase locking. Virtual Relations are

introduced in order to overcome the disadvantages of ADT.

2.4 Fjord: Architecture for Queries Over Streaming Senor

Fjord [6] is sensor data processing architecture for data intensive sensor-based

applications. It provides a low-level database engine support required for sensor centric

data-intensive systems. The main focus of the system is to provide an efficient, adaptive

and power sensitive infrastructure. This system supports the Berkley Highway lab to

monitor traffic conditions with the help of sensors that are deployed on Bay Areas

freeways.

Fjord’s operators export an iterator like interface and are connected together via

local piper or wide area queues. It provides support for integrating streaming data that is

pushed into the system with disk-based data that is pulled into the system.

Each machine involved in the query runs a single controller in its own thread.

Controller accepts message to instantiate operators, connect local operators via queues

to other operators that may be running locally or remotely. Queues also export an

iterator like interface irrespective of whether the operators are local or remote. This way

it makes the operator ignorant of the nature of their connection to remote machine. Each

query has its own thread, which is multiplexed between local operators via procedure

calls in case of a pull base architecture or via a special scheduler that also control the

input and output of data through the operators.

12

Operators are the primary functional unit of the system. Each operator owns a

set of input and output queues. It reads data from the input queue, performs the required

operations and directs them to the output queue. No processing takes place in the

queues. Stale data are discarded from queues based on the requirements of the

applications. It supports non-blocking operators such as selection and projection and

blocking operators such as join and aggregate. A main memory symmetric hash join

has been implemented which maintains a hash table for each relation. Window based

operations are supported for blocking operators. Considering the nature of streams,

Fjord provides an optimization by combining multiple queries in a single Fjord. This

way a significant amount of computation and memory can be shared there by improving

the overall performance of the system.

Sensory proxy is a prime component of this architecture. It acts as an interface

between the system and the sensors over which the user will poise the queries. It shields

the sensor from having to deliver data to hundreds of interested users. It adjusts the

sampling rate of the sensor based on the current condition of the system there by

preserving the battery life of the sensor, which is one of its prime advantages. It can also

direct the sensors (smart sensors) to aggregate samples in a predefined way there-by

reducing the data communication.

2.5 PSOUP

PSOUP [7] adheres to the needs of a different class of streaming applications

where in adhoc queries and intermittent connectivity also requires the processing of data

that arrives prior to query submission or during the period of disconnection. Data

13

recharging and monitoring applications are the primary targets of this system. PSoup

builds on adaptive query-processing techniques developed in the Telegraph project [8]

at UC Berkeley. It combines the processing of ad-hoc and continuous queries by

treating data and queries in a symmetric fashion there-by allowing new queries to be

applied to old data and new data to be applied to old queries. In order to support

disconnected operation and to improved data throughput and query response time,

PSOUP partially pre-computes and materializes results.

User interaction with the system begins by submitting a query. On registration,

PSOUP returns a handle to the user, which can be used for further communication of

results. Queries are specified in the form of SELECT-FROM-WHERE clause. It also

has provision to specify a window using the BEGIN and END clause. System is flexible

to adapt to logical windows (windows specified in terms of number of tuples). System

can be easily extended to support different sized windows for each stream.

Query and data are stored in structures called State Modules (SteMs). There is

one Query SteM for all the queries in the system and on Data SteM for each data

stream. PSOUP supports both historical and ad-hoc queries. For historical queries,

whenever a query is registered to the system it is entered into the Query SteM and then

probed to the Data SteM. For continuous queries, on the arrival of a new data item, it is

inserted into the Data SteM and is used to probe the Query SteM. Results of probing are

stored in a Result Structure. User queries are answered from this data structure. It is this

data structure that allows supporting the period of disconnection with the system.

14

A generalized symmetric join that accepts more than two streams, is used for

joining queries multiple data streams.

2.6 NiagaraCQ

NiagaraCQ [9] is a system that mainly focuses on supporting continuous query

processing over multiple, distributed XML files. It is mainly for web-based users as

they can scale to a very large number. It is the continuous query sub-system of the

Niagara project, which is a net data management system being developed at University

of Wiscons in and Oregon Graduate Institute. It takes advantage of the fact many web

based queries share similar structures. Groping similar structures can save on the

computation cost, memory cost and I/O cost. Moreover grouping of selection predicates

can eliminate a large number of unnecessary query invocations.

 NiagaraCQ uses a novel approach of group optimization. It uses an incremental

group optimization strategy with dynamic re-grouping. When a new query arrives, the

existing groups are considered as possible optimization choices instead of re-grouping

all the queries in the system. The new query is merged into existing groups whose

signature match that of the query. Another advantage of this system is that it uses a

query split scheme that requires very little modification to a general-purpose query

engine. After the signature of a new query is matched, the sub-plan corresponding to the

signature is replaced with a scan of the output file produced by the matching group.

This optimization process then continues with the remainder of the query tree in a

bottom-up fashion until the entire query has been analyzed. NiagaraCQ also supports

grouping of change-based and time-based queries in a uniform manner.

15

NiagaraCQ defines a simple language for creating and removing continuous

queries. Continuous queries can be written by combining XML-base queries with

timing clause. These queries are deleted from the system on the expiration of the time

specified in the query. Since it is a large-scale system, not all the information required

by the system can fit in main memory. Hence caching is used to obtain good

performance with a limited amount of memory. It caches query plans, system data

structures and data file to improve performance.

 NiagaraCQ is developed using Java (JDK1.2) and a validating XML Parser

from IBM. Main components of the system are

• A continuous query manager that provides a query- interface to submit the query

and later executes the given query.

• An optimizer to perform group query optimization.

• An event detector to detect time event and changes of data sources.

16

Chapter 3

STREAM DATABASE ARCHITECTURE

Data Stream Management System (DSMS) being developed for processing

queries from MavHome, provides a query execution platform for streaming based

application. This is a complete system where in a query, submitted by the user, is

processed at the server and the output is returned back to the user. It is a client server

architecture. Following are the important modules of DSMS.

Figure 3.1 DSMS Architecture

17

3.1 Client (User Input)

DSMS provides a predefined set of services to its users. It is command driven

and protocol oriented. The Server listens to particular port for a command input from

the client. Each command is associated with a protocol that defines the communication

between the client and the server for the service to be successfully offered. Protocol

clearly specifies the input it expects from the client, the function it is going to perform

using the given input and the output that will be sent to the client. Client needs to be

well aware of the protocol in order to obtain the desired service from the DSMS server.

In general a client should provide the following functionality.

• Provide an interface (preferably a GUI) from which user can choose one of the

services offered by DSMS.

• Based on the service chosen, it should provide an interface to collect the

required input from the user.

• Covert the input from the user into a form specified in the DSMS protocol.

• Communicate with the server by sending the command for the service chosen

and later follow it with the input constructed for the command.

• Wait for a response from the server. Present the collected response in a user

understandable fashion.

Client can be one of the following types:

• It can be a GUI based client developed using Java swing or Java AWT.

• It can be a web-based client that uses Java technology.

18

• It can be a non-GUI based client where input comes from a predefined source

such as a file. This can be used for experimental purpose.

3.2 Operators

Operators are the basic building blocks of DSMS. Each operator is an

independent running unit. Operators work in close association with buffers. Query is

modeled as a tree of operator connected using buffers. Operator pulls data from input

buffers, processes the data and pushed the generated data on to the output buffers. The

smallest schedulable entity in a DSMS is the operator. To support this property,

operators need a mechanism that allows it to be controlled from external sources

(mainly the scheduler). It supports operations such as start, stop, suspend and resume

which allows a fine-grained control over its execution. During its life span, operators

can be in one of the following four states viz. ready to run, running, suspended or stop.

Each operator has at least (e.g. select, project etc) one input queue and atmost

two input queues (e.g. join). It can have more than one output queues as queues may be

shared among operators in a query tree. Operators can have a priority associated with it.

Priorities can-be user defined or generated by the system over the life span of the

operator. It helps the system take decisions for fair resource allocation between

queries/operators.

 Operators are divided into two categories based on the way they process tuples.

1. Window-Based Operators: These are the operators that require certain amount of

data before it can generate its output. Hence these operators operate on a

19

window worth of data and produce their output. Join and aggregate are examples

of window-based operators.

2. Non-window Based Operators: These are the operators, which work on a single

tuple at a time. They don’t need to wait for other tuples. Select, project and split

are examples of non-window based operators.

Following are the operators implemented in DSMS:

• Select (Filter): Select does a conditional filtering of tuples. It picks up a tuple

from the input buffer, evaluates the condition and sends the satisfying tuples to

the output buffer.

• Project: Project brings out the desired attributes from a given tuple.

• Join: It is a binary join where- in it combines a set of stream based on some pre-

specified condition.

• Aggregate: It performs functions such as max, min, count, average on a window

worth of data.

3.3 Buffer

Buffers are the temporary storage that is being extensively used in DSMS. They

are the bridge, which connects the operators to make the query tree. Data flows from the

stream into the buffers, this act as an input to the operators, which produces new data

that are again output to some buffer. Hence buffers are very important resource that

affects the overall performance of the system as a whole. Buffers are categorized into

two types based on how they make use of main memory, which is a very costly resource

in this system.

20

UnBounded Buffer: Entire storage space of unbounded buffer comes from main

memory. These buffers are very fast operating one and should be used intelligently as

improper usage of this may affect the overall performance of the system.

Bounded Buffer: Bounded buffers have a predefined size up to, which the data

will be stored in main memory. If data exceeds beyond the specified size, it will be

stored in secondary storage. This whole operation of storing data in secondary memory

is transparent to the user. Buffer management policy ensures minimum access/usage of

secondary memory.

Operators are the primary users of buffers. More than one operator can be

reading from a buffer at the same. But only one operator writes to a buffer at one time.

Hence appropriate locking must be ensured to preserve the integrity of data in buffers.

Also the process of purging (process of removing tuples from the buffer) is made more

complex as there can be more than one consumer of buffer data. Purging logic should

make sure that a tuple is removed from the buffer only if all the operators consuming

tuples from the buffer have read it.

3.4 Streams

Streams are the primary data source of DSMS. Raw data (tuples) are fed

through the streams. They are not a predictable source of data. It can have a constant

flow or may be bursty in nature.

 Each stream has to be well defined. It should clearly specify all the attributes

that are part of the streams, their data types and their position in the stream. Definition

of streams differs from application to application. It is the responsibility of the

21

administrator to define streams before data is sent to the system and queries are defined

over it. Stream definitions are stored throughout the lifetime of the system. These are

used for query building, condition evaluation in operators etc.

 Data from streams are collected into buffers and then used by the query

operators to generate results for the query. Buffer size of the base streams should be

considerably large. Unbounded main memory buffers are good the performance of

DSMS.

3.5 Scheduler

 Scheduler is one of the central components of DSMS that controls the

execution of operators. Scheduler is executed as a high priority thread running in the

system and is started with the Server. It maintains a ready queue, which is a list of

operators that are in ready to run state. Based on the scheduling policy, it picks up an

operator from the ready queue and runs it for a time quantum. The length of the time

quantum is based on the scheduling policy. One of the following conditions may occur

during the running state of the operator.

1. Operate may finish its execution. In this case, operator stops its execution

and informs the scheduler about it. If the time quantum of the operator is not

completed, scheduler releases the execution of the operator and removes the

operator form the ready queue.

2. Operator may not have enough data to process. In this case, buffer suspends

the operator. Thereafter, operator informs the scheduler about it suspension,

which in turn releases its execution and removes the operator from the ready

22

queue. Whenever some data is available in the buffer, buffer will bring the

operator to ready-to-run state by adding it into the ready queue.

3. Time quantum of the operator may get expired. In this case, scheduler

suspends the execution of the operator and puts the operator in ready to run

state by adding it to the end of the ready queue.

In order to ensure timely response and good performance of the overall system,

scheduling policy needs to be chosen carefully. The following two policies are being

used in the initial phase of DSMS.

1. Round Robin: Here the ready queue is a simple FIFO queue. Scheduler picks up

the top most operators from the ready queue and schedules for a fixed time

quantum. Disadvantage of this policy is that queries with high priority will not

get higher quantum of time.

2. Weighted Round Robin: This policy aims at giving more time to operators with

high priorities. Here operators are scheduled in a round robin fashion but the

time quantum chosen is a function of the priority of the operator. Higher the

priority higher is the time quanta. This policy avoids starvation as all operators

are scheduled in a round robin fashion on a FIFO basis.

3.6 Run Time Optimizer

 DSMS is a real time stream management system. It is not only important to

produce correct output but also to produce in an efficient manner keeping in mind the

Quality of Service (QoS) specification of the user. Also the systems state is constantly

changing during its lifetime as number of queries may be added, delete or modified.

23

This dynamic nature of the system brings forth the need for a module that not only

monitors the systems performance but also comes up with a plan that can produce an

efficient output. Run Time Optimizer is a module to accomplish this. Its prime

responsibilities are.

1. Make sure that the QoS specification for queries provided by the users are met.

For this it constantly monitors the output of each and every query and makes

sure it is does not violate the value specified by the user. If so it should take

measure to bring it back to an acceptable value.

2. Monitor the performance of the system and optimize it as needed.

For this it may take the help of Alternate Plan Generator to generate an alternate

plan for a query that might not be efficient by itself but may prove to be efficient when

combined with other queries in the system. In order to achieve its goal, it can

dynamically increase or decrease the priorities of the operators. Run Time optimizer is

currently not supported in the system.

3.7 Alternate Plan Generator

Initially user submits a query plan to the system. This is an executable plan but

may not be the most efficient plan to run. Several equivalent plans may be available for

this query. In order to generate these plans, a separate module is required. This module

is the Alternate Plan Generator.

Alternate plan generator takes a base plan submitted by the user, and generates

one or more plan that can generate the same output. It can then be merged with the

existing plan with the system to conserve resources such as computation and memory.

24

This dynamic regrouping [10] is needed to satisfy the QoS requirements. Generated

plans can be used for one of the following purposes.

• Alternate plans can be used in order to obtain an initial optimal plan for the

query.

• Generated alternate plans can be used by the Run Time Optimizer to generate an

overall efficient global plan.

Alternate Plan Generator is another topic to be addressed in the future.

3.8 Instantiator

A plan object is tree of operator nodes. Each Operator node has enough

information for the corresponding operator to be instantiated. Plan object is one that is

initially submitted by the user or generated by the Alternate Plan Generator (using the

initial plan). The role of Instantiator is to take a plan object and convert it into operator

objects that can be scheduled. A complete cycle for query instantiation is as follows:

• It takes in a plan object and traverses in a bottom up fashion so that the operators

are instantiated in the order in which data flows (from leaf to the root).

• It reads the information from the operator data node, identifies the operator, and

converts the data into a form required by the operator and instantiates the

operator.

• It then adds the operator to the scheduler’s ready queue.

3.9 Server

DSMS server is a TCP Server that listens to a particular port. It provides a set of

services to the client. Each service is associated with a command. Following the

25

command it executes the protocol for the service. The set of commands supported by

the server is given below:

• Execute a query.

• Register a stream.

• Send all streams to the client.

• Send a particular stream to the client.

Additional commands can be added to the server. Apart from supporting the

above commands, server also takes care of starting all the major components of DSMS.

It starts the scheduler as a high priority process. Alternate plan generator is instantiated.

Run Time Optimizer is started as a separated thread. Server also maintains the data

structure to store and retrieve stream definition. It is also a place to hold data structures

that are used for various house keeping activities like experimental results,

configuration data etc.

26

Chapter 4

DESIGN

4.1 Schema:

 Stream Database supports more than one stream. Each stream feeds tuples into

the system. Each stream has a set of attributes and data types. Stream information needs

to be stored in the system during the processing of queries over those streams.

Collectively the set of attributes and the data types, which represents a stream, is called

a schema. The concept of schema is analogous to the concept of tables in DBMSs.

4.1.1 Requirements of schema for stream databases are:

 A schema represents a stream in the system. Schema should be able to store the

attribute name, its data type and its position in the tuple. This information set should be

expandable for future purpose. System should be able to support large number of

schemas. Schema can be either user given or system generated. System generated

schema are used for storing temporary information, which is generated as a part of

query. These types of schemas are referred as intermediate/temporary schema.

 Details of schema should be accessible based on attribute’s name or its position.

It should be easily accessible by all modules of a stream database, which is a prime

requirement for operators. Operators such as SELECT, PROJECT and JOIN accesses

the schema to bring the input into a form, which is efficient for processing. For

example, the attribute name in the PROJECT operation are converted into a list of

27

positions using the schema so that the PROJECT operator can use the position

information on the input tuples and extract the required field.

 Consider an example of MavHome data. Here a stream is constantly generated

that represents the activities of various devices in the room. In order to represent this

stream, a schema needs to be created. Figure 4.1 shows the skeleton of the schema.

Figure 4.1 Example of MavHome Transload Schema.

4.1.2 Schema Design:

 A dynamically growing list is recommended to store the schema information of

a stream database since there is no limit on the number of schemas stored in the system.

Each row in the list stores information for a schema, which can be expanded in the

future. In order to support this expansion the schema information structure need to be

dynamic in nature. Schema information can be accessed based on attribute’s name or its

position. To support these access-mechanisms the schema attribute information is stored

as a separate entity. Moreover, the total number of information stored for a schema

attribute should be expandable for the future, so a structure that grows dynamically is

needed. Hence all the information about an attribute of a schema such as attribute’s

28

name, position, data type, etc is stored in a separate structure. This way there would be

N structures for each of the N attributes of the schema.

 A separate structure should be maintained that provides access to attribute

information based on attribute name. Similarly another structure is needed that will

provide access to attribute information based on attribute’s position. Both of these

structures should be accessible using the schema name.

Figure 4.2 shows the representation of schema in terms of its structure described

above.

Figure 4.2 Schema Representation

4.2 Buffer Management

4.2.1 Requirements for Buffers and their Management:

 The following are the requirements for a buffer in a DSMS.

• DSMS should support operations in limited main memory environment.

29

• Buffer Management should be such that the use of secondary storage should be

minimized, which helps in improving the overall efficiency of the system.

• Buffer Management should be such that each buffer should support multiple

operators.

• Buffer should support flow based scheduling. (In this scheduling scheme, an

operator suspends itself when it has processed all tuples from the input buffer.

After that it is the responsibility of buffer to resume the operator when new

tuple(s) arrive.)

• It should provide an efficient purging mechanism for removing stale tuples from

the main memory.

• It should have a policy that decreases the overhead of purging secondary storage

tuples.

4.2.2 Buffer Design:

 Buffers are the basic building blocks of a DSMS. They are the primary storage

structure of DSMS. Buffers are used for storing tuples that flows from the streams

(source) to the end user (destination) through a set of operators. Buffers are non-

processing components of a DSMS; i.e. the state of tuples is not changed while they are

in buffers. Tuples flow in a “first in first out” (FIFO) fashion through the buffers. Hence

buffers are implemented as FIFO queue.

 Buffers are used for the following two purposes:

1. Buffer acts as storage for the streams that are the primary sources of tuples. As

shown in Figure 4.3, each stream is associated with a buffer.

30

2. In addition to streams, operators also use buffers. Operators read from a buffer,

process the data and write the output tuples to a buffer.

Figure 4.3 Buffer Usage in DSMS

 One of the distinguishing features of a DSMS is that it provides exact answers

and not approximate answers [11]. In order to achieve this feature, all tuples are

considered, which means DSMS has to provide a mechanism for storing every tuple in

limited memory environment. Based upon this requirement buffers are classified as

follows:

Infinite Main Memory Buffer: In this case, all the tuples are stored in the main

memory. These buffers are very fast in operations as compared to its counterpart. There

is no limit on the amount of tuples that can be stored in these buffers. Hence, in a

limited memory environment, these buffers should be carefully used. Stream Buffers

are good candidates for main memory buffers as they control the process of feeding the

tuples to the systems.

31

Limited Main Memory Buffer: Limited Main Memory buffers have a limit on the

number of tuples that can be stored in main memory. If the number of tuples stored in

main memory exceeds the specified limit, the remaining tuples needs to be stored on

secondary storage. Tuple latency of limited main memory buffers can be very high as

compared to its counterpart because of the use of secondary storage device. One of the

vital requirements of this buffer is the choice of the number of tuples that can be stored

in main memory (limit). Limit boundary should be chosen in such a way that the

number of tuples stored in secondary memory is less. It is possible that no tuples land in

the secondary storage thereby providing better performance. There are chances that less

amount of tuples get stored in the secondary memory and these tuples are fetched into

the main memory of the buffer while the consuming operator is in suspended state. This

gives the consumer an illusion that it has an infinite main memory buffer.

 Main memory and CPU time are the important resources in a DSMS. The use of

main memory is directly related to the choice of buffer type and the selection of

memory limit on secondary buffers. There are certain factors that need to be taken into

account while selecting these buffer parameters. These factors are:

• Input rate: Rate at which tuples are enqueued into the buffer.

• Tuple consumption rate: Rate at which tuples are read from the buffer. Since

buffers can have more than one consumer, the rate of the slowest consumer must

be considered as the output rate, as tuples cannot be removed from the buffer

until all consumers have read it.

32

 It is difficult to predict these parameters in streaming applications as the choice

of buffer size and its type is made dynamically. The following are the two places at

which these choices can be made.

• Buffer type and its limit can be decided when buffers are created. Based upon

the nature of streams, priorities assigned to operators, type of queries and current

system conditions, a heuristics should be develop to predict the input rate and

the tuple consumption rate of the queries.

• As queries are added, removed or completed in the system the load on the

system changes dynamically. Also, the QoS requirement forces the optimizer to

change some parameters in the system in order to provide a desired level of QoS

to the users. Because of these changes in the system, the input and output rate of

operators gets changed. Hence, we need to reconsider the buffer parameters to

provide an optimal solution.

The above two responsibilities lies with a runtime optimizer, which is a future

work to this project.

4.2.3 Multiple Operators Reading from One Buffer:

There are two alternatives for associating buffers with operators, which are as

described below.

One Operator per Buffer: Here only one operator is associated to read from a buffer.

The advantages of this method are.

• It does not require a complex logic for buffer management.

33

• Also, the average tuple latency will be less as a tuple stays for a minimum

amount of time in the buffer.

But the disadvantages are:

• If many operators are reading the same data from different buffers, there will be

considerable amount of main memory that will be wasted in duplicate tuples.

The amount of memory wastage is directly proportional to the number of

operators reading the same data.

• Also, it requires a considerable amount of time to create the duplicate buffers.

Multiple Operators per Buffer: To avoid the disadvantages of one operator per buffer,

another scheme is considered, which supports multiple operators reading from the same

buffer.

4.2.4 Design of Multiple Operators Reading from a Buffer

 Operators are the only consumers of tuples from the buffers. There can be more

than one operators reading from a buffer but the consumption rate of each operator is

different. In order to support these different rates of tuple consumption, buffer maintains

a pointer (currentUnReadElement) for each operator associated with the buffer. This

pointer points to the next tuple in the buffer that has not been read by the operator.

Beyond this pointer, operator has read all elements from the buffer.

 Initially each consumer operator has to register with the buffer. Buffer maintains

a table, which contains the operators registered with the buffer and it s

currentUnReadElement pointer. On registration currentUnReadElement for that

34

operator is initialized to zero. This pointer needs to be adjusted when elements are

dequeued from the buffer.

 A design alternative was to keep this pointer in the operator itself. In this case,

during the process of purging tuples, buffer had to communicate with all the operators

that were registered with the buffer to obtain the latest value of currentUnReadElement.

Also, after purging logic, buffer would have had to send the amount of tuples that were

purged back to all registered operators so that the value of currentUnReadElement can

be adjusted appropriately. Furthermore, it needs to make sure that registered operators

are not reading tuples from the buffer while the buffer is processing the purging logic.

Therefore, to avoid all these possible communications between operators and the buffer,

the currentUnReadElement was kept within the buffer.

Figure 4.4 CurrentUnReadElement Pointer

4.2.5 Purging Logic:

 Purging logic is a complex process as more than one operator is registered with

the buffer. Before dequeuing a tuple from the buffer, purging logic needs to make sure

that the element is of no use to any of its consumers. In short, all operators have read the

element. For this, the purging logic makes use of currentUnReadElement pointer of

35

each buffer. It finds out a point in the buffer until which all the operators have read from

the start of the buffer. To do this it finds the lowest element from the table shown in

figure 4.4. For example, 645 would be the point in the buffer until which all elements

can be safely deleted. It then dequeues all elements to that point.

 Another important decision is to determine when to call the purging logic.

Purging logic is called whenever an operator reads a tuple using its

currentUnReadElement pointer. Just peeking into the buffer does not require the calling

of purging logic.

4.2.6 Buffers Support for Scheduling:

 Scheduling of operators is done with the help of a scheduler. Each operator is

allowed to run for a specific time quantum. Once the time quantum is elapsed some

other operator will replace it based on the scheduling policy. There is another policy

called flow-based scheduling, which relies on the scheduling of the base operating

system. In this policy, an operator is scheduled only if the input tuples are available for

processing. Rest of the scheduling is kept at the discretion of the operating system.

Hence in this scheme a query tree is instantiated in a bottom up fashion and operator are

scheduled in the same order. The leaf operators, which get data first, are scheduled first.

If data is not available, operators are suspended.

 In all the policies of scheduling, if no input data is available, the operator

suspends it-self. This is an intelligent way of saving costly CPU resources. But to

support this policy, we need a mechanism through which the operator can be

36

rescheduled. This requires a communication between the operator and its input buffer.

The process that is carried out in order to support this scheme is given below.

• If no data is available in the input buffer, operator will suspend itself. The reason

is the lack of tuples in the input buffer, therefore it informs the buffer of its

suspension.

• Buffer adds the operator to the suspension list. This is a list of operators that

have been suspended because no data was available in the buffer.

• When new tuples are enqueued in the main memory buffer, it processes the

suspension list and one of the two things will be done based on the scheduling

policy used. Buffer resumes the operator picked from the suspension list. This is

done in case of flow based scheduling. For other scheduling policy, buffer puts

the operator in ready to run state and the scheduler will schedule it based on the

policy used.

• Finally Buffer removes the operator from the suspension list.

4.2.7 Buffer Management:

 The objective of buffer management is to provide an illusion to the user that it

has an infinite memory at its disposal. It is an easy task in case of infinite main memory

buffer, which has a huge amount of main memory. The real problem comes with limited

main memory buffers. For limited main memory, there is an upper limit on the number

of tuples that can be stored in the main memory. If tuples exceed this limit, they are

stored in secondary storage buffers. Producers and consumers of the buffers should be

given an interface whereby they can store tuples in the buffer and retrieve the stored

37

tuples from the buffer. The information that the tuple is stored in or retrieved from main

memory or secondary memory should be transparent from an operator’s viewpoint.

Each buffer is associated with two secondary storage files. In traditional log

based applications, if an application wants to read some data from the file, it has to first

do a sequential scan on the file to reach the point where the object is stored. This can

prove to be an unnecessary overhead of scanning through the file before reaching the

actual data. This overhead is directly proportional to the file size.

 To avoid sequential scan of log files, this design brings in a mechanism of

indexing into the file and reading only the required object from the correct position. All

the tuples in the buffer log file are stored as serialized byte. In order to get a particular

tuple from the buffer log file, it would require the exact starting position of the byte

stream for the tuple and the byte size of the tuple. This information is obtained at the

time of writing the tuples into the buffer log files. Before writing into the log files, this

information is stored in a main memory index table. As shown in the figure 4.5, each

entry into the index table consists of a Sequence Number, the byte size of the tuple and

its offset into the log file. For each buffer log file there is an associated index table.

Figure 4.5 Index Table

38

4.2.7.1 Need for Two Log Files:

 Lifetime of a buffer is associated with the lifetime of a query, an exception to it

being stream buffers whose lifetime is equal to that of DSMS. For continuous long

running queries buffer lifetime is very large. Hence more and more number of tuples

gets accumulated in the buffer log file over the life cycle of the query. We should have a

mechanism to purge these tuples; otherwise it will not allow new tuples to be brought

into the buffer from secondary storage. One method of doing this is removing a tuple

from the log file after it has been used. But this may prove to be very costly because of

the following two reasons:

1. The cost of purging individual tuple is high when secondary storage is involved.

2. It also requires adjusting the offset of all the remaining tuples in the index table

by the size of the tuple that was purged.

The cost of the above two increases with number of tuples in the buffer thereby

making the whole process inefficient.

 In order to make the purging logic cost effective, the concept of two buffer- log

files is introduced. Here we keep storing the tuples into the first buffer log files till a

predefined limit is reached. Once that limit is reached, the tuples are stored in the other

buffer log file. The buffer manager starts reading tuples from the first secondary storage

log file as soon as enough memory is available in the main memory buffer. Then the

buffer managers switches the reading process to the next log file the moment all tuples

are read from the first file. After this the first file can be cleared quickly by reopening it

into write mode. This way we can delete all tuples from the file with negligible cost.

39

Also, the corresponding index table needs to be cleared when the buffer log files are

cleared.

 A separate process is used for reading tuples back from the secondary storage

file. This process is invoked when the main memory buffer is empty by x% (where x is

a configuration parameter) of its allotted limit. This way we can minimize the

interference of secondary storage and increase the overall efficiency of the system. The

process of reading tuples from the file should initiate from the first file and then proceed

to another. It should also take care of the process to switch the reading to another file

when all tuples from the current file are read and still there is some place left in the

main memory buffer. The whole process should be repeated until main memory is

exhausted or there are no tuples left in the secondary memory.

 Figure 4.6 depicts the buffer management policy used for DSMS.

Figure 4.6 Buffer Management in DSMS

40

4.2.8 Operations on Buffer: The operations performed on a t buffer are

4.2.8.1 Enqueue:

Enqueue provides an interface for the producers of the buffer to store tuples in

the buffer. Producer of the tuple is not aware that the tuple is going to main memory or

to the secondary memory. Enqueue compares the size of the buffer with its specified

limit. If the limit of main memory is crossed, enqueue stores the tuple in the appropriate

secondary storage log file. It also holds the responsibility of creating the log file only

when it does not exist. Before storing the tuple in secondary storage, enqueue first

places the tuple information in the index table. Then from the index table it knows the

offset of the tuple in the file. Using this information, it stores the tuple in the appropriate

log file.

4.2.8.2 Dequeue:

Dequeue removes a tuple from the main memory. It is primarily called by the

purging logic. Another responsibility of dequeue is to start the process which reads

tuples from secondary storage into the main memory buffer. It checks if the main

memory buffer is x% empty (where x is a value read from DSMS configuration

parameters) before starting the external memory read process. Dequeue also adjusts the

currentUnReadElement pointer of all registered operator after removing an element.

4.3 Operators

 Operators are the one of the key components for query execution for stream

database. Traditional DBMS database operator works on the data set that is available

41

before execution of the operator. Here the flow of tuples is between operators. One

operator passes on a tuple directly to another operator in the hierarchy. In short, the

flow of tuples is synchronous. Also some of the operators such as JOIN and

AGGREGRATE are blocking in nature. In this case, the entire set of data is expected

before producing the output. Moreover the applications are such that the data set is

available before hand for the operators to process. For example in order to compute a

JOIN, all the tuples from both the tables are available for processing and this way the

joining techniques had a different focus and scope for improvement.

 Stream database has totally different set of characteristics, which does not suit

the design of traditional DBMS operators. Moreover the design of traditional DBMS

operators was done keeping in mind the query processing of business processing

applications that had a store and query approach. Streaming applications require

incremental and continuous delivery of output to the users. Moreover there is no limit

on the number of tuples that are fed to the system. These properties require the

operators to be non-blocking.

 Tuples are asynchronous in nature but the operators can process tuples at a fixed

rate. Hence there comes the requirement to convert the asynchronous streams to one

that can be easily fed to the operators. Buffering tuples into stream buffers helps to

convert asynchronous streams to synchronous one. Operators reads data from Stream

buffers, processes it and outputs the data to the output buffers. A buffer provides a

connecting bridge between two operators to route the tuples from the stream buffers to

the end user.

42

4.3.1 Requirements of Stream Operators:

• Operator should be a schedulable entity. Execution of operator can be controlled

by external components such as Scheduler and Buffers.

• Operators can read either from one or two input buffers. Operators like SELECT

and PROJECT requires only one input buffer where as JOIN operator requires

two input buffers.

• Operators should be able to output the same tuple to more than one output

buffer. This might be required when a single operator can server more than one

query. This feature will come into play when common operators between

queries are combined in global query optimization.

• Operators should be able to support flow-based scheduling. In Flow based

scheduling, an operator should start processing with the arrival of tuples in input

buffers and suspend itself when all the tuples in the input buffer are processed.

Hence there should be a provision in each operator to suspend its execution

when all tuples have been read from the input buffers.

• Operator should have the capability to stop its execution when the end query

condition is reached. In this manner the entire query will be executed on it own.

This way there is no need for the scheduler to monitor the stopping of the query.

• Each operator should have the provision to support Quality Of Service (QoS)

requirements specified by the user.

43

4.3.2 Operator Model:

 An operator model is designed to meet the requirements of any stream operator.

All operators should be in accordance with the operator model.

Figure 4.7 Operator Model

Each operator reads data from input buffers, processes it and outputs the

generated tuples to the output buffers. Two important properties that each operator

possesses are state and priority that are essential for scheduling [8] stream operators.

1. State: State represents the current execution state of an operator. At any given

time after instantiation, an operator can be in one of the following state:

a. Ready To Run.

b. Running.

c. Suspended.

d. Stopped.

2. Priority: Priority defines the precedence of execution of the operator. Priority is

one of the ways of controlling the QoS requirements set by the user. Priorities

range from zero to nine with zero being the lowest priority and nine being the

44

highest. If the user initially sets no priority, a default priority of five is given to

the user.

4.3.3 Operator State:

 Lifetime of an operator spans across four execution states. The state of

execution depends on the following parameters.

1. Availability of tuples: Since operators supports flow-based scheduling, they can

run only when tuples are available. If no tuples are available, an operator will

suspended its execution and waits for tuples to arrive. On the arrival of tuples,

buffer brings the operator into “running state” or “ready to run” state depending

on the scheduling policy.

2. Availability of CPU resources: CPU cycles are the primary resources for

operator execution. If CPU cycles are available to an operator, it can be in

running state. Based on the scheduling scheme or availability of input tuples, the

CPU resources can be switched to other operators and bring the current operator

to “ready to run” or “suspended” state.

3. Scheduling Policy: Scheduler is a component that controls the execution of an

operator. State transition primarily depends on the scheduling policy in use.

4. End Query: An operator is transitioned into the stop state when end query

condition is reached.

 Depending on these parameters, an operator can be in one of the above-

mentioned states of execution. Figure 4.8 shows the state transition diagram.

45

Figure 4.8 Operator State Transition Diagram

1. Ready to Run: This state says that operator has enough input tuples to carry on

its execution. It is waiting only for CPU resources. This state tells the scheduler

that the operator is ready to run and is in contention for scheduling. Initially

when the operator is instantiated, it starts in this state. During execution of an

operator, if tuples are available and the time quantum assigned to the operator is

expired, the scheduler brings the operator back to this state.

2. Running: Based on the scheduling scheme, an operator will be chosen for

execution if it is in ready to run state.

3. Suspended: If tuples are not available to the operator, it will suspend itself and

informs the buffer of its suspension. Later when tuples are available in the input

buffer, it will either bring the operator in ready to run state or running state

based on the scheduling policy. For flow-based scheduling it will be brought

directly to running state and for all other policies it will be transitioned to ready

to run state.

46

4. Stop: An operator is transitioned in the stop state when the operator processes all

the tuples and the end query condition is reached.

Buffers, Scheduler, Instantiator and the Operator itself are responsible for the state

transition.

4.3.4 Operator Priority:

Controlling the execution of operators can easily influence the overall

throughput of the system. Hence there is a need to provide a control over the execution

of an operator. Priority plays a pivotal role in providing this control. Each operator has a

priority that ranges from 0-9, the default being 5.

 Priority can be set in one of the following manners:

• Default Priority: If user does not have any specific QoS requirements, then the

query Instantiator will instantiated the operator with a default priority of five.

• User Specified: A user is allowed to specify certain level of QoS by specifying

the priority level for a query. When that query is submitted for instantiation, all

operators of the query are set according to the priority of the query.

• System Generated: A priority can also be assigned/changed during the execution

of an operator. If one operator is being used by more than one query or if it is

one of the slow moving operators, then to increase the efficiency of the system

as a whole, the optimizer can change the priority of the operator. Again after

monitoring the QoS output for the query, if the optimizer realizes the

degradation in the query output quality, then it might change the priorities of

some operators in the system such that the desired QoS for the query is obtained.

47

4.3.5 Operator Types:

Basically there are two types of operators depending how they treat the

incoming tuples.

• Non-Window Based Operators: Non-Window Based Operators can process one

tuple at a time. It takes a tuple from the input buffers, processes it and then

generates the output into the output buffers. These operators do not have to wait

for a set of tuples to begin their execution. These are naturally non-blocking in

nature. SELECT and PROJECT are examples of non-windowed operators.

• Window Based Operators: Some operators like JOIN and AGGREGATE

requires a set of tuples in order to begin their execution. In traditional DBMS’s

these operators are blocking in nature. They have to wait for the entire set of

data to be available before delivering the output to the user. However, the nature

of streaming application and the requirement of streaming operators demands

the operator to be non-blocking. Hence, a solution generally accepted for

streaming data operators is to work on windows. A computational window

defines a set of tuples based either on timestamp or the number of tuples on

which the operator needs to execute. This way the operator does not block for

the entire set of tuples before it starts to deliver the output. Output is completely

delivered at the end of each window.

4.3.6 Query Windows:

Windows are classified as physical or logical based [14] on how windows are

defined.

48

• Physical Window: Certain applications demand processing of tuples based on

the actual life time, in terms of hours, minutes, days, months, etc. Hence the

windows are distinguished based on physical time stamp. For example, Give me

the daily count of the number of students entering for the month of January

2003. Here the window length is of one day and the query’s lifetime spans over

a period of one month.

• Logical Window: Windows can also be classified in terms on number of tuples.

Each window has a certain (user-defined) number of tuples on which the user

needs the query output. For example, For every 1000 transactions generated

from MavHome, find out the count for the transactions coming from Room A.

Here the window is of 1000 tuples and the condition to be checked is for Room

A and the output is aggregate using the count functions. This is a continuously

running query as there is no end query condition.

Both Physical and Logical windows can be further classified depending on how

the window is moving to ge t the next window bounds. The classification is as follows:

Snapshot Window: Snapshot is a single fixed window. Here the windows start and end

points are fixed. These types of windows usually occur in one-time queries. On

generating the output for that window, the query is removed from the system. For

example, Count the number of people entered the lab from 9:00 am – 5:00 pm on Dec

13 2003.

49

Figure 4.9 Snapshot Window

Landmark Window: Landmark window has a fixed starting point and the end point is

moving. If the end point moves in the forward direction, it is a forward landmark

window. On the other hand if the end point moves in the reverse direction, it is a

reverse landmark window. Reverse landmark refers to historical data or data that has

already been processed. Currently this system does not support queries that process

historical data. Hence reverse landmark window is no currently supported.

Figure 4.10 Forward and Reverse Landmark Window

Figure 4.10 shows the forward and reverse landmark windows. The difference

between the two can be seen from the direction in which the window is moving. For

forward window, it refers to the current or the future tuples where as it refers to the past

tuples in reverse landmark. An example of forward landmark query is: List the usage of

the devices in Room A from 9:00 am – 5:00 pm on Dec 03 2003 every hour. In this

query the initial window size is of one hour and for every hour the size of window is

50

increasing by an hour but in the forward direction. The last window is of the size 8

hours.

Sliding Window: Sliding window has both its ends moving in the same direction and by

the same amount. Sliding window can be a forward sliding window or reverse sliding

window based on the direction in which the window is moving. Again reverse sliding

window refers to past data and forward window refers to current or future data. Sliding

window can be further classified based on the starting point of the next window.

Overlap Sliding Window: Here the starting point of the next window is less than the

ending point of the current window. In this case, there are some tuples in the window

that are overlapping in both the windows. Overlapping can be in forward or reverse

direction as shown in figure 4.11. An example of forward sliding window query is: Give

a count of the number of devices turned off over one hour interval between 10 am – 11

am on Dec 15 2003 every 10 minutes. Here the window length is of one hour. The first

window is starting at 10 am – 11 am and the next window is between 10:10 am – 11: 10

am. Hence there is an overlap of 50 minutes between the two windows.

Figure 4.11 Overlap Sliding Windows

51

Disjoint Sliding Window: Here there is no overlap of elements between the two

adjacent windows. They are completely disjoint in nature. Starting point of the next

window is greater than or equal to the ending point of the current window. As shown in

the figure below, disjoint sliding windows can be forward or reverse sliding windows

based on the direction in which the window is moving. An example for disjoint forward

sliding window is: Display the average temperature of Room A every hour from 10pm

to 10 am on Dec 15 2003. The first window length of one hour is between 10pm-11pm,

next between 11-12pm and so on.

Figure 4.12 Disjoint Sliding Windows.

4.3.6.1 Window Representation:

In order to represent stream-based queries, the representation should clearly handle all

of the above window specifications. Normal SQL-based query language does not have

the provision to support window-based operations. Hence an extension is needed in

order to support window-based queries. Also, this representation should support both

physical and logical windows. Furthermore, it should have the capability to support all

kinds of moving window queries.

The following four clauses are proposed for a generic window representation.

52

1. Begin Window: Begin Window defines the starting point for the first window.

2. End Window: End Window defines the ending point for the first window.

3. Hop Size (lower bound, upper bound): Hop Size represents the amount by which

the window will be moving in either direction. It is the hop size that determines

the type of query window.

4. End Query: End Query defines the end query condition.

 For physical window representation all of the above clauses are specified in

terms of physical time stamp and for logical queries, these are specified in terms of

number or tuples. For example, Display the average temperature of Room A every hour

from 10 am to 1o pm on Dec 15 2003 is represented as

 Begin Window = 10 am on Dec 15 2003.

 End Window = 11 am on Dec 15 2003.

 Hop Size = (1hr, 1hr).

 End Query = 10 pm on Dec 15 2003.

Or Display the count for the transaction generated for Room A for every 100

transaction is represented as

 Begin Window = 1st tuples

 End Window = 100th tuple

 Hop Size = (100,100)

 End Query = infinity.

We can control the different types of window movement by varying the hop

size. Below given are the hop movements for different types of window.

53

Forward Only Window: Both the hop bound needs to be positive for this type of

window.

Reverse Only Window: Negative values in both the hop bound gives a reverse window.

Landmark window: Here the lower bound is fixed and set to zero and the upper bound

is a variable. A positive value of upper bound gives a forward only landmark query

whereas negative va lue gives a reverse landmark window.

Sliding Window: Here both the lower and upper bound are specified. If both the values

are positive it is a forward only sliding window whereas negative values move the

window in the reverse direction.

4.3.7 Generic Operator:

 Based on the requirements stated for the stream operators, it is evident that there

are certain properties, data structures and methods common among all operators. Each

operator is a schedulable entity. There is a lot of interaction between operators and

various components of the stream database. Buffers, Scheduler as well as the optimizer

need to communicate with the operators. Hence, it is necessary to present a common

view for all operators rather then viewing them as SELECT, PROJECT and JOIN. If all

other components view all operators as single Object Operator then the process of

implementing this communication can be simplified. Moreover, new operators can be

added in the future without changing other modules. All these requirements lead to

combining the common attributes and functionality of operators into a common

54

(generic) operator. Actual operators such as SELECT, PROJECT and JOIN are

inherited from the common operator.

The following structures/methods are included in the common operators.

• Priority.

• State.

• All operators can output tuples to one or more output queues. Hence the output

queues can be made a part of the generic operator. Input queues cannot be

included in the generic operator as there is only one case that includes two input

queues. Only the join operator has two input queues and so it will be more

logical to include the input queues in the actual operators.

Generic operator should include methods that are useful to control the execution

of the operator like start, stop, suspend, resume etc.

4.3.8 SELECT:

4.3.8.1 Requirements:

 SELECT operator is similar to the FILTER (SELECT) operator of DBMS. The

primary function of the select operator is to filter a given input stream based on the

specified condition. It has one input queue, and can have more than one output queue.

Before starting the operation, it assumes that the condition to be evaluated has been set

by the query Instantiator based on user input. SELECT takes in a tuple from the input

queue and checks whether it satisfies the given condition. If the condition evaluation is

successful then the tuple is output to all the output queues associated with SELECT. If

55

condition evaluation fails then the tuple is discarded and the next tuple in the queue is

processed. SELECT checks for the endQuery condition and stops its execution if the

current tuple has passed the end query condition.

4.3.8.2 Design:

One of the major components of SELECT evaluation is the condition evaluator.

The major issues while designing SELECT was whether to build a condition evaluator

or to use some of the existing evaluators in the market. A lot of effort is required to

build a flawless and efficient condition evaluator that can take in any valid condition

and return whether the output is true or false. Hence a decision was made to use the

existing condition evaluators available for free. FESI (Free Ecma Script Evaluator

which is a powerful utility that can perform many functions in Java, and condition

evaluation is one of them), a java-based tool that provides the functionality of condition

evaluation was selected for the purpose of condition evaluation.

 FESI’s condition evaluator works in the following way.

• It takes in a condition that needs to be evaluated.

• It also requires the operand values in order to evaluate the condition on the

tuples.

• It returns true or false on evaluating the condition.

 Another design issue was to bring the condition to a form that can be evaluated

by the condition evaluator. One of the initial requirements was to make sure that the

condition string was not processed each time a tuple is evaluated. To achieve this

operands are separated out from the condition string and their position is obtained from

56

the schema. Using the operand position information, the mapping of tuple value and its

operands was done. Eventually, the condition evaluation is made simple and efficient.

 A common design issue with all operators was to provide a support for flow-

based scheduling. If no tuples are available from the input buffer, the operation of the

operator needs to be suspended. One way to support this was to ask the buffer to

suspend an operator if no tuples are available in the buffer. However, this would have

put unnecessary burden on the buffer and the operation would also have been time

consuming, as there needs to be communication between buffers and the operator. To

avoid this, the logic was incorporated in the operator itself. If no tuples were available

to be read from the input buffer, the operator would suspend itself. Before suspending

itself, it would inform the input buffer of its suspension. This way buffer knows that the

operator got suspended, as there were not tuples available for the operator to process. In

turn, buffer has logic to resume all suspended operators as soon as a new tuple is

enqueued into the buffer. In this way flow based scheduling is supported, which

improves the overall efficiency of the system.

57

Figure 4.13 SELECT Algorithm

Algorithm for SELECT evaluation is given above. As mentioned in the

requirement, it obtains a tuple from the input buffer and set the operand values to the

condition evaluator and evaluates the condition. If the condition evaluates to true, the

tuple is inserted into the output queue.

If no tuples are available in the input buffer, SELECT informs the input buffer of this

condition and suspends itself.

58

4.3.9 PROJECT:

4.3.9.1 Requirements:

Functionally, PROJECT is analogous to the PROJECT operation of a traditional

DBMS. It takes in a tuple and discards the specified fields in the form a new tuple. It

has one input queue and may have one or more output queues. One of the inputs to

project is the position of list of attributes that needs to be projected out from the tuple.

4.3.9.2 Design:

Project operator requires a list of field operands that needs to be projected. The

actual operation is done using the position of operands in the tuples. User submits a list

of operands that needs to be projected. This list can be converted to a position list by the

query Instantiator or in the Project itself. Either of the two would have given correct

output without affecting the performance. In our design it was decided to convert the

operand list to position list at query Instantiator and pass only the position list to the

project.

Support for flow based scheduling is same as discussed in the SELECT operator.

An important property of the PROJECT operator is that it is a contracting

operator. This means that the input buffer schema will be contracted to form a new

schema. Hence, the output of PROJECT produces a new schema. This schema

information is input from the DSMS client during query instantiation.

Algorithm for PROJECT is given below. Here the assumption is that the

position list is already set before starting the project operation. If the tuples are available

in the buffer, it pulls up one tuple and creates a new tuple by outputting the fields

59

specified in the position list. This new tuple is output to all the output queues associated

with PROJECT. If no tuples are available, then PROJECT suspends itself but before

that it informs the input buffer of its suspension. On receiving a tuple in the buffer, the

buffer will resume the PROJECT operator.

The algorithm for Project is as follows:

Figure 4.14 PROJECT Algorithm

4.3.10 Hash Join

The processing requirement of a join operator is entirely different from non-

windowed operator discussed so far that works on single tuple at a time. Join, on the

other hand, is considered a blocking operator that operates on multiple tuples on each of

its input queues. An operator is said to be blocking if it cannot produce its first output

60

until it has the entire input set is available. In a conventional DBMS where inputs are

clearly defined in terms of finite relations, computation does not involve much

complexity. However, streams being indefinite and potentially unbounded in size,

forces re-examination and modification of the design of traditional Join algorithm to

operate on infinite streams. The design requirements explained below would justify the

additional functionality, which needs to be supported for providing real time response to

streamed queries.

4.3.10.1 Design Requirements:

• Non-blocking operation

• Incremental and Continuous output

• Timestamp Ordering

• Duplicate Avoidance

Non-blocking operation: Data streams are not stored on disk or memory rather

they arrive online asynchronously. This nature of incoming stream makes the

processing more difficult as the input bound is not clearly defined. In order to precisely

define input boundaries for blocking operators, the concept of window is introduced. A

“Join” operator considers all tuples falling in the window within its input bound. Once

all tuples within the current window are processed, windows are moved to consider next

set of continuous data. Also, there is a window class that provides functionality for

creating and manipulating windows. Furthermore, it can provide window definition to

any number of windowed operators. Moreover, simultaneous and/or independent

movement of windows for each operator can also be controlled.

61

 Incremental and Continuous output: In the conventional Join operator, all elements

from one relation are hashed prior to first tuple processing and the elements from other

relations are then used to probe the already hashed tuples. Once all the computations are

made, the entire result is produced at the output. This algorithm fails in processing

continuous streams since it is blocking and does not produce continuous and

incremental output. The stream operator in contrast produces output at regular intervals,

not necessarily at the end of window. This incremental output increases efficiency of

the system as the higher operators in a query tree whether windowed or non-windowed

are not blocked and the end users are also kept updated of the results.

Timestamp ordering: A window-based operation requires its input as well as output to

be timestamp ordered. Timestamp ordering allows this operator to detect window

termination. “Join” reads every tuple and compares its timestamp (‘x’) with the

timestamp associated with current end window (‘y’). If ‘x’ < =‘y’, the tuple is processed

since it falls within the current window. If ‘y’ > ‘x’, it detects window termination since

all tuples beyond the current tuples are guaranteed to fall outside the current window as

they are assumed to be in the increasing order of timestamp. Output tuples must also be

timestamp ordered since higher operators in a query tree can be blocking operators. It is

the responsibility of the operator to produce results not only in timestamp ordered but

also incrementally and continuously to avoid blocking of higher operators.

Duplicate avoidance: The “Join” operator has two input queues that are populated either

by data streams or its children in a query tree. It has two hash tables, one corresponding

to each of its input queue. Tuples are consumed for processing as soon as they enter the

62

input. These contrasts with the design of conventional DBMS join operators that do not

start computation until entire input set is available. The join operation includes the task

of reading one tuple at a time from its input queue, hashing it in its corresponding hash

table based on the value of the joining attribute and probing the other hash table to find

the tuples that fall in the desired window bound and satisfying the join condition. If two

tuples named ‘x’ and ‘y’ are considered for processing at the same time then the output

would be two ‘xy’ if they satisfy the joining criteria. In order to avoid duplicates in the

result, every tuple is processed atomically. An atomic action ensures that the next tuple

is not considered until current tuple is completely processed.

4.3.10.2 Design Alternatives:

 Two threads instead of single thread: Initially this operator was designed using

two threads that had inherent problem of duplicates, as the two threads were running

independently and asynchronously. Left thread was consuming tuples from its left

external buffers, hashing the tuple in its corresponding left hash table and probing the

same tuple against the tuples present in the right hash table. The matched tuples were

joined and produced at the output. The operators maintain these hash tables internally.

Right thread works analogously on its corresponding external buffer and internal hash

table simultaneously. The simultaneous processing of tuples increases parallelism and

response time but does not guarantee correctness, as some of tuples in the output can be

duplicated. Duplicates are produced when both the threads read tuples at the same time

from their corresponding external buffer that satisfy join condition. Then the join

operation would be carried out twice, once by the left thread followed by the right

63

thread generating duplicates. To overcome this problem, two threads were synchronized

to allow atomic processing of tuples. Synchronization completely defeated the purpose

of parallelism, as only one thread could be active at a time. Since correctness of the

algorithm is more important than efficiency, this algorithm is implemented using a

single thread.

Avoid processing of tuples in timestamp ordering: Tuples are processed in order

of their associated timestamp. This is essential to produce output in timestamp order.

Assume two tuples ‘x’ and ‘y’ read from left and right external buffer respectively. If

‘x’ < ‘y’, ‘x’ will be processed first else ‘y’ is processed. When the tuple being

processed is joined with tuples in the internal hash table, resultant tuple would have

timestamp m = max (x, y). This algorithm ensures that all output is automatically

sorted on ‘m’. If this timestamp ordering is not respected while reading from external

buffers, tuples produced at the output may not be always sorted on timestamp and the

higher operators would produce incorrect results. The only alternative to produce the

correct result is to sort the output before delivering them to higher operators that comes

at the expense of running a sort algorithm. A major drawback of this approach is

blocking operation, as higher operators cannot see their first input until all outputs are

produced and sorted by previous windowed operator. Hence this alternative was also

ruled out due the problems mentioned above.

64

4.3.10.3 Variations in Hash Join:

Figure 4.15 Sliding Window Overlap

 There are two variations in Hash Join based on whether common computations

are exploited in overlapping windows. In the case of a disjoint window, there is no

overlap region and hence all windows are computed independently. In overlap

windows, as seen in figure 4.15, the computation between WIS and W2E are common

that can be re-used in the computation of the next window. Based on this concept, hash

join are classified as:

• Hash Join with temporary storage

• Hash Join without temporary storage

Hash Join with temporary storage:

 In this variation, common computation between two successive windows is

exploited. There is a temporary storage involved for storing the computation of current

window that is used for the computation of next window and hence the name “Hash

65

Join with temporary storage”. The process of reusing result produced by the current

window in the computation of next window is explained below.

During the processing of the first window, tuples falling in the overlapped

region are identified. In figure 4.15, common computation involves processing tuples

between W2S and W1E. Only those tuples that fall between W2S and W1E and satisfy

the join condition are produced not only at the output but also replicated in a temporary

storage. This process continues until the current window is completely processed. Prior

to processing of next window, the results of temporary storage are placed in the output

queue corresponding to the second window and hence the name “Join with temporary

storage”. This avoids re-computation of tuples in overlapped region, which can be

substantial if window size and overlap are large.

Hash Join without temporary storage: This variation does not preserve common

computation as each window is computed independently. There is no temporary storage

involved since the results of current window are not materialized for the next window.

The performance difference in these two variations increases as the window size and

overlap increases. This variation can be used when memory is critical since no

temporary storage is involved. However, in stream processing where response time is

critical, “Join with temporary storage” can surpass this variation.

4.4 Query Instantiator

Query Instantiator takes in a query as input from the user and brings it into an

executable form. It is also responsible for starting the process of query execution.

66

4.4.1 Requirements of query Instantiator:

• Design should clearly specify how query information should be submitted to

stream database.

• It should specify what all data should be accompanied as part of user input for

the query.

• It should indicate how would the server respond to the client when a request for

query instantiation is submitted?

• It should support flow-based scheduling.

• It should instantiate operators from the information provided as part of query

input.

• Appropriate configuration parameters must be used while instantiating operators

and buffers.

• Identify operators that require stream as their input and associate appropriate

stream buffers for the operators.

• Create new buffers to store the output of operators.

• Create a passage for flow of tuples from stream buffers to the root operator and

then to the application/user by connecting proper buffers between operators.

4.4.2 Design of Query Instantiator:

This section describes various design issues, challenges and options considered

while designing an Instantiator.

67

Query User Input: Query input defines the form in which query related data is submitted

to the server for instantiation. There are two ways of submitting the query data.

String based Input: One option is to define an SQL like interface to represent a query.

For example, Display the average temperature of Room A every hour from 10 am to 10

pm on Dec 15 2003. To represent this query the corresponding SQL like interface

would be

SELECT avg (temp) FROM roomStream

WHERE BEGIN WINDOW = 10 am on Dec 15 2003

 END WINDOW = 11 am on Dec 15 2003

 HOP SIZE = (1hr, 1hr)

 END QUERY = 10 pm on Dec 15 2003

Validation logic needs to be implemented at the client side, which takes in the

query and validates the syntax of the query. The validation logic also needs to check

whether it refers to a correct stream or not and the fields specified in the query are as

per the description of the schema of the stream specified in the query. To validate this

the entire string had to be parsed once at the client side. Once it is submitted to the

server, it needs to be again parsed and an initial plan needs to be created. From the plan

the operators needs to be instantiated. This holds good for other commands such as

create schema, view schema etc.

Object based input: Here the user is presented with a GUI based interface where in the

user is allowed to submit an initial plan of the query. GUI provides a set of schemas that

are already defined on the server and are being fed with data. User selects the schemas

68

on which the query will be based. Then the interface provides a list of operators from

which the user can select. Once the operator is selected, user is asked for a specific list

of parameters for that object. For example, for the SELECT operator, user will be asked

to enter the filter condition on the stream and for join user needs to specify the joining

attribute and the join condition. For each operator user specifies the input source from

which the operator would read the data. The input source could be a stream or it could

be output from other operators. If a new schema is generated at the output of an

operator then the new schema is sent to the server for creation. A new schema is created

for operators such as join or project where the base input schema is either expanded in

the case of join or contracted in the case of project. Thus a new schema definition is

created, which higher operators in the tree can use. This way user specifies the entire

query tree. The client interface then creates a query tree consisting of operator data

nodes and is sent to the server for instantiation. For example, Display the common

device usage between rooms A and B in the MavHome lab. The corresponding query

tree for this query would be

69

Figure 4.16 Query Tree of Operator Data Node

The query tree shown in figure 4.16 is a tree of operator data node. This tree is

built by the client interface based on the input provided by the user. Now the question is

how to represent the operator data node.

4.4.2.1 Operator Data Node:

The following are the requirements of the Operator Data Node.

• There should be one representation that can hold sufficient data to instantiate

any of the operators supported by the system.

• It should clearly specify the type of operator it is representing.

• It should specify the parameter for the operator that it represents. These

parameters help the query Instantiator to set the properties of the operators.

• It should specify the output stream name. This represents the output tuple that

are generated from the operators. It is especially useful for operators that

70

generate an intermediate schema at their output. Also it informs the Instantiator

the input source and schema for the next operator in the tree.

• It should specify the input stream on which the operator will process.

• It should specify the window parameters required for window-based operators

like Join.

Based on the above requirements, a generic representation of Operator Data Node

was designed. The data node had the following elements.

• Operator Type: This specifies the type of operator like SELECT, PROJECT,

JOIN etc.

• Stream One: A schema represents the buffer from which tuples are fed to the

operator. Stream One specifies this schema. For operators like SELECT,

PROJECT and AGGREGATE only one input stream is required.

• Stream Two: For operators like JOIN, which executes on two input buffers,

Stream Two provides the schema definition on the other buffer. This parameter

is not defined for operators like SELECT, PROJECT and AGGREGATE.

• Input Parameters: This specifies the input parameters for the operator in use.

The value of input parameters varies from operator to operator. For SELECT it

specifies the condition on which the filter operator is carried out on the input

buffer. For JOIN it specifies the joining attribute on the two streams. For

PROJECT it specifies the list of fields that needs to be output as part of project

operation. For example, consider the query Display the common device usage

71

between rooms A and B in MavHome lab. The input parameter for the operators

in this query would be:

SELECT1: ROOMID = A

SELECT2: ROOMID = B

JOIN = DEVICEID, DEVICEID

PROJECT = DEVICEID, ROOMID, TRANSDATETIME.

• Window Parameters: This parameter becomes useful for operators that are

window based. It specifies all the clauses required to represent a window. The

following are the window parameters that are included.

• Begin Window: Specifies the start of the window.

• End Window: Specifies the end of first window.

• Hop Size: Specifies the bound that needs to be added to begin and end window

to obtain the next window.

• End query: Specifies the time at which the query will be terminated.

Figure 4.17 shows an example representation for the Operator Node. This node

represents the SELECT operator in the query specified in Figure 4.16.

Figure 4.17 Example of an Operator Data Node

72

4.4.3 Instantiator Support for Flow Based Scheduling:

In flow-based scheduling operators are scheduled on the availability of data. If

data is available, the operator is scheduled else its operation is suspended. In order to

support flow based scheduling, Instantiator should make sure that the operators that are

likely to receive data first are instantiated first. If an operator is receiving data from

another operator then it should be instantiated after the tuple-producing operator is

instantiated. To meet the requirements of flow-based scheduling, operators are

instantiated in a bottom up fashion. In this scheme the leaf operators that are reading

data from the stream are instantiated first. The operators in the tree till the root operator

follow these. Root operator is the last one to be instantiated as it is last operator in the

chain to receive the tuples inputted from the base stream.

Once the operators are instantiated, based on the scheduling scheme used, one of

the following actions is taken.

For a flow based scheduling scheme, operators are started as soon as they are

instantiated.

For Other scheduling schemes, operators are added to the ready queue of the

scheduler. Later the operators are scheduled based on the scheduling scheme. Still the

operators are added to the queue based on the sequence in which the data is flowing.

4.4.4 Base Stream and Buffer List:

Each stream feeds its tuples into a buffer. There can be more than one stream in

the system each feeding tuple into a different buffer. There is a need to maintain

information about the association between the streams and its buffers. This is done with

73

the help of StreamBuffer list. This list has two values, one is the stream name and the

other is the associate buffer.

Figure 4.18 Stream Buffer List

Whenever a new stream is registered with the system, a buffer is associated with

the stream. This information is stored into the Stream Buffer List, which is useful when

associating stream buffers with operators.

4.4.5 Operator Instantiation and buffer mapping:

In order to instantiate operators, the query tree is traversed in a bottom up

fashion. It picks up an operator data node, identifies the operator type and based on its

type instantiates the operator. There are three aspects to operator instantiation.

Creating the Operator Instance: Each operator data node has a field called

OperatorType. This specifies the type of operator that the operator data node represents.

Based on the operator data type, appropriate operator is instantiated. For example, if

Operator Type is SELECT then an instance of SELECT operator is created.

Associating Input Buffers: With this operation appropriate input buffers are associated

with instantiated operators. Based on the position of the operator in the tree one of the

two types of operators can be associated in the tree.

74

Stream Buffers: Stream buffers are associated with leaf operators in the query tree.

StreamOne and StreamTwo data of operator data nodes are used for associating

appropriate stream buffers to the operator. Instantiator reads these values from the data

node and read the corresponding buffer information from the StreamBufferList. The

obtained buffer is then associated as an input buffer to the operator.

Operator Output Buffer: For non-leaf operators the output buffer of previous operator in

the list becomes the input buffer of the current operator in the tree.

Creating New Output Buffe rs: For each operator a new output buffer is created and is

associated with that operator in the tree. Instantiator also stores the information of the

newly created output buffer in some temporary storage so that when the next operator in

the tree is instantiated, this operators acts as an input buffer to the newly instantiated

operator.

Input Parameters: Each operator wants the input parameters in a specified format. Some

times the input supplied as part of operator data is good enough to pass it to the

operator, but some of the operators may require modifying the input parameters to bring

in to a form acceptable by the operator. Here is how the input parameters are supplied to

each of the following operators.

SELECT: The condition string read from the operator data node for SELECT operator

is passed as it is to the instantiated SELECT operator.

JOIN: Operator data node supplies the joining attribute as an input parameter. Since the

join is a binary join, only two attributes are supplied one for left input stream and other

for right input stream. These values are comma separated. But this form is not

75

acceptable by the JOIN operator. What join operator requires is the position of the

joining attribute in schema for each of the streams. Hence it the mapping of attribute

name to its position in the schema and supplying it as an input become the

responsibility of the Instantiator. Instantiator does a look up in the schema using the

attribute name and finds out its position and sets the appropriate position in the Join

Operator.

PROJECT: For project operator, operator data node supplies the list of attribute names

as part of input parameters. But project operator accepts a list of position of attributes in

the tuples that needs to be projected. Hence the Instantiator finds out the position of

each of the given attribute name using the schema corresponding to the StreamOne in

data node. It then provides the position list as part of the input to the project operator.

Window Information: SELECT and PROJECT are interested in knowing the END

QUERY information of the Window. JOIN is a window-based operator and hence it

requires knowing all of the window information. Instantiator sets the required

information for each of the operators.

76

Figure 4.19 Process of Instantiation

Figure 4.19 shows the process of instantiation. Instantiator takes in a plan object,

which is a tree of Operator Data Node. It traverses the tree in a bottom up fashion,

instantiates the each operators, based on the position of the operator in the tree,

associates appropriate buffers to the operators and schedules them for execution. As

shown in figure 4.19, a query tree of operator node is converted into an instantiated

query tree of actual operators connected through buffers.

4.5 DSMS SERVER DESIGN

4.5.1 Communication Model

DSMS is implemented as a client-server architecture. Communication between

the client and the server needs to be command driven and protocol oriented. A

predefined set of commands tha t the client can invoke is available. Based on the users

77

requirements, client sends out a command to the server to execute a particular

operation. Each command has a well-defined protocol that defines the communication

between the client and the server. The protocol clearly specifies what data needs to be

sent to the server, what operations are going to be carried out at the server and what the

client should expect back from the server. Based on these requirements of

communication, a socket-based server is proposed. The other choice available and

considered was of Remote Method Invocation based server. This choice was ruled out,

as the idea of distributed server is not considered. This system is analogous to any other

commercial DBMS available in the market wherein the protocol for client server

communication is well defined and any client can be used provided it follows the said

protocol.

Server implements a set of commands, which provides primitive control over

user-generated schema and query. More commands can be added as required. To

invoke each of the above given commands, user first sends out a command identifier.

For simplicity an integer command identifier is chosen. This helps the server to

distinguish the command. After the command, comes the protocol which defines the

input and output operations between the client and the server. Following is the

description of the operations of the command supported and its protocol.

New Query: Using this command, user is able to submit a new query to the system.

User submits the query in terms of an initial plan. Plan is nothing but a query tree

consisting of operator data nodes. Each operator data node is a generic object, which

encompasses the necessary information to instantiate the corresponding operator. This

78

plan is submitted to the Instantiator which instantiates each operator in the plan and

connects them using buffers. Once the given query is instantiated, a query handle is

given to the user. Server also updates the query data structures, which provides a

repository for storing statistical information for each query that has been instantiated

during the life span of the server. Using this handle, user can further control the query

(e.g. stopping or modifying the query).

Stop Query: User should be able to stop a long running query as desired. DSMS expects

the client to send the handle (or ID) of the query that needs to be stopped. From the

Query Data Structure, the server picks up the operators running for that query and stops

each of the running operators. System, then updates the state of the query in the query

data structure to be terminated.

New Stream: With this command user is able to create a new schema with the server.

Client takes the schema input from the user and converts it into a form given in the

schema definition. This is what is sent as an input for the command. Server adds this

schema to the DSMS schema table. It acknowledges to the client whether the given

schema was successfully added or not. Proper error message is communicated to the

user if the schema was not added successfully for e.g. client sends a schema whose

name already exists in the system. For this case, server will return back to the client

informing about the duplicate schema.

Get All Streams: This command enables the user to pull the entire schema information

from the server. Upon receiving this command, server sends the entire schema table (as

described in the Schema definition) to the user.

79

Get a Stream: If user wants details about a particular schema, this command can be

used. First, user sends the name of the schema whose information is required. Later,

server follows by sending the schema information as defined in the Schema definition

to the user.

4.5.2 DSMS Client:

DSMS Client is responsible for taking request from user and converting them

into a form required by the server. Client should be fully aware of the commands being

supported and the protocol that needs to follow for those commands. Client

communicates with the server over the agreed socket number where the serve r is

listening. Based on the user request it sends the command identifier. For example, for a

new query it would send an identifier “1” and then would covert the users request in to

plan tree of operator data node and then sends the plan object to the Server and waits for

a query handle to be returned. Client can be one of the following types.

• GUI Based Client: A GUI based client can be constructed in the language in

which DSMS is built. For example, for a Java based DSMS the client could be

built using Swing or AWT. The GUI should allow some of the basic operations

user wants to perform like running a query, stopping a query, creating a schema,

deleting a schema etc.

• Non GUI Based Client: This type of client can be used for testing purpose where

there is no GUI for the user. Hence the commands have to be hard coded in the

program or can be read from an external storage as a file.

80

• Web Based Client: Here a web-based interface is provided to the user. Actual

client side functionality resides at the web server. For this DSMS a web based

client is proposed. Worldwide accessibility is the primary advantage of this

method.

4.5.3 Server Functionality

Server as a whole is responsible for invoking and maintaining various

components shown in the architecture of DSMS. These include the Scheduler,

Operators, Buffer, Plan Generator and Run Time Optimizer. For effective operations of

DSMS as a whole, server implements the following functionality.

• Server maintains the schema for DSMS. Schema manipulation (add, modify

and deletion of schema) is done based on users request.

• Associates buffers for each schema where the data of each schema will be

streamed. It also provides a smooth reading of each stream into their appropriate

buffer in a separate thread.

• Provides a command-based interface where in the client can invoke command

based on users request.

• Invokes various components such as scheduler, buffer, run-time optimizer, etc

and initializes different parameters of each components which are necessary for

their normal operation.

• Instantiates a query plan.

 Components of server (Scheduler, Buffer, Operators, etc) need to be initialized

based on the user input or configuration parameters set in the Configuration file.

81

Initially, server reads all the configuration parameters from the DSMS Server

Configuration file and keeps them in memory. These parameters are then used

throughout the life span of server and are also used by various components like

Scheduler, Buffer, and Operators etc.

 Scheduler is invoked as a separate thread. One of the important components of

the scheduler is the ready queue, which is a list of operators that are ready and waiting

to be scheduled. As part of new query instantiation, server initially populates the ready

queue for scheduler. Based on the policy specified in the Configuration parameter,

appropriate scheduling policy is chosen for operator scheduling. This is useful during

experimentation early on. Later this can be replaced by some logic which will help us to

select the scheduling policy depend ing on the type of queries, load of the system,

system configuration etc.

 Buffers can be bounded or unbounded and the size of buffers can be read from

the configuration parameters. Later this can be replaced by a logic, which decides these

parameters for buffers based on the query, its priority, current memory available and so

on.

 Run Time Optimizer can be implemented as a separate thread, which constantly

monitors the QoS of the query and changes the overall plan to satisfy as many users as

possible.

 Plan generator can be a separate entity, which provides methods that take in a

plan and provides set of plans that can be used in place of the original plan without

changing the overall output of the system. Plan Generator can be used to initially

82

produce an optimized plan or can be used by Run Time Optimizer to improved the

overall quality of the system.

83

Chapter 5

IMPLEMENTATION

5.1 Schema Implementation

As explained in the design, the following four components needs to be

implemented:

• Schema Information List.

• Attribute Name Structure.

• Attribute Position Structure.

• Attribute Information.

The core information regarding a schema is stored in the Attribute Information

structure. This structure needs to be a dynamically growing structure as there could be

more information stored in the future. Hence, Attribute Information is implemented as a

Vector as Vectors do not impose a limit on the number of elements they can store.

Each schema has its own Attribute Name Structure that provides an easy access

to the attributes of the schema based on its name. There is no limit on the number of

attributes that can be stored in a schema. To support a quick retrieval of schema

information based on attribute name, this data structure is implemented as Hashtable in

Java. The key of the Hashtable is the attribute name and the value is the reference to the

corresponding Attribute Information Vector. This way a quickly accessible and

dynamically expandable Attribute Name Structure is implemented.

84

The requirements of Attribute Position Structure are similar to that of Attribute Name

Structure. The only difference is that the attribute information needs to be accessed

based on attribute position. Hence, Attribute Position Structure is also implemented as a

Java Hashtable. Here the key is the position number and the value is the reference to the

Attribute Information Vector.

Schema Information List needs to store all information regarding a DSMS

schema. Initially only Attribute Name Structure and Attribute Position Structure are

included to provide easy access to schema attributes. But in the future additional

elements can be stored. To support this requirement, Schema Information is stored in a

Vector that has no limit on the number of elements it can store. Here the first element

stored is the reference to Attribute Name Hashtable and the second element stored is the

reference to Attribute Position Hashtable. Elements from number three onwards can be

added in the future.

There are no restrictions on the number of Schema that can be supported by the

system. Hence to provide a quick and easy access to schema information, Schema

Information List is implemented as a Java Hashtable with the key as Schema name and

the value as the Schema information Vector. In order to access information regarding an

attribute in the schema, we need to provide the Schema name and the attribute name or

its position. Using the schema name, we can hash into the Schema List and get the

Attribute Name or Position Structure and depending on the value of attribute name or

position, we can access the attribute information associated with it.

85

Figure 5.1 Schema Implementation

5.2 Buffer Implementation

5.2.1 Implementation of Main Memory Buffer:

 Buffers are used for storing tuples of data streams. The total number of attributes

and their types are user defined and hence it is not predictable. This dynamic nature of

tuples in the streams can be represented with a data structure that can store any number

attributes of different data type. These requirements can be easily satisfied using a

Vector data structure.

 Buffer is a queue of stream tuples. Here tuples flow in and out in a First In First

Out (FIFO) manner. Buffers can be unlimited in size and should be able to easily

provide the Enqueue and Dequeue operations of a queue. Hence Buffer is implemented

86

as a separate class called Buffer. This class provides all the buffer management and

storage functionalities required to implement a stream buffer.

 Buffer stores the tuples in Vector data structure, which is unlimited in size. For

limited main memory buffers, the limit is enforced in the enqueue operations, which is

explained further in the literature.

5.2.2 Implementation of Buffer Log Files

 In addition to the cost of opening and closing a file, considerable overhead is

incurred when reading or writing to a file. In addition, sequential access (typically used)

is not appropriate as we are using the log files to bring tuples into the buffer. Concept of

secondary storage buffer is different from the log files used in case of DBMS recovery.

Here, the main emphasis is to minimize the file IO in writing to and reading from logs.

We use an indexing mechanism for reading and writing into a log file. Java

Serialization is used to persist the data values. The log files are written in append mode.

All tuples that fall beyond the limit of main memory buffers are logged into the

secondary storage file.

5.2.2.1 Basics of Java Object Serialization.

 Java object serialization provides the ability to write or read java objects to and

from a byte stream. A mechanism is provided through which Java objects and

primitives can be encoded into a byte stream suitable for streaming to a network or to a

file-system. The Java Serialization API provides a set of functions for developers to

handle object serialization. The API is not quite large and is easy to understand and use.

87

A java object needs to be serialized before it can be persisted. Object is marked

serializable by implement ing the java.io.Serializable interface or by inheriting that

implementation from its object hierarchy. Serializable interface has no methods, so the

object itself need not implement any methods. Using this interface an indication is given

to the Java virtual machine to use default serialization mechanism to serialize this

object. ObjectInputStream and ObjectOutputStream are used for serialization and de-

serialization respectively. The writeObject method of ObjectOutputStream class is

responsible for saving the state of the object. On the other hand, the ObjectInputStream

class provides the readObject method that is responsible for restoring the object from

the serialized byte stream.

 The example that follows shows the process of writing an object of class Point

into a file and then reading the same object using object serialization. WritePoint class

serializes the Point object to a file. ObjectOutputStream wraps around the

FileOutputStream and writes the Point object to a file called Points.sav. It formats the

object as a stream of bytes and saves it in the Point.sav file. On the contrary ReadPoint

class de-serializes the serialized Point object. It wraps an ObjectInputStream around

FileInputStream and then reads the byte stream from Point.sav to reconstruct the Point

object from it. The code sample is shown in Figure

88

Figure 5.2 Example Code for Object Serialization.

Figure 5.2 shows a very concise and easy way to implement serialization. The

same code can be used to persist a complex object as the serialization mechanism works

by transitive reachability. Reachability means that all the objects reachable from this

object will also be serialized. If the object passed to the writeObject method contains

references to other objects, the passed object and the other objects reachable from it will

also be serialized. Java Object Serialization handles cyclic graphs. Each object visited is

marked. If a cycle exists and an object is visited again, the mechanism knows that this

89

object has already been serialized. Therefore, it only puts enough information into the

serialized form so that the cycle can be rebuilt when the data is de-serialized.

5.2.3 Reading and Writing into Log Files [13]:

 In order to serialize an object into a file in append mode, the application needs to

skip to the end of the file and then append the newly serialized object byte stream using

the writeObject () method of ObjectOutputStream. But the process of skipping through

serialized bytes in a file is not provided in ObjectOutputStream or in FileOutputStream.

Similar is the case when reading an object back from the file. The readObject () method

of ObjectInputStream class will throw a StreamCorruptedException because

ObjectInputStream cannot demarcate the byte streams of objects of different type. It is

not able to distinguish between the end of one object and the start of another.

 To overcome these problems, a mechanism was devised in to handle the

serialized byte stream. Here the serialization and de-serialization is handled at byte level

and not at object level. This scheme calculates the size of the serialized object and using

this information the application can easily distinguish between the objects. While

serializing an object, the application should make note of the offset in the file and the

size of object that is being written. This information should be used in the process of de-

serialization to retrieve the correct object. Here the application will skip the file pointer

to the starting point of the object and will read the number of bytes specified for the

object.

 Objects ByteArrayInputStream and ByteArrayOutputStream used over

RandomAccessFile provides a feasible solution to the above-mentioned problem. A

90

RandomAccessFile is a considered as an array of bytes. It provides a File Pointer that

can be used to index into the array. A log file can be read from or written into at the

same file. Hence it is opened in a read-write mode. In write mode bytes are appended at

the end of file and the number of bytes that are written to it advances the file pointer. In

order to read an object from a file, seek method is used to set the FilePointer to

appropriate location and then appropriate number of bytes are read for the object.

In order to find the size of serialized byte stream of an object

ByteArrayOutputStream is used. Using this class the object is written into an output

stream in which data is written into a byte array. It provides a size () method through

which we can find the size of the object that is written into the memory. Similarly,

ByteArrayInputStream is used to de-serialize the byte array read from the

RandomAccessFile. The byte array obtained is passed to the ObjectInputStream that

gives it a shape of an object that can be read using the readObject ().

91

Figure 5.3 Reading and Writing into Log File.

Figure 5.3 shows the logRead and logWrite method that are used to read and

write tuples into the secondary storage file. LogWrite method uses the technique

described above to serialize the object into the bytes and append it to the end of the

given file. On the other hand, LogRead skips through the file to the appropriate position

and read the specified number of bytes, converts it into an object and returns it to the

application.

Two Log Files:

Each buffer is associated with two log files. As explained in the design chapter it

helps in purging of tuples in secondary storage. For each file the following information

is maintained.

92

• RandomAccessFilePointer: Using this pointer all read and write operations are

carried out.

• TotalFileElements: This specifies the total number of tuples that file is holding

at that point of time.

• TotalReadFileElements: This specifies the total number of elements that has

been read from the log file back to the main memory buffer.

• FileName: This specifies the name of the file as stored on the disk. Filename is

associated with currentTimeStamp when the buffer was created. When a buffer

is created two timestamps are recorded and are assigned to each of the two log

files. An extension of “.log” is appended to the file name. This way we can

create unique file name for all buffers throughout the lifetime of DSMS.

 All this information is packaged in BufferFileData class file. Each buffer holds

two objects of this class file viz. bfdForFileOne and bfdForFileTwo. These objects

represent the two-log files that the buffer is supporting. Buffer needs to read tuples from

or write tuples into one of the two log files. In order to support this, it maintains two

other objects of BufferFileData viz bfdForReadFile and bfdForWriteFile. The former

represents the file from which tuples needs to be read and the later represents the file

into which the data needs to be written. Initially when the buffer is created both of them

points to the first file. Changing of bfdForWriteFile from file one to file two in done in

enqueue operation and that of bfdForReadFile is done in the process to read tuple from

secondary storage.

93

5.2.4 Swapping the two Buffer File

Figure 5.4 Code for Swapping Two Buffer Log Files in Enqueue

 Figure 5.4 shows the code to swap two buffer log files. Initially bfrForWriteFile

points to the first file. If the number of tuples in the main memory buffer exceeds the

predefined capacity of the buffer, the tuple needs to be written to the secondary buffer.

Initially, buffer creates the first log file and initializes the index table corresponding to

it. Later it sets the bfdWriteToFile as the first file. Henceforth all tuples entering into

the buffer will be written to the secondary buffer till all elements from the secondary

buffer have been completely read into the main memory buffer. To provide an easy

94

purging of tuples in secondary storage, a limit is specified on the total number of tuples

that can be stored in a file. If the file exceeds that limit, buffer creates a second file and

starts writing into the second log file by pointing the bfdWriteToFile to the other file.

Now tuples are enqueued into the other file till all elements have been read from the

first file and the second file exceeds the specified limit. This way there could be more

number of tuples stored in the log files than its specified limit. Hence there could be an

uneven growth in the size of the two log files.

 To enqueue a tuple in the secondary storage, first the tuples information is stored

in the current write index table. Using the offset that index table provides, the tuple is

written into the bfdWriteToFile using the logWrite method.

5.2.5 Reading From Secondary Storage:

 There is a separate thread to read data from the secondary buffer log files. This

thread makes use of bfdForReadFile object and logRead method to bring a tuple from

the secondary storage log file to the main memory buffer. This thread is started from the

dequeued method. It is started only if there are tuples stored in the secondary storage

file. This is verified by checking if the totalElements of bfdForReadFile is greater than

zero and totalReadElements is less than the totalElements stored in the file.

The process to read from secondary storage continues until there is space left in the

main memory and there are unread tuples from the secondary storage. Initially

bfdForReadFile points to bfdForFileOne. The read process reads all the tuples from first

file and enqueues it in the main memory buffer. During the reading process if all tuples

95

are read from first file and there are unread tuples from the other log file, and there is

some space left in the main memory buffer then bfdForReadFile needs to be swapped to

the other file. The swap process does the following things:

• It sets the current bfdReadFile’s filepointer to null.

• Resets the current read indextable.

• Swaps the bfdReadForFile to point to the other log file.

• Swap the current read indextable to the one corresponding to the other log file.

Figure 5.5 Code for Reading from Secondary Memory

96

5.2.6 Experimental Evaluation:

 All the experiments were performed on an unloaded machine with 2 Xeon

processors, 2.4GHz, 2GB RAM and Red Hat Linux 8.0 as the operating system. The

data set for performance evaluation is obtained from the MavHome (A smart Home

being developed at UTA for predicting the behavior of inhabitants) live feed collected

over a period of time. The live feed is stored in our database and is used as a stream to

this system. Before feeding the MavHome data to the streams, the source time stamp is

modified such that its value is in an increasing order with the first tuple showing its

value to be one and the nth tuple showing its value to be n. Tuples are generated with a

poison distribution to simulate real time data.

This experiment shows the effect of varying buffer size on the system. Query

used in the experiment is “select txtDeviceID, txtStatus, txtPropertyValue from S1, S2

where S1.txtPropertyValue=S2.txtPropertyValue and S1.txtStatus=On and

S2.txtStatus=On.”

This experiment was run on five Windows each consisting of 5000 tuples. The Buffer

Size was changed from being unbounded to 35000, 30000, 25000, 20000, 18000,

15000, 12000 and 10000 tuples per buffer.

97

Figure 5.6 Effect of Varying Buffer Size.

Observation:

 From the graph (Figure 5.6) it can be seen that unbounded buffer quickly

produced the output. This is because all the tuples were main memory resident. As the

buffer is contracted, more and more tuples are getting output into the secondary buffer.

This induces a lot of I/O cost for reading and writing tuples. Hence the total tuple

processing time of the query increases. Moreover a tuple starts staying for longer time

in the queues because of IO read-write that increases the tuple latency.

5.3 Query Window Implementation:

 All window-based operators need to define the following four clauses.

• Begin Window.

• End Window.

98

• Hop Size (lower bound, upper bound).

• End Query.

These clauses are defined based on the user definition of the query. After

defining these parameters, an operator using a window would require to get the current

window definition, it would also require to check the bounds of the next window. Also,

the operator would be interested in knowing whether the process of moving to the next

window brings the end query condition or not. To accommodate all these parameters of

a window and its operation, a separate window class is defined. The object of this class

can be used in window-based operators to provide a controlled access to window and its

parameters.

The QueryWindow class has the following parameters:

• lngBeginWindow.

• lngEndWindow.

• lngHopSize[].

• lngEndQuery.

Long values are chosen for these parameters so that they can represent both

physical window as a time stamp and logical window as number of tuples. Hop size is

an array with the zeroth value being the lower bound and the first value being the upper

bound.

This class supports the following operation.

• GetFirstWindow(): Returns the lower and upper bound of the first query

window.

99

• GetNextWindow(): Returns the lower and upper bound of the next window from

the current window.

• IsQueryTerminating(): Returns true if the lower bound of the window falls

beyond the end query specification. Other wise it returns a false value.

5.4 Operators

5.4.1 Select:

SELECT is implemented by inheriting the generic operator. It stores the

condition as a string that will be evaluated for filtering the data. It uses FESI as the

condition evaluator.

One of the challenges in implementing SELECT was to provide the operand

values from the input tuples to FESI. We cannot directly supply the tuple value to FESI

for evaluation. Also it does not make sense to set all the operands from the input tuple

into FESI’s condition evaluator. Only the operands mentioned as a part of the condition

needs to be evaluated. To read the operand value from the input tuple, we need to know

the position of the operand in the tuples. The position of the operands in the tuples is

stored in the schema. Hence an interface needs to be provided that can find the operands

from the condition string and then find their position in the tuples. Using the position

information, the corresponding values from the input tuples needs to be set against the

operands in the FESI’s condition evaluator.

The following two functions help retrieve the position of operands from the input

string.

100

• findOperandsInConditionString: This method parses the condition string and

separates out the operands from it.

• findPositionOfOperands: It uses the operand list provided by

findOperandsInConditionString function and finds out the position of each

operand from the schema. This list of position is used by the SELECT for

setting operand values in the condition evaluator.

The conversion of condition string to a list of position using the above-

mentioned functions is done before the actual tuple evaluation is started. This is done

when the condition string is submitted to the SELECT operator.

5.4.1.1 SELECT Example:

Consider the evaluation of the following condition string on the input string.

Condition String: txtDeviceID = ‘M18’ and txtStatus = ‘On’.

The schema for the input buffer is as described below.

Attribute Name Position

TxtTrandID 1

TxtDeviceID 2

TxtStatus 3

TxtPropertyValue 4

TxtCommandSource 5

NumSourceTimeStamp 6

101

FindOperandsInConditionString: Given the condition string as an input, the output of

this function is txtDeviceID, txtStatus.

Given the operand list as input to findPositionOfOperands, the output given is 2

and 3.

Give this tuple for processing, the operands operand value map would be

 TxtDeviceId = M18

 TxtStatus = On

Evaluation: Output of evaluation would be true.

5.4.2 Hash Join:

 Hash join is implemented as a non-blocking operator that works on a window

unit of data and produces results incrementally and continuously to process continuous

queries. As explained in the design section, it is implemented using a single thread and

processes each tuple atomically to avoid duplicates. It reads tuples from each of its

external buffers, compare their timestamp and the one with lower timestamp is

considered for processing. If the left tuple is being processed, it is inserted in the left

hash table. It is then probed in the right internal hash table and matched with all the

tuples falling in the window and satisfying the join predicate. The results are produced

incrementally that are consumed by higher operators. It is this insertion and probing

phase that is to be done atomically to avoid duplicates. Tuples read from right external

10001010102 RF_Remote 10 On M18 1

102

buffers are processed analogously. It is important to understand the implementation

issues prior to delving into implementation details. Following are the implementation

issues for the “Hash Join” operator:

• Window Generation

• Maintaining internal hash tables

• How timestamp ordering is maintained

• Atomic action to avoid duplicates

Window Generation: It is important to understand the concept of a window prior to the

implementation specific details of join operator since the working of “Join” operator

heavily depends on window processing. One of the requirements of stream operator is

their ability to work on windows independently. Operators of the same query should be

able to operate on different windows simultaneously. To facilitate this requirement, an

object of “Query Window” is defined that deals with window creation and modification.

 Internal hash tables: “Join” operator has two external buffers associated with it

that provides synchronized input to this operator. There are two internal hash tables

maintained by this operator, one corresponding to each of the external buffers. These

hash tables are used not only for computing hash join but also to avoid repetitive scan

on external buffers. A single tuple processing involves insertion and probing phase.

During insertion phase, the tuple is placed in the corresponding internal hash table upon

which it is no longer needed in the external buffer for the following reasons:

• The tuples in internal hash table participates in the join operation with new

incoming tuples.

103

• It is the internal hash table that is scanned to find the match when a new tuple is

probed against it.

Since the responsibility of finding the matched tuple is delegated to internal hash

table, repetitive scan on external buffers is avoided. Internal hashtables not only

reduces load on the external buffer but also allows the tuples that are read from external

buffers to be removed to create space to accommodate new tuples coming either from

data streams or child operators.

Timestamp ordering: The significance of timestamp ordering is explained in the

design section. It is needed to determine the end window bounds and produce correct

results. Tuples generated by the data sources are time stamped as soon as they enter the

system. Hence for the first windowed operator, all incoming tuples are timestamp

ordered. Unless some measures are taken to maintain timestamp ordering in the output

of current windowed operator, the output will not be timestamp ordered, which is

essential for higher windowed operators as well. To produce tuples in a timestamp

order, each tuple is blocked at the input and is not considered for join until it finds a

corresponding tuple from the opposite stream. When it is joined with tuples present in

internal buffers, resultant tuples are generated with the timestamp of the higher of the

two. All tuples in the output queue are guaranteed to be timestamp ordered.

Duplicate tuple avoidance: The use of two threads to increase the parallelism of

the entire “Join” operation was discarded since it was resulting in duplicates at the

output. The only way to avoid duplicates in the output is to process individual tuple

atomically. The next tuple is not considered for processing until the insertion and

104

probing phase of the current tuple is completed. This avoids the possibility of

processing two tuples simultaneously that arrive with the same timestamp in left and

right external buffers. Synchronized operation resolves time conflicts and process single

tuple at a time ensuring duplicate avoidance.

5.4.2.1 Hash Join without temporary storage:

Figure 5.7 Hash Join Without Temporary Storage

 Figure 5.7 indicates that join has two external buffers and two internal hash

tables. Operator reads from these external buffers, performs the needed join operation

and outputs the result incrementally and continuously in its associated output queue.

Windows are defined on the external buffers that mark the input bounds for the

operator. It is assumed that window definitions are always the same for both the

external buffers. These window bounds are defined using “Query Window” class

105

explained above. The APIs of this class are used to control window movement besides

providing window information. The window slides only when all the elements from

each of the external buffers are completely processed. Left window bounds are defined

by LW1S and LW1E, which stands for “Left Window One Start” and “Left Window

one End” respectively. Right window bounds are defined by RW1S and RW1E.

Call purging logic: All the past tuples that are not relevant in current window

processing are purged to create space in the external buffers. Since the operator knows

LW1S, it compares the timestamp of the read tuple ‘t’ with LW1S. If ‘t’ < LW1S, it is

considered as a stale tuple. This process is repeated until the “join” operator finds the

first tuple that falls in the current window bound. The position of this tuple is marked

and stored as Highest Read Element (HRE). If multiple operators share the buffer, all

HREs are compared and the one with the smallest value is declared Highest Common

Read Element (HCRE). Thus all elements prior to HCRE can be safely discarded as

they are already been read and utilized by all the operators sharing the buffer.

Window Processing: Every buffer has a CurrentUnreadElementPointer (CUEP) for each

operator that point to the current element to be read from the buffer for the respective

operator. The value of CUEP is incremented each time a tuple is read by the “Join”

operator. Consider a single tuple processing for the join operator. Tuples are read from

each of the input queues with the left tuple (LT) timestamp as ‘x’ and the right tuple

(RT) timestamp as ‘y’. If ‘x’ < ‘y’, ‘x’ is processed which involves probing LT into

right hash table based on the value of joining attribute. Since ‘x’ corresponds to LT, it is

hashed into the left internal hash table based on the value of the joining attribute. It is

106

then joined with all tuples lying in the bucket (tuples having same attribute value called

collision, map to the same location and are stored linearly at the probed location) of the

probed location and the output is generated. During the join operation the resultant tuple

has the common attribute removed from the right stream. The timestamp of the resultant

tuple is the higher timestamp of the two tuples involved in join since this algorithm

ensures ordering on higher timestamp. Since ‘x’ < ‘y’, CUEP of left external buffer is

incremented by 1. This insertion and probing phase must be done atomically to avoid

duplicates.

Window movement: In overlap windows, it is important to remember the start

time of the next window while the current window is being processed. Since the

window definition is known, the start time is marked as soon as the first tuple is

encountered that falls in the next window. This position is saved as Start Next Window

Pointer (SNWP). For disjoint windows, no modification is needed as they both point to

the same location. In Hash Join without temporary storage, the internal hash tables are

completely cleared since every window is computed independently. Since it does not

reuse the computation the CUEP that points to LW1E is modified to point to SNWP to

continue processing the next window from start. The common computation is not stored

anywhere for utilizing in the next window computation; this shade is called “Hash Join

Without Temporary Storage”.

107

5.4.2.2 Hash Join With temporary Storage:

This variation exploits the common computation in the overlap window by

reusing the results of current window computation in the next window. While the

current window is processed, the common computation is identified and the results are

stored in the temporary storage besides producing them as output.

Figure 5.8 Hash Join With temporary Storage

This variation exploits the common computation in the overlap window by

reusing the results of current window computation in the next window. While the

current window is processed, the common computation is identified and the results are

stored in the temporary storage besides producing them at output. Tuples falling beyond

SNWP are considered to be a part of the overlapped area. The result accumulated in

108

temporary storage is copied as it is in the output queue corresponding to next window.

Once the window is completely processed, internal hash tables are not completely

cleared unlike the other variation, rather entire hash table is enumerated and only those

tuples whose timestamp falls below LW2S are removed. Since the computation is being

re-used, CUEP does not point to LW2S but points to LW1E and moves only in forward

direction. Hence all tuples falling in the next window computation in the internal hash

table are preserved. Purging logic is called at the end of each window computation that

removes all elements marked up to HCRE to create space for incoming tuples generated

either by data sources or child operators. Since the computation is re-used, it is more

efficient with respect to response time but less efficient with respect to memory

utilization since hash tables are never cleared besides involving temporary storage for

storing common computation.

5.4.2.3 Experimental Evaluation:

The Experimental Set up is same as the one used in Buffer Experiments.

1. Effect of Varying Data Rate on Hash Join.

HashJoin Without Reuse is fed tuples with a variable data rate. The data rate

used were 100, 150, 200, 400, 800, 1600, 3000, 5000, 8000 and flooding (Here the time

gap between two tuples was almost zero. Hence it flooded the stream buffers with data).

Some of the constant set of information across this experiment is as given below.

Total Windows: 5

Tuples per Window: 20000.

109

Data Set: MavHome Data Set with the time stamp modified to form an incremental

value starting from one. Same data set as one used in buffer.

Window Overlap = 10%.

Figure 5.9 Total Tuple Processing Time

Figure 5.10 Average Tuple Latency

110

Figure 5.11 Buffer Size

Observation:

 From the graph 5.9, it can be seen that initially when the data rate is very low at

100 tuples/sec, the total query processing time is quite high. But as the data rate

increases, the total query processing time decrease but this happens till some point and

after that the total query processing time stabilizes to a constant value. This is because

the amount of data input to the join is the same but the data rate has reached a value

such that hash join will always get some tuples in the buffer and will never suspend.

Here we see that the HashJoin is operating at its maximum processing capacity and

because of that the total query processing time always remains the same.

 From the graphs 5.10 and 5.11, we can see that as the data rate increases, the

average tuple latency increase and the Buffer Tuple count also increases. This is

because more tuples are being input to the Join but it has a limited processing capability

and so the amount of time a tuple spends in the queue increases thereby increasing the

overall average tuple latency.

111

2. Comparison of Hash Join With and Without Temporary Storage (Reuse and Without

Reuse).

 Keeping a constant data rate, and running the experiment over the same number

of windows having same number of tuples, average tuple latency, response time and

Hashtable size are compared for Hash Join with and without temporary storage. To

show the effect of reuse, window overlap was increased from 10%-75% of the current

window. The data set is modified such that we have a uniform distribution of tuples. We

have the same number of tuples in each window and each window will generate the

same number of output irrespective of the amount of overlap. This way we can compare

the results between both the joins across windows with different overlaps. Here the

window is kind of a logical window as the timestamp is incrementally ordered starting

from one

Figure 5.12 Total Tuple Processing Time (Join Comparison)

112

Figure 5.13 Average Tuple Latency (Join Comparison)

Figure 5.14 Internal Memory Usage (Join Comparison)

Observation:

 Total Query Processing Time: There is no affect on the total query processing

time for Hash Join Without Temporary Storage. This is because it has to read all the

113

tuples for all windows and process them irrespective of the amount of overlap.

Moreover the data set is such that the number of tuples generated would be the same for

all cases and so a constant response time is observed. For Hash Join With Temporary

Storage the overlapping of windows is exploited by reusing the output tuples generated

for the overlap region. Therefore we can see that the total query processing time

decreases as the overlap is increasing.

Average Tuple Latency (ATL): ATL of HashJoin With temporary storage is always

lower that that of Without Temporary Storage. This is because tuples stay for longer

time in queues for Hash Join Without Temporary as they needs to be recomputed for all

windows irrespective of the overlap. On the other hand HJ With Temporary Storage

overlapping tuples does not add to the overall tuple latency.

Internal Hash Table Size: For HashJoin With Temporary storage the size of internal

Hashtable increases as the overlap increases. This is because as the overlap increases,

more and more number of tuples is stored in temporary storage.

5.5 Instantiator

5.5.1 Instantiator Implementation:

 DSMS client provides an interface through which the user creates the initial plan

for the DSMS query. Each query plan is constructed as a tree data structure. DSMS

client sends out command number “2” in order to instantiate a query. On receiving

command “2”, server waits to receive a plan object as part of query instantiation

protocol. DSMS client sends out the plan object created using the user input to the

server, which then instantiates it and schedules the operators in the query tree.

114

5.5.1.1 Plan Object:

Plan object is a tree data structure. The tree is created using the OperatorNode

class.

Figure 5.15 Operator Node Class

Figure 5.15 shows the structure of Operator Node class. The operator node class

has the following three properties.

• OperatorData: This is the operator data node that stores the required information

in order to create and instantiate an operator object.

• NodeLeftChild: This points to an object of Operator Node class and represents

the left child of the current object.

• NodeRightChild: Again this points to an object of Operator Node class and

represents the right child of the current object.

Communication between client and server takes place over the socket. All

communication between the client and the server is object based. Objects converted

into serialized bytes are sent over sockets between server and the client. Hence the

OperatorNode object implements the serializable interface. This helps to send out the

plan object from the client to the server. What client sends is the root object of the

115

OperatorNode to the Server. In turn this sends the entire query tree using the transitive

reachability mechanism. This means that all objects reachable from this object will also

be serialized. The same process is repeated for the child OperatorNode till we reach the

leaf nodes in the tree. Hence the entire tree is given as an input to the server just by

outputting the OperatorNode representing the root.

Figure 5.16 shows a plan object of the query: Display the common device usage

between rooms A and B in MavHome lab.

Figure 5.16 Plan Object for a Query

116

5.5.1.2 Operator Data Node:

Operator Data Node is implemented as a separate class with the following

parameters.

strOperatorType: It is a string that stores the type of operators e.g. SELECT,

PROJECT, JOIN.

strStreamOne, strStreamTwo: Left and Right Stream names are stored as a string.

strInputParameters: As a string it can store the input parameters for any operator. For

example, the condition string for SELECT operator for a particular query is

”deviceID=M8 and RoomId=R1” or for PROJECT the list of attributes to be projected

could be “deviceId,RoomID,trandDateTiem”.

lngBeginWindow, lngEndWindow, lngEndQuery: Windowing parameters are stored as

a long value so that it can represent both physical as well as logical windows. For

physical window, it can store the tuple time stamp and for logical window it can store

the number of tuples.

lngHopSize[]: Hope Size is implemented as a long array, which will store two values.

The zero value will represent the lower bound and the first value will represent the

upper bound for the hop of the window.

5.5.1.3 StreamBufferList:

 It is implemented as a Hashtable with the key as Stream Name and value of the

object of Buffer in which the stream’s tuples are being fed. This is done to provide a

quick mapping between Streams and its buffers.

117

5.5.1.4 Instantiation from Plan Object:

 The process of instantiating operators from the plan object and linking them

with buffers is implemented as a recursive algorithm. It takes in the OperatorNode and a

Boolean value, which says whether it is a left child, or not. Initially the value of root

node is passed and it is declared to be a left child even it does not have any parents. The

query tree is traversed in a post order fashion. This is done so as to get a bottom up

instantiation of operators there by supporting flow based scheduling.

Once an Operator Node is extracted from the tree, it is checked to see if it is a

leaf node. If so, then using the Stream names from the OperatorData, it will pick up the

corresponding buffer from the StreamBufferList and pass it on to instantiate the

operator.

 For non- leaf nodes, the Left and Right input buffers are set while instantiating

the operator. Based on whether the instantiated operator is a left or right child the

corresponding output buffer of that operator is set to the left input buffer or the right

input buffer of the parent operator in the tree.

 All of the extracted information from the tree and its buffer mappings are passed

to the extractOperatorNodeInfo function, which calls the appropriate operator

instantiation routine based on the operator type to instantiate the operator.

5.6 Server Implementation

 DSMS is implemented as a TCP Server listening to port number nnnn. Client

communication with the server is command driven and protocol oriented. DSMS

118

defines a list of functions (commands) that it supports. For each command, a protocol is

defined that drives the client and server communication. All protocols clearly define

what input the server is expecting from the client and what would be the server’s

response. Communication between client and server is object based For example, when

a client sends a query tree object, the server instantiates it and returns a query handle

which the client can use for further query control.

DSMS server maintains different kinds of data structures used by several

modules shown in the DSMS architecture. These data structures are updated at various

events.

5.6.1 Server Implementation

DSMS server implementation model is based on the following two important

classes.

• TCPServer: TCPServer is an abstract class TCPServer that implements the

generic functionality of client server communication. It mounts the DSMS

server at a given port and listens for the clients to communicate. Once the client

communication is detected, it creates a NetStream Object using the client socket.

Thereafter it calls the service method. This method is an abstract method, which

takes in an object of NetStream and implements the actual functionality of the

server. Service is an abstract method, which needs to be implemented in the

class extending TCPServer.

• NetStream: NetStream provides functions for an object-based communication

between the client and the server. It accepts a socket as its input. It wraps the

119

input and output streams of the given client socket using the Object input and

output streams there by providing object based communication over the sockets.

NetStream implements java.io.Serializable there by providing a serialized object

base communication over the sockets.

 Java object serialization provides the ability to write or read java objects to and

from a byte stream. It allows Java objects and primitives to be encoded into a byte

stream suitable for streaming to a network or to a file-system. The Java Serialization

API provides a standard mechanism for developers to handle object serialization. The

API is small and easy to use.

5.6.2 DSMS Server Commands/Functionalities

 DSMS Server extends the class TCPServer. Hence it needs to implement the

service method of TCPServer. All the functionalities of DSMS are implemented in the

service method. DSMS is a command-based server. Client sends a command to the

server and then follows the protocol for that command. Integer based commands are

used. For e.g. to send a query to the server, client invokes the command number “1”.

Each command corresponds to a functionality that DSMS server provides to the server.

A limited set of commands is currently available in the system. But this can be extended

as and when needed.

120

Chapter 6

Conclusion and Future Work.

This thesis explains the design of query processing architecture for streaming

data. This architecture provides a model for representing a general-purpose stream

database application. Different types of streaming queries are identified and a general-

purpose query representation is proposed. This representation covers all types of

windows.

A generic streaming operator is proposed which satisfies the query processing

requirements of stream data. This provides a base model for implementing future

operators. SELECT and PROJECT are designed and implemented to support streaming

data. Two shades of Hash Based Joins are designed and implemented. One that exploits

the overlapping nature of query windows by using a temporary storage and the other

that treats all windows in the same manner. Experiments have shown that for

overlapping windows, Hash Join With Temporary Storage is efficient over Hash Join

Without Temporary Storage.

Query Instantiator is designed and implemented that accepts a plan object

generated by Stream database clients and instantiates the required operator to provide

stream-based output to the end user.

The DSMS Server is designed and implemented to provide a platform for

integrating various components of Stream Database Architecture.

121

To completely implement the proposed architecture for stream database, an

alternate plan generator and a runtime query optimizer needs to be designed and

implemented.

Alternate Plan Generator accepts a user given plan and generates different equivalent

plans for the same query. These alternate plans are considered by the runtime query

optimizer to generate an efficient global plan. In addition, the runtime query optimizer

also monitors the QoS to see if they are being satisfied and if not take some corrective

action (change priorities, load shedding) to try and satisfy as many QoS requirements

as possible.

 The DSMS is a server-based architecture and is prone to system crash. Hence

there arises a need for a Recovery System, which can bring the system back to the state

at the time of crash. This is currently being investigated.

122

REFERENCES

1. Carney D, C.U., Cherniack M., Convey C., Lee S., Seidman G.,

Stonebraker M., Tatbul N. & Zdonik S., Monitoring Streams. In Proc. 28th VLDB,

2002.

2. http://ranger.uta.edu/smarthome/

3. Babcock B., B.S., Motwani R., Widom J, Models and Issues in Data

Stream Systems. In Proc. ACM Sigmod/Sigact Conference on Principles of Database

Systems, 2002.

4. Hellerstein, A.R., Eddies: Continuously adaptive query processing. In

ACM SIGMOD, 2000: p. 261-272.

5. Bonnet P., G.J.S.P., Towards sensor database systems. In 2nd

International Conference on Mobile Data Management, 2001.

6. Madden, F.J.S., Fjording the stream: An architecture for queries over

streaming data. In Proc. Int. Conf. on Data Engineering, 2002: p. 555-566.

7. Franklin., C.S.M., Streaming Queries over Streaming Data. In 28th

VLDB Conference, 2002.

8. Centintemel U., R.A., Zdonik S., Carney D. & Mitch C, Operator

Scheduling in a Data Stream Manager. In Proc of the 28th International Conference on

VLDB, 2002.

123

9. Chen J, D.J., Tian F & Wang Y, A scalable continuous query system for

internet databases. In proc of ACM SIGMOD Conf. on Management of Data, 2000.

10. David., J.C.J., Dynamic Regrouping of continuous queries.

11. Motwani R, W.J., Arasu A., Babu S., Datar M., Olston C. & Varma R.,

Query Processing Resource Management and Approximation in a Data Stream

Management System. IEEE Data Engineering Bulletin, January 2003. 26, No1.

12. Cherniack M., Z.S., Cetinteme l U.& Tatbul N., Load Shedding in a Data

Stream Manager. In proc of 29th International conference on VLDB, September 2003.

13. Sreekant., T., Recoverable global event detector for distributed active

applications. Masters thesis in CSE Department 2002, University of Texas at Arlington.

14. Krishnamurthy S. Hellerstein M, Deshpande A, Franklin J & Mehul

Shah, Windows Explained, Windows Expressed. Submitted for publication, 2003.

124

BIOGRAPHICAL INFORMATION

 Altaf Gilani was born September 08, 1978 in Mumbai, India. He received his

Bachelor of Engineering degree in Computer Engineering from Veermata Jijabai

Technological Institute (VJTI) of Mumbai University, Maharashtra, India in Aug 2000.

There after, he worked as an Associate Consultant with I- flex Solutions from Aug-2003

till July 2001. In the Fall of 2001, he started his graduate studies in Computer Science

and Engineering at The University of Texas, Arlington. He received his Master of

Science in Computer Science and Engineering from The University of Texas at

Arlington, in December 2003. He is currently working as a Design Engineer with

NOKIA INC. His research interests include query processing for stream-based

applications.

