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ABSTRACT

SNOOP EVENT SPECIFICATION: FORMALIZATION
ALGORITHMS, AND IMPLEMENTATION USING
INTERVAL-BASED SEMANTICS
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Raman Adaikkaavan, M.S.
The Universty of Texas a Arlington, 2002

Supervising Professor: Sharma Chakravarthy

Snoop is an event specificaion language developed for expressng primitive and
composte events in Event-Condition-Action rules. A detection-based (using the end time
of an event occurrence on the time line) semantics was provided for dl the operaors in
various contexts. The above detectiontbased semantics does not recognize multiple
compostions of some operators—especiadly Sequence—in the intended way. In order to
recognize al the Snoop operators in the intended way, the semantics need to include Start
time as wel as end time for acomposite event (i.e, interval-based semantics).

In this thess, we formaize the occurrence of Snoop event operators and
expressons using interval-based semantics for the recent context. We discuss the changes
that are made to the parameter contexts that are needed for detection of Snoop operators
in interva-based semantics. We present agorithms to detect al Snoop operators in the

recent context and unrestricted context conforming to the interval-based semantics.
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1. INTRODUCTION

There is consensus in the community on the Event-Condition-Action rules (or ECA)
as the most generd format for expressng rules in an active database management system
(ADBMS). As the event component was the least understood (conditions correspond to
queries, and actions correspond to transactions) part of the ECA rule, there is a large body of
work on the operators and language proposed for event specification. Snoop [1, 2] was
developed as the event specification component of the ECA rule formalism used as part of
the Sentind project [3-6] on active object-oriented DBMS. Snoop supports expressve ECA
rules that include coupling modes and parameter (or event consumption) contexts.

The detection-based semarntics typicdly used by dl event specification languages
used in Active DBMSs (Snoop [1, 2], COMPOSE [8, 9], Samos [10, 11], ADAM [12, 13],
ACOOD [14, 15], event-based conditions [16], and Reach [17-19]) do not differentiate
between event occurrence and event detection. Typically, an event is, or can be detected a
the end of the interval over which it occurs. However, the event itself occurs over an interval
dthough it is typicaly detected a the end of the interval. Also, from a detection viewpoint,
the start of the event interval is not known until the event is detected. The occurrence and
detection semantics are not differentiated in the above event specification languages as
pointed out by [7] which leads to some unintended semantics for certain operators, such as
Sequence.

For example, in B;E; (*;” refers to the sequence operator, B and E refers to event
types), E; is defined to occur earlier than E,. Using detection-based semantics, E;E; is

detected as long as the end time of an instance of E is less than the end time of an ingtance of
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E,. Composite event B;E; is detected a the point when the last condtituent event (i.e., B) of
the composite event is detected. Because of the detection (not the occurrence) semantics, the
dart times of event instances are not congidered. Thiswill lead to the following problem.

Consider the composite events Ejj(EzEs) and E;(EpEs). Intuitively, since ‘7 is
sequential composition, we should expect these two to be different as B drictly precedes &
in the firg case and E; drictly precedes E; in the latter case. However, since the detection
semantics is used, that subtle difference is lost depending upon the intervals over which E,

E,, and Ez occur.

| || | |
1 | |2 3 |2 5 6
Es E, Ex

‘ - Sat Time of the Event

| - End Time of the Event

Figure1l.1. Example events.

Given the occurrences of & [1,2] (E: is the event, 1is the dart interval and 2is the
end interva of event ), B [3,4], and B [5,6], as shown in the figure 1.1, they satisfy both
the event expressons usng the detection semantics. Both these event expressons ae
satisfied because the detection time (end time) of event & [2] is less than the detection time
(end time of last condtituent event) of B;Ez [6] (i.e, 2 < 6) in the first case and detection time
(end time) of event & [4] is less than the detection time of & ;Es [6] (i.e., 4 < 6) in the second
cae. However, if interva-based definition is used for occurrence, then only the firg

expresson (E;(Ez;Es)) should be correctly detected and not the second one (Ez;(Ei;Es)),



gnce the dtart times are considered in both the cases. In the first case, detection time (end
time) of event & [1,2] is less than the dart time of B;Es [3,6] (i.e, 2 < 3) and in the second
case, detection time (end time) of event & [3,4] is not less than the start time of B ;Es [1,6]
(i.e, 4 > 1). Gdton [7] has pointed out this discrepancy between database work where
detection-based semantics has been used to define semantic of the operators in contrast to
work in Al where occurrence-based semantics has played a dominant role for inference than
detection and hence interval semantics has been used [20, 21]. In the rest of the thess, we
present interval-based semantics of event occurrences and discuss dgorithms for event
detection and their implementation using event graphs.

In this thess, we present interva-based semantics for Snoop operators for recent
context drawing upon the agpproach presented in [7] for the genera or unrestricted context.
We dso present agorithms and implementation of composite event detection that uses the
interva- based semantics using event graphs.

This thesis is organized as follows. Chapter 2 explains Snoop operators and their
semantics in the unredricted context usng interva-based semantics. Chapter 3 extends the
above to recent context and explains the event consumption modes. Chapter 4 provides an
illusrative example of event detection in interval-based semantics in al contexts usng event
graphs. Chapter 5 discusses some dgorithms and implementation issues for al operators in
recent context and detailed examples. Chapter 6 refers to related work on event specification
without going in to the detalls as dl of them use detection-based semantics. The reader is
referred to [7] for a good description of the differences between the Al and database
approaches. Chapter 7 has conclusons and future work. Algorithms for dl the operators in

unrestricted and recent contexts are provided in appendix A and B respectively.



2. SNOOP OPERATOR SEMANTICSIN UNRESTRICTED
OR GENERAL CONTEXT

We dat with a brief description of an event, an event expresson, and an event
modifier. Here, we assume an equidistant discrete time domain having “0” as the origin and
each time point represented by a non-negative integer. The granularity of the doman is
assumed to be specific to the domain of interest. An event is detected atomicdly a a point on
the time line dthough they occur over an intervd. In object-oriented databases, interest in
events comes from the sate changes produced by method executions by an object. Similarly,
in relational databases, interest in events comes from the data manipulation operaions such
as insert, deete, and update. Smilar to these database (or domain specific) events there can
aso be temporal events that are based on time or explicit events that are detected by an
goplication program (outsde of a DBMS) dong with its parameters. An event expression

defines an intervd on thetimeline.

2.1. Primitive Events

Primitive events are a finite st of events tha ae pre-defined in the (application)
domain of interet. Primitive events are didinguished as domain specific, tempord and
explicit events (for more detall refer to [1, 2, 22]). For example, a method execution by an
object in an object-oriented database is a primitive event. These method executions can be
grouped into before and after events (or event types) based on where they are detected
(immediately before or after the method call). Primitive events occur over a time interva and
are denoted by E [t1, ©] (where E is the event, t, is the Sart interva of the event denoted by

- E, b isthe end intervd of the event denoted by E ). In the case of primitive events, the start
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and the end interval are assumed to be the same (i.e, &t = B). For events that span over an

interva, the event occurs over the interva [ty to] and is detected a the end of the interval.

2.2. Event Expressions

For many gpplications, supporting only primitive events is not adequate. In many
real-life applications, there is a need for specifying more complex patterns of events such as,
“arivd of a report followed by a detection of a specified object in a specific aed’. They
cannot be expressed with a language that does not support expressive event operators aong
with their semantics. An gppropriate set of operators dong with the closure property dlows
one to condruct complex compodte events by combining primitive events and composte
events in ways meaningful to an gpplication interested in Stuation monitoring. To facilitete
this, we have defined a set of event operators dong with their semantics. Snoop [1, 2] is an
event pecification language that is used to specify combinations of events usng Snoop
operators such as And, Or, Seguence, Not, Aperiodic, Periodic, Cumulative Aperiodic,
Cumulative Periodic, and PLUS. The motivation for the choice of these operators and how

they compare with other event specification languages can befoundin [1, 2].

2.3. Compodite Events

Composite events are condructed using primitive events and event operators in a
recursve manner. A composite event conssts of a number of primitive events and operators,
and the st of primitive events of a composite event are termed as condtituent events of that
composite event. A composite event is said to occur over an interval, but is detected at the
point when the last condtituent event of that composte event is detected. The detection and
occurrence semantics is clearly differentiated and the detection is defined in terms of
occurrence as shown in [7]. Note that occurrence of events cannot be defined in terms of

detection which was the problem with the earlier detection-based approaches.



We introduce the notion of an initiator, detector, and terminator for defining event
occurrences. A composite event occurrence is based on the initiator, detector and terminator
of tha event which in turn are condituent events of that composte event. An initiator of a
composite event is the first condtituent event whose occurrence starts the composite event.
Detector of a composte event is the condituent event whose occurrence detects the
composite event, and terminator of a composte event is the condituent event that is
responsble for terminating the composite event. For some operators, the detector and
terminator are different (e.g., Aperiodic). For many operators, the detector and terminator are
the same (e.g., Sequence).

A composite event E occurs over a time interval and is defined by E [, to] where E is
a composite event, t is the start time of the composite event occurrence and & is the end time
of composite event occurrence (t; is the starting time of the first condituent event that occurs
(initiator) and ¢ is the end time of the detecting or terminating condituent event (detector or
terminator) and they aredenoted by - Eand E  respectively).

Start of anevent: O (- E, 1) ? $t' (t£t' UO(E, [t t]))
Endof anevent: O (E ,t)? $t£t(O(E, [t' 1]))

2.3.1. Event Combinations

Another aspect of event occurrences of the condituent events of a composte evert is
that they can be dther overlapping or digoint. “There is a basc st of mutudly exclusve
primitive relations that can hold between tempord intervals’ [20,21]. When the events are
dlowed to overlap, there are thirteen possble relaionships for their combination and they are
shown in figure 2.1. When events are not dlowed to overlgp, we have fewer combinations.

This may be meaningful for many agpplications where the same event should not participate



in more than one composite event or only one of the overlapping events is of interest. The
possible combinations are shown in figure 2.2.

In this thes's, we assume that condituent events can overlgp and semantics for dl the
operators are given for the overlapping case. The number of events that take part in the
detection of the composite event depends on the semantics of Snoop operators.

Bdow, we define Snoop operators intuitively fird and then provide a formd
definition in the unredricted context usng the interva-based semantics The formd
definitions shown beow in the boxes ae reproduced from [7] except for Plus. The
definitions describe the meaning of event operators in the unrestricted (or generd) context.
This means events, once they occur, cannot be discarded at dl. For example, for a “;”, dl
event occurrences that occur later than an event will be pared with that event as per the
semantics. In the absence of any mechanism for redricting the event usage (or consumption),
events need to be detected and the parameters for those composite events need to be
computed using the unredricted context definitions of the Snoop event operators. However,
the number of events produced by the above definition (in the unrestricted context) can be
large and not dl event occurrences may be meaningful for an gpplication. In addition,
detection of these events has substantiad computation and Storage overhead, which may
become a problem for Stuation monitoring applications. Semantics of these event operators

areasfollows
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Figure 2.2. Digoint event combinations.

2.3.2. Primitiveevents. O (E[t, t])
Primitive events are pre-defined in the subsystem (gpplicetion), E is a primitive event

that occurs over theintervdl [t, t], wheret isthe start time and t' is the end time of event E.
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Figure2.3. Examplefor And Operator.

2.3.3. AND event: E= O (E1? B, [ta, t2])

Event E is the conjunction of two events & and B, denoted by & D E,, occurs when
both B and E occur, irrespective of their order of occurrence over the intervd [t, t]. Events
E: and E, can overlap or they can be digoint. We can express AND event with the “?’

operator and the formd definition isas follows

O(E? Extut])? $uv MEtEL A ELELA
(O (Ew [tr, ) UO (Ez [t', t]) U (O (Ex, [t', t2]) U O (Ez, [, 1))
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Figure 2.3 explains the forma definition of the “?° operator. In figure 2.3, e (an
instance of the event E;) starts at time point ¢ and e (an instance of the event E) should
dart after or at the point t, and end at or after the point t. As shown in figure 2.3, t; is the Sart
time of the first event and ¢ is the end time of the second event whereas the end time (t) of
the event E; and dart time (t') of the event B can overlgp or digoint, but they should be in
the closed interval formed by & and . Both @' and &' can start and end the occurrence (i.e,,
act as @ther initiator or terminator) of the “?' event and they can be primitive or composte
events. For the event occurrences in figure 2.1, event E; is combined with the following &

occurrences for the“D” evert to occur: 1,2,4,5,6,8,9,10,11,12,13.

2.3.4. Sequence Event: E=0 (Ey; B, [t1, 12])

Event E is the sequence of two events E; and Ep, denoted by B; B, occurs when
event B occurs provided event & has dready occurred. This implies that the end time (t) of
event E; is guaranteed to be less than the dart time () of event E,. We can express the

Sequence event with the*;” operator and it isformally defined asfollows:

O(Es; B, [t1, 12]) ? $t v (L Et<t £t UO (Ey, [ta, ]) UO(Ex, [t t2]))

\ 4

Time

Figure 2.4. Example for Sequence Operator.
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Formd definition of the “;” operator is expressed pictoridly in figure 2.4. In figure
24, e, , an instance of event B, Starts a time point t and ends at the time point t, and e7, an
indance of event E,, should dart and end after the point t. “;” event occurs in the time
interval [t1,to], where event @' starts and ' ends the occurrence of the “:” event and they can
be primitive or composite events. For the event occurrences in figure 2.1, the event E; is

combined with the following occurrence of E, for the“;” event to occur: 4.

2.3.5. Or Event: E=0O (E;N B, [ty, t2])
Event E is the digunction of two events i and B, denoted by B N E, occurs when

E1 occurs or E occurs. We can express the OR event with the

operator and it is formally

defined asfollows:

O (E1N B, [t1, t2]) 7 O (Ey, [ty t2]) Uuo (Ez, [ta, t2])

t1|

£

tl Fom—— s e

m
g
m
a1

\ 4

Time

Figure 2.5. Example for OR operator.
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Figure 2.5 explans the formd definition for the “[" that is given above. In figure 2.5,
e;' (an instance of event B) detects the “|" event that occurs over the interva [t;, ts] and e
(an indance of event E,) detects the event that occurs over the intervd [t, ]. Both the
events @' and e can detect the “[" event and they can be primitive or composite events. For
the event occurrences in figure 21, the following “N” events are detected:
1,2,34,5,6,7,8,9,10,11,12,13.

In the following operators, we use the sart time and end time of an event defined in
the dtarting of section 2.3. To enable us to express this more concisaly the predicate G, is
defined asfollows [7]:

Oin (E[t, 2]) ? $t' ' (£t EL'Et, UO (E [tr' 12]))

2.3.6. Not Event: E= 0O (D (Eg) [Ex; E7], [t1, t2])
Event E is the not event that detects the non-occurrence of the event E in the closed
interval formed by end time of event E; and dart time of event E. Not event is expressed

with the“!” operator and isformdly defined as follows.

O (—(E2)[Ey, Ea, [t t2]) 2 O (E1 , t1) UO (- B3, t2) U =0y, (B2, [ta, to])

Event B instance e;' ends a time point &, and event B instance e3' Starts after or at
the point @' occurred and event E, should not occur in the closed nterva [t1, t] defined by
el and & as shown in figure 2.6 (Only whole occurrence of E is considered). The following

figure 2.6 explains the forma definition of the*!” operator.
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t

Figure 2.6. Examplefor NOT Operator.

For this Snoop event operator, for the event E; the possble combinations of
occurrences of k is only 4 (from figure 2.1), since there is no occurrence of E in the interva

foomedby E; and E- .

2.3.7. Aperiodic Event Operators (A, A*)

An aperiodic operator alows one to express the occurrences of an aperiodic event
within a closed time intervd. There are two variants of this event specification, a cumulative
variant and a nor-cumulative variant.

The noncumulative aperiodic event “E” is expressed as E = O (A (E1, B, B), [t1,
t2]). Event E is an gperiodic event that is sgnaed each time event B occurs within the time
interval formed by the end time of event & and start time of event k. An gperiodic event is
expressed usng the “A” operator. On the other hand, the cumulative aperiodic event “E” is
expressed as E = O (A* (E;, B, Eg), [t1, t2]). Event E is an gperiodic cumulative event that
accumulates dl the occurrences of event E; within the dosed interva formed by E; and B
and it occurs when event Ez occurs. A cumulative aperiodic event is expressed using the

“A*” operator.
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The occurrence time of the event “A” is the occurrence time for event Ep; an
occurrence of the event “A” is an occurrence of & and is determined by & and E;. The rest
of the condition specifies the context. There must be no occurrence of Ez whally within the
interval between the occurrence of E; and the occurrence of E [7]. The formd definition of

an“A” operator isasfollows.

O(A (E1, Bz, Bs), [ta, ©2]) ? O(Ez [tr, ) USt <t (O (B, ) U—Oin (Eg, [t+1, t2]))

In figure 2.7, shown below, we can see that event e;' (an instance of event &) ends at
time point t and event e, (an instance of event &) should be a sequence to &' (i.e., Start after
e’ has happened). No E; should start after @' has occurred, and finish before or at the point

e ' finishes (Only whole occurrence of E is taken into consideration)

t1 I t2

t+1

\ 4

Time

Figure2.7. Example for Aperiodic Operator.

An gperiodic event can occur zero or more times (Zero times when E does not occur

in the interva or when no interva exigs for the definitions of E; and Es).
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2.3.8. Periodic Event Operators (P, P¥)

A periodic event is a temporal event that occurs periodicaly. Periodic event dso has
two variants Smilar to the gperiodic event.

A periodic event “E” isdenoted as E = O (P (Ey, [t], B), [t, t]). While & and E; can
be any type of event, event E, “[t]” should be a time dring (temporal event). The Periodic
event occurs whenever the time gtring [t] occur in the time interval formed by the end time of
the event &5 and dtart time of the event & and is denoted by “P’. P has a cumulative variant
“P*” expressed as E = O (P* (Eq, [t], E)). Unlike P, P* occurs only once when the event E;
occurs. It aso accumulates the event E, occurrences at the end of each period and made it

available when P* occurs. Formal definition of a“ P’ operator isasfollows

O (P(E1, n, Ea), [t]) ? $t'<t$i? Z*(t=t'+ni UO(E; ,t) U 0O, (Es, [t +1,1]))

The formd definition of a “P’ operator is shown pictoridly in figure 28. An ingance of
event B, e;' ends a time point t, an instance of event B, e, should be (t + n*i) (t-> end time
for Ey, n*i -> time interval) and no E; should start after e occurred (at time point t) and
finish before or a the time poaint [t,] &' finishes (Only whole occurrence of E; is taken into

consideration)

i | ; t2

t+1 )

v

Time

Figure 2.8. Example for Periodic Operator.
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2.3.9. PlusEvent: E= O (Plus(E1, n) [t, 1])

Plus event is expressed with the ‘Flus’ operator and is used to specify a relative time
event [23]. A “Plus’ operator combines two events B and B where B can be any type of
event and event E, (“n”) is the terminaior event and it is a time gring [t]. The Plus event
occurs after time [t], after the event E; occurs. Below, we give the forma definition for the
Pus operator for the unredricted context. In the definition, E; is the initiagior, and “n” is the

terminator.

O (Plus(Ey, n), [t, 1]) ? $t'<t (O(Ey ,tYUt=t+n)

In figure 2.9, e1' arts Plus event specified by the time string [t] and the “Plus’ event

occurs at end time (e1')+ [t].

}fH

= Ty

Time

Figure 2.9. Examplefor Plus Operator.



3. PARAMETER CONTEXTSAND OPERATOR
SEMANTICSFOR RECENT CONTEXT

3.1. Parameter Contexts

A large number of events are generated when unrestricted context is used. When we
gudied many application domains, it turned out that these gpplication domains may not be
interested in the unredtricted context al the time but need mechanisms to talor the semantics
of event expresson to ther doman needs. In order to provide more meaningful event
occurrences to match gpplication needs, Snoop introduced severd parameter contexts (event
consumption modes): Recent, Chronicle, Continuous, and Cumulative. The idea behind the
parameter contexts is to filter the events (or the history) generated by the unrestricted context
in various ways to reduce the number of events generated. The ided dtudion is to dlow the
user to roll higher own context as needed. We briefly describe below the motivations for the
introduction of contexts.

Recent Context: In gpplications where events are happening a a fast rae and
multiple occurrences of the same event only refine the previous vaue can use this context.
Only the most recent or the latest initiator for any event that has darted the detection of a
composite event is used in this context. This entails that the most recent occurrence just
updates (summarizes) the previous occurrence(s) of the same event type. In this context, not
all occurrences of a condituent event will be used in the composite event detection. An
initiator will continue to initiate new event occurrences until a new initiator or a terminator
occurs. Binary Snoop operators use only detectors. This implies that the initiator will

continue to initiste new event occurrences untii a new initiator occurs. On the other hand,
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ternary Snoop operators contain both detectors and terminators, which implies that the
initiator will continue to initiate new event occurrences until a new initistor occurs or until a
terminator occurs. Once the composte event is terminated, dl the condituent events of that
composite event will be deleted.

Chronicle Context: In gpplications where there is a correspondence between different
types of events and their occurrences, and this correspondence needs to be maintained,
chronicle context is useful. In this context, for a composite event occurrence, the initiator and
terminator pair is unique (oldest initistor is paired with the oldest terminator; hence the
name). The detector and the initistor in this context can take part in more than one event
occurrence (eg., Aperiodic), but the terminator does not take part in more than one
composite event occurrence. For binary Snoop operators, both the detector and terminator are
the same, s0 once detected the entire set of participating congtituent events (initiator, detector
and terminator) are deleted. For ternary Snoop operators, detectors and terminators are
different, so once detected (e.g., Aperiodic) the detectors are deleted, and when terminated
(eg., Aperiodic*) only the initiator and the corresponding terminator are deleted, and the
condituent everts (except the initiator and terminator) that can be used in future events are
preserved. Future events are those that are initiated by the initiators that are not paired with
this terminator and which can include these condtituent events at the time of their detection.

Continuous Context: In applications where event detection dong a moving time
window is needed, continuous context can be used. In this context, each initiator Starts the
detection of that composite event and a single detector or terminator may detect one or more
occurrences of that same composite event. An initiator will be used at least once to detect
that event. For binary Snoop operators, dl the condituent events (initiator, detector and/or
terminator) are deleted once the event is detected. For ternary Snoop operators detector and

terminator are different, so once detected (e.g., Aperiodic) the detectors are deleted and
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when terminated (eg., Aperiodic*) only the corresponding initistor and terminator pars are
deleted and the condtituent events (except the initiators and terminators) that can be used in
future events are presarved. Future events are the events that are initisted by the initiators that
are not pared with this terminator and which can include these condtituent events d the time
of their detection.

Cumulative Context: Applications use this context when multiple occurrences of
condtituent events need to be grouped and used in a meaningful way when the event occurs.
In this context, al occurrences of an event type are accumulated as instances of that event
until the event is terminated. An event occurrence does not participate in two distinct
occurrences of the same composite event. In both binary and ternary operator, detector and
terminator are same and once detected and terminated all congtituent event occurrences that
were part of the detection are deleted. Other events that can be the congtituent event for some

future event will be preserved.

3.2. Operator Semantics in Recent Context

In this section, we extend the forma semantics to recent context. We describe al the
operators excluding the periodic operators in the recent context. In addition, we provide some
dgorithmic and implementation details with respect to the event detection in recent context.

Below, “O” represents the occurrence-based Snoop semantics.

3.3. Event Hidtories

The above intuitive explanations of contexts are based on the event occurrences over
a time line. In this section, usng the notion of event histories, we formdize these definitions
to take the paameter contexts into account. An event hisgory mantans a hisory
(chronologica with respect to the end time) of event occurrences up to a given point in time.

Suppose g is an event ingtance of type B then & [H] represents the event history that stores
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al the instances of the event B (namely &). In order to extend these definitions to parameter
contexts the following notation is used.

E [H] => Event history for event

ts — Starting time of an event g

te — Ending time of an event g

Bdow, we fird describe the history-based event occurrences intuitively before
defining them formally.

3.4. Occurrence Semantics in Recent Context
3.4.1. Sequence operator in Unrestricted Context

Bdow we illugrate how event histories can be used for the detection of the “}”
operator defined in section 3.3.

E: [H] ={(3,5), (4,6), (8 9)}

E [H] ={(1, 2), (7, 10), (11, 12)}
For the events shown in figure 3.1, (E;; E) generates the following pars of events in the
unrestricted context: {(e1%, &) [3,10], (1%, &) [4, 10], (&', &%) [3,12], (&1%, &°) [4, 12], (&r®,
e°) [8,12]}.
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Figure 3.1. Examplesfor Sequence Operator.

3.4.2. Sequence operator in Recent Context
The*;” operator in recent context is formally defined asfollows:
O (BEy; B, [ta, teg]) ?
{"el EA[HU" el E[HU
{(Oen[ts,tea]) UO (e [to tel]) Ulta £ ter <to£te))} ™ (? €' [tstart, tend] | (ter <tena £ te2)
Ue'l E[H])
}

In order to formdly define the Sequence event in the recent context, take an evert
pair B and E from the event histories & [H] and B [H] respectively. For this event pair to
be a Sequence event in the recent context, there should not be an occurrence of any other
indance of event E; from the event hisory E; [H] in the intervd formed by this event pair.
Formdization of the sequence operator in the recent context is explaned below using the
example shown in figure 3.1.

E: [H] ={(3,5), (4,6), (8 9)}

E [H] ={(1, 2), (7, 10), (11, 12)}
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In this context, only the most recent initiator is used (see section 4). In the above
example, when the event e occurs over the interva [1,2] there is no event in the event
hisory of E; that satisfies the “;” operator condition. Event e,® occurs over the intervd [7,
10]. It is not paired with event @' because there is an occurrence of event @2 [4, 6] in the
interval formed by the end time of event @' [3, 5] and end time of event e [7, 10], which
does not satisfy the condition given above Event e,® does not detect the sequence event h
the recent context, since the recent initiator is e;>. Event e;® cannot pair with the event &2
since it does not satisfy the “;” semantics. Similarly, when the event e® occurs it detects the
recent event with the event pair (e:°, &°) over theinterva [8, 12].

Eventsin recent context: { (e:*, &°) [8, 12]}.

3.4.3. Plusoperator in Unredtricted Context

Plus event occurs only once after the time interval specified by ‘n’ after the event &
occurs and denoted by (Plus (Ez, n) [tt]). By the definition of the Plus event the Sart time
and end time are the same. For example, Plus event (Plus (E1, 4)) is taken, which is detected
after 4 units after the occurrence of event E, to explain the unrestricted and recent context.

For the events shown in figure 3.2, Plus event defined in section 3.3 generates the
following pairs of events in the unrestricted context: {(ei}, 4) [9,9], (&%, 4) [10,10], (&3, 4)
[16,16]} .

Figure 3.2. Examplesfor Plus Operator.
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3.4.4. Plusoperator in Recent Context

Beow, in the formd definition for the Plus event in the recent context, event E; is
assumed to end a a time point [t] and Plus event at the time point [t]. “Plus’ event is an
abolute time event so that it occurs in the interva [t, t]. Plus event occurs in the recent
context when ever there is no other ingtance of E; event from E; [H] occurs in the interva
formed by [t] and [t]. Thisis given asthe condition (? (E;" , t") | (t' < t" £ 1)).
O (Plus((E, n), [t,1]))? $t'<t(O(Ey ,tYUt=t+nU (2 (E,t")|(t' <t"£1))

Formd definition given above is explained with the events shown in figure 3.2. Event
e! initiges a Plus event & the time point [5]. When the event e;? occurs it initiates a new
Plus event and terminates the Plus event that was initiated previoudy. At the time point [9]
Plus event is detected in the recent context. Smilarly event e® detects a Plus event at the
time point [16].

Eventsin recent context: { (e;2, 4) [10,10], (e, 4) [16,16]} .

3 s o
4| |6 €2
5|5 e

sldo s e

Figure 3.3. Examplesfor Not Operator.
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3.4.5. Not operator in Unrestricted Context

Not operator can be expressed as the Sequence of E; and E; where there is no
occurrence of the event Es in the intervd formed by these events. Thus, explanation of the
“@’ Operator definition is same as the “;” operaior with one additional condition. This
condition dipulates that there cannot be an occurrence of the event E; from Ez [H] in the
interva formed by the end time of the event B and the Start time of the event E. Below we
illustrate how event histories can be used for the detection of the NOT operator @ (Es)[E;,
E;], defined in the section 3.3.

E: [H] ={(3,5), (4,6), (8 9)}

E [H] ={(, 2), (7, 10), (11, 12)}

Es [H] ={(5, 9}

In the unredtricted context, above events shown in figure 3.3 generate the following

pair of events{ (&%, &) [4, 10], (&%, &%) [4, 12], (&1, &°) [8, 12]}.

3.4.6. Not operator in Recent Context
Not operator in recent context is formally defined as follows:
O (D (B3)[Ex, B2, [ta, te2]) ?
{"el E[HU"&l E[HU"e&l E[H U
{(O(en, [t tea]) UO (e [t tea]) U (ta £ ter <teo £ teg) U =Oin (€3, [ter, t]))}
U(? e [tstart, tend | (ter <tend £ tez) U €2'T Ep [H])
}

Formdly, for an event pair & and E to be in the recent context, there cannot be an
occurrence of any other ingtance of event & from the event history B [H] between this pair.
Formdizaion of the “@" operaor in the recent context is explained below usng the example
shown in figure 3.3.
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E: [H] ={(3,5), (4,6), (8 9)}

E [H] ={(1, 2), (7, 10), (11, 12)}

Es [H] ={(5, 9}

Occurrence of event &' does not detect any event since the event history E [H] is
empty. Event @' initiates 17" event in the recent context, and is terminated by event e, ‘@’
event in the recent context is inititled by event e’ This event is terminated by the
occurrence of the event @3, which acts as the most recent initiator. Event occurrence e does
not pair with the initiator @ since it does not satisfy the condition (tg £ te1 < to £ tez), where
as the event e detects a recent event with the initiator @ since there are no other instances
of event E; occurrence in the interva formed by this event pair and this sisfies both the
conditions (s £ ter <te £ ter) and (? &' [tstart, tend] | (ter < tend £ te2) U 1T Ey [H]).

Eventsin recent context: { (e:*, &°) [8, 12]}.

3.4.7. OR event
The semantics of ‘N” does not change with the context as each occurrence is detected

individualy. Smultaneous occurrences are not considered in thisthesis.

3.4.8. Aperiodic operator in Unrestricted Context

Beow we illugtrate how event higtories can be used for the detection of (A (Ei, B,
Es), [ta, te1]) in the unrestricted context defined in section 3.3.

E: [H] ={(3,5), (4 6)}

E [H] ={(1, 2), (8,9), (7, 10), (11, 12)}

Es [H] ={(11, 11)}

In the unredtricted context, above events shown in figure 3.4 generate the following

pair of events{(e1*, &) [3, 9], (&%, &°) [4, 9], (&, &%) [3, 10], (&%, &°) [4, 10]} .
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3.4.9. Aperiodic operator in Recent Context
The*A” operator in recent context is formally defined asfollows:
O (A (E1, B, Bg), [ta, tea]) ?
{"eal BA[HU" el E[H U" &l E[HU
{O (Ez, [ta, tea]) U $t <ty (O (E1, 1) U =Oin (Es, [t+1, te]))} U (2 €1 [tstart, tend] | (t < tena £
t)) Uer'T E;[H])
}

Aperiodic event occurs whenever an event B occurs in the interval formed by events
E: and E. This is formaly defined as the nonoccurrence of the event & as = O, (Es, [t +1,
tea]). In order to extend this to hold for recent context, the condition (? €1’ [tstart, tend] | (t < tend
£ te1)) is added. This condition specifies that, there should not be any occurrence of the event
E; from the event history E; [H] in theinterval (t, tes).

This formd definition is explaned usng the example shown in figure 34. When
event e occurs there are two events in the event history B [H]. Event e? cannot pair with
event e;' since there is an occurrence of the event &2 in the interval formed by these two
events. Event e,° is pared with event e since there is no other event from E; [H] has
occurred in this interval. Similarly, event 2 is paired with the event @%. Event ' terminates
the“A” event initiated by the event e/,

Events in recent context: { (&%, &°) [4, 9], (€12, &°) [4, 10]}
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Figure 3.4. Examplesfor A and A* Operators.

3.4.10. Cumulétive Aperiodic operator in
Unredtricted Context

In generd, Cumulaive Aperiodic event is the cumulative verson of the gperiodic
operator where dl the events occurred in the intervad formed by event E; and E; are
accumulated. Below we illustrate how event histories can be used for the detection of (A*
(E1, Bz, B3), [ts1, ter]) in the unredtricted context defined in section 3.3 usng the example
shown in figure 34.

E [H] ={(3,5). (4, 6)}

E [H] ={(1, 2), (8,9), (7, 10), (11, 12)}

Es [H] ={(11, 11)}

In the unrestricted context, above events generate the following pairs of events {(e?,
e?, &, &2 &) [8 10]}. In this context dl the events are accumulated in the interval formed

by eventse,* and e3™.
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3.4.11. Cumulative Aperiodic operator in
Recent Context

The“A*” operator in recent context is formaly defined as follows:
O(A (B, B, Ba), [ts, tal]) ?
{
"Esl Es[H]
{OE tate) UQ? Es'[ts te] | (te<ted) UE'T Eg[H]) U{" EiT E[HIU" Ex1 E[H]
U (O (Ex [t ) U P B [ts, te] | (ts < ts) U (t' £ ta)) UE' T E2[H]) U (O (B, [ty, ta]) | (ta
<)) UCQE"[t" ]| ((ta <te'<tx)U(ts'=tg)) UE"T E2[H)US$t<tg (O(EL ,)U(?
B U] (t<t£1)))}}
U"Esl Es[H]
{O (Bs, [t teal) U ((? Es' [t tetd | (fen < tea) U Bs' T Eo [H]) U (? Es" [ts', tes] | (tes' > te) U
(tes' <tea) UE"T E3[H])) U ((O (B2, [ts, ter]) | (ten < t)) U (? E2'[ts, te] | ((tep < ts <'tsr) U (te'
Et) UE' T E2[H]) U (O (Bz [ts, ta]) | (ta < 1)) U P E2" [ts" t'] | ((ta < te" < ta) U (85" =
) UE"T E[H)US$te=t<ts (OE ,)UQ B, t'|({t<t£t)))}}
}

The above forma definition has two cases, one to handle the case for the first
occurrence of the terminator in the higtory (as it groups dl condituent events up to that point)
and the second to handle a terminator when there are other previous terminaors in the
higory. The above definition produces the set of event occurrences in the recent context
given a1y two higories We will explan the formulaion of the definition usng the same
example.

When the event ' occurs, event histories of events &, & and B from figure 34 ae
asfollows

E: [H] ={(3,5). (4, 6)}

E: [H] ={(1.2),(8,9). (7, 10)}
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Es [H] ={(11, 11)}

Event occurrence e' does not have any effect on the event detection since there is no
initiator. Since there are no other events in B [H], satisfying the condition ¢ Es' [ts te] | (te <
tea) and fdls into the first case of the definition. Now the condition is that accumulating al B
events in the interval formed by events B and E. But this depends on the initiator, whether
ei! or e is the initiator. First, event @ [3,5] is taken as the initiator. But event a2 [4, 6] has
occurred in the interval formed by @ [3,5] and &2 [8,9] and thus fails to satisfy the condition
( (E', t) | (t <t £ tg)). As the second option event @ [4, 6] is taken. This satisfies the
above condition and thus acts as the initiator for this “A*” event. Thus the events in the
interval [6, 11] formed by events e;? and e;' are accumulated and a cumulative aperiodic
event is detected with events (e, &2, &2, e [8, 10]).

Terms usad in the formd definition are explained and their vaues are specified in “(
)" for thisexample

ty — Start time of First & (8)

tes — End time of Frs E (9)

ty—Starttimeof Last E, (7)

tq¢ —Endtime of Lagt E; (10)

tsa — Start time of Es whichisafter Last B (11)

tea— End time of Es which isafter Last E, (11)

Bdow given terms are specified only in the second case:

ts, — Start time of B3 whichisbefore First E»

tep — End time of B which isbefore First B



4. COMPOSITE EVENT DETECTION
USING EVENT GRAPHS

Sentind uses an event greph (figure 4.1) for representing an event expresson in
contrast to other approaches such as Petri nets used by Samos and an extended finite state
automata used by Compose. By combining event trees on common sub expressions, an event
graph is obtained. Data flow architecture is used for the propagation of primitive events to
detect composite events. All the leaf nodes in an event tree are primitive events and the
internal nodes are composite events. By using event graphs, the need for detecting the same
event multiple times is avoided snce the event node can be shared by many events In
addition to reducing the number of detections, this approach saves substantid amount of
storage space (for storing event occurrences and their parameters), thus leading to an efficient

approach to detect events.

Figure4.1. Typica Event Graph.

Event occurrences flow in a bottom-up fashion. In figure 4.1, leaf nodes E1 and E2
represents primitive events and the internal node represent the ‘D’ composite event. When a

primitive event occurs and is detected, it is sent to its lesf node, which forwards it to the
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parent node (if necessary) for detecting a composite event. As we described in the previous
chapter, introduction of parameter context makes the event detection more meaningful for
many gpplications. In this section, we will illusrate how a composte event is detected in dl
parameter contexts with an illudrative example usng the same st of primitive events
occurring over atime line.

The same event graph is used for detecting events in dl contexts on a need bass.
With each node, there are 4 counters indicating whether that event should be detected in that
particular context. The counter is aso used to keep track of number of composte events an
event participates in. When this counter reaches zero, there is no need to detect that event in
that context, as there are no events dependent on that evert. Condder the following

occurrences of primitive events:

Figure4.2. Event occurrences on thetimeline.

In figure 4.2, the numbers 1,2,34.,5,..... 11 represent time points on the time line a
which primitive events occur. If we take the primitive event g2, it is sad to occur in the time
interval [2,2], and event e, is sad to occur in the time interva [4,4]. The composite events
that combine these two events occur over a time interva [2,4] where [2] & the Sart time and

[4] are the end time of the composite event.
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In figures 4.3-4.7, we represent the events in terms of their occurrence times in
brackets (e.g., [2,2] represents event ;%) for smplicity. Composition is shown using multiple
events with in a bracket (eg., [[14], [2,7]] represents events @, &', &2, and e&2). Figures
4.3-4.7 represent the composite event (@ E3) ((EL; E2), (E1 ? E4)). Leaf nodes, E1, E2, E3,
and E4, represent the primitive events. NOT event is a composite event that contains AND,
SEQ as its condtituent events. When any two events are paired in either node B or C, they are
passed to node A where the '’ event is detected. We will present the detection of events in
the order of Recent, Chronicle, Continuous and Cumulative contexts. Figures 4.4-4.7 show

the snapshot of the event states in the event graph at the time of event e4 occurrence,

A

B

C
o @ W

& @& &

Figure 4.3. Event Graph.

In the recent context (refer figure 4.4), events e (recent initiator) and e’ are
combined in the node B (Sequence event) and are sent to their parent node A, which is a ‘@
event. When @' occurs, “?" event is detected and sent up to the node A; however, they do
not saisfy the “@’. When the event e;® occurs it combines with the event e;'which is the

recent initiator in the node C (AND event) and is propagated to the node A. In node A, since



33

there is an initiator waiting and there is no occurrence of the middle event Es, these events
e?, &', es! and e;® are combined and are detected as the composite event.

In the Chronicle context (refer figure 4.5), events @' and e are combined in the node
B and are passed to the node A. The pair e, &' is said to be the oldest pair where &' pairs
with @', the oldest initiator that is aready present in the node B. In the same way, the events
e and & are combined and sent to node A. Nevertheless, dl the events that occur after thet
do not make any pair in the node C in order to detect a“@” event in the node A.

In the Continuous context (refer figure 4.6), events @* and &? is paired with the event
e’ since one terminator may detect one or more initiators. When the event @2 occurs, it pairs
with the event @3. The occurrence of event @ terminates the events @ and & in the node
C. When these are sent to node A, the events (e}, &, @ &?) and (e, &, e°, &?) are
detected. But (1%, &?) it is not paired with the events (e, &2) since there is an occurrence of
the middle event e;? in between these events. The initiator pair cannot start anymore event
detection, because of the occurrence of middle event es? and al the everts are removed.

In the Cumulative context (refer figure 4.7), events (e}, &2 &) are paired together
and accumulated as a single event in the node B in contrast to the two events that are detected
in the continuous context and passed to the node A. In the node C, when the event &2 occurs
it is paired with the events (e.®, &%) and it is accumulated as a single and sent to the node A
where this event is paired with the event (1!, @2 &) that is dready present. But this event
(e a* e? isnot pared with events (e, e°) since there is an occurrence of the middie
event e;® in between these events. The initiator pair cannot start anymore event detection,
because of the occurrence of middle event es? and al the events are removed.

Figure 4.8, explans the different combinations of events in different parameter

contexts with the event occurrences shown over the time line It explans the initigtor,
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terminator for the combinations of events shown in the event grgph. Figure 4.8 summarizes

the explanations of the examples given in figures 4.4-4.7.

A [[2,4],[5,6]]

® @&

Figure 4.5. Chronicle Context.



[[1,4],[6,10]]
A [[24][610]

Figure 4.6. Continuous Context.

[[1,2,4],[6,9,10]]

Figure4.7. Cumulative Context.

35



1 2 3 4 5 6 7 8 |9 |10 |11

\4

€1
ell elz e3l ezl e41 613 e22 e32 el4

Time
Recent Context

Continuous Context

Cumulative Context

Unrestricted Context

Start Event I End Event
Condtituent Event

Figure 4.8. Detection of the same event in different contexts
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5. ALGORITHMSAND DETAILED EXAMPLES

5.1. Algorithms

Semartics of the event operators in recent context are defined using the event history
in chapter 4. In this chapter, we will describe an implementation that detects events according
to the interva-based semantics. In the way ECA rules are used for monitoring Stuations,
events occur over a time line and are sent to the event detector. All events in the form of an
event history are not submitted to the event detector. In fact, as part of event detection, the
event detector a any point sees only a partid higtory in time. Algorithms are presented below
detect the events according to the interval semantics athough they do not see the complete

history & any given point in time.

A [[2:41,56]]

[10,10]

Figure5.1. Recent Context.
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Table5.1. Termsusad in Algorithms

el Primitive or Composite event instance

Ei An event Lig tha mantans the higory in the
chronologica order of the occurrences of event ei

ts Sarting time of the event (Start Interva)

te Ending time of the event (End Interva)

HEAD Head of the Event Occurrence List Ei

TAIL Tall of the Event Occurrence List Ei

EaliesSartTime of B

The event which hasthe earliest gart timein Ei

EalietEndTime of B

The event which has the ealiet end time in Ei

(Head of the List always)

LaestStartTime of B

The event which hasthe latest gart timein Ei

LatetEndTime of B

The event which has the latest end time in Ei (Tall of

the List dways)

EventlD

ID associated with an event in the case of tempord

events

TimeString

Thetimeinterva specified in the tempord events
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5.1.1. And Operator in Recent Context
We will explain the and_recent dgorithm usng figure 51 and the primitive events
occurrences from figure 5.2.
PROCEDURE and_recent (&, parameterlist)
[* @ can be recognized as coming from the lft or right branch of the operator tree */

/* E1 and E2 have a most 2 event ingtances in them*/
If @ istheleft event
If (E2isnot empty and (t_S(€2) £t s(el)) and (t_e(€2) £t _e(el)))
Pass <e€2, e1> to the parent witht_s(€2) andt_e(el)
Replace el in E1 with e

If & isthe right event
If (ELisnot empty and (t_S(el) £t s(e2)) and (t_e(el) £t e€2)))
Pass<el, e2> to the parent with t_s(el) and t_e(e2)
Replace €2 in E2 with &

When the first event @' occurs a the time interva [1,1] it is696 stored in the E1 list
since there is no event in the E2 list. When the second event @ occurs a the time interva
[2,2] it replaces the event e’ in the E1 list since there is no event in E2 ligt and this is the
recent event compared to the e;'. When the event e, occurs at the time intervd [55] it is
checked with the events in the E1 lig since it is not empty. The condition that is being
checked is (t_ S(el) £t S(e2)) and (t_e(el) £ t ge2)). When we subdtitute the vaues which
we got above it will be (t 92) £t 55)) and (t_e(2) £t &5)). Since the condition turns out to
be true the next statement Pass<el, €2> to the parent witht_s(el) and t_e(€2) is executed.

Thus, we will Pass<e)?, g'> to the parent with t S(2) and t_e(5) which implies the
AND event is detected in a recent context with the composite event <ei?, e;'> over the time
interval [2,5]. Once the event detection is done, this event e is replaced with the event that is

aready present in the E2 list, snce thiswill be the recent initiator for the incoming e; events.
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5.1.2. Sequence operator in Recent Context
[* @ can be recognized as coming from the left or right branch of the operator tree */

PROCEDURE seq_recent (e, parameter_list)
If @ istheleft event
Replace el inthe E1 with & //most recent initiator

If @ istheright event
If (E1isnot empty and (t_S(€2) > t_e(el))) //when thereisan initiator in the list
Pass<el, e2> to parent with t_s(el) and t_e(e2) //time of occurrence of the sequence event

5.1.3. Not operator in Recent Context

Whenever the right event €3 is sgnded then it acts as the detector for his composite
event only when there is no e2 has occurred between the end intervd of the left event and
dart interva of the right event.
* @ can be recognized as coming from the left or right branch of the operator tree */

PROCEDURE not_recent (el, parameter_list)
If & isthe left event
Replace €l in E1 //most recent initiator
Ddete E2 // dl €2'sin E2 should have occurred before this event el

If @ isthe middle event
If (E1isnot empty and (t_e (el) £t_s(€2)))
Append e2 to E2 // since the “not” event is detected at the time of event €3 occurrence

If @ istheright event
If (E1isnot empty and (t_e(el) <t _s(e3))) //if e3isasequence of €1
If E2 isnot empty // When there are some €2's present in E2
Fordl e2sinE2
If (t e(e2)>t s(e3)ort s(e2) <t s(el))
Il Check for non occurrence of €2 in the interva formed by €1 and €3
Pass <el, €3> to parent witht_s(el) andt_e (e3)
Delete 2 from E2 // €2’ sthat have occurred before this recent initiator if any
Else
Pass <el, €3> to the parent witht_s(el) andt_e (e3) // Whenthereno €2'sin E2
DeeteEl1
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5.2. Detaled Examples

For explaining the binary operators (Sequence, And, Or), following event occurrences
are taken. For easy understanding, we will take dl the events, as primitive events so that dtart
and end time are the same. Let the set of event occurrences be (e;* [0,0], & [L.1], &' [2.2],

e22 [3!3]1 el3 [4’4])

Figure 5.2. Primitive event occurrences

5.2.1. Sequence operator

Sequence (“}") is a binary Snoop operator. Based on the event definition, we will
explan how the event (E1; E,) isdetected in dl contexts.

Recent: In recent context, a recent initiator is used to initiate a sequence event until a
new initiator occurs and there is only detector and no terminator. So for the above event
occurrences, when event e [0,0] occurs, it acts as the recent initiator. When the next
occurrence of the event E; (i.e, e [1,1]) occurs, it acts as the recent initiator. Event e’
occurs in the interval [2,2] that is a sequence of the event @2, thus detecting an “;” event in
the interva [1,2] with the events (2 and et). Since there are no terminators, event e’
continues to initiate the next event. Event e occurrence in the interval [3,3] detects a “;”

event with the events (e2 and e?) over the interval [1,3]. Next occurrence of event g (i.e,

e1° [4,4]) makesit as the new initiator and initiatesa“;” event.
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Chronicle: In chronicle context, the initiator (oldest) and terminator (oldest) pair
should be unique and they are paired in the chronologica order. Event @' and a2 occurs in
the interval [0,0] and [1,1] respectively. When the event ' occurs in the interva [2,2], it acts
as the terminator and it pairs with the event @*, since these two events form the oldest pair to
detect the “;” event over the interva [0,2]. After this detection, event @2 acts as the initiator
for the next “;” event since this is the oldest event currently in the event E; list. Event &°
detectsthe ;" event over theinterval [1,3] asit pairs with the event 2.

Continuous: In this context, a terminator can terminate more than one initiator and
detect more number of events with respect to the initiator. When the event e? occurs in the
interval [2,2], it terminates both the initiators (&' and a?) that is aready present in the list &,
thus detecting two “;” events (e}, &2) and (e1?, &2)) over the interval [0,2] and [1,2]. Event
&2 isnot paired with any events, since there are no initiators.

Cumulative: In this context, a terminator can terminate more than one initiator and
detect only one event that cumulates dl the events between the earliest initiator and the
terminator. Event e occurrence in the interva [2,2] terminates both the initiators (e;* and
e?) that is dready present in the list Ei, thus detecting a “;” event (e, @2, &2) over the
interval [0,2]. In this context, according to the context definition the terminator and the
initiator that takes part in the detection are deleted after the detection.

The event pairs are given below as the summary of the above explanation

Recent: (&1, &%) [1,2], (&1, &) [1.3])

Chronide: (e, &) [0,2], (&%, &2)[1,3])

Continuous. (&2}, &%) [0,2], (&2, &%) [1,2])

Cumulaive (&%, &%, &7) [0,2])
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5.2.2. And operator

And (“D") is a binary snoop operator and we will explain how this event is detected
using the composite event (E; D E).

Recent: In the recent context, there are only detectors in the case of “D’ operator.
Thus, an initiator will initiste the events until a new initigtor occurs. Conddering the same
event occurrences shown in figure 5.2, when the event @* occurs in the interva [0,0] it Starts
the ‘D" event. Event @2 occurrence replaces the event g as the initiator. When the event !
occurs it detects an “D” event occurrence over the interval [1,2]. Now both the liss & and B
contain one eement each. If the next event occurrence is an indance of event E, then the
dement in the list E; acts as the initiator and vice versa Event e occurrence in the interval
[3,3] replaces the event &' in the E; list as the initistor and detects an ‘D" event over the
interval [1,3]. When the event @> occurs, it detects a ‘D’ event over an interva [3,4] where
e,? istheinitiator and it dso replaces the event e, in the event E; list.

Chronicle: In this context, the initiator and the terminator par is unique and it is
paired in the chronological order. At the time of occurrence of event @', event @’ is paired
with e! and an ‘D" event is detected over an interva [0,2] and both the events are deleted.
When the event @2 occurs, it is paired with the event @ over the interval [1,3] to detect an
“D” event and are deleted. All the events paired are in the chronological order of occurrence.

Continuous: A terminator can terminate more than one initiator and can detect more
than one event in the continuous context. When the event ' occurs, it terminates the events
e:! and @2 and detects two ‘D" events over the interva [0,2] and [1,2] with the event pairs
(e, &) and (e1?, &) respectively. When the event &2 occurs it is kept in the B list. When
the event e;® occurs, it is paired with the event &2, which acts as the initiator for the “D”

event detected over the interva [3/4].
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Cumulative: This is same as the continuous context, except that there is only one ‘D’
event detected when the event e! occurs which contains events (e}, e?, &') as the
congtituent events and is detected over the interva [0,2]. When the event e® occurs, it is
paired with the event @2 that has occurred in the interval [3,3] and detects a “D” event in the
interva [3/4].

The event pairs are given below as the summary of the above explanation

Recent: (&% &) [1.2], (&% &°) [13], (&% &°) [13])

Chronide: (&', &) [0,2], (&1%, &°)[1.3])

Continuous: (&1, &%) [0,2], (&1%, &") [1.2], (&%, &°) [34])

Cumulative: (&1, &1, &%) [0,2], (&7, &:°) [3.4])

5.2.3. Or operator

Binary snoop operator “N” is defected whenever an event in the event expression
occurs. If we take the above event occurrences then the composite event (E; N E,) is detected
whenever any one of these events occur. So for the above event occurrences the “N” event is
detected as (e [0,0], @2 [1,1], ! [2,2], & [3,3], &® [44]). Thisimplicitly means that &l the

contexts produce the same eventsin case of the “N” event.

et e &' e &' e° &° Time ——»

Figure 5.3. Event occurrences for Not Operator.
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5.2.4. Not operator

Not (“@") operator is a ternary operator, but it behaves as a binary Snoop operator,
gnce it detects the non-occurrence of the second event. We will explain the "@” event (! (Eg,
B, Es3)), uang the event occurrences shown in figure 5.3.

Recent: Recent initistors (E;) detect the non-occurrence of the event E, before the
event B occurs. Since the " operator behaves like the binary Snoop operator, this contains
only detectors. Occurrence of the evert 2, replaces the event @' as the initiator. When the
event es' occurs it detects the nonroccurrence of the event E; (‘@ event) in the interva
formed by the events B and E (i.e., [1,2]). Event @ occurrence replaces the event &2 asthe
iniigtor and it initistes the next interva. Event es® occurrence does not produce any event
since there are two occurrences of the event B. So the event & deletes the events &2, &2 and
e1°, since e cannot detect any non-occurrence of E.

Chronicle: At the time when event es' occurs, there are two events present in the
event lis E; and there are no occurrences of event . Thus, this event @ detects the non-
occurrence in the interval [0,2] and pairs with @'. When the event & occurs there are two
events h both § and B list, and there are occurrences of E in the intervad formed by (€12,
&) as wel as (e°, &?). Thus, the occurrence of the event @ doest not detect 2" event
occurrence and it ddetes the lists E; and E, since the events in the list B cannot start any
‘@ event.

Continuous: Occurrence of the event e detects the non-occurrence of the event B in
the interva formed by (e}, &') and (e1?, &), thus, it detects two event pairs (e1®, &) [0,2]
and (er?, es') [1,2] and once the “@’ event is detected the entire constituent event are deleted.

Event e;? occurrence does not detect any non-occurrence of the event Ey, in the interva
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formed by @* and e?. Thus, both the events in the list & and & is deleted, since @ cannot
intiste any “@" event.

Cumulative: Occurrence of the event es* detects the non-occurrence of the event B in
the interval formed by (e}, &?) and (e.?, es?), thus, it detects a “@” event with events (e1*, &2,
es') over the intervd [02]. Event es® occurrence has the same effect as the continuous
context.

The event pairs are given below as the summary of the above explanation

Recent: (&%, ") [1,2])

Chronide: (e, es1) [0,2])

Continuous. (&%, es%) [0,2], (&1?, es*) [1,2])

Cumulaive (&', &%, &) [0,2])

Figure 5.4. Event occurrencesfor A, A* operators

5.2.5. Aperiodic operator

“A” is an aperiodic event operator and it behaves with respect to the ternary operator
context definitions. Aperiodic event A (E1, B, Es3) is detected whenever the event B occurs
in the intervd formed by the events E; and Es. Aperiodic operator is explained using the
primitive event occurrences shown in figure 5.4.

Recent: Event @2 occurrence replaces the event @ as the initiator for the “A” event.

When the event e,' (detector) occurs in the time interva [2,2], it detects the “A” event
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initiated by the event e;® over the interval [2,2]. Event @ [3,3] initiates the next “A” event.
When the event @2 occurs in the interval [4,4] it detects the “A” event over the interval [4,4],
and snce this is just the detector, initiator is not deleted. Smilarly, “A” event is detected
when the event &> occur. The occurrence of es! terminates the “A” event initiated by the
event e,

Chronicle. When the event e occurs, it is appended to the list E; that aready
contains @. At this time both the events are in the list, and both @' and @ has initiated the
“A” event detection. When the event &' occurs it detects the “A” event detection that was
initiated by the event @' and @2 over the interva [2,2]. Event e and e occurrence detects
“A” over the interval [4,4] and [5,5]. When the event @' occurs it terminates the “A” event
detection that was initiated by the event ;.

Continuous: “A” event initigted by the events e;' and e? are detected by the
occurrence of the event e with event pairs (e}, &%) and (e/?, &t) over the interva [2,2] and
[2,2] respectively. Each of the events &2 and &> detects three “A” events initiated by g, &2
and & with event pairs (1", &%) [44], (&%, &°) [44], (&, &°) [44], (&', &) [5.5], (&%, &)
[55], and (e, &3 [55]. Event es! occurrence terminates the “A” event initiated by the
eventse !, e” and e,

Cumulative: Events e, initiates the “A” event. Event e’ occurrence is accumulated.
Event e initiates an “A” event. Event &% and e® occurrences are dso accumulated. Event
es' occurrence detects and terminates the “A” event in the cumulative context initisted by the
event e with event pair (e, &%, &®, &, &2, &°, &") [6,6].

The event pairs are given below as the summary of the above explanation

Recent: (&%, &) [2.2], (&%, &%) [44], (&2°, &°) [5,5])

Chronide: (&', &) [22], (& &) [22], (&', &°) [44], (& &) [44], (&, &7)

(441, (', &2°) [5.5], (1%, &°) [5.5], and (er°, &°) [5.9])
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Continuous: (&', &) [2,2], (&% &) [22], (&, &%) [44], (e, &) [44], (&° &%)
[4,4], (e}, &%) [5.5], (&%, &%) [5,5], and (&1, &°) [5,5])

Cumulaive (e}, @2 e &', &2 &° es') [6,6])

5.2.6. Cumuldive gperiodic

Cumulative aperiodic operator “A*” is dmilar to the “A” operator except tha the
events are detected and terminated only when the event & occurs (i.e, cumulaive) until then
the event E, occurrences are accumulated. We will explan A* event, A* (E;, B, B) usng
the primitive event occurrences shown in figure 5.4.

Recent: Event e® occurrence, initistes “A*” event and terminates the “A*” event
initiated by event e;'. Event @' occurrence does not detects an “A*” event and the event is
jus accumulated. Event e occurrence, initistes “A*” event and terminates the “A*” event
initiated by event e;?> and adso removes the event &' from E, buffer. Events &2 and &°
occurrences are jist accumulated. Event es! occurrence detects the event pair (e, 2, &°,
es') [4,5] and terminates the detection of “A*” event initiated by event e,°.

Chronicle:. When the event e occurs it is appended to the list E; that aready
contains @'. Event e! occurrence is accumulated; event @ occurrence is appended to the B
list and the event occurrences @ and &2 are accumulated. When the event e occurs, oldest
initiator (i.e, ') is paired with this event and an “A*” event is detected with the event pair
(e, &', &2 &3 &) [25] and then both the initiator, terminator and al the constituent event
that cannot participate in the future event detections are deleted. In this case, events (&', &)
are ddeted and events (e}, &2, &°) are not deleted since they can take part in the future event
detections.

Continuous: When the event &2 occurs it is appended to the list E; that aready

contains @'. Event e! occurrence is accumulated; event @ occurrence is appended to the B
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list and the event occurrences e and &* are accumulated. When the event &' occurs, events
e, a2 @ ae pared with this event and three “A*” events are detected with the event pairs
el &) &% &% &) [25], (e, &', &% &° &') [25], (e, & &° &) [4,5] and then both
the initiator, terminator and dl the condituent event that cannot participate in the future event
detections are deleted.

Cumulative: When the event e;®> occurs it is appended to the list E; that aready
contains @*. Event e! occurrence is accumulated; event @ occurrence is appended to the B
list and the event occurrences e and & are accumulated. When the event e occurs, events
e, &% e are pared with this event and one “A*” event is detected with the event pair (e1’,
e?, el e e? e° &) [25] and then both the initiator, terminator and al the constituent
event that cannot participate in the future event detections are del eted.

The event pairs are given below as the summary of the above explanation

Recent: (&, &°, &°, es") [4,5])

Chronide: (&', &', &7, &°, &5") [2,5])

Continuous: ((ell1 ezl, e221 e23’ e3,l) [215]’ (812, e211 e22’ e23, e3l) [2’5]’ (913, e22’ e23, e3l)

[4.5])

Cumudive (&, &1, &, &', &% &° &) [2,5])

|
>
I

el e’ e’ Time —»

Figure5.5. Event occurrences for Plus operator.
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5.2.7. Plus operator

“Plus’ operator is used to specify a rdative time. Plus operator occurs only once
whenever the time specified, relaive to an event E; happens. Plus (E; + [10 ming]) occurs
only one time after 5 minutes after an occurrence of the event &. Plus operator is explained
using the primitive event occurrences shown in figure 5.5.

Recent: Plus operator treats al contexts the same except the recent context where the
recent initiator replaces the immediate recent initistor. So, once replaced the Plus event
initiated by the immediate recent initiator won't occur. In the example, @* occurs a the time
[0,0] and the “Plus’ event Sarts a the time 0. At the time point 5, event @2 occurs and it
dtarts a “Plus’ event and since it is the recent initiator it replaces the event g* and terminates
the Plus event started by it. “Plus’ event occurs over the interva [15,15] and the event started
by &2 gets terminated. The event e;® starts the next occurrence of the “Plus’ event.

Chronicle, Continuous and Cumulative: In dl these contexts the “Plus’ event will
occur after the time specified by the time sring after the event & occurrence. In our example
the “Plus’ event occurs three times over the interva [10,10], [15,15], [35,35] with respect to
the eventse,®, &, and e;®.

The event pairs are given below as the summary of the above explanation

Recent: ((e1?, [t]) [15,15])

Chronicle, Continuous, Cumulative: ((e;*, [t.t]) [10,10], (e?, [ti]) [15,15], (e, [tH])

[35,35])
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Figure 5.6. Event occurrence of P, P* operators

5.2.8. Periodic operator

“P’ is a periodic event operator and it behaves with respect to the ternary operator
context definitions. Periodic event is detected whenever the event E, (time dring) occurs in
the interval formed by the events & and E. Let P (E;, [5], B) be the periodic event and the
primitive event occurrences are shown in figure 5.6.

Recent: “P’ event is initiated by the occurrence of an event @*. At the time point 5,
“P’ event occurs over the intervd [5,5] and at time point 10, the next “P’ event occurs over
the interval [10,10] and so on. Event e;? initiates the next “P’ event as the recent initiator
from the time point 15. At time point 20, “P’ event initiated by @2 occurs. Occurrence of e’
terminates the “P” event started by e°.

Chronicle: Event e’ initiates the “P’ event. All the event occurs as in the recent
context except that the event acurrence of @2 does not stops the “P’ event initiated by the
event e;*. Occurrence of the event e;' terminates the “P’ event initiated by the event e’
gnceitisthe oldest initiator.

Continuous: Event e! initiates the “P’ event. All the event occurs as in the recent
context except that the event occurrence of @2 does not stops the “P’ event initiated by the
event @*. Occurrence of the event @' terminates the “P’ events initiated by the event g* and

e’
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Cumulative: In the cumulaive context, dl the event occurrences are accumulated and
are detected when the terminator occurs. Event @' initiates the “P’ event. All the events and
time string occurrences are accumulated until a terminator occurs. So when the event es?
occurs it terminates the “P’ event initiated and it occurs over the intervad [5,25] with events

&', &2, es' and corresponding Es s as constituent events.

5.2.9. Cumulative periodic operator

“P*” detects the occurrence of the events when the terminator occurs. How “P*”
event detection is different from “P’ is explained below with the same event occurrences.

Recent: “P*” event is initisted by the event e}, but a the time point 5 there is no
occurrence of the “P*” event, and this time gring event (E) is accumulated. But according to
this context definition, when the event e occurs it acts as the recent initiator, so this stops
the “P*” event started by @®. When event ! occurs it detects “P*” event with events (e:?,
20, 25, e31) over theinterva [20,25] and terminates the event initiated by ;2.

Chronicle: Events @', &? initiates the “P*” event. Whenever the event B occurs with
respect to these initiators it is accumulated. When event @' occurs it detects the “P*” event
with (&, 5, 10, 15, 20, 25, ') over the interva [5,25] that is corresponding to the oldest
iniiator  (i.e, @) and terminales. But event E occurrences with respect to e are
accumulated until a new terminator occurs.

Continuous: Events e;*, a2 initiates the “P*” event. Whenever the event E, occurs
with respect to these initiators it is accumulated. When event es' occurs it detects the “P*”
events with (e, 5, 10, 15, 20, 25, ') over the interva [5,25], (€%, 20, 25, &l) over the
interval [20,25] and terminates both the “P*” events initiated.

Cumulative: Events e;!, @? initiates the “P*” event. Whenever the event E, occurs

with respect to these initiators it is accumulated. When event es' occurs it detects the “P*”



53

events with (e, 5, 10, 15, 20, 25, @2, 20, 25, &) over the interval [5,25] and terminates the

“P” event.



6. RELATED WORK

This chapter summarizes related work on event specification without going in to the

details as dll of them use detection-based semantics.

6.1. SAMOS
The combination of active and object-oriented characterigtics within one, coherent
gydem is the overdl god of SAMOS [10,11]. It addresses rule specification, rule
management and rule execution. Even tough there is not much difference between the event
specifications between the detection based Sentind and SAMOS, we will explain briefly the
events and event constructors.
Primitive events are the events that are associated with a point in time and they are
method events, transaction events, time events and abstract events.
1. Timeevents are specified at a pecific point in time,
2. Method events are the events that are raised by the object invocation and can be
related to one class, to a particular object or to multiple classes.
3. Transction events are defined by the dart or terminaion time of user-defined
transactions.
4. Abstract events are not detected by SAMOS and should be notified to the system
by explicit operation.
Composite events are built from the primitive events using six event congtructors.
1. Digunction (E1|E2) occurs when either E1 or E2 occurs.
2. Conjunction (E1, E2) occurs when both E1 and E2 have occurred, regardless of

order.
54
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3. Sequence (E1; E2) occurs when first E1 and afterwards E2 occurs.

4. The other three operators define how many times the specific event occurred
during a predefined intervd and they are “*” condructor, hisory event and
negative events. Event patterns are parameterized and are passed to the condition
and action parts. Time and Negative events have no parameters.

5. Only chronicle context semanticsis used by SAMOS

Petri nets are used for the detection of composite events. But, because of the

occurrence of an event is congdered as a point in time, the sequence event faces the same
problem in SAMOS asin Sentinel. The problem is explained in detail below.

Two sequence events be ((El; E2); E3) and (E2;(ELl; E3)). Let the order of event

occurrences be E1, E2 and E3. Both the sequence is detected in the Petri nets shown in

figure 6.1, Since the event occurrence is taken as the point in time.

El E2
EL(E2: E3) E2:(E1: E3)
E3 E2: E3 E3

F1: E3
‘E

Figure6.1. Petri net example.

6.2. Ode

Ode an object oriented database developed a AT&T Bdl Labs. O++ is an object
facility based on the C++ object facility and is cdled the class [8,9]. In order to provide
persstence of objects O++ is an extenson of C++. It dso has events, which are of basc,

logica and composite type and how they are specified.
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Events happen at specific points in time. Basic events are the events supported by the
system. These can be divided in to 4 categories as follows:

1. Object State Events

2. Method Execution Events

3. TimeEvents

4. Transaction Events

Logicd events are the basic events with a mask, which is used to mask or hide the
event occurrence. This means that the Event and Condition portion of the ECA rule is
combined thus making the EA rules.

Composite events are the combinations of logicd events usng logicad and specid
event specification operators. Composite event is said to occur a the point in time when the
last logicd event in the composte event occurs. As seen in Sentind [1,2] and SAMOS
[10,11] this will lead to problems. Ode supports many logicd operators (such as rdative,

prior, sequence, every eic.,).

6.3. TowardsaGenerd Theory of Action and Time

In Active Databases events are considered as “ingtantaneous,” wheress red life events
have duration. There has been consderable work done in the area of Al where the events are
consdered to have duration and are based on temporal logic. “Temporal logic is based on the
temporal interval rather than points” Allen [20,21] condders 13 mutudly exclusve
primitive relaions that can hold between tempord intervals. Each of these rdations is
represented using a predicate in this tempord logic. These 13 rdations are shown below,
where the fird sx rdations have inverse rdation. Based on these tempord reations dl the
interval based Snoop operators are defined.

1. DURING (t1, t2)
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. STARTS(t1, t2)
. FINISHES (t1, t2)

2
3
4. BEFORE (t1, t2)
5. OVERLAP(t1, t2)
6. MEETS(t1, t2)
7. EQUAL (t1, t2)

From dl the sysems discussed so far we can conclude that the systems using
detection-based semantics does not recognize multiple compodtions of some operaors in the

intended way.



7. CONCLUSIONS AND FUTURE WORK

In this thess, we have extended the forma definitions of occurrence-based semantics
to recent context. These definitions add condraints over the formulation in the unrestricted
context in the form of conditions over initiators, detectors, and terminators appropriate for
that paticular context. The semantics have been implemented usng event histories providing
procedurd semantics. Algorithms for dl the operators in the recent and unrestricted context
have been developed. All operators have been implemented for recent and unredtricted
context.

We are in the process of extending the semantics to other contexts (such as chronicle,
continuous and cumulative) and using the digoint characterization of composte events. This

work needs to be extended to the distributed event occurrence and detection as well.
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