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Abstract—Graphs or networks are a natural way to analyze
inter-related set of entities. When these entities are associated
with a diverse number of features, each denoting a specific
perspective, then the representation can be simplified by forming
a network of layers (one for each feature) or multiplexes.
Vertices with high centrality values in the multiplexes represent
the most influential vertices. However, detecting central entities
in multiplexes for different combinations of features becomes
computationally expensive, as the number of layers increases.

In this paper, we address the task of efficiently identifying
high centrality vertices for any conjunctive (AND) combination
of features (as represented by multiplex layers.) We propose
efficient heuristics that only use results from individual layers to
identify high degree and high closeness centrality vertices. Our
approaches, when applied to real-world, multi-featured datasets
such as IMDb and traffic accidents, show that we can identify
the high centrality vertices with an average accuracy of more
than 70-80% while reducing the overall computational time by
at least 30%.

Index Terms—Multiplexes; Graph Analysis; Degree Centrality;
Closeness Centrality; Lossless Composability;

I. INTRODUCTION

Networks (or graphs) are used to represent pair-wise rela-
tionship between entities in a system. In many cases, entities
may be connected by not one but multiple relations. For exam-
ple, a pair of traffic accidents may be related if they occurred in
the same location, or under the same light condition, weather
condition etc. Similarly, two actors may be related if they acted
in the same genre, such as action, comedy, etc. When multiple
features are present, then the relationship pertaining to each
feature can be represented as a network. Multiplexes are thus a
network of networks, where each individual network (termed
layer) denotes a distinct relationship (through edges) based on
a feature among the same set of entities (or nodes.)

Each individual layer of a multiplex, represents the rela-
tionship corresponding to a single feature. While there exist
several algorithms for analyzing individual networks, the chal-
lenge in analyzing a multiplex is that the analysis has to be
recomputed for each combination of layers.

In this paper, we concentrate on finding high degree
and closeness centrality vertices, also called hubs, in AND-
composed layers of multiplex networks. AND-composed lay-
ers denoting the conjunction of perspectives can be obtained by
combining the individual layers such that only edges that are
present in every individual layer are retained. High centrality
vertices in the accident dataset can help us in identifying the

most dominating traffic accident locations with respect to poor
lighting conditions and bad roads and this information can
be used to devise appropriate accident prevention techniques.
However, in order to obtain a holistic view of the multiplex
system with n layers, we have to generate, store and analyze
a total of 2n − 1 networks, leading to extremely expensive
operations for multiplexes with large number of layers (for
example the network in [4] has 300 layers.)

Problem Formulation and Contributions: Given this
challenge of efficiently finding hubs in multiplexes, the main
problem we aim to solve is as follows. Given a dataset with
multiple entities that are related via a number of distinct fea-
tures, how can we efficiently find the most influential entities
based on any conjunctive (AND) combination of features.

To solve this problem, we use multiplexes for representing
such multi-featured datasets and present elegant techniques for
estimating the hubs for any conjunctively composed multiplex
layer, without actually constructing that composed layer.

Our main contributions are two-fold. First we show that
finding high centrality vertices in the AND composed mul-
tiplexes, based on only analyzing the individual layers is a
non-trivial problem, and the naive approach of simply taking
the intersection of the hubs from each layer does not produce
accurate results. Second, we present four heuristics (3 for
degree centrality and 1 for closeness centrality) to identify
hubs in the AND-composed using only the hubs detected in
individual layers and their distance-1 neighbors. Our results
show that we can identify the vertices with 70−80% accuracy
while reducing the computation time by at least 30%.

Our proposed methods can be extended to any number of
layers. This approach significantly reduces the complexity of
analyzing the AND-composed network and also the storage as
only n individual layers are constructed and analyzed.

The remainder of this paper is organized as follows: In
Section III we give an overview of how a multiplex is formed
and how to conjunctively combine networks to produce new
AND-composed layers. In Section IV, we detect high degree
and closeness centrality vertices in each layer. We show how
these hub sets vary across different individual and AND-
composed layers. In Section V, we present four heuristics to
improve the accuracy of computing the degree or closeness
centrality based hubs of any conjunctive combination of layers
by using the required layer-wise hubs.

In Section VI, we empirically validate the quality of the hub



sets generated by executing our algorithms on two diverse data
sets: traffic accidents and IMDb. We use the Jaccard Index
to compare the set of hubs obtained through our heuristics
with the actual set of hubs. We show that our approach can
significantly reduce the computational costs of finding hubs in
the composed networks.

II. RELATED WORK

Recently, significant amount of work has been done in the
area of multilayer networks [3], [11] to handle varying inter-
actions among the same set of entities such as co-authorship
relationship in different conferences [4], citation relationship
across different topics [13], interaction relationships based
on calls/bluetooth scans [9], connection relationships across
different social media platforms [12] and multilayer protein-
protein interactions [8]. Most of this work focuses on overall
multiplex diagnostics by considering the multiplex layers indi-
vidually. However, in order to understand the effect of multiple
features using composition of individual multiplex layers, we
need a principled approach to arbitrarily combine features
without having to construct combined layers and analyze them.

Using multiplex representation schemes such as adjacency
tensors [5] are also not efficient as computations based on any
subset of layers will require the loading of the entire multiplex
tensor, thus increasing the computational complexity.

Santra et. al. [15] proposed an approach for efficiently
re-creating communities of any combination of layers by
performing Boolean operations on the communities obtained
from the individual layers. In this paper, we take inspiration
from their work and propose novel cost-effective heuristics
that are able to estimate highly accurate hub sets for any
conjunctive combination of layers.

Degree centrality [10] and closeness centrality [7], [14] have
been used in monoplex (single layer network) to detect high
centrality nodes. There has been work in determining centrality
measures by aggregating all the layers of a multiplex [6] or
performing walks across layers [16]. However, to the best of
our knowledge, the problem of inferring the degree centrality
or closeness centrality hubs of any arbitrary conjunctively
combined network from hubs of individual layers, in a cost-
effective manner, has not been addressed earlier.

III. MULTIPLEXES: A BRIEF OVERVIEW

In this section, we give an overview of how multi-featured
datasets like Internet Movie Database (IMDb) and traffic acci-
dent dataset can be modeled as multiplexes. We also show how
conjunctive composition of layers presents a new perspective
and discuss the benefits of multiplex-based modeling.

Multi-Source or Multi-featured Datasets: In multi-
featured datasets, the relationship between any two entities
can be defined in multiple ways. For example, the interaction
among people can be through various media such as email,
phone conversations, social networking, etc., the similarity
among the accidents can be based on different factors such
as light, weather, road conditions, etc., two actors can be
related based on the different movie genres in which they have

acted together, such as comedy, action, etc. In a multiplex,
the relation due to each feature is represented through a
network. Two vertices are connected if they exhibit a relation
based on feature represented in the network. The networks for
each feature together form a multiplex. The set of entities,
represented by nodes, remains the same in each layer. For
example, Figure 1 (a) shows an accident multiplex depicting
the similarity among 7 accident occurrences based on light
(Ga1) and weather (Ga2) conditions. Similarly, in Figure 1 (b),
the IMDb multiplex depicts the co-actor relationship among 6
actors based on the movie genres, comedy (Gm1) and action
(Gm2). The notations mentioned in Table I have been used to
formalize the various concepts discussed in this paper.

TABLE I
LIST OF NOTATIONS USED FOR DEFINING THE CONCEPTS.

I Set of entities

f Set of features/perspectives

G(Vk, Ek)/Gk The kth layer

uki Representative node for ith entity in the kth layer

NBDk(u
k
i ) Set of nodes adjacent to the ith node in the kth layer

degki Degree of the ith node in the kth layer

avgDegk Average degree of the kth layer

cloki Closeness centrality of the ith node in the kth layer

avgClok Average closeness centrality of the kth layer

Vk Set of nodes in the kth layer

(uki , u
k
j ) An edge in the kth layer

Ek Set of edges in the kth layer

DHk Set of degree centrality based hubs in kth layer

CHk Set of closeness centrality based hubs in kth layer

Fig. 1. Snapshots of accident and IMDb multiplexes

The distinct co-actor (or accident-accident) connectivity in
each layer shows that every genre (or factor) presents a unique
way of analyzing the same set of actors (or accidents). For
instance - accident 4 and accident 7 were not caused by the
same lighting conditions, but the weather conditions at the
time of occurrence were similar. Similarly, actor 3 is one of the
most paired actors in the action genre, whereas in the comedy
genre actor 6 has worked with most of the other actors.



Composition of Multiplex Layers: In addition to analyzing
individual layers, it is also important to study the effect of
different combinations of features on the given set of entities.
In this paper, we compose any two individual layers in a
conjunctive (AND-based) manner, i.e. link will exist in the
composed layer if it exists in both the individual layers.

Formally, if Gx and Gy are two individual layers of a
multiplex, then the AND-composed layer, GxANDy , will be
constructed by including the edges that are part of both Gx

and Gy . For example, Figure 2 (a) shows the AND-composed
layer, Ga1ANDa2 generated by linking those accidents that
have similar lighting and weather conditions at the time of
occurrences. Similarly, in Figure 2 (b) the AND-composed
layer Gm1ANDm2 denotes the co-actors present in both the
comedy layer, Gm1 and the action layer, Gm2. Any AND-
composed layer will have same set of nodes as its constituent
layers. However, the upper bound on the number of edges,
|EiANDj |, will be min(|Ei|, |Ej |). The AND-composition can
be extended to multiple layers of the network.

Fig. 2. AND Compositions using the individual layers from Figure 1

Benefits of Multiplex-based Modeling: Modeling of multi-
featured data as multiplexes allows ease of handling the
dataset incrementally through the addition of nodes (when a
new accident or actor is encountered), edges (to represent the
new entity’s relationships with the earlier entities) or layers (to
account for fresh perspectives). Moreover, a latest snapshot of
multiplex can be easily maintained through the deletion of
obsolete entities (nodes), relationships (edges) or perspectives
(layers). Further, this modeling facilitates the study of rela-
tionships among the entities with respect to individual as well
as combination of different features.

IV. HUBS (HIGH CENTRALITY VERTICES) ACROSS
MULTIPLEX LAYERS

Entities vary in their influencing capability with respect
to the occurrence of events, interaction networks and so on.
For example, a particular person might be considered highly
influential if he/she is connected to a large majority of people
on Facebook. Thus, an advertisement agency will prefer this
person in order to enhance their information transfer. However,
he/she may not be equally influential on LinkedIn. Thus, in
case of multi-featured data, the influencing capability for a
particular entity may vary substantially with features. With
respect to multiplexes, this translates to generating the hubs
across different individual or AND-composed layers.

Degree Centrality (degki ): The number of nodes adjacent to
the ith vertex in the kth multiplex layer defines a vertex’s layer

specific degree. The higher is the degree of a node, greater is
its influence on the immediate neighborhood. We define high
centrality nodes or hubs in the kth layer (or feature) as the
ones that have a degree greater than the average degree of the
layer, avgDegk, which is computed by 2|Ek|

|Vk| . Figure 3 (a)
encircles the accident nodes in red that have been detected as
hubs due to their greater than average degree.

Fig. 3. Variation in the Degree and Closeness Centrality based Hubs across
Different Individual and Composed Multiplex Layers

Closeness Centrality (cloki ): The closeness centrality of a
node measures how close are the other nodes in the network
from it. Therefore, closeness centrality of the ith vertex in the
kth multiplex layer is defined by the average of the summation
of reciprocal of shortest paths between the ith node and
every other node in the layer. We use the valued closeness
centrality variant proposed in [7], [14] as any multiplex
layer need not be comprised of a single connected component.
Therefore, cloki = 1

|Vk|−1
∑|Vk|

j=1,j 6=i
1

d(uk
i
,uk

j
)
, where d(uki , u

k
j )

is the shortest path between the ith and the jth vertex in the
kth layer. The higher is the closeness centrality of a node,
closer it is from all other nodes in the layer and greater will
be its influence on the network. We define the high centrality
nodes or hubs in the kth layer (or feature) as the ones that
have their closeness centrality metric value greater than the
average closeness centrality of the layer, avgClok, which is

computed by
∑|Vk|

i=1
cloki

|Vk| . Figure 3 (b) encircles the actor nodes
in green that have been detected as hubs based on closeness
centrality.

Characteristics of Hubs in the Composed Layers: In
Figure 3, we show using simple examples that finding hubs of
the composed layer from the individual hubs is a non-trivial
problem. In some cases, such as for actor 4 (or accident 6) a
vertex may be a hub in the composed layer even if it is not
a hub in both the layers. Further, the actor 1 and accident 7
illustrate that a node that is a hub in both individual layers
may not be a hub in the AND-composed layer. Moreover, there



can be some entities like actor 2 and accident 2 that are hubs
in the AND-composed layer in spite of not being a hub in
either of the individual layers. This is due to the fact that edge
connectivity varies across individual and composed layers,
thus effecting the values of degree centrality and closeness
centrality. Our goal is to develop heuristics that can take into
account these connectivity patterns and identify the hubs in the
AND-composed layer using the hubs of the individual layers.

V. IDENTIFYING HUBS IN AND-COMPOSED MULTIPLEXES

In this section, we introduce four heuristics to identify the
degree or closeness centrality hub sets in the AND-composed
layer using information about the hubs in the individual layers.
Our techniques eliminate the need to generate, store and
compute degrees and shortest paths for the AND-composed
layers, thus reducing the computational complexity.

For the following discussion, let us assume the two indi-
vidual layers to be Gx and Gy , with degree centrality based
hub sets, DHx and DHy , respectively, and closeness centrality
based hub sets, CHx and CHy , respectively. Further, let us
suppose that DHxANDy and CHxANDy are the actual degree
and closeness centrality based hub sets, respectively, for the
AND-composed layer, GxANDy .

A. Estimating Hubs based on Degree Centrality

As shown in Figure 3 (a), a) a node that is not high degree in
the individual layers may share enough neighbors across layers
to become a hub in the AND-composed layer, whereas b) the
node that is a hub across layers may lose its hub property after
AND-composition due to the absence of common neighbors.
Therefore, the naive way of taking the intersection of layer-
wise hubs to find the hubs in the AND-composed layer will
generate a large number of false positives and false negatives.
Here we propose and discuss three heuristics to estimate
degree centrality based hub set of the AND-composed layer.

Heuristic DC1: To reduce the false positives, we es-
timate the average degree of the AND-composed layer,
avgDegxANDy

est . Note that the upper bound on the average
degree in the AND-composed networks will be the mini-
mum average degree from the individual layers. Therefore,
avgDegxANDy ≤ min(avgDegx, avgDegx). We set the es-
timated average degree of the AND-composed network to this
upper bound: avgDegxANDy

est = min(avgDegx, avgDegx).
We first obtain the vertices from the intersection of the hubs

in the individual layers, i.e. all nodes u ∈ DHx ∩ DHy .
We then check whether these nodes have a common set
of one hop neighbors in their individual layers. The larger
the set of common neighbors, the greater the degree in the
AND-composed network. Formally we only retain the vertex
u as a hub if |NBDx(u) ∩ NBDy(u)| > avgDegxANDy

est ,
where NBDx(u) and NBDy(u) denote the sets of one hop
neighbors of vertex u in Gx and Gy , respectively.

Heuristic DC2: In the above heuristic, if avgDegxANDy
est

is much larger than avgDegxANDy , then a common hub
in spite of sharing enough neighbors across the individ-
ual layers will not be generated as a hub in the com-

Algorithm 1 Procedure for Heuristic DC1
Require: DHx, avgDegx, DHy , avgDegy , DH ′xANDy = ∅

1: avgDegxANDy
est = min(avgDegx, avgDegx).

2: for all u ∈ DHx do
3: NBDx(u) ← one hop neighbors of u in Gx

4: end for
5: for all u ∈ DHy do
6: NBDy(u) ← one hop neighbors of u in Gy

7: end for
8: for all u ∈ DHx ∩DHy do
9: if |NBDx(u) ∩NBDy(u)| > avgDegxANDy

est then
10: DH ′xANDy ← DH ′xANDy ∪ u
11: end if
12: end for

posed layer. A better estimate for the AND-composed layer’s
average degree is obtained by maintaining the degree of
each vertex in every individual layer. In the AND-composed
layer, the number of neighbors for any vertex will be at
most that vertex’s least degree among all individual lay-
ers. That is, degxANDy

i ≤ min(degxi , deg
y
i ). This implies,

avgDegxANDy ≤ 1
|vx|

∑Vx

i=1min(deg
x
i , deg

y
i ). We set the es-

timated average degree of the AND-composed network to this
upper bound, avgDegxANDy

est = 1
|vx|

∑Vx

i=1min(deg
x
i , deg

y
i ).

We execute the steps in heuristic DC1 with this improved
estimate. This method provides a better accuracy as compared
to DC1, but the computational cost increases.

Heuristic DC3: Heuristics DC1 and DC2 reduce false
positives but cannot handle false negatives. Specifically they
miss out vertices that are hubs in the AND-composed layer
but are not hubs in at least one of the individual layers. For
handling this case, we maintain few low degree nodes from
each individual layer that have a degree close to the average
degree. That is, if degxi > (1 − ε)avgDegx, then insert the
vertex in DHx, where 0 ≤ ε ≤ 1, and we similarly update
DHy . Therefore, executing heuristic DC2 with these updated
layer-wise hub sets, will also generate those nodes that are
non-hubs in at least one of the individual layers, but share
enough neighbors across layers to become hubs in the AND-
composed layer. The higher is the value of ε, more accurate
will be the estimated hub set. This increased accuracy comes at
a cost of maintaining more overhead information. Thus, from
DC2 and DC3 it is evident that there is a trade-off between
accuracy and savings in computational costs.

Discussion: If the topology of the individual layers, Gx and
Gy is similar, then most of the layer-wise hubs will also be
hubs in the AND-composed networks and the naive approach
can give a good estimation. Also note that if the average degree
estimate for the AND-composed layer is not close enough to
the actual average degree then even an ε value of 1 may not
give 100% accuracy due to the exclusion of common hubs and
non-hubs that share more than actual but less than estimated
average degree number of neighbors across layers. Therefore,
the effectiveness of our heuristics depends on the fraction of



Algorithm 2 Procedure for Heuristic DC3
Require: DHx, degxi ∀ uxi , avgDegx, DHy , degyi ∀ uyi ,

avgDegx, ε, DH ′xANDy = ∅
1: for all uxi ∈ Vx do
2: if degxi > (1− ε)avgDegx then
3: DHx ← DHx ∪ uxi
4: end if
5: end for
6: for all uyi ∈ Vy do
7: if degyi > (1− ε)avgDegy then
8: DHy ← DHy ∪ uyi
9: end if

10: end for
11: execute Heuristic DC2 with updated DHx and DHy .

AND-composition hubs that are common to the layers, average
degree estimate and the value of ε.

B. Estimating Hubs based on Closeness Centrality

Closeness centrality depends on the shortest paths between
any two nodes. As shown in Figure 3 (b) that even if a certain
node is closest to all the remaining nodes in the individual
layers, it may not be a hub in the AND-composed layer due
to the absence of common paths between this node and every
other node, that are short enough. Therefore, the naive way of
intersecting the layer-wise closeness centrality based hubs will
generate false positives. We propose and analyze a heuristic
that maintains minimal neighborhood information to estimate
the closeness centrality hubs for the AND-composed layer.

Heuristic CC1: From a high closeness centrality node we
can traverse the entire network in minimum number of hops.
Therefore, if high degree nodes are close to a node, the
chances of this node becoming a high closeness centrality
node increase. Therefore, one way of eliminating the false
positives is to check whether the common closeness centrality
hubs share high degree neighbors across layers.

Based on this observation, we propose the following heuris-
tic. Initially, for every node, u ∈ CHx (or, u ∈ CHy),
we obtain the set of degree based hubs present in its one
hop neighborhood, degNBDx(u) (or degNBDy(u)). We
estimate the degree based hub set for AND-composed layer,
DH ′xANDy , using one of the heuristics discussed above. We
then obtain the set of common closeness centrality hubs from
CHx and CHy . For each of these vertices, we obtain the
set of those common degree based hubs in the one hop
neighborhood that are also estimated to be hubs in the AND-
composed layer. The larger the size of this set, greater are
the chances of a node to remain a high closeness centrality
node even in the AND-composed layer. Formally, we only
retain a vertex u as a closeness centrality based hub if
|degNBDx(u) ∩ degNBDy(u) ∩DH ′xANDy| ≥ 1.

Discussion: If the topology of layer Gx is similar to Gy ,
then the shortest paths between most of the node pairs will
be common. In such a case, the naive approach is capable
of generating good hub set estimates of the layer GxANDy .

Algorithm 3 Procedure for Heuristic CC1
Require: CHx, DHx, CHy , DHy , DH ′xANDy , CH ′xANDy

= ∅
1: for all u ∈ CHx do
2: degNBDx(u) = ∅
3: for all v ∈ NBDx(u) do
4: if v ∈ DHx then
5: degNBDx(u)← degNBDx(u) ∪ v
6: end if
7: end for
8: end for
9: for all u ∈ CHy do

10: degNBDy(u) = ∅
11: for all v ∈ NBDy(u) do
12: if v ∈ DHy then
13: degNBDy(u)← degNBDy(u) ∪ v
14: end if
15: end for
16: end for
17: for all u ∈ CHx ∩ CHy do
18: if |degNBDx(u) ∩ degNBDy(u) ∩ DH ′xANDy| ≥ 1

then
19: CH ′xANDy ← CH ′xANDy ∪ u
20: end if
21: end for

Maintaining information about the alternate paths to every de-
gree based hub beyond 2-3 hops from the closeness centrality
hubs and similar path information about some layer-wise non-
closeness centrality based hubs will improve the accuracy of
the heuristic. However, due to the large overhead costs the
computational time will significantly increase.

C. Estimation of Hubs in k-layer AND Compositions

The input to any of the above heuristics is two hub sets
that may either be the actual hub sets of individual layers or
the estimated hub sets of AND-composed layers. For any 3
layers, Gx, Gy and Gz , the average degree estimation and
neighborhood intersection are both commutative and associa-
tive. Therefore, the four proposed heuristics are also commu-
tative (DH ′xANDy = DH ′yANDx, CH ′xANDy = CH ′yANDx)
and associative (DH ′(xANDy)ANDz = DH ′xAND(yANDz),
CH ′(xANDy)ANDz = CH ′xAND(yANDz)). Therefore, to esti-
mate the hub sets of a k-layer AND-composed network, any
heuristic is applied on the k/2 pairs of hub sets, in parallel,
generating k/2 AND-composed hub sets, and so on until
the final estimated set of hubs, corresponding to the k-layer
AND-composed network, is obtained. Thus, in this way for
a multiplex with n layers, the 2n − n AND-composition hub
sets can be estimated by only using n layer-wise hub sets and
minimal overhead information.

VI. EXPERIMENTAL ANALYSIS

In this section we present our experimental results on the
performance of the four proposed heuristics to estimate the hub



sets of the AND-composed multiplex layers with respect to
accuracy and computational costs. Specifically, we i) construct
multiplexes for datasets from diverse domains, ii) generate the
AND-composed layers and the actual sets of high centrality
nodes, iii) obtain the estimated hub set based on our heuristics
and iv) compute accuracy of the estimated hubs based on the
actual hub set.

Experimental Setup and Datasets: Our codes are imple-
mented in C++ and executed on a Linux machine with 4 GB
RAM and installed with UBUNTU 13.10.

Our experiments are performed on two different multiplexes
built from real-life datasets collected from diverse domains -
UK Traffic Accidents [2], Internet Movie Database - IMDb
[1]. Detailed structure of these multiplexes is as follows:

Accident Multiplex: We use 1000 random road accidents
that occurred in the United Kingdom in the year 2014. This
multiplex has 3 basic layers with respect to Light Conditions
(Domain = {daylight, darkness: lights lit, darkness: lights unlit,
darkness: no lighting, darkness: lighting unknown}), Weather
Conditions (Domain = {fine + no high winds, raining + no high
winds, snowing + no high winds, fine + high winds, raining
+ high winds, snowing + high winds, fog or mist, other}) and
Road Surface Conditions (Domain = {dry, wet or damp, snow,
frost or ice, flood, oil or diesel, mud}). An edge in any layer
represents that the corresponding accidents occurred within 10
miles of each other and are similar based on light conditions
(layer Ga1), weather conditions (layer Ga2) or road surface
conditions (layer Ga3).

IMDb Multiplex: This 3-layer multiplex is built with 5000
random actors. An edge in any basic layer signifies that the
corresponding actors have worked together in at least one
movie that belongs to the Comedy genre (layer Gm1), Action
genre (layer Gm2) or Drama genre (layer Gm3).

Actual Hub Sets in the Individual and AND-composed
Layers: Apart from the individual multiplex layers, four
AND-composed layers each, for the accident multiplex -
Ga1ANDa2, Ga1ANDa3, Ga2ANDa3 and Ga1ANDa2ANDa3,
and IMDb multiplex - Gm1ANDm2, Gm1ANDm3, Gm2ANDm3

and Gm1ANDm2ANDm3, are generated. Every cell in Table
II lists percentage of hubs followed by the average degree
or closeness centrality for the individual and AND-composed
multiplex layers. Variation in this information across layers
shows that any combination of layers (or features) presents a
unique perspective of analyzing the same set of entities.

Comparison Metrics: We compare the similarity of the
estimated hub sets with the actual hub sets using the jaccard
index. For any two sets, X and Y, jaccard index, JX,Y =
|X∩Y |
|X∪Y | . If two sets completely overlap, then jaccard index is
1, denoting highest accuracy of 100%. We compute overall
accuracy of a heuristic as the mean of the accuracies obtained
by estimating hub sets of every AND-Composed layer.

The computational time to generate the actual hub set for
any AND-composition includes the time to generate the AND-
composed layer followed by the time it takes to compute
degree based hubs or shortest paths for closeness centrality
based hubs. On the other hand, the time to estimate the hub

AND-Composed Layer
Accident (x = a) IMDb (x = m)
|DHk| |CHk| |DHk| |CHk|
avgDeg avgClo avgDeg avgClo

Gx1
23.4% 30.6% 34.9% 29.4%
14.92 0.0324 1.4404 0.0181

Gx2
20.5% 36.3% 29.4% 19%
17.99 0.0462 0.8564 0.0071

Gx3
21.3% 28.5% 47.1% 39.4%
16.44 0.0347 1.92 0.031

Gx1ANDx2
21% 28% 9.6% 9.6%
11.2 0.0251 0.1948 0.00009

Gx1ANDx3
20.4% 25.2% 22.7% 10.5%
10.18 0.0202 0.5176 0.0016

Gx2ANDx3
18.2% 26.2% 11.8% 9.3%
14.35 0.0302 0.24 0.0002

Gx1ANDx2ANDx3
18.2% 24.1% 1.6% 1.6%
9.28 0.0186 0.0228 0.000005
TABLE II

VARYING HUB INFORMATION DENOTING THE DIVERSE PERSPECTIVES
OBTAINED THROUGH MULTIPLEX LAYERS

set for the same AND-composed layer includes time it takes
to apply the proposed heuristics using the layer-wise hub sets.

The Naive Approach: Table III shows that the naive
approach of intersecting the layer-wise degree or closeness
centrality based hub sets will not guarantee a highly accurate
estimated hub set for the AND-composed layers, due to the
presence of a large number of false positives. Absence of
common immediate neighboring nodes and common shortest
paths between nodes across the layers may lead to such low
accuracies with the naive approach. However, we observed
that the Accident multiplex layers have similar topology due
to which the naive approach gives relatively better accuracies
as most of the layer-wise hubs are also hubs in the composed
layers (Table IV).

AND-Composed Layers Degree Centrality Closeness Centrality
Gm1ANDm2 59% 43.3%
Gm1ANDm3 67.9% 55.4%
Gm2ANDm3 54.4% 48.1%

Gm1ANDm2ANDm3 14.1% 13.5%

Overall 48.9% 40.1%
TABLE III

LOW ACCURACIES OF THE NAIVE APPROACH TO ESTIMATE
AND-COMPOSITION HUB SETS (IMDB MULTIPLEX)

AND-Composed Layers Degree Centrality Closeness Centrality
Ga1ANDa2 84.8% 93%
Ga1ANDa3 82.6% 82.1%
Ga2ANDa3 85.4% 93.3%

Ga1ANDa2ANDa3 79.2% 87.4%

Overall 83% 88.9%
TABLE IV

SIMILAR TOPOLOGY ACROSS LAYERS LEADING TO GOOD ACCURACIES
OF THE NAIVE APPROACH TO ESTIMATE AND-COMPOSITION HUB SETS

(ACCIDENT MULTIPLEX)

Estimating Degree Centrality based Hubs: Here we
empirically evaluate the performance of the three degree-based
hub estimation heuristics.



Performance of Heuristic DC1: In DC1, the average degree
estimate for an AND-composed layer is obtained by taking the
minimum of the two layer-wise average degrees. This heuristic
generates only those common layer-wise hubs that share more
than this estimated number of neighbors across layers, thus
striking out the possibility of any false positive’s presence from
the estimated hub sets. Table V and VI show that the overall
accuracy of the estimated hub sets is 79.5% and 82.8% for the
accident and IMDb multiplexes, respectively. Moreover, there
is an overall saving of 70.8% and 41.9% in computation time
for generating the hub sets of accident and IMDb multiplexes,
respectively.

AND-Composed Layer Accuracy Hub Set Generation Time (secs)
Actual Estimated by DC1

Ga1ANDa2 78.6% 0.0523 0.0166
Ga1ANDa3 77.5% 0.0423 0.0152
Ga2ANDa3 85.7% 0.0711 0.0152

Ga1ANDa2ANDa3 76.4% 0.0458 0.0147

Overall 79.5% 0.2115 0.0618 (70.8%↓)
TABLE V

EFFECTIVE PERFORMANCE OF DC1: HIGH ACCURACIES AND LOWER
HUB SET GENERATION TIMES (ACCIDENT MULTIPLEX)

AND-Composed Layer Accuracy Hub Set Generation Time (secs)
Actual Estimated by DC1

Gm1ANDm2 88.2% 0.0597 0.0302
Gm1ANDm3 74.6% 0.0681 0.0483
Gm2ANDm3 82.4% 0.0634 0.0385

Gm1ANDm2ANDm3 85.9% 0.0492 0.0226

Overall 82.8% 0.2403 0.1396 (41.9%↓)
TABLE VI

EFFECTIVE PERFORMANCE OF DC1: HIGH ACCURACIES AND LOWER
HUB SET GENERATION TIMES (IMDB MULTIPLEX)

Note that for IMDB the overall accuracy improved from
48.9% in the naive scheme to 82.8%. However, the accuracy
for the Accident multiplex decreased. This is because the
estimated average degree was far larger than the actual average
degree of the AND-composed networks. To solve this issue we
apply heuristic DC2.

Performance of Heuristic DC2: Table VII shows that the
improved average degree estimate for the AND-composed
layers can also improve the accuracy. Using heuristic DC2,
increases the overall accuracy from 79.5% to 83.04% for
the Accident Multiplex. Similarly, the accuracy of estimated
hub set for IMDb Multiplex increases from from 82.8% to
83.9%. The proximity of this estimate to the actual average
degree allows the generation of some common layer-wise
hubs that were excluded by DC1, however the computational
costs increase. Therefore, for instance, in case of the Accident
multiplex hub set estimation process the overall savings in
computational time falls from 70.8% to 58.4%.

Performance of Heuristic DC3: To consider the case where
non-hub layer-wise nodes become hubs in the AND-composed
layer, few low degree nodes from each layer are maintained
such that their degree is at least (1 − ε) times the individual
layer’s average degree, where 0 ≤ ε ≤ 1. Figure 4 (a) and (c)

AND-Composed Layer Average Degree % Change
(Actual Average Degree) DC1est DC2est in Accuracy

Ga1ANDa2 14.92 12.988 5.2%↑(11.2)
Ga1ANDa3 14.92 12.847 4.4%↑(10.18)
Ga2ANDa3 16.44 15.257 1.6%↑(14.35)

Ga1ANDa2ANDa3 14.92 12.045 2.7%↑(9.28)

Overall – – 3.5%↑
TABLE VII

IMPROVED ACCURACIES OF DC2 OVER DC1 (ACCIDENT MULTIPLEX)

show that by increasing the value of ε the overall accuracy
increases as the number of false negatives are reduced. How-
ever, higher the value of ε, more is the number of layer-wise
non-hubs carried forward to the estimation process. Therefore,
this increased overhead cost increases the time to estimate hub
sets (Figure 4 (b) and (d)).

Fig. 4. Performance of DC3 with respect to the parameter ε

Figure 4 (c) shows that the average degree estimate for the
IMDb multiplex is good enough to give a perfectly accurate
estimate for an ε = 0.5. However, the average degree estimate
becomes a bottleneck in the case of Accident multiplex due
to which even with increasing ε, the rate of increase in the
overall accuracy is low (Figure 4 (a)). A better average degree
estimate in these cases will prove to be helpful.

The overall accuracy and total hub set estimation times
shown in each cell for the three proposed heuristics in the
Summary Table VIII justify that there is an evident trade-off
between accuracy and savings in the computational costs.

Estimating Closeness Centrality based Hubs using
Heuristic CC1: In every layer, high degree neighbors for each
high closeness centrality node are maintained. The intuition
is that if a common high closeness centrality node shares



DC3
DC1 DC2 ε = 0.25 ε = 0.5 ε = 0.75

Accuracy Accuracy Accuracy Accuracy Accuracy
Time (secs) Time (secs) Time (secs) Time (secs) Time (secs)

Accident Multiplex
79.5% 83.04% 88.5% 88.7% 88.7%
0.0618 0.088 0.1268 0.1499 0.1602

IMDb Multiplex
82.8% 83.9% 83.9% 100% 100%
0.1396 0.211 0.2312 0.2685 0.2716

TABLE VIII
SUMMARIZING THE PERFORMANCES OF THE THREE DEGREE BASED HUB

ESTIMATION HEURISTICS

high degree neighbors across layers that are also part of the
hub set estimated by heuristic DC2, then its chances of being
accessible via less number of hops from every other node in
AND-composed layer increase. Table IX and X show that for
both accident and IMDb multiplexes, this heuristic estimates
hub sets that have an overall accuracy of 73.8% and 66.5%,
respectively. Moreover, this process leads to a saving of at
least 30% in computation time.

AND-Composed Layer Accuracy Hub Set Generation Time (secs)
Actual Estimated by CC1

Ga1ANDa2 73.1% 0.3086 0.2028
Ga1ANDa3 68.9% 0.2834 0.2004
Ga2ANDa3 78.2% 0.345 0.2017

Ga1ANDa2ANDa3 75.1% 0.237 0.2051

Overall 73.8% 1.174 0.81 (31%↓)
TABLE IX

EFFECTIVE PERFORMANCE OF CC1: HIGH ACCURACIES AND LOWER
HUB SET GENERATION TIMES (ACCIDENT MULTIPLEX)

AND-Composed Layer Accuracy Hub Set Generation Time (secs)
Actual Estimated by CC1

Gm1ANDm2 60.4% 2.0534 1.5153
Gm1ANDm3 71.3% 2.6168 1.5255
Gm2ANDm3 70.1% 2.0432 1.5159

Gm1ANDm2ANDm3 64.1% 2.029 1.5071

Overall 66.5% 8.7424 6.0637 (30.64%↓)
TABLE X

EFFECTIVE PERFORMANCE OF CC1: HIGH ACCURACIES AND LOWER
HUB SET GENERATION TIMES (IMDB MULTIPLEX)

The similar topology among the Accident Multiplex layers
means that most of the shortest paths among the node pairs
across layers are common leading to the naive approach giving
a higher accuracy as compared the proposed heuristic that
excludes some common layer-wise hubs as it only considers
shared one hop high degree neighbors. Even though this
heuristic gives good accuracies for the estimated hub sets, but
it can be improved by maintaining the path information to
high degree nodes beyond 2-3 hops from the high closeness
centrality hubs in each layer. However, as stated earlier,
maintaining such longer path information will significantly
increase the computational costs.

VII. CONCLUSION AND FUTURE WORK

In this paper, various heuristics have been presented and
validated to efficiently estimate hubs in any conjunctively

composed layer of a multiplex. Using real-life datasets from
diverse backgrounds, we have empirically shown that by
maintaining minimal neighborhood information along with
the layer-wise hubs, it is possible to estimate good quality
degree or closeness centrality based hub sets of any AND-
composed layer with an overall accuracy exceeding 80% or
70%, respectively, while reducing the computation time by
at least 30%. Further, such techniques eliminate the need to
generate and store any composed layers, thus saving storage
space too.

We plan to extend hub estimation to other centrality mea-
sures like betweenness and eigenvector, and handle weighted
and/or directed edges. In addition to conjunction, we plan on
extending this composition to disjunction and negation.
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[11] Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y.,
Porter, M.A.: Multilayer networks. CoRR abs/1309.7233 (2013), http:
//arxiv.org/abs/1309.7233

[12] Magnani, M., Rossi, L.: Formation of multiple networks. In: Interna-
tional Conference on Social Computing, Behavioral-Cultural Modeling,
and Prediction. pp. 257–264. Springer (2013)

[13] Ng, M.K.P., Li, X., Ye, Y.: Multirank: co-ranking for objects and
relations in multi-relational data. In: Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data
mining. pp. 1217–1225. ACM (2011)

[14] Rochat, Y.: Closeness centrality extended to unconnected graphs: The
harmonic centrality index. In: ASNA. No. EPFL-CONF-200525 (2009)

[15] Santra, A., Bhowmick, S., Chakravarthy, S.: Efficient community re-
creation in multilayer networks using boolean operations. In: Interna-
tional Conference on Computational Science, ICCS 2017, 12-14 June
2017, Zurich, Switzerland. pp. 58–67 (2017), https://doi.org/10.1016/j.
procs.2017.05.246
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