

HUBify: Efficient Estimation of Central Entities across Multiplex Layer Compositions

Abhishek Santra¹, Sanjukta Bhowmick² and Sharma Chakravarthy³

^{1,3}Information Technology Laboratory, CSE Department, University of Texas at Arlington, Arlington, Texas, USA ²CSE Department, University of Nebraska at Omaha, Omaha, Nebraska, USA Email: ¹abhishek.santra@mavs.uta.edu, ²sbhowmick@unomaha.edu, ³sharma@cse.uta.edu

Talk Outline

- Motivation
- Problem Formulation
- Proposed Heuristics
- Experimental Analysis
- Conclusions and Future Work

Motivation

Multiplex-based Modeling

- Existence of diverse relationships among a set of entities
 - Interactions among people varies with the mode of communication like *email, social networking and* phone calls
 - Similarity among traffic accidents varies based on factors like *light, weather and road surface conditions*
 - Co-actor relationship can vary based on the movie genre like action, comedy and drama
- Same set of entities are inter-connected in multiple ways based on features
 - Use network of graphs (or layers) Multiplexes

Multiplex-based Modeling (Same Nodes Linked Differently into Layers)

Accident Multiplex

Combined layer with entityentity relationships present in all constituent individual layers (AND-Composed Layer)

Multiplex-based Modeling (Same Nodes Linked Differently into Layers)

IMDb Multiplex

Combined layer with entityentity relationships present in all constituent individual layers (AND-Composed Layer)

Holistic view of Multiplex System

- Insightful Analytical Questions
 - Most influential people across different communication platforms (Advertisement Agencies)
 - Most dominating accident locations w.r.t poor lighting conditions and bad roads (Accident Prevention Measures)
 - Highly popular/preferred co-actors for various genre combinations (Casting and Production Houses)
- Solution: Generate highly central vertices (i.e. hubs) in the required individual or AND-composed multiplex layer

Challenges in Computing Hubs

- Existing algorithms detect hubs for single-layer networks (or monoplexes)
- For a holistic view, need to generate, store and recompute hubs for each of the 2^N layer combinations
 - Computationally Expensive
- No principled approach exists for *flexibly analyzing* any layer combination, without having to construct that combined layer

Problem Formulation

Problem Statement

"Identify the hub sets in any ANDcomposed layer by using information about the hubs from the participating individual layers"

11/18/201

Quantifying Hubs (Degree Centrality Hubs)

- Higher the degree, greater the influence on immediate neighborhood
- Degree Centrality Hub: A node having the degree above the average degree

11/18/2017

Proposed Solutions

The Naïve Approach Intersect the Layer-wise Hub Sets

Layer G_{a1ANDa2} (Light AND Weather)

Non-Triviality of the Task (Case 1)

Hubs in individual layers may not be hubs in the AND-composed layer

11/18/2017

Non-Triviality of the Task (Case 2)

Non-hubs in individual layers may be hubs in the AND-composed layer

11/18/2017

Estimating Hub Set for 2-layer AND-

- Aim: To reduce naïve approach false positives and negatives
- Efficient heuristics are proposed that use the layerwise hubs and their distance-1 neighbors, for estimating the degree centrality hub sets

11/18/2017

11/18/2017

11/18/2017

No False Positives. May increase false negatives

11/18/2017

Improved average degree estimate using vertex degrees. Closer to the actual average degree

7

Improved Average Degree Estimate Layer G_{a1ANDa2} = 1.71

```
Actual Average Degree Layer G<sub>a1ANDa2</sub> = 1.43
```

- No False Positives
- > False Negatives (DC2) \leq False Negatives (DC1)
- More Overhead Information

11/18/2017

11/18/2017

Advantages of Proposed Heuristics

- Closeness Centrality based heuristic has also been proposed (details in the paper)
- Heuristics are commutative and associative
- Flexible Composition
 - Any k-layer AND-composition hub set can be estimated by using the 2-layer heuristic as a subroutine, in parallel
- Reduce computational complexity
 - Eliminate the need to generate, store and re-compute degrees or shortest paths for 2^N – N layer compositions (N: number of layers)
 - 2^N N AND-composition hub sets estimated by only using N layer-wise hub sets and minimal neighborhood information

Experimental Analysis

Experimental Setup

Datasets

- Accident Multiplex: 1000 random UK traffic accidents from 2014, 3 conditions-based layers (Light, Weather, Road Surface Conditions)
- IMDb Multiplex: 5000 random actors, 3 genre-based layers (Comedy, Action, Drama)
- Environment: UBUNTU 13.10, 4GB RAM, C++ codes
- Comparison Metrics
 - Accuracy: Jaccard Index used to compare estimated (X) and actual (Y) hub sets, $J(X, Y) = |X \cap Y| / |X \cup Y|$
 - Generation Time
 - Actual Hub Set: Time to generate the AND-composed layer + Time to compute the hub set
 - Estimated Hub Set: Time to apply the proposed heuristic

Inefficiency of the Naïve Approach

AND-Composed Layers	Degree Centrality	Closeness Centrality
$G_{m1ANDm2}$	59%	43.3%
$G_{m1ANDm3}$	67.9%	55.4%
$G_{m2ANDm3}$	54.4%	48.1%
$G_{m1ANDm2ANDm3}$	14.1%	13.5%
0	49.0.0	40.1.07
Overall	48.9%	40.1%

Low accuracies due to **presence of False Positives and Negatives** (IMDb Multiplex)

Performance of Heuristic DC1

High Accuracies due to absence of false positives, Low hub generation times

	AND-Composed Layer	Accuracy	Hub Set Generation Time (sec		
ă			Actual	Estimated by Der	
a	$G_{m1ANDm2}$	88.2%	0.0597	0.0302	
<u>ult</u>	$G_{m1ANDm3}$	74.6%	0.0681	0.0483	
Σ	$G_{m2ANDm3}$	82.4%	0.0634	0.0385	
g	$G_{m1ANDm2ANDm3}$	85.9%	0.0492	0.0226	
≥l∣	Overall	82.8%	0.2403	0.1396 (41.9% ↓)	
olex	AND-Composed Layer	Accuracy	Hub Set Generation Time (secs)		
			Actual	Estimated by DC1	
<u>llti</u>	$G_{a1ANDa2}$	78.6%	0.0523	0.0166	
Σ	$G_{a1ANDa3}$	77.5%	0.0423	0.0152	
Int	$G_{a2ANDa3}$	85.7%	0.0711	0.0152	
lide	$G_{a1ANDa2ANDa3}$	76.4%	0.0458	0.0147	

11/18/2017

Better average degree estimate lead to improved accuracies as compared to DC1, but at increased overhead costs

	AND-Composed Layer (Actual Average Degree)	Average Degree DC1 _{est} DC2 _{est}		% Change in Accuracy
ХI	$\begin{array}{c}G_{a1ANDa2}\\(11.2)\end{array}$	14.92	12.988	5.2%↑
Itipl	$G_{a1ANDa3} (10.18)$	14.92	12.847	4.4%↑
<u>ident Mu</u>	$G_{a2ANDa3}$ (14.35)	16.44	15.257	1.6%†
	$G_{a1ANDa2ANDa3}$ (9.28)	14.92	12.045	2.7%↑
Acc	Overall	-	-	3.5%↑

Improved Accuracy:

Accident – 79.5%(DC1), 83.04%(DC2) IMDb – 82.8%(DC1), 83.9% (DC2)

 Fall in Overall Computation Time Savings:
 Accident – 70.8%(DC1), 58.4%(DC2)

 IMDb – 41.9%(DC1), 12.2% (DC2)

Performance of Heuristic DC3 with Parameter E

Increasing E: Overall accuracy increases as the number of false negatives are reduced.

Increases Hub Estimation Times as more layer-wise nonhubs are carried forward

11/18/2017

Lab

Trade-off between Accuracy and Savings in Computational Costs

11/18/2017

Performance of Heuristic CC1

Good Accuracies due to absence of false positives, Low hub generation times

	AND-Composed Layer	Accuracy	Hub Set Generation Time (secs)		
XI			Actual	Estimated by CC1	
<u>elg</u>	$G_{m1ANDm2}$	60.4%	2.0534	1.5153	
It	$G_{m1ANDm3}$	71.3%	2.6168	1.5255	
Σ	$G_{m2ANDm3}$	70.1%	2.0432	1.5159	
QD	$G_{m1ANDm2ANDm3}$	64.1%	2.029	1.5071	
\geq	Overall	66.5%	8.7424	6.0637 (30.64%↓)	
- Îl	AND-Composed Layer	Accuracy	Hub Set Generation Time (secs)		
<u>.</u>			Actual	Estimated by CC1	
=	$G_{a1ANDa2}$	73.1%	0.3086	0.2028	
2	$G_{a1ANDa3}$	68.9%	0.2834	0.2004	
ent	$G_{a2ANDa3}$	78.2%	0.345	0.2017	
<u>l</u> l <u></u>	$G_{a1ANDa2ANDa3}$	75.1%	0.237	0.2051	
	Overall	73.8%	1 174	0.81((31%1))	

11/18/2017

Conclusions and Future Work

Conclusions

- Efficient heuristics proposed that only use layerwise degree or closeness centrality results to identify hubs in conjunctively composed multiplex layers
- Real-world, multi-feature datasets (IMDb and Accident) empirically show that we can identify the high centrality vertices with an average accuracy of more than 70-80% while reducing the overall computational time by at least 30%
- Eliminate the need to separately generate, store and analyze any AND-composed layer

Future Work

- Generalize the heuristics based on layer characteristics and obtain a confidence interval on the accuracy
- Extend to other centrality measures eigenvector, betweenness
- Handle layers with weighted and directed edges
- Extend to other composition schemes like disjunction and negation

Questions?

Sharma Chakravarthy Professor sharma@cse.uta.edu

Abhishek Santra PhD Student abhishek.santra@mavs.uta.edu

Sanjukta Bhowmick

Associate Professor sbhowmick@unomaha.edu

For more information visit:

