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Abstract. As aresult of our increased ability to collect data from differ-
ent sources, many real-world datasets are increasingly becoming multi-
featured and these features can also be of different types. Examples of
such multi-feature data include different modes of interactions among
people (Facebook, Twitter, LinkedIn, ...) or traffic accidents associated
with diverse factors (speed, light conditions, weather, ...).

Efficiently modeling and analyzing these complex datasets to obtain ac-
tionable knowledge presents several challenges. Traditional approaches,
such as using single layer networks (or monoplexes) may not be suffi-
cient or appropriate for modeling and computation scalability. Recently,
multiplexes have been proposed for the elegant handling of such data.
In this position paper, we elaborate on different types of multiplexes
(homogeneous, heterogeneous and hybrid) for modeling different types
of data. The benefits of this modeling in terms of ease, understanding,
and usage are highlighted. However, this model brings with it a new set
of challenges for its analysis. The bulk of the paper discusses these chal-
lenges and the advantages of using this approach. With the right tools,
both computation and storage can be reduced in addition to accommo-
dating scalability.

Keywords: Big Data Analytics; Multi-Source, Disparate Data; Multiplex; Graph
Analysis and Query Processing; Lossless Composability; Aggregation Functions

1 Introduction

Data analytics requires a suite of various techniques to analyze different kinds of
datasets and derive meaningful conclusions from them. Holistic analysis relates
to analyzing a multi-feature dataset by including the effect of different combi-
nations of features or perspectives. In this paper, we discuss a network-based
model that is suited for a large class of problems. We present the utility of this
model and its concomitant computing challenges.

As an example, consider the problem of modeling and analyzing the traffic
accident problem or data set for a region or a country. A number of features are
associated (and collected) with each accident such as location, speed, time of the
day, severity of the accident, light, weather, and road conditions. One may want



to analyze this dataset from multiple angles: general accident prone regions,
dominant feature associated with most accidents, ordering features based on
their effect on the severity of the accident, effect of individual or combination of
features on accidents in a region or across all regions.

Consider another dataset where we have information about scientists who
collaborate with each other, cities that have direct flights, and conferences that
have overlapping research topics. In addition, there is information about who
lives in which city and the cities in which annual conferences have been held.
Given this dataset, it would be useful to understand: whether a large group
of collaborators have attended several conferences, which group of conferences
have the largest number of papers from a group of collaborators, which is the
best city to hold a workshop on a particular topic to get maximum number of
collaborating scientists.

Note that, unlike the earlier problem where the features referred to the same
entity set (accidents), in this problem different features are captured for different
disjoint entity sets (scientists, cities, and conferences). The analysis may span
multiple entities and their relationships in different ways.

Traditionally, graphs (which we also term as monoplexes) are used for repre-
senting and analyzing systems of interacting entities [18,21]. Typically, entities
are represented as vertices. Two vertices are connected by a single edge, which
represents a common value of the feature between the two entities. This represen-
tation can be extended by introducing multiple edges between vertices for each
different type of feature. Instead of using multiple edges which make the repre-
sentation as well as analysis of graphs difficult, we propose to use multiplexes
(multiple layers of interconnected graphs) as an alternative model.

In this paper, we elaborate on the benefits of using different types of multi-
layer networks (homogeneous, heterogeneous, and hybrid multiplexes) for mod-
eling and associated computation challenges for doing holistic analysis. In con-
trast to the vast amount of work on analyzing monoplex networks, the research
on multiplexes is considerably sparse. Even when the systems are modeled as
multilayer networks, they are studied only for very specific problems in a subdis-
cipline [6,20].

We provide a brief overview of work related to multi-feature data analysis
in Section 2. We will discuss modeling benefits and issues in Section 3 and
the computational issues in Section 4. In Section 5, we give an overview of our
preliminary work that addresses some of the challenges highlighted in this paper.
We will end with the conclusions in Section 6.

2 Related Work

Recently, many analytical tasks have used multilayer networks for partitioning
the space of well-defined explicit interactions among the same entity set [7,15,16,
22,25,27]. Most of the work have tried to figure out overall multiplex diagnostics
such as degrees and distances by considering the multiplex layers individually
or all of them together. In contrast, we focus on different types of features and
entity sets and efficient analysis of arbitrary combinations of multiple layers.



Tensor Representations have also been used for certain multi-feature data
representation [13]. They are mainly used for node-aligned networks, that is
networks having same set of nodes. We are dealing with networks that are
both node-aligned (homogeneous multiplex) and not node-aligned (heteroge-
neous multiplexes).

Graph mining (e.g., substructure discovery [14,17,23], AGM [4], FSG [14],
or pattern-growth - gSpan [33], FFSM [19] and GASTON 28], disk-based ap-
proaches [5,30] and SQL-based approaches [10,29]) has been researched exten-
sively as compared to graph querying [12]. To the best of our knowledge, graph
mining and querying techniques have not been much studied for multiplexes.

3 Modeling Using Multiplexes

Multi-feature data comprises of multiple relations existing among the same or
different types of entities. Relationships among the entities can either be spec-
ified by explicit interactions (like flights, co-authors and friends) or based on a
similarity metric depending on the type of the feature like nominal, numeric,
time, date, latitude-longitude values, text, audio, video or image.

For each feature, monoplexes will represent the relationship through di-
rected /undirected (denoting information flow) and weighted /unweighted (quan-
tifying relationship strength) edges between the entities, denoted by nodes. How-
ever, such monoplexes have to be generated for every feature or combination of
features by repeatedly scanning the datasets and evaluating the similarity met-
rics. Another alternative is to use multiple edges between nodes corresponding
to the features they are related to. But, in this model, for any k-feature based
analysis, the entire graph will have to be loaded and traversed in order to first
extract the set of desired edges. Further, such a convoluted representation makes
the visualization process tedious.

In order to address the drawbacks of monoplex-based modeling, in this paper
we propose the use of multiplexes, a form of network of networks. In this case,
every layer represents a distinct relationship among entities with respect to a
single feature. The sets of entities across layers, which may or may not be of
the same type, can be related to each other too. Formally, a multiplex is defined
by a set of n graphs G;(V1, E1), Go(Va, Ea), ..., Go(Vy, Ey) and a set of edges
Eyj2, By, ..., Ey_q)n- Each graph G; is formed of the vertex set V;, and the
intra-layer edge set E;. The inter-layer edge set FEj;, connects the vertices of G
to the vertices of G;. Therefore, in contrast to monoplexes, for holistic analysis,
the pre-processing cost is significantly reduced as the desired individual layers
are either readily available or multi-feature composed layers can be generated by
combining the edges of the individual layers through cost-effective set operations.
Development of efficient lossless techniques for combining k individual layers
translating to a new composed perspective is challenging due to the variation in
edge connectivity, edge weight domain and edge directions in each layer.

Based on the type of relationships and entities, multiplexes can be of differ-
ent types. Layers of a homogeneous multiplex are used to model the diverse
relationships that exist among the same type of entities like traffic accidents



(Figure 1 (a)). Therefore, Vi = Vo = ... = V,, and inter-layer edge sets are empty
as no relations across layers are necessary. Relationships among different types
of entities like cities (connected by flights), scientists (connected to collabora-
tors) and conferences (related by overlapping research domains) are modeled
through heterogeneous multiplex (Figure 1 (b)). The inter-layer edges rep-
resent the relationship across layers like conference venues, scientist residences
and conference attendance. In addition to being collaborators, scientists may
be friends on Facebook or connected on ResearchGate or LinkedIn. Thus, for
modeling multi-feature data that capture multiple relationships within and
across different types of entity sets, a combination of homogeneous and
heterogeneous multiplexes can be used, called hybrid multiplexes.

Benefits of Multiplex-based
Modeling: Modeling of multi-
/ i E / feature data as multiplexes al-
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vides a medium to study the relationships among the entities with re-
spect to individual or combinations of features or perspectives.

4 Multi-Feature Computations using Multiplexes

The major task is to be able to perform computations on the multi-feature data
for holistic understanding. A plethora of algorithms are available for analyzing
monoplex-based models. However, the limitations highlighted in modeling multi-
feature data as a monoplex makes this medium unfavorable. On the other hand,
the amount of work done for efficiently analyzing different types of multiplexes
is at a nascent stage. For instance, there is hardly any work pertaining to mining
and querying of multiplexes.

The traditional computational techniques proposed for monoplexes can be
leveraged to perform analysis of multiplexes with respect to any combination
of features (or layers). However, for holistic understanding of multi-feature data
with a multiplex with n layers, 2" — 1 layer combinations need to be analyzed.
Thus the major issue is the exponential increase in the overall computational
costs with respect to both time and storage space in the presence of large number



of layers ( [7] has used 300 layers). This challenge highlights that the need of the
hour is the development of robust algorithms that are able to compute
network characteristics, mine interesting hidden patterns and query
different combinations of multiplex layers in a cost effective manner.
Additional challenges to perform specific computations on the two basic types
of multiplexes have been discussed in the following sections.

4.1 Homogeneous Multiplex Computations

For the traffic accident scenario, the effectiveness of accident prevention mea-
sures and the dominance of factors can be studied through the variation in the
accident-prone regions over time. In graph terminology, it translates to find-
ing out groups of tightly connected vertices called communities (through ran-
dom walks [8], maximizing modularity [26] or maximimizing permanence [9]).
Therefore, for such computations we need to devise efficient techniques for
generating communities with respect to any combination of multiplex
layers. Similarly, it will be beneficial to develop methods to compute the
relative ordering and correlation among different feature (or layer)
combinations based on their importance. For example, if road conditions
have more impact on accidents than light, then more funds can be allocated to
fix the roads as compared to lights. An added challenge in this regard will be
to identify metrics that can quantify the importance of a layer based
on semantics of the domain. Density, number of influential nodes (high closeness
and high betweenness centrality vertices), core-periphery structure and local and
global clustering coefficients are few alternatives for such a metric.

Any of the above techniques should be efficient enough to be able to reduce
the exponential complexity of generating, storing and analyzing every layer com-
bination. Formulation of efficient aggregation functions that can com-
bine the results from n individual layers to compute the results of any
layer combination is a way forward. The layer-wise analysis results will
be in diverse formats like substructures (communities), real numbers (den-
sity, clustering coeflicients) or sets (hubs, high centrality nodes, nodes in inner
core), adding to the complexity of this challenge. Further, the performance of
different types of network structures for the formulated functions needs
to be understood using evaluation metrics like NMI, Purity, ARI and Jaccard
Index [24]. Moreover, it should be noted that there may be a class of com-
putations for which the result of the combined layer cannot be re-constructed
from the layer-wise results. For such cases, obtaining a confidence interval
for aggregation functions will be useful to approximate results of the layer
combinations.

4.2 Heterogeneous Multiplex Computations

In single networks (monoplexes) important vertices have been defined with re-
spect to information flow through high degree, betweenness and closeness cen-
trality vertices. However, in the case of heterogeneous multiplexes apart from the
intra-layer connectivity, the inter-layer connectivity also needs to be considered.



Therefore, in the city-scientist multiplex (extracted from Figure 1 (b)), impor-
tant cities will be the ones that are not only easily accessible but also where
most sought after collaborators reside (marked in red in Figure 2). Thus, the
challenge in this case is to devise efficient ways to compute high central-
ity vertices across multiple connected layers. It should be noted that a
high centrality vertex in one layer, may not also be a high centrality
vertex in the combined layer.

In heterogeneous multiplexes, the formulation of Vertex Hotspot for Cities
aggregation functions that combine the layer-wise re- (\

sults becomes more challenging as the results of the
bipartite graph formed by the inter-layer edges
also have to be taken into account. One must con-
sider that the layers may be connected not just
sequentially one after another (i.e. layer A con-
nected to layer B connected to layer C) but can be
connected in different directions (i.e. layers A, B
and C can be connected to each other in a triangle).
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is a well-explored field. However, to develop algo- . icts
rithms for mining on multiplexes the notion of
subgraphs and patterns in a multiplex needs to be articulated for using a
metric like MDL and the anti-monotonic property of metrics like frequency
has to be established. The city-scientist multiplex in Figure 3 with scientist node
labels depicting research fields, illustrates an example of a frequent pattern in a
multiplex. Another challenge will be defining exact and similar (or inexact)
substructures. Further, strategies to partition a multiplex need to be
devised for extending the existing scalable mining techniques based on graph
partitioning and map/reduce [11].

Querying is for verifying the existence of

m known patterns or extracting all instances of
i partially specified patterns. Queries can be of
o different types, for example - cities where sci-
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Fequentpattem  7at07's Teside (community based), best possi-
ble city where a well-connected group of col-
laborators can meet up by taking the mini-
mum number of flights (path based) etc. For
such type of analysis, query processing al-
gorithms for queries on multiplexes have to be developed. Few challenges
in coming up with these algorithms are - determining the order (in parallel or
as a partial order) to process layers for efficiency, generating metric to evaluate

Fig. 3. Example of Frequent Pat-
tern in a Multiplex



alternate query plans, evaluating the suitability of an index-based or substruc-
ture expansion-based approach and identifying query processing requirements in
terms of the graph properties.

5 Preliminary Work

In this section, we will provide an overview of our preliminary work that ad-
dresses some of the challenges highlighted in this paper.

In [31], we have proposed the combination of undirected and unweighted ho-
mogeneous multiplex layers using the Boolean operators - AND, OR, NOT. For
example, the AND-composed layer consists of only those edges (or relationships)
that are present in all the constituent individual layers. This work proposes an
intersection based aggregation method that just uses the layer-wise communi-
ties to accurately re-create the communities of any AND-composed multiplex
layer, provided the communities of the individual layers are self-preserving in
nature. We have shown empirically using real-life multi-feature datasets (traffic
accidents [2] and storms [3]) that this community re-creation process leads to
an overall saving of over 40% in computation time. Currently, we are extend-
ing this AND re-creation process to handle any type of layer-wise communities.
Moreover, we are also addressing the various challenges like merging or split-
ting of communities based on the extent of their overlap across layers in order
to formulate the community re-construction method for OR-composed multiplex
layers. Metrics like modified normalized mutual information (modified-NMT) [24]
that consider network topology are being used for evaluating the quality of the
re-constructed communities.

Apart from communities, another recent work of ours [32] concentrates on
efficiently estimating the central (or influential) entities or hubs across AND-
composed homogeneous multiplex layers by using the layer-wise centrality re-
sults. Variation in the edge connectivity across individual layers can cause non-
hubs to become hubs and hubs to become non-hubs in the AND-composed layers,
thus making the hub estimation process a non-trivial task. Here we have devel-
oped various efficient heuristics based on degree and closeness centrality metrics
by maintaining minimal neighborhood information from the individual layers.
Experiments on diverse real-life multi-feature datasets (traffic accidents [2] and
IMDb [1]) have shown that the proposed heuristics estimate more than 70-80%
of the central vertices while reducing the overall computational time by at least
30%. Currently, we are in the process of generalizing and extending this work
to other centrality measures like betweenness and eigenvector and combination
methods involving disjunction (OR) and negation (NOT).

6 Conclusions

In this position paper, we have discussed the relevance of multiplexes for mod-
eling multi-feature data as well as the computational advantages. Holistically
analyzing multi-feature data can benefit from a representation that is easy to



understand, visualize, and at the same time has advantages from a computation
perspective.

The computational challenges identified in this paper are being addressed by
us [31,32] and the larger research community. Solutions to these challenges will
enrich the data analytics repertoire making it easier to analyze problems that
can benefit from graph-based representation.

Acknowledgment

We would like to extend our gratitude towards Dr. Sharma Chakravarthy, Uni-
versity of Texas whose insight and expertise greatly helped in shaping up of this
position paper.

References

1. The internet movie database. ftp://ftp.fu-berlin.de/pub/misc/movies/
database/

2. Road safety - accidents 2014. https://data.gov.

uk/dataset/road-accidents-safety-data/resource/
1ae84544-6b06-425d-ad62-c85716a80022

3. Storm events database by noaa. https://www.ncdc.noaa.gov/stormevents/ftp.
Jsp

4. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Very
Large Data Bases. pp. 487-499 (1994)

5. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D.: On Storing
Voluminous RDF Descriptions: The Case of Web Portal Catalogs. In: International
Workshop on the Web and Databases. pp. 43-48 (2001)

6. Berenstein, A., Magarinos, M.P., Chernomoretz, A., Aguero, F.: A multilayer net-
work approach for guiding drug repositioning in neglected diseases. PLOS (2016)

7. Boden, B., Gnnemann, S., Hoffmann, H., Seidl, T.: Mining coherent subgraphs in
multi-layer graphs with edge labels. In: Proc. of the 18th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining (SIGKDD 2012), Beijing, China.
pp. 1258-1266 (2012)

8. Bohlin, L., Edler, D., Lancichinei, A., Rosvall, M.: Community detection and vi-
sualization of networks with the map equation framework (2014), http://www.
mapequation.org/assets/publications/mapequationtutorial.pdf

9. Chakraborty, T., Srinivasan, S., Ganguly, N., Mukherjee, A., Bhowmick, S.: Per-
manence and Community Structure in Complex Networks. (2015), accepted to
TKDD

10. Chakravarthy, S., Pradhan, S.: DB-FSG: An SQL-Based Approach for Frequent
Subgraph Mining. In: DEXA. pp. 684-692 (2008)

11. Das, S., Chakravarthy, S.: Partition and conquer: Map/reduce way of substruc-
ture discovery. In: International Conference on Big Data Analytics and Knowledge
Discovery. pp. 365-378. Springer (2015)

12. Das, S., Goyal, A., Chakravarthy, S.: Plan before you execute: A cost-based query
optimizer for attributed graph databases. In: International Conference on Big Data
Analytics and Knowledge Discovery. pp. 314-328. Springer (2016)

13. De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kiveld, M., Moreno, Y., Porter,
M.A., Gémez, S., Arenas, A.: Mathematical formulation of multilayer networks.
Physical Review X 3(4), 041022 (2013)



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Deshpande, M., Kuramochi, M., Karypis, G.: Frequent Sub-Structure-Based Ap-
proaches for Classifying Chemical Compounds. In: IEEE International Conference
on Data Mining. pp. 3542 (2003)

Domenico, M.D., Nicosia, V., Arenas, A., Latora, V.: Layer aggregation and re-
ducibility of multilayer interconnected networks. CoRR abs/1405.0425 (2014),
http://arxiv.org/abs/1405.0425

Dong, X., Frossard, P., Vandergheynst, P., Nefedov, N.: Clustering with multi-
layer graphs: A spectral perspective. CoRR abs/1106.2233 (2011), http://dblp.
uni-trier.de/db/journals/corr/corr1106.html#abs-1106-2233

Holder, L.B., Cook, D.J., Djoko, S.: Substucture Discovery in the SUBDUE Sys-
tem. In: Knowledge Discovery and Data Mining. pp. 169-180 (1994)

Horvath, S., Zhang, B., Carlson, M., Lu, K., Zhu, S., Felciano, R., Laurance, M.,
Zhao, W., Qi, S., Chen, Z., et al.: Analysis of oncogenic signaling networks in
glioblastoma identifies aspm as a molecular target. Proceedings of the National
Academy of Sciences 103(46), 17402-17407 (2006)

Huan, J., Wang, W., Prins, J.: Efficient Mining of Frequent Subgraphs in the
Presence of Isomorphism. pp. 549-552. ICDM ’03, Washington, DC, USA (2003)
Huang, C.Y., Wen, T.H.: A multilayer epidemic simulation framework integrating
geographic information system with traveling networks. In: Intelligent Control and
Automation (WCICA), 2010 8th World Congress on. pp. 2002-2007 (July 2010)
Jeong, H., Mason, S.P., Barabdsi, A.L., Oltvai, Z.N.: Lethality and centrality in
protein networks. Nature 411(6833), 41-42 (2001)

Kiveld, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.:
Multilayer networks. CoRR abs/1309.7233 (2013), http://arxiv.org/abs/1309.
7233

Kuramochi, M., Karypis, G.: Frequent Subgraph Discovery. In: IEEE International
Conference on Data Mining. pp. 313-320 (2001)

Labatut, V.: Generalized measures for the evaluation of community detection meth-
ods. CoRR abs/1303.5441 (2013)

Magnani, M., Rossi, L.: Formation of multiple networks. In: International Con-
ference on Social Computing, Behavioral-Cultural Modeling, and Prediction. pp.
257-264. Springer (2013)

Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Physical Review E 69(026113) (2004)

Ng, M.K.P., Li, X., Ye, Y.: Multirank: co-ranking for objects and relations in multi-
relational data. In: Proceedings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining. pp. 1217-1225. ACM (2011)

Nijssen, S., Kok, J.N.: A quickstart in frequent structure mining can make a dif-
ference. In: Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 647-652. KDD ’04, ACM, New York,
NY, USA (2004)

Padmanabhan, S.; Chakravarthy, S.: HDB-Subdue: A Scalable Approach to Graph
Mining. In: DaWaK. pp. 325-338 (2009)

Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.: Pre-
fixSpan,: mining sequential patterns efficiently by prefix-projected pattern growth.
In: ICDE. pp. 215-224 (2001)

Santra, A., Bhowmick, S., Chakravarthy, S.: Efficient community re-creation in
multilayer networks using boolean operations. In: International Conference on
Computational Science, ICCS 2017, 12-14 June 2017, Zurich, Switzerland. pp. 58—
67 (2017), https://doi.org/10.1016/j.procs.2017.05.246



10

32.

33.

Santra, A., Bhowmick, S., Chakravarthy, S.: Hubify: Efficient estimation of central
entities across multiplex layer compositions. In: 2017 IEEE International Confer-
ence on Data Mining Workshops, ICDM Workshops 2017, New Orleans, USA,
November 18, 2017. p. to appear (2017)

Yan, X., Han, J.: gSpan: Graph-Based Substructure Pattern Mining. In: IEEE
International Conference on Data Mining. pp. 721-724 (2002)



