

Holistic Analysis of Multi-Source, Multi-Feature Data: Modeling and Computation Challenges

Abhishek Santra¹ and Sanjukta Bhowmick²

 ¹Information Technology Laboratory, CSE Department, University of Texas at Arlington, Arlington, Texas, USA
 ²CSE Department, University of Nebraska at Omaha, Omaha, Nebraska, USA Email: ¹abhishek.santra@mavs.uta.edu, ²sbhowmick@unomaha.edu

Special Thanks to Sharma Chakravarthy (Professor, UT Arlington)

Big Data Analytics

Influx of data pertaining to the 4Vs, i.e. Volume, Velocity, Variety and Veracity

Which class of big data problems are we looking into?

BDA 2017

Data Characteristic: Multiple relationships existing among same or different type(s) of entities

12/14/201

BDA 2017

Data Characteristic: Multiple relationships existing among same or different type(s) of entities

Interaction among a set of people

Most popular or socially active group of people? Most influential set of people?

Data Characteristic: Multiple relationships existing among same or different type(s) of entities

Airline connectivity among a set of US cities

spirit

Southwest >>

Airline connectivity among a set of Indian cities

Highly central cities (hubs)?

Data Characteristic: Multiple relationships existing among same or different type(s) of entities

Similarity among a set of traffic accidents

Weather Conditions

Road Surface Conditions

Accident Prone Regions?

Most dominant feature? Order of features?

Data Characteristic: Multiple relationships existing among same or different type(s) of entities

Connectivity among scientists, cities and conferences

Best city to hold a workshop? Which research domains are prevalent in which state?

- Data Characteristic: Multiple relationships existing among same or different type(s) of entities
 - Explicit relationships (friends, flights ...) or based on similarity metric (numeric, location, video, time ...)
- Holistic or Flexible Analysis: Study effect of different combinations of features or perspectives
- Two Challenges
 - Modeling
 - Processing/Computations

Traditional Approach: Monoplex Modeling 🝊

Single Edge Monoplex

Relationships as Edges

- Weights for Strength
- Direction for Information Flow
- Drawbacks
 - Need to be generated for every feature combination
 - Repeated Dataset Scanning
 - Repeated Similarity Metric Computation

Traditional Approach: Monoplex Modeling

Multi Edge Monoplex

Relationships as Colored Edges

- Drawbacks
 - Loss of partial analysis results w.r.t. different feature combinations
 - Repeated Graph Traversals to extract any feature combination subgraph
 - Convoluted Representation

Multiple Monoplexes = Multiplex Modeling

- Non-Suitability of Monoplex Modeling
 - Computations will obscure information
 - Computationally Expensive
 - Convoluted Representations
- Use Multiplexes or Multilayer Networks
 - A network of networks
 - Each layer/network represents a single perspective or feature
 - Differentiated into 3 types based on type of entities

Multiplex Modeling (Same Entities, Different Relationships)

Homogeneous Multiplex

Multiple relationships among same type of entities

- Similarity of disasters (accidents, storms etc.) based on factors
- Interaction among people via various media (social media, calls etc.)
- Connectivity among cities based on different airlines

Accident Multiplex

Multiplex Modeling (Different Entities, Different Relationships)

Cities (G,

Heterogeneous Multiplex

Multiple relationships among **different types of entities**

Residence, venue and attendance connectivity among city airline, scientist collaboration and similar conference networks

Hybrid Multiplex

- Any layer of the heterogeneous multiplex can be expanded to a homogenous multiplex
 - Different friendship networks among scientists

City-Scientist-Conference Multiplex

- > Flexible analysis
 - Mixing required layers in arbitrary ways
 - Homogeneous (Boolean, Linear etc.)
 - Heterogeneous (Projection, Type Independent etc.)
- Parallel algorithms can be leveraged
- Ease of handling the dataset incrementally
 - Addition of new entities (nodes), relationship with existing entities (edges) and features/perspectives (layers)
- Efficient maintenance of the latest dataset snapshot
 - Deletion of obsolete entities (nodes), relationships (edges) and features/perspectives (layers)

Multi Feature Computations using Multiplexes

- Multiplex-based analysis is at a nascent stage
 - Layers considered individually or all layers aggregated together, in specific sub-disciplines
 - Hardly any work on mining and querying multiplexes
- Existing algorithms for monoplexes can be leveraged
 - Need to generate, store and analyze each layer combination
 - N individual layers ⇒ O(2^N) layer combinations!
 - Exponential overall computational costs (storage and time), if N is large

Multiplex based Holistic Analysis (Need of the Hour)

- Develop cost effective and robust algorithms for flexibly analyzing any layer combination to
 - Compute network characteristics,
 - Mine interesting hidden patterns, and
 - Query
- Specific computations and related challenges vary with the type of multiplex under consideration

Homogeneous Multiplex Computations (Requirements)

- Devise efficient techniques for generating interesting network structures with respect to any combination of multiplex layers
- Communities: Tightly connected group of nodes
 - Effectiveness of accident prevention techniques
 - Variation of accident prone regions over time
- Hubs: Highly central nodes
 - Maximize the reach of an advertisement
 - Most influential people across social media

Homogeneous Multiplex Computations (Requirements)

- Develop methods to compute the relative ordering and correlation among different feature (or layer) combinations based on their importance
 - Allocation of funds for accident prevention
 - Ordering factors based on impact on accident occurrence
- Identify metrics to quantify the importance of a layer (or layer combination)
 - Alternatives: Density, Number of Influential Nodes (Hubs), Core-Periphery Structure, Local and Global Clustering Coefficient

(Challenges)

- Need to reduce the exponential complexity
- Formulation of efficient aggregation functions that can combine the results from N individual layers to compute the results of any layer combination
 - Diverse formats of layer-wise results: Substructures (communities), Real Numbers (density, clustering coefficients), Sets (high centrality nodes, nodes in inner core)
 - Analyze performance of aggregation functions
 - Accuracy using NMI, ARI, Purity and Jaccard Index
 - Obtain Confidence Intervals for different characteristics of layer-wise results
 - Savings in computational time and storage space by eliminating the need to generate, store and analyze each layer combination

(Preliminary Work – Boolean Composition)

Proposed Multiplex Layer Compositions though Boolean Operations – AND, OR, NOT

Relationships present in all layers

NOT Composition

Relationships not present in a layer

(Preliminary Work – Recreating Communities)

- Proposed Multiplex Layer Compositions though Boolean Operations – AND, OR, NOT
- Proposed an accurate intersection-based community recreation technique for any AND-composed multiplex layer using layer-wise communities*
- Reduced the overall computation time by over 40% (with real-life multi-feature datasets traffic accidents, storms)

*with individual layers having self-preserving communities

BDA 2017

Homogeneous Multiplex Computations (Related Publications)

- Scalable Holistic Analysis of Multi-Source, Data-Intensive Problems Using Multilayered Networks – CoRR abs 2016
- Efficient Community Re-creation in Multilayer Networks Using Boolean Operations – ICCS 2017
- HUBify: Efficient Estimation of Central Entities across Multiplex Layer Compositions – ICDM-W 2017

(Preliminary Work – Estimating Hubs)

- Hubs defined as the high degree or closeness centrality vertices
- Proposed efficient heuristics to estimate the high centrality vertices for any AND-composed multiplex layer using the layer-wise hub sets
- Overall average accuracy of at least 70-80%, Reduced the overall computation time by over 30% (with real-life multi-feature datasets traffic accidents, IMDb)

AND-Composed Layer	Accuracy	Hub Set Actual	Generation Time (secs) Estimated by DC1
$G_{m1ANDm2}$	88.2%	0.0597	0.0302
$G_{m1ANDm3}$	74.6%	0.0681	0.0483
$G_{m2ANDm3}$	82.4%	0.0634	0.0385
$G_{m1ANDm2ANDm3}$	85.9%	0.0492	0.0226
Overall	82.8%	0.2403	0.1396 41.9% ↓)

Performance of degree centrality based heuristic (DC1) on IMDb Multiplex for co-actors with Comedy (m_1) , Action (m_2) and Drama (m_3) individual genre-based layers

AND-Composed Layer	Accuracy	Hub Set Generation Time (secs)	
		Actual	Estimated by CC1
$G_{a1ANDa2}$	73.1%	0.3086	0.2028
$G_{a1ANDa3}$	68.9%	0.2834	0.2004
$G_{a2ANDa3}$	78.2%	0.345	0.2017
$G_{a1ANDa2ANDa3}$	75.1%	0.237	0.2051
Overall	73.8%	1.174	0.81 ((31%↓)

Performance of closeness centrality based heuristic (CC1) on Accident Multiplex for similar accidents with Light (a₁), Weather (a₂) and Road Surface (a₃) Conditions individual layers

Homogeneous Multiplex Computations (Related Publications)

- Scalable Holistic Analysis of Multi-Source, Data-Intensive Problems Using Multilayered Networks – CoRR abs 2016
- Efficient Community Re-creation in Multilayer Networks Using Boolean Operations – ICCS 2017
- HUBify: Efficient Estimation of Central Entities across Multiplex Layer Compositions – ICDM-W 2017

- (Requirements and Challenges)
 Devise efficient ways to compute high centrality vertices (or communities) across multiple connected layers
 - Best city to organize a workshop
- Aggregation functions need to take into account results of the bipartite graph formed by the inter-layer edges
- Layers may be connected not just sequentially one after another (i.e. layer A connected to layer B connected to layer C) but can be connected in different directions (i.e. layers A, B and C can be connected to each other in a triangle)

Vertex Hotspot for Cities with respect to the Scientists

(Requirements and Challenges)

- Develop algorithms for mining on multiplexes
 - Define the notion of subgraphs and patterns in a multiplex
 - Establish metrics like MDL and frequency
 - Define Exact and Similar (or in-exact) substructures
 - Devise strategies to partition a multiplex

Example of a frequent city-collaboration pattern

(Requirements and Challenges)

- Develop query processing algorithms for queries on multiplexes
 - Node degree based: Cities where scientists attending most number of conferences reside
 - Community based: Cities where scientists belonging to largest group of collaborators reside
 - Path based: Best possible city where a well-connected group of collaborators can meet up by taking the minimum number of flights

(Requirements and Challenges)

- Develop query processing algorithms for queries on multiplexes
 - Determine the order (in parallel or as a partial order) to process layers for efficiency
 - Generating metric to evaluate alternate query plans
 - Evaluate the suitability of an index-based or substructure expansion-based approach
 - Identify query processing requirements in terms of the graph properties

Heterogeneous Community Detection using Network Composition – KDD 2018 (under preparation)

Conclusions

- Multiplexes have modeling and computational advantages for holistically analyzing multi source, multi feature data
- Computational challenges identified in this paper are being addressed by the research community
- Efficient techniques as solutions to these challenges will enrich the data analytics repertoire making it easier to analyze such a class of big data problems

Questions?

Sharma Chakravarthy Professor sharma@cse.uta.edu

Abhishek Santra PhD Student abhishek.santra@mavs.uta.edu

Sanjukta Bhowmick

Associate Professor sbhowmick@unomaha.edu

For more information visit:

