
Plan Before You Execute: A Cost-Based Query
Optimizer for Attributed Graph Databases

Soumyava Das, Ankur Goyal and Sharma Chakravarthy

IT Laboratory & Department of Computer Science and Engineering
The University of Texas at Arlington, Arlington, TX 76019.

soumyava.das@mavs.uta.edu, ankur.goyal@mavs.uta.edu, sharma@cse.uta.edu

Abstract. Proliferation of NoSQL and graph databases indicates a move to-
wards alternate forms of data representation beyond the traditional relational
data model. This raises the question of processing queries efficiently over these
representations. Graphs have become one of the preferred ways to represent
and store data related to social networks and other domains where relation-
ships and their labels need to be captured explicitly. Currently, for querying
graph databases, users have to either learn a new graph query language (e.g.
Metaweb Query language or MQL [6]) for posing their queries or use cus-
tomized searches of specific substructures [13]. Hence, there is a clear need for
posing queries using the same representation as that of a graph database, gen-
erate and evaluate alternate plans, develop cost metrics for evaluating plans,
and prune the search space to converge on a good plan that can be evaluated
directly over the graph database.
In this paper, we propose an approach for effective evaluation of queries spec-
ified over graph databases. The proposed optimizer generates query plans sys-
tematically and evaluates them using appropriate cost metrics gleaned from
the graph database. For the time being, a graph mining algorithm has been
modified for evaluating a given query plan using constrained expansion. Rel-
evant metadata pertaining to the graph database is collected and used for
evaluating a query plan using a branch and bound algorithm. Experiments on
different types of queries over two graph databases (Internet Movie Database
or IMDB and DBLP) are performed to validate our approach. Experimental
results show that the query plan generated by our system results in exploring
significantly fewer portions of the graph as compared to any other query plan
for the same query.

1 Introduction

Relational database management systems (RDBMSs) are good at managing transac-
tional data. With the proliferation of applications rich in relationships (e.g., social
networks) graphs are becoming the preferred choice as the data model for represent-
ing/storing data with relationships. Ability to efficiently query this representation
using intuitive ways of querying is central for its ubiquitous usage. Given a graph
G and a user-defined query Q, we want to retrieve a set of subgraphs of G that are
isomorphic to Q. Graph query finds use in a plethora of domains. For example, in
a bibliography network such as DBLP [1], users are eager to extract coauthor and
paper information across years; and in a movie database like Internet Movie Database
(IMDB) [2], movie enthusiasts tend to look for movies or series belonging to partic-
ular genres or containing specific actors or directors. Note that queries can contain

various relational conditions on node and edge labels and unbounded variables to be
instantiated to appropriate values during query evaluation. Queries can also include
logical operators. With growing graph sizes, number of answers to queries typically
increase, making a clear case for the need of query optimization for graph databases.

Graph query answering problem has three major challenges: (1) graph query an-
swering involves graph isomorphism which is NP Complete [8]; (2) querying on graphs
need users to either learn a specialized query language (like Metaweb Query Language
for Freebase [6] and Cypher Query Language [11] for Neo4j [3]) or use customized
query patterns; and (3) large graphs suffer from random access problem and hence
need to take advantage of indexing techniques. Note that, graph query answering
typically starts from a set of matching vertices in the query, expand them in con-
strained ways until all edges in the query are expanded. This results in the generation
of a set of intermediate results. Intuitively, lesser the number of intermediate results,
lesser is the query response time. Given a vertex/edge, indexing helps to quickly find
it in a graph. However, indexing does not guide the choice of choosing an initial
set of nodes or the set of subsequent nodes and edges needed for query expansion.
Index-based approaches do not handle unbound variables and relational conditions.
Therefore there is a growing need and strong motivation to take advantage of well
known database query optimization techniques to address the problem of reducing
the number of intermediate results in graph query answering.

Query optimization on a relational database uses metadata extracted from the
database [12]. This metadata can be effectively used to estimate the cost of a query
plan to help minimize the desired cost (disk I/O and cpu cost) of processing a query
in an RDBMS. Similarly, a query plan in a graph database can be thought of as a
sequence of vertex/edge expansions to cover the query. The choice of starting point(s)
and the sequence of subsequent vertices/edges expanded, affect the intermediate re-
sults generated following that particular query plan. Hence, given a query plan, the
goal is to estimate the number of intermediate results generated while answering the
query. Note that determining the exact set of intermediate results is possible only
when the query is executed. However, we need a technique to quickly estimate the
size of these intermediate results while generating a query plan. Graph metadata
can play a crucial role in approximating the size of these intermediate results. La-
bel frequency and average node degree are examples of metadata specific to a graph
database. It is also not useful to collect a large amount of metadata as it takes space,
time to compute, and resources to update. Therefore, one of the challenges is to iden-
tify a relatively small set of graph metadata that can help to generate “good” plan
for a given query. In this paper we identify the metadata needed and used by a graph
query plan generator. We also discuss the use of metadata for computing the cost of
a partial query plan. The contributions of the paper are:

– Identifying a set of metadata and algorithms for extracting and storing them in
a graph catalog. We show its applicability in handling graph queries containing
both logical and relational operators

– Cost formulas to estimate the average number of intermediate substructures gen-
erated by a partial plan. This is used to prune the search space of query plans.

– Modification of the SUBDUE mining algorithm [10] to accept a query plan and
evaluate that query in a constrained manner without generating all substructures
as is typically done in mining

– Experimental validation of the cost estimate and evaluation of plans consisting of
relational and logical operators on different real world databases

The rest of the paper is organized as follows. Section 2 discusses the related work.
Section 3 introduces the preliminaries and problem definition. Section 4 discusses the
catalog, cost formulas and the query plan generator, and Section 5 shows the related
experiments while Section 6 concludes the paper.

2 Related Work

Graph databases have received a lot of attention over the recent years due to pro-
liferation of data with relationships such as bioinformatics, social networks, web and
telecommunication networks. Hence it becomes necessary to manage large graphs in
relational DBMSs [5]. However, existing database models and query languages lack the
native support for (large) graphs. The popularity of graph data calls for newer tech-
niques to tackle graph data and search for user defined patterns in them. Typically,
there are two types of graph databases. The transaction graph database consists of
a large number of small graphs while a single-graph database is a large single graph.
In all of these graph databases, the common problem is to answer a user defined
query, which can be formulated as a combination of logical and relational operations
on graph databases.

In any graph database, the graph query problem is to find the set of subgraphs
isomorphic to the input query graph. The major challenge is to reduce the number
of pairwise graph comparisons and a number of graph indexing techniques have been
developed for it [9, 7, 15, 14]. A graph database can also be comprehended as a for-
est of disconnected components, so solving graph querying for a single graph would
also fit into the graph transaction setting. A straightforward approach is to store the
underlying graph as relational tables and make use of SQL queries to address graph
querying. However, SQL queries are not the best for graph querying as evaluating
queries leads to a large number of self-joins. Even though database specific optimiza-
tions, like query plan generator tries controlling join order, the number of intermediate
results can grow excessively large, especially when the graphs are large. Hence there
is a clear motivation to query a graph using graph traversal techniques and devise
optimizing techniques for querying in graph databases.

Indexing on a single graph has received some attention in recent times. Graph-
Grep [9] proposed a path length based indexing scheme. In TALE [14], the authors
made use of a neighborhood based indexing technique to match nodes. GRAY [15]
used a label propagation based indexing scheme. The common aspect among all these
indexing schemes is given a node they quickly find matches of that node to give a
head start into query answering. However, none of them uses an educated approach
to decide the choice of a start node and the subsequent edges. We demonstrate that
metadata can be more useful than indexing for queries with logical and relational
operators.

3 Preliminaries and Problem Definition

This section presents the key concepts, notations and terminologies used in this paper.

3.1 Attributed Graph

A graph is attributed where each vertex belongs to a category/type. Formally, an
attributed graph is defined as G = (V,E) with V vertices, E edges. The vertices are
again categorized into two types: instance vertices (I) and type attributes (T) where
V = I

∪
T . There exists a mapping ϕ: I → T such that, for each v in I, ϕ(v) is the cate-

gory or type node connected with that v. Each instance vertex is connected to only one
type node and to multiple instance vertices. Optionally, edges can have edge labels. All
edges going out of a type node has the same label. This is typical of many real-world
graph databases with multiple labels in some cases and absence of type nodes in some
cases.

��������		�

��
������

�����

���

����

�����

�����

�����

�����		

������

�������		�

���

������

 ����

�
�
��
�

���! ����

"���

�

Fig. 1. Example attributed graph from
IMDB

Figure 1 shows an example of an at-
tributed graph. The colored circles (Per-
son, movie, and year) are the three type
nodes in the graph. Type nodes are con-
nected to instances which are represented
using white circles. Note that type nodes
are connected to instance nodes contain-
ing numeric types (e.g. year) or non nu-
meric types (e.g. Movie). The graph is
typically represented as a set of vertices
with vertex labels followed by a list of
edges between vertices taking O(V + E)
space. In case of a directed graph, the
edges showcase the source destination re-
lationship. Any other representation that
captures this information can also be used.

3.2 Graph Query

A graph query on an attributed graph is defined as Q = (Vq, Eq) where Vq is the set
of vertices, Eq is the set of edges and Vq =Iq + Tq where Tq is the set of type nodes
associated with the Iq instance vertices. The user can optionally leave vertex labels
unbound (or unspecified) in the query. Following the graph representation, queries
are also represented as a set of Vq vertices followed by a set of Eq edges. In graph
databases some interesting queries that can be specified are: (i) Queries with one
or more type nodes (ii) Queries where instance nodes can have multiple relational
operators (e.g. year > 1980, actor ̸= Brad Pitt etc.) (iii) Queries with unbounded
vertex and edge labels (iv) Queries with logical AND/OR operators on instance node
values.

4 Methodology and Approach

For a query on a relational database, the query optimizer generates a “good” plan us-
ing the database catalog and the cost formulas for estimating the execution cost of that
query. We model our system along similar lines. However, the cost in the case of graph
databases need to be properly identified. Figure 2 discusses the architecture of our
query optimizer. We extract metadata from the graph and store it in a graph catalog.
For any given query, the partial plan generator generates alternative plans and uses the

cost estimator to estimate the cost of evaluating that plan. The pruner helps control
the search space of query plans. Below, we explain in detail our three major contribu-
tions: the graph catalog, the partial query plan generator and the cost formulas used by
the cost estimator.

������������

	
�
�����

����

��������
����
�

��
����������
�

��
�� �������

����

��
�����

���������	��
�������

	���� ��
��

�
���

Fig. 2. Graph Database Query Opti-
mizer (GDQP)

4.1 Graph Catalog

As mentioned earlier, in relational databases,
metadata information is used to estimate
the cost of a query plan. Graph databases
are analogous to relational databases in
some ways. For example, in an attributed
graph database, the type nodes are simi-
lar to the attribute names in an RDBMS.
Similarly, the number of instances con-
nected to type node is analogous to the
attribute cardinality. The connectivity be-
tween instance nodes of different types, with different edge labels, estimates the con-
nection cardinality which is similar to the join cardinality in a database. Depending
on how a graph is used (whether materialized in memory or not), the cost that needs
to be taken into account varies. In this paper, since we are using Subdue which materi-
alizes the graph, we do not consider the I/O cost but only the number of intermediate
substructures generated. The cost formulas may change under a different assumption.
We here discuss the relevant graph statistics which can be gleaned from the graph
database for catalog creation. Table 1 introduces the notations that we use throughout
the paper.

Table 1. Symbols

Symbol Description

I(t) Number of instances connected with type t

nt
i ith instance of type t where 1 ≤ i ≤ I(t)

edge(nt1
i , nt2

j , el) edge between nt1
i and nt2

j with edge label el

Max(t) Maximum value across all instances of type t (if numeric)

Min(t) Minimum value across all instances of type t (if numeric)

I Type Cardinality (TC): Type cardinality is defined as the number of instances
of a particular type node. Intuitively, if query answering starts from a type node,
the type cardinality helps estimate the number of substructures generated after
exploring the type node. For type node t, the type cardinality is I(t). Given the
type node, degree of that type node is its type cardinality.

II Average Instance Cardinality (AIC): Once the query answering reaches an
instance node, the number of substructures generated in the next round depends
on the degree of the instance node. Since there are multiple instances of a particu-
lar type node, with different degrees, we introduce average instance cardinality to

estimate the average number of neighbors to be searched from an instance of type
t. For a given instance node of a specific type, the average instance cardinality
is computed by taking the average of degrees of instances of that type. Average
instance cardinality of an instance node with type t is

AIC(instance of type t) =
1

I(t)
×

i=I(t)∑
i=1

degree(nt
i) (1)

III Average Connection Cardinality (ACC): Query answering explores the
neighborhood of an instance but only chooses a few connected instances, based
on the query connectivity (edge label and connected instance node) for expan-
sion. Since multiple instances of type t1 can be connected with multiple instances
of type t2 by the same edge label el, we again derive the average connectivity
information for our catalog. Intuitively, this value gives us the expected num-
ber of expansions from an instance node to another with a particular edge label.
The average connection cardinality starting from an instance node of type t1 and
reaching another instance of type t2 with edge label el is defined as

ACC(t1, t2, el) =
1

I(t1)
×

i=I(t1),j=I(t2)∑
i=1,j=1

edge(nt1
i , nt2

j , el) (2)

IV Min and max values of type nodes: Note that some special type nodes are
only connected to numeric instance nodes. This gives user the opportunity to
ask range based queries using these attributes. Hence for selectivity, we keep the
minimum and maximum numeric value associated with such special type nodes.
This intuitively hints at the number of substructures to be generated following
user-defined selectivity criteria. For a type node t with numeric or categorical
attributes the selectivity is defined as

Selectivity =

1

I(t) node=value

1− 1
I(t) node ̸=value

Max(t)−value
Max(t)−Min(t) node>value
value−Min(t)
Max(t)−Min(t) node<value

(3)

The three major operations to answer a graph query are: (1) choosing a starting node
(type or instance); (2) expanding the neighborhood; and (3) retaining substructures
using query conditions. Type cardinality and instance cardinality help choose start
nodes and estimate neighborhood expansion cost. Average connection cardinality,
analogous to joins helps determine the number of expansions. Min and max values
estimate number of intermediate substructures based on query conditions on numeric
or categorical attributes. Table 2 shows a graph catalog created from the example
graph in Figure 1. AIC is depicted as an instance followed by “*” while ACC is
between two instances with defined labels. Fields starting with a type node and ending
with an instance node indicate TC.

Table 2. Graph Catalog extracted for Graph in Figure 1
Node and Node and Edge Label Avg
its type its type if used Cardinality

person person instance is 3
person instance person is 1
person instance movie instance actor 5/3
person instance * * 8/3
movie movie instance is 3
movie instance movie is 1
movie instance person instance actor 5/3
movie instance year instance in year 1
movie instance * * 11/3
year year instance is 2
year instance movie instance in year 3/2
year instance year is 1
year instance * * 5/2

Node Min Max #Unique
values

year instance 2011 2013 2

Catalog gen-
eration for the
system is out-
lined in Algo-
rithm 1. We
make a single
pass over the
input graph data
file using very
little memory
unlike other al-
gorithms that
require graph
construction in
main memory
and its traver-
sal. The cata-
log is created
by reading one
input graph line
at a time and
maintaining a
few counters.
Processing of vertices provide information on the instance and type nodes. Processing
of the edges is used to populate the type cardinality, instance cardinality and connec-
tion cardinality. If the instance node has a numeric or categorical attribute, the min
and max value associated with its type is computed accordingly. The number of lines
in the graph file is equal to the number of vertices and edges hence catalog creation
requires O(|V | + |E|) time. Hence the catalog generation time scales linearly with
graph size. The number of counters depends on the unique type nodes and unique
edge labels present in the graph, which are orders of magnitude lesser than |V | and
|E|. Since the underlying graph does not change, the catalog incurs an one time gener-
ation cost. Once created, the catalog can be used to answer any number of queries. If
new vertices and edges are added, the catalog need not be recreated but incrementally
updated.

4.2 Cost Formulas

We propose cost formulas for estimating the number of intermediate results generated
during query execution as the cost of that plan. Typically, answering a query requires
expanding a node to connected nodes in the graph matching edge and node label
conditions from the query. Our total estimated cost of a plan is a cumulative cost of
partial query plans generated for evaluating a query. A partial query match grows by
expanding matched node(s) incurring an expansion cost. Out of these expansions, only
the ones matching the query conditions are retained, hence controlling the number
of substructures. We introduce two parameters to keep track of each query plan in
any iteration i: (i)costi and (ii)currSubi. The currSubi parameter keeps track of
estimated number of substructures generated until iteration i. The costi parameter

Algorithm 1 Graph Catalog Generator

1: function CatalogGenerator(V,E)
2: vertexTypeMap = null
3: for each vertex v in V do
4: if v is instance
5: vertexTypeMap[v]=instance
6: else
7: vertexTypeMap[v]=type
8: end for
9: for each edge e in E do
10: source = vertexTypeMap[e.source]
11: dest = vertexTypeMap[e.dest]
12: source==type and dest==instance
13: update type cardinality
14: update min and max value if e.dest has numeric type attribute
15: if source==instance and dest==instance
16: update average instance cardinality
17: update average connection cardinality
18: end for
19: end function

estimates the cumulative neighborhood expansion cost till the ith iteration. A query
must have at least one node. The node can be a type node or an instance node of a
known type with or without relational operators. Given a start node, the initialization
of cost and currSub in iteration 1 is computed as shown below:

cost1 = I(t)× Selectivity (from equation 3) ; currSub1 = cost1 (4)

For subsequent iterations (i+1 where (i ≥ 1)), the current number of substructures
is updated based on the query expansion conditions on edge labels and the relational
operator on the connecting instance node. This involves both connection cardinality
(for edge label) and selectivity (for connecting instance node).

currSubi+1 = currSubi ×ACC × Selectivity (5)

In each iteration, partially completed substructures incur a neighborhood expan-
sion cost for satisfying the query conditions. Note that in any iteration, we are adding
only one edge on a particular node (type or instance) as the underlying system is
implemented that way. Hence costi+1 captures the cumulative cost of neighborhood
expansion for the currSubi matched patterns and the previous cost (costi). Mathe-
matically,

costi+1 = costi + currSubi × node cardinality (6)

where node cardinality =

{
TC if expanding on type node

AIC otherwise

4.3 Query Plan Generator

The query plan generator takes a graph query and the metadata generated for that
graph as input and generates the best cost query plan using a branch and bound

algorithm. The cost formulas are used as a heuristic to guide the branch and bound
algorithm to limit the search space. The generator uses each node in the query as a
start node for the generation of alternate query plans. From each start node partial
query plans are generated by adding an edge from the query and computing cost of
partial plans using the formulas discussed earlier. At every iteration, top-k plans (that
correspond to the lowest costs) are considered as candidates for the next iteration.
When a complete plan is generated (number of iterations equal to the number of edges
in the query), all plans that have a cost higher than the completed plan are pruned.
Note that partial plans with a cost lesser than the cost of the current completed
plan are still expanded to guarantee an optimal plan. The plan generator emits the
optimal completed plan. Note that, in case of relational queries (like OR) the emitted
query plan correspond to multiple plans and the query result is an union of results of
those plans. Algorithm 2 outlines the algorithm used by our generator. The user can
generate top-k plans by explicitly specifying a k value. Obviously, k = 1 emits the
best plan and k with a large value generates all plans along with their estimated cost
information.

Algorithm 2 Query Plan Generator

1: Input: Query graph Gq, Catalog C, user defined k
2: Output: k alternative plans with their estimated cost
3: planList = NULL
4: for each node q in Gq do
5: add q as start point of plan
6: initialize q.cost using equation 4
7: initialize q.currSub
8: end for
9: while number of plans < k do
10: for each plan p in k lowest cost plans do
11: expand plan by adding an edge
12: update p.cost using equation 6
13: update p.currSub using equation 5
14: end for
15: update k lowest cost plans
16: update planList on plan completion
17: end while
18: emit k lowest cost plans

Figure 3 shows how above-described plan generator works on a query on the IMDB
graph, along with the catalog used by the plan generator. We show all plans and their
final costs to demonstrate the cost differences between the best and worst plans. For
this example, it is clear that there is orders of magnitude difference between the costs.
Once a good (or best) query plan is generated, any system can be used to execute the
query plan on the graph. A good query plan would require the least execution time
in any graph querying system assuming node-wise expansion of the plan.

We have modified SUBDUE [4, 10], a popular graph mining system into a query-
ing system, Query Processor-Subdue (QP-Subdue) by making the following changes.
Instead of starting from all nodes (as in the case of mining), QP-Subdue starts from

node(s) specified by the plan. We replace the unconstrained expansion strategy in
SUBDUE by a constrained expansion strategy which supports checks of relational
query conditions on node labels and edge labels. Moreover, support for logical oper-
ations (AND/OR) on node values is also added to QP-Subdue. We believe that any
other querying system will show the same trend as QP-Subdue. However, QP-Subdue
carries forward the advantages and disadvantages of SUBDUE. Typically SUBDUE
expands one edge at a time and hence requires multiple traversals of the adjacency
list of the same vertex. This can be avoided by performing simultaneous expansions
on a node. The cost formulas need to be adjusted to reflect the approach used.

��������		�

��
������

�����

������

�����

����

�����

����

����

�

���������	��

�����

����

�� ��

��������		�

��
������

��

�������
��

����

��

���������

�����

����

��

�����������

��������		�

��
������

������	

����������

������	

�����������

��������		�

��
������

�

������

������

��

�������

����

��

�������

����

��

����������

������

�����

������

��	��
��

������

��	��
��

����

�����

��

����

���	�� ����	� �	 ����

����	� ���	�� �	 �

����	� ����	� ����� ���

����	� !�"

����� ����	� �	 ���

����	� ����� �	 �

����

��������

����

��������

�����

�����

���

��	�

������ ������ ����	 ����

������ ������ �� ���	

������ ! ! �"�#

���	 ������ �� ��

������ ���	 ��

������ ������ ������	 $%�$

������ ! ! &��$

������	

����

�����

����

��

������	

����

��������		�

��
������

������	

�����

����

��

�

�

�

�

�����

������

��

�����

����

��

�����

����

��

�����

������

��
�����

������

��

�����

������

��

��������		�

��
������

�����

����

��

����

������	

�������

����

��

Fig. 3. Query plan generation steps for an example query

Note that, in Figure 3 the plans with lower costs have always expanded to known
nodes before unknown nodes thereby achieving better pruning during the expansion
phase. This is analogous to query plans in a relational model where selections and
projections are pushed down the query plan tree. Intuitively, expanding to smaller
number of nodes (similar to lower intermediate result cardinality in an RDBMSs)
achieves lesser query computation cost. We believe that the actual running time of
these plans on the graph will have a positive correlation with the estimated query
cost. We shall verify our conjecture in Section 5 on a diverse set of queries to show
the effectiveness of our approach.

5 Experimental Analysis

In this section, we present the results of our experimental analysis performed on var-
ious queries over different databases. The experimental results reinforce our premise
that generating a “good” plan before evaluating a query is beneficial and the execution
time of the plan is directly proportional to the number of intermediate substructures

generated. The consistent performance of the plan generator across different types of
queries and databases establishes the validity of our proposed approach of cost-based
plan generation for graph querying.

All experiments have been carried out on Dual Core AMD Opteron 2 GHz proces-
sor machine with 4 GB memory. To evaluate the performance of the plan generator,
we used IMDB [2] and DBLP [1] data sets. DBLP data set contains the information
of publications along with the information of their authors, conferences, and years.
IMDB graph database contains the information of movies, actors, genres, year, com-
pany, etc. Since the focus is on good plan generation, we carefully extracted a section
from both the graphs for query answering with at least one known query pattern.
To see the performance of the system on graphs of various sizes, we extracted small
graphs (12,000 vertices and 30,000 edges) to big graphs(350,000 vertices and 1100,000
edges.) This gives us better control in doing targeted queries with the assurance that
they would be discovered in the graph.

For the above mentioned graph databases, we used queries having different char-
acteristics such as queries with a comparison operator (<,≤, >,≥, ̸=,=), queries with
a combination of multiple comparison operators, queries with logical operator (OR,
AND) and queries with a combination of logical and comparison operators. In an AND
query all query conditions need to be satisfied, while an OR query internally trans-
lates into an union of individual queries. Note that, our system is parameterized to
generate minimum, maximum, or all cost plans. Note the our cost metrics is based on
the number of intermediate substructure generated, but can be tweaked to match the
expansion used in the algorithm for query evaluation. In order to see the effectiveness
of our cost formulas among various plans, we picked minimum(Min), median(Med)
and maximum(Max) cost plans for experimental analysis. We do not include the cat-
alog creation cost and graph loading time (both being one time operations) as part
of the query response time across all our experiments.

�

�

��

��

��

��

��

�������� �����	�� ��������� ���
������ ���
��	��� �����������

�����

�����

�����

����	

�����

����

����

����

����

���

	��

���

���	�

�����

�����

�����

���

����

�

�

�

�

�

�

�

�

�

�

�

�

���������	��
���������������

���

���

���

�

�

��

��

��

��

��

��

�������� �����	�� ��������� ���
������ ���
��	��� �����������

����� �����

����	

�����

�����

����

����

����

����

���

	��

���

�����

�	���

�����

�����

�	��

���	�

�

�

�

�

�

�

�

�

�

�

�

�

���������	��
���������������

���

���

���

��������	
 ���� ���������������

��������	�������������������

Fig. 4. Query response times for queries 1 and 2 with growing graph sizes

5.1 Performance of Plans

We used the following queries to verify our query plan.

Query 1:“Find tv-series and its company name, where Kelsey, Wagner has worked
as an animator and genre of the tv-series is animation and comedy” is an example
query to IMDB graph database containing AND logical operator. This query inspects
how our system performs on queries that needs multiple satisfiability. Experiments in
Figure 4 shows us that our best plan performs significantly better than others. The
max cost plan typically started exploring unknown nodes first, thereby generating a
much larger set of intermediate results which increased the runtime.

Query 2: “Find tv-series and its company by Soler, Rebecca where the genres
are drama and family and the year is not equal to 1996” is a query to IMDB graph
database which contains a combination of both comparison (̸=) and logical operator
(AND). This query verifies how our system handles combination of elementary query
types. Results in Figure 4 show the effectiveness of the plan found by our system. The
inequality operation (because of selectivity) adds a little bit to the response time as
compared to the equality condition.

Query 3: “Find tv-series and its company where Kelsey, Wagner has worked
as an animator OR Soler, Rebecca has worked as an actress” is a query to IMDB
graph database having an OR operator. This query helps understand the difference
in runtime between queries with logical operators. Note that the OR query in Figure 5
takes considerably more time than the AND query in Figure 4. Since OR queries are
divided into multiple sub plans based on the OR condition, execution of an OR query
is internally translated as union of multiple plans thereby needing more time. We still
see that our system generated query plan is the best among all query plans in terms
of runtime.

�

��

��

��

��

��

��

���	
��� ���	
��� ���	
���� ����	
���� ����	
���� ����	
�����

����

����� �����

�����

�����

����

����

��

��

����

����

����

�����

����

�����

����

����

����

�

�

�

�

�

�

�

�

�

�

�

�

����������	��
���������������

���

���

���

��������	
��
�������������

�

��

��

��

��

��

��

���	
��� ���	
��� ���	
���� ����	
���� ����	
���� ����	
�����

����

�����

�����

����

����� ����

����

����

����

����

�����

����

�����

����

����

����

�����

�����

�

�

�

�

�

�

�

�

�

�

�

�

���������	��
���������������

���

���

���

��������	����������
��������������

Fig. 5. Query response times for queries 3 and 4 with growing graph sizes

Query 4: “Find papers published by the author Eric Hanson prior to the year
2009” is an example of query which contains a range (<) operator on the DBLP
graph database. This query is important to understand how our system performs
for range queries. Once again Figure 5 shows that minimum cost plan executes in
considerably less amount of time compared to other plans.

�

�

��

��

��

��

��

��

�������� �����	�� ��������� ���
������ ���
��	��� �����������

����� ����

�����

�����

����	

�����

���

���

����

	��

���

����

����

����	

���

�����

�����

����

�

�

�

�

�

�

�

�

�

�

�

�

���������	��
���������������

���

���

���

����������	
������������������������������

�

��

���

���

���

���

���

���

���

���

���

�������� �����	�� ��������� ���
������ ���
��	��� �����������

��� ��� ����

����

���	

���

���

���

����

��

��

���

����

�����

��

��	

���

���

�

�

�

�

�

�

�

�

�

�

�

�

���������	��
���������������

���

���

���

���������	
�����������������������

Fig. 6. Query response times for queries 5 and 6 with growing graph sizes

Query 5: “Find papers where Yuri Breitbart AND Abraham Silberschatz have
collaborated together after the year 1980” shows an example a query with a combina-
tion of comparison and logical operators. In Figure 6, the time varies for minimum
cost plan from 9 millisecond to 19 millisecond on different data sets, while for the
maximum cost plan, it varies approximately from 9 seconds to 30 seconds. The order
of magnitude difference is indicative of the need for this approach for graph query
processing.

Query 6: “Find authors with their papers and conference information in year
2005” is an example of a query which has multiple unknown nodes (authors, papers,
conference). This query helps us to validate the quality of our generator in the presence
of a high number of unknown values in the query. Figure 6 shows that our method still
performs better than the median and maximum cost plans. However, the time taken
to answer this query is significantly greater than other queries due to the presence of
multiple unknowns in the query. Still the difference is in order of magnitude.

All the queries show that the best cost plan generated by our system always
generates minimum query response time. And the median and max plans are orders
of magnitude slower than the best plan. This validates our premise that different, but
appropriate cost measures are needed for estimating graph query plans. The consistent
performance of the plan generator validates the feasibility of the proposed approach
for graph databases. Moreover, our plan generator is able to handle different query
types.

6 Conclusions and Future Work

We have developed an initial framework that allows us to generate query plans for
various types of queries containing one or more comparison and logical operations. Our
choice of the number of intermediate substructures generated as a good cost estimator
is validated by the time taken for the execution of different plans. We have minimally
modified a mining algorithm to evaluate queries. The proposed approach overcomes
some of the limitations of the conventional techniques used in graph databases for
evaluating a query without generating query plans.

Future work includes evaluation of queries on partitioned graphs to achieve scal-
ability, overcoming some of the limitations of Subdue to expand multiple edges in
each iteration which requires re-examination of cost formulas, generalize to arbitrary
graphs – with or without type nodes, with multiple node and edge labels, and mul-
tiple edges between nodes as well as cycles. An intuitive User interface for specifying
queries as well as the underlying graph to facilitate querying will be useful.

References

1. http://www.informatik.uni-trier.de.

2. http://www.imdb.com/.

3. http://neo4j.com/.

4. http://ailab.wsu.edu/subdue.

5. Shalini Batra and Charu Tyagi. Comparative analysis of relational and graph databases.
International Journal of Soft Computing and Engineering (IJSCE), 2(2):509–512, 2012.

6. Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-
base: a collaboratively created graph database for structuring human knowledge. In
Proceedings of the 2008 ACM SIGMOD international conference on Management of
data, SIGMOD ’08, pages 1247–1250, New York, NY, USA, 2008. ACM.

7. James Cheng, Yiping Ke, Wilfred Ng, and An Lu. Fg-index: towards verification-free
query processing on graph databases. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, Beijing, China, June 12-14, 2007, pages 857–872,
2007.

8. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

9. Rosalba Giugno and Dennis Shasha. Graphgrep: A fast and universal method for query-
ing graphs. In 16th International Conference on Pattern Recognition, ICPR 2002, Que-
bec, Canada, August 11-15, 2002., pages 112–115, 2002.

10. Lawrence B. Holder, Diane J. Cook, and Surnjani Djoko. Substucture Discovery in the
SUBDUE System. In Knowledge Discovery and Data Mining, pages 169–180, 1994.

11. Florian Holzschuher and René Peinl. Performance of graph query languages: comparison
of cypher, gremlin and native access in neo4j. In Proceedings of the Joint EDBT/ICDT
2013 Workshops, pages 195–204. ACM, 2013.

12. Matthias Jarke and Jurgen Koch. Query optimization in database systems. ACM Com-
puting surveys (CsUR), 16(2):111–152, 1984.

13. Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse of the last
reducer. In World Wide Web Conference Series, pages 607–614, 2011.

14. Yuanyuan Tian and Jignesh M. Patel. TALE: A tool for approximate large graph match-
ing. In Proceedings of the 24th International Conference on Data Engineering, ICDE
2008, April 7-12, 2008, Cancún, México, pages 963–972, 2008.

15. Hanghang Tong, Christos Faloutsos, Brian Gallagher, and Tina Eliassi-Rad. Fast best-
effort pattern matching in large attributed graphs. In Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose,
California, USA, August 12-15, 2007, pages 737–746, 2007.

